wo 20137106739 A2 I} A1 00O 0 R 0O A A

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/106739 A2

18 July 2013 (18.07.2013) WIPOIPCT

(51) International Patent Classification: (74) Agent: DAWLEY, Brian R.; Shumaker & Sieffert, P.A.,

HO4N 7/26 (2006.01) 1625 Radio Drive, Suite 300, Woodbury, Minnesota 55125
S).

(21) International Application Number: (US)

PCT/US2013/021278 (81) Designated States (unless otherwise indicated, for every

. .) kind of national protection available). AE, AG, AL, AM,

(22) International Filing Date: . 2013 (11012013 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
January 2013 (11.01.2013) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

(25) Filing Language: English DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
o . HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,

(26) Publication Language: English KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,

(30) Priority Data: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
61/586,668 13 January 2012 (13.01.2012) Us NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
61/588,595 19 January 2012 (19.01.2012) Us RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
61/597,097 9 February 2012 (09.02.2012) Us IM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
13/738,602 10 January 2013 (10.01.2013) Us IM, ZW.

(71) Applicant: QUALCOMM INCORPORATED [US/US]; (84) Designated States (unless otherwise indicated, for every
ATTN: International IP Administration, 5775 Morehouse kind of regional protection available): ARIPO (BW, GH,
Drive, San Diego, California 92121-1714 (US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

(72) Imventors: SEREGIN, Vadim; 5775 Morehouse Drive, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

San Diego, California 92121 (US). SOLE ROJALS, Joel;
5775 Morehouse Drive, San Diego, California 92121 (US).
KARCZEWICZ, Marta; 5775 Morehouse Drive, San
Diego, California 92121 (US).

EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DETERMINING CONTEXTS FOR CODING TRANSFORM COEFFICIENT DATA IN VIDEO CODING

4x4

R1

R2

FIG. 9A

(57) Abstract: In one example, a device for coding video
data includes a video coder configured to determine values
for coded sub-block flags of one or more neighboring sub-
blocks to a current sub-block, determine a context for coding
a transform coetlicient of the current sub-block based on the
values for the coded sub-block flags, and entropy code the
transform coefficient using the determined context.

WO 2013/106739 A2 |00V O 0RO AR A

Published:

— without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

WO 2013/106739 PCT/US2013/021278

DETERMINING CONTEXTS FOR CODING TRANSFORM COEFFICIENT
DATA IN VIDEO CODING

[0001] This application claims the benefit of U.S. Provisional Application Serial No.
61/586,668, filed January 13, 2012, U.S. Provisional Application Serial No. 61/588,595,
filed January 19, 2012, and U.S. Provisional Application Serial No. 61/597,097, filed

February 9, 2012, each of which is hereby incorporated by reference in its entirety.

TECHNICAL FIELD

[0002] This disclosure relates to video coding.

BACKGROUND

[0003] Digital video capabilities can be incorporated into a wide range of devices,
including digital televisions, digital direct broadcast systems, wireless broadcast
systems, personal digital assistants (PDAs), laptop or desktop computers, tablet
computers, e-book readers, digital cameras, digital recording devices, digital media
players, video gaming devices, video game consoles, cellular or satellite radio
telephones, so-called “smart phones,” video teleconferencing devices, video streaming
devices, and the like. Digital video devices implement video compression techniques,
such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263,
ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efficiency
Video Coding (HEVC) standard presently under development, and extensions of such
standards. The video devices may transmit, receive, encode, decode, and/or store digital
video information more efficiently by implementing such video compression
techniques.

[0004] Video compression techniques perform spatial (intra-picture) prediction and/or
temporal (inter-picture) prediction to reduce or remove redundancy inherent in video
sequences. For block-based video coding, a video slice (i.e., a video frame or a portion
of a video frame) may be partitioned into video blocks, which may also be referred to as
treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded ()
slice of a picture are encoded using spatial prediction with respect to reference samples
in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice
of a picture may use spatial prediction with respect to reference samples in neighboring

blocks in the same picture or temporal prediction with respect to reference samples in

WO 2013/106739 PCT/US2013/021278

other reference pictures. Pictures may be referred to as frames, and reference pictures
may be referred to a reference frames.

[0005] Spatial or temporal prediction results in a predictive block for a block to be
coded. Residual data represents pixel differences between the original block to be
coded and the predictive block. An inter-coded block is encoded according to a motion
vector that points to a block of reference samples forming the predictive block, and the
residual data indicating the difference between the coded block and the predictive block.
An intra-coded block is encoded according to an intra-coding mode and the residual
data. For further compression, the residual data may be transformed from the pixel
domain to a transform domain, resulting in residual transform coefficients, which then
may be quantized. The quantized transform coefficients, initially arranged in a two-
dimensional array, may be scanned in order to produce a one-dimensional vector of
transform coefficients, and entropy coding may be applied to achieve even more

compression.

SUMMARY
[0006] In general, this disclosure describes techniques related to determining contexts
for entropy coding, e.g., using context-adaptive binary arithmetic coding (CABAC), of
video data. CABAC coding generally involves determining a context when coding
binarized representations of various syntax elements. Examples of syntax elements
include data for transform coefficients, such as data indicating whether the transform
coefficients are significant, signs of the transform coefficients that are significant, and
level values for the transform coefficients that are significant. Transform coefficients
generally correspond to coefficients of a transform block, such as a transform unit (TU).
This disclosure describes techniques for determining contexts for coding transform
coefficients based on regions of a transform block in which the transform coefficients
occur.
[0007] In one example, a method of coding video data includes determining a context
for coding a transform coefficient of a video block based on a region of the video block
in which the transform coefficient occurs, and entropy coding the transform coefficient
using the determined context.
[0008] In another example, a device for coding video data includes a video coder

configured to determine a context for coding a transform coefficient of a video block

WO 2013/106739 PCT/US2013/021278

based on a region of the video block in which the transform coefficient occurs, and
entropy code the transform coefficient using the determined context.

[0009] In another example, a device for coding video data includes means for
determining a context for coding a transform coefficient of a video block based on a
region of the video block in which the transform coefficient occurs, and means for
entropy coding the transform coefficient using the determined context.

[0010] In another example, a computer-readable storage medium has stored thercon
instructions that, when executed, cause a processor to determine a context for coding a
transform coefficient of a video block based on a region of the video block in which the
transform coefficient occurs, and entropy code the transform coefficient using the
determined context.

[0011] In another example, a method of decoding video data includes determining
whether a transform coefficient of a video block is a DC transform coefficient, when the
transform coefficient is determined to be the DC transform coefficient of the video
block, determining a context for decoding the transform coefficient based on the
transform coefficient being the DC transform coefficient without regard for a size of the
video block, and entropy decoding the transform coefficient using the determined
context.

[0012] In another example, a device for decoding video data includes a video decoder
configured to determine whether a transform coefficient of a video block is a DC
transform coefficient, when the transform coefficient is determined to be the DC
transform coefficient of the video block, determine a context for decoding the transform
coefficient based on the transform coefficient being the DC transform coefficient
without regard for a size of the video block, and entropy decode the transform
coefficient using the determined context.

[0013] In another example, a device for decoding video data includes means for
determining whether a transform coefficient of a video block is a DC transform
coefficient, means for determining, when the transform coefficient is determined to be
the DC transform coefficient of the video block, a context for decoding the transform
coefficient based on the transform coefficient being the DC transform coefficient
without regard for a size of the video block, and means for entropy decoding the

transform coefficient using the determined context.

WO 2013/106739 PCT/US2013/021278

[0014] In another example, a computer-readable storage medium has stored thereon
instructions that, when executed, cause a processor to determine whether a transform
cocfficient of a video block is a DC transform coefficient, when the transform
cocfficient is determined to be the DC transform coefficient of the video block,
determine a context for decoding the transform coefficient based on the transform
coefficient being the DC transform coefficient without regard for a size of the video
block, and entropy decode the transform coefficient using the determined context.
[0015] In another example, a method of encoding video data includes determining
whether a transform coefficient of a video block is a DC transform coefficient, when the
transform coefficient is determined to be the DC transform coefficient of the video
block, determining a context for encoding the transform coefficient based on the
transform coefficient being the DC transform coefficient without regard for a size of the
video block, and entropy encoding the transform coefficient using the determined
context.

[0016] In another example, a device for encoding video data includes a video encoder
configured to determine whether a transform coefficient of a video block is a DC
transform coefficient, when the transform coefficient is determined to be the DC
transform coefficient of the video block, determine a context for encoding the transform
coefficient based on the transform coefficient being the DC transform coefficient
without regard for a size of the video block, and entropy encode the transform
coefficient using the determined context.

[0017] In another example, a device for encoding video data includes means for
determining whether a transform coefficient of a video block is a DC transform
coefficient, means for determining, when the transform coefficient is determined to be
the DC transform coefficient of the video block, a context for encoding the transform
coefficient based on the transform coefficient being the DC transform coefficient
without regard for a size of the video block, and means for entropy encoding the

transform coefficient using the determined context.

WO 2013/106739 PCT/US2013/021278

[0018] In another example, a computer-readable storage medium has stored thereon
instructions that, when executed, cause a processor to determine whether a transform
cocfficient of a video block is a DC transform coefficient, when the transform
cocfficient is determined to be the DC transform coefficient of the video block,
determine a context for encoding the transform coefficient based on the transform
coefficient being the DC transform coefficient without regard for a size of the video
block, and entropy encode the transform coefficient using the determined context.
[0019] In another example, a method of decoding video data includes determining
values for coded sub-block flags of one or more neighboring sub-blocks to a current
sub-block, determining a context for decoding a transform coefficient of the current sub-
block based on the values for the coded sub-block flags, and entropy decoding the
transform coefficient using the determined context.

[0020] In another example, a device for decoding video data includes a video decoder
configured to determine values for coded sub-block flags of one or more neighboring
sub-blocks to a current sub-block, determine a context for decoding a transform
coefficient of the current sub-block based on the values for the coded sub-block flags,
and entropy decode the transform coefficient using the determined context.

[0021] In another example, a device for decoding video data includes means for
determining values for coded sub-block flags of one or more neighboring sub-blocks to
a current sub-block, means for determining a context for decoding a transform
coefficient of the current sub-block based on the values for the coded sub-block flags,
and means for entropy decoding the transform coefficient using the determined context.
[0022] In another example, a computer-readable storage medium has stored thereon
instructions that, when executed, cause a processor to determine values for coded sub-
block flags of one or more neighboring sub-blocks to a current sub-block, determine a
context for decoding a transform coefficient of the current sub-block based on the
values for the coded sub-block flags, and entropy decode the transform coefficient using
the determined context.

[0023] In another example, a method of encoding video data includes determining
values for coded sub-block flags of one or more neighboring sub-blocks to a current
sub-block, determining a context for encoding a transform coefficient of the current sub-
block based on the values for the coded sub-block flags, and entropy encoding the

transform coefficient using the determined context.

WO 2013/106739 PCT/US2013/021278

[0024] In another example, a device for encoding video data includes a video encoder
configured to determine values for coded sub-block flags of one or more neighboring
sub-blocks to a current sub-block, determine a context for encoding a transform
coefficient of the current sub-block based on the values for the coded sub-block flags,
and entropy encode the transform coefficient using the determined context.

[0025] In another example, a device for encoding video data includes means for
determining values for coded sub-block flags of one or more neighboring sub-blocks to
a current sub-block, means for determining a context for encoding a transform
coefficient of the current sub-block based on the values for the coded sub-block flags,
and means for entropy encoding the transform coefficient using the determined context.
[0026] In another example, a computer-readable storage medium has stored thereon
instructions that, when executed, cause a processor to determine values for coded sub-
block flags of one or more neighboring sub-blocks to a current sub-block, determine a
context for encoding a transform coefficient of the current sub-block based on the
values for the coded sub-block flags, and entropy encode the transform coefficient using
the determined context.

[0027] The details of one or more examples are set forth in the accompanying drawings
and the description below. Other features, objects, and advantages will be apparent

from the description and drawings, and from the claims.

BRIEF DESCRIPTION OF DRAWINGS

[0028] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system that may utilize the inter-prediction techniques described in this disclosure.
[0029] FIG. 2 is a block diagram illustrating an example video encoder that may
implement the inter-prediction techniques described in this disclosure.

[0030] FIG. 3 is a block diagram illustrating an example video decoder that may
implement the inter-prediction techniques described in this disclosure.

[0031] FIG. 4 is a conceptual diagram that illustrates a relation between transform
coefficients in a video block and a significance map associated with the video block.
[0032] FIGS. 5A-5D are conceptual diagrams that illustrate examples of blocks of
video data scanned using a zig-zag scanning order, a horizontal scanning order, a

vertical scanning order, and a diagonal scanning order.

WO 2013/106739 PCT/US2013/021278

[0033] FIG. 6 is a conceptual diagram that illustrates an example video block divided
into sub-blocks for transform coefficient coding.

[0034] FIG. 7 is a conceptual diagram that illustrates an example five-point support
used to define a context model for a significance map of coefficients in a video block
scanned using a reverse diagonal scanning order.

[0035] FIGS. 8A and 8B are conceptual diagrams that illustrate context dependency
within the five-point support.

[0036] FIGS. 9A and 9B are conceptual diagrams that illustrate example divisions of a
video block into two or more regions.

[0037] FIG. 10 is a conceptual diagram that illustrates example assignment of
neighborhood- or position-based contexts for each region of a video block.

[0038] FIG. 11 is a conceptual diagram that illustrates example assignment of context
offsets for each region of a video block.

[0039] FIG. 12 is a conceptual diagram that illustrates an example embedded division
of a video block into two or more regions based on TU sizes that correlate to existing
context models.

[0040] FIGS. 13A and 13B are conceptual diagrams that illustrate example divisions of
a video block into two or more regions.

[0041] FIGS. 14A and 14B are conceptual diagrams that illustrate example assignment
of context offsets for each region of a video block.

[0042] FIG. 15 is a flowchart illustrating an example method for encoding a current
block.

[0043] FIG. 16 is a flowchart illustrating an example method for decoding a current
block of video data.

DETAILED DESCRIPTION

[0044] In general, this disclosure describes techniques related to determining contexts
for entropy coding, ¢.g., using context-adaptive binary arithmetic coding (CABAC), of
video data. CABAC coding generally involves determining a context when coding
binarized representations of various syntax elements. Syntax elements include, for
example, data for transform coefficients, such as data indicating whether the transform
coefficients are significant, signs of the transform coefficients that are significant, and
level values for the transform coefficients that are significant. Transform coefficients

generally correspond to coefficients of a transform block, such as a transform unit (TU).

WO 2013/106739 PCT/US2013/021278

This disclosure describes techniques for determining contexts for coding transform
coefficients based on regions of a transform block in which the transform coefficients
occur.

[0045] In general, in accordance with the techniques of this disclosure, a video coder
may be configured to determine context for coding a transform coefficient based on a
region in which the transform coefficient occurs and then entropy code the transform
coefficient using the determined context. A video block may be divided into regions in
a variety of ways. FIGS. 9A and 11 illustrate examples in which a video block is
divided into a first region including one or more upper-left sub-blocks (e.g., 4x4 sub-
blocks) and a second region including sub-blocks outside the first region. FIG. 9B
illustrates an example in which a video block is divided into regions along a diagonal
direction. FIG. 10 illustrates an example in which a video block is divided into
quartiles, and the upper-left quartile is further divided into a first sub-region including
sub-blocks of an upper-left portion of the upper-left quartile and a second sub-region
including sub-blocks of the upper-left quartile external to the first sub-region. FIG. 12
illustrates an example in which a video block is divided into regions that correspond to
video block sizes (e.g., 4x4, 8x8, 16x16, and 32x32). FIG. 13A illustrates an example
in which a video block is divided into horizontal rectangular regions. FIG. 13B
illustrates an example in which a video block is divided into vertical rectangular
regions. These figures are described in greater detail below.

[0046] In various examples, a video coder may be configured to determine a context for
coding a transform coefficient in various ways, ¢.g., based on a region in which the
transform coefficient occurs. For example, a video coder may be configured to
determine a context using position-based context information for some regions or
neighborhood-based context information for other regions. In some examples, all
transform coefficients within a particular region may be coded using the same context,
determined based on the region. In other examples, contexts for transform coefficients
within a region may be determined based on a context neighborhood. In still other
examples, a video coder may determine an offset to be applied to a context based on the
region in which a transform coefficient occurs. That is, each of the regions may be
associated with a particular context offset to be applied to a context.

[0047] The techniques of this disclosure may reduce bandwidth consumption, leading to
savings of bits when coding syntax elements for transform coefficients. Such syntax

elements may include any or all of a significant coefficient flag (which indicates

WO 2013/106739 PCT/US2013/021278

whether a corresponding transform coefficient is significant, that is, non-zero), a sign of
significant coefficients, an indication of whether a significant coefficient has an absolute
value greater than 1, an indication of whether a significant coefficient with an absolute
value greater than 1 has an absolute value greater than 2, and/or a remaining level value
for coefficients having absolute values greater than 2.

[0048] FIG. 1 is a block diagram illustrating an example video encoding and decoding
system 10 that may utilize the techniques described in this disclosure. As shown in
FIG. 1, system 10 includes a source device 12 that generates encoded video data to be
decoded at a later time by a destination device 14. Source device 12 and destination
device 14 may comprise any of a wide range of devices, including desktop computers,
notebook (i.c., laptop) computers, tablet computers, set-top boxes, telephone handsets
such as so-called “smart” phones, so-called “smart” pads, televisions, cameras, display
devices, digital media players, video gaming consoles, video streaming device, or the
like. In some cases, source device 12 and destination device 14 may be equipped for
wireless communication.

[0049] Destination device 14 may receive the encoded video data to be decoded via a
link 16. Link 16 may comprise any type of medium or device capable of moving the
encoded video data from source device 12 to destination device 14. In one example,
link 16 may comprise a communication medium to enable source device 12 to transmit
encoded video data directly to destination device 14 in real-time. The encoded video
data may be modulated according to a communication standard, such as a wireless
communication protocol, and transmitted to destination device 14. The communication
medium may comprise any wireless or wired communication medium, such as a radio
frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local area
network, a wide-area network, or a global network such as the Internet. The
communication medium may include routers, switches, base stations, or any other
equipment that may be useful to facilitate communication from source device 12 to
destination device 14.

[0050] Alternatively, encoded data may be output from output interface 22 to a storage
device 34. Similarly, encoded data may be accessed from storage device 34 by input
interface. Storage device 34 may include any of a variety of distributed or locally
accessed data storage media such as a hard drive, Blu-ray discs, DVDs, CD-ROMs,

flash memory, volatile or non-volatile memory, or any other suitable digital storage

WO 2013/106739 PCT/US2013/021278
10

media for storing encoded video data. In a further example, storage device 34 may
correspond to a file server or another intermediate storage device that may hold the
encoded video generated by source device 12. Destination device 14 may access stored
video data from storage device 34 via streaming or download. The file server may be
any type of server capable of storing encoded video data and transmitting that encoded
video data to the destination device 14. Example file servers include a web server (e.g.,
for a website), an FTP server, network attached storage (NAS) devices, or a local disk
drive. Destination device 14 may access the encoded video data through any standard
data connection, including an Internet connection. This may include a wireless channel
(e.g., a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a
combination of both that is suitable for accessing encoded video data stored on a file
server. The transmission of encoded video data from storage device 34 may be a
streaming transmission, a download transmission, or a combination of both.

[0051] The techniques of this disclosure are not necessarily limited to wireless
applications or settings. The techniques may be applied to video coding in support of
any of a variety of multimedia applications, such as over-the-air television broadcasts,
cable television transmissions, satellite television transmissions, streaming video
transmissions, ¢.g., via the Internet, encoding of digital video for storage on a data
storage medium, decoding of digital video stored on a data storage medium, or other
applications. In some examples, system 10 may be configured to support one-way or
two-way video transmission to support applications such as video streaming, video
playback, video broadcasting, and/or video telephony.

[0052] In the example of FIG. 1, source device 12 includes a video source 18, video
encoder 20 and an output interface 22. In some cases, output interface 22 may include a
modulator/demodulator (modem) and/or a transmitter. In source device 12, video
source 18 may include a source such as a video capture device, e.g., a video camera, a
video archive containing previously captured video, a video feed interface to receive
video from a video content provider, and/or a computer graphics system for generating
computer graphics data as the source video, or a combination of such sources. As one
example, if video source 18 is a video camera, source device 12 and destination device
14 may form so-called camera phones or video phones. However, the techniques
described in this disclosure may be applicable to video coding in general, and may be

applied to wireless and/or wired applications.

WO 2013/106739 PCT/US2013/021278
11

[0053] The captured, pre-captured, or computer-generated video may be encoded by
video encoder 20. The encoded video data may be transmitted directly to destination
device 14 via output interface 22 of source device 12. The encoded video data may also
(or alternatively) be stored onto storage device 34 for later access by destination device
14 or other devices, for decoding and/or playback.

[0054] Destination device 14 includes an input interface 28, a video decoder 30, and a
display device 32. In some cases, input interface 28 may include a receiver and/or a
modem. Input interface 28 of destination device 14 receives the encoded video data
over link 16. The encoded video data communicated over link 16, or provided on
storage device 34, may include a variety of syntax elements generated by video encoder
20 for use by a video decoder, such as video decoder 30, in decoding the video data.
Such syntax elements may be included with the encoded video data transmitted on a
communication medium, stored on a storage medium, or stored a file server.

[0055] Display device 32 may be integrated with, or external to, destination device 14.
In some examples, destination device 14 may include an integrated display device and
also be configured to interface with an external display device. In other examples,
destination device 14 may be a display device. In general, display device 32 displays
the decoded video data to a user, and may comprise any of a variety of display devices
such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode
(OLED) display, or another type of display device.

[0056] Video encoder 20 and video decoder 30 may operate according to a video
compression standard, such as the High Efficiency Video Coding (HEVC) standard
presently under development, and may conform to the HEVC Test Model (HM).
Alternatively, video encoder 20 and video decoder 30 may operate according to other
proprietary or industry standards, such as the ITU-T H.264 standard, alternatively
referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or extensions of such
standards. Extensions of standards include, for example, scalable video coding (SVC),
multiview video coding (MVC), three-dimensional (3D) such as coding depth
information, and the like. The techniques of this disclosure, however, are not limited to
any particular coding standard or standard extension. Other examples of video
compression standards include MPEG-2 and ITU-T H.263.

[0057] Although not shown in FIG. 1, in some aspects, video encoder 20 and video
decoder 30 may each be integrated with an audio encoder and decoder, and may include

appropriate MUX-DEMUX units, or other hardware and software, to handle encoding

WO 2013/106739 PCT/US2013/021278
12

of both audio and video in a common data stream or separate data streams. If
applicable, in some examples, MUX-DEMUX units may conform to the ITU H.223
multiplexer protocol, or other protocols such as the user datagram protocol (UDP).
[0058] Video encoder 20 and video decoder 30 each may be implemented as any of a
variety of suitable encoder circuitry, such as one or more microprocessors, digital signal
processors (DSPs), application specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs), discrete logic, software, hardware, firmware or any combinations
thereof. When the techniques are implemented partially in software, a device may store
instructions for the software in a suitable, non-transitory computer-readable medium and
execute the instructions in hardware using one or more processors to perform the
techniques of this disclosure. Each of video encoder 20 and video decoder 30 may be
included in one or more encoders or decoders, either of which may be integrated as part
of a combined encoder/decoder (CODEC) in a respective device.

[0059] The JCT-VC is working on development of the HEVC standard. The HEVC
standardization efforts are based on an evolving model of a video coding device referred
to as the HEVC Test Model (HM). The HM presumes several additional capabilities of
video coding devices relative to existing devices according to, e.g., ITU-T H.264/AVC.
For example, whereas H.264 provides nine intra-prediction encoding modes, the HM
may provide as many as thirty-three intra-prediction encoding modes.

[0060] In general, the working model of the HM describes that a video frame or picture
may be divided into a sequence of treeblocks or largest coding units (LCU) that include
both luma and chroma samples. A treeblock has a similar purpose as a macroblock of
the H.264 standard. A slice includes a number of consecutive treeblocks in coding
order. A video frame or picture may be partitioned into one or more slices. Each
treeblock may be split into coding units (CUs) according to a quadtree. For example, a
treeblock, as a root node of the quadtree, may be split into four child nodes, and each
child node may in turn be a parent node and be split into another four child nodes. A
final, unsplit child node, as a leaf node of the quadtree, comprises a coding node, i.c., a
coded video block. Syntax data associated with a coded bitstream may define a
maximum number of times a treeblock may be split, and may also define a minimum
size of the coding nodes.

[0061] A CU includes a coding node and prediction units (PUs) and transform units
(TUs) associated with the coding node. A size of the CU corresponds to a size of the

coding node and must be square in shape. The size of the CU may range from 8x8

WO 2013/106739 PCT/US2013/021278
13

pixels up to the size of the treeblock with a maximum of 64x64 pixels or greater. Each
CU may contain one or more PUs and one or more TUs. Syntax data associated with a
CU may describe, for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU is skip or direct mode encoded,
intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be
partitioned to be non-square in shape. Syntax data associated with a CU may also
describe, for example, partitioning of the CU into one or more TUs according to a
quadtree. A TU can be square or non-square in shape.

[0062] The HEVC standard allows for transformations according to TUs, which may be
different for different CUs. The TUs are typically sized based on the size of PUs within
a given CU defined for a partitioned LCU, although this may not always be the case.
The TUs are typically the same size or smaller than the PUs. In some examples,
residual samples corresponding to a CU may be subdivided into smaller units using a
quadtree structure known as "residual quad tree" (RQT). The leaf nodes of the RQT
may be referred to as transform units (TUs). Pixel difference values associated with the
TUs may be transformed to produce transform coefficients, which may be quantized.
[0063] In general, a PU includes data related to the prediction process. For example,
when the PU is intra-mode encoded, the PU may include data describing an intra-
prediction mode for the PU. As another example, when the PU is inter-mode encoded,
the PU may include data defining a motion vector for the PU. The data defining the
motion vector for a PU may describe, for example, a horizontal component of the
motion vector, a vertical component of the motion vector, a resolution for the motion
vector (e.g., one-quarter pixel precision or one-eighth pixel precision), a reference
picture to which the motion vector points, and/or a reference picture list for the motion
vector.

[0064] In general, a TU is used for the transform and quantization processes. A given
CU having one or more PUs may also include one or more TUs. Following prediction,
video encoder 20 may calculate residual values corresponding to the PU. The residual
values comprise pixel difference values that may be transformed into transform
coefficients, quantized, and scanned using the TUs to produce serialized transform
coefficients for entropy coding. This disclosure typically uses the term “video block™ to
refer to a coding node of a CU. In some specific cases, this disclosure may also use the
term “video block™ to refer to a treeblock, i.e., LCU, or a CU, which includes a coding

node and PUs and TUs.

WO 2013/106739 PCT/US2013/021278
14

[0065] A video sequence typically includes a series of video frames or pictures. A
group of pictures (GOP) generally comprises a series of one or more of the video
pictures. A GOP may include syntax data in a header of the GOP, a header of one or
more of the pictures, or elsewhere, that describes a number of pictures included in the
GOP. Each slice of a picture may include slice syntax data that describes an encoding
mode for the respective slice. Video encoder 20 typically operates on video blocks
within individual video slices in order to encode the video data. A video block may
correspond to a coding node within a CU. The video blocks may have fixed or varying
sizes, and may differ in size according to a specified coding standard.

[0066] As an example, the HM supports prediction in various PU sizes. Assuming that
the size of a particular CU is 2Nx2N, the HM supports intra-prediction in PU sizes of
2Nx2N or NxN, and inter-prediction in symmetric PU sizes of 2Nx2N, 2NxN, Nx2N, or
NxN. The HM also supports asymmetric partitioning for inter-prediction in PU sizes of
2NxnU, 2NxnD, nLx2N, and nRx2N. In asymmetric partitioning, one direction of a CU
is not partitioned, while the other direction is partitioned into 25% and 75%. The
portion of the CU corresponding to the 25% partition is indicated by an “n” followed by
an indication of “Up”, “Down,” “Left,” or “Right.” Thus, for example, “2NxnU” refers
to a 2Nx2N CU that is partitioned horizontally with a 2Nx0.5N PU on top and a
2Nx1.5N PU on bottom.

[0067] In this disclosure, “NxN” and “N by N” may be used interchangeably to refer to
the pixel dimensions of a video block in terms of vertical and horizontal dimensions,
e.g., 16x16 pixels or 16 by 16 pixels. In general, a 16x16 block will have 16 pixels in a
vertical direction (y = 16) and 16 pixels in a horizontal direction (x = 16). Likewise, an
NxN block generally has N pixels in a vertical direction and N pixels in a horizontal
direction, where N represents a nonnegative integer value. The pixels in a block may be
arranged in rows and columns. Moreover, blocks need not necessarily have the same
number of pixels in the horizontal direction as in the vertical direction. For example,
blocks may comprise NxM pixels, where M is not necessarily equal to N.

[0068] Following intra-predictive or inter-predictive coding using the PUs of a CU,
video encoder 20 may calculate residual data for the TUs of the CU. The PUs may
comprise pixel data in the spatial domain (also referred to as the pixel domain) and the
TUs may comprise coefficients in the transform domain following application of a
transform, e.g., a discrete cosine transform (DCT), an integer transform, a wavelet

transform, or a conceptually similar transform to residual video data. The residual data

WO 2013/106739 PCT/US2013/021278
15

may correspond to pixel differences between pixels of the unencoded picture and
prediction values corresponding to the PUs. Video encoder 20 may form the TUs
including the residual data for the CU, and then transform the TUSs to produce transform
coefficients for the CU.

[0069] Following any transforms to produce transform coefficients, video encoder 20
may perform quantization of the transform coefficients. Quantization generally refers to
a process in which transform coefficients are quantized to possibly reduce the amount of
data used to represent the coefficients, providing further compression. The quantization
process may reduce the bit depth associated with some or all of the coefficients. For
example, an n-bit value may be rounded down to an m-bit value during quantization,
where 7 is greater than m.

[0070] In some examples, video encoder 20 and video decoder 30 may utilize a
predefined scan order to scan the quantized transform coefficients to produce a
serialized vector that can be entropy encoded. In other examples, video encoder 20 and
video decoder 30 may perform an adaptive scan. After scanning the quantized
transform coefficients to form a one-dimensional vector, or during the scan, video
encoder 20 may entropy encode the one-dimensional vector, e.g., according to context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), Probability
Interval Partitioning Entropy (PIPE) coding or another entropy encoding methodology.
Video decoder 30 may entropy decode the coefficients, perform an inverse quantization
process and an inverse transform process to reproduce residual data, and combine the
residual data with predictive data to produce decoded video data. Video encoder 20
may also entropy encode syntax elements associated with the encoded video data for use
by video decoder 30 in decoding the video data.

[0071] To perform CABAC, video encoder 20 and video decoder 30 may assign a
context within a context model to a symbol to be coded. The context may relate to, for
example, whether neighboring values of the symbol are non-zero or not. In accordance
with the techniques of this disclosure, video encoder 20 and/or video decoder 30 may be
configured to determine context for entropy coding (e.g., entropy encoding or entropy
decoding) a transform coefficient based on a region of a video block in which the
transform coefficient occurs.

[0072] Video encoder 20 and video decoder 30 may be configured with definitions of

various regions for video blocks (e.g., transform units). For example, video encoder 20

WO 2013/106739 PCT/US2013/021278
16

and video decoder 30 may be configured with definitions of regions for various sizes of
video blocks. In some examples, video encoder 20 may determine a method by which
to divide a video block into regions and code data representative of how the block is to
be divided. Each of the regions may be associated with a respective value and/or
technique for determining context for transform coefficients occurring within the
respective region.

[0073] For example, a particular region of a video block may be associated with a
neighborhood-based context determination scheme, while another region of the video
block may be associated with a position-based context determination scheme. As
another example, a region of a video block may be associated with an offset to be
applied to a context determined for transform coefficients located in that region.
Different regions of the same video block may be associated with different offset values
and/or different techniques for calculating context.

[0074] As one example, a video block may include two different regions: a first region
including one or more sub-blocks (e.g., 4x4 transform coefficient sub-blocks) in an
upper-left corner of the video block, and a second region including other sub-blocks of
the video block that are not included in the first region. More specifically, video
encoder 20 and video decoder 30 may determine an x- and y-coordinate of a sub-block
and determine whether the sub-block is in the first region or the second region by
comparing the sum of x and y to a threshold value. If the sum of x and y is less than the
threshold, video encoder 20 and video decoder 30 may determine that the sub-block is
in the first region, and otherwise, video encoder 20 and video decoder 30 may determine
that the sub-block is in the second region. Video encoder 20 and video decoder 30 may
determine context for coefficients of a video block based on whether the coefficients are
in a sub-block of the first region or a sub-block of the second region.

[0075] For example, in some regions, the context may be a fixed context, in which
video encoder 20 and video decoder 30 codes transform coefficients in such regions
using the fixed context. That is, video encoder 20 and video decoder 30 may apply the
same context to all transform coefficients in the region. Alternatively, each of the sub-
blocks in the region may be associated with the same method of determining context
(e.g., the fixed context method), but different sub-blocks in the region may have
different fixed contexts. Video encoder 20 and video decoder 30 may determine a fixed
context for a sub-block based on the position of the sub-block in the region. As still

another example, fixed contexts may be assigned to individual transform coefficient

WO 2013/106739 PCT/US2013/021278
17

positions within the region. That is, video encoder 20 and video decoder 30 may
determine context for coding a transform coefficient within the region based on a
position of the transform coefficient in the video block, the sub-block, and/or the region.
[0076] As another example, in some regions, a context model may be defined according
to neighboring sub-blocks. For example, video encoder 20 and video decoder 30 may
be configured with sets of contexts for each sub-block within a particular region. That
is, each sub-block in the region may be associated with a respective set of contexts.
Video encoder 20 and video decoder 30 may select an appropriate context from the set
of contexts for each transform coefficient in the respective sub-block. The set of
contexts for one sub-block may be different from the set of contexts for another sub-
block.

[0077] As yet another example, individual flags for each sub-block in a region may be
coded representing whether there are any significant (i.e., non-zero) coefficients in the
corresponding sub-block. These flags may be referred to as coded sub-block flags.
Such flags may be used for selecting context for coding transform coefficients in the
sub-blocks. For example, video encoder 20 and video decoder 30 may determine
context for coding transform coefficients in a sub-block based on the values of the flags
of one or more neighboring sub-blocks. For example, the flags may have binary values
of either 0 or 1, and video encoder 20 and video decoder 30 may determine the context
for coding transform coefficients in a current sub-block based on the sum of the flag
values for a right-neighboring sub-block and a below-neighboring sub-block (also
referred to as a bottom-neighboring sub-block). Other formulas may also be used for
calculating the context for a sub-block.

[0078] Video encoder 20 and video decoder 30 may be configured to implement any or
all of the techniques of this disclosure, alone or in any combination. One example
combination of these techniques is that video encoder 20 and video decoder 30 may be
configured to divide a transform unit into sub-blocks (e.g., 4x4 pixel sub-blocks), and
then determine context for coding data of a particular transform coefficient of a sub-
block based on both a position of the transform coefficient in the sub-block and based
on coded block flags for one or more neighboring sub-blocks, e.g., a left-neighboring
sub-block and a bottom-neighboring sub-block.

[0079] Video encoder 20 and video decoder 30 may be configured to code one or more
syntax elements representative of transform coefficients using contexts determined in

these various examples. Transform coefficients may include various types of syntax

WO 2013/106739 PCT/US2013/021278
18

elements. For example, a transform coefficient may include a significant coefficient
flag (significant coeff flag) indicative of whether the transform coefficient has a non-
zero value (i.e., is significant). If the transform coefficient is significant, the transform
coefficient may include a sign value (e.g., coeff sign flag) indicating whether the value
of the transform coefficient is greater than or less than 0 and a value indicative of
whether the absolute value of the transform coefficient is greater than 1 (e.g.,

coeff abs level greaterl flag). If the transform coefficient has an absolute value
greater than 1, the transform coefficient may include a value indicative of whether the
transform coefficient has an absolute value greater than 2 (e.g.,

coeff abs level greater2 flag). If the transform coefficient has an absolute value
greater than 2, the transform coefficient may include a value indicative of the absolute
value of the transform coefficient minus two (e.g., coeff abs level remaining).

[0080] A CABAC coder of video encoder 20 and video decoder 30 may code any or all
of these values using contexts determined in accordance with the techniques of this
disclosure. In addition, or in the alternative, video encoder 20 and video decoder 30
may code data indicative of a position of a last significant coefficient (e.g.,

last significant coeff x prefix, last significant coeff x suffix,
last_significant coeff y prefix, and last significant coeff y suffix) using context
determined in accordance with the techniques of this disclosure.

[0081] Video encoder 20 and video decoder 30 may be configured to perform any one
or more of the techniques described in this disclosure, alone or in any combination.
Various techniques for determining a context for coding a transform coefficient of a
video block based on a region of the video block in which the transform coefficient
occurs and entropy coding the transform coefficient using the determined context are
described below. Examples of such techniques are described with respect to FIGS. 9—
14 below. In general, coding the transform coefficient using the determined context
includes coding one or more syntax elements of the transform coefficient using the
determined context. Determining the context generally includes determining a region in
which the transform coefficient occurs and determining the context based on the region.
For example, the region may be associated with a particular context or set of contexts,
and/or associated with one or more techniques for determining the context.

[0082] FIG. 2 is a block diagram illustrating an example video encoder 20 that may
implement the inter-prediction techniques described in this disclosure. Video encoder

20 may perform intra- and inter-coding of video blocks within video slices.

WO 2013/106739 PCT/US2013/021278
19

Intra-coding relies on spatial prediction to reduce or remove spatial redundancy in video
within a given video frame or picture. Inter-coding relies on temporal prediction to
reduce or remove temporal redundancy in video within adjacent frames or pictures of a
video sequence. Intra-mode (I mode) may refer to any of several spatial based
compression modes. Inter-modes, such as uni-directional prediction (P mode) or bi-
prediction (B mode), may refer to any of several temporal-based compression modes.
[0083] In the example of FIG. 2, video encoder 20 includes a mode select unit 35,
prediction processor 41, reference picture memory 64, summer 50, transform processing
unit 52, quantization unit 54, and entropy encoding unit 56. Prediction processor 41
includes motion estimation unit 42, motion compensation unit 44, and intra prediction
unit 46. For video block reconstruction, video encoder 20 also includes inverse
quantization unit 58, inverse transform unit 60, and summer 62. A deblocking filter
(not shown in FIG. 2) may also be included to filter block boundaries to remove
blockiness artifacts from reconstructed video. If desired, the deblocking filter would
typically filter the output of summer 62. Additional loop filters (in loop or post loop)
may also be used in addition to the deblocking filter.

[0084] As shown in FIG. 2, video encoder 20 receives video data, and mode select unit
35 partitions the data into video blocks. This partitioning may also include partitioning
into slices, tiles, or other larger units, as wells as video block partitioning, e.g.,
according to a quadtree structure of LCUs and CUs. Video encoder 20 generally
illustrates the components that encode video blocks within a video slice to be encoded.
The slice may be divided into multiple video blocks (and possibly into sets of video
blocks referred to as tiles). Prediction processor 41 may select one of a plurality of
possible coding modes, such as one of a plurality of intra coding modes or one of a
plurality of inter coding modes, for the current video block based on error results (e.g.,
coding rate and the level of distortion). Prediction processor 41 may provide the
resulting intra- or inter-coded block to summer 50 to generate residual block data and to
summer 62 to reconstruct the encoded block for use as a reference picture.

[0085] Intra prediction unit 46 within prediction processor 41 may perform intra-
predictive coding of the current video block relative to one or more neighboring blocks
in the same frame or slice as the current block to be coded to provide spatial
compression. Motion estimation unit 42 and motion compensation unit 44 within

prediction processor 41 perform inter-predictive coding of the current video block

WO 2013/106739 PCT/US2013/021278
20

relative to one or more predictive blocks in one or more reference pictures to provide
temporal compression.

[0086] Motion estimation unit 42 may be configured to determine the inter-prediction
mode for a video slice according to a predetermined pattern for a video sequence. The
predetermined pattern may designate video slices in the sequence as P slices, B slices or
GPB slices. Motion estimation unit 42 and motion compensation unit 44 may be highly
integrated, but are illustrated separately for conceptual purposes. Motion estimation,
performed by motion estimation unit 42, is the process of generating motion vectors,
which estimate motion for video blocks. A motion vector, for example, may indicate
the displacement of a PU of a video block within a current video frame or picture
relative to a predictive block within a reference picture.

[0087] A predictive block is a block that is found to closely match the PU of the video
block to be coded in terms of pixel difference, which may be determined by sum of
absolute difference (SAD), sum of square difference (SSD), or other difference metrics.
In some examples, video encoder 20 may calculate values for sub-integer pixel positions
of reference pictures stored in reference picture memory 64. For example, video
encoder 20 may interpolate values of one-quarter pixel positions, one-eighth pixel
positions, or other fractional pixel positions of the reference picture. Therefore, motion
estimation unit 42 may perform a motion search relative to the full pixel positions and
fractional pixel positions and output a motion vector with fractional pixel precision.
[0088] Motion estimation unit 42 calculates a motion vector for a PU of a video block
in an inter-coded slice by comparing the position of the PU to the position of a
predictive block of a reference picture. The reference picture may be selected from a
first reference picture list (List 0) or a second reference picture list (List 1), each of
which identify one or more reference pictures stored in reference picture memory 64.
Motion estimation unit 42 sends the calculated motion vector to entropy encoding unit
56 and motion compensation unit 44.

[0089] Motion compensation, performed by motion compensation unit 44, may involve
fetching or generating the predictive block based on the motion vector determined by
motion estimation, possibly performing interpolations to sub-pixel precision. Upon
receiving the motion vector for the PU of the current video block, motion compensation
unit 44 may locate the predictive block to which the motion vector points in one of the

reference picture lists. Motion compensation unit 44 may also generate syntax elements

WO 2013/106739 PCT/US2013/021278
21

associated with the video blocks and the video slice for use by video decoder 30 in
decoding the video blocks of the video slice.

[0090] Intra prediction unit 46 may intra-predict a current block, as an alternative to the
inter-prediction performed by motion estimation unit 42 and motion compensation unit
44, as described above. In particular, intra prediction unit 46 may determine an intra-
prediction mode to use to encode a current block. In some examples, intra prediction
unit 46 may encode a current block using various intra-prediction modes, ¢.g., during
separate encoding passes, and intra prediction unit 46 (or mode select unit 35, in some
examples) may select an appropriate intra-prediction mode to use from the tested
modes. For example, intra prediction unit 46 may calculate rate-distortion values using
a rate-distortion analysis for the various tested intra-prediction modes, and select the
intra-prediction mode having the best rate-distortion characteristics among the tested
modes. Rate-distortion analysis generally determines an amount of distortion (or error)
between an encoded block and an original, unencoded block that was encoded to
produce the encoded block, as well as a bit rate (that is, a number of bits) used to
produce the encoded block. Intra prediction unit 46 may calculate ratios from the
distortions and rates for the various encoded blocks to determine which intra-prediction
mode exhibits the best rate-distortion value for the block.

[0091] In any case, after selecting an intra-prediction mode for a block, intra prediction
unit 46 may provide information indicative of the selected intra-prediction mode for the
block to entropy encoding unit 56. Entropy encoding unit 56 may encode the
information indicating the selected intra-prediction mode in accordance with the
techniques of this disclosure. Video encoder 20 may include in the transmitted
bitstream configuration data, which may include a plurality of intra-prediction mode
index tables and a plurality of modified intra-prediction mode index tables (also referred
to as codeword mapping tables), definitions of encoding contexts for various blocks,
and indications of a most probable intra-prediction mode, an intra-prediction mode
index table, and a modified intra-prediction mode index table to use for each of the
contexts.

[0092] After prediction processor 41 generates the predictive block for the current video
block via either inter-prediction or intra-prediction, video encoder 20 forms a residual
video block by subtracting the predictive block from the current video block. Summer
50 represents the unit that performs this calculation. The residual video data in the

residual block may be included in one or more TUs and applied to transform processing

WO 2013/106739 PCT/US2013/021278
22

unit 52. Transform processing unit 52 generally converts the residual video data from a
pixel domain to a transform domain, such as a frequency domain. Transform processing
unit 52 may transform the residual video data into residual transform coefficients using
a transform, such as a discrete cosine transform (DCT) or a conceptually similar
transform. Alternatively, transform processing unit 52 may apply a 2-dimensional (2-
D) transform (in both the horizontal and vertical direction) to the residual data in the
TUs.

[0093] Transform processing unit 52 may send the resulting transform coefficients to
quantization unit 54. Quantization unit 54 quantizes the transform coefficients to
further reduce the bit rate. The quantization process may reduce the bit depth associated
with some or all of the coefficients. The degree of quantization may be modified by
adjusting a quantization parameter.

[0094] Following quantization, entropy encoding unit 56 entropy encodes the quantized
transform coefficients. For example, entropy encoding unit 56 may perform context
adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding
(CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probability
interval partitioning entropy (PIPE) coding or another entropy encoding methodology or
technique. Such entropy encoding generally includes scanning the quantized transform
coefficients (generally referred to herein simply as “transform coefficients” for brevity)
one or more times, and entropy coding syntax elements for the transform coefficients
during each scan, such as syntax elements indicating whether corresponding transform
coefficients are significant, have an absolute value greater than 1 or 2, the absolute
value (or a portion thereof, e.g., a portion greater than 2) and sign of significant
coefficients.

[0095] In accordance with the techniques of this disclosure, entropy encoding unit 56
may determine a context for coding (that is, entropy encoding) a transform coefficient
of a video block (e.g., a transform unit) based on a region of the video block in which
the transform coefficient occurs. For example, during the scan, entropy encoding unit
56 may determine a position of the transform coefficient in the video block, and
determine in which region the position occurs. In addition, entropy encoding unit 56
may include configuration data defining regions for a video block.

[0096] For example, entropy encoding unit 56 may be configured with a threshold
value. In this example, entropy encoding unit 56 may determine whether x- and y-

coordinates defining the position of the transform coefficient have a sum (that is, x+y)

WO 2013/106739 PCT/US2013/021278
23

that is greater than the threshold value. A first region, in this example, corresponds to
transform coefficients for which the sum of the x- and y-coordinate values is less than
the threshold value, and a second region corresponds to transform coefficients for which
the sum of the x- and y-coordinate values is greater than or equal to the threshold value.
Alternatively, multiple threshold values may be used to define multiple regions. An
example of regions defined in this manner is shown in FIG. 9B, which is described in
greater detail below.
[0097] As another example, entropy encoding unit 56 may be configured to determine
the position of a sub-block, including the transform coefficient, in the video block. A
sub-block may correspond to a 4x4 transform coefficient sub-block. That is, a video
block may include a plurality of non-overlapping sub-blocks, each having the same size,
e.g., 4x4 transform coefficients. To determine a region for a sub-block, entropy
encoding unit 56 may compare the sum of an x- and y-coordinate of the sub-block (e.g.,
a particular transform coefficient of the sub-block, such as an upper-left transform
coefficient of the sub-block) to the threshold value. Whether the sum of the x- and y-
coordinates is less than the threshold value or not may be indicative of whether the
transform coefficients of the sub-block are included in a first region or a second region.
[0098] For example, let Cij represent the position of a sub-block having an upper-left
transform coefficient at position (i, j), where x=i and y=j. Further, let T define the
threshold value. Entropy encoding unit 56 may determine a region in which transform
coefficients of the sub-block occur using the following pseudocode:

(i+j<T) ? regionl : region2.
[0099] In this example, when i+j is less than T (that is, the sum of the x- and y-
coordinates of the sub-block is less than the threshold value), entropy encoding unit 56
determines that all transform coefficients of the sub-block occur in region 1, whereas
when itj is greater than or equal to T (that is, the sum of the x- and y-coordinates of the
sub-block is greater than or equal to the threshold value), entropy encoding unit 56
determines that all transform coefficients of the sub-block occur in region 2. These and
other examples of regions are described in greater detail below with respect to FIGS. 9—
14.
[0100] Entropy encoding unit 56 may be configured to determine contexts based on
regions in various ways. For example, entropy encoding unit 56 may determine context

for coding a transform coefficient, based on the region in which the transform

WO 2013/106739 PCT/US2013/021278
24

coefficient occurs, using the location of the transform coefficient in the video block or
the position of the 4x4 sub-block in which the transform coefficient occurs.

[0101] Alternatively, a context model may be defined according to neighboring 4x4
sub-blocks. For example, entropy encoding unit 56 may assign to each 4x4 sub-block a
respective set of available contexts, and select one of the contexts for the current
transform coefficient to be coded in the sub-block, ¢.g., based on a position of the
transform coefficient in the sub-block. The sets of contexts may be assigned to
respective sub-blocks, such that each sub-block may have a different set of available
contexts. As still another example, entropy encoding unit 56 may calculate a context as
ctx= Right4x4SubBlockFlag + Bottom4x4SubBlockFlag. In this case,
Right4x4SubBlockFlag represents a coded sub-block flag for a right-neighboring sub-
block, while Bottom4x4SubBlockFlag represents a coded sub-block flag for a bottom-
neighboring coded sub-block flag.

[0102] In some examples, entropy encoding unit 56 may apply an offset to the
determined context for entropy encoding a transform coefficient, and may further
determine the offset to apply based on the region in which the transform coefficient
occurs. That is, entropy encoding unit 56 may calculate a base context in the same
general manner for coefficients of two or more regions, but different regions may have
different corresponding offset values. Thus, entropy encoding unit 56 may apply the
offset to the calculated context value based on the offset to which the region is mapped
(that is, the offset with which the region is associated).

[0103] Entropy encoding unit 56 may determine whether a transform coefficient is a
DC (direct current) transform coefficient (typically presented in the upper-left corner of
the transform block), and select the context for coding the transform coefficient based
on the region in which the transform coefficient occurs as well as whether the transform
coefficient is the DC transform coefficient or not. For example, entropy encoding unit
56 may determine contexts for transform coefficients using shared contexts for
dedicated positions. That is, the shared context may comprise the same context that is
applied to all transform coefficients occurring at a particular position, ¢.g., an upper-left
corner of a sub-block. Thus, the shared context may further include an indication of a
particular context to be applied when coding a DC transform coefficient, as opposed to
non-DC transform coefficients occurring at the upper-left position of other sub-blocks.
[0104] Additionally or alternatively, shared context may comprise shared contexts

among different sizes of blocks for transform coefficients occurring at particular

WO 2013/106739 PCT/US2013/021278
25

positions of the blocks. For example, entropy encoding unit 56 may be configured to
apply the same context when coding DC transform coefficients of video blocks (e.g.,
TUs) of any size, ¢.g., 4x4, 8x8, 16x16, or the like. That is, entropy encoding unit 56
may include data that maps the DC transform coefficient, for blocks of any size, to the
same context data for coding the DC transform coefficient. In other words, entropy
encoding unit 56 may be configured to code the DC transform coefficient using a
context determined for the DC transform coefficient, without regard for a size of the
current video block being coded. Typically, the DC transform coefficient is the upper-
left coefficient of the video block.

[0105] Following the entropy encoding by entropy encoding unit 56, the encoded
bitstream may be transmitted to video decoder 30, or archived for later transmission or
retrieval by video decoder 30. Entropy encoding unit 56 may also entropy encode
motion vectors, intra-mode indications, and the other syntax elements for the current
video slice being coded.

[0106] Inverse quantization unit 58 and inverse transform unit 60 apply inverse
quantization and inverse transformation, respectively, to reconstruct the residual block
in the pixel domain for later use as a reference block of a reference picture. Motion
compensation unit 44 may calculate a reference block by adding the residual block to a
predictive block of one of the reference pictures within one of the reference picture lists.
Motion compensation unit 44 may also apply one or more interpolation filters to the
reconstructed residual block to calculate sub-integer pixel values for use in motion
estimation. Summer 62 adds the reconstructed residual block to the motion
compensated prediction block produced by motion compensation unit 44 to produce a
reference block for storage in reference picture memory 64. The reference block may
be used by motion estimation unit 42 and motion compensation unit 44 as a reference
block to inter-predict a block in a subsequent video frame or picture.

[0107] In this manner, video encoder 20 represents an example of a video coder
configured to determine a context for coding a transform coefficient of a video block
based on a region of the video block in which the transform coefficient occurs, and
entropy code the transform coefficient using the determined context. The region may
comprise one of a first region comprising one or more upper-left 4x4 sub-blocks of
transform coefficients of the video block and a second region comprising transform

coefficients of the video block outside the first region.

WO 2013/106739 PCT/US2013/021278
26

[0108] FIG. 3 is a block diagram illustrating an example video decoder 30 that may
implement the inter-prediction techniques described in this disclosure. In the example
of FIG. 3, video decoder 30 includes an entropy decoding unit 80, prediction processor
81, inverse quantization unit 86, inverse transformation unit 88, summer 90, and
reference picture memory 92. Prediction processor 81 includes motion compensation
unit 82 and intra prediction unit 84. Video decoder 30 may, in some examples, perform
a decoding pass generally reciprocal to the encoding pass described with respect to
video encoder 20 from FIG. 2.

[0109] During the decoding process, video decoder 30 receives an encoded video
bitstream that represents video blocks of an encoded video slice and associated syntax
elements from video encoder 20. Entropy decoding unit 80 of video decoder 30 entropy
decodes the bitstream to generate quantized coefficients, motion vectors, and other
syntax elements. Entropy decoding unit 80 forwards the motion vectors, intra-mode
indications, and other prediction-related syntax elements to prediction processor 81.
Entropy decoding unit 80 forwards quantized coefficients, in the form of a block (e.g., a
TU) to inverse quantization unit 86. Video decoder 30 may receive the syntax elements
at the video slice level and/or the video block level.

[0110] In particular, in accordance with the techniques of this disclosure, entropy
decoding unit 80 may determine context for entropy decoding transform coefficients
based on a region of a block in which the transform coefficients occur. Specifically,
entropy decoding unit 80 may determine the context based on a region of the block in
which the transform coefficient will occur once the transform coefficient is positioned
within the block. Entropy decoding unit 80 may be configured to determine the regions
as explained with respect to FIGS. 9—14 below, or other such regions. For example, as
shown in FIG. 9A, entropy decoding unit 80 may be configured to determine whether a
transform coefficient will occur in a first region including one or more sub-blocks in an
upper-left corner of the block, or a second region including sub-blocks outside the first
region, and determine the context based on whether the transform coefficient will occur
in the first region or the second region.

[0111] Likewise, entropy decoding unit 80 may determine the context based on the
region, in that entropy decoding unit 80 may be configured with one or more various
techniques for calculating or determining the context associated with coefficients in
cach region. That is, each region may be associated with one or more techniques for

calculating or determining context. For example, a region may be associated with a

WO 2013/106739 PCT/US2013/021278
27

context that is shared among one or more transform coefficients. As another example, a
region may be associated with contexts that are shared among sub-blocks of the region.
As still another example, a region may be associated with an offset value to be applied
to a context value calculated for a transform coefficient in the region. Entropy decoding
unit 80 may be configured to determine the context for decoding a transform coefficient
using these or other techniques as described herein, based on the region in which the
transform coefficient occurs. Entropy decoding unit 80 may then entropy decode the
transform coefficient using the determined context.

[0112] Additionally or alternatively, shared context may comprise shared contexts
among different sizes of blocks for transform coefficients occurring at particular
positions of the blocks. For example, entropy decoding unit 80 may be configured to
apply the same context when coding DC transform coefficients of video blocks (e.g.,
TUs) of any size, e.g., 4x4, 8x8, 16x16, or the like. That is, entropy decoding unit 80
may include data that maps the DC transform coefficient, for blocks of any size, to the
same context data for coding the DC transform coefficient. In other words, entropy
decoding unit 80 may be configured to code the DC transform coefficient using a
context determined for the DC transform coefficient, without regard for a size of the
current video block being coded. Typically, the DC transform coefficient is the upper-
left coefficient of the video block.

[0113] When the video slice is coded as an intra-coded (1) slice, intra prediction unit 84
of prediction processor 81 may generate prediction data for a video block of the current
video slice based on a signaled intra prediction mode and data from previously decoded
blocks of the current frame or picture. When the video frame is coded as an inter-coded
(i.e., B, P or GPB) slice, motion compensation unit 82 of prediction processor 81
produces predictive blocks for a video block of the current video slice based on the
motion vectors and other syntax elements received from entropy decoding unit 80. The
predictive blocks may be produced from one of the reference pictures within one of the
reference picture lists. Video decoder 30 may construct the reference frame lists, List 0
and List 1, using default construction techniques based on reference pictures stored in
reference picture memory 92.

[0114] Motion compensation unit 82 determines prediction information for a video
block of the current video slice by parsing the motion vectors and other syntax elements,
and uses the prediction information to produce the predictive blocks for the current

video block being decoded. For example, motion compensation unit 82 uses some of

WO 2013/106739 PCT/US2013/021278
28

the received syntax elements to determine a prediction mode (e.g., intra- or inter-
prediction) used to code the video blocks of the video slice, an inter-prediction slice
type (e.g., B slice, P slice, or GPB slice), construction information for one or more of
the reference picture lists for the slice, motion vectors for each inter-encoded video
block of the slice, inter-prediction status for each inter-coded video block of the slice,
and other information to decode the video blocks in the current video slice.

[0115] Motion compensation unit 82 may also perform interpolation based on
interpolation filters. Motion compensation unit 82 may use interpolation filters as used
by video encoder 20 during encoding of the video blocks to calculate interpolated values
for sub-integer pixels of reference blocks. In this case, motion compensation unit 82
may determine the interpolation filters used by video encoder 20 from the received
syntax elements and use the interpolation filters to produce predictive blocks.

[0116] Inverse quantization unit 86 inverse quantizes, i.e., de-quantizes, the quantized
transform coefficients provided in the bitstream and decoded by entropy decoding unit
80. The inverse quantization process may include use of a quantization parameter
calculated by video encoder 20 for each video block in the video slice to determine a
degree of quantization and, likewise, a degree of inverse quantization that should be
applied. Inverse transform unit 88 applies an inverse transform, e.g., an inverse DCT,
an inverse integer transform, or a conceptually similar inverse transform process, to the
transform coefficients in order to produce residual blocks in the pixel domain.

[0117] In some cases, inverse transform unit 88 may apply a two-dimensional (2-D)
inverse transform (in both the horizontal and vertical direction) to the coefficients.
According to the techniques of this disclosure, inverse transform unit 88 may instead
apply a horizontal one-dimensional (1-D) inverse transform, a vertical 1-D inverse
transform, or no transform to the residual data in each of the TUs. The type of
transform applied to the residual data at video encoder 20 may be signaled to video
decoder 30 to apply an appropriate type of inverse transform to the transform
coefficients.

[0118] After motion compensation unit 82 generates the predictive block for the current
video block based on the motion vectors and other syntax elements, video decoder 30
forms a decoded video block by summing the residual blocks from inverse transform
unit 88 with the corresponding predictive blocks generated by motion compensation
unit 82. Summer 90 represents the component or components that perform this

summation operation. If desired, a deblocking filter may also be applied to filter the

WO 2013/106739 PCT/US2013/021278
29

decoded blocks in order to remove blockiness artifacts. Other loop filters (either in the
coding loop or after the coding loop) may also be used to smooth pixel transitions, or
otherwise improve the video quality. The decoded video blocks in a given frame or
picture are then stored in reference picture memory 92, which stores reference pictures
used for subsequent motion compensation. Reference picture memory 92 also stores
decoded video for later presentation on a display device, such as display device 32 of
FIG. 1.

[0119] In this manner, video decoder 30 represents an example of a video coder
configured to determine a context for coding a transform coefficient of a video block
based on a region of the video block in which the transform coefficient occurs, and
entropy code the transform coefficient using the determined context. The region may
comprise one of a first region comprising one or more upper-left 4x4 sub-blocks of
transform coefficients of the video block and a second region comprising transform
coefficients of the video block outside the first region.

[0120] FIG. 4 is a conceptual diagram that illustrates a relation between transform
coefficients in a video block and a significance map associated with the video block. As
illustrated in FIG. 4, the significance map includes a “1” to indicate each instance of a
significant coefficient value, i.¢., a value greater than zero, in the video block. The
significance map may be signaled in a bitstream that is decodable by a video decoder,
such as video decoder 30, to determine the location of the significant, i.e., greater than
zero, coefficients in the video block to be decoded. More specifically, a position of a
last non-zero coefficient within the video block may be signaled in the bitstream. The
positional of the last non-zero coefficient in the video block depends on the scanning
order used for the video block. Additional syntax elements may be signaled to indicate
the other significant coefficients relative to the last non-zero coefficient according to a
known or knowable scanning order.

[0121] FIGS. 5A-5D are conceptual diagrams that illustrate examples of blocks of
video data scanned using a zig-zag scanning order, a horizontal scanning order, a
vertical scanning order, and a diagonal scanning order. As shown in FIGS. 5A-5D, an
8x8 block of video data, ¢.g., a TU of a CU, may include sixty-four transform
coefficients in corresponding block positions, denoted with circles. In this example,
blocks 100, 102, 104 and 106 each have a size of 8x8 and, therefore, include sixty-four

transform coefficients generated using prediction techniques previously described.

WO 2013/106739 PCT/US2013/021278
30

[0122] According to the techniques described in this disclosure, the sixty-four transform
coefficients in each of blocks 100, 102, 104 and 106 may have been transformed, or
may be inverse transformed, using one of a 2-D transform, a horizontal 1-D transform,
and a vertical 1-D transform, or the transform coefficients may not be transformed at all.
Whether transformed or not, the coefficients in each of video blocks 100, 102, 104 and
106 are scanned in preparation for entropy coding using one of the zig-zag scanning
order, the horizontal scanning order, the vertical scanning order, and the diagonal
scanning order.

[0123] As shown in FIG. 5A, the scanning order associated with block 100 is the zig-
zag scanning order. The zig-zag scanning order causes a video coder, such as video
encoder 20 or video decoder 30, to scan the quantized transform coefficients of block
100 in a diagonal manner as indicated by the arrows in FIG. 5A. Similarly in FIG. 5D,
the diagonal scanning order causes a video coder to scan the quantized transform
coefficients of block 106 in a diagonal manner as indicated by the arrows in FIG. 5D.
As shown in FIGS. 5B and 5C, the scanning orders associated with blocks 102 and 104
are the horizontal scanning order and the vertical scanning order, respectively. The
horizontal scanning order causes a video coder to scan quantized transform coefficients
of block 102 in a horizontal line-by-line, or “raster” manner, while the vertical scanning
order causes a video coder to scan the quantized transform coefficients of block 104 in a
vertical line-by-line, or “rotated raster” manner, also as indicated by the arrows in FIGS.
5B and 5C.

[0124] In other examples, as described above, a block may have a size that is smaller or
larger than the size of blocks 100, 102, 104 and 106, and may include more or fewer
quantized transform coefficients and corresponding block positions. In these examples,
a scanning order associated with a particular block may causes a video coder to scan the
quantized transform coefficients of the block in a substantially similar manner as shown
in the examples of 8x8 blocks of FIGS. 5A-5D, ¢.g., a 4x4 block or a 16x16 block, may
be scanned following any of the scanning orders previously described.

[0125] Although the direction of scans in FIGS. 5A—5D generally is shown as
proceeding from low-frequency coefficients to high-frequency coefficients, in other
examples, video encoder 20 and video decoder 30 may be configured to perform an
inverse scan order, in which the scan may proceed from the high-frequency coefficients
to the low-frequency coefficients. That is, video encoder 20 and video decoder 30 may

scan the coefficients in the reverse order of that shown in FIGS. 5A-5D.

WO 2013/106739 PCT/US2013/021278
31

[0126] FIG. 6 is a conceptual diagram that illustrates an example video block 110
divided into sub-blocks for transform coefficient coding. In the current HM, a sub-
block concept is used for transform coefficient coding. A video coder may sub-divide
any transform unit (TU) that is larger than a determined sub-block size into sub-blocks.
For example, video block 110 is divided into four 4x4 sub-blocks.

[0127] In the illustrated example of FIG. 6, the video coder divides video block 110 into
4x4 sub-blocks. In other examples, the video coder may divide video blocks into sub-
blocks of other sizes, ¢.g., 8x8, 16x16, and the like. If the video coder uses the same
sub-block size for all TUs of a frame or slice, gains may be achieved in a hardware
implementation due to the uniformity achieved with the sub-block sizes. For example,
all processing may be split in such sub-blocks, regardless of the TU size. A uniform
sub-block size is not necessary, however, to carry out the techniques of this disclosure.
[0128] For coefficient coding, a video coder may scan each 4x4 sub-block of video
block 110 using a diagonal scanning order, as shown on FIG. 6. In some examples, the
video coder may use a unified scan for scanning transform coefficients of each sub-
block. In this case, the same scan order is used for significance information, i.c., a
significance map, coefficient levels, sign, and the like. In a first example, as shown in
FIG. 6, the video coder may scan the transform coefficients using a diagonal scan. In
another example, the video coder may scan the transform coefficients in an order that is
opposite of that shown in FIG. 6, e.g., a reverse diagonal scan that begins in the lower
right corner and proceeds to the upper left corner. In other examples, the video coder
may scan the transform coefficients using a zig-zag, horizontal, or vertical scan. Other
scanning directions/orientations are also possible.

[0129] For case of explanation, this disclosure describes sub-blocks of a video block as
being 4x4 sub-blocks. The techniques of this disclosure, however, may also be applied
with respect to sub-blocks of different sizes, e.g., 8x8, 16x16, and the like. For every
4x4 block a significant coeffgroup flag is coded, and if there is at least one nonzero
coefficient in the sub-block this flag is set to one, otherwise it is equal to zero. If
significant_coeffgroup flag is nonzero for a given sub-block, the 4x4 sub-block is
scanned in the backward diagonal order and significant coeff flag is coded for every
coefficient of the sub-block to indicate the significance of the coefficient. The group of
these flags may be referred to as a significance map for the video block. In some
example, instead of explicitly signaling the significance map, the

significant_coeffgroup flag may be implicitly derived using neighboring 4x4 sub-block

WO 2013/106739 PCT/US2013/021278
32

flags, or when the 4x4 sub-block contains the last coefficient or a DC coefficient.
Absolute values of the coefficients are also coded, i.c., cocfficient levels.

[0130] Although the direction of the scan in FIG. 6 is generally shown as proceeding
from low-frequency coefficients to high-frequency coefficients, in other examples,
video encoder 20 and video decoder 30 may be configured to perform an inverse scan
order, in which the scan may proceed from the high-frequency coefficients to the low-
frequency coefficients. That is, video encoder 20 and video decoder 30 may scan the
coefficients in the reverse order of that shown in FIG. 6.

[0131] FIG. 7 is a conceptual diagram that illustrates an example five-point support
neighborhood used to define a context model for selection of contexts for a significance
map of coefficients in a video block 112 scanned using a reverse diagonal scanning
order. As noted above, for context-adaptive coding, transform coefficients may be
coded based on a context model that describes probabilities of the transform coefficient
having a value of 0 or a value of 1. With respect to significance map coding, the
context model describes the probabilities of whether a particular transform coefficient is
significant, i.e., non-zero.

[0132] For the significance map coding, a five-point support S may be used to define a
context model to code the significance map of the transform coefficients of video block
112. The five-point support may be referred to as a “context support neighborhood,” or
simply a “support neighborhood.” That is, a video coder may look to the support to
determine the probability of the significance of a current position being one or zero.
The context support neighborhood defines the neighboring coefficients (e.g., which may
include significance information) that may be used as contexts for coding a current
coefficient. According to some examples of this disclosure, the context support
neighborhood may be different for different coefficient positions within a block or sub-
block.

[0133] In the example shown in FIG. 7, the five-point support S is represented by a dot
surrounded by a square, relative to a current or “target” position represented by a dot
surrounded by a circle. Context model Ctx (equation (1) below) may be defined as a
sum of the significant flags in every point of the support, where a significance flag may
be set to “1” if the corresponding transform coefficient is nonzero, and set to “0”

otherwise.

WO 2013/106739 PCT/US2013/021278
33

Ctx = Z(coe ,1=0)
oS (1
Accordingly, the significance flag count can be less or equal to the support cardinality.
The value of ctx is not necessarily the raw context value, but may be applied to a base
context value, in the form of an offset, to derive the context to be used to code data for a
particular coefficient.
[0134] However, the support § shown in FIG. 7 may not be suitable when calculating
context for more than one transform coefficient (e.g., significance information
associated with the transform coefficient) in parallel (referred to as “parallel
significance context calculation” or simply “parallel context calculation). For
example, using the support S shown in FIG. 7 may impede the ability of the video coder
to calculate contexts for significance information in parallel, because all data in the
support S must be available (e.g., already coded) for enabling parallel calculation of
contexts. In some instances, as described below with respect to FIG. 8A, a coder may
be forced to wait for a support element in support S to finish coding before determining
the context for another support element in support S. This delay reduces the ability of
the video coder to efficiently process significance information.
[0135] FIGS. 8A and 8B are conceptual diagrams that illustrate context dependency
within the five-point support. For example, to calculate a significance context for the
circled position, it may be necessary to parse the significance flag of the position within
the support S depicted by a diamond (shown in FIG. 8A). Such parsing may introduce a
delay if there is a requirement to calculate significance contexts of two coefficients in
parallel, because the diamond is positioned immediately before the circled element in
scanning order. That is, the context of the circled position cannot be calculated at the
same time as the position marked by a diamond, because the circled position depends on
the position marked by the diamond, and therefore, the position marked by a diamond
must be coded prior to determining the context for the circled position.
[0136] To resolve this dependency, certain elements may be removed from support S,
making the support with a so called “hole” (non-filled dot surrounded by a triangle,
shown in FIG. 8B). For example, the significance flag in the hole is skipped and not
taken into account for the context calculation (i.e., assumed to be zero). Accordingly,
there is no need to parse the significance flag in the hole position. The 5-point support

shape depends on the position to allow for better parallel processing.

WO 2013/106739 PCT/US2013/021278
34

[0137] FIGS. 9A and 9B are conceptual diagrams that illustrate example divisions of a
video block into two or more regions. In the current HM, neighborhood context
modeling is used for TU sizes greater than 8x8 (that is, 16x16, 32x32 and the non-
square transform sizes 16x4, 4x16, 32x8 and 8x32) with the 5-point support. However,
context modeling with the 5-point support may increase the complexity of the context
calculations in the larger block sizes. Region R1 of FIG. 9A represents an example of a
region including one or more upper-left 4x4 sub-blocks of transform coefficients of a
video block, while region R2 of FIG. 9A represents an example of a region including
transform coefficients of the video block outside region R1. FIG. 9A also represents an
example in which a plurality of regions comprise respective sets of one or more sub-
blocks.

[0138] In accordance with the techniques described in this disclosure, a video coder,
such as video encoder 20 or video decoder 30, may divide a video block into regions R
(e.g., as shown in FIGS. 9A and 9B) and use different context assignment procedures
for each of the different regions. For example, some regions may use fixed or position-
based context and some regions may use neighborhood-based context. As illustrated in
FIG. 9A, the regions may be based on 4x4 sub-blocks such that entire sub-blocks are
included in one region or another. Also, the division into the regions may be flexible in
some examples. As illustrated in FIG. 9B, the video block may be divided into regions
in the diagonal direction such that portions of sub-blocks may be included in two
different regions. In other examples, the division might be dependent on the coefficient
positions or the position of the 4x4 sub-block containing this coefficient.

[0139] In some examples, context may be defined according to the coefficient position
in the video block, or according to the position of the 4x4 sub-block that contains this
coefficient. Alternatively, the context model might be defined according to the
neighbor 4x4 sub-blocks. For example, every coefficient within same 4x4 sub-block
can use one or several contexts, coefficients of the next 4x4 sub-block can use also one
or several contexts. However, contexts of one 4x4 sub-block might be different from
previous 4x4 sub-block based contexts. Alternatively, contexts might be calculated as
Ctx = Right4x4SubBlockFlag + Bottom4x4SubBlockFlag, or similar formulas
depending on the neighborhood. Again, the Right4x4SubBlockFlag may represent a
coded sub-block flag for a right-neighboring sub-block (e.g., indicating whether the
right-neighboring, 4x4 sub-block includes at least one non-zero coefficient), and the

Bottom4x4SubBlockFlag may represent a coded sub-block flag for a right-neighboring

WO 2013/106739 PCT/US2013/021278
35

sub-block (e.g., indicating whether the bottom-neighboring, 4x4 sub-block includes at
least one non-zero coefficient).

[0140] FIG. 10 is a conceptual diagram that illustrates example assignment of
neighborhood- or position-based contexts for each region of a video block. As
illustrated in FIG. 10, hybrid type of contexts might be used as well, for example, for
some regions contexts could be neighborhood based and for some regions of the same
video block it can be fixed or position based. A potential advantage of the position-
based approach is that it is not necessary to calculate context in a coefficient-wise
manner. Instead, a video coder may calculate context once for all coefficients in a
region, such that all coefficients in the region have the same context. FIG. 10 represents
an example in which a plurality of regions comprises a respective set of one or more
sub-blocks.

[0141] For a coefficient with coordinates (X, y), regions can be defined according to the
coefficient position. For example, if the condition (x +y >= threshold) is true, then the
video coder may determine that the corresponding coefficient occurs within region R2;
otherwise, if the condition is not true, the video coder determines that the corresponding
coefficient occurs within region R1. Similarly, coordinates can be assigned to regions
based on 4x4 sub-blocks. For the sub-block with (X, Y) coordinates, regions can be
defined according to the 4x4 sub-block position. For example, if the condition (X +Y
>= Threshold) is true, than the video coder may determine that the corresponding
coefficient occurs within region R2; otherwise, the video coder may determine that the
corresponding coefficient occurs within region R1. The threshold may be fixed to some
predefined value, such as an integer number equal to 4, 5, 6, 7 or &, or may dependent
on the video block, e.g., TU, size.

[0142] In this manner, FIG. 10 represents an example in which a video coder may be
configured to determine context for coding a transform coefficient, based on a region in
which the transform coefficient occurs, using one of position-based context information
and neighborhood-based context information based on the region. In particular, if a
transform coefficient is in a first region, the video coder may use a first context
determination approach to determine the context for coding the transform coefficient. If
a transform coefficient is in a second region, the video coder may use a second context
determination approach to determine the context for coding the transform coefficient,
where the second context determination approach is different from the first context

determination approach and the first region is different from the second region. In an

WO 2013/106739 PCT/US2013/021278
36

example, the first and second regions do not overlap. Again, examples of the first and
second context determination approaches include the use of position-based context
information and neighborhood-based context information.

[0143] FIG. 11 is a conceptual diagram that illustrates example assignment of context
offsets for each region of a video block. The context model may be separate for the
different regions, but still use the same method for context calculation. In other words,
a video coder may be configured with one method for calculating context for coding a
transform coefficient, but may include different context models, determined based on a
region in which the transform coefficient occurs.

[0144] For example, the context may be calculated based on neighborhood, but for
different regions it uses an offset. The offset for each region may be fixed or dependent
on one or more of the video block size, the coefficient position in the video block or
sub-block, and the sub-block position in the video block. Region R1 of FIG. 11
represents another example of a region including one or more upper-left 4x4 sub-blocks
of transform coefficients of a video block, while region R2 of FIG. 11 represents
another example of a region including transform coefficients of the video block outside
region R1. FIG. 11 also an example in which a plurality of regions comprise respective
sets of one or more sub-blocks.

[0145] With offset, the context may be calculated according to equation (2).

Ctx = offset (region)+ > (coef ,!=0) @)

peS
Alternatively, the video coder may calculate the context according to a function using
Ctx as an input, for example, Ctx = (Ctx + 1) >> 1.
[0146] One example of the region-based offsets is shown on FIG. 11, where regions R1
and R2 are defined based on 4x4 sub-blocks and offsets are different for regions R1 and
R2. Offset values offset! and offset2 could be any integer numbers, for example, offsetl
= 0, offset2 = 3. In other example, other divisions into regions are also possible, and
divisions into more than two regions are also possible.
[0147] FIG. 12 is a conceptual diagram that illustrates an example embedded division
of a video block into two or more regions based on TU sizes that correlate to existing
context models. Since there are several sizes of TU in current HM (4x4, 8x8, 16x16 and
32x32), division of the larger blocks can be done along smaller TU sizes using an

embedded style of division, as illustrated in FIG. 12. For the embedded division, the

WO 2013/106739 PCT/US2013/021278
37

method of context calculation may be shared and the context model itself may be
shared.

[0148] For example, for a TU size 32x32, in region R1, representing a 4x4 TU, the
context calculation may use the same method for context calculation as for an actual TU
of size 4x4. In addition, a context model may be shared between the TU of size 4x4 and
R1 of the TU of size 32x32, or an offset may be applied to the context model for the TU
of size 4x4. As for R2, the context calculation method may be shared between a TU of
size 8x8 and R2 of the TU of size 32x32. R3 represents a 16x16 TU region, while R4
represents a 32x32 TU region. A potential advantage of this method is that the same
units may be used for the context calculations, and additional correlation between
embedded regions and TUs can be taken into account.

[0149] Alternatively, using embedded style division, some significance map context
models may be shared for dedicated positions among all TUs or some group of TUs.
For example, a context model, corresponding to DC coefficients, may be shared among
all TUs with sizes from 4x4 to 32x32. As another example, a context model, related to
high frequency coefficients, may be shared between all TUs. In these cases, region R1,
representing a 4x4 TU, in the TU of size 32x32 may use the same context model for DC
coefficients and/or high frequency coefficients as TUs having any of sizes 4x4, 8x8,
16x16, 32x32, and the like.

[0150] As a further example, instead of sharing among all TUs, a context model of the
coefficients described above (e.g., DC and/or high frequency coefficients) may be
shared among only a subset or group of all the TUs. For example, the context model of
the coefficient may be shared among only two sizes of TUS, such as 4x4 and 8x8 TUs.
In this case, region R1, representing a 4x4 TU, in the TU of size 32x32 may use the
same context model for DC coefficients and/or high frequency coefficients as TUs
having size 4x4 and 8x8.

[0151] In this manner, the example of FIG. 12 represents an example in which a video
coder, such as video encoder 20 or video decoder 30, may be configured to determine a
region in which a transform coefficient occurs from a plurality of regions of a video
block, wherein each of the regions corresponds to a respective one of a plurality of
transform unit (TU) sizes, and wherein the video coder determines the context by
selecting a context that is shared between the region and a TU having the same size as

the region.

WO 2013/106739 PCT/US2013/021278
38

[0152] FIG. 12 also represents an example in which a video coder, such as video
encoder 20 or video decoder 30, may be configured to determining a region in which a
transform coefficient occurs from a plurality of regions of a video block, wherein each
of the regions corresponds to a respective one of a plurality of transform unit (TU) sizes,
and wherein to determine the context, the video coder selects a shared context for
dedicated positions of transform coefficients between two or more TUs of different
sizes, wherein the region has the same size as one of the two or more TUs of different
sizes. The shared context for the dedicated positions of transform coefficients may
comprise a context for one of DC coefficients and high frequency coefficients shared
between the two or more TUs of different sizes. Additionally or alternatively, the
shared context for the dedicated positions of transform coefficients may comprise a
shared context between a first TU having a size of 4x4 transform coefficients and a
second TU having a size of 8x8 transform coefficients.

[0153] FIGS. 13A and 13B are conceptual diagrams that illustrate example divisions of
a video block into two or more regions. In a similar manner as described above with
respect to examples where regions are based on square, ¢.g., 4x4, sub-blocks, the
techniques of this disclosure also describe a classification method to divide a video
block, e.g., a TU, into two or more regions based on rectangular shaped sub-blocks. For
example, 2x8 and 8x2 sub-blocks can be used for an 8x8 video block depending on the
coefficients scan as shown on FIGS. 13A and 13B. In this example, a video coder
applies a horizontal scan for the coefficients in the block shown in FIG. 13A and a
vertical scan to the block shown in FIG. 13B. In the examples illustrated in FIGS. 13A
and 13B, one square block represents one single coefficient, and the size of the entire
video block is 8x8.

[0154] According to the techniques of this disclosure, the video block may be divided
into different rectangular regions, ¢.g., R1, R2, R3, and R4. Each of the different
rectangular regions may have a different context assignment. For example, for some
regions, a fixed context may be used. These regions may be formed based on
rectangular (for example 2x8 or 8x2) sub-blocks, described above and shown in FIGS.
13A and 13B. For example, context could be defined according to the coefficient
position in the video block, or according to the position of the rectangular sub-block that
contains this coefficient.

[0155] Alternatively, the context model might be defined according to the neighbor

rectangular shaped sub-blocks. For example, every coefficient within the same

WO 2013/106739 PCT/US2013/021278
39

rectangular sub-block can use one or several contexts. In addition, coefficients of the
neighboring rectangular sub-block can also use one or several contexts. However,
contexts of one rectangular sub-block may be different from previous rectangular sub-
block based contexts. A hybrid type of contexts might be used as well, for example, for
some regions contexts may be neighborhood based and for some regions of the same
video block it can be fixed or position based. An advantage of the position based
approach is that it is not necessary to calculate context coefficient-wise, it can be done
once for a region. Also, the division might be dependent on the coefficient positions or
the position of the rectangular sub-block containing this coefficient.

[0156] For a coefficient with (x, y) coordinates, regions can be defined according to the
coefficient position. For example, if the condition (x + y >= threshold) is true, then
this coefficient may be assigned to region R2; otherwise, it may be assigned to region
R1. In a similar manner this can be done based on a rectangular shaped sub-block, for
the sub-block with (X, Y) coordinates, regions can be defined according to the
rectangular sub-block position. For example, if the condition (X + Y >= Threshold) is
true than this coefficient may be assigned to region R2, otherwise it may be assigned to
R1. The threshold may be fixed to some predefined value, like integer number (e.g.,
equal to 0 or 1) or might be dependent on TU size.

[0157] Alternatively, a context model may be different for the different regions, but still
use the same method for context calculation. For example, context may be calculated
based on neighborhood, but for different regions it uses an offset. An offset can be
fixed, video block size dependent, or be dependent on one or more of: coefficient
position in the video block and/or rectangular sub-block, position of the rectangular sub-
block containing the current coefficient in the video block, or any combination of these
conditions.

[0158] With an offset, the context may be calculated according to equation (3).

Ctx = offset (region) + Z(COef »'=0) 3)

pes

[0159] Alternatively, the context may be calculated according to a function using Ctx
as an input, for instance, Ctx = (Ctx+1)>>1.

[0160] FIGS. 14A and 14B are conceptual diagrams that illustrate example assignment
of context offsets for cach region of a video block. In these examples, regions R1 and

R2 are defined based on rectangular sub-blocks and scan direction, and offsets are

WO 2013/106739 PCT/US2013/021278
40

different for regions R1 and R2. Offset values offset] and offset2 could be any integer
numbers, for example offset] = 0, offset2 = 3. Other divisions into regions are also
possible. For example, a number of regions can be more than two. It should be noted
that, 2x8 and 8x2 rectangular sub-blocks, depending on coefficient scanning directions,
were used in this disclosure as an example. Similar methods can be used for other
rectangular-shaped sub-blocks with size MxN without restriction.

[0161] In general, this disclosure describes diagonal based, square, ¢.g., 4x4, sub-block
based, and rectangular, e.g., 2x8 and 8x2, sub-block based division of video blocks. In
other examples, other types of division are possible, and division can be flexible based
on various shapes, ¢.g., rectangular, square, triangular and the like, with different sizes.
This disclosure also describes dividing video blocks into any number of regions. This
disclosure further describes grouping coefficients into regions based on square sub-
block, rectangular sub-blocks, or based on other groupings such as diagonal divisions of
a video block. Thresholds and offsets described above are also provided as an example,
other values or neighbor dependencies could be exploited.

[0162] Similar techniques as described in this disclosure can be used for non-square
transform units or other shapes of units. The described techniques may be applied to
significance map coding, and to other syntax and bin coding of transform coefficients
without limitation. In addition, this disclosure typically refers to the video blocks as TU
blocks, but the techniques may be applied to any of TUs, PUs, CUs, LCUs or other
groups of blocks.

[0163] FIG. 15 is a flowchart illustrating an example method for encoding a current
block. The current block may comprise a current CU or a portion of the current CU.
Although described with respect to video encoder 20 (FIGS. 1 and 2), it should be
understood that other devices may be configured to perform a method similar to that of
FIG. 15.

[0164] In this example, video encoder 20 initially predicts the current block (150). For
example, video encoder 20 may calculate one or more prediction units (PUs) for the
current block. Video encoder 20 may then calculate a residual block for the current
block, e.g., to produce a transform unit (TU) (152). To calculate the residual block,
video encoder 20 may calculate a difference (that is, pixel-by-pixel differences) between
the original, uncoded block and the predicted block for the current block. Video

encoder 20 may then transform and quantize coefficients of the residual block (154).

WO 2013/106739 PCT/US2013/021278
41

Next, video encoder 20 may scan the quantized transform coefficients of the residual
block (156).

[0165] During the scan, video encoder 20 may determine a region in which a current
coefficient occurs, and in this manner, video encoder 20 may determine regions in
which the various coefficients occur (158). In accordance with the techniques of this
disclosure, video encoder 20 may determine regions in which coefficients occur based
on, for example, positions of the coefficients or positions of sub-blocks in which the
coefficients occur. Video encoder 20 may determine regions using any of the techniques
described with respect to FIGS. 9-14, or other similar techniques. For example, as
shown in FIG. 9A, video encoder 20 may be configured to determine whether a
coefficient occurs in a first region including one or more sub-blocks, or a second region
including sub-blocks outside the first region.

[0166] Video encoder 20 may further determine contexts for entropy encoding
coefficients based on the regions (160). That is, video encoder 20 may determine, for
cach coefficient, a context for encoding the coefficient based on the region in which the
coefficient occurs. For example, as discussed above, video encoder 20 may determine
the context based on a position of the coefficient in the block, a position of a sub-block
including the coefficient in the block, an offset to be applied to a calculated context, or
the like based on the region in which the coefficient occurs.

[0167] Likewise, video encoder 20 may entropy encode the coefficients using the
determined contexts (162). In particular, video encoder 20 may entropy encode one or
more syntax elements representative of the coefficients using the context. For example,
video encoder 20 may entropy encode one or more of significance information for the
coefficients, level information for the significant coefficients, and/or sign information
for the significant coefficients. Significance information may comprise
significant coeff flag data. Level information may comprise

coeff abs level greater] flag, coeff abs level greater2 flag, and

coeff abs level remaining. Sign information may comprise coeff sign flag. Video
encoder 20 may then output the entropy encoded data for the coefficients (164).

[0168] In this manner, the method of FIG. 15 represents an example of a method
including determining a context for coding a transform coefficient of a video block
based on a region of the video block in which the transform coefficient occurs, and
entropy coding the transform coefficient using the determined context. Moreover, the

region may comprise one of a first region comprising one or more upper-left 4x4 sub-

WO 2013/106739 PCT/US2013/021278
42

blocks of transform coefficients of the video block and a second region comprising
transform coefficients of the video block outside the first region.

[0169] FIG. 16 is a flowchart illustrating an example method for decoding a current
block of video data. The current block may comprise a current CU or a portion of the
current CU. Although described with respect to video decoder 30 (FIGS. 1 and 3), it
should be understood that other devices may be configured to perform a method similar
to that of FIG. 16.

[0170] Video decoder 30 may predict the current block (200), ¢.g., using an intra- or
inter-prediction mode to calculate a predicted block for the current block. Video
decoder 30 may also receive entropy encoded data for the current block, such as entropy
encoded data for coefficients of a residual block corresponding to the current block
(202).

[0171] In accordance with the techniques of this disclosure, video decoder 30 may
determine regions in which the coefficients will occur (204), e¢.g., during an inverse scan
and entropy decoding process. That is, video decoder 30 may determine the position of
the next transform coefficient based on the position of a previously decoded transform
coefficient and a next significant transform coefficient in scan order. Video decoder 30
may further determine a region of the block in which this position occurs. Video
decoder 30 may similarly determine regions for each of the coefficients in a similar
manner.

[0172] Moreover, video decoder 30 may determine regions in which coefficients will
occur based on, for example, positions of the coefficients or positions of sub-blocks in
which the coefficients will occur. Video decoder 30 may determine regions using any of
the techniques described with respect to FIGS. 9-14, or other similar techniques. For
example, as shown in FIG 9A, video decoder 30 may be configured to determine
whether a coefficient occurs in a first region including one or more sub-blocks, or a
second region including sub-blocks outside the first region.

[0173] Furthermore, video decoder 30 may determine contexts for decoding the
coefficients based on the determined regions (206). That is, video decoder 30 may
determine, for each coefficient, a context for decoding the coefficient based on the
region in which the coefficient occurs. For example, as discussed above, video decoder
30 may determine the context based on a position of the coefficient in the block, a
position of a sub-block including the coefficient in the block, an offset to be applied to a

calculated context, or the like, based on the region in which the coefficient will occur.

WO 2013/106739 PCT/US2013/021278
43

[0174] Video decoder 30 may entropy decode the entropy coded data to reproduce
coefficients of the block using the determined contexts (208). In particular, video
decoder 30 may entropy decode one or more syntax elements representative of the
coefficients using the context. For example, video decoder 30 may entropy decode one
or more of significance information for the coefficients, level information for the
significant coefficients, and/or sign information for the significant coefficients.
Significance information may comprise significant coeff flag data. Level information
may comprise coeff abs level greaterl flag, coeff abs level greater2 flag, and
coeff abs level remaining. Sign information may comprise coeff sign flag. Video
decoder 30 may then regenerate the block (e.g., the TU) to include the decoded
transform coefficients in their respective positions (210). That is, as discussed above,
video decoder 30 may inverse scan the reproduced coefficients to create a block of
quantized transform coefficients.

[0175] Video decoder 30 may then inverse quantize and inverse transform the
coefficients to produce a residual block (212). Video decoder 30 may ultimately decode
the current block by combining the predicted block and the residual block (214). That
18, video decoder 30 may mathematically combine the pixel values of the predicted
block with co-located pixel values of the residual block to decode and reproduce the
original block.

[0176] In this manner, the method of FIG. 16 represents an example of a method
including determining a context for coding a transform coefficient of a video block
based on a region of the video block in which the transform coefficient occurs, and
entropy coding the transform coefficient using the determined context. Moreover, the
region may comprise one of a first region comprising one or more upper-left 4x4 sub-
blocks of transform coefficients of the video block and a second region comprising
transform coefficients of the video block outside the first region.

[0177] In one or more examples, the functions described may be implemented in
hardware, software, firmware, or any combination thereof. If implemented in software,
the functions may be stored on or transmitted over, as one or more instructions or code,
a computer-readable medium and executed by a hardware-based processing unit.
Computer-readable media may include computer-readable storage media, which
corresponds to a tangible medium such as data storage media, or communication media
including any medium that facilitates transfer of a computer program from one place to

another, ¢.g., according to a communication protocol. In this manner, computer-

WO 2013/106739 PCT/US2013/021278
44

readable media generally may correspond to (1) tangible computer-readable storage
media which is non-transitory or (2) a communication medium such as a signal or
carrier wave. Data storage media may be any available media that can be accessed by
one or more computers or one or more processors to retrieve instructions, code and/or
data structures for implementation of the techniques described in this disclosure. A
computer program product may include a computer-readable medium.

[0178] By way of example, and not limitation, such computer-readable storage media
can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic
disk storage, or other magnetic storage devices, flash memory, or any other medium that
can be used to store desired program code in the form of instructions or data structures
and that can be accessed by a computer. Also, any connection is properly termed a
computer-readable medium. For example, if instructions are transmitted from a
website, server, or other remote source using a coaxial cable, fiber optic cable, twisted
pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and
microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wircless
technologies such as infrared, radio, and microwave are included in the definition of
medium. It should be understood, however, that computer-readable storage media and
data storage media do not include connections, carrier waves, signals, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and disc,
as used herein, includes compact disc (CD), laser disc, optical disc, digital versatile disc
(DVD), floppy disk and Blu-ray disc, where disks usually reproduce data magnetically,
while discs reproduce data optically with lasers. Combinations of the above should also
be included within the scope of computer-readable media.

[0179] Instructions may be executed by one or more processors, such as one or more
digital signal processors (DSPs), general purpose microprocessors, application specific
integrated circuits (ASICs), field programmable logic arrays (FPGAS), or other
equivalent integrated or discrete logic circuitry. Accordingly, the term “processor,” as
used herein may refer to any of the foregoing structure or any other structure suitable for
implementation of the techniques described herein. In addition, in some aspects, the
functionality described herein may be provided within dedicated hardware and/or
software modules configured for encoding and decoding, or incorporated in a combined
codec. Also, the techniques could be fully implemented in one or more circuits or logic

elements.

WO 2013/106739 PCT/US2013/021278
45

[0180] The techniques of this disclosure may be implemented in a wide variety of
devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of
ICs (e.g., a chip set). Various components, modules, or units are described in this
disclosure to emphasize functional aspects of devices configured to perform the
disclosed techniques, but do not necessarily require realization by different hardware
units. Rather, as described above, various units may be combined in a codec hardware
unit or provided by a collection of interoperative hardware units, including one or more
processors as described above, in conjunction with suitable software and/or firmware.
[0181] Various examples have been described. These and other examples are within the

scope of the following claims.

WO 2013/106739 PCT/US2013/021278
46

WHAT IS CLAIMED IS:

1. A method of decoding video data, the method comprising:

determining values for coded sub-block flags of one or more neighboring sub-
blocks to a current sub-block;

determining a context for decoding a transform coefficient of the current sub-
block based on the values for the coded sub-block flags; and

entropy decoding the transform coefficient using the determined context.

2. The method of claim 1, wherein the one or more neighboring sub-blocks

comprise a right-neighboring sub-block and a bottom-neighboring sub-block.

3. The method of claim 2, wherein determining the context comprises calculating
the sum of a value for a coded sub-block flag of the right-neighboring sub-block and a
value for a coded sub-block flag of the bottom-neighboring sub-block and using the

calculated sum to determine the context.

4. The method of claim 1, wherein the coded sub-block flags represent whether
respective ones of the neighboring sub-blocks include at least one non-zero transform

coefficient.

5. The method of claim 1, wherein each of the sub-blocks corresponds to a
respective 4x4 block of transform coefficients, and wherein the coded sub-block flags
indicate whether at least one of the transform coefficients in the respective 4x4 block

has a non-zero value.

6. The method of claim 1, wherein the current sub-block has a size of 4x4 pixels,
and wherein the current sub-block is within a current transform unit having a size

greater than 4x4 pixels.

7. The method of claim 1, wherein determining the context further comprises
determining the context for decoding the transform coefficient based on a position of the

transform coefficient in the current sub-block.

WO 2013/106739 PCT/US2013/021278
47

8. The method of claim 1, wherein entropy decoding the transform coefficient
comprises entropy decoding the transform coefficient according to context adaptive

binary arithmetic coding (CABAC).

9. A device for decoding video data, the device comprising a video decoder
configured to determine values for coded sub-block flags of one or more neighboring
sub-blocks to a current sub-block, determine a context for decoding a transform
coefficient of the current sub-block based on the values for the coded sub-block flags,

and entropy decode the transform coefficient using the determined context.

10. The device of claim 9, wherein the one or more neighboring sub-blocks

comprise a right-neighboring sub-block and a bottom-neighboring sub-block.

11. The device of claim 10, wherein to determine the context, the video decoder is
configured to calculate the sum of a value for a coded sub-block flag of the right-
neighboring sub-block and a value for a coded sub-block flag of the bottom-neighboring

sub-block and use the calculated sum to determine the context.

12. The device of claim 9, wherein the coded sub-block flags represent whether
respective ones of the neighboring sub-blocks include at least one non-zero transform

coefficient.

13. The device of claim 9, wherein the video decoder is further configured to
determine the context for decoding the transform coefficient based on a position of the

transform coefficient in the current sub-block.

14. The device of claim 9, wherein the video decoder is configured to entropy
decode the transform coefficient according to context adaptive binary arithmetic coding

(CABAC).

WO 2013/106739 PCT/US2013/021278
48

15. A device for decoding video data, the device comprising:

means for determining values for coded sub-block flags of one or more
neighboring sub-blocks to a current sub-block;

means for determining a context for decoding a transform coefficient of the
current sub-block based on the values for the coded sub-block flags; and

means for entropy decoding the transform coefficient using the determined

context.

16. The device of claim 15, wherein the one or more neighboring sub-blocks

comprise a right-neighboring sub-block and a bottom-neighboring sub-block.

17. The device of claim 16, wherein the means for determining the context
comprises means for calculating the sum of a value for a coded sub-block flag of the
right-neighboring sub-block and a value for a coded sub-block flag of the bottom-

neighboring sub-block and means for using the calculated sum to determine the context.

18. The device of claim 15, wherein the coded sub-block flags represent whether
respective ones of the neighboring sub-blocks include at least one non-zero transform

coefficient.

19. The device of claim 15, wherein the means for determining the context further
comprises means for determining the context for decoding the transform coefficient

based on a position of the transform coefficient in the current sub-block.

20. The device of claim 15, wherein the means for entropy decoding the transform
coefficient comprises means for entropy decoding the transform coefficient according to

context adaptive binary arithmetic coding (CABAC).

WO 2013/106739 PCT/US2013/021278
49

21. A computer-readable storage medium having stored thereon instructions that,
when executed, cause a processor to:

determine values for coded sub-block flags of one or more neighboring sub-
blocks to a current sub-block;

determine a context for decoding a transform coefficient of the current sub-block
based on the values for the coded sub-block flags; and

entropy decode the transform coefficient using the determined context.

22. The computer-readable storage medium of claim 21, wherein the one or more
neighboring sub-blocks comprise a right-neighboring sub-block and a bottom-

neighboring sub-block.

23. The computer-readable storage medium of claim 22, wherein the instructions
that cause the processor to determine the context comprise instructions that cause the
processor to calculate the sum of a value for a coded sub-block flag of the right-
neighboring sub-block and a value for a coded sub-block flag of the bottom-neighboring

sub-block and use the calculated sum to determine the context.

24. The computer-readable storage medium of claim 21, wherein the coded sub-
block flags represent whether respective ones of the neighboring sub-blocks include at

least one non-zero transform coefficient.

25. The computer-readable storage medium of claim 21, wherein the instructions
that cause the processor to determine the context further comprise instructions that
cause the processor to determine the context for decoding the transform coefficient

based on a position of the transform coefficient in the current sub-block.

26. The computer-readable storage medium of claim 21, wherein the instructions
that cause the processor to entropy decode the transform coefficient comprise
instructions that cause the processor to entropy decoding the transform coefficient

according to context adaptive binary arithmetic coding (CABAC).

WO 2013/106739 PCT/US2013/021278
50

27. A method of encoding video data, the method comprising:

determining values for coded sub-block flags of one or more neighboring sub-
blocks to a current sub-block;

determining a context for encoding a transform coefficient of the current sub-
block based on the values for the coded sub-block flags; and

entropy encoding the transform coefficient using the determined context.

28. The method of claim 27, wherein the one or more neighboring sub-blocks

comprise a right-neighboring sub-block and a bottom-neighboring sub-block.

29. The method of claim 28, wherein determining the context comprises calculating
the sum of a value for a coded sub-block flag of the right-neighboring sub-block and a
value for a coded sub-block flag of the bottom-neighboring sub-block and using the

calculated sum to determine the context.

30. The method of claim 27, wherein the coded sub-block flags represent whether
respective ones of the neighboring sub-blocks include at least one non-zero transform

coefficient.

31. The method of claim 27, wherein each of the sub-blocks corresponds to a
respective 4x4 block of transform coefficients, and wherein the coded sub-block flags
indicate whether at least one of the transform coefficients in the respective 4x4 block

has a non-zero value.

32. The method of claim 27, wherein the current sub-block has a size of 4x4 pixels,
and wherein the current sub-block is within a current transform unit having a size

greater than 4x4 pixels.

33. The method of claim 27, wherein determining the context further comprises
determining the context for encoding the transform coefficient based on a position of the

transform coefficient in the current sub-block.

34. The method of claim 27, wherein entropy encoding the transform coefficient
comprises entropy encoding the transform coefficient according to context adaptive

binary arithmetic coding (CABAC).

WO 2013/106739 PCT/US2013/021278
51

35. A device for encoding video data, the device comprising a video encoder
configured to determine values for coded sub-block flags of one or more neighboring
sub-blocks to a current sub-block, determine a context for encoding a transform
coefficient of the current sub-block based on the values for the coded sub-block flags,

and entropy encode the transform coefficient using the determined context.

36. The device of claim 35, wherein the one or more neighboring sub-blocks

comprise a right-neighboring sub-block and a bottom-neighboring sub-block.

37. The device of claim 36, wherein to determine the context, the video encoder is
configured to calculate the sum of a value for a coded sub-block flag of the right-
neighboring sub-block and a value for a coded sub-block flag of the bottom-neighboring

sub-block and use the calculated sum to determine the context.

38. The device of claim 35, wherein the coded sub-block flags represent whether
respective ones of the neighboring sub-blocks include at least one non-zero transform

coefficient.

39. The device of claim 35, the video encoder is further configured to determine the
context for decoding the transform coefficient based on a position of the transform

coefficient in the current sub-block.

40. The device of claim 35, wherein the video encoder is configured to entropy
encode the transform coefficient according to context adaptive binary arithmetic coding

(CABAC).

41. A device for encoding video data, the device comprising:

means for determining values for coded sub-block flags of one or more
neighboring sub-blocks to a current sub-block;

means for determining a context for encoding a transform coefficient of the
current sub-block based on the values for the coded sub-block flags; and

means for entropy encoding the transform coefficient using the determined

context.

WO 2013/106739 PCT/US2013/021278
52

42. The device of claim 41, wherein the one or more neighboring sub-blocks

comprise a right-neighboring sub-block and a bottom-neighboring sub-block.

43. The device of claim 42, wherein the means for determining the context
comprises means for calculating the sum of a value for a coded sub-block flag of the
right-neighboring sub-block and a value for a coded sub-block flag of the bottom-

neighboring sub-block and means for using the calculated sum to determine the context.

44. The device of claim 41, wherein the coded sub-block flags represent whether
respective ones of the neighboring sub-blocks include at least one non-zero transform

coefficient.

45. The device of claim 41, wherein the means for determining the context further
comprises means for determining the context for encoding the transform coefficient

based on a position of the transform coefficient in the current sub-block.

46. The device of claim 41, wherein the means for entropy encoding the transform
coefficient comprises means for entropy encoding the transform coefficient according to

context adaptive binary arithmetic coding (CABAC).

47. A computer-readable storage medium having stored thereon instructions that,
when executed, cause a processor to:

determine values for coded sub-block flags of one or more neighboring sub-
blocks to a current sub-block;

determine a context for encoding a transform coefficient of the current sub-block
based on the values for the coded sub-block flags; and

entropy encode the transform coefficient using the determined context.

48. The computer-readable storage medium of claim 47, wherein the one or more
neighboring sub-blocks comprise a right-neighboring sub-block and a bottom-

neighboring sub-block.

WO 2013/106739 PCT/US2013/021278
53

49. The computer-readable storage medium of claim 48, wherein the instructions
that cause the processor to determine the context comprise instructions that cause the
processor to calculate the sum of a value for a coded sub-block flag of the right-
neighboring sub-block and a value for a coded sub-block flag of the bottom-neighboring

sub-block and use the calculated sum to determine the context.

50. The computer-readable storage medium of claim 47, wherein the coded sub-
block flags represent whether respective ones of the neighboring sub-blocks include at

least one non-zero transform coefficient.

51. The computer-readable storage medium of claim 47, wherein the instructions
that cause the processor to determine the context further comprise instructions that
cause the processor to determine the context for encoding the transform coefficient

based on a position of the transform coefficient in the current sub-block.

52. The computer-readable storage medium of claim 47, wherein the instructions
that cause the processor to entropy encode the transform coefficient comprise
instructions that cause the processor to entropy encoding the transform coefficient

according to context adaptive binary arithmetic coding (CABAC).

WO 2013/106739

SOURCE DEVICE
12

VIDEO SOURCE
18

l

VIDEO
ENCODER
20

l

OUTPUT
INTERFACE
22

Page 1/14

— e— e— — —

l

| STORAGE |
—» DEVICE L

| 34

— —— — |

PCT/US2013/021278

10

DESTINATION DEVICE
14

DISPLAY DEVICE
32

T

VIDEO
DECODER
30

T

> INPUT INTERFACE

FIG. 1

28

PCT/US2013/021278

WO 2013/106739

Page 2/ 14

A ¢ '9ld
I ---1T---"""-"="---—"="--"=-"-"--""""-"""""""-"""-""-"-"""-"""-"""""-"""-"-"="—"-"-T"""-"-F—-—"-FF""—"=—--m--- ---—---—---—-—-———-—————— |
|
_ ¥3IAOION3 O3 AIA _
" 1 _ _ 29 _ _
9G g% 09 SMO0719 03dalA 79 _
" 1INN 1INN 1INN n d3LONYLSNOI3N AdOWan | |
| | ©N1GOON3 ‘2" NOILYZILNVND INYO4SNVHL 3uNLoId | |
_ AdO¥Y1N3 ISYUIANI ASYUIANI [SMO0OT18 3% 43y _
"aIs3ay _
_ A . 1INN
NOO3Y _
_ NOILOIa3¥d |
_ VHLNI |
|
| 7 |
_ 1INN |
_ NOILVSN3adINOD |
_ - NOILOW |
") _
| (47 |
| SINIWITI XVLNAS LINN \J _
| NOILVINILST 5T _
| NOILOW unn |1
| 5 19313s "
| S1N3I0144309D ¥0SS300Nd 3dON |
| WYO4SNVYL __ 0S NOILOIa3¥d _
| vnais3y 55 4 - » |
| G3ZUNVNO LINN wz_whw_uwomn_ m
-
" NOILVZILNVNO WNodSNvaL | sooe t wwmmusm_ " MMM_AW,

‘ais3y

PCT/US2013/021278

WO 2013/106739

Page 3 /14

— IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII I—
_ 7 %8 38 |
- _ AYOWINW 1INN P 1INN “
e 3uN1oId INYO4SNVYL NOLLVZILNVNO |
a3aoo3a ! 43 06 SY007Td | ISyAANI ISHIANI _
_ Ivnais3y i |
| |
— —
_] |
_ 1INN SIN3I2144309 |
_ NOILDIa3¥d INNOASNVNL _
" VALNI d3ZILNVNO “
_ Z8 08 _
_ 1INN 1INN _
_ > [NOILVSNIdIWOD | [*gINawI13 oniaoo3a | | Wv3lslig
_ NOILOW XVLNAS AdO¥LNT | O3aiA
_ 18 | G300ON3
| ¥0SS300Yd _ _
" NOILOIQI¥d 0€ _

d3d093d O3dIA

WO 2013/106739 PCT/US2013/021278

Page 4 /14
5 | 3 | 1 0 1 1 1 0
2 | 2 | 1 1 1 1 1 1
1 1 0| o0 :> 1 1 0| o
o | o | o | o o | o | o | o
o | o | o | o o | o | o | o
TRANSFORM COEFFICIENTS SIGNIFICANCE MAP

FIG. 4

WO 2013/106739 PCT/US2013/021278

Page 5/ 14

WO 2013/106739 PCT/US2013/021278

Page 6/ 14

{—110

FIG. 6

WO 2013/106739 PCT/US2013/021278

Page 7/ 14

FIG. 8A FIG. 8B

PCT/US2013/021278

WO 2013/106739
Page 8/ 14
4x4
R1
R2
FIG. 9A
R1
R2
R3

R4

FIG. 9B

WO 2013/106739 PCT/US2013/021278

Page 9/ 14
4x4 I
Neighborhood
based ¢ontext
Rosition based
contpxt 2
Rosition based
context 1
Rosition based Rosition based
contpxt 3 contpxt 4
FIG. 10
4x4
offget1
offset2

FIG. 11

PCT/US2013/021278

WO 2013/106739
Page 10/ 14
4x4
R1
R2 8x8
R3 16x16
R4
32x32

FIG. 12

WO 2013/106739 PCT/US2013/021278

Page 11 /14

FIG. 13A

FIG. 13B

WO 2013/106739

PCT/US2013/021278

Page 12 /14
R1 offset1
R2 offset2
R2
offset2
R2
off|set2
FIG. 14A
— R1 R2 —}— R2 R2 —
offset1 offset2 offset2 offset2

FIG. 14B

WO 2013/106739 PCT/US2013/021278

Page 13/14

150
/

PREDICT CURRENT BLOCK

|

152
CALCULATE RESIDUAL BLOCK /
FOR CURRENT BLOCK

|

TRANSFORM AND QUANTIZE /154
RESIDUAL BLOCK

v

156
SCAN COEFFICIENTS OF /
RESIDUAL BLOCK

;

DETERMINE REGIONS IN WHICH /158
COEFFICIENTS OCCUR

y

160
DETERMINE CONTEXTS FOR
ENCODING COEFFICIENTS
BASED ON REGIONS
ENTROPY ENCODE 162

COEFFICIENTS USING
DETERMINED CONTEXTS

;

OUTPUT ENTROPY ENCODED /164
DATA FOR COEFFICIENTS

FIG. 15

WO 2013/106739 PCT/US2013/021278

Page 14/ 14

200
/

PREDICT CURRENT BLOCK

!

202
RECEIVE ENTROPY CODED /
DATA FOR CURRENT BLOCK

v

DETERMINE REGIONS IN WHICH
COEFFICIENTS WILL OCCUR

/204

¢ 206
DETERMINE CONTEXTS FOR /
DECODING COEFFICIENTS

BASED ON REGIONS

'

ENTROPY DECODE DATA TO /208
REPRODUCE COEFFICIENTS
USING DETERMINED CONTEXTS

v

210
REGENERATE BLOCK ”
INCLUDING COEFFICIENTS
INVERSE QUANTIZE AND
INVERSE TRANSFORM —212

COEFFICIENTS TO PRODUCE
RESIDUAL BLOCK

v

COMBINE PREDICTED BLOCK /214
AND RESIDUAL BLOCK

FIG. 16

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings

