(54) 发明名称
感应加热定位装置和成像设备

(57) 摘要
一种感应加热定位装置和成像设备。所述感应加热定位装置包括具有感应线圈和电容器的串联谐振电路、相位比较器、相位控制器、谐振频率跟随振荡器和PWM信号产生器。相位比较器比较PWM信号产生器输出的脉冲的相位与交流输入感应线圈的电流的相位，当控制相位时将比较结果输出到相位控制器。当执行PWM控制时将比较结果输出到谐振频率跟随振荡器。相位控制器基于相位比较器的输出和预定的线圈电流相位量输出频率控制信号。谐振频率跟随振荡器通过使用频率控制信号改变振荡频率，以使串联谐振电路的驱动频率跟随谐振频率。PWM信号产生器基于谐振频率产生驱动串联谐振电路的脉冲。相位比较器、相位控制器、谐振频率跟随振荡器和PWM信号产生器被数字化地控制。
1. 一种感应加热定影装置，包括：具有感应线圈和电容器的串联谐振电路、相位比较器、相位控制器、谐振频率跟随振荡器以及 PWM（脉宽调制）信号产生器，

其中，相位比较器比较 PWM 信号产生器输出的脉冲的相位与流过感应线圈的电流的相位。

当控制相位时相位比较器将通过所述比较获得的比较结果输出到相位控制器，当执行 PWM 控制时相位比较器将所述比较结果输出到谐振频率跟随振荡器，

相位控制器基于相位比较器的输出和预定的线圈电流相位量输出具有预定相位值的频率控制信号，

谐振频率跟随振荡器通过使用相位控制器的输出改变振荡频率，以使串联谐振电路的驱动频率跟随谐振频率，

PWM 信号产生器基于通过谐振频率跟随振荡器的谐振频率产生用于驱动串联谐振电路的脉冲，

相位比较器、相位控制器、谐振频率跟随振荡器和 PWM 信号产生器被数字化地控制。

2. 根据权利要求 1 所述的感应加热定影装置，其中，相位控制器在它的计数器中对相位比较器的输出进行计数，通过使用减法器比较并运算线圈电流的相位量的设置值，并将频率控制信号输出到谐振频率跟随振荡器，其中，相位比较器比较 PWM 信号产生器输出的脉冲的相位与流过感应线圈的电流的相位以输出与相位差相应的信号，

谐振频率跟随振荡器基于相位控制器输出的信号使计数器升值或降值，以改变谐振频率。

3. 根据权利要求 1 所述的感应加热定影装置，其中，在相对小的电流流过的第一区域内执行相位控制，并且在相对大的电流流过的第二区域中执行 PWM 控制。

4. 一种包括如权利要求 1 所述的感应加热定影装置的成像设备。
感应加热定影装置和成像设备

【0001】本申请要求于 2011 年 12 月 13 日递交到日本专利局的第 2011-272302 号日本专利申请和 2012 年 12 月 6 日递交到韩国知识产权局的第 2012-0141201 号韩国专利申请的权益，其公开通过引用完整地包含于此。

技术领域
【0002】本发明总体构思涉及一种感应加热定影装置和成像设备。

背景技术
【0003】成像设备设置有用于将传送的调色剂图像定影到记录介质（诸如纸张）的定影装置。定影装置包括定影辊或定影带（加热辊）以及加压辊，定影辊或定影带（加热辊）用于将传送的调色剂加热定影到纸张，加压辊压紧到定影辊或定影带以对纸张加压。
【0004】设置在定影辊或定影带内部或外部的具有用于对定影辊或定影带加热的感应加热线圈的感应加热定影装置被广泛使用。感应加热方法通过使感应加热线圈产生的磁通量流过定影辊或定影带的导体部分，以使涡电流流过定影辊或定影带的内部并利用上述涡电流产生的焦耳热对定影辊或定影带加热，来对定影辊或定影带加热。
【0005】现有技术的感应加热定影装置中的功率控制方法分为以下方法：利用 LCR 谐振电路控制驱动频率的方法；通过在谐振电路以谐振频率 f 谐振时执行 PWM 控制来控制电流量的方法。在专利文档 1 和 2（专利文档 1：JP2008-51951；专利文档 2：JP 2008-145990）中公开了现有技术的通过控制驱动频率改变输出功率的方法。
【0006】在被设计为转换电流量的现有技术的感应加热定影装置 900 中，逆变电源的构造在图 1 中被示出，其中，感应加热定影装置 900 通过在谐振频率 f 的状态下执行 PWM 控制以控制电流量。来自 AC 集成电路 901 的电流被全波整流，通过噪声滤波器 905，并被提供给半桥输出电路 906。在图 1 中，标号 902 和 903 分别指示熔断器和浪涌电压保护压敏电阻。
【0007】半桥输出电路 906 是开关元件并且包括例如绝缘栅双极晶体管（IGBT）、场效应晶体管（FET）等。
【0008】在图 1 的构造中，半桥输出电路 906 采用 IGBT 907 和 908 作为开关元件。LC 串联谐振电路包括感应加热低耗线圈 912 和电容器 913、914，并且 LC 串联谐振电路在高频率电流流过由 Ritz 导线（包括细铜线的电线）组成的感应加热低耗线圈 912 时产生磁场。感应加热低耗线圈 912 产生的磁场集中到由高介电常数介质制成的定影辊或定影带，以使涡电流流过散热器的表面，从而定影辊或定影带自身产生热。
【0009】用于检测感应加热低耗线圈 912 的电流和相位差的电流互感器 909 的输出的驱动电压与 IGBT 907 和 908 输出的半桥的驱动电压（一侧）之间的相位比较由相位比较器 928（例如，常用的 PLL IC（74H4046 等））来执行，并且相位比较器 928 的相位比较结果被输出到 RC 锯齿振荡型压控振荡器（VCO）929。VCO 929 的振荡频率被反馈控制，以使电流互感器 909 的输出的驱动电压与半桥的输出的驱动电压之间的相位差消失。
【0010】在 PWM 控制器 919 中，通过 CPU 915 的比例积分微分（PID）控制器 917 的 PID 运
算从散热器温度传感器 911 的信息计算的 PWM 占空比以及已经通过整流电路 923 整流的电流互感器 909 的输出被误差放大器 920 放大，放大的值和 VCO 929 的输出由比较器 921 比较，比较结果被输出到 PWM 驱动器 922，PWM 驱动器 922 可将 PWM 信号输出到光电二极管和光电晶体管 923 和 924。

[0011] 专利文献 1 ：公开号为 2008-51951 的日本专利申请；
[0012] 专利文献 2 ：公开号为 2008-145990 的日本专利申请。
[0014] 在通过使用 LCR 谐振电路控制驱动频率的现有技术的感应加热定影装置的功率控制方法中，在谐振电路的谐振频率改变的情况下，无法像专利文献 1 中公开的发明那样，控制感应加热定影装置，并且为了对付这种情况，需要获得允许功率达到峰值的频率，并将获得的频率作为下限频率来控制。此外，在控制小功率时，频率过高，从而使半桥输出元件的开关损耗可能增大，从而影响可能降低。作为一种解决方案，需要将功率控制方法划分为大功率控制方法、中功率控制方法和小功率控制方法。此外，当半桥元件在驱动频率偏离谐振频率的状态下开关时，不执行零电压开关，从而使可能产生装置损耗，并且可能引起由于热产生导致的退化和热压。
[0015] 同时，通过在谐振电路以频率 f 谐振的状况下执行 PWM 控制来改变电流量以控制电流量的方法中，因为相位比较器、电压控制产生器和 PWM 控制器通过模拟电路来构造，所以需要考虑组件常数的偏差或温度的变化，或者需要根据规格改变组件常数，例如设置谐振频率跟随范围。此外，在存在不用于设定目的的频率区域（例如，特定 RF 或诸如定影带的定影装置的谐振频率）的状况下，难以脱离这样的频率范围并自动跟随谐振频率。
[0016] 此外，通过仅执行 PWM 控制，可能无法控制非常小的电流区域。这是因为：开关元件（例如 IGBT）的开关速度没有快到可以通过使用 PWM 来控制非常小的电流的程度。

发明内容
[0017] 本发明总体构思提供了一种感应加热定影装置和成像设备，所述感应加热定影装置和成像设备可通过跟随谐振频率以执行 PWM 控制和相位控制，来控制甚至非常小的电流区域，而不需考虑部件常数的偏差或温度变化。
[0018] 根据本发明总体构思的另一方面，提供了一种感应加热定影装置，包括：具有感应线圈和电容器的串联谐振电路、相位比较器、相位控制器、谐振频率跟随振荡器以及 PWM（脉宽调制）信号产生器，其中，相位比较器比较 PWM 信号产生器输出的脉冲的相位与流入感应线圈的电流的相位，当控制相位时将通过比较获得的比较结果输出到相位控制器，当执行 PWM 控制时将比较结果输出到谐振频率跟随振荡器，相位控制器基于相位比较器的输出和预定的线圈电流相位量输出具有预定相位值的频率控制信号，谐振频率跟随振荡器通过使用相位控制器的输出改变振荡频率，使串联谐振电路的驱动频率跟随谐振频率，PWM 信号产生器基于通过谐振频率跟随振荡器的谐振频率产生用于驱动串联谐振电路的脉冲，相位比较器、相位控制器、谐振频率跟随振荡器和 PWM 信号产生器被数字化地控制。
[0019] 相位控制器在它的计数器中对相位比较器的输出进行计数，通过使用减法器比较并运算线圈电流的相位量的设置值，并将频率控制信号输出到谐振频率跟随振荡器，谐振频率跟随振荡器基于相位控制器输出的信号使计数器升值或降值，以改变谐振频率，其中，
相位比较器比较 PWM 信号产生器输出的脉冲的相位与流过感应线圈的电流的相位以输出与相位差相应的信号。

[0020] 可在相对小的电流流过的第一区域中执行相位控制，并且可在相对大的电流流过
的第二区域中执行 PWM 控制。

[0021] 根据本发明总体构思的另一方面，提供了一种包括上述感应加热定影装置的成像
设备。

附图说明

[0022] 通过参照附图详细描述本发明总体构思的示例性实施例，本发明总体构思的以上
和其他特点和优点将变得更加清楚，在附图中：

[0023] 图 1 是示出现有技术的感应加热定影装置的逆变电源的构成的电路图；
[0024] 图 2 是示出根据本发明总体构思的示例性实施例的感应加热定影装置的构成的
电路图；
[0025] 图 3 是示出在设置了不可用于特定目的的频率区域时的向上 / 向下计数器的计数
值与输出频率之间的关系的曲线图；
[0026] 图 4 是示出当 PWM 的导通占空时间改变时的输出特性的曲线图；
[0027] 图 5 是示出 ASIC 中的相位比较器的构成的电路图；
[0028] 图 6 是示出 ASIC 中的跟随振荡器的构成的电路图；
[0029] 图 7 是示出图 2 中所示的 ASIC 中的 PWM 信号产生器的构成的电路图；
[0030] 图 8 是示出谐振频率跟随振荡器的操作波形的示图；
[0031] 图 9 是示出谐振频率跟随振荡器的操作波形的示图；
[0032] 图 10 是示出谐振频率跟随振荡器的操作波形的示图；
[0033] 图 11 是示出谐振频率跟随振荡器和 PWM 信号产生器的输出细节的时序图；
[0034] 图 12 是示出谐振频率跟随振荡器和 PWM 信号产生器的输出细节的时序图；
[0035] 图 13 是示出谐振频率跟随振荡器和 PWM 信号产生器的输出细节的时序图；
[0036] 图 14 是示出根据本发明总体构思的示例性实施例的感应加热定影装置的构成的
电路图；
[0037] 图 15 是示出当 PWM 的导通占空时间改变时的输出特性的曲线图；
[0038] 图 16 是示出相位控制器的构成的电路图；
[0039] 图 17 是示出当图 16 的相位控制器从 0 经由 X 到 Y 改变线圈电流的相位控制量的
设置时的驱动电压、线圈电流和频率控制信号的操作波形的示图；
[0040] 图 18 是示出图 16 的相位控制器中的信号的时序图；
[0041] 图 19 是示出图 16 的相位控制器中的信号的时序图。

具体实施方式

[0042] 现在将参照附图更全面地描述本发明总体构思，附图中示出本发明总体构思的示
例性实施例。描述和附图中的相同标号表示相同元件。具有标号中的共同的下属两位数字
的元件彼此对应。

[0043] ＜示例性实施例＞
首先，将描述根据本发明总体构思的示例性实施例的感应加热定型装置的构造。图2示出根据本发明总体构思的示例性实施例的感应加热定型装置100的构造的电路图。在下文中，将参照图2描述根据本发明总体构思的示例性实施例的感应加热定型装置100的构造。

图2中示出的感应加热定型装置是在定影辊或定影带的内部或外部设置有感应加热线圈以加热定影棍或定影带的感应加热型定影装置。

如图2所示，感应加热定型装置100包括交流(AC)电源101，熔断器102，压敏电阻103，二极管桥104，噪声滤波器105，半桥输出电路106，中央处理单元(CPU)115，整流电路120，限流器电路121和专用集成电路(ASIC)124。来自AC电源101的AC电流通经整流电路，通过噪声滤波器105，并被提供给半桥输出电路106。

图2的感应加热定型装置100在自动跟随谐振频率的谐振状态下执行PWM控制以改变输出功率。也就是说，通过在自动跟随谐振频率的谐振状态下执行PWM控制，电流量被控制，从而改变电流量。

半桥输出电路106包括IGBT107和108，电流互感器109，感应加热低耗线圈112，电容器113和114。感应加热低耗线圈112，电容器113和114构成LC谐振电路。

半桥输出电路106使用绝缘栅双极晶体管(IGBT)、场效应晶体管(FET)等作为开关元件。

在图2的构造中，半桥输出电路106使用IGBT107和108作为开关元件。LC串联谐振电路包括感应加热低耗线圈112，电容器113和114，并且在高频率电流通过时产生磁场。感应加热低耗线圈112产生的磁场集中到由高介电常数介质制成的定影棍或定影带110，以使电流通过散热器的表面，从而定影棍或定影带110本身产生热。

CPU115测量定影棍或定影带110的温度，并基于由高介电常数介质制成的定影棍或定影带110的温度来控制信号后将描述的PWM信号产生器127产生的PWM信号的占空比，CPU115包括AD转换器(ADC)116和118，PID控制器117以及PWM占空比控制119。

ASIC124用于产生跟随包括感应加热低耗线圈112，电容器113和114的LC谐振电路的谐振频率的PWM信号，并且包括相位比较器125，谐振频率跟随振荡器126和PWM信号产生器127。在该实施例中，以数字电路的形式设计用于产生跟随LC谐振电路的谐振频率的PWM信号的构造，从而包括CPU115的所有元件可以安装在ASIC的内部(SOC)。

相位比较器125检测PWM信号产生器127产生的两个PWM信号之一与从限流器电路121输出的电流(即，由电流互感器109检测并流过感应加热低耗线圈112的电流)之间的相位差。也就是说，相位比较器125比较电流互感器109的输出和由IGBT107和108输出的半桥的驱动电压(一侧)之间的相位，并将相位比较结果输出到谐振频率跟随振荡器126，其中，电流互感器109用于检测连接到由IGBT107和108输出的半桥的感应加热低耗线圈112的电流和相位差。

谐振频率跟随振荡器126通过使用相位差检测结果执行使PWM信号产生器127产生的PWM信号的振荡频率跟随LC谐振电路的谐振频率的处理。具体地说，谐振频率跟随振荡器126根据相位比较器125的输出改变PWM信号的振荡频率。例如，谐振频率跟随振荡器126基于相位比较结果增大或减小计数值，以控制驱动电流使得相位差为零(谐振频率)。
说明书

PWM信号产生器127通过使用基于使振荡频率跟随LC谐振电路的谐振频率的处理而变化的振荡频率产生PWM信号，并将PWM信号输出到光电二极管和光电晶体管128和129。换句话说，PWM信号产生器127可将PWM信号输出到光电二极管和光电晶体管128和129，其中所述PWM信号具有通过CPU115中的比例积分微分（PID）控制器117的PID运算从所测散热量的温度的温度传感器111获得信息计算的PWM占空比。

整流电路120对电流互感器109的输出进行整流。整流电路120对电流互感器109的输出进行整流并将整流后的输出输出到CPU115的AD转换器118。限流器电路121将电流互感器109的输出电压限制在预定范围内。限流器电路121将电流互感器109的输出电压限制在预定范围内，并将经过限制的输出电压输出到ASIC124的相位比较器125。电阻122用于允许电流从电流互感器109流过电阻122。

如图2所示的感应加热定影装置100在二极管桥104中对来自AC电源101的AC电流进行全波整流，并使全波整流后的电流流过噪声滤波器105，然后将其提供给半桥输出电路106。

在半桥输出电路106中，随着IGBT107和108交替导通和截止以操作电流互感器109，使得通过噪声滤波器105的电流流过感应加热低耗线圈112。通过使高频电流流过感应加热低耗线圈112，可从感应加热低耗线圈112产生磁场。感应加热低耗线圈112产生的磁场集中到由高介电常数介质制成的定影棍或定影带110。感应加热低耗线圈112产生的磁场使涡电流流过散热器的表面，从而从散热器产生热。

接下来，将描述根据本发明总体构思的示例性实施例的图2中所示的感应加热定影装置100的LC谐振原理。在包括LC的电阻元件的LCR串联谐振电路中，LCR串联谐振电路的阻抗Z通过以下的等式1来获得。

等式1

\[Z = R + sL + \frac{1}{sC} \]

\[= R + j\omega L + \frac{1}{j\omega C} \]

\[= R + j\left(\omega L - \frac{1}{\omega C}\right) \]

\[Z = R + jX \quad X = \left(\omega L - \frac{1}{\omega C}\right) \]

其中，如果在X = 0处的频率为\(\omega_0\)，则通过以下等式2来获得串联谐振频率\(f_0\)。

等式2

\[\omega_0 L = \frac{1}{\omega_0 C} \]

\[\omega_0 = \frac{1}{\sqrt{LC}} \]

\[f_0 = \frac{1}{2\pi\sqrt{LC}} \]

接下来，当LCR串联谐振电路的阻抗Z由复向量表示时，通过以下等式3来获得阻
抗 Z、绝对值 $|Z|$ 以及相位 α。

[0071] 等式 3

[0072] $Z = R + jX$

[0073] $= |Z| \cos \alpha + j |Z| \sin \alpha$

[0074] $= |Z| (\cos \alpha + j \sin \alpha)$

[0075] $= |Z| e^{j\alpha}$

[0076] $|Z| = \sqrt{R^2 + X^2}$

[0077] $= \sqrt{R^2 + \left(\frac{\omega L - \frac{1}{\omega C}}{R} \right)^2}$

[0078] $\alpha = \tan^{-1} \left(\frac{X}{R} \right)$

[0079] $= \tan^{-1} \left(\frac{\omega L - \frac{1}{\omega C}}{R} \right)$

[0080] 即，因为在谐振频率 ω_0 电感和电容被移除，而仅有电阻元件存在，所以阻抗的绝对值 $|Z|$ 变为最小值。

[0081] 同时，当电压源 V 连接到串联谐振电路时，通过以下等式 4 获得流过的电流 I、电流的绝对值 $|I|$ 以及相位 Φ。

[0082] 从等式 4 中可以看出，通过改变电压来驱动 LCR 串联谐振电路的情况下，在谐振频率为 ω_0 时电流 I 取最小值，并且电流 I 和电压 V 具有相同的相位。以上，已经描述了图 2 中示出的感应加热定影装置 100 的 LC 谐振原理。

[0083] 等式 4

[0084] $I = \frac{V}{Z}$

[0085] $= \frac{V}{|Z|e^{j\alpha}}$

[0086] $= \frac{Ve^{-j\alpha}}{|Z|}$

[0087] $I = \left| I \right| e^{-j\phi}$

[0088] $\left| I \right| = \frac{V}{|Z|}$

[0089] $= \frac{V}{\sqrt{R^2 + \left(\frac{\omega L - \frac{1}{\omega C}}{R} \right)^2}}$

[0090] $\phi = -\alpha$

[0091] $= -\tan^{-1} \left(\frac{X}{R} \right)$

8
\(aL - \frac{1}{\omega C} = \frac{R}{\omega C} \)

图 4 是示出当 PWM 信号的导通占空时间（高时间段）改变时的 LCR 串联谐振电路的电流输出特性的曲线图。电流值（绝对值）随谐振频率 \(f_0\) 的参考点变化，并且电流值（绝对值）还通过改变 PWM 信号的导通占空时间而变化。也就是说，当 PWM 信号产生器 127 产生的 PWM 信号的导通时间增加时，IGBT 107 和 108 的导通时间也增加，并且 LCR 串联谐振电路的电流值也增大。

以上，已经参照图 2 描述了感热加定影装置 100 的构造。接下来，将更详细地描述构成图 2 中示出的 ASIC 124 的元件。首先，将描述相位比较器 125。

图 5 是图 2 中示出的 ASIC 124 中的相位比较器 125 的电路图。在下文中，将参照图 5 描述相位比较器 125。

如图 5 所示，相位比较器 125 包括延迟校正单元 131、JK 触发器（JKFF）132 和 133 以及 NAND 门 134。

延迟校正单元 131 设置线圈电流相位比较电压 Coil_ICV 的延迟校正值，所述延迟校正值用于使 PWM 信号产生器 127 产生的驱动电压 Drive_V1 延迟。驱动电压 Drive_V1、系统时钟 System_CL 和延迟时钟 Delay_CL 被输入到延迟校正单元 131，延迟校正单元 131 将时钟输出到 JKFF 132。从限流器电路 121 输出的线圈电流相位比较电压 Coil_ICV 被提供给 JKFF 133。

JKFF 132 和 133 中的每一个将与输入端 J 和 K 的状态的组合相应的状态与输入的时钟同步，并将同步的状态输出到输出端 Q 和反向输出端。当通过感热加定影装置 112 的电流的相位滞后于 PWM 信号产生器 127 产生的驱动电压 Drive_V1 时，JKFF 132 输出值 1（高）。其结果是，Count_Up 变为高。同时，当通过感热加定影装置 112 的电流的相位超前于 PWM 信号产生器 127 产生的驱动电压 Drive_V1 时，JKFF 133 输出值 1（高）。其结果是，Count_Down 变为高。

通过构造如图 5 所示的相位比较器 125，当从限流器电路 121 输出的线圈电流相位比较电压 Coil_ICV 滞后于驱动电压 Drive_V1 时，Count_Up 变为高，并且当线圈电流超前时，Count_Down 变为高。

接下来，将描述谐振频率跟随振荡器 126。图 6 是图 2 中示出的 ASIC 124 中的谐振频率跟随振荡器 126 的电路图。在下文中，将参照图 6 描述谐振频率跟随振荡器 126。

如图 6 所示，谐振频率跟随振荡器 126 包括向上 / 向下计数器 141、频率比较器 142、反馈增益校正单元 143、PWM 计数器 144、OSC 比较器 145、1 比特计数器 146、NOT 门 147 和 AND 门 148。

向上 / 向下计数器 141 接收相位比较器 125 的输出 Count_Up 或 Count_Down 以及其他参数，当相位比较器 125 的输出中的 Count_Up 为高时，向上 / 向下计数器 141 向上计数以增大振荡频率，当 Count_Down 为高时，向上 / 向下计数器 141 向下计数以降低振荡频率。

向上 / 向下计数器 141 的其他输入参数可包括作为频率比较器 142 输出的值 OSC_
OUT[N...1] 的范围的 Count_Max-Count_Min 的值，作为与 Count_Max 相应的频率的 f_MIN, 作为与 Count_Min 相应的频率的 f_MAX, 以及初始设置的谐振频率 f_initial（见图3）。

[0105] 频率比较器 142 执行振荡频率与不可用于特定目的的频率区域（例如，特定的射频或用于诸如定影机或定影带 110 的定影工具的谐振频率）之间的比较。如图6所示，频率比较器 142 包括窗口比较器 161、比较电路 162 和锁存电路 163。

[0106] 窗口比较器 161 比较不可用于特定目的的频率区域 (f1_Max 至 f1_Min, f2_Max 至 f2_Min, ... f_M_max 至 f_min) 与向上/向下计数器 141 的输出计数值。当向上/向下计数器 141 的输出计数值对应于不可用于特定目的的频率区域时，窗口比较器 161 输出高。

[0107] 图3是示出在设置了不可用于特定目的的频率区域时的向上/向下计数器 141 的计数值与输出频率之间的关系的曲线图。在图3的曲线图中，横轴指示频率，纵轴指示向上/向下计数器 141 的输出 FOUT[N...1]。f_initial 对应于初始设置的谐振频率 f_0, Count Max 对应于下限频率 f_MIN, Count Min 对应于上限频率 f_MAX。因此，频率与向上/向下计数器 141 的计数值成比例。

[0109] PWM 计算器 144 基于系统时钟 System_CLK 输出计数值 PWM_OUT[N-1...0]。OSC 比较器 145 比较频率比较器 142 的输出 OSC_OUT[N...1] 与 PWM 计数器 144 的输出 PWM_OUT[N-1...0]，并输出比较结果（OSC_COMP_OUT）。当在比较中频率比较器 142 的输出 OSC_OUT[N...1] 与 PWM 计数器 144 的输出 PWM_OUT[N-1...0] 一致时，OSC 比较器 145 在预定时间段内将其输出从低改变为高，并向 PWM 信号产生器 127 通知谐振频率的一个周期完成。

[0110] 接下来，将描述 PWM 信号产生器 127。图7是图2中示出的 ASIC 124 中的 PWM 信号产生器 127 的电路图。下面，将参照图7描述 PWM 信号产生器 127。

[0111] 如图7所示，PWM 信号产生器 127 包括乘法器 151、PWM 比较器 152、AND 门 155、157 和 158，以及 D 触发器 (DFF) 156。

[0112] PWM 比较器 152 比较乘法器 151 执行乘法运算的结果与 PWM 计数器 144 的输出 PWM_OUT[N-1...0]，并将比较结果输出到 NOT 门 154，其中，所述乘法运算将从 PWM 占空比控制器 119 发送的关于占空比的信息 PWM_Duty 与频率比较器 142 的输出 OSC_OUT[N...1] 相乘。

[0113] DFF 156 接收 OSC 比较器 145 的输出 OSC_COMP_OUT，并输出用作驱动电压 Drive_V1 和 Drive_V2 的基础的电压 Drive_V。AND 门 155、157 和 158 通过两个使能信号 146 的输出信号 PWM_Select 分别输出驱动电压 Drive_V1 和 Drive_V2。

[0114] 也就是说，PWM 信号产生器 127 输出用作驱动电压 Drive_V1 和 Drive_V2 的基础的电压 Drive_V，驱动电压 Drive_V1 和 Drive_V2 在 OSC_COMP_OUT 为高的时刻变为高电平。
到预定时间段。该预定时间段由 PWM 占空比控制器 119 指示，并且该信息相应于被提供给 PWM 比较器 152 的 PWM Duty。

[0115] 通过构造如图 7 所示的 PWM 信号产生器 127，从 CPU 115 操作的导通占空时间和向上 / 向下计数器 141 的输出计数值计算 PWM 时序，计算的 PWM 时序与通过 DFF 156 作为重置计数器的 PWM 计数器 144 的输出值 PWM_OUT[N-1…0] 比较，如果计算的 PWM 时序与 PWM 计数器 144 的输出值 PWM_OUT[N-1…0] 一致，则将用作驱动电压 Drive_V1 和 Drive_V2 的基础的电压 Drive_V 设置为低。这样，产生在导通占空时间段期间变高的驱动电压 Drive_V1 和 Drive_V2，光电二极管在高段时间变高，光电晶体管导通，从而 IGBT 107 和 108 导通，使得电流流过 LCR 串联谐振电路。

[0116] 以上，已经描述相位比较器 125，谐振频率跟随振荡器 126 和 PWM 信号产生器 127。接下来，将描述谐振频率跟随振荡器 126 的操作。图 8 至图 10 示出谐振频率跟随振荡器 126 的操作波形。

[0117] 图 8 示出当驱动电压 Drive_V1 和 Drive_V2 的操作频率与谐振频率彼此一致时的谐振频率跟随振荡器 126 的操作波形。此外，图 9 示出当驱动电压的操作频率超过谐振频率时的谐振频率跟随振荡器 126 的操作波形。图 10 示出当驱动电压的操作频率低于谐振频率时的谐振频率跟随振荡器 126 的操作波形。

[0118] 图 8 示出流过线圈的电流的峰值根据驱动电压 Drive_V1 和 Drive_V2 的导通占空的长度而变化。驱动电压 Drive_V1 和 Drive_V2 的导通占空的长度根据 PWM 占空比控制器 119 的控制而变化。

[0119] 图 8 中，因为驱动电压的操作频率与谐振频率一致，所以相位比较器 125 的输出 Count_Up 或 Count_Down 总是为低，从而不产生向上 / 向下计数器 141 的输出 UpDown_count。

[0120] 图 9 和图 10 示出从线圈电流和驱动电压的操作波形检测相位差，并且通过增加或减少向上 / 向下计数器 141 的输出值来执行反馈控制，以使操作频率变为谐振频率。

[0121] 首先，当驱动电压的操作频率超过谐振频率时，将参照图 9 描述谐振频率跟随振荡器 126 的操作。当驱动电压的操作频率超过谐振频率时，流过线圈的电流的相位滞后于驱动电压，相位比较器 125 的输出中的 Count_Up 变为高。Count_Up 为高的时间段是这样的时间段，在该时间段期间，在驱动电压 Drive_V1 从低转换为高之后，线圈电流的相位变为 0。

[0122] 当相位比较器 125 的输出中的 Count_Up 变为高时，向上 / 向下计数器 141 在高时间段期间向上计数，然后输出增大的计数值。这样，使驱动电压的操作频率跟随谐振频率变为可能。

[0123] 同时，当驱动电压的操作频率低于谐振频率时，将参照图 10 描述谐振频率跟随振荡器 126 的操作。当驱动电压的操作频率低于谐振频率时，流过线圈的电流的相位超前于驱动电压，相位比较器 125 的输出中的 Count_Down 变为高。Count_Down 为高的时间段是这样的时间段，在该时间段期间，在线圈电流的相位变为 0 之后，驱动电压 Drive_V1 从低转换为高。

[0124] 当相位比较器 125 的输出中的 Count_Down 变为高时，向上 / 向下计数器 141 在高时间段向下计数，然后输出减小的计数值。这样，使驱动电压 Drive_V1 和 Drive_V2 的操作
频率跟随谐振频率变为可能。

【0125】接下来，将描述谐振频率跟随振荡器 126 和 PWM 信号产生器 127 的操作。图 11 至图 13 是示出谐振频率跟随振荡器 126 和 PWM 信号产生器 127 的输出的时序的图。

【0126】图 11 是当感应加热定形装置 100 的电源接通，然后感应加热定形装置 100 以初始设置的频率（= 谐振频率）振荡时的时序图，图 12 是当谐振频率高于初始设置的频率时的时序图，图 13 是谐振频率低于初始设置的频率时的时序图。

【0127】首先，当感应加热定形装置 100 的电源接通，然后感应加热定形装置 100 以初始设置的频率（= 谐振频率）振荡时，将参照图 11 描述谐振频率跟随振荡器 126 和 PWM 信号产生器 127 的操作。当 PWM 计数器 144 的输出 PWM_OUT[N-1⋯0] 的值变为与初始设置的频率相应的值 f_initial 时，PWM 计数器 144 的输出被置位，Osc 比较器 145 的输出从低转换为高，并且 DFF 156 的输出 Drive_V1 从低转换为高。分别从 AND 门 157 和 158 输出通过 DFF 156 的输出与 1 比特计数器 146 的输出的组合同步的驱动电压 Drive_V1 和 Drive_V2。

【0128】接下来，当谐振频率高于初始设置的频率时，将参照图 12 描述谐振频率跟随振荡器 126 和 PWM 信号产生器 127 的操作。如果谐振频率高于初始设置的频率，则相位比较器 125 的输出中的 Count_Down 变为高。这样，Osc 比较器 145 的输出 OSC_COMP_OUT 从低转换为高的时间段（即，f_initial → Initial-x → Initial-y → Initial-z）被缩短，并且 DFF 156 的输出 Drive_V 从低转换为高的时间段变化。这样，使驱动电压的操作频率跟随谐振频率变为可能。

【0129】最后，当谐振频率低于初始设置的频率时，将参照图 13 描述谐振频率跟随振荡器 126 和 PWM 信号产生器 127 的操作。如果谐振频率低于初始设置的频率，则相位比较器 125 的输出中的 Count_Up 变为高。这样，Osc 比较器 145 的输出 OSC_COMP_OUT 从低转换为高的时间段（即，Initial → Initial+x → Initial+y → Initial+z）被增大，并且 DFF 156 的输出 Drive_V 从低转换为高的时间段变化。这样，使驱动电压的操作频率跟随谐振频率变为可能。

【0130】因此，通过从驱动电压与线圈电流通断之间的相位差的检测结果增大或减小向上 / 向下计数器的值来执行控制，从而驱动电压的操作频率变为谐振频率，并且 PWM 占空比控制器 119 从通过 PID 控制器 117 的 PID 运算获得的 PWM 占空比电压计算 PWM 占空比。

【0131】当 PWM 计数器 114 的输出值与 PWM 占空比一致时，驱动电压为低，并且当 PWM 计数器 114 的输出值与向上 / 向下计数器 141 的值一致时，驱动电压为高，从而产生谐振频率 PWM 信号 Drive_V。通过将 1 比特计数器 146 产生的每半周期的输出允许信号和 DFF 156 产生的谐振频率 PWM 信号输入到 AND 门 157 和 158 来交替地输出半桥驱动信号（即，Drive_V1 和 Drive_V2）。

【0132】根据本发明总体构思的感应加热定形装置 100，可在自动跟随谐振频率 10 的谐振状态下执行 PWM 控制以控制电流的量，从而改变电功率的量。其结果是，可提高感应加热定形装置 100 的用电效率。

【0133】＜修改的示例＞

【0134】图 14 是解释感应加热定形装置 1400 的操作的电路图。图 15 是示出用于解释感应加热定形装置 1400 的操作的当 PWM 的导通占空时间改变时的输出特性的曲线图。

【0135】感应加热定形装置 1400 设置有 ASIC 1424。ASIC 1424 与图 2 的 ASIC 124 的不
同之处在于：ASIC 1424 设置有相位比较器 1425、相位控制器 1425P、谐振频率跟随振荡器 1426 和 PWM 信号发生器 1427。CPU 1415 包括 ADC 1416、PID 控制器 1417、ADC 1418、PWM 占空比控制器 1419 和相位控制量设置单元 1419P。图 14 的 ADC 1416、PID 控制器 1417、ADC 1418 和 PWM 占空比控制器 1419 分别对应于图 2 的 ADC 116、PID 控制器 117、ADC 118 和 PWM 占空比控制器 119。

[0136] 图 16 示出相位控制器 1425P 的具体构造。当线圈电流的相位控制量的设置值 Phase_Delay_Value 为 0 时，如参照图 2 所描述的那样执行谐振频率跟随控制。

[0137] 图 14 的相位比较器 1425、谐振频率跟随振荡器 1426 和 PWM 信号发生器 1427 分别对应于图 2 的相位比较器 125、谐振频率跟随振荡器 126 和 PWM 信号发生器 127。相位比较器 1425、谐振频率跟随振荡器 1426 和 PWM 信号发生器 1427 测量驱动电压与线圈电流之间的相位差，并执行相位差变为 0 的自动跟随谐振频率的控制。具体地讲，如图 15 所示，谐振频率 f0 是可变的。

[0138] 图 17 示出当图 16 的相位控制器 1425P 将线圈电流的相位控制量的设置值 Phase_Delay_Value 从 0 经过 X 转换为 Y（其中，X > Y）时的驱动电压、线圈电流以及频率控制信号 Count_Up、Count_Up2、Count_Down 和 Count_Down2 的操作波形。

[0139] 在执行谐振频率控制时，图 14 的 CPU 1415 将线圈电流的相位控制量的设置值 Phase_Delay_Value 设置为 0。此时，由图 16 的 Comp1 输出的选择 (Select) 信号为低，从而使 Selector2 (选择器 2) 和 Selector3 (选择器 3) 选择输入 A。其结果是，相位比较输出信号 Count_Up 和 Count_Down 被直接输入到谐振频率跟随振荡器 1426，不通过相位控制器 1425P。因此，执行谐振频率控制。

[0140] 当线圈电流的相位控制量的设置值 Phase_Delay_Value 从 0 的谐振状态）转换为 X 时，与设置值 X 相应的频率控制信号 Count_Down2 被输出，并且随着频率上升并达到相位控制量的设置值 X，脉冲宽度减小，最终，当相位控制量的设置值变为 X 时，频率控制信号 Count_Down2 的输出停止。

[0141] 在具体执行相位控制时，图 14 的 CPU 1415 将线圈电流的相位控制量的设置值 Phase_Delay_Value 设置为大于 0 的值。当线圈电流的相位控制量的设置值 Phase_Delay_Value 被设置为大于 0 的值，作为图 16 的 Comp1 输出的选择 (Select) 信号为高，从而使 Selector2 (选择器 2) 和 Selector3 (选择器 3) 选择输入 B。其结果是，相位比较输出信号 Count_Up 和 Count_Down 被输入到相位控制器 1425P 中，以执行相位控制，并且信号 Count_Up2 和 Count_Down2 被输入到谐振频率跟随振荡器 1426。因此，执行相位控制。

[0142] 当线圈电流的相位控制量的设置值 Phase_Delay_Value 从 X 转换为 Y（其中，X > Y）时，与 X 与 Y 之间的差成比例的频率控制信号 Count_Up2 被输出，并且随着频率上升并达到相位控制量的设置值 Y，脉冲宽度减小，最终，当相位控制量的设置值变为 Y 时，频率控制信号 Count_UP2 的输出停止。

[0143] 图 18 和图 19 是图 16 的相位控制器 1425P 中的信号的时序图。图 18 示出当在图 17 中线圈电流的相位控制量的设置值 Phase_Delay_Value 从 0 转换为 X 时的操作时序。图 19 示出当在图 17 中线圈电流的相位控制量的设置值 Phase_Delay_Value 从 X 转换为 Y（其中，X > Y）时的操作时序。

[0144] 〈作用和效果〉
图2的感应加热定影装置100通过PWM控制来控制温度，也就是说，感应加热定影装置100通过在图4中示出的所有电流值上计算最佳的PWM值来控制功率。换句话说，开关元件以谐振频率开关，并且其脉冲宽度基于来自温度传感器的信号而改变。

与此相比，感应加热定影装置1400在流过线圈的电流较大时执行PWM控制，并且在流过线圈的电流较小时执行相位控制。具体地讲，ASIC 1424包括相位控制器1425P。相位控制器1425P在小电流区域对线圈电流执行相位控制。

具有温度控制器的功能的CPU 1415可通过基于来自温度传感器111的信号计算最佳的PWM值和线圈电流相位的最佳的值，以两种模式控制功率（即，温度）。在流过线圈的电流较小的小电流区域，相位控制器1425P基于线圈电流的相位控制量的设置值Phase_DelayValue执行相位控制，从而控制线圈电流。也就是说，基于跟随的谐振频率，根据线圈电流的相位控制量的设置值Phase_DelayValue来控制电流的幅度，从而执行温度控制。结果，可以在非常小的功率区域中控制温度。

在流过线圈的电流较大的大电流区域中，以与图2的感应加热定影装置100相同的方式执行PWM控制。在这种修改中，如图15所示，这样的构造甚至在非常小的电流区域中也能控制线圈电流，从而可更精密地控制温度。

具体地讲，因为使用简单的逻辑电路（数字电路）来构造线圈电流相位延迟控制电路，所以可数字化地、稳定地控制温度，而不受温度的改变或不变的偏差影响。因为使用数字电路来构造所用的控制电路，所以控制电路可以简单地嵌入到ASIC中，以实现成本降低和最小化。

此外，在该修改中，仅为了在小功率的情况下控制非常小的电流而执行相位控制，但是本发明总体构思不限于此。例如，甚至在大电流区域和中电流区域中也可使用相位控制来执行功率控制。

<结论>

因为根据本发明总体构思的各种实施例的感应加热定影装置可通过使用向上/向下计数器和PWM控制器来简单地实现谐振频率跟随振荡器和PWM信号产生器的数字电路，所以谐振频率跟随振荡器和PWM信号产生器可以嵌入到ASIC 124中。

因此，根据本发明总体构思的实施例的感应加热定影装置与现有技术的感应加热定影装置相比，可减少硬件部件，从而降低成本并提高组装效率。此外，根据本发明总体构思的特定实施例的感应加热定影装置1400通过包括数字电路而不需要考虑组件常数的偏差或温度的变化，并且通过使用软件修改设置值在不改变硬件的情况下还可与任何规格兼容。这与由逻辑电路构成的现有技术的感应加热定影装置相比提供了明显的效果，在现有技术的感应加热定影装置中，应该考虑部件的偏差和温度的变化，或者应该按照规格改变组件常数，例如，设置谐振频率的跟随范围。

此外，使用数字电路来控制根据本发明总体构思的特定实施例的感应加热定影装置。因此，如果存在任何特定的不可用的频带（特定的无线频率在如定影的定影装置的谐振频率），则可通过设置所述频带来容易地执行控制。

根据本发明总体构思，可以提供可在考虑部件常数的偏差和温度变化的情况下执行跟随谐振频率的PWM控制和相位控制的新颖和改进的感应加热定影装置。

尽管已经参照本发明总体构思的示例性实施例具体地显示和描述了本发明总体
构思，但是本领域普通技术人员将理解，在不脱离由权利要求限定的本发明总体构思的精神和范围的情况下，可在形式和细节上进行各种改变。

【0157】 产业上的可利用性

【0158】 由于本发明总体构思提供了一种感应加热定影装置和成像设备，所述感应加热定影装置和成像设备通过跟随谱振频率以执行 PWM 控制和相位控制，而不考虑部件常数的偏差或温度变化，可控制甚至非常小的电流区域，因此本发明总体构思在产业上可以应用。
图 3
图 5
图 7