US006334114B1

a2 United States Patent

Jacobs et al.

(10) Patent No.:
5) Date of Patent:

US 6,334,114 Bl
*Dec. 25, 2001

(549) METHOD AND APPARATUS FOR
PERFORMING TRANSACTIONS IN A
STATELESS WEB ENVIRONMENT WHICH
SUPPORTS A DECLARATIVE PARADIGM

(75) Inventors: Lawrence Jacobs, Redwood Shores;
Seshu Adunuthula, Foster City; Mala
Anand, Palo Alto, all of CA (US)
(73) Assignee: Oracle Corporation, Redwood Shores,
CA (US)
(*) Notice: This patent issued on a continued pros-
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).
Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 08/962,536
(22) Filed Oct. 31, 1997
(51) Int. CL7 oo GO6F 17/60
(52) US. Cl . 705/26; 705/27; 707/10;,
707/104; 395/674; 395/675; 395/682; 395/684;
395/200.56; 395/200.33
(58) Field of Search ... 705/26, 27; 395/200.12,
395/200.57
(56) References Cited
U.S. PATENT DOCUMENTS
4918595 4/1990 Kahn et al. wocororrorrrrrreeeee 364/200
5,210,824 5/1993 Putz et al. 395/145
5,212,793 5/1993 Donica et al. 395/700
5249200 9/1993 Heizer 395/650
5,329,619 7/1994 Page et al. 395/200
5,341,478 8/1994 Travis, Jr. et al. ... 395/200
5,361,350 11/1994 Conner et al.ccccooevvennnne 395/600

(List continued on next page.)

INTERNET 208

FOREIGN PATENT DOCUMENTS

553560A2 8/1993 (EP).
0733969 Al 9/1996 (EP).
0812088A2 12/1997 (EP).

OTHER PUBLICATIONS

Progress Software, “Webspeed 1.0 technical product brief”
1998, wysiwyg://90/http://www.progress—softwa . . . ernet/
webspeed/white/tech/docs/arch.html.*

Computer Reseller News “Progress Software offers tools to
speed use of Web”, Oct. 7, 1996, http://proquest.umi.com/
padweb?TS =91798 . . . &Sid =1&Deli =1&RQT =309&Dtp
=1.*

Butler Group Technology Audits, “Butler Group WebSpeed
Technology Audit” Nov. 1996, http://www.realtime.co.za/
webspeed/whitep/wp03.html.*

Netscape “Persistent Client State HTTP Cookies™ 1997,
http://home.netscape.com/newsref/std/cookie_spec.html.*

(List continued on next page.)

Primary Examiner—James P. Trammell

Assistant Examiner—Yehdega Retta

(74) Antorney, Agent, or Firm—Hickman Palermo Truong
& Becker LLP; Carl L. Brandt

(7) ABSTRACT

A method and system for processing multiple-request trans-
actions in a stateless environment is provided. A cartridge
execution engine intercepts browser messages directed to a
cartridge. The cartridge execution engine determines
whether the browser messages are associated with transac-
tions. If it is determined that browser messages are associ-
ated with transactions, then the cartridge execution engine
sends transaction control messages to a transaction manager.
In addition, the cartridge execution engine sends operation
messages to the cartridge. The cartridge then performs the
operations specified in the operation messages. In response
to the transaction control messages from the cartridge execu-
tion engine, the transaction manager causes the multiple-
request transactions to be either committed or rolled back as
an atomic unit of work.

48 Claims, 16 Drawing Sheets

200
BROWSER 202 BROWSER 204 SER 208 ‘/
D T A
=

BROW.

< L
7_’¥ WEB APPLICATION SERVER 280
aah
LISTENER 210 LSTENER 21| |USTENER222] et
B TRANSPORT TRANSPORT | | TRANSPORT ‘
[ADAPTER 212 ADAPTER218| | ADAPTER 224 !
L
| DISPATCHER DISPATCHER | | DISPATCHER
. 214 20 26
| I e — e ——— = A _
OBJECT REQUEST BROKER 282 ‘
CONFIGURATION PROVIDER 256
e e RN --- !
! i
WRAPPER WRAPPER
\
| |wearper 2 i o
Ll _ L
2601 | carTRIOGE CARTRIDGE CARTRIDGE
230 234 28

US 6,334,114 B1
Page 2

U.S. PATENT DOCUMENTS

5,457,797 10/1995 Butterworth et al. 395/682
5,504,897 4/1996 Gans et al. ...cveveeeeererierennnne 395/650
5,546,584 8/1996 Lundin et al. 395/700
5,592,654 1/1997 Djakovic 395/500
5,613,148 3/1997 Bezviner et al. ... 395/800
5,623,656 4/1997 Lyonsccccvevviininiiiininns 707/10
5,706,442 1/1998 Anderson et al.coeeeueee. 395/227
5,708,780 1/1998 Levergood et al. .

5,715,314 2/1998 Payne et al. .

5,724,424 3/1998 Gifford .

5,737,592 4/1998 Nguyen et al.ccceeveennnne 395/604
5,737,607 4/1998 Hamilton et al. 395/701
5,745,681 4/1998 Levine et al. 709/200
5,752,246 5/1998 Rogers et al. ..oovviviinininne 707/10
5,761,507 6/1998 Govett 395684
S761,662 671998 DAaSan ..erveeeemeeeercerrreeseesen. 707/10
5,761,673 6/1998 Bookman et al .. 707/104
5,761,684 6/1998 Gibson o T07/515
5,774,670 * 6/1998 Montulli 395/200.57
5,778,224 7/1998 Tobe et al. 395/670
5,796,393 8/1998 MacNaughton et al. 345/329
5,802,291 9/1998 Balick et al. 395/200.32
5,822,585 10/1998 Noble et al.cceveercverunuencne 395/680
5,826,230 10/1998 DU et al. ooveeoeecrrreereeserreeerreennne 705/8
5,826,242 * 10/1998 Montullicceeveevvevevevereenennne 705/27
5,835,712 11/1998 DuFresne 709/203
5,857,102 1/1999 McChesney et al ... 395/145
5,857,191 1/1999 Blackwell et al.c.ccocee.e... 707/10
5,859,971 1/1999 Bittinger et al. 709/203
5,860,072 1/1999 Schofieldcccooeveverruercncnunee 707/101
5,862,318 * 1/1999 Habbenccccevvveuvenne. 395/182.18
5,862,325 1/1999 Reed et al. 395/200.31
5,864,866 1/1999 Henckel et al.ccoeeuneeee 707/103
5,864,871 1/1999 Kitain et al. wcocovceveeerercrcnnnnee 707/104
5,872,969 2/1999 Copeland et al. .

5875296 2/1999 Shi et al. .

5,890,161 * 3/1999 Helland et al.ccceoeveeunenee 707/103
5,804,554 4/1999 Lowery et al.coeun. 395/200.33
5,961,601 10/1999 lyengar .

5,991,802 11/1999 Allard et al. .

6,070,191 5/2000 Narendran et al.c.cceeuen. 709/226

OTHER PUBLICATIONS

M/Gateway Developments Ltd. “Persistence and State
Awareness in WebLink” 1996, http://www.intersys.com/
products/whitepapers/weblink_state.html.*

Oracle Corporation; Oracle WebServer Architecture; Seshu
Adunnthula, Mala Anand, Ankur Sharma; http:/www.win-
.tue.nl/00www/anand.html, Apr. 1996.*

Distributed Objects on the Internet: Oracle Web Application
Server [tm] 3.0; Richard Delval-Duarte; Nov. 1996.*
Exectutive Overview; Oracle Web Application Server TM
3.0.*

Oracle Web Application Server TM Cartridge user’s Guide;
Release 3.0, 1996/1997.*

Web Request Broler TM Programmer’s Reference Release
3.0, 1996/1997 .*

Oracle Web Application Server TM Overview Release 3.0,
1996/1997 .*

Using Oracle Web Application Server TM Cartridge Release
3.0.1, Apr. 1996.*

Web Application Server 3.0.1 “Overview”, published Aug.
14, 1998.

Oracle “Developing Your Own Web Application Server™
Cartridge” Release 3.0.1, published Aug. 14, 1998.

Oracle Web Application Server™, “Installation Guide for
Sun SPARC Solaris 2.x” Release 3.0.1, published Aug. 14,
1998.

Oracle “Using Oracle Web Application Server™ Cartridge”
Release 3.0.1, published Aug. 14, 1998.

Oracle “Performance Tuning”, Operating System Param-
eters (Sun Solaris), published Aug. 14, 1998.

2«

Oracle “Security”, “Security Overview”, published Aug. 14,
1998.

Oracle Glossary (A-X), published Aug. 14, 1998.

Executive Overview; Oracle Web Application Server™ 3.0;
http://www.silexsa.com/oracle/was30 eo.htm; retrieved May
11, 2000.

Oracle Corporation; Oracle WebServer Architecture; Seshu
Adunuthula, Mala Anand, Ankur Sharma; http://www.win-
.tue.nl/00www/anand.html; dated Apr. 1996; retrieved May
10, 2000.

Distributed Objects on the Internet: Oracle Web Application
Server™ 3.0; Richard Delval-Duarte; http://www.fors.com/
eoug97/papers/0504.htm; dated Nov. 1996; retrieved May
10, 2000.

Oracle Corporation; WRB API Overview; http://www.cs-
vu.nl/~eliens/ WWWS5/papers/Broker.html; retrieved.

Web Application Server 3.0 “Oracle Web Application Server
Documentation Roadmap”.

Oracle Web Application Server™ Installation Guide for Sun
SPARC Solaris 2.x, Release 3.0.

Oracle Web Application Server™ Overview, Release 3.0.

Oracle Web Application Server™ Cartridge User’s Guide,
Release 3.0.

Web Request Broker ™Programmer’s Reference, Release
3.0.

Merle, P, et al., “CorbaWeb: A generic object navigator”,
Computer Networks and ISDN Systems, vol. 28, No. 11,
May 1996.

Web Page containing an article written by Rich Levin titled
“NetDynamics To Launch Web Database Development Sys-
tem Upgrade,” Sep. 29, 1997 (As printed on Dec. 11, 1997).

KIVA Software Corporation, “Developing and Managing
Web-based Enterprise Applications™.

Modeling transaction integrity: how CASE tools illustrate
the relationships between transactions and data; Frank, Mau-
rice, DBMS, v6, nl, p62(5), Jan. 1993.*

Luotonen et al., “World—Wide Web proxies”, pp. 147-154,
computer Network and ISDN system, 01/94.

James Powell, “Creating a hypertext library information
system,” pp. 59-66, 02/94.

* cited by examiner

US 6,334,114 Bl

Sheet 1 of 16

Dec. 25, 2001

U.S. Patent

9ct

NHOMIIN
4<owu\\\\

8¢l

L1INY3LNI

otl

43AY3S

p

9T
TOYLNOD
40S¥Nd

] .QOH
| BT
JOVIHILNI vot
NOILYDINNNINOD H0SS3004d
|
|
|
}
|
|
_ r4]8
” sne
|
|
o — —
! JFOVHOILS WOHY NIVIN

1233
30IA3Q LNdN

at
AV1dSIG

US 6,334,114 B1

Sheet 2 of 16

Dec. 25, 2001

U.S. Patent

8SC Y1VAV.I3IW

8T
JOARINEVO

>

9¢g¢
HIddVeM

962 ¥3AIAOYd NOLLVINOIANOD [«

7S¢ YIOYNYIN 30HNOSA

062 YIOVNYW H1Vd TVNLAIA \

G2 YIAYIS NOILYOLINIHLNY

087 ¥3AY3S NOILVYOINddY 83M

1474

JOARLEVO

[AY4

d3ddVim

922 022
MIHOLVASIa ¥3HOLYdSIa
yzzdaLdvay| [etzualdvav
LHOJSNYNL LHOdSNYYL
zzzwanas| lorzuanaisn

782 ¥IH0H8 LS3ND3Y 103rg0

80C LINYILNI

0ge
FOALEVO

87¢ d3ddViM _

147
Y3HOLVdSId

¢ld ¥y3ldvav
1HOdSNVEL

0L ¥3NTLSN

=

¢ Old

90¢ ¥4SMOud

702 ¥3SMOuE

Z0¢ ¥3smodd

00¢

U.S. Patent Dec. 25, 2001 Sheet 3 of 16 US 6,334,114 B1

350
Obtain Request

A 4

352
Forward Request to Dispatcher

\ 4

354
Determine Request Object Type

356
Does Request Object Type
Match with a Cartridge?

U.S. Patent Dec. 25, 2001 Sheet 4 of 16 US 6,334,114 B1

FIG. 3B

362
Available Instance?

364
Max No. Instances?

366
Initiate New Instance

X

368
Dispatch Request
to Available Instance

370
Fault Detected?

—

372
Abort Instance

- 374
L Receive Reply

358
Return Request

376
Respond to Client

360
Send Reply to Client

378
Maintain Instance

U.S. Patent

408

410

412

Dec. 25, 2001 Sheet 5 of 16

402 404 406
INSTANCE | CARTRIDGE | STATUS

1 C1 BUSY

3 C1 FREE

7 C1 BUSY

1 C2 BUSY

5 C2 FREE

3 C3 BUSY

FIG. 4

US 6,334,114 B1

400

US 6,334,114 B1

U.S. Patent Dec. 25, 2001 Sheet 6 of 16
202 504 ’5(06 508
INSTANCE | CARTRIDGE | LISTENER | MACHINE

10~ 1 c1 1210 M

3 C1 1210 M2

7 C1 1210 M3

1 C2 1210 M1

5 C2 L210 M1
912 —a 3 c3 1210 M3

2 C1 L216 M1

4 C1 L216 M2

5 C1 L216 I\£3_._J

3 C2 L216 M1

4 C2 L216 M1

1 C3 L216 M3

2 C2 UNOWNED M1

2 C3 UNOWNED| M2

FIG. 5

500

U.S.

Patent

Dec. 25, 2001

Sheet 7 of 16

Browser 202

Browser 204

Browser 206

INTERNET 208

US 6,334,114 B1

600
/

WEB APPLICATION SERVER 280

LISTENER 210 | | LISTENER 216 | | LISTENER 222 -~
' | TRANSPORT TRANSPORT TRANSPORT B
| | ADAPTER 212 ADAPTER 218 ADAPTER 224 |
| | DISPATCHER DISPATCHER DISPATCHER |
| 214 220 226 |
: |
(R O S |
AUTHENTICATION SERVER 252 | |
I
!
OBJECT REQUEST BROKER 282 VIRTUAL PATH MANAGER 250 |]
I
RESOURCE MANAGER 254 |
| CONFIGURATION PROVIDER 256) |
! I
: CARTRIDGE TRANSACTION !
'| EXECUTION ENGINE |€— MANAGER :
, 228 606 ;
f ———————————————————————————————— . 1
: |
| |
CARTRIDGE ! |
230 ! |
i |
| I
¢ S)
DATABASE DATABASE
SERVER SERVER
608 612

DATABASE 610

DATABASE 614

U.S. Patent Dec. 25, 2001

702

Sheet 8 of 16

Intercept A Revised |«
Browser Request

704
Is the Revised
Browser Message
Associated with A
Transition ?

708

Is the Revised
Browser Message
Associated with A
Begin URL?

706

Send Browser Request
Message To Cartridge

Send A BEGIN_TX in a Transaction
Control Message to the
Transaction Manager 712

!

Create A Globally Unique
Transaction ID 714

!

Send Operations Message To
The Cartridge 716

Fig. 7A

Y

Request Handles For Access
To The Databases

718
v

Return Handles To The
Cartridge 720

Y

Execute The Transaction
Request 799

&

US 6,334,114 B1

U.S. Patent Dec. 25, 2001 Sheet 9 of 16 US 6,334,114 B1

724
Does

The Sending
Browser Allow
Cookies ?

Annotate Hyperlinks
of HTML page

126

Return HTML Page To Browser |-

728
Y

Request Transaction Manager
To Suspend The Transaction
730

Send Suspend Message To
Database Servers 73

!

Send Globally Unique Transaction
ID To Cartridge Execution Engine
734

736
Does

The Sending
Browser Allow
Cookies ?

Notify Dispatcher
Processin? is
Complete
738

Fig. 7B

U.S. Patent Dec. 25, 2001 Sheet 10 of 16 US 6,334,114 B1

Create Cookie Information Using
Globally Unique Transaction ID

v

Notify Dispatcher of Completion and
Cause Cookie Information To Be
Stored On The Sending Browser 749

740

The Revised Browser
Message Associated
With A Commit URL?

Extract Cookie
Cookie Information Information
Contained In The From Header
Header? 748

Extract Globally Unique Transaction
ID Information From Annotated URI

v

Send Transaction Control Message That
Includes A Resume Transaction To The |«
Transaction Manager 752

Fig. 7C

U.S. Patent Dec. 25, 2001 Sheet 11 of 16 US 6,334,114 B1

Send a Resume Request To The
Database Servers 754

v

Send The Transaction Information and
Pointer To Dispatcher To The Cartridge 756

Y

Request Handles For Access
To The Databases

758
Return Handles To The
Cartrid
artridge 760

v

Execute The Transaction
Request 762

764
Does The Sending
Browser Allow
Cookies ?

Remove The Globally Unique
Transaction ID From The
HTML Page 766

Return HTML Page To The Dispatcher

768

FIG. 7D

U.S. Patent Dec. 25, 2001 Sheet 12 of 16 US 6,334,114 B1

T

Request The Transaction Manager
To Send A Commit Request To The
Database Servers 770

'

Cause The Database Servers To
Commit The Transaction

771

Notify Dispatcher That Processing of Browser
Request is Complete and That The Cookie Information
Should Be Removed From The Browser

772

Fig. 7E

U.S. Patent Dec. 25, 2001 Sheet 13 of 16 US 6,334,114 B1

774

Is the Revised
Browser Message
Associated with A
Rollback URL?

. . Extract Cookie
Cookie Information Information From
Contained In The Header
Header? 778

Extract Globally Unique Transaction
ID Information From Annotated URI

780
Y

Send Transaction Control Message That
Includes A Resume Transaction To The (<€
Transaction Manager 782

Y

Sens A Resume Request To The
Database Servers 784

Y

Send The Transaction Information
and Pointer To Dispatcher To The
Cartridge 786

o

Fig. 7F

U.S. Patent Dec. 25, 2001 Sheet 14 of 16 US 6,334,114 B1

%

Request Handles For Access

To The Databases 788
Y
Return Handles To The
Cartridge 790
Y
Execute The Transaction
Request 79

794
Does The Sending

Browser Allow
Cookies ?

Remove The Globally Unique
Transaction ID From The
HTML Page 796

Return HTML Page To The Dispatcher
798
\

Request The Transaction Manager
To Send A Rollback Request To The
Database Servers 800

Y

Cause The Database Servers To
Rollback The Transaction 801

Y

Notify Dispatcher That Processing of Browser
Request is Complete and That The Cookie Information
Should Be Removed From The Browser 802

Fig. 7G

U.S. Patent Dec. 25, 2001 Sheet 15 of 16 US 6,334,114 B1

Extract Cookie
Cookie Information Information
Contained In The From Header
Header? 806

Extract Globally Unique Transaction
ID From Annotated URI

!

Send Transaction Control Message That
Includes A Resume Transaction To The |a—
Transaction Manager 810

Y

Send a Resume Request To The
Database Servers 812

v

Send The Transaction Information and
Pointer To Dispatcher To The Cartridge

v

Request Handles For Access
To The Databases 816

v

Return Handles To The
Cartrid
artridge 818

v

Execute The Transaction
Request 820

65 Fig. 7H

814

U.S. Patent Dec. 25, 2001 Sheet 16 of 16

822
Does The Sending

Browser Allow
Cookies ?

Return HTML Page To The Dispatcher

<€

US 6,334,114 B1

Annotate
Hyperlinks of
HTML Page 824

826
Y

Request Transaction Manager To
Suspend The Transaction 828

Y

Send Suspend Message To Database
Servers 830

FIG. 7

US 6,334,114 B1

1

METHOD AND APPARATUS FOR
PERFORMING TRANSACTIONS IN A
STATELESS WEB ENVIRONMENT WHICH
SUPPORTS A DECLARATIVE PARADIGM

FIELD OF THE INVENTION

This invention relates to processing transactions in net-
worked computer systems, and more specifically to process-
ing multiple-request transactions in a stateless web environ-
ment.

BACKGROUND OF THE INVENTION

The World Wide Web includes a network of servers on the
Internet, each of which is associated with one or more
HTML (Hypertext Markup Language) pages. The HTML
pages associated with a server provide information and
hypertext links to other documents on that and (usually)
other servers. Servers communicate with clients by using the
Hypertext Transfer Protocol (HTTP). The servers listen for
requests from clients for their HIML pages, and are there-
fore often referred to as “listeners”.

Users of the World Wide Web use a client program,
referred to as a browser, to request, decode and display
information from listeners. When the user of a browser
selects a link on an HTML page, the browser that is
displaying the page sends a request over the Internet to the
listener associated with the Universal Resource Locator
(URL) specified in the link. In response to the request, the
listener transmits the requested information to the browser
that issued the request. The browser receives the
information, presents the received information to the user,
and awaits the next user request.

Traditionally, the information stored on listeners is in the
form of static HTML pages. Static HTML pages are created
and stored at the listener prior to a request from a web
browser. In response to a request, a static HTML page is
merely read from storage and transmitted to the requesting
browser. Currently, there is a trend to develop listeners that
respond to browser requests by performing dynamic opera-
tions. For example, a listener may respond to a request by
issuing a query to a database, dynamically constructing a
web page containing the results of the query, and transmit-
ting the dynamically constructed HTML page to the request-
ing browser. To perform dynamic operations, the function-
ality of the listener must be enhanced or augmented. Various
approaches have been developed for extending listeners to
support dynamic operations.

One of the major characteristics of the web is that it
provides a stateless environment. That is, HT'TP communi-
cates information on a message-by-message basis without
any mechanism for designating relationships between mes-
sages. This means that a process servicing a current request
cannot determine whether the current request came from the
same client as a previous request. In addition, the servicing
process cannot determine how or if the current request
relates to a previous request.

A disadvantage with using a stateless environment is that
it is difficult to process multiple-request transactions. A
multiple-request transaction is a set of operations that (1) are
specified in more than one request, and (2) must be per-
formed as an atomic unit of work. For example, a multiple-
request transaction could consist of three separate
operations, such as buying stock item A, selling stock item
B and updating the inventory to reflect the number of stock
items on hand. Each of these three operations may be
specified in a separate request, but each operation should

10

15

25

30

35

40

45

50

55

60

65

2

only be performed if all three operations can be performed.
In order to properly determine that buying stock item A,
selling stock item B and updating the inventory are from the
same single transaction requires that transaction state infor-
mation be retained by the servicing process that receives the
three requests.

One possible solution to the stateless problem is to spawn
a servicing process for each request-issuing source (each
“client”). Each time a request from a client is received, the
same servicing process is called upon to process the request.
Because the same process is invoked for a given client, the
transaction state information for a particular transaction can
be maintained by the associated servicing process, thus
allowing for the processing of multiple-request transactions.

This solution has significant drawbacks, however. First,
maintaining a separate servicing process for each client is
wasteful since most clients do not continually make requests
to the servicing process. Between client requests, the ser-
vicing process simply waits, consuming system resources,
without performing any work. A second drawback with this
solution is that it is non-scalable. If a servicing process is
spawned and maintained for each client, system resources
would quickly be consumed, even for a relatively small
number of clients. Therefore, spawning a servicing process
for each client is not a viable solution for large scale
systems.

A second possible solution is to require each servicing
process to maintain the current state of the transactions that
it is currently processing. By maintaining transaction state
information, each servicing process can ensure that
multiple-request transactions are processed correctly.
However, a drawback associated with requiring each ser-
vicing process to maintain transaction state information is
that it puts a burden on the developer of each servicing
process to write extra code in order to maintain the required
transaction state information.

Based on the foregoing, it is desirable to provide a
mechanism for processing multiple-request transactions in a
stateless environment that does not require a servicing
process to maintain transaction state information.

SUMMARY OF THE INVENTION

A method and system for processing multiple-request
transactions in a stateless environment is provided.

According to one aspect of the invention, a cartridge
execution engine intercepts browser messages directed to a
cartridge. The cartridge execution engine determines
whether the browser messages are associated with transac-
tions. If the browser messages are associated with
transactions, then the cartridge execution engine sends trans-
action control messages to a transaction manager. The
cartridge execution engine also sends operation messages to
the cartridge. The cartridge performs the operations speci-
fied in the operation messages. In response to the transaction
control messages from the cartridge execution engine, the
transaction manager causes the multiple-request transactions
to be either committed or rolled back as an atomic unit of
work.

According to another aspect of the invention, the browser
messages associated with transactions are associated with
transaction IDs that can be used to identify a browser that is
associated with a particular browser message.

According to another aspect of the invention, the browser
messages associated with transactions are associated with
transaction IDs and are used to identify a browser associated
with a particular browser message.

US 6,334,114 B1

3

According to another aspect of the invention, the trans-
action IDs are maintained as cookies on the browser that is
associated with the particular browser message.

According to another aspect of the invention, the trans-
action IDs are maintained as URLs on the browser that is
associated with the particular browser message.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom-
panying drawings and in which like reference numerals refer
to similar elements and in which:

FIG. 1 is a block diagram of a computer system upon
which an embodiment of the invention may be implemented;

FIG. 2 is a block diagram of a distributed application
server according to an embodiment of the invention;

FIG. 3A is a portion of a flow chart illustrating steps for
handling a browser request according to an embodiment of
the invention;

FIG. 3B is another portion of the flow chart illustrating
steps for handling a browser request according to an
embodiment of the invention;

FIG. 4 is a block diagram of a table containing informa-
tion maintained by a dispatcher according to an embodiment
of the invention;

FIG. § is a block diagram of a table containing informa-
tion maintained by a resource manager according to an
embodiment of the invention.

FIG. 6 is a block diagram of a distributed application
server for processing transactions according to an embodi-
ment of the invention;

FIG. 7A is a portion of a flow diagram illustrating steps
for processing multiple-request transactions in a stateless
environment according to an embodiment of the invention;

FIG. 7B is another portion of the flow diagram illustrating
steps for processing multiple-request transactions in a state-
less environment according to an embodiment of the inven-
tion;

FIG. 7C is another portion of the flow diagram illustrating
steps for processing multiple-request transactions in a state-
less environment according to an embodiment of the inven-
tion;

FIG. 7D is another portion of the flow diagram illustrating
steps for processing multiple-request transactions in a state-
less environment according to an embodiment of the inven-
tion;

FIG. 7E is another portion of the flow diagram illustrating
steps for processing multiple-request transactions in a state-
less environment according to an embodiment of the inven-
tion;

FIG. 7F is another portion of the flow diagram illustrating
steps for processing multiple-request transactions in a state-
less environment according to an embodiment of the inven-
tion;

FIG. 7G is another portion of the flow diagram illustrating
steps for processing multiple-request transactions in a state-
less environment according to an embodiment of the inven-
tion;

FIG. 7H is another portion of the flow diagram illustrating
steps for processing multiple-request transactions in a state-
less environment according to an embodiment of the inven-
tion; and

FIG. 71 is another portion of the flow diagram illustrating
steps for processing multiple-request transactions in a state-
less environment according to an embodiment of the inven-
tion.

10

15

20

25

30

35

40

45

50

55

60

65

4

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A method and apparatus for processing multiple-request
transactions over a network is described. In the following
description, for the purposes of explanation, numerous spe-
cific details are set forth in order to provide a thorough
understanding of the present invention. It will be apparent,
however, to one skilled in the art that the present invention
may be practiced without these specific details. In other
instances, well-known structures and devices are shown in
block diagram form in order to avoid unnecessarily obscur-
ing the present invention.

HARDWARE OVERVIEW

FIG. 1 is a block diagram that illustrates a computer
system 100 upon which an embodiment of the invention
may be implemented. Computer system 100 includes a bus
102 or other communication mechanism for communicating
information, and a processor 104 coupled with bus 102 for
processing information. Computer system 100 also includes
a main memory 106, such as a random access memory
(RAM) or other dynamic storage device, coupled to bus 102
for storing information and instructions to be executed by
processor 104. Main memory 106 also may be used for
storing temporary variables or other intermediate informa-
tion during execution of instructions to be executed by
processor 104. Computer system 100 further includes a read
only memory (ROM) 108 or other static storage device
coupled to bus 102 for storing static information and instruc-
tions for processor 104. A storage device 110, such as a
magnetic disk or optical disk, is provided and coupled to bus
102 for storing information and instructions.

Computer system 100 may be coupled via bus 102 to a
display 112, such as a cathode ray tube (CRT), for displaying
information to a computer user. An input device 114, includ-
ing alphanumeric and other keys, is coupled to bus 102 for
communicating information and command selections to
processor 104. Another type of user input device is cursor
control 116, such as a mouse, a trackball, or cursor direction
keys for communicating direction information and com-
mand selections to processor 104 and for controlling cursor
movement on display 112. This input device typically has
two degrees of freedom in two axes, a first axis (e.g., X) and
a second axis (e.g., y), that allows the device to specify
positions in a plane.

The invention is related to the use of computer system 100
to perform specific operations in response to messages from
browsers. According to one embodiment of the invention,
the operations are performed by computer system 100 in
response to processor 104 executing one or more sequences
of one or more instructions contained in main memory 106.
Such instructions may be read into main memory 106 from
another computer-readable medium, such as storage device
110. Execution of the sequences of instructions contained in
main memory 106 causes processor 104 to perform the
process steps described herein. In alternative embodiments,
hard-wired circuitry may be used in place of or in combi-
nation with software instructions to implement the inven-
tion. Thus, embodiments of the invention are not limited to
any specific combination of hardware circuitry and software.

The term “computer-readable medium” as used herein
refers to any medium that participates in providing instruc-
tions to processor 104 for execution. Such a medium may
take many forms, including but not limited to, non-volatile
media, volatile media, and transmission media. Non-volatile
media includes, for example, optical or magnetic disks, such

US 6,334,114 B1

5

as storage device 110. Volatile media includes dynamic
memory, such as main memory 106. Transmission media
includes coaxial cables, copper wire and fiber optics, includ-
ing the wires that comprise bus 102. Transmission media can
also take the form of acoustic or light waves, such as those
generated during radio-wave and infrared data communica-
tions.

Common forms of computer-readable media include, for
example, a floppy disk, a flexible disk, hard disk, magnetic
tape, or any other magnetic medium, a CD-ROM, any other
optical medium, punchcards, papertape, any other physical
medium with patterns of holes, a RAM, a PROM, and
EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any
other medium from which a computer can read.

Various forms of computer readable media may be
involved in carrying one or more sequences of one or more
instructions to processor 104 for execution. For example, the
instructions may initially be carried on a magnetic disk of a
remote computer. The remote computer can load the instruc-
tions into its dynamic memory and send the instructions over
a telephone line using a modem. A modem local to computer
system 100 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector coupled to bus 102 can receive
the data carried in the infra-red signal and place the data on
bus 102. Bus 102 carries the data to main memory 106, from
which processor 104 retrieves and executes the instructions.
The instructions received by main memory 106 may option-
ally be stored on storage device 110 either before or after
execution by processor 104.

Computer system 100 also includes a communication
interface 118 coupled to bus 102. Communication interface
118 provides a two-way data communication coupling to a
network link 120 that is connected to a local network 122.
For example, communication interface 118 may be an inte-
grated services digital network (ISDN) card or a modem to
provide a data communication connection to a correspond-
ing type of telephone line. As another example, communi-
cation interface 118 may be a local area network (LAN) card
to provide a data communication connection to a compatible
LAN. Wireless links may also be implemented. In any such
implementation, communication interface 118 sends and
receives electrical, electromagnetic or optical signals that
carry digital data streams representing various types of
information.

Network link 120 typically provides data communication
through one or more networks to other data devices. For
example, network link 120 may provide a connection
through local network 122 to a host computer 124 or to data
equipment operated by an Internet Service Provider (ISP)
126. ISP 126 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 128. Local
network 122 and Internet 128 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 120 and through communication interface 118,
which carry the digital data to and from computer system
100, are exemplary forms of carrier waves transporting the
information.

Computer system 100 can send messages and receive
data, including program code, through the network(s), net-
work link 120 and communication interface 118. In the
Internet example, a server 130 might transmit a requested
code for an application program through Internet 128, ISP
126, local network 122 and communication interface 118.

10

15

20

25

30

35

40

45

50

55

60

65

6

The received code may be executed by processor 104 as
it is received, and/or stored in storage device 110, or other
non-volatile storage for later execution. In this manner,
computer system 100 may obtain application code in the
form of a carrier wave.

FUNCTIONAL OVERVIEW OF APPLICATION
SERVER

FIG. 2 is a block diagram of a system 200 designed
according to an embodiment of the invention. The system
200 includes a plurality of browsers 202, 204 and 206 that
communicate with a plurality of listeners 210, 216 and 222
over the Internet 208 according to the HTTP protocol. In
response to requests from the browsers, the listeners cause
a web application server 280 to invoke software modules,
referred to herein as cartridges. In the illustrated
embodiment, web application server 280 has initiated the
execution of three cartridges 230, 234 and 238.

The web application server 280 is composed of numerous
components, including transport adapters 212, 218 and 224,
dispatchers 214, 220 and 226, an authentication server 252,
a virtual path manager 250, a resource manager 254, a
configuration provider 256 and a plurality of cartridge
execution engines 228, 232 and 236. The various compo-
nents of the web application server 280 shall be described
hereafter in greater detail.

Significantly, the numerous components of web applica-
tion server 280 communicate through an inter-machine
communication mechanism, such as an Object Request
Broker 282. Using an inter-machine communication
mechanism, cartridge instances that perform the operations
specified in browser requests may execute on different
machines than the listeners that receive the requests and the
browsers that issue the requests. Because the cartridge
instances are on different machines than the listeners, the
listeners are better insulated against faulty cartridge
instances, thus enhancing the reliability and security of the
system. In addition, the scalability of the system is greatly
increased by spreading the processing burden of executing
the cartridge instances among many machines, rather than
the same machine that is executing the listener. The ability
to distribute cartridge instance execution across multiple
machines allows numerous types of load balancing tech-
niques to be used in deciding when and where to spawn new
cartridge instances.

A typical operation within system 200 generally includes
the following stages:

A browser transmits a request over the Internet 208.

A listener receives the request and passes it through a
transport adapter to a dispatcher.

The dispatcher communicates with virtual path manager
250 to identify a cartridge selected by the browser request
and to determine whether the cartridge requires authentica-
tion

If the cartridge requires authentication, the dispatcher
communicates with the authentication server 252 to deter-
mine whether the browser is authorized to access the
selected cartridge.

If the authentication server 252 determines that the
browser is not authorized to access the selected cartridge, the
browser is notified that access has been denied.

However, if access is authorized or the virtual path
manager 250 determines that authentication is not required,
the dispatcher does one of two things. If the dispatcher
knows about an unused instance for that cartridge, the

US 6,334,114 B1

7

dispatcher sends the request to that instance. If there are no
unused cartridge instances for that cartridge, the dispatcher
asks the resource manager 254 to create a new cartridge
instance. After the instance starts up successfully, the car-
tridge notifies the resource manager of its existence. The
resource manager 254 then notifies the dispatcher of the new
instance. The dispatcher creates a revised request based on
the browser request and sends the revised request to the new
instance.

The cartridge instance handles the revised request and
sends a response to the dispatcher.

The dispatcher passes the response back through the
listener to the client.

These stages shall be described in greater detail hereafter.

CARTRIDGES

Cartridges are modules of code for performing specific
application or system functions. A cartridge forms the basic
unit of distribution in the system 200. According to one
embodiment of the invention, cartridges are named using
Universal Resource Locators (URLs). Thus, a cartridge
name (i.e. URL) has two parts: the IP address of the server
on which the cartridge resides, and the virtual path in the
server directory structure of the compiled cartridge code.
Because cartridges are named using URLs, the cartridge
name space is global and cartridges may be accessed using
the same messaging techniques as are used to access other
web resources, such as documents.

According to one embodiment of the invention, each
cartridge has a standard interface which provides a common
overall structure for all cartridges. The standard interface
defines the interface of routines that are invoked by the web
application server 280 under particular conditions. Accord-
ing to one embodiment of the invention, the abstract car-
tridge interface is as follows:

interface Cartridge

{

boolean inito();

boolean authenticate(in Principal user_ passwd);

boolean exec(in Request req _obj, out Response resp
—obj);

boolean shutdown();

The init() routine is responsible for intializing the car-
tridge instance. This may include invoking the constructors
of several subobjects, preforking threads and acquiring all
other required shared resources.

The shutdown() routine is responsible for cleaning up all
of the resources and shutting down the cartridge instance.
Once the shutdown() routine is invoked on a cartridge
instance, it immediately becomes unavailable for servicing
subsequent requests.

The authenticate() routine validates whether the client
requesting the services of the cartridge is authorized to use
those services.

The exec() routine is the generic way to dispatch all
service requests to the cartridge.

EXEMPLARY CARTRIDGES

Each cartridge is either configured as a cartridge that
performs a well-defined finction, or as a programmable
cartridge that acts as an interpreter or a routine environment
for an application. An example of a programmable cartridge
is a PL/SQL runtime, configured to process database queries

10

15

20

25

30

35

40

45

50

55

60

65

8

according to the Oracle-based Programming Language
using Structured Query Language (PL/SQL). The PL/SQL
runtime executes a browser request having a database query.
The PL/SQL runtime processes the request, for example, by
accessing a database server in communication with the
cartridge instance via a data link.

Another example of a programmable cartridge is a JAVA
runtime interpreter. The JAVA runtime interpreter cartridge
enables web application developers to write server-side
JAVA applications to process browser requests. Similarly, a
custom server may be configured as a cartridge in order to
provide dynamic operations such as, for example, accessing
processes executed by a third party server.

DISPATCHERS

Dispatchers are software modules configured to route the
requests received by listeners to the appropriate cartridges.
According to one embodiment of the invention, dispatchers
are implemented as server-side program extensions (i.e.
“plug-ins”). As such, the dispatchers are loaded into and
execute within the same address space as the listeners to
which they belong. The dispatchers may be linked with the
listener code at compile time or dynamically loaded at
runtime.

In the illustrated embodiment, dispatchers 214, 220 and
226 are associated with listeners 210, 216 and 222, respec-
tively. Dispatchers 214, 220 and 226 selectively route
browser requests received by listeners 210, 216 and 222 to
cartridges.

For example, assume that listener 210 receives a browser
request over the Internet 208 delivered in the form of a
Uniform Resource Locator (URL). The browser request
serves as an identifier for a web object, for example an
HTML page or an operation to be performed. The listener
210 hands off the browser request to dispatcher 214 without
any attempt at interpreting the browser request. Upon receiv-
ing the browser request, the dispatcher 214:

(1) communicates with virtual path manager 250 to iden-
tify a cartridge selected by the browser request and to
determine whether the cartridge requires
authentication,

(2) if the cartridge requires authentication, communicates
with the authentication server 252 to determine whether
the browser is allowed to access the selected cartridge,

(3) if access is authorized, communicates with the
resource manager to determine the specific instance of
the selected cartridge to which the browser request
should be sent, and

(4) creates and dispatches a revised browser request for
execution by the specified instance of the cartridge.

The revised browser request repackages information
received in the original browser request. The revised
browser request may include, for example, a context object
that contains data required for the proper operation of the
cartridge. The data required for proper operation of a car-
tridge may include, for example, a transaction ID that
identifies a transaction with which the browser request is
associated.

If the cartridge replies to the request, the cartridge sends
the reply to the dispatcher and the dispatcher passes the reply
up to the listener for transmission to the browser that
initiated the request.

CONFIGURATION PROVIDER

According to one embodiment of the invention, cartridges
that are to be used with web application server 280 are first

US 6,334,114 B1

9

registered with web application server 280. During the
registration process, information about the cartridges is
supplied to the configuration provider 256. Configuration
provider 256 stores the information as metadata 258 for later
access by the components of the web application server 280.

The metadata 258 may include, for example,

(1) the cartridge name;

(2) the minimum number of required instances;

(3) the maximum number of instances;

(4) the location of the code that implements the cartridge;

(5) the program-dependent function names used by the
cartridge execution engine to execute the callback
functions (initialization, request handler, shutdown);

(6) a list of machines for running the cartridge;

(7) the idle time for the cartridge (the amount of time
instances of the cartridge are allowed to remain idle
before they are shut down);

(8) an object identifier; and

(9) data indicating the type of authentication service, if

any, to be used with the cartridge.

The object identifier specifies the data that must be
supplied by a browser request for requesting performance of
an operation by the corresponding cartridge. The object type
may be a specific word, a URL, or may include a virtual path
such as “/java”.

Once the configuration provider 256 has stored the con-
figuration information for a particular cartridge in the meta-
data 258, that cartridge is automatically registered when web
application server 280 is started.

After a cartridge is registered with the web application
server 280, the resource manager 254 initiates the minimum
instances for the cartridge. Once the minimum number of
instances has been initiated, the web application server 280
is prepared to process browser requests.

THE VIRTUAL PATH MANAGER

As mentioned above, dispatchers communicate with the
virtual path manager 250 to determine where to route each
revised browser request. Specifically, each browser request
typically includes a URL. Upon receiving a browser request,
the dispatcher sends the URL in the request to the virtual
path manager 250. The virtual path manager 250 responds
by sending the dispatcher data that identifies the cartridge, if
any, associated with the URL.

In order to supply the required information to dispatchers,
virtual path manager 250 consults the metadata 258 that
maps URLs to cartridges. In response to receiving a browser
request, the virtual path manager 250 uses the mapping data
to determine the cartridge, if any, to which the URL con-
tained in the browser requests corresponds.

For example, if the browser request is a URL request
beginning with the virtual path “/java”, the mapping may
indicate that the JAVA interpreter cartridge is configured to
handle requests having the virtual path “/java”.

According to one embodiment of the invention, the virtual
path manager 250 also determines whether the cartridge
associated with the URL requires authentication. If the
cartridge requires authentication, the virtual path manager
250 indicates in the response that the virtual path manager
250 sends to the dispatcher that authentication is required. If
authentication is not required, the dispatcher creates and
sends a revised browser request to an instance of the
cartridge without invoking the authentication server 252. If
authentication is required, the dispatcher sends the revised

10

15

20

25

30

35

40

50

55

60

65

10

request to an instance of the cartridge only after the authen-
tication server indicates that the revised request may be
submitted to an instance of the cartridge.

THE RESOURCE MANAGER

The resource manager 254 of the web application server
280 manages the execution of each of the cartridges by
initiating a predetermined minimum number of instances for
the cartridges, load balancing between the instances of each
cartridge, and initiating new instances of cartridges as nec-
essary up to a predetermined maximum number of instances
of a given cartridge.

For example, assume that the metadata for a particular
cartridge (C1) includes the following information:

Name=C1

Minimum Instances=10

Maximum Instances=50

Host Machines =M1, M2, M3

Idle time =30 seconds

Based on this metadata, when cartridge C1 is first
registered, resource manager 254 will initiate ten instances
of C1. Resource manager 254 will initiate the ten instances
on the machines associated with the labels M1, M2 and M3.

Upon receipt of requests from dispatchers to access C1,
resource manager 254 determines whether any existing
instance of C1 is available for use. If no instance of C1 is
available when a request is received, resource manager 254
determines whether the maximum number of instances of
C1 are already running. If the maximum number of instances
of C1 are not already running, then resource manager 254
initiates a new instance of C1 on one of the possible host
machines and transmits a message that identifies the new
instance to the dispatcher that issued the request. If the
maximum number of instances of C1 are already running,
then resource manager 254 sends a message to the dis-
patcher that issued the request to indicate that the request
cannot be handled at this time.

LOAD BALANCING

According to one embodiment of the invention, resource
manager 254 applies a set of load balancing rules to deter-
mine where to initiate instances of cartridges where there is
more than one possible host machine. Thus, in the above
example, M1, M2 and M3 are all capable of executing
instances of cartridge C1. If M1, M2 and M3 have the same
processing capacity, it may be desirable to distribute the
instances evenly across the three machines. However, if M1
has ten times the processing power of M2 and M3, it may be
desirable to initiate all instances of C1 on M1 up to a certain
point, and then to distribute additional instances evenly
among M1, M2 and M3.

To assist resource manager 254 in determining how to
load balance among possible machines, the metadata stored
for each cartridge may include additional details. For
example, the metadata may specify a separate minimum and
maximum number of instances for each machine. Resource
manager 254 may then distribute new instances among the
machines based on which machine has the lowest ratio of
actual instances to maximum instances.

The metadata may also specify an order for the machines
that can run a cartridge. The machine at the N+1 position in
the order is only used to execute instances of the cartridge
when the machine at the Nth position in the order is already
executing its maximum number of instances.

CARTRIDGE INSTANCE STATUS TRACKING

According to one embodiment of the invention, the
resource manager 254 maintains state information to keep

US 6,334,114 B1

11

track of cartridge instances that have been created. The state
information includes data that identifies the instance, iden-
tifies the machine executing the instance, and identifies the
listener to which the instance has been assigned.

FIG. § illustrates a table 500 that may be maintained by
resource manager 254 to store this state information. Table
500 includes an instance column 502, a cartridge column
504, a listener column 506 and a machine column 508. Each
row of table 500 corresponds to a distinct cartridge instance.
Within the row for a given cartridge instance, cartridge
column 504 identifies the cartridge associated with the
cartridge instance and instance column 502 indicates the
instance number of the cartridge instance. For example, row
510 corresponds to an instance of cartridge C1. Therefore,
cartridge column 504 of row 510 indicates cartridge CI1.
Instance column 502 of row 510 indicates that the cartridge
instance associated with row 510 is instance 1 of cartridge
Cl1.

Listener column 506 indicates the listener to which the
cartridge instance associated with a row has been assigned.
Machine column 508 indicates the machine on which the
cartridge instance associated with a row is executing. For
example, the cartridge instance associated with row 510 has
been assigned to listener 210 and is executing on machine
Ml1.

Similar to resource manager 254, each dispatcher main-
tains state information for the cartridge instances that have
been assigned to the listener to which the dispatcher is
attached. Such state information may be maintained, for
example, in a table 400 as shown in FIG. 4. Similar to table
500, table 400 includes an instance column 402 and a
cartridge column 404 that respectively hold instance num-
bers and cartridge identifiers. However, while table 500
includes one entry for every cartridge instance assigned by
resource manager 254, table 400 only includes entries for
cartridge instances that have been assigned to a particular
listener. For example, table 400 includes entries for only
those cartridge instances listed in table 500 that have been
assigned to listener 210.

In addition to instance column 402 and cartridge column
404, table 400 includes a status column 406. For each row,
the status column 406 holds a value that indicates the status
of the instance associated with the row. For example, the
status column 406 of row 408 indicates that instance 1 of
cartridge C1 is currently busy. In the illustrated embodiment,
the status column 406 holds a flag that indicates that a
cartridge instance is either BUSY or FREE. The significance
of the cartridge status shall now be describe with reference
to the operation of resource manager 254 and dispatchers
214 and 220.

INTERACTION BETWEEN DISPATCHERS AND
THE RESOURCE MANAGER

As explained above, dispatchers communicate with
resource manager 254 when they need to send a revised
browser request to a particular cartridge. According to one
embodiment of the invention, dispatchers first determine
whether an instance of the appropriate cartridge (1) has
already been assigned to it and (2) is available to process the
new revised browser request. If an appropriate cartridge
instance has already been assigned to the dispatcher and is
currently available to process the new revised browser
request, then the dispatcher forwards the revised browser
request to the cartridge instance without further communi-
cation with resource manager 254.

For example, assume that listener 210 receives a browser
request that, according to virtual path manager 250, must be

10

15

20

25

30

35

40

45

50

55

60

65

12

processed by cartridge C1l. Assume also that table 400
reflects the current list and status of cartridge instances that
have been assigned to listener 210. Upon receiving the
browser request from listener 210, dispatcher 214 inspects
table 400 to locate a FREE instance of cartridge C1. In the
illustrated table 400, row 410 indicates that instance 3 of
cartridge C1 is currently FREE. Consequently, dispatcher
214 forwards a revised browser request directly to instance
3 of cartridge C1 without further communication with
resource manager 254. In response to sending the revised
browser request, dispatcher 214 changes the status value in
status column 406 of row 410 to BUSY.

If a listener has not already been assigned an appropriate
cartridge instance that is currently available, then the dis-
patcher associated with the cartridge requests a cartridge
instance from the resource manager 254. If the resource
manager 254 determines that an instance of the required
cartridge is not available and the number of existing
instances of the required cartridge is below the maximum,
then the resource manager 254 initiates a new cartridge.
Upon initiating a new cartridge, the resource manager 254
inserts an entry for the new cartridge instance in table 500.

Assume, for example, that listener 210 receives a browser
request that must be processed by cartridge C3. Assume also
that instance 3 of cartridge C3 has not yet been initiated.
Under these conditions, dispatcher 214 sends to resource
manager 254 a request for a handle to an instance of
cartridge C3. In response to this request, resource manager
254 initiates instance 3 of cartridge C3 on machine M3. In
addition, resource manager 254 inserts into table 500 the
entry found at row 512.

After inserting row 512 for instance 3 of cartridge C3 in
table 500, resource manager 254 sends back to the dis-
patcher 214 a handle to the newly created instance. In
response to receiving this handle, dispatcher 214 inserts an
entry (row 412) for the new instance in its status table 400.
The dispatcher 214 then transmits a revised browser request
to instance 3 of cartridge C3.

RELEASING CARTRIDGE INSTANCES

According to one embodiment of the invention, listeners
do not automatically release ownership of cartridge
instances when the cartridge instances finish responding to
outstanding browser requests. For example, assume that
instance 3 of cartridge C3 receives a revised browser
request, processes the revised browser request, and sends a
response back to dispatcher 214. Dispatcher 214 passes the
response to listener 210 to be sent back to the browser that
issued the browser request.

At this point, listener 210 no longer requires ownership of
instance 3 of cartridge C3. However, rather than transferring
ownership of instance 3 of cartridge C3 back to resource
manager 254, dispatcher 214 merely changes the status
column 406 of row 412 from BUSY to FREE.

Changing the value in status column 406 of row 412 to
FREE indicates that instance 3 of cartridge C3 is no longer
working on a request, and is therefore ready to handle
subsequent requests. However, because table 400, which
indicates that instance 3 of cartridge C3 is available, is
maintained locally by dispatcher 214, instance 3 of cartridge
C3 is only available for subsequent browser requests arriv-
ing at listener 210. Row 512 of table 500 maintained by
resource manager 254 continues to indicate that instance 3
of cartridge C3 is owned by listener 210.

Because listeners do not automatically release cartridge
instances every time a request is serviced, overhead associ-

US 6,334,114 B1

13

ated with communication between the resource manager 254
and the various dispatchers is significantly reduced. For
example, assume that a listener 210 receives ten successive
requests that must be communicated to cartridge C3. Rather
than communicating with resource manager 254 for each of
the ten requests, dispatcher 214 may communicate with
resource manager 254 in response to the first request. The
subsequent nine requests can be handled by dispatcher 214
without communicating with resource manager 254 because
the dispatcher 214 uses the same instance of C3 that pro-
cesses the first request to process the nine subsequent
requests.

While not automatically releasing listener ownership of
cartridge instances when each request is serviced can
increase the efficiency of web application server 280, lis-
teners cannot maintain ownership of cartridge instances
indefinitely. For example, instances that have not been used
for long periods of time should be passed back to the
resource manager 254 so they can be de-allocated to free up
resources. In addition, it is not efficient for one listener to
maintain ownership of the instance of a cartridge that it has
not used for a relatively long time when other listeners
require instances of that cartridge.

Consequently, resource manager 254 communicates to
each listener a maximum idle time for each cartridge
instance passed to the listener. The maximum idle time
indicates the maximum amount of time a cartridge instance
can go unused before the listener must release ownership of
the cartridge instance. For example, assume that the resource
manager 254 indicates to listener 210 that the maximum
amount of idle time for instance 3 of cartridge C3 is 10
minutes. Based on this information, listener 210 may con-
tinue to use instance 3 of cartridge C3 to process browser
requests for cartridge C3 as long as instance 3 of cartridge
C3 does not remain idle or FREE for more than 10 minutes.

If instance 3 of cartridge C3 is idle for more than 10
minutes, dispatcher 214 removes row 412 from table 400
and sends a message to resource manager 254 that listener
210 is releasing ownership of instance 3 of cartridge C3. In
response to this message, resource manager 254 updates row
512 to indicate that instance 3 of cartridge C3 is not owned
by any listener and may thus be reassigned to another
listener or terminated.

In an alternative embodiment, dispatchers do not auto-
matically release cartridge instances when the idle time for
the cartridge instance has expired. Instead, the dispatcher
sends a message to resource manager 254 offering to release
the expired instance. Resource manager 254 may respond to
the offer by requesting that the listener release the cartridge
instance, or by allowing the listener to retain ownership of
the expired cartridge instance.

According to one embodiment of the invention, resource
manager 254 maintains a queue of the requests that cannot
be immediately serviced. When it becomes possible to
service a queued request, the request is removed from the
queue and processed.

For example, assume that listener 222 receives a browser
request that must be processed by cartridge C1, and that
listener 222 has not been assigned any instances of cartridge
C1. Dispatcher 226 sends a request for an instance of C1 to
resource manager 254. Assume further that a maximum of
50 instances of C1 are allowed, and that 50 instances of C1
have been assigned to listener 210. Under these conditions,
resource manager 254 cannot service the request from
listener 222. Therefore, resource manager 254 puts the
request on a queue. When listener 210 releases an instance

5

10

15

20

25

30

35

40

45

50

55

60

65

14

of C1, resource manager 254 communicates to listener 222
that an instance of C1 is available.

Under certain conditions, resource manager 254 may
preemptively cause a listener to release a cartridge instance.
For example, resource manager 254 may detect a system
overload situation and respond by terminating a set of
cartridge instances, either before or after informing the
listeners that currently have been assigned the cartridge
instances that the cartridge instances are going to be termi-
nated.

Resource manager 254 may also preemptively cause
listeners to release cartridge instances to implement fairness
policies between listeners. For example, resource manager
254 may cause a listener that holds the most instances of a
given cartridge to release an instance of the cartridge when
another listener has waited more than a predetermined
threshold of amount of time for an instance of the cartridge.
For example, if listener 210 has been assigned 50 instances
of cartridge C1 and C1 has a maximum of 50 instances, then
resource manager 254 may cause listener 210 to release an
instance of C1 ten seconds after receiving a request for an
instance of C1 from another listener.

CARTRIDGE EXECUTION ENGINES

According to one embodiment of the invention, each
cartridge instance is composed of a cartridge execution
engine and a cartridge. A cartridge execution engine is a
code module that insulates cartridges from the complexities
of the web application server 280 and the inter-module
communication mechanism. A cartridge is made available to
a cartridge execution engine by storing in a function table
pointers to the cartridge functions. According to one
embodiment, all cartridges provide the functions specified in
the exemplary cartridge interface described above. By hav-
ing all cartridges support the same interface, a single stan-
dard cartridge execution engine can be used with all car-
tridges.

According to one embodiment of the invention, cartridges
are implemented as shared libraries, and cartridge execution
engines are executable programs that invoke the routines in
the shared libraries using the standard cartridge interface.
The cartridge execution engine provides the interface
between cartridges and the dispatcher, directs cartridge flow
of control, and provides services for cartridges to use.

When the resource manager 254 requires the creation of
a new cartridge instance, the resource manager 254 causes
a cartridge execution engine to be instantiated. In turn, the
instance of the cartridge execution engine thus created
causes the appropriate cartridge to be instantiated. The
resource manager 254 can cause the cartridge execution
engine to be instantiated, for example, by invoking a “car-
tridge execution engine factory” that resides on the machine
on which the cartridge is to be executed. The instance of the
cartridge execution engine can cause the cartridge to be
instantiated, for example, by making a call to one of the
routines in the shared library that constitutes the cartridge.

As shown in FIG. 2, the web application server 280
includes cartridge execution engines 228, 232 and 236 for
each of the cartridges 230, 234 and 238. The cartridge
execution engines control execution of the instances of the
corresponding cartridges by making calls into the cartridges
through the standard cartridge interface. By establishing
basic callback functions between the cartridge execution
engine and a cartridge, any cartridge can be integrated into
the web application server 280 by configuring the cartridge
to respond to the callback functions, and then registering the
cartridge in the configuration provider 256, as described
below.

US 6,334,114 B1

15

Thus, if the dispatcher 214 determines that the PL/SQL
runtime cartridge is the appropriate cartridge to process a
request, the dispatcher 214 dispatches the request to a
cartridge instance that includes a cartridge execution engine
associated with the PL/SQL runtime cartridge. If a new
instance needs to be initiated, the resource manager 254
creates a new instance of the PL/SQL runtime cartridge in a
separate address space and dispatches the request to the
cartridge execution engine 228 of the new instance. The
address space used to execute the instance of the program
may be within memory of the computer system upon which
one or more of the components of web application server
280 is executing, or on another computer system.

In response to a message from a dispatcher, the cartridge
execution engine issues a request handler callback function
to the cartridge, causing the cartridge to process the request.
The cartridge executing the request returns the result to the
cartridge execution engine, which forwards the result to the
dispatcher. In the event that the web application server 280
detects a fault in the operation, the cartridge execution
engine issues a shutdown fuiction of the cartridge.

Hence, the cartridge execution engine provides an appli-
cation programming interface to the web application server
280 that specifies predetermined operations to be performed.
Use of the standard cartridge interface enables programmers
of the cartridges to configure each cartridge for high-level
integration into the web application server 280 independent
of the protocols used by the particular web listener with
which the cartridge will be used.

TRANSPORT ADAPTERS

Listeners enable the use of server-side plug-ins by pro-
viding a programming interface and protocol for use by such
plug-ins. Unfortunately, the programming interfaces and
protocols provided by listeners vary from listener to listener.
For example, Netscape Server Application Programming
Interface (NSAPI), Internet Server Application Program-
ming Interface (ISAPI) and Application Development Inter-
face (ADI) are three examples of distinct programming
interfaces currently provided by listeners.

Transport adapters insulate dispatchers from the propri-
etary protocols and interfaces used by web listeners.
Specifically, each transport adapter is configured to recog-
nize the protocols of different listeners, and to convert the
browser requests received from the listeners into converted
browser requests having a standard dispatcher protocol that
is independent from the protocol of the listener. Similarly,
transport adapters convert the replies from the dispatcher to
the transport protocol of the listeners.

Hence, the transport adapter enables the web application
server 280 to be used with listeners from different vendors.
Moreover, transport adapters may be configured to accom-
modate different server architectures and operating systems.

OPERATION OF THE WEB APPLICATION
SERVER

FIGS. 3A and 3B are a flow diagram illustrating a method
of responding to a browser request according to an embodi-
ment of the present invention. The browser request is
received in step 350 by a listener. For the purposes of
explanation, it shall be assumed that the browser request was
issued by browser 202 and received by listener 210.

Upon receiving the browser request, the listener 210
forwards the request to the web application server 280 in
step 352. Specifically, listener 210 passes the request to the

10

15

20

25

30

35

40

45

50

55

60

65

16

transport adapter 212 using the proprietary programming
interface of the listener 210. The transport adapter 212
converts the request as necessary to pass the request to
dispatcher 214 using a standard dispatcher programming
interface.

Dispatcher 214 identifies the request object type that
corresponds to the browser request in step 354 based on the
virtual path specified in the browser request by communi-
cating with the virtual path manager 250. If the request
object type corresponds to a cartridge, the virtual path
manager also indicates to the dispatcher 214 whether
authentication is required.

The dispatcher 214 determines in step 356 if the request
object type corresponds to an identifiable cartridge. If the
request object type does not correspond to an identifiable
cartridge, the request is returned to the listener 210 in step
358 (see FIG. 3B). If in step 358 the listener 210 recognizes
the request as a request for a static HTML page, the listener
accesses the static HTML page, and sends the HTML page
to the browser 202 in step 360. If the browser request is not
recognized by the listener 210, the reply is sent to the
browser 202 in step 360 indicating that the request was
unrecognizable.

If in step 356 the dispatcher 214 determines that the
request must be sent to a cartridge, then the dispatcher
performs any necessary authentication by communicating
with the authentication server 252. The authentication pro-
cess will be described in greater detail hereafter. In addition,
if in step 356 it is determined that listener 210 has not been
assigned any instances of that cartridge that are currently
FREE, then the dispatcher 214 communicates with the
resource manager 254 to be assigned an instance of the
cartridge 230 to which the browser request can be sent.

In step 362, shown in FIG. 3B, the resource manager 254
determines whether an instance of the identified cartridge is
available (unowned) among the existing number of
instances. For the purposes of explanation, it shall be
assumed that the request is associated with cartridge 230,
and that cartridge 230 is a PL/SQL runtime cartridge.

If in step 362 the resource manager identifies an available
instance, for example instance 260 of the PL/SQL runtime
230, the resource manager 254 informs the dispatcher 214
that the request should be sent to instance 260. The dis-
patcher 214 then creates and sends a revised browser request
to the cartridge execution engine 228 of the instance 260 in
step 368 to cause the available instance 260 to process the
request, as described below.

However, if in step 362 no instance of the cartridge 230
is available, the resource manager 254 determines in step
364 if the existing number of instances exceeds a maximum
prescribed number. If the existing number of instances
exceeds the maximum prescribed number in step 364, the
resource manager 254 indicates to the dispatcher 214 that
the request cannot be processed at this time. In response, the
dispatcher 214 returns the request to the listener 210 in step
358, after which the web listener 210 sends a reply to the
browser 202 over the network in step 360 indicating the
request was not processed.

Alternatively, when a cartridge instance is not currently
available to handle a request, listener 210 may place the
request on a waiting list for that cartridge instance. When a
cartridge instance becomes available, the revised browser
request is removed from the waiting list and forwarded to the
cartridge instance. If the revised browser request remains on
the waiting list for more than a predetermined amount of
time, listener 210 may remove the request from the waiting

US 6,334,114 B1

17

list and send a message to the browser 202 to indicate that
the request could not be processed.

If in step 364 the existing number of instances does not
exceed the maximum prescribed number, the resource man-
ager 254 initiates a new instance of the identified program
and informs the dispatcher 214 that a revised browser
request based on the browser request should be sent to the
new instance. The dispatcher 214 then dispatches a revised
browser request to the cartridge execution engine of the new
instance.

For example, assume that the resource manager 254
initiated instance 260 in response to the browser request.
During the initialization, the stored sequences of instructions
for the PL/SQL runtime are accessed to create a new
instance 260 of the cartridge 230 in an address space that is
separate from the address space in which dispatcher 214 is
executing. According to one embodiment, initialization is
performed by loading the cartridge execution engine 228
and having the cartridge execution engine call the initial-
ization routine in cartridge 230.

Once the new instance 260 is running, the dispatcher 214
dispatches the request to the cartridge execution engine 228
associated with the new instance 260 in step 368. The
cartridge execution engine 228 sends a callback message to
the new instance 260 requesting execution of the request. In
the callback message, the cartridge execution engine 228
passes any parameters necessary for the instance 260 to
process the request. Such parameters may include, for
example, passwords, database search keys, or any other
argument for a dynamic operation executed by the instance
260.

The instance 260 then executes the request. During the
execution of the request by the instance in step 368, the
dispatcher 214 monitors the instance to determine the occur-
rence of a fault in step 370. If in step 370 the dispatcher 214
detects a fault, the dispatcher 214 calls the corresponding
cartridge execution engine 228 in step 372 to abort the
instance 260 having the fault. The corresponding cartridge
execution engine 228 in turn issues a shut down command
across the API to the faulty instance. The instance, respond-
ing to the shut down command by the cartridge execution
engine 228, will shut down without affecting any other
process in any other address space.

If in step 370 no fault is detected, the dispatcher 214
receives a reply from the instance 260 upon completion of
execution in step 374. The dispatcher 214 in step 376
forwards the reply to the listener 210, which responds to the
browser with the reply from the executed instance 260. After
executing the instance 260, the dispatcher 214 in step 378
maintains the instance in the memory, as shown in step 378
to enable execution of a subsequent request.

DISTRIBUTED ARCHITECTURE OF WEB
SERVER

Significantly, the various components of the web appli-
cation server 280 communicate with each other using a
communication mechanism that does not require the com-
ponents to be executing in the same address space or even
on the same machine. In the illustrated embodiment, the
components of the web application server 280 are config-
ured to communicate through an Object Request Broker
(ORB) 282. Object Request Brokers are described in detail
in “Common Object Request Broker: Architecture and
Specification (CORBA)”.This and other documents relating
to CORBA can be found on the World Wide Web at
http://www.omg.org.

10

15

20

25

30

35

40

45

50

55

60

65

18

While the embodiments of the present invention shall be
described with reference to communications through a
CORBA-compliant ORB, other cross-platform communica-
tion mechanisms may be used. For example, the components
of web application server 280 may alternatively communi-
cate with each other using Remote Procedure Calls (RPC),
a UNIX pipe, Microsoft COM.

Because the various components of the web application
server 280 communicate with each other using a machine
independent communication mechanism, there are no inher-
ent restrictions with respect to where the components are
located with respect to each other. For example, listeners
210, 216 and 222 may be executing on the same machine, or
on three completely different machines, each with a different
operating system. Similarly, the authentication server 252,
virtual path manager 250, resource manager 254 and con-
figuration provider 256 may be executing on the same
machine or on four different machines. Further, those four
different machines may not have any overlap with the three
machines executing listeners 210, 216 and 222.

Cartridge execution engines 228, 232 and 236 incorporate
all of the necessary logic to communicate with the other
components of the web application server 280 through the
object request broker 282. Consequently, the location of the
cartridge instances themselves is not inherently restricted by
the communication mechanism. Thus, instance 260 may be
executing in a completely different machine and operating
system than dispatchers from which it receives requests.
Likewise, instance 260 may be on a different machine and
operating system than the resource manager 254 or any of
the other components of the web application server 280,
including instances of other cartridges that are being man-
aged by the same web application server 280.

Significantly, the location-independence enjoyed by car-
tridges used by web application server 280 is achieved
through the cartridge execution engine communication
logic, not through any custom programming in the cartridges
themselves. Consequently, the cartridges do not need to be
specially designed for execution in a distributed application
server environment. Cartridge designers are thus insulated
from the complexities of a distributed system, and can
concentrate their efforts on the logic associated with the
tasks for which the cartridges were created.

PROCESSING TRANSACTIONS

According to an embodiment of the invention, transac-
tions are implemented in a stateless environment through the
use of metadata that indicates specific information for spe-
cific types of transactions. A piece of information about a
transaction that is supplied in the metadata is referred to
herein as an attribute of the transaction. The use of metadata
to indicate specific attributes of a transaction allows for a
system in which cartridges are not required to persistently
maintain state information. Transactions in such a system
are declarative rather than programmatic in that the mes-
sages themselves indicate the transactions to which they
belong. For example, the metadata for two particular types
of transactions, TX1 and TX2, could be as follows:

[TX1]

[STOREFRONT]
name=STOREACCOUNTS
belong-to-list=/STOREFRONT
/BANKING
resource-list=/SEARS
/BANK1
begin=/storefront/open session

US 6,334,114 B1

19

commit=/storefront/commit session
rollback=/storefront/rollback session

[TX2]

[EMPLOYEE)]
name=EMPLOYEEACCOUNTS
belong-to-list=/EMPLOYEE
/BANKING
resource-list=/PERSONNEL
/BANK1
begin=/employee/open session
commit=/employee/commit session
rollback=/employee/rollback session

For each type of transaction the metadata includes various
attributes. According to one embodiment, the attributes
include a cartridge name, a transaction name, a belong-to-
list, a resource-list, begin, commit and rollback TRANSAC-
TION URLs. In the example given above, the cartridge
name for TX1, is STOREFRONT, the transaction name is
STOREACCOUNTS, the belong-to-list consists of
/STOREFRONT and /BANKING, the resource-list consists
of /SEARS and /BANKI, the begin transaction URL is
/storefront/open session, the commit transaction URL is
/storefront/commit session and the rollback transaction URL
is /storefront/rollback session.

The cartridge name attribute identifies the particular type
of cartridge that the dispatcher communicates with to per-
form the operations of the transaction. The transaction name
attribute uniquely identifies the type of transaction relative
to other transaction types. The belong-to-list of a transaction
type lists the cartridges that may participate in the perfor-
mance of the transaction. The resource-list is the list of
resources that are affected by the performance of transac-
tions that are of the transaction type. The begin transaction
URL is the URL that signals that a transaction of this type
is about to begin. The commit transaction URL is the URL
that signals that a transaction of this type that is currently in
progress should be committed. The rollback transaction
URL is the URL that signals that a transaction of this type
that has already started should be rolled back. How each of
these attribute values is used during the performance of a
transaction shall be described in greater detail below.

TRANSACTION OVERVIEW

FIG. 6 is a block diagram of a system 600 that provides
for the processing of multiple-request transactions in a
stateless environment according to one embodiment of the
invention. FIG. 6 is similar to FIG. 2 and therefore like
components have been numbered alike. Within this
document, the term browser request and the term transaction
request are used interchangeably. The term multiple-request
transaction is used to refer to a single transaction that is
comprised of two or more browser requests.

As described earlier, cartridge execution engine 228 com-
municates with a plurality of dispatchers (e.g. one or more
of dispatchers 214, 220 and 226) through object request
broker 282 to receive browser messages. These browser
messages may be sent from a plurality of browsers con-
nected to the Internet 208. In addition to the plurality of
dispatchers, cartridge execution engine 228 also communi-
cates with a cartridge 230, configuration provider 256 and
transaction manager 606. As previously described above, the
cartridge 230 represents a module of code that is either
configured as a cartridge that performs a well-defined
function, or as a programmable cartridge that acts as an
interpreter or a routine environment for an application. The
combination of cartridge execution engine 228, transaction
manager 606 and cartridge 230 constitute a cartridge
instance.

10

15

20

25

30

35

40

45

50

55

60

65

20

A particular cartridge may be associated with a plurality
of database servers for access to a plurality of databases. In
this example, cartridge 230 has the ability to process data-
base transactions according to the Structured Query Lan-
guage (SQL) by accessing database 610 and database 614
through database server 608 and database server 612 respec-
tively.

Transaction manager 606 represents a coordinating mod-
ule that is associated with cartridge execution engine 228
and functions to coordinate the execution of multiple-
request transactions in the stateless web environment. In
coordinating the execution of multiple-request transactions,
transaction manager 606 retains no state information for the
multiple-request transactions. The transaction manager 606
communicates with cartridge execution engine 228 to
receive transaction control messages. Using the information
contained in the transaction control messages, the transac-
tion manager 606 interacts with database servers 608 and
612 to cause changes made during multiple-request trans-
actions to respective databases 610 and 614 to be either
committed or rolled back as an atomic unit of work.

IDENTIFYING TRANSACTIONS

Browser requests that are associated with multiple-
request transactions include a globally unique transaction
ID. The globally unique transaction ID within a browser
request is used to identify the multiple-request transaction to
which the browser request belongs. According to one
embodiment, when a browser request is received that con-
tains a begin transaction URL, the transaction manager
creates a globally unique transaction ID. This globally
unique transaction ID is returned to the sending browser, and
is sent by the browser in subsequent browser requests that
are associated with the same multiple-request transaction.

In certain embodiments, when returned to the browser
from which a multiple-request transaction was initiated, the
globally unique transaction ID associated with the particular
multiple-request transaction is stored as cookie information
on the client executing the browser. When a subsequent
browser request is sent by the browser, the dispatcher
determines if the subsequent request contains a begin trans-
action URL. If the request does not contain a begin trans-
action URL, then the dispatcher obtains the globally unique
transaction ID associated with the browser request by read-
ing the sending browser’s cookie information using the
HTTP protocol standards.

For example, when a browser 202 sends a first browser
request associated with a transaction and a begin transaction
URL, the transaction manager 606 creates a unique browser
identifier and sends it to the dispatcher 214. The dispatcher
214 then causes the globally unique transaction ID to be
stored as cookie information on browser 202. When browser
202 sends a second browser request that is associated with
the same transaction, the dispatcher 214 obtains the globally
unique transaction ID contained in the cookie information of
browser 202.

Using the globally unique transaction ID, the database
servers that ultimately process the browser request can
determine that both the first browser request and the second
browser request are associated with the same multiple-
request transaction. Because a particular browser may be
executing more than one transaction at a time, in certain
embodiments, the cartridge name for the particular transac-
tion is contained within each globally unique transaction ID
and is used to help identify the particular transaction to
which the globally unique transaction ID corresponds.

US 6,334,114 B1

21

In certain situations cookie information may not be avail-
able on a particular browser. For example, a particular
browser may not support the use of cookies or a particular
user may choose to deny access to the browser cookie
information. Therefore, in certain embodiments, the trans-
action identifiers are embedded in the messages returned to
a browser, and sent out by the browser in subsequent
browser requests. This can be accomplished by annotating
the URLs that are associated with the hyperlinks of the
HTML page that is returned to the browser 202. Based upon
the globally unique transaction ID that is sent out as part of
the browser request URL, the database servers that ulti-
mately perform the operations specified in the browser
requests can use the globally unique transaction ID to
identify the multiple-request transaction to which each par-
ticular browser request belongs.

TRANSACTION CARTRIDGE INSTANTIATION

Each browser request contains URL information that is
sent from the sending browser in response to a user of the
browser selecting a hypertext link on an HTML page. The
URL information includes a Uniform Resource Indicator
(URD) portion and a header section. The URI portion
includes transaction state information and a cartridge name.
The transaction state information is used to identify the
particular state of a multiple-request transaction. The car-
tridge name is used to identify the cartridge type and allows
the cartridge execution engine to identify the metadata that
is associated with the browser request.

The header section is used to store a globally unique
transaction ID that is used by the database servers to identify
the multiple-request transaction that is associated with a
particular transaction request.

When a listener receives the browser request, it passes the
browser request to the dispatcher. The dispatcher then com-
municates with the virtual path manager to determine the
cartridge type that is associated with the browser request. In
one embodiment, the dispatcher forwards the information
contained in the URI to the virtual path manager. Using the
information in the URI, the virtual path manager commu-
nicates with the configuration provider to determine the
cartridge type that is associated with the browser message.

Once the cartridge type is identified, the virtual path
manager returns data that identifies the cartridge type to the
dispatcher. The dispatcher then searches a cartridge instance
pointer list that includes pointers to cartridge instances that
have previously been associated with the particular dis-
patcher. If the dispatcher locates a pointer to a cartridge
instance that is of the cartridge type that is associated with
the browser request, the dispatcher uses the pointer to send
a revised browser message to the cartridge instance.

If the dispatcher does not locate a pointer to the type of
cartridge instance that is associated with the browser
request, the dispatcher communicates with the resource
manager to obtain a cartridge instance of that type. In
obtaining the cartridge instance, the dispatcher sends a
message to the resource manager that includes the cartridge
type that was previously identified by the virtual path
manager.

Upon receiving the dispatcher message, the resource
manager determines if a cartridge instance of the request
type is available for use by searching a cartridge instance
pointer table. If a cartridge instance pointer of the requested
type is located in the cartridge instance pointer table, the
resource manager sends a pointer to the available cartridge
instance back to the dispatcher.

10

15

20

25

30

35

40

45

50

55

60

65

22

However, if a cartridge instance of the requested type is
not available, the resource manager causes a cartridge
instance of the request type to be instantiated. In one
embodiment of the invention, the resource manager causes
a cartridge instance of the requested type to be instantiated
by requesting a particular cartridge factory process to create
a cartridge instance of the request type. Cartridge factory
processes may be located across multiple machines. When a
particular cartridge factory process is requested to instantiate
a cartridge instance, it instantiates the cartridge instance on
the same machine that the cartridge factory is currently
executing on. Therefore, the resource manager selects which
cartridge factory to use based on the particular machine the
resource manager chooses to instantiate the cartridge
instance.

Upon receiving a request to instantiate a cartridge
instance, the cartridge factory process instantiates an
instance of a cartridge execution engine. Once the cartridge
execution engine is instantiated, the cartridge execution
engine obtains the transaction information, if any, that is
associated with the requested cartridge type. For example, if
the requested cartridge type is of type STOREFRONT as
described in TX1 above, the cartridge execution engine
obtains and stores the metadata information that is associ-
ated with TX1. This metadata information is used by the
cartridge instance to process transactions.

After obtaining the metadata information, the cartridge
execution engine instantiates a cartridge of the requested
cartridge type. The instance of the cartridge that is created is
dynamically linked with the cartridge execution engine. The
cartridge execution engine then instantiates a transaction
manager. The transaction manager instance is dynamically
linked with the cartridge and the cartridge execution engine
to form a cartridge instance.

Once the cartridge instance is formed, the transaction
manager uses the metadata information that was previously
stored by the cartridge execution engine to open connections
with the databases that were identified in the resource-list of
the metadata. These connections are retained by the trans-
action manager and later used to provide database handles to
the associated cartridge and to control the processing of
multiple-request transactions. For example, if the requested
cartridge type is of type STOREFRONT, the resource-list is
associated with a SEARS and BANKI1 database. Using the
resource-list information, the transaction manager opens a
connection with the SEARS database and the BANK1
database by respectively establishing connections with the
database servers associated with the SEARS and BANK1
databases. These connections are retained by the transaction
manager and are used for processing transactions of type
TX1.

After the transaction manager establishes its connections
with the appropriate databases (i.e. through the database
servers associated with the appropriate databases), the car-
tridge execution engine notifies the cartridge factory that a
cartridge instance has been instantiated by returning a
pointer to the cartridge instance back to the cartridge factory.
Upon receiving the cartridge instance pointer, the cartridge
factory sends the cartridge instance pointer to the resource
manager.

The resource manager then registers the cartridge instance
pointer into its cartridge instance pointer table. The resource
manager then sends the cartridge instance pointer to the
dispatcher. Upon receiving the cartridge instance pointer
from the resource manager, the dispatcher stores the car-
tridge instance pointer into its associated cartridge instance

US 6,334,114 B1

23

pointer list. The dispatcher then uses the cartridge instance
pointer to send a revised browser message to the cartridge
instance.

CREATING REVISED BROWSER MESSAGES

Upon obtaining a cartridge instance pointer, the dis-
patcher creates a revised browser message using the infor-
mation associated with the browser request. This revised
browser message includes the URI, header information, the
cartridge type and a dispatcher pointer that allows messages
to be returned to the dispatcher. For example, a revised
message for a transaction of type TX1 as described above,
may include the following information:

URI=/storefront/open__session

header=NULL

cartridge name=[STOREFRONT]

dispatcher pointer=address XXXXX

In this example, the URI is a begin transaction URI (a URI
that is used by the cartridge execution engine to identify the
beginning of a multiple-request transaction). Because the
URI is a begin transaction URI, a globally unique transac-
tion ID has not yet been associated with the multiple-request
transaction. Hence, the header that would contain the trans-
action ID is set to NULL. For ongoing multiple-request
transactions (i.e. when the browser request does not contain
a URI of /storefront/open__session)and in which cookies are
used to store the globally unique transaction ID, the header
will contain the unique transaction ID. This unique transac-
tion ID allows the database servers to associate a transaction
request with an ongoing multiple-request transaction.

The cartridge name identifies the cartridge type and is
used by the cartridge execution engine to identify the
metadata that contains information about the transaction
type associated with the particular browser request. In this
example, the cartridge name of STOREFRONT identifies
the metadata associated with TX1 as being associated with
the browser request.

After creating the revised browser message, the dis-
patcher uses the previously obtained cartridge instance
pointer to send the revised browser message to the cartridge
instance. When the cartridge instance receives the revised
browser message, the cartridge instance uses the cartridge
type information to identify the metadata that is associated
with the browser request. After identifying the metadata, the
cartridge execution engine uses the URI information to
determine the state of the transaction associated with the
browser request.

For example, it shall be assumed that the browser request
included a URI of “/storefront/open_session” and a car-
tridge type of STOREFRONT.

By looking at the metadata associated with the cartridge
type of STOREFRONT (i.e. the metadata described in TX1
above), the cartridge execution engine 228 determines that
the URI of /storefront/open_session corresponds to a
“begin” transaction state. Using this same mechanism, the
cartridge execution engine 228 can determine that a browser
request containing a URI of /storefront/commit_session
corresponds to a “commit” transaction state and that a
browser request containing a URI of /storefront/rollback
session corresponds to a“rollback™ transaction state.

In the case where the URI does not include a particular
state (i.e. a URI consisting only of /storefront), the cartridge
execution engine 228 assumes that the browser request is
associated with an ongoing multiple-request transaction that
is not ready to be either committed or rolled backed.

When the cartridge execution engine receives a revised
browser message that is not associated with a “begin”

10

15

20

25

30

35

40

45

50

55

60

65

24

transaction, the cartridge execution engine checks the header
to determine if it specifies a globally unique transaction ID.
If the header specifies a globally unique transaction ID, then
cookie information was used to store the globally unique
transaction ID. If the header does not specify a globally
unique transaction ID, the cartridge execution engine then
searches the URI to identify the globally unique transaction
ID that is associated with the browser request. Once the
cartridge execution engine locates the globally unique trans-
action ID, the cartridge execution engine includes the trans-
action ID in the transaction control messages that are sent to
the transaction manager. The transaction manager then uses
the globally unique transaction ID in communicating with
the associated database servers to cause multiple-request
transactions to be either committed or rolled back as an
atomic unit of work.

PROCESSING TRANSACTIONS

FIG. 7A through 71 are a flow diagram illustrating a
method for processing multiple-request transactions in a
stateless environment according to an embodiment of the
invention.

At step 702, a revised browser message that was directed
to cartridge 230 is intercepted by cartridge execution engine
228. For the purposes of explanation, it shall be assumed that
the revised browser message was sent by dispatcher 214 and
that the revised browser message is associated with trans-
action TX1 as described above.

At step 704, cartridge execution engine 228 determines if
the revised browser message is associated with a transaction.
If the revised browser message is not associated with a
transaction, at step 706, cartridge execution engine 228
forwards the revised browser message to cartridge 230 for
cartridge 230 to perform the requested non-transactional
finctions associated with the revised browser message. Once
the cartridge performs the requested non-transactional
functions, control returns to step 702 in order for the
cartridge execution engine 228 to intercept the next revised
browser message.

Otherwise, if the revised browser message is associated
with a transaction, at step 708, cartridge execution engine
228 determines the state of the transaction by first deter-
mining whether the revised browser message is associated
with a begin transaction URI. In determining whether the
revised browser message is associated with a begin trans-
action URI, the cartridge execution engine 228 uses the
cartridge name to identify the previously stored metadata
that includes the transaction attributes of the transaction type
identified in the revised browser message. Using the previ-
ously stored metadata, the cartridge execution engine 228
determines if the revised browser message is associated with
a begin transaction URI.

For example, it shall be assumed that the revised browser
message contained a cartridge name of STOREFRONT and
a URI of /storefront/open_session. Using the STORE-
FRONT cartridge name, the cartridge execution engine 228
determines that the revised browser message is associated
with the metadata for transaction TX1. Using this metadata,
the cartridge execution engine 228 determines that the URI
of /storefront/open__session is associated with a begin trans-
action.

If the cartridge execution engine 228 determines that the
revised browser message is not associated with a begin
transaction, then control proceeds to step 744.

If the cartridge execution engine 228 determines that the
revised browser message is associated with a begin

US 6,334,114 B1

25

transaction, then at step 712, the cartridge execution engine
228 includes a begin transaction identifier (tx_begin) in a
transaction control message. The cartridge execution engine
228 then sends the transaction control message to the
transaction manager 606.

At step 714, upon receiving the begin transaction
identifier, the transaction manager 606 creates a globally
unique transaction ID that is used to identify subsequent
browser requests that are associated with this multiple
request transaction. In certain embodiments of the invention,
the transaction ID is formed using the browser IP address,
the transaction name and a particular timestamp value.

At step 716, the cartridge execution engine 228 sends an
operation message to cartridge 230 that is formed from
information that is contained in the revised browser mes-
sage. The operation message also includes a dispatcher
pointer that identifies the dispatcher that sent the revised
browser request (dispatcher 214). This pointer allows the
cartridge 230 to write information back to the dispatcher. At
step 718, upon receiving the operation message, the car-
tridge 230 sends a message to the transaction manager 606
requesting handles for access to the databases that are
associated with the transaction.

At step 720, transaction manager 606 returns handles to
the appropriate database servers to allow the cartridge 230 to
process the transaction request. For example, assuming
database 610 is associated with the SEARS database and
database 614 is associated with the BANKI1 database, trans-
action manager 606 will return handles to database server
608 and 612 respectively.

At step 722, cartridge 230 uses the handles returned from
transaction manager 606 to execute the operations identified
in the operation message that was sent by the cartridge
execution engine 228.

At step 724, the cartridge 230 determines whether the
sending browser allows cookie information to be associated
with the browser. If the browser does not allow for cookie
information to be associated with the browser, at step 726,
the cartridge 230 causes the hyperlinks of the HTML page
that was generated in response to executing this transaction
request to be annotated to include the globally unique
transaction ID. By annotating the hyperlinks of the HTML
page, the URIs contained in subsequent browser request will
contain the globally unique transaction ID.

At step 728, the cartridge 230 uses the dispatcher pointer
to return back to the dispatcher 214 the HTML page that was
generated in response to executing the transaction request.
The cartridge 230 then notifies cartridge execution engine
228 that execution of the transaction request is complete.

At step 730, the cartridge execution engine 228 sends a
message to the transaction manager 606 requesting it to
suspend the transaction. At step 732, the transaction man-
ager 606 sends a suspend request to database servers 608 and
612 to cause them to suspend execution of the transaction.
The suspend request includes the globally unique transaction
ID so that the database servers 608 and 612 know which
transaction to suspend. By sending a suspend request to
database servers 608 and 612, it allows other browsers to
execute transactions that are associated with databases 610
and 614.

At step 734, transaction manager 606 sends the globally
unique transaction ID to the cartridge execution engine 228.
At step 736, the cartridge execution engine 228 determines
whether the sending browser allows for cookie information
to be associated with the browser. If the browser does not
allow for cookie information to be associated with the

10

15

20

30

35

40

45

50

55

60

65

26

browser, at step 738, the dispatcher 214 is notified that the
processing of the revised browser request is complete.
Control then returns to step 702 to intercept another revised
browser message.

If the browser does allow for cookie information to be
associated with the browser, at step 740, the cartridge
execution engine 228 uses the globally unique transaction
ID to create cookie information to be associated with the
sending browser.

At step 742, cartridge execution engine 228 forwards the
cookie information to dispatcher 214 so that it may be
transmitted to the sending browser and notifies the dis-
patcher 214 that the processing of the revised browser
request is complete. Control then returns to step 702 to
intercept another revised browser message.

At step 744, the cartridge execution engine 228 deter-
mines whether the revised browser message is associated
with a commit transaction URI. In determining whether the
revised browser message is associated with a commit trans-
action URI, the cartridge execution engine 228 uses the
cartridge name to identify the previously stored metadata for
the type of transaction associated with the revised browser
message. Using the previously stored metadata, the cartridge
execution engine 228 determines if the revised browser
message is associated with a commit transaction URI.

For example, it shall be assumed that the revised browser
message contained a cartridge name of STOREFRONT and
a URI of /storefront/commit_ session. Using the STORE-
FRONT cartridge name, the cartridge execution engine 228
determines that the revised browser message is associated
with the metadata for transaction TX1. Using this metadata,
the cartridge execution engine 228 determines that the URI
of /storefront/commit_ session is associated with a commit
transaction.

If the cartridge execution engine 228 determines that the
revised browser message is not associated with a commit
transaction, then control proceeds to step 774.

If the cartridge execution engine 228 determines that the
revised browser message is associated with a commit
transaction, then at step 746, the cartridge execution engine
228 determines whether the header section of the revised
browser message contains cookie information. If cartridge
execution engine 228 determines that the header section of
the revised browser message contains cookie information,
then at step 748 the cartridge execution engine 228 extracts
the globally unique transaction ID from the cookie infor-
mation. Control then proceeds to 752.

If cartridge execution engine 228 determines that the
header section of the revised browser message does not
contain cookie information, then at step 750 the cartridge
execution engine 228 extracts the globally unique transac-
tion ID from the annotated URI.

At step 752, the cartridge execution engine 228 packages
a resume transaction identifier (tx_resume) into a transac-
tion control message. The cartridge execution engine 228
then sends the transaction control message to the transaction
manager 606.

At step 754, upon receiving the resume transaction
identifier, the transaction manager 606 sends a resume
request to database servers 608 and 612 to cause them to
resume execution of the transaction. The resume request
includes the globally unique transaction ID which allows the
database servers 608 and 612 to identify the multiple-request
transaction that is associated with the current transaction
request.

At step 756, the cartridge execution engine 228 sends an
operation message to cartridge 230 that is based on the

US 6,334,114 B1

27

transaction information contained in the revised browser
message. The operation message also contains a dispatcher
pointer that identifies the dispatcher that sent the revised
browser request (dispatcher 214) and allows the cartridge
230 to write information back to the dispatcher. At step 758,
upon receiving the operation message, the cartridge 230
sends a message to the transaction manager 606 requesting
handles for access to the databases that are associated with
the transaction.

At step 760, transaction manager 606 returns handles to
the appropriate database servers to allow the cartridge 230 to
process the transaction request. For example, assuming
database 610 is associated with the SEARS database and
database 614 is associated with the BANK1 database, trans-
action manager 606 will return handles to database server
608 and 612 respectively.

At step 762, cartridge 230 uses the handles returned from
transaction manager 606 to execute the operation specified
by the operation message that was sent by the cartridge
execution engine 228.

At step 764, the cartridge 230 determines whether the
sending browser allows cookie information to be associated
with the browser. If the browser does not allow for cookie
information to be associated with the browser, at step 766,
the cartridge 230 causes the globally unique transaction ID
to be removed from the annotated hyperlinks of any HTML
page that is associated with the transaction. By removing the
transaction ID annotations from the hyperlinks of the HTML
page, subsequent browser requests that are issued in
response to selection of a hyperlink from the HITML page
will not contain the globally unique transaction ID and,
therefore, will not be mistakenly associated with this
multiple-request transaction.

At step 768, the cartridge 230 uses the dispatcher pointer
to return the HTML page generated in response to perform-
ing the operation specified in the browser request to the
dispatcher 214 and notifies cartridge execution engine 228
that execution of the transaction request is complete.

At step 770, the cartridge execution engine 228 sends a
transaction control message to the transaction manager 606
requesting it to commit the transaction. At step 771, the
transaction manager 606 sends a commit request to database
servers 608 and 612 to cause all changes made in response
to the various browser requests that belonged to the
multiple-request transaction to be committed as an atomic
unit of work. The commit request includes the globally
unique transaction ID which allows the database servers 608
and 612 to identify the associated multiple-request transac-
tion.

At step 772, the cartridge execution engine 228 notifies
the dispatcher 214 that the processing of the revised browser
request is complete and signals the dispatcher 214 to cause
the cookie information associated with the committed
multiple-request transaction to be removed from the sending
browser. By removing the transaction ID from the cookie
information associated with the sending browser, subse-
quent browser requests will not contain the globally unique
transaction ID and, therefore, will not be mistakenly asso-
ciated with the committed multiple-request transaction.
Control then returns to step 702 to intercept another revised
browser message.

At step 774, the cartridge execution engine 228 deter-
mines whether the revised browser message is associated
with a rollback transaction URI. In determining whether the
revised browser message is associated with a rollback trans-
action URI, the cartridge execution engine 228 uses the

10

15

20

25

30

35

40

45

50

55

60

65

28

cartridge name to identify the previously stored metadata
that corresponds to the transaction type indicated in the
revised browser message. Using the previously stored
metadata, the cartridge execution engine 228 determines if
the revised browser message contains a rollback transaction
URL

For example, it shall be assumed that the revised browser
message contained a cartridge name of STOREFRONT and
a URI of /storefront/rollback session. Using the STORE-
FRONT cartridge name, the cartridge execution engine 228
determines that the revised browser message is associated
with the metadata for transaction TX1 . Using this metadata,
the cartridge execution engine 228 determines that the URI
of /storefront/rollback__session is associated with a rollback
transaction.

If the cartridge execution engine 228 determines that the
revised browser message is not associated with a rollback
transaction, then control proceeds to step 804.

If the cartridge execution engine 228 determines that the
revised browser message is associated with a rollback
transaction, then at step 776, the cartridge execution engine
228 determines whether the header section of the revised
browser message contains cookie information. If cartridge
execution engine 228 determines that the header section of
the revised browser message contains cookie information,
then at step 778 the cartridge execution engine 228 extracts
the globally unique transaction ID from the cookie infor-
mation. Control then proceeds to 782.

If cartridge execution engine 228 determines that the
header section of the revised browser message does not
contain cookie information, then at step 780 the cartridge
execution engine 228 extracts the globally unique transac-
tion ID from the annotated URI.

At step 782, the cartridge execution engine 228 incorpo-
rates a resume transaction identifier (tx__resume) in a trans-
action control message. The cartridge execution engine 228
then sends the transaction control message to the transaction
manager 606.

At step 784, upon receiving the resume transaction
identifier, the transaction manager 606 sends a resume
request to database servers 608 and 612 to cause them to
resume execution of the transaction. The resume request
includes the globally unique transaction ID which allows the
database servers 608 and 612 to identify the multiple-request
transaction that is associated with the current transaction
request.

At step 786, the cartridge execution engine 228 sends an
operation message to cartridge 230 that is based on the
transaction information contained in the revised browser
message. The operation message also contains a dispatcher
pointer that identifies the dispatcher that sent the revised
browser request (dispatcher 214) and allows the cartridge
230 to write information back to the dispatcher. At step 788,
upon receiving the operation message, the cartridge 230
sends a message to the transaction manager 606 requesting
handles for access to the databases that are used in the
specified type of transaction.

At step 790, transaction manager 606 returns handles to
the appropriate database servers to allow the cartridge 230 to
process the transaction request. For example, assuming
database 610 is associated with the SEARS database and
database 614 is associated with the BANK1 database, trans-
action manager 606 will return handles to database server
608 and 612 respectively.

At step 792, cartridge 230 uses the handles returned from
transaction manager 606 to execute the transaction informa-

US 6,334,114 B1

29

tion associated with the operation message that was sent by
the cartridge execution engine 228.

At step 794, the cartridge 230 determines whether the
sending browser allows cookie information to be associated
with the browser. If the browser does not allow for cookie
information to be associated with the browser, at step 796,
the cartridge 230 causes the globally unique transaction ID
to be removed from the annotated hyperlinks of any HTML
page to be returned to the browser. By removing the trans-
action ID annotations from the hyperlinks of the HTML
page, subsequent browser requests will not contain the
globally unique transaction ID and, therefore, will not be
mistakenly associated with this multiple-request transaction.

At step 798, the cartridge 230 uses the dispatcher pointer
to return the HTML page that is associated with executing
the transaction back to the dispatcher 214 and notifies
cartridge execution engine 228 that execution of the trans-
action request is complete.

At step 800, the cartridge execution engine 228 sends a
transaction control message to the transaction manager 606
requesting it to rollback the transaction. At step 801, the
transaction manager 606 sends a rollback request to database
servers 608 and 612 to cause all changes made in response
to the browser requests that belong to the multiple-request
transaction to be rolled back as an atomic unit of work. The
roll back request includes the globally unique transaction ID
which allows the database servers 608 and 612 to identify
and roll back the correct multiple-request transaction.

At step 802, the cartridge execution engine 228 notifies
the dispatcher 214 that the processing of the revised browser
request is complete and signals the dispatcher 214 to cause
the cookie information associated with the rolled back
multiple-request transaction to be removed from the sending
browser. By removing the transaction ID from the cookie
information associated with the sending browser, subse-
quent browser requests will not contain the globally unique
transaction ID and, therefore, will not be mistakenly asso-
ciated with the rolled back multiple-request transaction.
Control then returns to step 702 to intercept another revised
browser message.

At step 804, the cartridge execution engine 228 deter-
mines whether the header section of the revised browser
message contains cookie information. If cartridge execution
engine 228 determines that the header section of the revised
browser message contains cookie information, then at step
806 the cartridge execution engine 228 extracts the globally
unique transaction ID from the cookie information. Control
then proceeds to 810.

If cartridge execution engine 228 determines that the
header section of the revised browser message does not
contain cookie information, then at step 808 the cartridge
execution engine 228 extracts the globally unique transac-
tion ID from the annotated URI.

At step 810, the cartridge execution engine 228 packages
a resume transaction identifier (tx_resume) in a transaction
control message. The cartridge execution engine 228 then
sends the transaction control message to the transaction
manager 606.

At step 812, upon receiving the resume transaction
identifier, the transaction manager 606 sends a resume
request to database servers 608 and 612 to cause them to
resume execution of the transaction. The resume request
includes the globally unique transaction ID which allows the
database servers 608 and 612 to identify the multiple-request
transaction that is associated with the current transaction
request.

10

15

20

25

30

35

40

45

50

55

60

65

30

At step 814, the cartridge execution engine 228 sends an
operation message to cartridge 230 that is based on the
transaction information contained in the revised browser
message. The operation message also contains a dispatcher
pointer that identifies the dispatcher that sent the revised
browser request (dispatcher 214) and allows the cartridge
230 to write information back to the dispatcher. At step 816,
upon receiving the operation message, the cartridge 230
sends a message to the transaction manager 606 requesting
handles for access to the databases that are associated with
the transaction.

At step 818, transaction manager 606 returns handles to
the appropriate database servers to allow the cartridge 230 to
process the transaction request. For example, assuming
database 610 is associated with the SEARS database and
database 614 is associated with the BANK1database, trans-
action manager 606 will return handles to database servers
608 and 612 respectively.

At step 820, cartridge 230 uses the handles returned from
transaction manager 606 to execute the operation specified
in the operation message that was sent by the cartridge
execution engine 228.

At step 822, the cartridge 230 determines whether the
sending browser allows cookie information to be associated
with the browser. If the browser does not allow for cookie
information to be associated with the browser, at step 824,
the cartridge 230 causes the hyperlinks of an HTML page
generated in response to performing the operation to be
annotated to include the globally unique transaction ID. By
annotating the hyperlinks of the HTML page, the URIs in
subsequent browser requests that are issued in response to
selecting the links in the HTML page will contain the
globally unique transaction ID.

At step 826, the cartridge 230 uses the dispatcher pointer
to return the HTML page thus generated back to the dis-
patcher 214 and notifies cartridge execution engine 228 that
execution of the transaction request is complete.

At step 828, the cartridge execution engine 228 sends a
message to the transaction manager 606 requesting it to
suspend the transaction. At step 830, the transaction man-
ager 606 sends a suspend request to database servers 608 and
612 to cause them to suspend execution of the transaction.
The suspend request includes the globally unique transaction
ID which allows the database servers 608 and 612 to
accurately identify the multiple-request transaction to be
suspended. Control then returns to step 702 to intercept
another revised browser message.

TRANSACTION TIMEOUTS

According to one embodiment of the invention, a timeout
value is associated with each transaction. The timeout value
is used to identify multiple-request transactions that have not
been active for a specified time period. In one embodiment,
each database server maintains a timeout value for the
multiple-request transactions that are being serviced by the
database server. Thus, whenever a multiple-request transac-
tion begins to execute, the associated database server ini-
tializes the timeout value for the particular transaction. Upon
receiving a resume transaction request that is associated with
a globally unique transaction ID, the database server resets
the timeout value for the multiple-request transaction that is
associated with the globally unique transaction ID. If a
multiple-request transaction times out, the database server
causes all changes made as part of the multiple-request
transaction to be rolled back as an atomic unit of work. Once
the multiple-request transaction is rolled back, a message is
then sent to the associated browser to indicate the state of the
transaction.

US 6,334,114 B1

31
CONDUCTING TRANSACTIONS IN A
STATELESS WEB ENVIRONMENT

The present invention provides a practical and highly
scalable mechanism for conducting multiple-request trans-
actions in a stateless environment, such as the web. Accord-
ing to the invention, a transaction manager is used to
coordinate the overall transaction process. Preferably, the
transaction manager coordinates the process in such a way
that state information is maintained for a transaction without
requiring the transaction manager itself to persistently main-
tain the state information.

In a preferred embodiment, processing of a client request
is performed as follows. The transaction manager receives a
request from a client, and if the request is a transaction
request, the manager initiates a transaction with a transaction
processing mechanism, such as a database management
system (DBMS). Once the transaction is initiated, the man-
ager preferably forwards the request to another entity, such
as an application, which actually processes the request. After
the request is processed, control is returned to the manager,
and at that point, the manager assembles a set of state
information associated with the transaction. This state infor-
mation may include the identity of the client, the ID and
status of the transaction, and what has already transpired in
the transaction. Once assembled, the state information,
along with the response to the client request, is sent back to
the client to be maintained by the client. The state informa-
tion may be sent to the client in the form of a “cookie” or it
may be incorporated into a URL that is returned to the client.
While it is possible to do so, state information is preferably
not persistently maintained by the manager or by the appli-
cation that processed the request.

When the client submits a second request relating to the
same transaction, the client sends along the state information
previously provided by the manager. Upon receiving the
second request, the manager extracts the state information
from the request, and uses it to resume the previously
initiated transaction with the DBMS. Once the transaction is
resumed, the manager sends the second request, including
the state information, to another entity (the same or a
different application) for processing. After the second
request is processed, the manager updates the state infor-
mation associated with the transaction, and sends the
updated state information, along with the response to the
second request, to the client. The client will send this
updated state information in a future request to resume the
transaction. This process repeats until the transaction is
either committed or rolled back.

The present invention provides several significant advan-
tages. First, note that the transaction manager and the
applications that process the requests remain stateless. That
is, the transaction manager and the applications are not
required to maintain any of the state information for the
transaction. All of that information is maintained by the
client. This means that no overhead is incurred for storing
the information. More importantly, the fact that the client
maintains its own state information means that any request
from the client can be processed by any thread, process, or
node. This significantly improves scalability because it
eliminates the need to have a dedicated process or thread for
each client.

Another point to note is that even though the client is
maintaining the state information, the client is not aware that
it is maintaining transaction-specific state information. As
discussed above, the state information is provided to the
client by the transaction manager. The client simply sends

10

15

20

25

30

35

40

45

50

55

60

65

32

this information back to the transaction manager when it
makes its next request. The client is not, nor does it need to
be, aware that it is maintaining state information. This is a
very advantageous aspect of the present invention because it
obviates the need to put any state management logic on the
client. This in turn means that no changes or additions need
to be made to the client for the present invention to operate
properly.

Hence, the present invention provides a practical,
scalable, and effective mechanism for conducting transac-
tions in a stateless environment. These and other advantages
of the invention will become apparent as the invention is
described in further detail.

INCORPORATION OF STATE INFORMATION
IN URLS

The present invention provides an effective and highly
scalable mechanism for supporting multiple-request opera-
tions (including but not limited to transactions) in a stateless
environment, such as the web. According to the invention, a
server is preferably used to coordinate the overall processing
of client requests. Preferably, the server performs this coor-
dination function in such a way that: (1) state information
associated with multiple-request operations is maintained by
the clients making the requests; (2) the clients are unaware
that they are maintaining operation-specific state informa-
tion; and (3) the server itself is not required to persistently
maintain the state information, thereby remaining stateless.

In a preferred embodiment, processing of a client request
is performed as follows. The server receives a request from
a client, and if the request is for a multiple-request operation,
the server initiates an operation. Once the operation is
initiated, the server may either forward the request to
another entity (such as an application) for processing, or the
server may process the request itself. After the request is
processed, the server assembles a set of state information
associated with the operation. This state information may
include the identity of the client, the ID and status of the
operation, what has already transpired in the operation, and
any other context information associated with the operation.
Once assembled, the state information is incorporated into a
URL. This URL, along with the response to the client
request, is sent back to the client to be maintained by the
client. This state information is preferably not persistently
maintained by the server.

When the client submits a second request relating to the
same operation, the client sends the URL that was previously
provided by the server which contains the state information.
Upon receiving the second request, the server extracts the
state information from the URL, and uses it to resume the
previously initiated operation. With the benefit of this state
information, the server can resume the operation at the exact
point at which the previous request stopped. Once the
operation is resumed, the server either processes the request,
or forwards it to another entity for processing. After the
second request is processed, the server updates the state
information associated with the operation, and incorporates
the updated state information into another URL. This URL,
along with the response to the second request, is sent back
to the client to be maintained by the client. The client will
send this URL in a future request to resume the operation.
This process repeats until the operation is either completed
or canceled.

The present invention provides several significant advan-
tages. First, note that the server remains stateless. That is, the
server is not required to maintain any of the state informa-

US 6,334,114 B1

33

tion for the transaction. All of that information is maintained
by the client. This means that no overhead is incurred for
storing the information. More importantly, the fact that the
client maintains its own state information means that any
request from the client can be processed by any thread,
process, or node. This significantly improves scalability
because it eliminates the need to have a dedicated process or
thread for each client.

Another point to note is that even though the client is
maintaining the state information, the client is not aware that
it is maintaining operation-specific state information. As
discussed above, the state information is provided by the
server to the client in the form of a URL. The client simply
sends this URL whenever it requests service from the server.
The client treats this URL like any other URL. The client is
not, nor does it need to be, aware that this URL contains state
information. This is a very advantageous aspect of the
present invention because it obviates the need to put any
state management logic on the client. This in turn means that
no changes or additions need to be made to the client for the
present invention to operate properly.

Hence, the present invention provides a practical,
scalable, and effective mechanism for supporting multiple-
request operations in a stateless environment. These and
other advantages of the invention will become apparent as
the invention is described in further detail.

In the foregoing specification, the invention has been
described with reference to specific embodiments thereof. It
will, however, be evident that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention. The specification
and drawings are, accordingly, to be regarded in an illus-
trative rather than a restrictive sense.

What is claimed is:

1. A method for processing multiple-request transactions
in a stateless environment, wherein the multiple-request
transactions involve operations specified in browser
messages, the method comprising the steps of:

a cartridge execution engine intercepting browser mes-
sages directed to a cartridge; said cartridge execution
engine determining whether said browser messages are
associated with transactions;

if said browser messages are associated with transactions,
then
said cartridge execution engine sending transaction
control messages that are based on said browser
messages to a transaction manager that is imple-
mented separately from said cartridge;
said cartridge execution engine sending operation mes-
sages that are based on said browser messages to said
cartridge
in response to said operation messages from said car-
tridge execution engine, said cartridge performing
the operations specified in said operation messages
without the cartridge persistently maintaining state
information for the multiple-request transactions to
which the operations belong; and
in response to said transaction control messages from
said cartridge execution engine, said transaction
manager causing the operations specified in said
operation messages that are performed by said car-
tridge as part of the multiple-request transactions to
be either conmitted or rolled back as an atomic unit
of work.
2. The method of claim 1, wherein the step of causing the
operations specified in said operation messages to be com-

10

15

20

30

35

40

45

50

60

65

34

mitted includes the step of said transaction manager sending
commit messages to one or more database servers, wherein
the commit messages cause said one or more database
servers to commit changes associated with said multiple-
reauest transactions as an atomic unit of work.

3. The method of claim 1, wherein the step of causing the
operations specified in said operation messages to be rolled
back includes the step of said transaction manager sending
rollback messages to one or more database servers, wherein
the rollback messages cause said one or more database
servers to roll back changes associated with said multiple-
recst transactions as an atomic unit of work.

4. The method of claim 1, wherein the browser messages
associated with transactions are associated with transaction
IDs, wherein the transaction IDs identify a browser associ-
ated with a particular browser message.

5. The method of claim 4, wherein the transaction IDs are
maintained as cookies, wherein the cookies are maintained
on the browser that is associated with the particular browser
message.

6. The method of claim 4, wherein the transaction IDs are
maintained as URLs that are associated with one or more
tags in one or more Web pages that are displayed at the
browser that is associated with the particular browser mes-
sage.

7. The method of claim 1, wherein the step of said
cartridge execution engine determining whether said
browser messages are associated with transactions includes
the steps of:

obtaining a URL that is associated with a particular

browser message; and

using the URL associated with the particular browser

message to determine the state of a transaction that is
associatd with the particular browser message.

8. The method of claim 4, wherein the transaction IDs are
associated with a timeout period, wherein the expiration of
the timeout period indicates that the transaction associated
with the transaction ID should be deemed invalid.

9. The method of claim 1, wherein:

prior to intercepting browser messages directed to the

cartridge,

registering the cartridge, wherein the cartridge is reg-
istered by storing metadata that defines a set of
attributes that is associated with one or more trans-
action types.

10. The method of claim 1, wherein the step of said
cartridge execution engine determining whether said
browser messages are associated with transactions includes
the steps of:

retrieving metadata based on the intercepted browser

messages; and

using the retrieved metadata to determine whether the

browser messages are associated with transactions.

11. A computer readable medium carrying sequences of
instructions for processing multiple-request transactions in a
stateless environment, wherein the multiple-request trans-
actions involve operations specified in browser messages,
the sequences of instructions including instructions for per-
forming the steps of:

a cartridge execution engine intercepting browser mes-

sages directed to a cartridge;

said cartridge execution engine determining whether said

browser messages are associated with transactions;

if said browser messages are associated with transactions,

then
said cartridge execution engine sending transaction
control messages that are based on said browser

US 6,334,114 B1

35

messages to a transaction manager that is imple-
mented separately from said cartride;

said cartridge execution engine sending operation mes-
sages that are based on said browser messages to said
cartridge

in response to said operation messages from said car-
tridge execution engine, said cartridge performing
the operations specified in said operation messages
without the cartridge persistently maintaining state
information for the multiple-request transactions to
which the operations belong; and

in response to said transaction control messages from
said cartridge execution engine, said transaction
manager causing the operations specified in said
operation messages that are performed by said car-
tridge as part of the multiple-request transactions to
be either committed or rolled back as an atomic unit
of work.

12. The computer readable medium of claim 11, wherein

the browser messages associated with transactions are asso-
ciated with transaction IDs, wherein the transaction IDs
identify a browser associated with a particular browser
message.

13. The computer readable medium of claim 11, wherein
the step of said cartridge execution engine determining
whether said browser messages are associated with transac-
tions includes the steps of:

obtaining a URL that is associated with a particular

browser message; and

using the URL associated with the particular browser

message to determine the state of a transaction that is
associate with the particular browser message.

14. A system for processing multiple-request transactions
in a stateless environment, wherein the mnultiple-request
transactions involve operations specified in browser
messages, the system comprising:

a memory;
one or more processors coupled to the memory; and

a set of computer instructions contained in the memory,
the set of computer instructions including computer
instructions which when executed by the one or more
processors, cause the one or more processors to per-
form the steps of:

a cartridge execution engine intercepting browser mes-
sages directed to a cartridge;
said cartridge execution engine determining whether
said browser messages are associated with transac-
tions;
if said browser messages are associated with
transactions, then
said cartridge execution engine sending transaction
control messages that are based on said browser
messages to a transaction manager that is imple-
mented separately from said cartridge;
said cartridge execution engine sending operation
messages that are based on said browser messaes
to said cartridge;
in response to said operation mnessaes from said
cartridge execution engine, said cartridge perfo-
ming the operations specified in said operation
messages without the cartridge persistently main-
taining state information for the multiple-request
transactions to which the operations belong; and
in response to said transaction control messages from
said cartridge execution engine, said transaction
manager causing the operations specified in said

10

15

20

25

30

35

40

45

50

55

60

65

36

operation messages that are performed by said
cartridge as part of the multiple-request transac-
tions to be either committed or rolled back as an
atomic unit of work.

15. The system of claim 14, wherein the browser mes-
sages associated with transactions are associated with trans-
action IDs, wherein the transaction IDs identify a browser
associated with a particular browser message.

16. The system of claim 14, wherein the step of said
cartridge execution engine determining whether said
browser messages are associated with transactions includes
the steps of:

obtaining a URL that is associated with a particular

browser message; and

using the URL associated with the particular browser

message to determine the state of a transaction that is
associate with the particular browser message.

17. The method of claim 1, wherein:

the step of said cartridge execution engine intercepting

browser messages includes the step of said cartridge

execution engine intercepting browser messages that
include a begin transaction command; and

in response to said cartridge execution engine receiving a

browser message that includes a begin transaction
command, said cartridge execution engine sending a
transaction control message to said transaction man-
ager to cause said transaction manager to begin said
transaction.

18. The method of claim 1, wherein:
the step of said cartridge execution engine intercepting

browser messages includes the step of said cartridge
execution engine intercepting browser messages that
include a commit transaction command; and

in response to said cartridge execution engine receiving a

browser message that includes a commit transaction
command, said cartridge execution engine sending a

transaction control message to said transaction man-
ager to cause said transaction manager to commit said
transaction.

19. The method of claim 1, wherein:

the step of said cartridge execution engine intercepting

browser messages includes the step of said cartridge
execution engine intercepting browser messages that
include a rollback transaction command; and

in response to said cartridge execution engine receiving a

browser message that includes a rollback transaction
command, said cartridge execution engine sending a
transaction control message to said transaction man-
ager to cause said transaction manager to roll back said
transaction.

20. The method of claim 17, further comprising the step
of receiving said begin transaction command in the form of
a URL at said cartridge execution engine in response to
selection of a control associated with a tag of a Web page
displayed at the browser.

21. The method of claim 18, firther comprising the step of
receiving said commit transaction command in the form of
a URL at said cartridge execution engine in response to
selection of a control associated with a tag of a Web page
displayed at the browser.

22. The method of claim 19, further comprising the step
of receiving said rollback transaction command in the form
of a URL at said cartridge execution engine in response to
selection of a control associated with a tag of a Web page
displayed at the browser.

23. The computer readable medium of claim 11, wherein
the step of causing the operations specified in said operation

US 6,334,114 B1

37

messages to be committed includes the step of said trans-
action manager sending commit messages to one or more
database servers, wherein the commit messages cause said
one or more database servers to commit changes associated
with said multiple-request transactions as an atomic unit of
work.

24. The computer readable medium of claim 11, wherein
the step of causing the operations specified in said opcration
messages to be rolled back includes the step of said trans-
action manager sending rollback messages to one or more
database servers, wherein the rollback messages cause said
one or more database servers to roll back changes associated
with said multiple-request transactions as an atomic unit of
work.

25. The computer readable medium of claim 11, wherein

the step of said cartridge execution engine intercepting
browser messages includes the step of said cartridge
execution engine intercepting browser messages that
include a begin transaction command; and

the computer readable medium further comprising
instructions for performing the step of, in response to
said cartridge execution engine receiving a browser
message that includes a begin transaction command,
said cartridge execution engine sending a transaction
control message to said transaction manager to cause
said transaction manager to begin said transaction.

26. The computer readable medium of claim 11, wherein

the step of said cartridge execution engine intercepting
browser messages includes the step of said cartridge
execution engine intercepting browser messages that
include a commit transaction command; and

the computer readable medium further comprising
instructions for performing the step of, in response to
said cartridge execution engine receiving a browser
message that includes a commit transaction command,
said cartridge execution engine sending a transaction
control message to said transaction manager to cause
said transaction manager to commit said transaction.

27. The computer readable medium of claim 11, wherein

the step of said cartridge execution engine intercepting

browser messages includes the step of said cartridge
execution engine intercepting browser messages that
include a rollback transaction command; and

the computer readable medium further comprising

instructions for performing the step of, in response to
said cartridge execution engine receiving a browser
message that includes a rollback transaction command,
said cartridge execution engine sending a transaction
control message to said transaction manager to cause
said transaction manager to roll back said transaction.

28. The computer readable medium of claim 12, further
comprising instructions for maintaining the transaction IDs
as cookies, wherein the cookies are maintained on the
browser that is associated with the particular browser mes-
sage.

29. The computer readable medium of claim 12, further
comprising instructions for maintaining the transaction IDs
as URLs, wherein the URLs are associated with one or more
tags in one or more Web pages that are displayed at the
browser that is associated with the particular browser mes-
sage.

30. The computer readable medium of claim 12, further
comprising instructions for associating a timeout period with
the transaction IDs, wherein the expiration of the timeout
period indicates that the transaction associated with the
transaction ID should be deemed invalid.

10

15

20

30

35

40

45

50

55

60

65

38

31. The computer readable medium of claim 11, further
comprising instructions for performing the steps of prior to
intercepting browser messages directed to the cartridge,

registering the cartridge, wherein the cartridge is regis-

tered by storing metadata that defines a set of attributes
that is associated with one or more transaction types.

32. The computer readable medium of claim 11, wherein
the step of said cartridge execution engine determining
whether said browser messages are associated with transac-
tions includes the steps of:

retrieving metadata based on the intercepted browser

messages; and

using the retrieved metadata to determine whether the

browser messages are associated with transactions.

33. The computer readable medium of claim 25, further
comprising instructions for performing the step of receiving
said begin transaction command in the form of a URL at said
cartridge execution engine in response to selection of a
control associated with a tag of a Web page displayed at the
browser.

34. The computer readable medium of claim 26, further
comprising instructions for performing the step of receiving
said commit transaction command in the form of a URL at
said cartridge execution engine in response to selection of a
control associated with a tag of a Web page displayed at the
browser.

35. The computer readable medium of claim 27, further
comprising instructions for performing the step of receiving
said rollback transaction command in the form of a URL at
said cartridge execution engine in response to selection of a
control associated with a tag of a Web page displayed at the
browser.

36. The system of claim 14, wherein the step of causing
the operations specified in said operation messages to be
committed includes the step of said transaction manager
sending commit messages to one or more database servers,
wherein the commit messages cause said one or more
database servers to commit changes associated with said
multiple-request transactions as an atomic unit of work.

37. The system of claim 14, wherein the step of causing
operations specified in said operation messages to be rolled
back includes the step of said transaction manager sending
rollback messages to one or more database servers, wherein
the rollback messages cause said one or more database
servers to roll back changes associated with said multiple-
request transactions as an atomic unit of work.

38. The system of claim 14, wherein

the step of said cartridge execution engine intercepting

browser messages includes the step of said cartridge
execution engine intercepting browser messages that
include a begin transaction command; and

in response to said cartridge execution engine receiving a

browser message that includes a begin transaction
command, said cartridge execution engine sending a
transaction control message to said transaction man-
ager to cause said transaction manager to begin said
transaction.

39. The system of claim 14, wherein

the step of said cartridge execution engine intercepting

browser messages includes the step of said cartridge
execution engine intercepting browser messages that
include a commit transaction command; and

in response to said cartridge execution engine receiving a

browser message that includes a commit transaction
command, said cartridge execution engine sending a
transaction control message to said transaction man-
ager to cause said transaction manager to commit said
transaction.

US 6,334,114 B1

39

40. The system of claim 14, wherein

the step of said cartridge execution engine intercepting
browser messages includes the step of said cartridge
execution engine intercepting browser messages that
include a rollback transaction command; and

in response to said cartridge execution engine receiving a
browser message that includes a rollback transaction
command, said cartridge execution engine sending a
transaction control message to said transaction man-
ager to cause said transaction manager to roll back said
transaction.

41. The method of claim 1, further comprising the steps

of:

prior to intercepting browser messages directed to said
cartridge, storing metadata that establishes a correlation
between one or more transaction commands and one or
more message items;

in response to intercepting browser messages directed to
said cartridge, comparing the message items that are
within each browser message with said metadata to
determine whether a particular transaction command
needs to be executed; and

if it is determined that a particular transaction command
does need to be executed, including data within a
transaction control message that will cause said trans-
action manager to perform the particular transaction
command.
42. The computer readable medium, of claim 11, further
comprising instructions for performing the steps of:

prior to intercepting browser messages directed to said
cartridge, storing metadata that establishes a correlation
between one or more transaction commands and one or
message items;

in response to intercepting browser messages directed to
said cartidge, comparing the message items that are
within each browser message with said metadata to
determine whether a particular transaction command
needs to be executed; and

if it is determined that a particular transaction command
does need to be executed, including data within a
transaction control message that will cause said trans-
action manager to perform the particular transaction
command.
43. The system of claim 14, further comprising the steps
of:

prior to intercepting browser messages directed to said
cartridge, storing metadata that establishes a correlation

10

15

20

25

30

35

40

45

40

between one or more transaction commands and one or
more message items;

in response to intercepting browser messages directed to
said cartridge, comparing the message items that are
within each browser message with said metadata to
determine whether a particular transaction command
needs to be executed; and

if it is determined that a particular transaction command
does need to be executed, including data within a
transaction control message that will cause said trans-
action manager to perform the particular transaction
command.
44. A method for executing a transaction that involves a
series of operations, the method comprising the steps of:

registering said transaction by storing metadata that estab-
lishes a mapping between transactions commands and
message items;

receiving a series of browser messages that request per-
formance of said series of operations;

in response to said series of browser messages, executing
said series of operations as an atomic unit of work; and

determining when to begin, commit and roll back said
atomic unit of work based on message items in said
series of browser messages and said metadata.

45. The method of claim 44, wherein the step of regis-
tering said transaction further comprises the step of storing
metadata that establishes a belong-to-list, wherein the
belong-to-list identifies a set of one or more cartridges that
may participate in performing said transaction.

46. The method of claim 44, wherein the step of regis-
tering said transaction further comprises the step of storing
metadata that establishes a resource-list, wherein the
resource-list identifies a set of one or more resources that are
affected by performing the transaction.

47. The method of claim 44, wherein the step of regis-
tering said transaction further comprises the step of storing
metadata that establishes a cartridge name, wherein the
cartridge name identifies a particular type of cartridges that
may be used to perform the transaction.

48. The method of claim 44, wherein the step of regis-
tering said transaction further comprises the step of storing
metadata that establishes a transaction name, wherein the
transaction name uniquely identifies a type of transaction
relative to other transaction types.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :6,334,114 B1 Page 1 of 1
DATED : December 25, 2001
INVENTOR(S) : Jacobs et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 34,
Line 11, replace “recst” with -- request --.

Column 35,
Line 2, replace “cartride” with -- cartridege --.
Line 57, replace “messaes” with -- messages --.

Signed and Sealed this

Fourth Day of June, 2002

Attest:

JAMES E. ROGAN
Attesting Officer Director of the United States Patent and Trademark Office

