
USOO6334.114B1 

(12) United States Patent (10) Patent No.: US 6,334,114 B1 
Jacobs et al. (45) Date of Patent: *Dec. 25, 2001 

(54) METHOD AND APPARATUS FOR FOREIGN PATENT DOCUMENTS 
PERFORMING TRANSACTIONS INA 
STATELESS WEB ENVIRONMENT WHICH 553560A2 8/1993 (EP). 

O 733 969 A1 9/1996 (EP). 
SUPPORTSA DECLARATIVE PARADIGM 0812088A2 12/1997 (EP). 

(75) Inventors: Lawrence Jacobs, Redwood Shores; OTHER PUBLICATIONS 
Seshu Adunuthula. Foster Citv: Mal N. gy, A Rs) Progress Software, “Webspeed 1.0 technical product brief 

1998, wysivvyg://90/http://www.progress-Softwa . . . ernet/ 
(73) Assignee: Oracle Corporation, Redwood Shores, webspeed/white/tech/docs/arch.html.* 

CA (US) Computer Reseller News “Progress Software offers tools to 
speed use of Web”, Oct. 7, 1996, http://proguest.umi.com/ 

(*) Notice: This patent issued on a continued pros- pqdweb?TS =91798...&Sid=1&Deli=1&RQT =309&Dtp 
ecution application filed under 37 CFR =1. 
1.53(d), and is subject to the twenty year Butler Group Technology Audits, “Butler Group WebSpeed 
patent term provisions of 35 U.S.C. Technology Audit' Nov. 1996, http://www.realtime.co.za/ 
154(a)(2). webspeed/whitep/wp03.html.* 

Netscape “Persistent Client State HTTP Cookies' 1997, 
Subject to any disclaimer, the term of this http://home.netscape.com/newsref/std/cookie Spec.html.* 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 0 days. (List continued on next page.) 

(21) Appl. No.: 08/962,536 Primary Examiner James P. Trammell 
Assistant Examiner Yehdega Retta 

(22) Filed: Oct. 31, 1997 (74) Attorney, Agent, or Firm-Hickman Palermo Truong 
& Becker LLP; Carl L. Brandt 

(51) Int. Cl." .................................................. G06F 17/60 (57) ABSTRACT 
(52) U.S. Cl. ................................. 705/26; 705/27; 707/10; 

707/104; 395/674; 395/675; 395/682; 395/684; 
395/200.56; 395/200.33 

A method and System for processing multiple-request trans 
actions in a stateless environment is provided. A cartridge 
execution engine intercepts browser messages directed to a 
cartridge. The cartridge execution engine determines 

(58) Field of Search .................. 705/26, 27; 395/200.12, whether the browser messages are associated with transac 
395/200.57 tions. If it is determined that browser messages are associ 

(56) References Cited ated with transactions, then the cartridge execution engine 
Sends transaction control messages to a transaction manager. 

U.S. PATENT DOCUMENTS In addition, the cartridge execution engine Sends operation 
4,918,595 4/1990 Kahn et al. .......................... 364,200 messages to the cartridge. The cartridge then performs the 
5,210,824 5/1993 Putz et al. ...... ... 395/145 operations Specified in the operation messages. In response 
5,212,793 5/1993 Donica et al. . ... 395/700 to the transaction control messages from the cartridge execu 
5,249,290 9/1993 Heizer ............ ... 395/650 tion engine, the transaction manager causes the multiple 
5,329,619 7/1994 Page et al. ..... ... 395/200 request transactions to be either committed or rolled back as 
5,341,478 8/1994 Travis, Jr. et al. ... 395/200 an atomic unit of work. 
5,361,350 11/1994 Conner et al. ....................... 395/600 

(List continued on next page.) 48 Claims, 16 Drawing Sheets 

200 

BROWSER2O2 BROWSER24 BROWSER238 

s a Nier.NET 208 e 
s--- -------- - - - - 

/ WEBAPPLICATION SERVER280 
--- 

LISTENER216 LISTENER222 (- - - - - - - - - - - - 
TRANSPORT 
AAER28 

TRANSPORT 
AAPTER212 

TRANSPORT 
ADARER 224 

CARTRIDGE 
230 

  



US 6,334,114 B1 
Page 2 

U.S. PATENT DOCUMENTS 

5,457,797 10/1995 Butterworth et al. ............... 395/682 
5,504897 4/1996 Gans et al. ..... ... 395/650 
5,546,584 8/1996 Lundin et al. . ... 395/700 
5,592,654 1/1997 Djakovic ........ ... 395/500 
5,613,148 3/1997 Bezviner et al. ... 395/800 
5,623,656 4/1997 Lyons ..................................... 707/10 
5,706,442 1/1998 Anderson et al. ................... 395/227 
5,708,780 1/1998 Levergood et al. . 
5,715,314 2/1998 Payne et al.. 
5,724,424 3/1998 Gifford. 
5,737,592 4/1998 Nguyen et al. ...................... 395/604 
5,737,607 4/1998 Hamilton et al. .................... 395/701 
5,745,681 4/1998 Levine et al. .. ... 709/200 
5,752,246 5/1998 Rogers et al. ......................... 707/10 
5,761,507 6/1998 Govett ........ ... 395/684 
5,761,662 6/1998 Dasan ..................................... 707/10 
5,761,673 6/1998 Bookman et all ... 707/104 
5,761,684 6/1998 Gibson ........... ... 707/515 
5,774,670 * 6/1998 Montulli ... 395/200.57 
5,778,224 7/1998 Tobe et al. ............ ... 395/670 
5,796,393 8/1998 MacNaughton et al. ............ 345/329 
5,802,291 9/1998 Balick et al. ......... ... 395/200.32 
5,822,585 10/1998 Noble et al. ......................... 395/680 
5,826,239 10/1998 Du et al. .................................. 705/8 
5,826,242 * 10/1998 Montulli ................................ 705/27 
5.835,712 11/1998 DuFresne .......... ... 709/203 
5,857,102 1/1999 McChesney et al ... 395/145 
5,857,191 1/1999 Blackwell et al. ..................... 707/10 
5,859,971 1/1999 Bittinger et al. ... ... 709/203 
5,860,072 1/1999 Schofield ....... ... 707/101 
5,862,318 * 1/1999 Habben ...... ... 395/182.18 
5,862,325 1/1999 Reed et al. ..... ... 395/200.31 
5,864.866 1/1999 Henckel et al. ..................... 707/103 
5,864,871 1/1999 Kitain et al. ......................... 707/104 
5,872,969 2/1999 Copeland et al.. 
5,875,296 2/1999 Shi et al.. 
5,890,161 3/1999 Helland et al. ...................... 707/103 
5,894,554 4/1999 Lowery et al. ................. 395/200.33 
5,961,601 10/1999 Iyengar. 
5.991,802 11/1999 Allard et al.. 
6,070,191 5/2000 Narendran et al. .................. 709/226 

OTHER PUBLICATIONS 

M/Gateway Developments Ltd. “Persistence and State 
Awareness in WebLink' 1996, http://www.intersys.com/ 
products/whitepaperS/weblink State.html. 
Oracle Corporation; Oracle WebServer Architecture; Seshu 
Adunnthula, Mala Anand, Ankur Sharma; http://www.win 
...tue.nl/00www/anand.html, Apr. 1996.* 
Distributed Objects on the Internet: Oracle Web Application 
Servertm3.0; Richard Delval-Duarte; Nov. 1996.* 
Exectutive Overview; Oracle Web Application Server TM 
3.0.* 

Oracle Web Application Server TM Cartridge user's Guide; 
Release 3.0, 1996/1997.* 
Web Request Broler TM Programmer's Reference Release 
3.0, 1996/1997.* 
Oracle Web Application Server TM Overview Release 3.0, 
1996/1997.* 
Using Oracle Web Application Server TM Cartridge Release 
3.0.1, Apr. 1996.* 
Web Application Server 3.0.1 “Overview”, published Aug. 
14, 1998. 
Oracle “Developing Your Own Web Application Server'TM 
Cartridge' Release 3.0.1, published Aug. 14, 1998. 

Oracle Web Application Server'TM, “Installation Guide for 
Sun SPARC Solaris 2.x Release 3.0.1, published Aug. 14, 
1998. 

Oracle “Using Oracle Web Application Server'TM Cartridge” 
Release 3.0.1, published Aug. 14, 1998. 

Oracle “Performance Tuning”, Operating System Param 
eters (Sun Solaris), published Aug. 14, 1998. 
Oracle “Security”, “Security Overview”, published Aug. 14, 
1998. 

Oracle Glossary (A-X), published Aug. 14, 1998. 

Executive Overview; Oracle Web Application Server'TM 3.0; 
http://www.silexsa.com/oracle/was30 eo.htm; retrieved May 
11, 2000. 

Oracle Corporation; Oracle WebServer Architecture; Seshu 
Adunuthula, Mala Anand, Ankur Sharma; http://www.win 
...tue.nl/00www/anand.html; dated Apr. 1996; retrieved May 
10, 2000. 

Distributed Objects on the Internet: Oracle Web Application 
Server'TM 3.0; Richard Delval-Duarte; http://www.fors.com/ 
eoug97/papers/0504.htm; dated Nov. 1996; retrieved May 
10, 2000. 

Oracle Corporation; WRB API Overview; http://www.cs 
.vu.nl/-eliens/WWW5/papers/Broker.html; retrieved. 

Web Application Server 3.0 “Oracle Web Application Server 
Documentation Roadmap’. 

Oracle Web Application Server'TM Installation Guide for Sun 
SPARC Solaris 2.x, Release 3.0. 

Oracle Web Application Server'TM Overview, Release 3.0. 

Oracle Web Application Server'TM Cartridge User's Guide, 
Release 3.0. 

Web Request Broker TM Programmer's Reference, Release 
3.O. 

Merle, P., et al., “CorbaWeb: A generic object navigator”, 
Computer Networks and ISDN Systems, vol. 28, No. 11, 
May 1996. 

Web Page containing an article written by Rich Levin titled 
“NetDynamics To Launch Web Database Development Sys 
tem. Upgrade,” Sep. 29, 1997 (As printed on Dec. 11, 1997). 
KIVA Software Corporation, “Developing and Managing 
Web-based Enterprise Applications”. 

Modeling transaction integrity: how CASE tools illustrate 
the relationships between transactions and data, Frank, Mau 
rice, DBMS, v6, n1, p.62(5), Jan. 1993.* 
Luotonen et al., “World-Wide Web proxies”, pp. 147-154, 
computer Network and ISDN system, 01/94. 

James Powell, “Creating a hypertext library information 
system, pp. 59-66, 02/94. 

* cited by examiner 

  



US 6,334,114 B1 Sheet 1 of 16 Dec. 25, 2001 U.S. Patent 

FIT 

  

  

  





U.S. Patent Dec. 25, 2001 Sheet 3 of 16 US 6,334,114 B1 

350 
Obtain Request 

352 
Forward Request to Dispatcher 

354 
Determine Request ObjectType 

356 
Does Request ObjectType 
Match with a Cartridge? 

  

    

  

    

    

  



U.S. Patent Dec. 25, 2001 Sheet 4 of 16 US 6,334,114 B1 

FG. 3B 362 
Available Instance? 

364 
Max No. Instances? 

366 
Initiate New instance 

368 
Dispatch Request 

to Available instance 

370 
Fault Detected? 

372 
Abort Instance N 

374 
Receive Reply 

358 
Return Request 

360 
Send Reply to Client 

376 
Respond to Client 

378 
Maintain instance 

  

    

  

    

  

    

  

  

  

  

  

  

    

  

  

  



U.S. Patent Dec. 25, 2001 Sheet 5 of 16 US 6,334,114 B1 

402 404 406 400 

INSTANCE CARTRIDGE STATUS 
408 

Ya BUSY 

410 
Y FREE 

412 
Ya BUSY 

FG. 4 

  

  



U.S. Patent Dec. 25, 2001 Sheet 6 of 16 US 6,334,114 B1 

502 504 506 508 

/ / / / 

510 Na 
500 

III - 

512 Na 

c 26 M 

FIG. 5 

  

    

    

  

    

    

  

  

    

    

  



U.S. Patent Dec. 25, 2001 Sheet 7 of 16 US 6,334,114 B1 

BrOWSer 202 BrOWSer 204 BrOWSer 206 600 
A? 

INTERNET 208 

WEBAPPLICATION SERVER 280 
LISTENER 210 LISTENER 216 LISTENER 222 

TRANSPORT TRANSPORT TRANSPORT 
: ADAPTER 212 ADAPTER 218 ADAPTER 224 

DISPATCHER DISPATCHER DISPATCHER 
214 220 226 

t--------Y - - - - - - - - - - - - - 

AUTHENTICATION SERVER 252 

OBJECT REQUEST BROKER 282 VIRTUAL PATH MANAGER250 

RESOURCE MANAGER 254 

CONFIGURATION PROVIDER 256 

CARTRIDGE TRANSACTION 
| EXECUTION ENGINE MANAGER 

: 228 606 
- - - - - - - - - -1 - - - - - - - - - - - - - - - -1 - - - - - - - - - - - - - - - - - - - 

CAREDGE METADATA 258 

----------------------------- 

DATABASE DATABASE 
SERVER SERVER 

608 612 

Sa Sa Fig 6 
DATABASE 610 DATABASE 614 

    

  



U.S. Patent Dec. 25, 2001 Sheet 8 of 16 US 6,334,114 B1 

702 
Intercept A Revised 
Browser Request 

704 
ls the Revised 

Browser Message 
ASSOCiated with A 

Transition? 

706 
Send Browser Request 
Message To Cartridge 

708 
ls the Revised 

Browser Message 
ASSOciated with A 

Begin URL? 

Send A BEGIN TX in a Transaction 
Control MeSSade to the 
Transaction Manager 712 

Request Handles For Access 
To The Databases 718 

Create A Globally Unique 
Transaction ID 714 

Return HandleS TO The 
Cartridge 720 

Send Operations Message To 
The Cartridge 716 

Execute The Transaction 
Request 722 

Fig. 7A 

    

  

  

  

  

  

  

  

  

  

    

  

  

  

    

  

  
  



U.S. Patent Dec. 25, 2001 Sheet 9 of 16 US 6,334,114 B1 

724 
DOes Annotate Hyperlinks The Sendin 

BrOWSer E. of HTML page 
COOkies? 726 

Return HTML Page To Browser 
728 

Request Transaction Manager 
To Suspend The Transaction 

730 

Send SuspendMessage To 
Database Servers 732 

Send Globally Unique Transaction 
ID To Cartridge Execution Engine 

734 

736 
Does N Notify Dispatcher 

The Sending PrOCessind is 
BrOWSer AllOW COm 5. 
COOkies? 738 

Fig. 7B 

  

  

  

  

  

    

  

  

  

  

  

      

    

  



U.S. Patent Dec. 25, 2001 Sheet 10 of 16 US 6,334,114 B1 

Create Cookie information Using 
Globally Unique Transaction ID 740 

Notify Dispatcher of Completion and 
Cause COOkie Information To Be 
Stored On The Sending Browser 742 

The Revised BrOWSer 
MeSSade ASSOCiated 
With ACOmmit URL? 

Extract COOkie 
Information 
From Header 

COOkie information 
COntained in The 

Header? 748 

Extract Globally Unique Transaction 
ID information From Annotated UR 

750 

Send Transaction Control Message That 
includes A Resume Transaction To The 

Transaction Manager 752 

Fig. 7C 

  

  

    

    

    

    

    

  

  

  

    

    

    

  

  
    

  



U.S. Patent Dec. 25, 2001 Sheet 11 of 16 US 6,334,114 B1 

Senda Resume Request To The 
Database Servers 

754 

Send The Transaction Information and 
Pointer To Dispatcher To The Cartridge 756 

Request Handles For Access 
he Dat To The Databases 758 

Return Handles To The 
Cartridge ge 78 

Execute The Transaction 
Request 762 

764 
Does The Sending 
BrOWSer AloW 
Cookies? 

Return HTML PageToThe Dispatcher 
768 

FIG. 7D 

Remove The Globally Unique 
Transaction ID From The 

HTML Page 766 

  

  

  



U.S. Patent Dec. 25, 2001 Sheet 12 of 16 US 6,334,114 B1 

Request The Transaction Manager 
To Send A Commit Request To The 

Database Servers 770 

CauSe The Database ServerSTO 
Commit The Transaction 

771 

Notify Dispatcher That Processing of Browser 
Request is Complete and That The Cookie Information 

Should Be Removed From The BrOWSer 
772 

Fig. 7E 

  

    

    

    

  

  

    

    

  



U.S. Patent Dec. 25, 2001 Sheet 13 of 16 US 6,334,114 B1 

774 
ls the Revised 

BrOWser Message 
ASSOCiated With A 
Rollback URL? 

Extract Cookie 
information From 

Header 778 
COOkie Information 
COntained in The 

Header? 

Extract Globally Unique Transaction 
ID information From Annotated UR 

780 

Send Transaction Control Message That 
includes A Resume Transaction TO The 

Transaction Manager 782 

Sens A Resume Request To The 
Database ServerS 784 

Send The Transaction Information 
and Pointer To Dispatcher To The 

Cartridge 786 

Fig. 7F 

  

  

  

    

    

  

  

  

  

  

  

  

  



U.S. Patent Dec. 25, 2001 Sheet 14 of 16 US 6,334,114 B1 

Request Handles For Access 
To The Datab O e U33O3SeS 788 

Return Handles To The 
Cartrid artridge 790 

Execute The Transaction 
Request 792 

794 
Does The Sending 
BrOWSer AllOW 
Cookies? 

N Remove The Globally Unique 
Transaction ID From The 

HTMLPage 796 

Y 

Return HTML PageToThe Dispatcher 
798 

Request The Transaction Manager 
To Send A Rollback Request To The 

Database Servers 800 

CauSe The Database ServerSTO 
Rollback The Transaction 801 

Notify Dispatcher That Processing of Browser 
Request is Complete and That The Cookie information 

Should Be Removed From The BrOWSer 802 

Fig. 7G 

  

  

    

  

  

  

  

  



U.S. Patent Dec. 25, 2001 Sheet 15 of 16 

804 
ls 

COOkie information 
Contained in The 

Header? 

Extract Globally Unique Transaction 
D From Annotated UR 808 

Send Transaction Control Message That 
includes A Resume Transaction To The 

Transaction Manager 810 

Senda Resume Request To The 
Database Servers 

812 

Send The Transaction information and 
Pointer To Dispatcher To The Cartridge 814 

Request Handles For Access 
To The Databases 

816 

Return Handles To The 
Cartrid artridge 818 

Execute The Transaction 
Request 820 

US 6,334,114 B1 

Extract COOkie 
information 
From Header 

806 

Fig. 7H 

  

  

  

  

  

  



U.S. Patent Dec. 25, 2001 Sheet 16 of 16 US 6,334,114 B1 

822 
Does The Sending 
BrOWSer AllOW 
Cookies 2 

Annotate 
Hyperlinks of 
HTML Page 824 

Return HTML Page To The Dispatcher 
826 

Request Transaction Manager To 
Suspend The Transaction 828 

Send Suspend Message To Database 
Servers 830 

FIG. 7 

  

  

  

  

  

  

  

    

  

    

  



US 6,334,114 B1 
1 

METHOD AND APPARATUS FOR 
PERFORMING TRANSACTIONS INA 

STATELESS WEB ENVIRONMENT WHICH 
SUPPORTSA DECLARATIVE PARADIGM 

FIELD OF THE INVENTION 

This invention relates to processing transactions in net 
worked computer Systems, and more specifically to process 
ing multiple-request transactions in a StateleSS web environ 
ment. 

BACKGROUND OF THE INVENTION 

The World Wide Web includes a network of Servers on the 
Internet, each of which is associated with one or more 
HTML (Hypertext Markup Language) pages. The HTML 
pages associated with a server provide information and 
hypertext links to other documents on that and (usually) 
other Servers. Servers communicate with clients by using the 
Hypertext Transfer Protocol (HTTP). The servers listen for 
requests from clients for their HTML pages, and are there 
fore often referred to as “listeners'. 

Users of the World Wide Web use a client program, 
referred to as a browser, to request, decode and display 
information from listeners. When the user of a browser 
selects a link on an HTML page, the browser that is 
displaying the page Sends a request over the Internet to the 
listener associated with the Universal Resource Locator 
(URL) Specified in the link. In response to the request, the 
listener transmits the requested information to the browser 
that issued the request. The browser receives the 
information, presents the received information to the user, 
and awaits the next user request. 

Traditionally, the information stored on listeners is in the 
form of static HTML pages. Static HTML pages are created 
and Stored at the listener prior to a request from a web 
browser. In response to a request, a Static HTML page is 
merely read from Storage and transmitted to the requesting 
browser. Currently, there is a trend to develop listeners that 
respond to browser requests by performing dynamic opera 
tions. For example, a listener may respond to a request by 
issuing a query to a database, dynamically constructing a 
web page containing the results of the query, and transmit 
ting the dynamically constructed HTML page to the request 
ing browser. To perform dynamic operations, the function 
ality of the listener must be enhanced or augmented. Various 
approaches have been developed for extending listeners to 
Support dynamic operations. 
One of the major characteristics of the web is that it 

provides a stateless environment. That is, HTTP communi 
cates information on a message-by-message basis without 
any mechanism for designating relationships between mes 
Sages. This means that a process Servicing a current request 
cannot determine whether the current request came from the 
Same client as a previous request. In addition, the Servicing 
proceSS cannot determine how or if the current request 
relates to a previous request. 
A disadvantage with using a StateleSS environment is that 

it is difficult to proceSS multiple-request transactions. A 
multiple-request transaction is a set of operations that (1) are 
Specified in more than one request, and (2) must be per 
formed as an atomic unit of work. For example, a multiple 
request transaction could consist of three separate 
operations, Such as buying Stock item A, Selling Stock item 
B and updating the inventory to reflect the number of stock 
items on hand. Each of these three operations may be 
Specified in a separate request, but each operation should 

15 

25 

35 

40 

45 

50 

55 

60 

65 

2 
only be performed if all three operations can be performed. 
In order to properly determine that buying Stock item A, 
Selling Stock item B and updating the inventory are from the 
Same Single transaction requires that transaction State infor 
mation be retained by the Servicing process that receives the 
three requests. 
One possible Solution to the StateleSS problem is to Spawn 

a Servicing process for each request-issuing Source (each 
“client”). Each time a request from a client is received, the 
Same Servicing process is called upon to process the request. 
Because the same process is invoked for a given client, the 
transaction State information for a particular transaction can 
be maintained by the associated Servicing process, thus 
allowing for the processing of multiple-request transactions. 

This Solution has significant drawbacks, however. First, 
maintaining a separate Servicing process for each client is 
wasteful since most clients do not continually make requests 
to the Servicing process. Between client requests, the Ser 
vicing proceSS Simply waits, consuming System resources, 
without performing any work. A Second drawback with this 
Solution is that it is non-Scalable. If a Servicing proceSS is 
Spawned and maintained for each client, System resources 
would quickly be consumed, even for a relatively Small 
number of clients. Therefore, Spawning a Servicing process 
for each client is not a viable Solution for large Scale 
Systems. 
A Second possible Solution is to require each Servicing 

process to maintain the current State of the transactions that 
it is currently processing. By maintaining transaction State 
information, each Servicing process can ensure that 
multiple-request transactions are processed correctly. 
However, a drawback associated with requiring each Ser 
vicing process to maintain transaction State information is 
that it puts a burden on the developer of each Servicing 
process to write extra code in order to maintain the required 
transaction State information. 

Based on the foregoing, it is desirable to provide a 
mechanism for processing multiple-request transactions in a 
StateleSS environment that does not require a Servicing 
process to maintain transaction State information. 

SUMMARY OF THE INVENTION 

A method and System for processing multiple-request 
transactions in a StateleSS environment is provided. 

According to one aspect of the invention, a cartridge 
execution engine intercepts browser messages directed to a 
cartridge. The cartridge execution engine determines 
whether the browser messages are associated with transac 
tions. If the browser messages are associated with 
transactions, then the cartridge execution engine Sends trans 
action control messages to a transaction manager. The 
cartridge execution engine also sends operation messages to 
the cartridge. The cartridge performs the operations Speci 
fied in the operation messages. In response to the transaction 
control messages from the cartridge execution engine, the 
transaction manager causes the multiple-request transactions 
to be either committed or rolled back as an atomic unit of 
work. 

According to another aspect of the invention, the browser 
messages associated with transactions are associated with 
transaction IDs that can be used to identify a browser that is 
asSociated with a particular browser message. 
According to another aspect of the invention, the browser 

messages associated with transactions are associated with 
transaction IDS and are used to identify a browser associated 
with a particular browser message. 



US 6,334,114 B1 
3 

According to another aspect of the invention, the trans 
action IDS are maintained as cookies on the browser that is 
asSociated with the particular browser message. 

According to another aspect of the invention, the trans 
action IDs are maintained as URLs on the browser that is 
asSociated with the particular browser message. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention is illustrated by way of example, 
and not by way of limitation, in the figures of the accom 
panying drawings and in which like reference numerals refer 
to Similar elements and in which: 

FIG. 1 is a block diagram of a computer System upon 
which an embodiment of the invention may be implemented; 

FIG. 2 is a block diagram of a distributed application 
Server according to an embodiment of the invention; 

FIG. 3A is a portion of a flow chart illustrating steps for 
handling a browser request according to an embodiment of 
the invention; 

FIG. 3B is another portion of the flow chart illustrating 
Steps for handling a browser request according to an 
embodiment of the invention; 

FIG. 4 is a block diagram of a table containing informa 
tion maintained by a dispatcher according to an embodiment 
of the invention; 

FIG. 5 is a block diagram of a table containing informa 
tion maintained by a resource manager according to an 
embodiment of the invention. 

FIG. 6 is a block diagram of a distributed application 
Server for processing transactions according to an embodi 
ment of the invention; 

FIG. 7A is a portion of a flow diagram illustrating Steps 
for processing multiple-request transactions in a StateleSS 
environment according to an embodiment of the invention; 

FIG. 7B is another portion of the flow diagram illustrating 
Steps for processing multiple-request transactions in a State 
leSS environment according to an embodiment of the inven 
tion; 
FIG.7C is another portion of the flow diagram illustrating 

Steps for processing multiple-request transactions in a State 
leSS environment according to an embodiment of the inven 
tion; 

FIG. 7D is another portion of the flow diagram illustrating 
Steps for processing multiple-request transactions in a State 
leSS environment according to an embodiment of the inven 
tion; 

FIG. 7E is another portion of the flow diagram illustrating 
Steps for processing multiple-request transactions in a State 
leSS environment according to an embodiment of the inven 
tion; 

FIG. 7F is another portion of the flow diagram illustrating 
Steps for processing multiple-request transactions in a State 
leSS environment according to an embodiment of the inven 
tion; 
FIG.7G is another portion of the flow diagram illustrating 

Steps for processing multiple-request transactions in a State 
leSS environment according to an embodiment of the inven 
tion; 
FIG.7H is another portion of the flow diagram illustrating 

Steps for processing multiple-request transactions in a State 
leSS environment according to an embodiment of the inven 
tion; and 

FIG. 7I is another portion of the flow diagram illustrating 
Steps for processing multiple-request transactions in a State 
leSS environment according to an embodiment of the inven 
tion. 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

4 
DETAILED DESCRIPTION OF THE 

PREFERRED EMBODIMENT 

A method and apparatus for processing multiple-request 
transactions over a network is described. In the following 
description, for the purposes of explanation, numerous spe 
cific details are Set forth in order to provide a thorough 
understanding of the present invention. It will be apparent, 
however, to one skilled in the art that the present invention 
may be practiced without these specific details. In other 
instances, well-known Structures and devices are shown in 
block diagram form in order to avoid unnecessarily obscur 
ing the present invention. 

HARDWARE OVERVIEW 

FIG. 1 is a block diagram that illustrates a computer 
system 100 upon which an embodiment of the invention 
may be implemented. Computer system 100 includes a bus 
102 or other communication mechanism for communicating 
information, and a processor 104 coupled with bus 102 for 
processing information. Computer System 100 also includes 
a main memory 106, Such as a random access memory 
(RAM) or other dynamic storage device, coupled to bus 102 
for Storing information and instructions to be executed by 
processor 104. Main memory 106 also may be used for 
Storing temporary variables or other intermediate informa 
tion during execution of instructions to be executed by 
processor 104. Computer system 100 further includes a read 
only memory (ROM) 108 or other static storage device 
coupled to buS 102 for Storing Static information and instruc 
tions for processor 104. A storage device 110, such as a 
magnetic disk or optical disk, is provided and coupled to bus 
102 for storing information and instructions. 
Computer system 100 may be coupled via bus 102 to a 

display 112, Such as a cathode ray tube (CRT), for displaying 
information to a computer user. An input device 114, includ 
ing alphanumeric and other keys, is coupled to buS 102 for 
communicating information and command Selections to 
processor 104. Another type of user input device is cursor 
control 116, Such as a mouse, a trackball, or cursor direction 
keys for communicating direction information and com 
mand Selections to processor 104 and for controlling cursor 
movement on display 112. This input device typically has 
two degrees of freedom in two axes, a first axis (e.g., X) and 
a Second axis (e.g., y), that allows the device to specify 
positions in a plane. 
The invention is related to the use of computer system 100 

to perform Specific operations in response to messages from 
browsers. According to one embodiment of the invention, 
the operations are performed by computer system 100 in 
response to processor 104 executing one or more Sequences 
of one or more instructions contained in main memory 106. 
Such instructions may be read into main memory 106 from 
another computer-readable medium, Such as Storage device 
110. Execution of the Sequences of instructions contained in 
main memory 106 causes processor 104 to perform the 
process StepS described herein. In alternative embodiments, 
hard-wired circuitry may be used in place of or in combi 
nation with Software instructions to implement the inven 
tion. Thus, embodiments of the invention are not limited to 
any Specific combination of hardware circuitry and Software. 
The term “computer-readable medium' as used herein 

refers to any medium that participates in providing instruc 
tions to processor 104 for execution. Such a medium may 
take many forms, including but not limited to, non-volatile 
media, Volatile media, and transmission media. Non-volatile 
media includes, for example, optical or magnetic disks, Such 



US 6,334,114 B1 
S 

as storage device 110. Volatile media includes dynamic 
memory, Such as main memory 106. Transmission media 
includes coaxial cables, copper wire and fiber optics, includ 
ing the wires that comprise buS 102. Transmission media can 
also take the form of acoustic or light waves, Such as those 
generated during radio-wave and infrared data communica 
tions. 
Common forms of computer-readable media include, for 

example, a floppy disk, a flexible disk, hard disk, magnetic 
tape, or any other magnetic medium, a CD-ROM, any other 
optical medium, punchcards, papertape, any other physical 
medium with patterns of holes, a RAM, a PROM, and 
EPROM, a FLASH-EPROM, any other memory chip or 
cartridge, a carrier wave as described hereinafter, or any 
other medium from which a computer can read. 

Various forms of computer readable media may be 
involved in carrying one or more Sequences of one or more 
instructions to processor 104 for execution. For example, the 
instructions may initially be carried on a magnetic disk of a 
remote computer. The remote computer can load the instruc 
tions into its dynamic memory and Send the instructions over 
a telephone line using a modem. A modem local to computer 
system 100 can receive the data on the telephone line and 
use an infra-red transmitter to convert the data to an infra-red 
Signal. An infra-red detector coupled to buS 102 can receive 
the data carried in the infra-red Signal and place the data on 
bus 102. Bus 102 carries the data to main memory 106, from 
which processor 104 retrieves and executes the instructions. 
The instructions received by main memory 106 may option 
ally be stored on storage device 110 either before or after 
execution by processor 104. 

Computer system 100 also includes a communication 
interface 118 coupled to bus 102. Communication interface 
118 provides a two-way data communication coupling to a 
network link 120 that is connected to a local network 122. 
For example, communication interface 118 may be an inte 
grated services digital network (ISDN) card or a modem to 
provide a data communication connection to a correspond 
ing type of telephone line. AS another example, communi 
cation interface 118 may be a local area network (LAN) card 
to provide a data communication connection to a compatible 
LAN. Wireless links may also be implemented. In any such 
implementation, communication interface 118 Sends and 
receives electrical, electromagnetic or optical Signals that 
carry digital data Streams representing various types of 
information. 

Network link 120 typically provides data communication 
through one or more networks to other data devices. For 
example, network link 120 may provide a connection 
through local network 122 to a host computer 124 or to data 
equipment operated by an Internet Service Provider (ISP) 
126. ISP 126 in turn provides data communication services 
through the Worldwide packet data communication network 
now commonly referred to as the “Internet' 128. Local 
network 122 and Internet 128 both use electrical, electro 
magnetic or optical signals that carry digital data Streams. 
The Signals through the various networks and the Signals on 
network link 120 and through communication interface 118, 
which carry the digital data to and from computer System 
100, are exemplary forms of carrier waves transporting the 
information. 

Computer System 100 can Send messages and receive 
data, including program code, through the network(s), net 
work link 120 and communication interface 118. In the 
Internet example, a Server 130 might transmit a requested 
code for an application program through Internet 128, ISP 
126, local network 122 and communication interface 118. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

6 
The received code may be executed by processor 104 as 

it is received, and/or Stored in Storage device 110, or other 
non-volatile Storage for later execution. In this manner, 
computer System 100 may obtain application code in the 
form of a carrier wave. 

FUNCTIONAL OVERVIEW OF APPLICATION 
SERVER 

FIG. 2 is a block diagram of a system 200 designed 
according to an embodiment of the invention. The System 
200 includes a plurality of browsers 202, 204 and 206 that 
communicate with a plurality of listeners 210, 216 and 222 
over the Internet 208 according to the HTTP protocol. In 
response to requests from the browsers, the listeners cause 
a web application server 280 to invoke software modules, 
referred to herein as cartridgeS. In the illustrated 
embodiment, web application server 280 has initiated the 
execution of three cartridges 230, 234 and 238. 
The web application server 280 is composed of numerous 

components, including transport adapters 212, 218 and 224, 
dispatchers 214, 220 and 226, an authentication server 252, 
a virtual path manager 250, a resource manager 254, a 
configuration provider 256 and a plurality of cartridge 
execution engines 228, 232 and 236. The various compo 
nents of the web application server 280 shall be described 
hereafter in greater detail. 

Significantly, the numerous components of web applica 
tion Server 280 communicate through an inter-machine 
communication mechanism, Such as an Object Request 
Broker 282. Using an inter-machine communication 
mechanism, cartridge instances that perform the operations 
Specified in browser requests may execute on different 
machines than the listeners that receive the requests and the 
browsers that issue the requests. Because the cartridge 
instances are on different machines than the listeners, the 
listeners are better insulated against faulty cartridge 
instances, thus enhancing the reliability and Security of the 
System. In addition, the Scalability of the System is greatly 
increased by spreading the processing burden of executing 
the cartridge instances among many machines, rather than 
the same machine that is executing the listener. The ability 
to distribute cartridge instance execution acroSS multiple 
machines allows numerous types of load balancing tech 
niques to be used in deciding when and where to Spawn new 
cartridge instances. 
A typical operation within system 200 generally includes 

the following Stages: 
A browser transmits a request over the Internet 208. 
A listener receives the request and passes it through a 

transport adapter to a dispatcher. 
The dispatcher communicates with virtual path manager 

250 to identify a cartridge selected by the browser request 
and to determine whether the cartridge requires authentica 
tion 

If the cartridge requires authentication, the dispatcher 
communicates with the authentication server 252 to deter 
mine whether the browser is authorized to access the 
Selected cartridge. 

If the authentication server 252 determines that the 
browser is not authorized to access the Selected cartridge, the 
browser is notified that acceSS has been denied. 

However, if access is authorized or the Virtual path 
manager 250 determines that authentication is not required, 
the dispatcher does one of two things. If the dispatcher 
knows about an unused instance for that cartridge, the 



US 6,334,114 B1 
7 

dispatcher sends the request to that instance. If there are no 
unused cartridge instances for that cartridge, the dispatcher 
asks the resource manager 254 to create a new cartridge 
instance. After the instance Starts up Successfully, the car 
tridge notifies the resource manager of its existence. The 
resource manager 254 then notifies the dispatcher of the new 
instance. The dispatcher creates a revised request based on 
the browser request and Sends the revised request to the new 
instance. 

The cartridge instance handles the revised request and 
Sends a response to the dispatcher. 

The dispatcher passes the response back through the 
listener to the client. 

These Stages shall be described in greater detail hereafter. 

CARTRIDGES 

Cartridges are modules of code for performing Specific 
application or System functions. A cartridge forms the basic 
unit of distribution in the system 200. According to one 
embodiment of the invention, cartridges are named using 
Universal Resource Locators (URLs). Thus, a cartridge 
name (i.e. URL) has two parts: the IP address of the server 
on which the cartridge resides, and the virtual path in the 
Server directory Structure of the compiled cartridge code. 
Because cartridges are named using URLS, the cartridge 
name Space is global and cartridges may be accessed using 
the same messaging techniques as are used to access other 
web resources, Such as documents. 

According to one embodiment of the invention, each 
cartridge has a Standard interface which provides a common 
overall Structure for all cartridges. The Standard interface 
defines the interface of routines that are invoked by the web 
application Server 280 under particular conditions. Accord 
ing to one embodiment of the invention, the abstract car 
tridge interface is as follows: 

interface Cartridge 

boolean inito(); 
boolean authenticate(in Principal user passwd); 
boolean exec(in Request req obj, out Response resp 

obj); 
boolean shutdown(); 

} 
The init() routine is responsible for intializing the car 

tridge instance. This may include invoking the constructors 
of Several Subobjects, preforking threads and acquiring all 
other required shared resources. 

The shutdown() routine is responsible for cleaning up all 
of the resources and Shutting down the cartridge instance. 
Once the shutdown() routine is invoked on a cartridge 
instance, it immediately becomes unavailable for Servicing 
Subsequent requests. 
The authenticate() routine validates whether the client 

requesting the Services of the cartridge is authorized to use 
those Services. 

The exec() routine is the generic way to dispatch all 
Service requests to the cartridge. 

EXEMPLARY CARTRIDGES 

Each cartridge is either configured as a cartridge that 
performs a well-defined finction, or as a programmable 
cartridge that acts as an interpreter or a routine environment 
for an application. An example of a programmable cartridge 
is a PL/SQL runtime, configured to process database queries 

15 

25 

35 

40 

45 

50 

55 

60 

65 

8 
according to the Oracle-based Programming Language 
using Structured Query Language (PL/SQL). The PL/SQL 
runtime executes a browser request having a database query. 
The PL/SQL runtime processes the request, for example, by 
accessing a database Server in communication with the 
cartridge instance via a data link. 

Another example of a programmable cartridge is a JAVA 
runtime interpreter. The JAVA runtime interpreter cartridge 
enables web application developerS to write Server-side 
JAVA applications to proceSS browser requests. Similarly, a 
custom Server may be configured as a cartridge in order to 
provide dynamic operations Such as, for example, accessing 
processes executed by a third party Server. 

DISPATCHERS 

Dispatchers are Software modules configured to route the 
requests received by listeners to the appropriate cartridges. 
According to one embodiment of the invention, dispatchers 
are implemented as server-side program extensions (i.e. 
“plug-ins'). AS Such, the dispatchers are loaded into and 
execute within the same address Space as the listeners to 
which they belong. The dispatchers may be linked with the 
listener code at compile time or dynamically loaded at 
runtime. 

In the illustrated embodiment, dispatchers 214, 220 and 
226 are associated with listeners 210, 216 and 222, respec 
tively. Dispatchers 214, 220 and 226 selectively route 
browser requests received by listeners 210, 216 and 222 to 
cartridges. 

For example, assume that listener 210 receives a browser 
request over the Internet 208 delivered in the form of a 
Uniform Resource Locator (URL). The browser request 
Serves as an identifier for a web object, for example an 
HTML page or an operation to be performed. The listener 
210 hands off the browser request to dispatcher 214 without 
any attempt at interpreting the browser request. Upon receiv 
ing the browser request, the dispatcher 214: 

(1) communicates with virtual path manager 250 to iden 
tify a cartridge Selected by the browser request and to 
determine whether the cartridge requires 
authentication, 

(2) if the cartridge requires authentication, communicates 
with the authentication server 252 to determine whether 
the browser is allowed to access the Selected cartridge, 

(3) if access is authorized, communicates with the 
resource manager to determine the Specific instance of 
the Selected cartridge to which the browser request 
should be sent, and 

(4) creates and dispatches a revised browser request for 
execution by the Specified instance of the cartridge. 

The revised browser request repackages information 
received in the original browser request. The revised 
browser request may include, for example, a context object 
that contains data required for the proper operation of the 
cartridge. The data required for proper operation of a car 
tridge may include, for example, a transaction ID that 
identifies a transaction with which the browser request is 
asSociated. 

If the cartridge replies to the request, the cartridge Sends 
the reply to the dispatcher and the dispatcher passes the reply 
up to the listener for transmission to the browser that 
initiated the request. 

CONFIGURATION PROVIDER 

According to one embodiment of the invention, cartridges 
that are to be used with web application server 280 are first 



US 6,334,114 B1 

registered with web application server 280. During the 
registration process, information about the cartridges is 
Supplied to the configuration provider 256. Configuration 
provider 256 stores the information as metadata 258 for later 
access by the components of the web application server 280. 
The metadata 258 may include, for example, 
(1) the cartridge name; 
(2) the minimum number of required instances; 
(3) the maximum number of instances; 
(4) the location of the code that implements the cartridge; 
(5) the program-dependent function names used by the 

cartridge execution engine to execute the callback 
functions (initialization, request handler, shutdown); 

(6) a list of machines for running the cartridge; 
(7) the idle time for the cartridge (the amount of time 

instances of the cartridge are allowed to remain idle 
before they are shut down); 

(8) an object identifier; and 
(9) data indicating the type of authentication Service, if 

any, to be used with the cartridge. 
The object identifier specifies the data that must be 

Supplied by a browser request for requesting performance of 
an operation by the corresponding cartridge. The object type 
may be a specific word, a URL, or may include a virtual path 
such as "/java”. 

Once the configuration provider 256 has stored the con 
figuration information for a particular cartridge in the meta 
data 258, that cartridge is automatically registered when web 
application server 280 is started. 

After a cartridge is registered with the web application 
Server 280, the resource manager 254 initiates the minimum 
instances for the cartridge. Once the minimum number of 
instances has been initiated, the web application server 280 
is prepared to proceSS browser requests. 

THE VIRTUAL PATH MANAGER 

AS mentioned above, dispatchers communicate with the 
virtual path manager 250 to determine where to route each 
revised browser request. Specifically, each browser request 
typically includes a URL. Upon receiving a browser request, 
the dispatcher sends the URL in the request to the virtual 
path manager 250. The virtual path manager 250 responds 
by Sending the dispatcher data that identifies the cartridge, if 
any, associated with the URL. 

In order to Supply the required information to dispatchers, 
virtual path manager 250 consults the metadata 258 that 
maps URLS to cartridges. In response to receiving a browser 
request, the Virtual path manager 250 uses the mapping data 
to determine the cartridge, if any, to which the URL con 
tained in the browser requests corresponds. 

For example, if the browser request is a URL request 
beginning with the Virtual path "/java’, the mapping may 
indicate that the JAVA interpreter cartridge is configured to 
handle requests having the Virtual path "/java'. 

According to one embodiment of the invention, the virtual 
path manager 250 also determines whether the cartridge 
associated with the URL requires authentication. If the 
cartridge requires authentication, the virtual path manager 
250 indicates in the response that the Virtual path manager 
250 sends to the dispatcher that authentication is required. If 
authentication is not required, the dispatcher creates and 
Sends a revised browser request to an instance of the 
cartridge without invoking the authentication server 252. If 
authentication is required, the dispatcher sends the revised 

15 

25 

35 

40 

45 

50 

55 

60 

65 

10 
request to an instance of the cartridge only after the authen 
tication Server indicates that the revised request may be 
Submitted to an instance of the cartridge. 

THE RESOURCE MANAGER 

The resource manager 254 of the web application server 
280 manages the execution of each of the cartridges by 
initiating a predetermined minimum number of instances for 
the cartridges, load balancing between the instances of each 
cartridge, and initiating new instances of cartridges as nec 
essary up to a predetermined maximum number of instances 
of a given cartridge. 

For example, assume that the metadata for a particular 
cartridge (C1) includes the following information: 
Name=C1 
Minimum Instances=10 
Maximum Instances=50 
Host Machines =M1, M2, M3 
Idle time =30 seconds 
Based on this metadata, when cartridge C1 is first 

registered, resource manager 254 will initiate ten instances 
of C1. Resource manager 254 will initiate the ten instances 
on the machines associated with the labels M1, M2 and M3. 
Upon receipt of requests from dispatchers to access C1, 

resource manager 254 determines whether any existing 
instance of C1 is available for use. If no instance of C1 is 
available when a request is received, resource manager 254 
determines whether the maximum number of instances of 
C1 are already running. If the maximum number of instances 
of C1 are not already running, then resource manager 254 
initiates a new instance of C1 on one of the possible host 
machines and transmits a message that identifies the new 
instance to the dispatcher that issued the request. If the 
maximum number of instances of C1 are already running, 
then resource manager 254 sends a message to the dis 
patcher that issued the request to indicate that the request 
cannot be handled at this time. 

LOAD BALANCING 

According to one embodiment of the invention, resource 
manager 254 applies a set of load balancing rules to deter 
mine where to initiate instances of cartridges where there is 
more than one possible host machine. Thus, in the above 
example, M1, M2 and M3 are all capable of executing 
instances of cartridge C1. If M1, M2 and M3 have the same 
processing capacity, it may be desirable to distribute the 
instances evenly across the three machines. However, if M1 
has ten times the processing power of M2 and M3, it may be 
desirable to initiate all instances of C1 on M1 up to a certain 
point, and then to distribute additional instances evenly 
among M1, M2 and M3. 
To assist resource manager 254 in determining how to 

load balance among possible machines, the metadata Stored 
for each cartridge may include additional details. For 
example, the metadata may specify a separate minimum and 
maximum number of instances for each machine. Resource 
manager 254 may then distribute new instances among the 
machines based on which machine has the lowest ratio of 
actual instances to maximum instances. 
The metadata may also specify an order for the machines 

that can run a cartridge. The machine at the N-1 position in 
the order is only used to execute instances of the cartridge 
when the machine at the Nth position in the order is already 
executing its maximum number of instances. 

CARTRIDGE INSTANCE STATUS TRACKING 

According to one embodiment of the invention, the 
resource manager 254 maintains State information to keep 



US 6,334,114 B1 
11 

track of cartridge instances that have been created. The State 
information includes data that identifies the instance, iden 
tifies the machine executing the instance, and identifies the 
listener to which the instance has been assigned. 

FIG. 5 illustrates a table 500 that may be maintained by 
resource manager 254 to Store this State information. Table 
500 includes an instance column 502, a cartridge column 
504, a listener column 506 and a machine column 508. Each 
row of table 500 corresponds to a distinct cartridge instance. 
Within the row for a given cartridge instance, cartridge 
column 504 identifies the cartridge associated with the 
cartridge instance and instance column 502 indicates the 
instance number of the cartridge instance. For example, row 
510 corresponds to an instance of cartridge C1. Therefore, 
cartridge column 504 of row 510 indicates cartridge C1. 
Instance column 502 of row 510 indicates that the cartridge 
instance associated with row 510 is instance 1 of cartridge 
C1. 

Listener column 506 indicates the listener to which the 
cartridge instance associated with a row has been assigned. 
Machine column 508 indicates the machine on which the 
cartridge instance associated with a row is executing. For 
example, the cartridge instance associated with row 510 has 
been assigned to listener 210 and is executing on machine 
M1. 

Similar to resource manager 254, each dispatcher main 
tains State information for the cartridge instances that have 
been assigned to the listener to which the dispatcher is 
attached. Such State information may be maintained, for 
example, in a table 400 as shown in FIG. 4. Similar to table 
500, table 400 includes an instance column 402 and a 
cartridge column 404 that respectively hold instance num 
bers and cartridge identifiers. However, while table 500 
includes one entry for every cartridge instance assigned by 
resource manager 254, table 400 only includes entries for 
cartridge instances that have been assigned to a particular 
listener. For example, table 400 includes entries for only 
those cartridge instances listed in table 500 that have been 
assigned to listener 210. 

In addition to instance column 402 and cartridge column 
404, table 400 includes a status column 406. For each row, 
the status column 406 holds a value that indicates the status 
of the instance associated with the row. For example, the 
status column 406 of row 408 indicates that instance 1 of 
cartridge C1 is currently busy. In the illustrated embodiment, 
the status column 406 holds a flag that indicates that a 
cartridge instance is either BUSY or FREE. The significance 
of the cartridge status shall now be describe with reference 
to the operation of resource manager 254 and dispatchers 
214 and 220. 

INTERACTION BETWEEN DISPATCHERS AND 
THE RESOURCE MANAGER 

AS explained above, dispatchers communicate with 
resource manager 254 when they need to Send a revised 
browser request to a particular cartridge. According to one 
embodiment of the invention, dispatchers first determine 
whether an instance of the appropriate cartridge (1) has 
already been assigned to it and (2) is available to process the 
new revised browser request. If an appropriate cartridge 
instance has already been assigned to the dispatcher and is 
currently available to process the new revised browser 
request, then the dispatcher forwards the revised browser 
request to the cartridge instance without further communi 
cation with resource manager 254. 

For example, assume that listener 210 receives a browser 
request that, according to virtual path manager 250, must be 

15 

25 

35 

40 

45 

50 

55 

60 

65 

12 
processed by cartridge C1. Assume also that table 400 
reflects the current list and Status of cartridge instances that 
have been assigned to listener 210. Upon receiving the 
browser request from listener 210, dispatcher 214 inspects 
table 400 to locate a FREE instance of cartridge C1. In the 
illustrated table 400, row 410 indicates that instance 3 of 
cartridge C1 is currently FREE. Consequently, dispatcher 
214 forwards a revised browser request directly to instance 
3 of cartridge C1 without further communication with 
resource manager 254. In response to Sending the revised 
browser request, dispatcher 214 changes the Status value in 
Status column 406 of row 410 to BUSY. 

If a listener has not already been assigned an appropriate 
cartridge instance that is currently available, then the dis 
patcher associated with the cartridge requests a cartridge 
instance from the resource manager 254. If the resource 
manager 254 determines that an instance of the required 
cartridge is not available and the number of existing 
instances of the required cartridge is below the maximum, 
then the resource manager 254 initiates a new cartridge. 
Upon initiating a new cartridge, the resource manager 254 
inserts an entry for the new cartridge instance in table 500. 
ASSume, for example, that listener 210 receives a browser 

request that must be processed by cartridge C3. ASSume also 
that instance 3 of cartridge C3 has not yet been initiated. 
Under these conditions, dispatcher 214 Sends to resource 
manager 254 a request for a handle to an instance of 
cartridge C3. In response to this request, resource manager 
254 initiates instance 3 of cartridge C3 on machine M3. In 
addition, resource manager 254 inserts into table 500 the 
entry found at row 512. 

After inserting row 512 for instance 3 of cartridge C3 in 
table 500, resource manager 254 sends back to the dis 
patcher 214 a handle to the newly created instance. In 
response to receiving this handle, dispatcher 214 inserts an 
entry (row 412) for the new instance in its status table 400. 
The dispatcher 214 then transmits a revised browser request 
to instance 3 of cartridge C3. 

RELEASING CARTRIDGE INSTANCES 

According to one embodiment of the invention, listeners 
do not automatically release ownership of cartridge 
instances when the cartridge instances finish responding to 
outstanding browser requests. For example, assume that 
instance 3 of cartridge C3 receives a revised browser 
request, processes the revised browser request, and Sends a 
response back to dispatcher 214. Dispatcher 214 passes the 
response to listener 210 to be sent back to the browser that 
issued the browser request. 
At this point, listener 210 no longer requires ownership of 

instance 3 of cartridge C3. However, rather than transferring 
ownership of instance 3 of cartridge C3 back to resource 
manager 254, dispatcher 214 merely changes the Status 
column 406 of row 412 from BUSY to FREE. 

Changing the value in status column 406 of row 412 to 
FREE indicates that instance 3 of cartridge C3 is no longer 
working on a request, and is therefore ready to handle 
Subsequent requests. However, because table 400, which 
indicates that instance 3 of cartridge C3 is available, is 
maintained locally by dispatcher 214, instance 3 of cartridge 
C3 is only available for subsequent browser requests arriv 
ing at listener 210. Row 512 of table 500 maintained by 
resource manager 254 continues to indicate that instance 3 
of cartridge C3 is owned by listener 210. 

Because listeners do not automatically release cartridge 
instances every time a request is Serviced, overhead associ 



US 6,334,114 B1 
13 

ated with communication between the resource manager 254 
and the various dispatchers is significantly reduced. For 
example, assume that a listener 210 receives ten Successive 
requests that must be communicated to cartridge C3. Rather 
than communicating with resource manager 254 for each of 
the ten requests, dispatcher 214 may communicate with 
resource manager 254 in response to the first request. The 
Subsequent nine requests can be handled by dispatcher 214 
without communicating with resource manager 254 because 
the dispatcher 214 uses the same instance of C3 that pro 
ceSSes the first request to process the nine Subsequent 
requests. 

While not automatically releasing listener ownership of 
cartridge instances when each request is Serviced can 
increase the efficiency of web application server 280, lis 
teners cannot maintain ownership of cartridge instances 
indefinitely. For example, instances that have not been used 
for long periods of time should be passed back to the 
resource manager 254 So they can be de-allocated to free up 
resources. In addition, it is not efficient for one listener to 
maintain ownership of the instance of a cartridge that it has 
not used for a relatively long time when other listeners 
require instances of that cartridge. 

Consequently, resource manager 254 communicates to 
each listener a maximum idle time for each cartridge 
instance passed to the listener. The maximum idle time 
indicates the maximum amount of time a cartridge instance 
can go unused before the listener must release ownership of 
the cartridge instance. For example, assume that the resource 
manager 254 indicates to listener 210 that the maximum 
amount of idle time for instance 3 of cartridge C3 is 10 
minutes. Based on this information, listener 210 may con 
tinue to use instance 3 of cartridge C3 to process browser 
requests for cartridge C3 as long as instance 3 of cartridge 
C3 does not remain idle or FREE for more than 10 minutes. 

If instance 3 of cartridge C3 is idle for more than 10 
minutes, dispatcher 214 removes row 412 from table 400 
and sends a message to resource manager 254 that listener 
210 is releasing ownership of instance 3 of cartridge C3. In 
response to this message, resource manager 254 updates row 
512 to indicate that instance 3 of cartridge C3 is not owned 
by any listener and may thus be reassigned to another 
listener or terminated. 

In an alternative embodiment, dispatchers do not auto 
matically release cartridge instances when the idle time for 
the cartridge instance has expired. Instead, the dispatcher 
Sends a message to resource manager 254 offering to release 
the expired instance. Resource manager 254 may respond to 
the offer by requesting that the listener release the cartridge 
instance, or by allowing the listener to retain ownership of 
the expired cartridge instance. 

According to one embodiment of the invention, resource 
manager 254 maintains a queue of the requests that cannot 
be immediately serviced. When it becomes possible to 
Service a queued request, the request is removed from the 
queue and processed. 

For example, assume that listener 222 receives a browser 
request that must be processed by cartridge C1, and that 
listener 222 has not been assigned any instances of cartridge 
C1. Dispatcher 226 sends a request for an instance of C1 to 
resource manager 254. ASSume further that a maximum of 
50 instances of C1 are allowed, and that 50 instances of C1 
have been assigned to listener 210. Under these conditions, 
resource manager 254 cannot Service the request from 
listener 222. Therefore, resource manager 254 puts the 
request on a queue. When listener 210 releases an instance 

5 

15 

25 

35 

40 

45 

50 

55 

60 

65 

14 
of C1, resource manager 254 communicates to listener 222 
that an instance of C1 is available. 

Under certain conditions, resource manager 254 may 
preemptively cause a listener to release a cartridge instance. 
For example, resource manager 254 may detect a System 
overload Situation and respond by terminating a Set of 
cartridge instances, either before or after informing the 
listeners that currently have been assigned the cartridge 
instances that the cartridge instances are going to be termi 
nated. 

ReSource manager 254 may also preemptively cause 
listeners to release cartridge instances to implement fairneSS 
policies between listeners. For example, resource manager 
254 may cause a listener that holds the most instances of a 
given cartridge to release an instance of the cartridge when 
another listener has waited more than a predetermined 
threshold of amount of time for an instance of the cartridge. 
For example, if listener 210 has been assigned 50 instances 
of cartridge C1 and C1 has a maximum of 50 instances, then 
resource manager 254 may cause listener 210 to release an 
instance of C1 ten Seconds after receiving a request for an 
instance of C1 from another listener. 

CARTRIDGE EXECUTION ENGINES 

According to one embodiment of the invention, each 
cartridge instance is composed of a cartridge execution 
engine and a cartridge. A cartridge execution engine is a 
code module that insulates cartridges from the complexities 
of the web application server 280 and the inter-module 
communication mechanism. A cartridge is made available to 
a cartridge execution engine by Storing in a function table 
pointers to the cartridge functions. According to one 
embodiment, all cartridges provide the functions Specified in 
the exemplary cartridge interface described above. By hav 
ing all cartridges Support the Same interface, a Single Stan 
dard cartridge execution engine can be used with all car 
tridges. 

According to one embodiment of the invention, cartridges 
are implemented as shared libraries, and cartridge execution 
engines are executable programs that invoke the routines in 
the shared libraries using the Standard cartridge interface. 
The cartridge execution engine provides the interface 
between cartridges and the dispatcher, directs cartridge flow 
of control, and provides Services for cartridges to use. 
When the resource manager 254 requires the creation of 

a new cartridge instance, the resource manager 254 causes 
a cartridge execution engine to be instantiated. In turn, the 
instance of the cartridge execution engine thus created 
causes the appropriate cartridge to be instantiated. The 
resource manager 254 can cause the cartridge execution 
engine to be instantiated, for example, by invoking a "car 
tridge execution engine factory” that resides on the machine 
on which the cartridge is to be executed. The instance of the 
cartridge execution engine can cause the cartridge to be 
instantiated, for example, by making a call to one of the 
routines in the shared library that constitutes the cartridge. 
As shown in FIG. 2, the web application server 280 

includes cartridge execution engines 228, 232 and 236 for 
each of the cartridges 230, 234 and 238. The cartridge 
execution engines control execution of the instances of the 
corresponding cartridges by making calls into the cartridges 
through the Standard cartridge interface. By establishing 
basic callback functions between the cartridge execution 
engine and a cartridge, any cartridge can be integrated into 
the web application Server 280 by configuring the cartridge 
to respond to the callback functions, and then registering the 
cartridge in the configuration provider 256, as described 
below. 



US 6,334,114 B1 
15 

Thus, if the dispatcher 214 determines that the PL/SQL 
runtime cartridge is the appropriate cartridge to process a 
request, the dispatcher 214 dispatches the request to a 
cartridge instance that includes a cartridge execution engine 
associated with the PL/SQL runtime cartridge. If a new 
instance needs to be initiated, the resource manager 254 
creates a new instance of the PL/SQL runtime cartridge in a 
Separate address Space and dispatches the request to the 
cartridge execution engine 228 of the new instance. The 
address Space used to execute the instance of the program 
may be within memory of the computer System upon which 
one or more of the components of web application Server 
280 is executing, or on another computer System. 

In response to a message from a dispatcher, the cartridge 
execution engine issues a request handler callback function 
to the cartridge, causing the cartridge to process the request. 
The cartridge executing the request returns the result to the 
cartridge execution engine, which forwards the result to the 
dispatcher. In the event that the web application server 280 
detects a fault in the operation, the cartridge execution 
engine issues a shutdown fuiction of the cartridge. 

Hence, the cartridge execution engine provides an appli 
cation programming interface to the web application Server 
280 that specifies predetermined operations to be performed. 
Use of the Standard cartridge interface enables programmerS 
of the cartridges to configure each cartridge for high-level 
integration into the web application server 280 independent 
of the protocols used by the particular web listener with 
which the cartridge will be used. 

TRANSPORTADAPTERS 

Listeners enable the use of Server-Side plug-ins by pro 
Viding a programming interface and protocol for use by Such 
plug-ins. Unfortunately, the programming interfaces and 
protocols provided by listeners vary from listener to listener. 
For example, Netscape Server Application Programming 
Interface (NSAPI), Internet Server Application Program 
ming Interface (ISAPI) and Application Development Inter 
face (ADI) are three examples of distinct programming 
interfaces currently provided by listeners. 

Transport adapters insulate dispatchers from the propri 
etary protocols and interfaces used by web listeners. 
Specifically, each transport adapter is configured to recog 
nize the protocols of different listeners, and to convert the 
browser requests received from the listeners into converted 
browser requests having a Standard dispatcher protocol that 
is independent from the protocol of the listener. Similarly, 
transport adapters convert the replies from the dispatcher to 
the transport protocol of the listeners. 

Hence, the transport adapter enables the web application 
server 280 to be used with listeners from different vendors. 
Moreover, transport adapters may be configured to accom 
modate different Server architectures and operating Systems. 

OPERATION OF THE WEB APPLICATION 
SERVER 

FIGS. 3A and 3B are a flow diagram illustrating a method 
of responding to a browser request according to an embodi 
ment of the present invention. The browser request is 
received in step 350 by a listener. For the purposes of 
explanation, it shall be assumed that the browser request was 
issued by browser 202 and received by listener 210. 
Upon receiving the browser request, the listener 210 

forwards the request to the web application server 280 in 
step 352. Specifically, listener 210 passes the request to the 

15 

25 

35 

40 

45 

50 

55 

60 

65 

16 
transport adapter 212 using the proprietary programming 
interface of the listener 210. The transport adapter 212 
converts the request as necessary to pass the request to 
dispatcher 214 using a Standard dispatcher programming 
interface. 

Dispatcher 214 identifies the request object type that 
corresponds to the browser request in step 354 based on the 
Virtual path Specified in the browser request by communi 
cating with the virtual path manager 250. If the request 
object type corresponds to a cartridge, the Virtual path 
manager also indicates to the dispatcher 214 whether 
authentication is required. 
The dispatcher 214 determines in step 356 if the request 

object type corresponds to an identifiable cartridge. If the 
request object type does not correspond to an identifiable 
cartridge, the request is returned to the listener 210 in Step 
358 (see FIG.3B). If in step 358 the listener 210 recognizes 
the request as a request for a Static HTML page, the listener 
accesses the static HTML page, and sends the HTML page 
to the browser 202 in step 360. If the browser request is not 
recognized by the listener 210, the reply is sent to the 
browser 202 in step 360 indicating that the request was 
unrecognizable. 

If in step 356 the dispatcher 214 determines that the 
request must be sent to a cartridge, then the dispatcher 
performs any necessary authentication by communicating 
with the authentication server 252. The authentication pro 
ceSS will be described in greater detail hereafter. In addition, 
if in step 356 it is determined that listener 210 has not been 
assigned any instances of that cartridge that are currently 
FREE, then the dispatcher 214 communicates with the 
resource manager 254 to be assigned an instance of the 
cartridge 230 to which the browser request can be sent. 

In step 362, shown in FIG. 3B, the resource manager 254 
determines whether an instance of the identified cartridge is 
available (unowned) among the existing number of 
instances. For the purposes of explanation, it shall be 
assumed that the request is associated with cartridge 230, 
and that cartridge 230 is a PL/SQL runtime cartridge. 

If in Step 362 the resource manager identifies an available 
instance, for example instance 260 of the PL/SQL runtime 
230, the resource manager 254 informs the dispatcher 214 
that the request should be sent to instance 260. The dis 
patcher 214 then creates and sends a revised browser request 
to the cartridge execution engine 228 of the instance 260 in 
step 368 to cause the available instance 260 to process the 
request, as described below. 

However, if in step 362 no instance of the cartridge 230 
is available, the resource manager 254 determines in Step 
364 if the existing number of instances exceeds a maximum 
prescribed number. If the existing number of instances 
exceeds the maximum prescribed number in Step 364, the 
resource manager 254 indicates to the dispatcher 214 that 
the request cannot be processed at this time. In response, the 
dispatcher 214 returns the request to the listener 210 in step 
358, after which the web listener 210 sends a reply to the 
browser 202 over the network in step 360 indicating the 
request was not processed. 

Alternatively, when a cartridge instance is not currently 
available to handle a request, listener 210 may place the 
request on a waiting list for that cartridge instance. When a 
cartridge instance becomes available, the revised browser 
request is removed from the waiting list and forwarded to the 
cartridge instance. If the revised browser request remains on 
the waiting list for more than a predetermined amount of 
time, listener 210 may remove the request from the waiting 



US 6,334,114 B1 
17 

list and Send a message to the browser 202 to indicate that 
the request could not be processed. 

If in step 364 the existing number of instances does not 
exceed the maximum prescribed number, the resource man 
ager 254 initiates a new instance of the identified program 
and informs the dispatcher 214 that a revised browser 
request based on the browser request should be sent to the 
new instance. The dispatcher 214 then dispatches a revised 
browser request to the cartridge execution engine of the new 
instance. 

For example, assume that the resource manager 254 
initiated instance 260 in response to the browser request. 
During the initialization, the Stored Sequences of instructions 
for the PL/SQL runtime are accessed to create a new 
instance 260 of the cartridge 230 in an address space that is 
Separate from the address Space in which dispatcher 214 is 
executing. According to one embodiment, initialization is 
performed by loading the cartridge execution engine 228 
and having the cartridge execution engine call the initial 
ization routine in cartridge 230. 

Once the new instance 260 is running, the dispatcher 214 
dispatches the request to the cartridge execution engine 228 
associated with the new instance 260 in step 368. The 
cartridge execution engine 228 Sends a callback message to 
the new instance 260 requesting execution of the request. In 
the callback message, the cartridge execution engine 228 
passes any parameters necessary for the instance 260 to 
process the request. Such parameters may include, for 
example, passwords, database Search keys, or any other 
argument for a dynamic operation executed by the instance 
260. 

The instance 260 then executes the request. During the 
execution of the request by the instance in step 368, the 
dispatcher 214 monitors the instance to determine the occur 
rence of a fault in step 370. If in step 370 the dispatcher 214 
detects a fault, the dispatcher 214 calls the corresponding 
cartridge execution engine 228 in step 372 to abort the 
instance 260 having the fault. The corresponding cartridge 
execution engine 228 in turn issues a shut down command 
acroSS the API to the faulty instance. The instance, respond 
ing to the shut down command by the cartridge execution 
engine 228, will shut down without affecting any other 
proceSS in any other address Space. 

If in step 370 no fault is detected, the dispatcher 214 
receives a reply from the instance 260 upon completion of 
execution in step 374. The dispatcher 214 in step 376 
forwards the reply to the listener 210, which responds to the 
browser with the reply from the executed instance 260. After 
executing the instance 260, the dispatcher 214 in step 378 
maintains the instance in the memory, as shown in Step 378 
to enable execution of a Subsequent request. 

DISTRIBUTED ARCHITECTURE OF WEB 
SERVER 

Significantly, the various components of the web appli 
cation Server 280 communicate with each other using a 
communication mechanism that does not require the com 
ponents to be executing in the same address Space or even 
on the Same machine. In the illustrated embodiment, the 
components of the web application Server 280 are config 
ured to communicate through an Object Request Broker 
(ORB) 282. Object Request Brokers are described in detail 
in “Common Object Request Broker: Architecture and 
Specification (CORBA)'.This and other documents relating 
to CORBA can be found on the World Wide Web at 
http://www.omg.org. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

18 
While the embodiments of the present invention shall be 

described with reference to communications through a 
CORBA-compliant ORB, other cross-platform communica 
tion mechanisms may be used. For example, the components 
of web application server 280 may alternatively communi 
cate with each other using Remote Procedure Calls (RPC), 
a UNIX pipe, Microsoft COM. 

Because the various components of the web application 
Server 280 communicate with each other using a machine 
independent communication mechanism, there are no inher 
ent restrictions with respect to where the components are 
located with respect to each other. For example, listeners 
210, 216 and 222 may be executing on the same machine, or 
on three completely different machines, each with a different 
operating System. Similarly, the authentication Server 252, 
Virtual path manager 250, resource manager 254 and con 
figuration provider 256 may be executing on the same 
machine or on four different machines. Further, those four 
different machines may not have any overlap with the three 
machines executing listeners 210, 216 and 222. 

Cartridge execution engines 228, 232 and 236 incorporate 
all of the necessary logic to communicate with the other 
components of the web application server 280 through the 
object request broker 282. Consequently, the location of the 
cartridge instances themselves is not inherently restricted by 
the communication mechanism. Thus, instance 260 may be 
executing in a completely different machine and operating 
System than dispatchers from which it receives requests. 
Likewise, instance 260 may be on a different machine and 
operating System than the resource manager 254 or any of 
the other components of the web application server 280, 
including instances of other cartridges that are being man 
aged by the same web application server 280. 

Significantly, the location-independence enjoyed by car 
tridges used by web application server 280 is achieved 
through the cartridge execution engine communication 
logic, not through any custom programming in the cartridges 
themselves. Consequently, the cartridges do not need to be 
Specially designed for execution in a distributed application 
Server environment. Cartridge designers are thus insulated 
from the complexities of a distributed System, and can 
concentrate their efforts on the logic associated with the 
tasks for which the cartridges were created. 

PROCESSING TRANSACTIONS 

According to an embodiment of the invention, transac 
tions are implemented in a StateleSS environment through the 
use of metadata that indicates Specific information for Spe 
cific types of transactions. A piece of information about a 
transaction that is Supplied in the metadata is referred to 
herein as an attribute of the transaction. The use of metadata 
to indicate specific attributes of a transaction allows for a 
System in which cartridges are not required to persistently 
maintain State information. Transactions in Such a System 
are declarative rather than programmatic in that the mes 
Sages themselves indicate the transactions to which they 
belong. For example, the metadata for two particular types 
of transactions, TX1 and TX2, could be as follows: 

TX1) 
STOREFRONT 
name=STOREACCOUNTS 
belong-to-list=/STOREFRONT 
/BANKING 

resource-list=/SEARS 
/BANK1 
begin=/storefront/open Session 



US 6,334,114 B1 
19 

commit=/storefront/commit Session 
rollback=/storefront/rollback Session 

TX2] 
EMPLOYEE 
name=EMPLOYEEACCOUNTS 
belong-to-list=/EMPLOYEE 
/BANKING 

resource-list=/PERSONNEL 
/BANK1 

begin=/employee/open Session 
commit=/employee/commit Session 
rollback=/employee/rollback Session 

For each type of transaction the metadata includes various 
attributes. According to one embodiment, the attributes 
include a cartridge name, a transaction name, a belong-to 
list, a resource-list, begin, commit and rollback TRANSAC 
TION URLs. In the example given above, the cartridge 
name for TX1, is STOREFRONT, the transaction name is 
STOREACCOUNTS, the belong-to-list consists of 
/STOREFRONT and /BANKING, the resource-list consists 
of /SEARS and /BANK1, the begin transaction URL is 
/storefront/open Session, the commit transaction URL is 
/storefront/commit session and the rollback transaction URL 
is /storefront/rollback Session. 

The cartridge name attribute identifies the particular type 
of cartridge that the dispatcher communicates with to per 
form the operations of the transaction. The transaction name 
attribute uniquely identifies the type of transaction relative 
to other transaction types. The belong-to-list of a transaction 
type lists the cartridges that may participate in the perfor 
mance of the transaction. The resource-list is the list of 
resources that are affected by the performance of transac 
tions that are of the transaction type. The begin transaction 
URL is the URL that signals that a transaction of this type 
is about to begin. The commit transaction URL is the URL 
that Signals that a transaction of this type that is currently in 
progreSS should be committed. The rollback transaction 
URL is the URL that signals that a transaction of this type 
that has already started should be rolled back. How each of 
these attribute values is used during the performance of a 
transaction shall be described in greater detail below. 

TRANSACTION OVERVIEW 

FIG. 6 is a block diagram of a system 600 that provides 
for the processing of multiple-request transactions in a 
StateleSS environment according to one embodiment of the 
invention. FIG. 6 is similar to FIG. 2 and therefore like 
components have been numbered alike. Within this 
document, the term browser request and the term transaction 
request are used interchangeably. The term multiple-request 
transaction is used to refer to a single transaction that is 
comprised of two or more browser requests. 
AS described earlier, cartridge execution engine 228 com 

municates with a plurality of dispatchers (e.g. one or more 
of dispatchers 214, 220 and 226) through object request 
broker 282 to receive browser messages. These browser 
messages may be sent from a plurality of browsers con 
nected to the Internet 208. In addition to the plurality of 
dispatchers, cartridge execution engine 228 also communi 
cates with a cartridge 230, configuration provider 256 and 
transaction manager 606. AS previously described above, the 
cartridge 230 represents a module of code that is either 
configured as a cartridge that performs a well-defined 
function, or as a programmable cartridge that acts as an 
interpreter or a routine environment for an application. The 
combination of cartridge execution engine 228, transaction 
manager 606 and cartridge 230 constitute a cartridge 
instance. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

20 
A particular cartridge may be associated with a plurality 

of database Servers for access to a plurality of databases. In 
this example, cartridge 230 has the ability to process data 
base transactions according to the Structured Query Lan 
guage (SQL) by accessing database 610 and database 614 
through database server 608 and database server 612 respec 
tively. 

Transaction manager 606 represents a coordinating mod 
ule that is associated with cartridge execution engine 228 
and functions to coordinate the execution of multiple 
request transactions in the StateleSS web environment. In 
coordinating the execution of multiple-request transactions, 
transaction manager 606 retains no State information for the 
multiple-request transactions. The transaction manager 606 
communicates with cartridge execution engine 228 to 
receive transaction control messages. Using the information 
contained in the transaction control messages, the transac 
tion manager 606 interacts with database servers 608 and 
612 to cause changes made during multiple-request trans 
actions to respective databases 610 and 614 to be either 
committed or rolled back as an atomic unit of work. 

IDENTIFYING TRANSACTIONS 

Browser requests that are associated with multiple 
request transactions include a globally unique transaction 
ID. The globally unique transaction ID within a browser 
request is used to identify the multiple-request transaction to 
which the browser request belongs. According to one 
embodiment, when a browser request is received that con 
tains a begin transaction URL, the transaction manager 
creates a globally unique transaction ID. This globally 
unique transaction ID is returned to the Sending browser, and 
is sent by the browser in Subsequent browser requests that 
are associated with the same multiple-request transaction. 

In certain embodiments, when returned to the browser 
from which a multiple-request transaction was initiated, the 
globally unique transaction ID associated with the particular 
multiple-request transaction is Stored as cookie information 
on the client executing the browser. When a Subsequent 
browser request is Sent by the browser, the dispatcher 
determines if the Subsequent request contains a begin trans 
action URL. If the request does not contain a begin trans 
action URL, then the dispatcher obtains the globally unique 
transaction ID associated with the browser request by read 
ing the Sending browser's cookie information using the 
HTTP protocol standards. 

For example, when a browser 202 sends a first browser 
request associated with a transaction and a begin transaction 
URL, the transaction manager 606 creates a unique browser 
identifier and sends it to the dispatcher 214. The dispatcher 
214 then causes the globally unique transaction ID to be 
stored as cookie information on browser 202. When browser 
202 Sends a Second browser request that is associated with 
the same transaction, the dispatcher 214 obtains the globally 
unique transaction ID contained in the cookie information of 
browser 202. 

Using the globally unique transaction ID, the database 
Servers that ultimately process the browser request can 
determine that both the first browser request and the second 
browser request are associated with the same multiple 
request transaction. Because a particular browser may be 
executing more than one transaction at a time, in certain 
embodiments, the cartridge name for the particular transac 
tion is contained within each globally unique transaction ID 
and is used to help identify the particular transaction to 
which the globally unique transaction ID corresponds. 



US 6,334,114 B1 
21 

In certain situations cookie information may not be avail 
able on a particular browser. For example, a particular 
browser may not Support the use of cookies or a particular 
user may choose to deny access to the browser cookie 
information. Therefore, in certain embodiments, the trans 
action identifiers are embedded in the messages returned to 
a browser, and Sent out by the browser in Subsequent 
browser requests. This can be accomplished by annotating 
the URLs that are associated with the hyperlinks of the 
HTML page that is returned to the browser 202. Based upon 
the globally unique transaction ID that is Sent out as part of 
the browser request URL, the database servers that ulti 
mately perform the operations Specified in the browser 
requests can use the globally unique transaction ID to 
identify the multiple-request transaction to which each par 
ticular browser request belongs. 

TRANSACTION CARTRIDGE INSTANTIATION 

Each browser request contains URL information that is 
Sent from the Sending browser in response to a user of the 
browser selecting a hypertext link on an HTML page. The 
URL information includes a Uniform Resource Indicator 
(URI) portion and a header section. The URI portion 
includes transaction State information and a cartridge name. 
The transaction State information is used to identify the 
particular State of a multiple-request transaction. The car 
tridge name is used to identify the cartridge type and allows 
the cartridge execution engine to identify the metadata that 
is associated with the browser request. 

The header Section is used to Store a globally unique 
transaction ID that is used by the database servers to identify 
the multiple-request transaction that is associated with a 
particular transaction request. 
When a listener receives the browser request, it passes the 

browser request to the dispatcher. The dispatcher then com 
municates with the virtual path manager to determine the 
cartridge type that is associated with the browser request. In 
one embodiment, the dispatcher forwards the information 
contained in the URI to the Virtual path manager. Using the 
information in the URI, the virtual path manager commu 
nicates with the configuration provider to determine the 
cartridge type that is associated with the browser message. 

Once the cartridge type is identified, the virtual path 
manager returns data that identifies the cartridge type to the 
dispatcher. The dispatcher then Searches a cartridge instance 
pointer list that includes pointers to cartridge instances that 
have previously been associated with the particular dis 
patcher. If the dispatcher locates a pointer to a cartridge 
instance that is of the cartridge type that is associated with 
the browser request, the dispatcher uses the pointer to Send 
a revised browser message to the cartridge instance. 

If the dispatcher does not locate a pointer to the type of 
cartridge instance that is associated with the browser 
request, the dispatcher communicates with the resource 
manager to obtain a cartridge instance of that type. In 
obtaining the cartridge instance, the dispatcher Sends a 
message to the resource manager that includes the cartridge 
type that was previously identified by the virtual path 
manager. 
Upon receiving the dispatcher message, the resource 

manager determines if a cartridge instance of the request 
type is available for use by Searching a cartridge instance 
pointer table. If a cartridge instance pointer of the requested 
type is located in the cartridge instance pointer table, the 
resource manager Sends a pointer to the available cartridge 
instance back to the dispatcher. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

22 
However, if a cartridge instance of the requested type is 

not available, the resource manager causes a cartridge 
instance of the request type to be instantiated. In one 
embodiment of the invention, the resource manager causes 
a cartridge instance of the requested type to be instantiated 
by requesting a particular cartridge factory process to create 
a cartridge instance of the request type. Cartridge factory 
processes may be located acroSS multiple machines. When a 
particular cartridge factory process is requested to instantiate 
a cartridge instance, it instantiates the cartridge instance on 
the same machine that the cartridge factory is currently 
executing on. Therefore, the resource manager Selects which 
cartridge factory to use based on the particular machine the 
resource manager chooses to instantiate the cartridge 
instance. 
Upon receiving a request to instantiate a cartridge 

instance, the cartridge factory process instantiates an 
instance of a cartridge execution engine. Once the cartridge 
execution engine is instantiated, the cartridge execution 
engine obtains the transaction information, if any, that is 
asSociated with the requested cartridge type. For example, if 
the requested cartridge type is of type STOREFRONT as 
described in TX1 above, the cartridge execution engine 
obtains and Stores the metadata information that is associ 
ated with TX1. This metadata information is used by the 
cartridge instance to process transactions. 

After obtaining the metadata information, the cartridge 
execution engine instantiates a cartridge of the requested 
cartridge type. The instance of the cartridge that is created is 
dynamically linked with the cartridge execution engine. The 
cartridge execution engine then instantiates a transaction 
manager. The transaction manager instance is dynamically 
linked with the cartridge and the cartridge execution engine 
to form a cartridge instance. 
Once the cartridge instance is formed, the transaction 

manager uses the metadata information that was previously 
Stored by the cartridge execution engine to open connections 
with the databases that were identified in the resource-list of 
the metadata. These connections are retained by the trans 
action manager and later used to provide database handles to 
the associated cartridge and to control the processing of 
multiple-request transactions. For example, if the requested 
cartridge type is of type STOREFRONT, the resource-list is 
associated with a SEARS and BANK1 database. Using the 
resource-list information, the transaction manager opens a 
connection with the SEARS database and the BANK1 
database by respectively establishing connections with the 
database servers associated with the SEARS and BANK1 
databases. These connections are retained by the transaction 
manager and are used for processing transactions of type 
TX1. 

After the transaction manager establishes its connections 
with the appropriate databases (i.e. through the database 
Servers associated with the appropriate databases), the car 
tridge execution engine notifies the cartridge factory that a 
cartridge instance has been instantiated by returning a 
pointer to the cartridge instance back to the cartridge factory. 
Upon receiving the cartridge instance pointer, the cartridge 
factory sends the cartridge instance pointer to the resource 
manager. 

The resource manager then registers the cartridge instance 
pointer into its cartridge instance pointer table. The resource 
manager then sends the cartridge instance pointer to the 
dispatcher. Upon receiving the cartridge instance pointer 
from the resource manager, the dispatcher Stores the car 
tridge instance pointer into its associated cartridge instance 



US 6,334,114 B1 
23 

pointer list. The dispatcher then uses the cartridge instance 
pointer to Send a revised browser message to the cartridge 
instance. 

CREATING REVISED BROWSER MESSAGES 

Upon obtaining a cartridge instance pointer, the dis 
patcher creates a revised browser message using the infor 
mation associated with the browser request. This revised 
browser message includes the URI, header information, the 
cartridge type and a dispatcher pointer that allows messages 
to be returned to the dispatcher. For example, a revised 
message for a transaction of type TX1 as described above, 
may include the following information: 

URI=/storefront/open session 
header=NULL 
cartridge name=STOREFRONT 
dispatcher pointer=address XXXXX 
In this example, the URI is a begin transaction URI (a URI 

that is used by the cartridge execution engine to identify the 
beginning of a multiple-request transaction). Because the 
URI is a begin transaction URI, a globally unique transac 
tion ID has not yet been associated with the multiple-request 
transaction. Hence, the header that would contain the trans 
action ID is Set to NULL. For ongoing multiple-request 
transactions (i.e. when the browser request does not contain 
a URI of /storefront/open Session)and in which cookies are 
used to Store the globally unique transaction ID, the header 
will contain the unique transaction ID. This unique transac 
tion ID allows the database Servers to associate a transaction 
request with an ongoing multiple-request transaction. 

The cartridge name identifies the cartridge type and is 
used by the cartridge execution engine to identify the 
metadata that contains information about the transaction 
type associated with the particular browser request. In this 
example, the cartridge name of STOREFRONT identifies 
the metadata associated with TX1 as being associated with 
the browser request. 

After creating the revised browser message, the dis 
patcher uses the previously obtained cartridge instance 
pointer to Send the revised browser message to the cartridge 
instance. When the cartridge instance receives the revised 
browser message, the cartridge instance uses the cartridge 
type information to identify the metadata that is associated 
with the browser request. After identifying the metadata, the 
cartridge execution engine uses the URI information to 
determine the State of the transaction associated with the 
browser request. 

For example, it shall be assumed that the browser request 
included a URI of “/storefront/open session” and a car 
tridge type of STOREFRONT. 

By looking at the metadata associated with the cartridge 
type of STOREFRONT (i.e. the metadata described in TX1 
above), the cartridge execution engine 228 determines that 
the URI of /storefront/open Session corresponds to a 
“begin' transaction State. Using this same mechanism, the 
cartridge execution engine 228 can determine that a browser 
request containing a URI of /storefront/commit Session 
corresponds to a “commit transaction State and that a 
browser request containing a URI of /storefront/rollback 
Session corresponds to a "rollback transaction State. 

In the case where the URI does not include a particular 
State (i.e. a URI consisting only of /storefront), the cartridge 
execution engine 228 assumes that the browser request is 
asSociated with an ongoing multiple-request transaction that 
is not ready to be either committed or rolled backed. 
When the cartridge execution engine receives a revised 

browser message that is not associated with a “begin” 

15 

25 

35 

40 

45 

50 

55 

60 

65 

24 
transaction, the cartridge execution engine checks the header 
to determine if it specifies a globally unique transaction ID. 
If the header Specifies a globally unique transaction ID, then 
cookie information was used to Store the globally unique 
transaction ID. If the header does not Specify a globally 
unique transaction ID, the cartridge execution engine then 
Searches the URI to identify the globally unique transaction 
ID that is associated with the browser request. Once the 
cartridge execution engine locates the globally unique trans 
action ID, the cartridge execution engine includes the trans 
action ID in the transaction control messages that are Sent to 
the transaction manager. The transaction manager then uses 
the globally unique transaction ID in communicating with 
the associated database Servers to cause multiple-request 
transactions to be either committed or rolled back as an 
atomic unit of work. 

PROCESSING TRANSACTIONS 

FIG. 7A through 7I are a flow diagram illustrating a 
method for processing multiple-request transactions in a 
StateleSS environment according to an embodiment of the 
invention. 

At step 702, a revised browser message that was directed 
to cartridge 230 is intercepted by cartridge execution engine 
228. For the purposes of explanation, it shall be assumed that 
the revised browser message was sent by dispatcher 214 and 
that the revised browser message is associated with trans 
action TX1 as described above. 

At step 704, cartridge execution engine 228 determines if 
the revised browser message is associated with a transaction. 
If the revised browser message is not associated with a 
transaction, at Step 706, cartridge execution engine 228 
forwards the revised browser message to cartridge 230 for 
cartridge 230 to perform the requested non-transactional 
finctions associated with the revised browser message. Once 
the cartridge performs the requested non-transactional 
functions, control returns to step 702 in order for the 
cartridge execution engine 228 to intercept the next revised 
browser message. 

Otherwise, if the revised browser message is associated 
with a transaction, at Step 708, cartridge execution engine 
228 determines the state of the transaction by first deter 
mining whether the revised browser message is associated 
with a begin transaction URI. In determining whether the 
revised browser message is associated with a begin trans 
action URI, the cartridge execution engine 228 uses the 
cartridge name to identify the previously Stored metadata 
that includes the transaction attributes of the transaction type 
identified in the revised browser message. Using the previ 
ously stored metadata, the cartridge execution engine 228 
determines if the revised browser message is associated with 
a begin transaction URI. 

For example, it shall be assumed that the revised browser 
message contained a cartridge name of STOREFRONT and 
a URI of /storefront/open session. Using the STORE 
FRONT cartridge name, the cartridge execution engine 228 
determines that the revised browser message is associated 
with the metadata for transaction TX1. Using this metadata, 
the cartridge execution engine 228 determines that the URI 
of /storefront/open Session is associated with a begin trans 
action. 

If the cartridge execution engine 228 determines that the 
revised browser message is not associated with a begin 
transaction, then control proceeds to Step 744. 

If the cartridge execution engine 228 determines that the 
revised browser message is associated with a begin 



US 6,334,114 B1 
25 

transaction, then at Step 712, the cartridge execution engine 
228 includes a begin transaction identifier (tX begin) in a 
transaction control message. The cartridge execution engine 
228 then sends the transaction control message to the 
transaction manager 606. 
At Step 714, upon receiving the begin transaction 

identifier, the transaction manager 606 creates a globally 
unique transaction ID that is used to identify Subsequent 
browser requests that are associated with this multiple 
request transaction. In certain embodiments of the invention, 
the transaction ID is formed using the browser IP address, 
the transaction name and a particular timestamp value. 
At Step 716, the cartridge execution engine 228 Sends an 

operation message to cartridge 230 that is formed from 
information that is contained in the revised browser mes 
Sage. The operation message also includes a dispatcher 
pointer that identifies the dispatcher that Sent the revised 
browser request (dispatcher 214). This pointer allows the 
cartridge 230 to write information back to the dispatcher. At 
Step 718, upon receiving the operation message, the car 
tridge 230 Sends a message to the transaction manager 606 
requesting handles for access to the databases that are 
asSociated with the transaction. 

At step 720, transaction manager 606 returns handles to 
the appropriate database Servers to allow the cartridge 230 to 
process the transaction request. For example, assuming 
database 610 is associated with the SEARS database and 
database 614 is associated with the BANK1 database, trans 
action manager 606 will return handles to database server 
608 and 612 respectively. 
At step 722, cartridge 230 uses the handles returned from 

transaction manager 606 to execute the operations identified 
in the operation message that was sent by the cartridge 
execution engine 228. 
At step 724, the cartridge 230 determines whether the 

Sending browser allows cookie information to be associated 
with the browser. If the browser does not allow for cookie 
information to be associated with the browser, at step 726, 
the cartridge 230 causes the hyperlinks of the HTML page 
that was generated in response to executing this transaction 
request to be annotated to include the globally unique 
transaction ID. By annotating the hyperlinks of the HTML 
page, the URIS contained in Subsequent browser request will 
contain the globally unique transaction ID. 
At step 728, the cartridge 230 uses the dispatcher pointer 

to return back to the dispatcher 214 the HTML page that was 
generated in response to executing the transaction request. 
The cartridge 230 then notifies cartridge execution engine 
228 that execution of the transaction request is complete. 

At step 730, the cartridge execution engine 228 sends a 
message to the transaction manager 606 requesting it to 
Suspend the transaction. At Step 732, the transaction man 
ager 606 sends a suspend request to database servers 608 and 
612 to cause them to Suspend execution of the transaction. 
The Suspend request includes the globally unique transaction 
ID So that the database servers 608 and 612 know which 
transaction to Suspend. By Sending a Suspend request to 
database servers 608 and 612, it allows other browsers to 
execute transactions that are associated with databases 610 
and 614. 
At step 734, transaction manager 606 sends the globally 

unique transaction ID to the cartridge execution engine 228. 
At Step 736, the cartridge execution engine 228 determines 
whether the sending browser allows for cookie information 
to be associated with the browser. If the browser does not 
allow for cookie information to be associated with the 

15 

25 

35 

40 

45 

50 

55 

60 

65 

26 
browser, at step 738, the dispatcher 214 is notified that the 
processing of the revised browser request is complete. 
Control then returns to step 702 to intercept another revised 
browser message. 

If the browser does allow for cookie information to be 
associated with the browser, at step 740, the cartridge 
execution engine 228 uses the globally unique transaction 
ID to create cookie information to be associated with the 
Sending browser. 
At Step 742, cartridge execution engine 228 forwards the 

cookie information to dispatcher 214 So that it may be 
transmitted to the Sending browser and notifies the dis 
patcher 214 that the processing of the revised browser 
request is complete. Control then returns to step 702 to 
intercept another revised browser message. 
At Step 744, the cartridge execution engine 228 deter 

mines whether the revised browser message is associated 
with a commit transaction URI. In determining whether the 
revised browser message is associated with a commit trans 
action URI, the cartridge execution engine 228 uses the 
cartridge name to identify the previously Stored metadata for 
the type of transaction associated with the revised browser 
message. Using the previously stored metadata, the cartridge 
execution engine 228 determines if the revised browser 
message is associated with a commit transaction URI. 

For example, it shall be assumed that the revised browser 
message contained a cartridge name of STOREFRONT and 
a URI of /storefront/commit session. Using the STORE 
FRONT cartridge name, the cartridge execution engine 228 
determines that the revised browser message is associated 
with the metadata for transaction TX1. Using this metadata, 
the cartridge execution engine 228 determines that the URI 
of /storefront/commit Session is associated with a commit 
transaction. 

If the cartridge execution engine 228 determines that the 
revised browser message is not associated with a commit 
transaction, then control proceeds to Step 774. 

If the cartridge execution engine 228 determines that the 
revised browser message is associated with a commit 
transaction, then at Step 746, the cartridge execution engine 
228 determines whether the header section of the revised 
browser message contains cookie information. If cartridge 
execution engine 228 determines that the header Section of 
the revised browser message contains cookie information, 
then at step 748 the cartridge execution engine 228 extracts 
the globally unique transaction ID from the cookie infor 
mation. Control then proceeds to 752. 

If cartridge execution engine 228 determines that the 
header Section of the revised browser message does not 
contain cookie information, then at step 750 the cartridge 
execution engine 228 extracts the globally unique transac 
tion ID from the annotated URI. 
At Step 752, the cartridge execution engine 228 packages 

a resume transaction identifier (tX resume) into a transac 
tion control message. The cartridge execution engine 228 
then sends the transaction control message to the transaction 
manager 606. 
At Step 754, upon receiving the resume transaction 

identifier, the transaction manager 606 Sends a resume 
request to database servers 608 and 612 to cause them to 
resume execution of the transaction. The resume request 
includes the globally unique transaction ID which allows the 
database servers 608 and 612 to identify the multiple-request 
transaction that is associated with the current transaction 
request. 
At Step 756, the cartridge execution engine 228 Sends an 

operation message to cartridge 230 that is based on the 



US 6,334,114 B1 
27 

transaction information contained in the revised browser 
message. The operation message also contains a dispatcher 
pointer that identifies the dispatcher that Sent the revised 
browser request (dispatcher 214) and allows the cartridge 
230 to write information back to the dispatcher. At step 758, 
upon receiving the operation message, the cartridge 230 
Sends a message to the transaction manager 606 requesting 
handles for access to the databases that are associated with 
the transaction. 

At step 760, transaction manager 606 returns handles to 
the appropriate database Servers to allow the cartridge 230 to 
process the transaction request. For example, assuming 
database 610 is associated with the SEARS database and 
database 614 is associated with the BANK1 database, trans 
action manager 606 will return handles to database server 
608 and 612 respectively. 
At step 762, cartridge 230 uses the handles returned from 

transaction manager 606 to execute the operation Specified 
by the operation message that was Sent by the cartridge 
execution engine 228. 
At step 764, the cartridge 230 determines whether the 

Sending browser allows cookie information to be associated 
with the browser. If the browser does not allow for cookie 
information to be associated with the browser, at step 766, 
the cartridge 230 causes the globally unique transaction ID 
to be removed from the annotated hyperlinks of any HTML 
page that is associated with the transaction. By removing the 
transaction ID annotations from the hyperlinks of the HTML 
page, Subsequent browser requests that are issued in 
response to selection of a hyperlink from the HTML page 
will not contain the globally unique transaction ID and, 
therefore, will not be mistakenly associated with this 
multiple-request transaction. 
At step 768, the cartridge 230 uses the dispatcher pointer 

to return the HTML page generated in response to perform 
ing the operation specified in the browser request to the 
dispatcher 214 and notifies cartridge execution engine 228 
that execution of the transaction request is complete. 
At step 770, the cartridge execution engine 228 sends a 

transaction control message to the transaction manager 606 
requesting it to commit the transaction. At Step 771, the 
transaction manager 606 sends a commit request to database 
servers 608 and 612 to cause all changes made in response 
to the various browser requests that belonged to the 
multiple-request transaction to be committed as an atomic 
unit of work. The commit request includes the globally 
unique transaction ID which allows the database servers 608 
and 612 to identify the associated multiple-request transac 
tion. 
At step 772, the cartridge execution engine 228 notifies 

the dispatcher 214 that the processing of the revised browser 
request is complete and Signals the dispatcher 214 to cause 
the cookie information associated with the committed 
multiple-request transaction to be removed from the Sending 
browser. By removing the transaction ID from the cookie 
information associated with the Sending browser, Subse 
quent browser requests will not contain the globally unique 
transaction ID and, therefore, will not be mistakenly asso 
ciated with the committed multiple-request transaction. 
Control then returns to step 702 to intercept another revised 
browser message. 

At step 774, the cartridge execution engine 228 deter 
mines whether the revised browser message is associated 
with a rollback transaction URI. In determining whether the 
revised browser message is associated with a rollback trans 
action URI, the cartridge execution engine 228 uses the 

15 

25 

35 

40 

45 

50 

55 

60 

65 

28 
cartridge name to identify the previously Stored metadata 
that corresponds to the transaction type indicated in the 
revised browser message. Using the previously Stored 
metadata, the cartridge execution engine 228 determines if 
the revised browser message contains a rollback transaction 
URI. 

For example, it shall be assumed that the revised browser 
message contained a cartridge name of STOREFRONT and 
a URI of /storefront/rollback session. Using the STORE 
FRONT cartridge name, the cartridge execution engine 228 
determines that the revised browser message is associated 
with the metadata for transaction TX1. Using this metadata, 
the cartridge execution engine 228 determines that the URI 
of /storefront/rollback Session is associated with a rollback 
transaction. 

If the cartridge execution engine 228 determines that the 
revised browser message is not associated with a rollback 
transaction, then control proceeds to step 804. 

If the cartridge execution engine 228 determines that the 
revised browser message is associated with a rollback 
transaction, then at Step 776, the cartridge execution engine 
228 determines whether the header section of the revised 
browser message contains cookie information. If cartridge 
execution engine 228 determines that the header Section of 
the revised browser message contains cookie information, 
then at step 778 the cartridge execution engine 228 extracts 
the globally unique transaction ID from the cookie infor 
mation. Control then proceeds to 782. 

If cartridge execution engine 228 determines that the 
header Section of the revised browser message does not 
contain cookie information, then at step 780 the cartridge 
execution engine 228 extracts the globally unique transac 
tion ID from the annotated URI. 
At Step 782, the cartridge execution engine 228 incorpo 

rates a resume transaction identifier (tX resume) in a trans 
action control message. The cartridge execution engine 228 
then sends the transaction control message to the transaction 
manager 606. 
At Step 784, upon receiving the resume transaction 

identifier, the transaction manager 606 Sends a resume 
request to database servers 608 and 612 to cause them to 
resume execution of the transaction. The resume request 
includes the globally unique transaction ID which allows the 
database servers 608 and 612 to identify the multiple-request 
transaction that is associated with the current transaction 
request. 
At Step 786, the cartridge execution engine 228 Sends an 

operation message to cartridge 230 that is based on the 
transaction information contained in the revised browser 
message. The operation message also contains a dispatcher 
pointer that identifies the dispatcher that Sent the revised 
browser request (dispatcher 214) and allows the cartridge 
230 to write information back to the dispatcher. At step 788, 
upon receiving the operation message, the cartridge 230 
Sends a message to the transaction manager 606 requesting 
handles for access to the databases that are used in the 
Specified type of transaction. 
At step 790, transaction manager 606 returns handles to 

the appropriate database Servers to allow the cartridge 230 to 
process the transaction request. For example, assuming 
database 610 is associated with the SEARS database and 
database 614 is associated with the BANK1 database, trans 
action manager 606 will return handles to database server 
608 and 612 respectively. 
At step 792, cartridge 230 uses the handles returned from 

transaction manager 606 to execute the transaction informa 



US 6,334,114 B1 
29 

tion associated with the operation message that was Sent by 
the cartridge execution engine 228. 
At step 794, the cartridge 230 determines whether the 

Sending browser allows cookie information to be associated 
with the browser. If the browser does not allow for cookie 
information to be associated with the browser, at step 796, 
the cartridge 230 causes the globally unique transaction ID 
to be removed from the annotated hyperlinks of any HTML 
page to be returned to the browser. By removing the trans 
action ID annotations from the hyperlinks of the HTML 
page, Subsequent browser requests will not contain the 
globally unique transaction ID and, therefore, will not be 
mistakenly associated with this multiple-request transaction. 
At step 798, the cartridge 230 uses the dispatcher pointer 

to return the HTML page that is associated with executing 
the transaction back to the dispatcher 214 and notifies 
cartridge execution engine 228 that execution of the trans 
action request is complete. 
At step 800, the cartridge execution engine 228 sends a 

transaction control message to the transaction manager 606 
requesting it to rollback the transaction. At step 801, the 
transaction manager 606 Sends a rollback request to database 
servers 608 and 612 to cause all changes made in response 
to the browser requests that belong to the multiple-request 
transaction to be rolled back as an atomic unit of work. The 
roll back request includes the globally unique transaction ID 
which allows the database servers 608 and 612 to identify 
and roll back the correct multiple-request transaction. 
At step 802, the cartridge execution engine 228 notifies 

the dispatcher 214 that the processing of the revised browser 
request is complete and Signals the dispatcher 214 to cause 
the cookie information associated with the rolled back 
multiple-request transaction to be removed from the Sending 
browser. By removing the transaction ID from the cookie 
information associated with the Sending browser, Subse 
quent browser requests will not contain the globally unique 
transaction ID and, therefore, will not be mistakenly asso 
ciated with the rolled back multiple-request transaction. 
Control then returns to step 702 to intercept another revised 
browser message. 

At step 804, the cartridge execution engine 228 deter 
mines whether the header section of the revised browser 
message contains cookie information. If cartridge execution 
engine 228 determines that the header section of the revised 
browser message contains cookie information, then at Step 
806 the cartridge execution engine 228 extracts the globally 
unique transaction ID from the cookie information. Control 
then proceeds to 810. 

If cartridge execution engine 228 determines that the 
header Section of the revised browser message does not 
contain cookie information, then at step 808 the cartridge 
execution engine 228 extracts the globally unique transac 
tion ID from the annotated URI. 
At Step 810, the cartridge execution engine 228 packages 

a resume transaction identifier (tx resume) in a transaction 
control message. The cartridge execution engine 228 then 
Sends the transaction control message to the transaction 
manager 606. 
At Step 812, upon receiving the resume transaction 

identifier, the transaction manager 606 Sends a resume 
request to database servers 608 and 612 to cause them to 
resume execution of the transaction. The resume request 
includes the globally unique transaction ID which allows the 
database servers 608 and 612 to identify the multiple-request 
transaction that is associated with the current transaction 
request. 

1O 

15 

25 

35 

40 

45 

50 

55 

60 

65 

30 
At Step 814, the cartridge execution engine 228 Sends an 

operation message to cartridge 230 that is based on the 
transaction information contained in the revised browser 
message. The operation message also contains a dispatcher 
pointer that identifies the dispatcher that Sent the revised 
browser request (dispatcher 214) and allows the cartridge 
230 to write information back to the dispatcher. At step 816, 
upon receiving the operation message, the cartridge 230 
Sends a message to the transaction manager 606 requesting 
handles for access to the databases that are associated with 
the transaction. 
At step 818, transaction manager 606 returns handles to 

the appropriate database Servers to allow the cartridge 230 to 
process the transaction request. For example, assuming 
database 610 is associated with the SEARS database and 
database 614 is associated with the BANK1 database, trans 
action manager 606 will return handles to database servers 
608 and 612 respectively. 
At step 820, cartridge 230 uses the handles returned from 

transaction manager 606 to execute the operation Specified 
in the operation message that was sent by the cartridge 
execution engine 228. 
At step 822, the cartridge 230 determines whether the 

Sending browser allows cookie information to be associated 
with the browser. If the browser does not allow for cookie 
information to be associated with the browser, at step 824, 
the cartridge 230 causes the hyperlinks of an HTML page 
generated in response to performing the operation to be 
annotated to include the globally unique transaction ID. By 
annotating the hyperlinks of the HTML page, the URIs in 
Subsequent browser requests that are issued in response to 
selecting the links in the HTML page will contain the 
globally unique transaction ID. 

At step 826, the cartridge 230 uses the dispatcher pointer 
to return the HTML page thus generated back to the dis 
patcher 214 and notifies cartridge execution engine 228 that 
execution of the transaction request is complete. 
At Step 828, the cartridge execution engine 228 Sends a 

message to the transaction manager 606 requesting it to 
Suspend the transaction. At Step 830, the transaction man 
ager 606 sends a suspend request to database servers 608 and 
612 to cause them to Suspend execution of the transaction. 
The Suspend request includes the globally unique transaction 
ID which allows the database servers 608 and 612 to 
accurately identify the multiple-request transaction to be 
suspended. Control then returns to step 702 to intercept 
another revised browser message. 

TRANSACTION TIME OUTS 

According to one embodiment of the invention, a timeout 
value is associated with each transaction. The timeout value 
is used to identify multiple-request transactions that have not 
been active for a specified time period. In one embodiment, 
each database Server maintains a timeout value for the 
multiple-request transactions that are being Serviced by the 
database Server. Thus, whenever a multiple-request transac 
tion begins to execute, the associated database Server ini 
tializes the timeout value for the particular transaction. Upon 
receiving a resume transaction request that is associated with 
a globally unique transaction ID, the database Server resets 
the timeout value for the multiple-request transaction that is 
asSociated with the globally unique transaction ID. If a 
multiple-request transaction times out, the database Server 
causes all changes made as part of the multiple-request 
transaction to be rolled back as an atomic unit of work. Once 
the multiple-request transaction is rolled back, a message is 
then Sent to the associated browser to indicate the State of the 
transaction. 



US 6,334,114 B1 
31 

CONDUCTING TRANSACTIONS IN A 
STATELESS WEB ENVIRONMENT 

The present invention provides a practical and highly 
Scalable mechanism for conducting multiple-request trans 
actions in a StateleSS environment, Such as the web. Accord 
ing to the invention, a transaction manager is used to 
coordinate the overall transaction proceSS. Preferably, the 
transaction manager coordinates the proceSS in Such a way 
that State information is maintained for a transaction without 
requiring the transaction manager itself to persistently main 
tain the State information. 

In a preferred embodiment, processing of a client request 
is performed as follows. The transaction manager receives a 
request from a client, and if the request is a transaction 
request, the manager initiates a transaction with a transaction 
processing mechanism, Such as a database management 
system (DBMS). Once the transaction is initiated, the man 
ager preferably forwards the request to another entity, Such 
as an application, which actually processes the request. After 
the request is processed, control is returned to the manager, 
and at that point, the manager assembles a set of State 
information associated with the transaction. This State infor 
mation may include the identity of the client, the ID and 
Status of the transaction, and what has already transpired in 
the transaction. Once assembled, the State information, 
along with the response to the client request, is Sent back to 
the client to be maintained by the client. The state informa 
tion may be sent to the client in the form of a “cookie” or it 
may be incorporated into a URL that is returned to the client. 
While it is possible to do so, state information is preferably 
not persistently maintained by the manager or by the appli 
cation that processed the request. 
When the client Submits a Second request relating to the 

Same transaction, the client Sends along the State information 
previously provided by the manager. Upon receiving the 
Second request, the manager extracts the State information 
from the request, and uses it to resume the previously 
initiated transaction with the DBMS. Once the transaction is 
resumed, the manager Sends the Second request, including 
the State information, to another entity (the same or a 
different application) for processing. After the Second 
request is processed, the manager updates the State infor 
mation associated with the transaction, and Sends the 
updated State information, along with the response to the 
Second request, to the client. The client will Send this 
updated State information in a future request to resume the 
transaction. This process repeats until the transaction is 
either committed or rolled back. 

The present invention provides Several Significant advan 
tages. First, note that the transaction manager and the 
applications that process the requests remain StateleSS. That 
is, the transaction manager and the applications are not 
required to maintain any of the State information for the 
transaction. All of that information is maintained by the 
client. This means that no overhead is incurred for Storing 
the information. More importantly, the fact that the client 
maintains its own State information means that any request 
from the client can be processed by any thread, proceSS, or 
node. This significantly improves Scalability because it 
eliminates the need to have a dedicated process or thread for 
each client. 

Another point to note is that even though the client is 
maintaining the State information, the client is not aware that 
it is maintaining transaction-specific State information. AS 
discussed above, the State information is provided to the 
client by the transaction manager. The client simply sends 

15 

25 

35 

40 

45 

50 

55 

60 

65 

32 
this information back to the transaction manager when it 
makes its next request. The client is not, nor does it need to 
be, aware that it is maintaining State information. This is a 
very advantageous aspect of the present invention because it 
obviates the need to put any State management logic on the 
client. This in turn means that no changes or additions need 
to be made to the client for the present invention to operate 
properly. 

Hence, the present invention provides a practical, 
Scalable, and effective mechanism for conducting transac 
tions in a StateleSS environment. These and other advantages 
of the invention will become apparent as the invention is 
described in further detail. 

INCORPORATION OF STATE INFORMATION 
INURLS 

The present invention provides an effective and highly 
Scalable mechanism for Supporting multiple-request opera 
tions (including but not limited to transactions) in a Stateless 
environment, Such as the Web. According to the invention, a 
Server is preferably used to coordinate the overall processing 
of client requests. Preferably, the server performs this coor 
dination function in Such a way that: (1) State information 
asSociated with multiple-request operations is maintained by 
the clients making the requests; (2) the clients are unaware 
that they are maintaining operation-specific State informa 
tion; and (3) the server itself is not required to persistently 
maintain the State information, thereby remaining StateleSS. 

In a preferred embodiment, processing of a client request 
is performed as follows. The Server receives a request from 
a client, and if the request is for a multiple-request operation, 
the Server initiates an operation. Once the operation is 
initiated, the Server may either forward the request to 
another entity (Such as an application) for processing, or the 
Server may process the request itself. After the request is 
processed, the Server assembles a set of State information 
asSociated with the operation. This State information may 
include the identity of the client, the ID and status of the 
operation, what has already transpired in the operation, and 
any other context information associated with the operation. 
Once assembled, the State information is incorporated into a 
URL. This URL, along with the response to the client 
request, is Sent back to the client to be maintained by the 
client. This State information is preferably not persistently 
maintained by the Server. 
When the client Submits a Second request relating to the 

Same operation, the client Sends the URL that was previously 
provided by the server which contains the state information. 
Upon receiving the Second request, the Server extracts the 
state information from the URL, and uses it to resume the 
previously initiated operation. With the benefit of this state 
information, the Server can resume the operation at the exact 
point at which the previous request Stopped. Once the 
operation is resumed, the Server either processes the request, 
or forwards it to another entity for processing. After the 
Second request is processed, the Server updates the State 
information associated with the operation, and incorporates 
the updated State information into another URL. This URL, 
along with the response to the Second request, is sent back 
to the client to be maintained by the client. The client will 
Send this URL in a future request to resume the operation. 
This process repeats until the operation is either completed 
or canceled. 
The present invention provides Several Significant advan 

tages. First, note that the Server remains StateleSS. That is, the 
Server is not required to maintain any of the State informa 



US 6,334,114 B1 
33 

tion for the transaction. All of that information is maintained 
by the client. This means that no overhead is incurred for 
Storing the information. More importantly, the fact that the 
client maintains its own State information means that any 
request from the client can be processed by any thread, 
process, or node. This significantly improves Scalability 
because it eliminates the need to have a dedicated proceSS or 
thread for each client. 

Another point to note is that even though the client is 
maintaining the State information, the client is not aware that 
it is maintaining operation-specific State information. AS 
discussed above, the State information is provided by the 
server to the client in the form of a URL. The client simply 
sends this URL whenever it requests service from the server. 
The client treats this URL like any other URL. The client is 
not, nor does it need to be, aware that this URL contains State 
information. This is a very advantageous aspect of the 
present invention because it obviates the need to put any 
State management logic on the client. This in turn means that 
no changes or additions need to be made to the client for the 
present invention to operate properly. 

Hence, the present invention provides a practical, 
Scalable, and effective mechanism for Supporting multiple 
request operations in a StateleSS environment. These and 
other advantages of the invention will become apparent as 
the invention is described in further detail. 

In the foregoing Specification, the invention has been 
described with reference to specific embodiments thereof. It 
will, however, be evident that various modifications and 
changes may be made thereto without departing from the 
broader Spirit and Scope of the invention. The Specification 
and drawings are, accordingly, to be regarded in an illus 
trative rather than a restrictive Sense. 
What is claimed is: 
1. A method for processing multiple-request transactions 

in a StateleSS environment, wherein the multiple-request 
transactions involve operations Specified in browser 
messages, the method comprising the Steps of: 

a cartridge execution engine intercepting browser mes 
Sages directed to a cartridge; Said cartridge execution 
engine determining whether Said browser messages are 
asSociated with transactions, 

if Said browser messages are associated with transactions, 
then 
Said cartridge execution engine Sending transaction 

control messages that are based on Said browser 
messages to a transaction manager that is imple 
mented Separately from Said cartridge; 

Said cartridge execution engine Sending operation mes 
Sages that are based on Said browser messages to Said 
cartridge 

in response to Said operation messages from Said car 
tridge execution engine, Said cartridge performing 
the operations Specified in Said operation messages 
without the cartridge persistently maintaining State 
information for the multiple-request transactions to 
which the operations belong, and 

in response to Said transaction control messages from 
Said cartridge execution engine, Said transaction 
manager causing the operations Specified in Said 
operation messages that are performed by Said car 
tridge as part of the multiple-request transactions to 
be either conmitted or rolled back as an atomic unit 
of work. 

2. The method of claim 1, wherein the Step of causing the 
operations Specified in Said operation messages to be com 

15 

25 

35 

40 

45 

50 

55 

60 

65 

34 
mitted includes the Step of Said transaction manager Sending 
commit messages to one or more database Servers, wherein 
the commit messages cause Said one or more database 
Servers to commit changes associated with Said multiple 
reauest transactions as an atomic unit of work. 

3. The method of claim 1, wherein the step of causing the 
operations Specified in Said operation messages to be rolled 
back includes the Step of Said transaction manager Sending 
rollback messages to one or more database Servers, wherein 
the rollback messages cause Said one or more database 
Servers to roll back changes associated with Said multiple 
recst transactions as an atomic unit of work. 

4. The method of claim 1, wherein the browser messages 
asSociated with transactions are associated with transaction 
IDs, wherein the transaction IDs identify a browser associ 
ated with a particular browser message. 

5. The method of claim 4, wherein the transaction IDs are 
maintained as cookies, wherein the cookies are maintained 
on the browser that is associated with the particular browser 
meSSage. 

6. The method of claim 4, wherein the transaction IDs are 
maintained as URLS that are associated with one or more 
tags in one or more Web pages that are displayed at the 
browser that is associated with the particular browser mes 
Sage. 

7. The method of claim 1, wherein the step of said 
cartridge execution engine determining whether said 
browser messages are associated with transactions includes 
the Steps of: 

obtaining a URL that is associated with a particular 
browser message; and 

using the URL associated with the particular browser 
message to determine the State of a transaction that is 
associatd with the particular browser message. 

8. The method of claim 4, wherein the transaction IDs are 
asSociated with a timeout period, wherein the expiration of 
the timeout period indicates that the transaction associated 
with the transaction ID should be deemed invalid. 

9. The method of claim 1, wherein: 
prior to intercepting browser messages directed to the 

cartridge, 
registering the cartridge, wherein the cartridge is reg 

istered by Storing metadata that defines a Set of 
attributes that is associated with one or more trans 
action types. 

10. The method of claim 1, wherein the step of said 
cartridge execution engine determining whether said 
browser messages are associated with transactions includes 
the Steps of: 

retrieving metadata based on the intercepted browser 
messages, and 

using the retrieved metadata to determine whether the 
browser messages are associated with transactions. 

11. A computer readable medium carrying Sequences of 
instructions for processing multiple-request transactions in a 
StateleSS environment, wherein the multiple-request trans 
actions involve operations Specified in browser messages, 
the Sequences of instructions including instructions for per 
forming the Steps of: 

a cartridge execution engine intercepting browser mes 
Sages directed to a cartridge; 

Said cartridge execution engine determining whether Said 
browser messages are associated with transactions, 

if Said browser messages are associated with transactions, 
then 
Said cartridge execution engine Sending transaction 

control messages that are based on Said browser 



US 6,334,114 B1 
35 

messages to a transaction manager that is imple 
mented Separately from Said cartride, 

Said cartridge execution engine Sending operation mes 
Sages that are based on Said browser messages to Said 
cartridge 

in response to Said operation messages from Said car 
tridge execution engine, Said cartridge performing 
the operations Specified in Said operation messages 
without the cartridge persistently maintaining State 
information for the multiple-request transactions to 
which the operations belong, and 

in response to Said transaction control messages from 
Said cartridge execution engine, Said transaction 
manager causing the operations Specified in Said 
operation messages that are performed by Said car 
tridge as part of the multiple-request transactions to 
be either committed or rolled back as an atomic unit 
of work. 

12. The computer readable medium of claim 11, wherein 
the browser messages associated with transactions are asso 
ciated with transaction IDs, wherein the transaction IDs 
identify a browser associated with a particular browser 
meSSage. 

13. The computer readable medium of claim 11, wherein 
the Step of Said cartridge execution engine determining 
whether Said browser messages are associated with transac 
tions includes the Steps of 

obtaining a URL that is associated with a particular 
browser message; and 

using the URL associated with the particular browser 
message to determine the State of a transaction that is 
asSociate with the particular browser message. 

14. A System for processing multiple-request transactions 
in a StateleSS environment, wherein the mnultiple-request 
transactions involve operations Specified in browser 
messages, the System comprising: 

a memory; 
one or more processors coupled to the memory; and 
a set of computer instructions contained in the memory, 

the Set of computer instructions including computer 
instructions which when executed by the one or more 
processors, cause the one or more processors to per 
form the steps of: 
a cartridge execution engine intercepting browser mes 

Sages directed to a cartridge, 
Said cartridge execution engine determining whether 

Said browser messages are associated with transac 
tions, 

if Said browser messages are associated with 
transactions, then 
Said cartridge execution engine Sending transaction 

control messages that are based on Said browser 
messages to a transaction manager that is imple 
mented Separately from Said cartridge, 

Said cartridge execution engine Sending operation 
messages that are based on Said browser meSSaes 
to Said cartridge; 

in response to Said operation mneSSaes from Said 
cartridge execution engine, Said cartridge perfo 
ming the operations Specified in Said operation 
messages without the cartridge persistently main 
taining State information for the multiple-request 
transactions to which the operations belong, and 

in response to Said transaction control messages from 
Said cartridge execution engine, Said transaction 
manager causing the operations Specified in Said 

15 

25 

35 

40 

45 

50 

55 

60 

65 

36 
operation messages that are performed by Said 
cartridge as part of the multiple-request transac 
tions to be either committed or rolled back as an 
atomic unit of work. 

15. The system of claim 14, wherein the browser mes 
Sages associated with transactions are associated with trans 
action IDs, wherein the transaction IDs identify a browser 
asSociated with a particular browser message. 

16. The system of claim 14, wherein the step of said 
cartridge execution engine determining whether said 
browser messages are associated with transactions includes 
the Steps of: 

obtaining a URL that is associated with a particular 
browser message; and 

using the URL associated with the particular browser 
message to determine the State of a transaction that is 
asSociate with the particular browser message. 

17. The method of claim 1, wherein: 
the Step of Said cartridge execution engine intercepting 

browser messages includes the Step of Said cartridge 
execution engine intercepting browser messages that 
include a begin transaction command; and 

in response to Said cartridge execution engine receiving a 
browser message that includes a begin transaction 
command, Said cartridge execution engine Sending a 
transaction control message to Said transaction man 
ager to cause Said transaction manager to begin Said 
transaction. 

18. The method of claim 1, wherein: 
the Step of Said cartridge execution engine intercepting 

browser messages includes the Step of Said cartridge 
execution engine intercepting browser messages that 
include a commit transaction command; and 

in response to Said cartridge execution engine receiving a 
browser message that includes a commit transaction 
command, Said cartridge execution engine Sending a 
transaction control message to Said transaction man 
ager to cause Said transaction manager to commit Said 
transaction. 

19. The method of claim 1, wherein: 
the Step of Said cartridge execution engine intercepting 

browser messages includes the Step of Said cartridge 
execution engine intercepting browser messages that 
include a rollback transaction command; and 

in response to Said cartridge execution engine receiving a 
browser message that includes a rollback transaction 
command, Said cartridge execution engine Sending a 
transaction control message to Said transaction man 
ager to cause Said transaction manager to roll back Said 
transaction. 

20. The method of claim 17, further comprising the step 
of receiving Said begin transaction command in the form of 
a URL at Said cartridge execution engine in response to 
Selection of a control associated with a tag of a Web page 
displayed at the browser. 

21. The method of claim 18, firther comprising the step of 
receiving Said commit transaction command in the form of 
a URL at Said cartridge execution engine in response to 
Selection of a control associated with a tag of a Web page 
displayed at the browser. 

22. The method of claim 19, further comprising the step 
of receiving Said rollback transaction command in the form 
of a URL at Said cartridge execution engine in response to 
Selection of a control associated with a tag of a Web page 
displayed at the browser. 

23. The computer readable medium of claim 11, wherein 
the Step of causing the operations Specified in Said operation 



US 6,334,114 B1 
37 

messages to be committed includes the Step of Said trans 
action manager Sending commit messages to one or more 
database Servers, wherein the commit messages cause Said 
one or more database Servers to commit changes associated 
with Said multiple-request transactions as an atomic unit of 
work. 

24. The computer readable medium of claim 11, wherein 
the Step of causing the operations Specified in Said opcration 
messages to be rolled back includes the Step of Said trans 
action manager Sending rollback messages to one or more 
database Servers, wherein the rollback messages cause Said 
one or more database Servers to roll back changes associated 
with Said multiple-request transactions as an atomic unit of 
work. 

25. The computer readable medium of claim 11, wherein 
the Step of Said cartridge execution engine intercepting 

browser messages includes the Step of Said cartridge 
execution engine intercepting browser messages that 
include a begin transaction command; and 

the computer readable medium further comprising 
instructions for performing the Step of, in response to 
Said cartridge execution engine receiving a browser 
message that includes a begin transaction command, 
Said cartridge execution engine Sending a transaction 
control message to Said transaction manager to cause 
Said transaction manager to begin Said transaction. 

26. The computer readable medium of claim 11, wherein 
the Step of Said cartridge execution engine intercepting 

browser messages includes the Step of Said cartridge 
execution engine intercepting browser messages that 
include a commit transaction command; and 

the computer readable medium further comprising 
instructions for performing the Step of, in response to 
Said cartridge execution engine receiving a browser 
message that includes a commit transaction command, 
Said cartridge execution engine Sending a transaction 
control message to Said transaction manager to cause 
Said transaction manager to commit Said transaction. 

27. The computer readable medium of claim 11, wherein 
the Step of Said cartridge execution engine intercepting 

browser messages includes the Step of Said cartridge 
execution engine intercepting browser messages that 
include a rollback transaction command; and 

the computer readable medium further comprising 
instructions for performing the Step of, in response to 
Said cartridge execution engine receiving a browser 
message that includes a rollback transaction command, 
Said cartridge execution engine Sending a transaction 
control message to Said transaction manager to cause 
Said transaction manager to roll back Said transaction. 

28. The computer readable medium of claim 12, further 
comprising instructions for maintaining the transaction IDS 
as cookies, wherein the cookies are maintained on the 
browser that is associated with the particular browser mes 
Sage. 

29. The computer readable medium of claim 12, further 
comprising instructions for maintaining the transaction IDS 
as URLs, wherein the URLs are associated with one or more 
tags in one or more Web pages that are displayed at the 
browser that is associated with the particular browser mes 
Sage. 

30. The computer readable medium of claim 12, further 
comprising instructions for associating a timeout period with 
the transaction IDS, wherein the expiration of the timeout 
period indicates that the transaction associated with the 
transaction ID should be deemed invalid. 

15 

25 

35 

40 

45 

50 

55 

60 

65 

38 
31. The computer readable medium of claim 11, further 

comprising instructions for performing the Steps of prior to 
intercepting browser messages directed to the cartridge, 

registering the cartridge, wherein the cartridge is regis 
tered by Storing metadata that defines a set of attributes 
that is associated with one or more transaction types. 

32. The computer readable medium of claim 11, wherein 
the Step of Said cartridge execution engine determining 
whether Said browser messages are associated with transac 
tions includes the Steps of: 

retrieving metadata based on the intercepted browser 
messages, and 

using the retrieved metadata to determine whether the 
browser messages are associated with transactions. 

33. The computer readable medium of claim 25, further 
comprising instructions for performing the Step of receiving 
Said begin transaction command in the form of a URL at Said 
cartridge execution engine in response to Selection of a 
control associated with a tag of a Web page displayed at the 
browser. 

34. The computer readable medium of claim 26, further 
comprising instructions for performing the Step of receiving 
Said commit transaction command in the form of a URL at 
Said cartridge execution engine in response to Selection of a 
control associated with a tag of a Web page displayed at the 
browser. 

35. The computer readable medium of claim 27, further 
comprising instructions for performing the Step of receiving 
said rollback transaction command in the form of a URL at 
Said cartridge execution engine in response to Selection of a 
control associated with a tag of a Web page displayed at the 
browser. 

36. The system of claim 14, wherein the step of causing 
the operations Specified in Said operation messages to be 
committed includes the Step of Said transaction manager 
Sending commit messages to one or more database Servers, 
wherein the commit messages cause Said one or more 
database Servers to commit changes associated with Said 
multiple-request transactions as an atomic unit of work. 

37. The system of claim 14, wherein the step of causing 
operations Specified in Said operation messages to be rolled 
back includes the Step of Said transaction manager Sending 
rollback messages to one or more database Servers, wherein 
the rollback messages cause Said one or more database 
Servers to roll back changes associated with Said multiple 
request transactions as an atomic unit of work. 

38. The system of claim 14, wherein 
the Step of Said cartridge execution engine intercepting 

browser messages includes the Step of Said cartridge 
execution engine intercepting browser messages that 
include a begin transaction command; and 

in response to Said cartridge execution engine receiving a 
browser message that includes a begin transaction 
command, Said cartridge execution engine Sending a 
transaction control message to Said transaction man 
ager to cause Said transaction manager to begin Said 
transaction. 

39. The system of claim 14, wherein 
the Step of Said cartridge execution engine intercepting 

browser messages includes the Step of Said cartridge 
execution engine intercepting browser messages that 
include a commit transaction command; and 

in response to Said cartridge execution engine receiving a 
browser message that includes a commit transaction 
command, Said cartridge execution engine Sending a 
transaction control message to Said transaction man 
ager to cause Said transaction manager to commit Said 
transaction. 



US 6,334,114 B1 
39 

40. The system of claim 14, wherein 
the Step of Said cartridge execution engine intercepting 

browser messages includes the Step of Said cartridge 
execution engine intercepting browser messages that 
include a rollback transaction command; and 

in response to Said cartridge execution engine receiving a 
browser message that includes a rollback transaction 
command, Said cartridge execution engine Sending a 
transaction control message to Said transaction man 
ager to cause Said transaction manager to roll back Said 
transaction. 

41. The method of claim 1, further comprising the steps 
of: 

prior to intercepting browser messages directed to Said 
cartridge, Storing metadata that establishes a correlation 
between one or more transaction commands and one or 
more message items; 

in response to intercepting browser messages directed to 
Said cartridge, comparing the message items that are 
within each browser message with Said metadata to 
determine whether a particular transaction command 
needs to be executed; and 

if it is determined that a particular transaction command 
does need to be executed, including data within a 
transaction control message that will cause Said trans 
action manager to perform the particular transaction 
command. 

42. The computer readable medium, of claim 11, further 
comprising instructions for performing the Steps of 

prior to intercepting browser messages directed to Said 
cartridge, Storing metadata that establishes a correlation 
between one or more transaction commands and one or 
message items; 

in response to intercepting browser messages directed to 
Said cartidge, comparing the message items that are 
within each browser message with Said metadata to 
determine whether a particular transaction command 
needs to be executed; and 

if it is determined that a particular transaction command 
does need to be executed, including data within a 
transaction control message that will cause Said trans 
action manager to perform the particular transaction 
command. 

43. The system of claim 14, further comprising the steps 
of: 

prior to intercepting browser messages directed to Said 
cartridge, Storing metadata that establishes a correlation 

15 

25 

35 

40 

45 

40 
between one or more transaction commands and one or 
more message items; 

in response to intercepting browser messages directed to 
Said cartridge, comparing the message items that are 
within each browser message with Said metadata to 
determine whether a particular transaction command 
needs to be executed; and 

if it is determined that a particular transaction command 
does need to be executed, including data within a 
transaction control message that will cause Said trans 
action manager to perform the particular transaction 
command. 

44. A method for executing a transaction that involves a 
Series of operations, the method comprising the Steps of 

registering Said transaction by Storing metadata that estab 
lishes a mapping between transactions commands and 
message items; 

receiving a Series of browser messages that request per 
formance of Said Series of operations, 

in response to Said Series of browser messages, executing 
Said Series of operations as an atomic unit of work; and 

determining when to begin, commit and roll back Said 
atomic unit of work based on message items in Said 
Series of browser messages and Said metadata. 

45. The method of claim 44, wherein the step of regis 
tering Said transaction further comprises the Step of Storing 
metadata that establishes a belong-to-list, wherein the 
belong-to-list identifies a set of one or more cartridges that 
may participate in performing Said transaction. 

46. The method of claim 44, wherein the step of regis 
tering Said transaction further comprises the Step of Storing 
metadata that establishes a resource-list, wherein the 
resource-list identifies a set of one or more resources that are 
affected by performing the transaction. 

47. The method of claim 44, wherein the step of regis 
tering Said transaction further comprises the Step of Storing 
metadata that establishes a cartridge name, wherein the 
cartridge name identifies a particular type of cartridges that 
may be used to perform the transaction. 

48. The method of claim 44, wherein the step of regis 
tering Said transaction further comprises the Step of Storing 
metadata that establishes a transaction name, wherein the 
transaction name uniquely identifies a type of transaction 
relative to other transaction types. 



UNITED STATES PATENT AND TRADEMARK OFFICE 

CERTIFICATE OF CORRECTION 

PATENT NO. : 6,334,114 B1 Page 1 of 1 
DATED : December 25, 2001 
INVENTOR(S) : Jacobs et al. 

It is certified that error appears in the above-identified patent and that said Letters Patent is 
hereby corrected as shown below: 

Column 34, 
Line 11, replace “recSt” with -- request --. 

Column 35, 
Line 2, replace “cartride” with -- cartridege --. 
Line 57, replace “meSSaes' with -- meSSages --. 

Signed and Sealed this 

Fourth Day of June, 2002 

Attest. 

JAMES E ROGAN 
Attesting Officer Director of the United States Patent and Trademark Office 


