w0 2019/111118 A1 |0 000 0000 S 00

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
13 June 2019 (13.06.2019)

‘O 00000 00 0
(10) International Publication Number

WO 2019/111118 A1

WIPO I PCT

(51) International Patent Classification:
GO6N 3/08 (2006.01)

(21) International Application Number:
PCT/IB2018/059516

(22) International Filing Date:
30 November 2018 (30.11.2018)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

15/830,170 04 December 2017 (04.12.2017) US
(71) Applicant: INTERNATIONAL BUSINESS

MACHINES CORPORATION [US/US]; New Orchard

Road, Armonk, New York 10504 (US).

(71) Applicants (for MG only): IBM UNITED KING-
DOM LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB). IBM (CHINA)
INVESTMENT COMPANY LIMITED [CN/CN]J; 25/
F, Pangu Plaza, No.27, Central North 4th Ring Road,
Chaoyang District, Beijing 100101 (CN).

Inventors: CHEN, Chia-Yu; [BM Corporation, PO BOX
218, 1101 Kitchawan Road, Yorktown Heights, New York
10598 (US). AGRAWAL, Ankur; IBM Corporation, PO
BOX 218, 1101 Kitchawan Road, Yorktown Heights, New
York 10598 (US). BRAND, Daniel; IBM Corporation, PO
BOX 218, 1101 Kitchawan Road, Yorktown Heights, New
York 10598 (US). GOPALAKRISHNAN, Kailash; IBM
Corporation, PO BOX 218, 1101 Kitchawan Road, York-
town Heights, New York 10598 (US). CHOI, Jungwook;
IBM Corporation, PO BOX 218, 1101 Kitchawan Road,
Yorktown Heights, New York 10598 (US).

(72)

(54) Title: ROBUST GRADIENT WEIGHT COMPRESSION SCHEMES FOR DEEP LEARNING APPLICATIONS

FIG. 1

(57) Abstract: Embodiments of the present invention provide a computer-implemented method for adaptive residual gradient com-
pression for training of a deep learning neural network (DNN). The method includes obtaining, by a first learner, a current gradient
vector for a neural network layer of the DNN, in which the current gradient vector includes gradient weights of parameters of the neural
network layer that are calculated from a mini-batch of training data. A current residue vector is generated that includes residual gradient
weights for the mini-batch. A compressed current residue vector is generated based on dividing the residual gradient weights of the
current residue vector into a plurality of bins of a uniform size and quantizing a subset of the residual gradient weights of one or more
bins of the plurality of bins. The compressed current residue vector is then transmitted to a second learner of the plurality of learners

o1 to a parameter server.

[Continued on next page]

WO 2019/111118 AN 00P 00 0000

(74) Agent: ROBERTSON, Tracey, [BM United Kingdom
Limited, Intellectual Property Law, Hursley Park, Winches-
ter Hampshire SO21 2JN (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AQ, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW,BY, BZ,
CA, CH, CL,CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2019/111118 PCT/IB2018/059516

1

ROBUST GRADIENT WEIGHT COMPRESSION SCHEMES FOR DEEP LEARNING APPLICATIONS

BACKGROUND

[0001] The present invention generally relates to training of deep learning networks, and more specifically, to

robust residual gradient compression schemes for deep machine learning applications.

[0002] The phrase “machine learning” broadly describes a function of an electronic system that is capable of
learning from data. A machine learning system, engine, or module can include a machine learning algorithm that
can be trained, such as in an external cloud environment, to learn functional relationships between inputs and

outputs, wherein the functional relationships are currently unknown.

SUMMARY

[0003] Embodiments of the present invention provide a computer-implemented method for adaptive residual
gradient compression for training of a deep learning neural network (DNN). A non-limiting example of the method
includes obtaining, by a processor of a first learner of a plurality of learners, a current gradient vector for a neural
network layer of the DNN, in which the current gradient vector includes gradient weights of parameters of the neural
network layer that are calculated from a mini-batch of training data. A current residue vector is generated that
includes residual gradient weights for the mini-batch, in which generating the current residue vector includes the
summation of a prior residue vector and the current gradient vector. A compressed current residue vector is
generated, in which the compressed current residue vector is generated based at least in part on dividing the
residual gradient weights of the current residue vector into a plurality of bins of a uniform size and quantizing a
subset of the residual gradient weights of one or more bins of the plurality of bins. The quantizing of the subset of
the residual gradient weights is based at least in part on calculating a scaling parameter for the mini-batch and
calculating a local maximum of each bin, in which the uniform size of the bins is a hyper-parameter of the DNN. The

compressed current residue vector is then transmitted to second learner of the plurality of learners.

[0004] Embodiments of the present invention provide a system for adaptive residual gradient compression
for training of a DNN. In some embodiments of the present invention, the system includes a plurality of learners, in
which at least a first learner of the plurality of learners is configured to perform a method. A non-limiting example of
the method includes obtaining a current gradient vector for a neural network layer of the DNN, in which the current
gradient vector includes gradient weights of parameters of the neural network layer that are calculated from a mini-
batch of training data. A current residue vector that includes residual gradient weights for the mini-batch is
generated, in which generating the current residue vector includes summing a prior residue vector and the current

gradient vector. A compressed current residue vector is generated, in which the compressed current residue vector

WO 2019/111118 PCT/IB2018/059516

2

is generated based at least in part on dividing the residual gradient weights of the current residue vector into a

plurality of bins of a uniform size and quantizing a subset of the residual gradient weights of one or more bins of the
plurality of bins. The quantizing of the subset of the residual gradient weights is based at least in part on calculating
a scaling parameter for the mini-batch and calculating a local maximum of each bin, in which the uniform size of the
bins is a hyper-parameter of the DNN. The compressed current residue vector is then transmitted by the processor

to a second learner of the plurality of learners.

[0005] Embodiments of the invention provide a computer program product for adaptive residual gradient
compression for training of a DNN, the computer program product having a computer readable storage medium
having program instructions embodied therewith. The program instructions are executable by a processor of at least
afirst learner of a plurality of learners to cause the first learner to perform a method. A non-limiting example of the
method includes obtaining a current gradient vector for a neural network layer of the DNN, in which the current
gradient vector includes gradient weights of parameters of the neural network layer that are calculated from a mini-
batch of training data. A current residue vector is generated that includes residual gradient weights for the mini-
batch, in which generating the current residue vector includes the summation of a prior residue vector and the
current gradient vector. A compressed current residue vector is generated, in which the compressed current residue
vector is generated based at least in part on dividing the residual gradient weights of the current residue vector into
a plurality of bing of a uniform size and quantizing a subset of the residual gradient weights of one or more bins of
the plurality of bins. The quantizing of the subset of the residual gradient weights is based at least in part on
calculating a scaling parameter for the mini-batch and calculating a local maximum of each bin, in which the uniform
size of the bins is a hyper-parameter of the DNN. The compressed current residue vector is then transmitted to a

second learner of the plurality of learners.

[0006] Embodiments of the present invention provide a computer-implemented method for training a DNN
via adaptive residual gradient compression. A non-limiting example of the method includes receiving, by a system
having a plurality of learners, training data for training of the DNN using one or more neural network layers. A
current gradient vector for a neural network layer is generated at each learner of the plurality of learners from a
mini-batch of the training data, in which the current gradient vector includes gradient weights of parameters of the
neural network layer that are calculated from a mini-batch of training data. A current residue vector is generated at
each learner of the plurality of learners from the mini-batch, in which generating the current residue vector includes
summing a prior residue vector and the current gradient vector. A compressed current residue vector is generated
at each leaner of the plurality of learners, in which the compressed current residue vector is generated based at
least in part on dividing the residual gradient weights of the current residue vector into a plurality of bins of a uniform
size and quantizing a subset of the residual gradient weights of one or more bins of the plurality of bins. The
quantizing of the subset of the residual gradient weights is based at least in part on calculating a scaling parameter

for the mini-batch and calculating a local maximum of each bin, in which the uniform size of the bins is a hyper-

WO 2019/111118 PCT/IB2018/059516

3

parameter of the DNN. The compressed current residue vectors are then exchanged among the plurality of
learners. The compressed current residue vectors are decompressed at each of the plurality of learners. The

gradient weights of the parameters of the neural network layer are then updated at each of the plurality of learners.

[0007] Embodiments of the present invention provide a system for training a deep learning neural network
(DNN) via adaptive residual gradient compression. In some embodiments of the present invention, the system
includes a plurality of learners, in which the system is configured to perform a method. A non-limiting example of the
method includes receiving, by the system, training data for training of the DNN using one or more neural hetwork
layers. A current gradient vector for a neural network layer is generated at each learner of the plurality of learners
from a mini-batch of the training data, in which the current gradient vector includes gradient weights of parameters
of the neural network layer that are calculated from a mini-batch of training data. A current residue vector is
generated at each learner of the plurality of learners from the mini-batch, in which generating the current residue
vector includes the summation of a prior residue vector and the current gradient vector. A compressed current
residue vector is generated at each leaner of the plurality of learners, in which the compressed current residue
vector is generated based at least in part on dividing the residual gradient weights of the current residue vector into
a plurality of bing of a uniform size and quantizing a subset of the residual gradient weights of one or more bins of
the plurality of bins. The quantizing of the subset of the residual gradient weights is based at least in part on
calculating a scaling parameter for the mini-batch and calculating a local maximum of each bin, in which the uniform
size of the bins is a hyper-parameter of the DNN. The compressed current residue vectors are then exchanged
among the plurality of learners. The compressed current residue vectors are decompressed at each of the plurality
of learners. The gradient weights of the parameters of the neural network layer are then updated at each of the

plurality of learners.

[0008] Additional technical features and benefits are realized through the techniques of the present
invention. Embodiments and aspects of the invention are described in detail herein and are considered a part of the

claimed subject matter. For a better understanding, refer to the detailed description and to the drawings.

[0009] This compression scheme could integrate with different training scheme (time-domain) and applied in
different layers (space-domain). For example, the compression scheme is not applied first few epochs or the last

and first layers of neural networks.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] The specifics of the exclusive rights described herein are particularly pointed out and distinctly

claimed in the claims at the conclusion of the specification. The foregoing and other features and advantages of the

WO 2019/111118 PCT/IB2018/059516

4

embodiments of the invention are apparent from the following detailed description taken in conjunction with the
accompanying drawings in which:

FIG. 1 depicts a cloud computing environment according to one or more embodiments of the present invention;
FIG. 2 depicts abstraction model layers according to one or more embodiments of the present invention;

FIG. 3 depicts an exemplary computer system capable of implementing one or more embodiments of the present
invention;

FIG. 4 depicts a simplified block diagram of a convolutional neural network in accordance with one or more
embodiments of the present invention;

FIG. 5 depicts an example convolution layer of a neural network that is being trained using training data in
accordance with one or more embodiments of the present invention;

FIG. 6 depicts a block diagram of an environment for performing adaptive residual gradient compression for training
of a deep learning neural network in accordance with one or more embodiments of the present invention;

FIG. 7 depicts an example flowchart for training a neural network in accordance with one or more embodiments of
the present invention; and

FIG. 8 depicts a flow diagram illustrating an example methodology for generating a compressed current residue

vector in accordance with one or more embodiments of the present invention.,

[0011] The diagrams depicted herein are illustrative. There can be many variations to the diagram or the
operations described therein without departing from the scope of the invention. For instance, the actions can be
performed in a differing order or actions can be added, deleted or modified. Also, the term “coupled” and variations
thereof describes having a communications path between two elements and does not imply a direct connection
between the elements with no intervening elements/connections between them. All of these variations are

considered a part of the specification.

[0012] In the accompanying figures and following detailed description of the disclosed embodiments, the
various elements illustrated in the figures are provided with two or three digit reference numbers. With minor
exceptions, the leftmost digit(s) of each reference number correspond to the figure in which its element is first

illustrated.

DETAILED DESCRIPTION

[0013] Various embodiments of the invention are described herein with reference to the related drawings.
Alternative embodiments of the invention can be devised without departing from the scope of this invention. Various
connections and positional relationships (e.g., over, below, adjacent, etc.) are set forth between elements in the
following description and in the drawings. These connections and/or positional relationships, unless specified

otherwise, can be direct or indirect, and the present invention is not intended to be limiting in this respect.

WO 2019/111118 PCT/IB2018/059516

5

Accordingly, a coupling of entities can refer to either a direct or an indirect coupling, and a positional relationship
between entities can be a direct or indirect positional relationship. Moreover, the various tasks and process steps
described herein can be incorporated into a more comprehensive procedure or process having additional steps or

functionality not described in detail herein.

[0014] The following definitions and abbreviations are to be used for the interpretation of the claims and the

nu nouy

includes,

nouy

including,” “has,” “having,

nu

specification. As used herein, the terms “comprises,” “comprising, containg’
or “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a
composition, a mixture, a process, a method, an article, or an apparatus that comprises a list of elements is not
necessarily limited to only those elements but can include other elements not expressly listed or inherent to such

composition, mixture, process, method, article, or apparatus.

[0015] Additionally, the term “exemplary” is used herein to mean “serving as an example, instance or
illustration.” Any embodiment or design described herein as “exemplary” is not necessarily to be construed as
preferred or advantageous over other embodiments or designs. The terms “at least one’ and “one or more” may be
understood to include any integer number greater than or equal to one, i.e. one, two, three, four, etc. The terms “a
plurality” may be understood to include any integer number greater than or equal to two, i.e. two, three, four, five,

etc. The term “connection” may include both an indirect “connection” and a direct “connection”.

[0016] The terms “about,” “substantially,” “approximately,” and variations thereof, are intended to include the
degree of error associated with measurement of the particular quantity based upon the equipment available at the

time of filing the application. For example, “about’ can include a range of + 8% or 5%, or 2% of a given value.

[0017] For the sake of brevity, conventional techniques related to making and using aspects of the invention
may or may not be described in detail herein. In particular, various aspects of computing systems and specific
computer programs to implement the various technical features described herein are well known. Accordingly, in
the interest of brevity, many conventional implementation details are only mentioned briefly herein or are omitted

entirely without providing the well-known system and/or process details.

[0018] It is to be understood that although this disclosure includes a detailed description on cloud
computing, implementation of the teachings recited herein are not limited to a cloud computing environment.
Rather, embodiments of the present invention are capable of being implemented in conjunction with any other type

of computing environment now known or later developed.

[0019] Cloud computing is a model of service delivery for enabling convenient, on-demand network access

to a shared pool of configurable computing resources (e.g., networks, network bandwidth, servers, processing,

WO 2019/111118 PCT/IB2018/059516

6

memory, storage, applications, virtual machines, and services) that can be rapidly provisioned and released with
minimal management effort or interaction with a provider of the service. This cloud model may include at least five

characteristics, at least three service models, and at least four deployment models.

[0020] Characteristics are as follows:

On-demand self-service: a cloud consumer can unilaterally provision computing capabilities, such as server time
and network storage, as needed automatically without requiring human interaction with the service's provider.
Broad network access: capabilities are available over a network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, laptops, and PDAS).

Resource pooling: the provider's computing resources are pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynamically assigned and reassigned according to demand.
There is a sense of location independence in that the consumer generally has no control or knowledge over the
exact location of the provided resources but may be able to specify location at a higher level of abstraction (e.g.,
country, state, or datacenter).

Rapid elasticity: capabilities can be rapidly and elastically provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer, the capabilities available for provisioning often appear
to be unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control and optimize resource use by leveraging a metering
capability at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored, controlled, and reported, providing transparency for both

the provider and consumer of the utilized service.

[0021] Service Models are as follows:

Software as a Service (SaaS): the capability provided to the consumer is to use the provider’s applications running
on a cloud infrastructure. The applications are accessible from various client devices through a thin client interface
such as a web browser (e.g., web-based e-mail). The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, storage, or even individual application capabilities, with
the possible exception of limited user-specific application configuration settings.

Platform as a Service (PaaS): the capability provided to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using programming languages and tools supported by the
provider. The consumer does not manage or control the underlying cloud infrastructure including networks, servers,
operating systems, or storage, but has control over the deployed applications and possibly application hosting
environment configurations.

Infrastructure as a Service (1aaS). the capability provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary

software, which can include operating systems and applications. The consumer does not manage or control the

WO 2019/111118 PCT/IB2018/059516

7

underlying cloud infrastructure but has control over operating systems, storage, deployed applications, and possibly

limited control of select networking components (e.g., host firewalls).

[0022] Deployment Models are as follows:

Private cloud: the cloud infrastructure is operated solely for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.

Community cloud: the cloud infrastructure is shared by several organizations and supports a specific community
that has shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It may be
managed by the organizations or a third party and may exist on-premises or off-premises.

Public cloud: the cloud infrastructure is made available to the general public or a large industry group and is owned
by an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of two or more clouds (private, community, or public) that
remain unique entities but are bound together by standardized or proprietary technology that enables data and

application portability (e.g., cloud bursting for load-balancing between clouds).

[0023] A cloud computing environment is service oriented with a focus on statelessness, low coupling,
modularity, and semantic interoperability. At the heart of cloud computing is an infrastructure that includes a

network of interconnected nodes.

[0024] Referring now to FIG. 1, illustrative cloud computing environment 50 is depicted. As shown, cloud
computing environment 50 includes one or more cloud computing nodes 10 with which local computing devices
used by cloud consumers, such as, for example, personal digital assistant (PDA) or cellular telephone 54A, desktop
computer 54B, laptop computer 54C, and/or automobile computer system 54N may communicate. Nodes 10 may
communicate with one another. They may be grouped (not shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastructure, platforms and/or software as services for which a
cloud consumer does not need to maintain resources on a local computing device. It is understood that the types of
computing devices 54A-N shown in FIG. 1 are intended to be illustrative only and that computing nodes 10 and
cloud computing environment 50 can communicate with any type of computerized device over any type of network

and/or network addressable connection (e.g., using a web browser).

[0025] Referring now to FIG. 2, a set of functional abstraction layers provided by cloud computing
environment 50 (FIG. 1) is shown. It should be understood in advance that the components, layers, and functions
shown in FIG. 2 are intended to be illustrative only and embodiments of the invention are not limited thereto. As

depicted, the following layers and corresponding functions are provided:

WO 2019/111118 PCT/IB2018/059516

8

[0026] Hardware and software layer 60 includes hardware and software components. Examples of hardware
components include: mainframes 61; RISC (Reduced Instruction Set Computer) architecture based servers 62;
servers 63; blade servers 64; storage devices 65; and networks and networking components 66. In some

embodiments, software components include network application server software 67 and database software 68.

[0027] Virtualization layer 70 provides an abstraction layer from which the following examples of virtual
entities may be provided:; virtual servers 71; virtual storage 72; virtual networks 73, including virtual private

networks; virtual applications and operating systems 74; and virtual clients 75.

[0028] In one example, management layer 80 may provide the functions described below. Resource
provisioning 81 provides dynamic procurement of computing resources and other resources that are utilized to
perform tasks within the cloud computing environment. Metering and Pricing 82 provide cost tracking as resources
are utilized within the cloud computing environment, and billing or invoicing for consumption of these resources. In
one example, these resources may include application software licenses. Security provides identity verification for
cloud consumers and tasks, as well as protection for data and other resources. User portal 83 provides access to
the cloud computing environment for consumers and system administrators. Service level management 84 provides
cloud computing resource allocation and management such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment 85 provide pre-arrangement for, and procurement of, cloud computing

resources for which a future requirement is anticipated in accordance with an SLA.

[0029] Workloads layer 90 provides examples of functionality for which the cloud computing environment
may be utilized. Examples of workloads and functions which may be provided from this layer include; mapping and
navigation 91; software development and lifecycle management 92; virtual classroom education delivery 93; data

analytics processing 94; transaction processing 95; and gradient compression processing 96.

[0030] Turning now to an overview of technologies that are more specifically relevant to aspects of the
invention, highly distributed training of DNNs are often communication constrained. To overcome this limitation, new
gradient compression techniques are needed that are computationally friendly, applicable to a wide variety of layers

seen in DNN, and adaptable to variations in network architectures as well as their hyper-parameters.

[0031] As previously noted herein, the phrase “machine learning’ broadly describes a function of electronic
systems that learn from data. A machine learning system, engine, or module can include a trainable machine
learning algorithm that can be trained, such as in an external cloud environment, to learn functional relationships
between inputs and outputs, wherein the functional relationships are currently unknown. Machine learning
functionality can be implemented using an artificial neural network (ANN) having the capability to be trained to

perform a currently unknown function. In machine learning and cognitive science, ANNs are a family of statistical

WO 2019/111118 PCT/IB2018/059516

9

learning models inspired by the biological neural networks of animals, in particular the brain. ANNs can be used to
estimate or approximate systems and functions that depend on a large humber of inputs. ANNs can be embodied
as so-called “neuromorphic’ systems of interconnected processor elements that act as simulated “neurons” and
exchange “messages” between each other in the form of electronic signals. Similar to the so-called “plasticity” of
synaptic neurotransmitter connections that carry messages between biological neurons, the connections in ANNs
that carry electronic messages between simulated neurons are provided with numeric weights that correspond to
the strength or weakness of a given connection. The weights can be adjusted and tuned based, at least in part, on
experience, making ANNs adaptive to inputs and capable of learning. For example, an ANN for handwriting
recognition is defined by a set of input neurons that can be activated by the pixels of an input image. After being
weighted and transformed by a function determined by the network's designer, the activation of these input neurons
are then passed to other downstream neurons, which are often referred to as “hidden” neurons. This process is

repeated until an output neuron is activated. The activated output neuron determines which character was read.

[0032] Machine learning is often employed by numerous technologies to determine inferences and/or
relationships among digital data. For example, machine learning technologies, signal processing technologies,
image processing technologies, data analysis technologies, and/or other technologies employ machine learning
models to analyze digital data, process digital data, determine inferences from digital data, and/or determine

relationships among digital data.

[0033] A deep neural network (DNN) is a type of ANN that has multiple hidden layers between the input and
output layers. DNNs can model complex non-linear relationships. DNN architectures generate compositional
models where the object is expressed as a layered composition of primitives. The extra layers enable composition
of features from lower layers, potentially modeling complex data with fewer units than a similarly performing shallow
network. Some DNNs are feedforward networks in which data flows from the input layer to the output layer without
looping back. Recurrent neural networks (RNNs) are a further type of DNN, in which data can flow in any direction.
RNNs are sometimes used for applications such as language modeling. Long short-term memory (LSTM) networks

are another type of DNN.

[0034] The use of neural networks, particularly with convolutional layers, has driven progress in deep
learning. Such neural networks are referred to as convolutional neural networks (CNN). In a CNN, kernels
convolute overlapping regions in a visual field, and accordingly emphasize the importance of spatial locality in
feature detection. Computing the convolutional layers of the CNN typically encompasses more than 90% of
computation time in neural network training and inference. The training time, for example, depends on the size of
the training dataset that is being used, may be a week or longer. In order to improve training time over single-node
systems, distributed systems have been developed to distribute training data over multiple central processing units

(CPUs) or graphics processing units (GPUs). Ring-based system topologies have been proposed to attempt to

WO 2019/111118 PCT/IB2018/059516

10

maximize inter-accelerator bandwidths by connecting accelerators and/or learners in the system in a ring network.
The accelerator then trangports its computed weight gradients from local mini-batch directly to the adjacent
accelerator or with a centralized parameter server. However, as the number of learners that are utilized increases,
distribution of the mini-batch data under strong scaling conditions has the adverse effect of significantly increasing
the demand for communication bandwidth between the learners while proportionally decreasing the flops needed in
each learner, therefore, creating a severe computation to communication imbalance. Thus, accelerating the CNN
training via compression, as described by the examples of the technical solutions herein, is a desirable

improvement.

[0035] Turning now to an overview of the aspects of the invention, one or more embodiments of the
invention addresses the above-described shortcomings of the prior art by providing a new compression technique
that assists in minimizing the amount of data exchanged among accelerators. In particular, an adaptive residual
gradient compression scheme is provided that utilizes localized selection of gradient residues, in which the residual
gradient compression scheme is able to automatically tune the compression rate based on local activity. For
example, as there may be a lack of correlation between the activity of input features and the residual gradients in
any layer, in some embodiments of the present invention, the compression scheme is configured to capture the
residues across an entire layer by dividing the entire residue vector, for each layer, uniformly into several bins, thus
creating a new hyper-parameter having a fixed length bin size, Lt. In each bin, the compression algorithm first finds
the maximum of the absolute value of the residue. In addition to this value, the compression algorithm sends other
residues that are relatively similar in magnitude to this maximum. A residue is computed for each mini-batch as the
sum of the previous residue and the latest gradient value obtained from backpropagation. If the sum of its previous
residue plus its latest gradient, with a scale-factor, exceeds the maximum in the bin, then those additional residues
are included in the set of values to be sent and/or centrally updated. Various suitable scale factors may be used in
accordance with one or more embodiments of the present invention. For example, in some embodiments of the
present invention the scale-factor ranges from about 1.5 to about 3. In some embodiments of the present invention,

the scale-factor is 2.

[0036] As residues may be empirically larger than gradients, one or more of the above-described aspects of
the invention address the shortcomings of the prior art by providing a compression scheme that allows for the
sending of important residues that are close to a local maximum. By quantizing a compressed residue vector in
accordance to one or more embodiments of the present invention, the overall compression rate can be increased.
The compression scheme can be applied to every layer separately at each learner. In some embodiments of the
present invention, each learner sends a scale-factor in addition to the compressed sparse vector. In some
embodiments of the present invention, by exploiting both sparsity and quantization, end-to-end compression rates
of about 200x for fully-connected and recurrent layers and 40x for convolution layers may be achieved without

noticeable degradation in model accuracy (e.g., <1% degradation). Prior methods had significant degradation, such

WO 2019/111118 PCT/IB2018/059516

11

as about 1.6% for large networks. In one or more embodiments of the present invention, the compression scheme
does not require sorting, or approximation to sorting, and thus the compression scheme is able to be computably

efficient (O)(N)) for high-performance systems.

[0037] Turning now to a more detailed description of aspects of the present invention, FIG. 3 illustrates a
high level block diagram showing an example of a computer-based system 300 useful for implementing one or
more embodiments of the invention. Although one exemplary computer system 300 is shown, computer system 300
includes a communication path 326, which connects computer system 300 to additional systems and may include
one or more wide area networks (WANSs) and/or local area networks (LANS) such as the internet, intranet(s), and/or
wireless communication network(s). Computer system 300 and additional system are in communication via

communication path 326, (e.g., to communicate data between them).

[0038] Computer system 300 includes one or more processors, such as processor 302. Processor 302 is
connected to a communication infrastructure 304 (e.g., a communications bus, cross-over bar, or network).
Computer system 300 can include a display interface 306 that forwards graphics, text, and other data from
communication infrastructure 304 (or from a frame buffer not shown) for display on a display unit 308. Computer
system 300 also includes a main memory 310, preferably random access memory (RAM), and may also include a
secondary memory 312. Secondary memory 312 may include, for example, a hard disk drive 314 and/or a
removable storage drive 316, representing, for example, a floppy disk drive, a magnetic tape drive, or an optical
disk drive. Removable storage drive 316 reads from and/or writes to a removable storage unit 318 in a manner well
known to those having ordinary skill in the art. Removable storage unit 318 represents, for example, a floppy disk, a
compact disc, a magnetic tape, or an optical disk, etc. which is read by and written to by removable storage drive
316. As will be appreciated, removable storage unit 318 includes a computer readable medium having stored

therein computer software and/or data.

[0039] In some alternative embodiments of the invention, secondary memory 312 may include other similar
means for allowing computer programs or other instructions to be loaded into the computer system. Such means
may include, for example, a removable storage unit 320 and an interface 322. Examples of such means may
include a program package and package interface (such as that found in video game devices), a removable
memory chip (such as an EPROM or PROM) and associated socket, and other removable storage units 320 and
interfaces 322 which allow software and data to be transferred from the removable storage unit 320 to computer

system 300.

[0040] Computer system 300 may also include a communications interface 324. Communications interface
324 allows software and data to be transferred between the computer system and external devices. Examples of

communications interface 324 may include a modem, a network interface (such as an Ethernet card), a

WO 2019/111118 PCT/IB2018/059516

12

communications port, or a PCM-CIA slot and card, etcetera. Software and data transferred via communications
interface 324 are in the form of signals which may be, for example, electronic, electromagnetic, optical, or other
signals capable of being received by communications interface 324. These signals are provided to communications
interface 324 via communication path (i.e., channel) 326. Communication path 326 carries signals and may be
implemented using wire or cable, fiber optics, a phone line, a cellular phone link, an RF link, and/or other
communications channels.

nu

[0041] In the present disclosure, the terms “computer program medium,” “computer usable medium,” and
‘computer readable medium” are used to generally refer to media such as main memory 310 and secondary
memory 312, removable storage drive 316, and a hard disk installed in hard disk drive 314. Computer programs
(also called computer control logic) are stored in main memory 310, and/or secondary memory 312. Computer
programs may also be received via communications interface 324. Such computer programs, when run, enable the
computer system to perform the features of the present disclosure as discussed herein. In particular, the computer
programs, when run, enable processor 302 to perform the features of the computer system. Accordingly, such

computer programs represent controllers of the computer system.

[0042] FIG. 4 illustrates a block diagram of an example neural network in accordance with one or more
embodiments of the present disclosure, which is interpreting a sample input map 400. This particular example uses
a handwritten letter “w” as an input map, however, it is understood that other types of input maps are possible. In
the illustrated example, the input map 400 is used to create a set of values for the input layer 410, or “layer-1." In
some embodiments of the present invention, layer-1 is generated by direct mapping of a pixel of the sample input
map 400 to a particular neuron in layer-1, such that the neuron shows a 1 or a 0 depending on whether the pixel
exhibits a particular attribute. Another example method of assigning values to neurons is discussed below with
reference to convolutional neural networks. Depending on the vagaries of the neural network and the problem it is
created to solve, each layer of the network may have differing numbers of neurons, and these may or may not be

related to particular qualities of the input data.

[0043] Referring to FIG. 4, neurons in layer-1 410 are connected to neurons in the next layer, layer-2 420. In
aneural network, each of the neurons, in a particular layer, is connected to neurons in the next layer. In this
example, a neuron in layer-2 receives an input value from each of the neurons in layer-1. The input values are then
summed and this sum is compared to a bias. If the value exceeds the bias for a particular neuron, that neuron then
holds a value which can be used as input to neurons in the next layer of neurons. This computation continues
through the various layers 430-450 of the neural network, until it reaches a final layer 460, referred to as “output’ in
FIG 4. In an example of a neural network used for character recognition, each value in the layer is assigned to a

particular character. In some embodiments of the present invention, the network is configured to end with the output

WO 2019/111118 PCT/IB2018/059516

13

layer having only one large positive value in one neuron, which then demonstrates which character the network has

computed to be the most likely handwritten input character.

[0044] In some embodiments of the present invention, data values for each layer in the neural network are
represented as vectors or matrices (or tensors in some examples) and computations are performed as vector or
matrix computations. The indexes (and/or sizes) of the matrices vary from layer to layer and network to network, as
illustrated in FIG. 4. Different implementations orient the matrices, or map the matrices, to computer memory
differently. In the example neural network illustrated in FIG. 4, each level is a matrix of heuron values by matrix
dimensions for each layer of the neural network. The values in a matrix at a layer are multiplied by connection
strengths, which are in a transformation matrix. This matrix multiplication scales each value in the previous layer
according to the connection strengths, and then is summed. A bias matrix is then added to the resulting product
matrix to account for the threshold of each neuron in the next level. An activation function is then applied to each
resultant value, and the resulting values are placed in the matrix for the next layer. In an example, the activation
function may be rectified linear units, sigmoid, or tanh(). The connections between each layer, and thus an entire
network, can be represented as a series of matrices. Training the neural network includes finding proper values for

these matrices.

[0045] While fully-connected neural networks are able, when properly trained, to recognize input patterns,
such as handwriting, they may fail to take advantage of shape and proximity when operating on input. For example,
because every pixel is operated on independently, the neural network may ignore adjacent pixels. A CNN, in
comparison, operates by associating an array of values, rather than a single value, with each neuron. Conceptually,
the array is a subset of the input pattern, or other parts of the training data. The transformation of a neuron value for
the subsequent layer is generated using convolution. Thus, in a CNN the connection strengths are convolution

kernels rather than scalar values as in a full-network.

[0046] FIG. 5 illustrates an example convolutional layer 500 in a CNN being trained using training data that
includes input maps 510 and convolution kernels 520, in accordance with one or more embodiments of the present
invention. The input maps 510 include multiple input patterns, for example N input maps. Each input map is a
matrix, such as a square matrix of size n x n. The input maps are convolved with convolution kernels 520 of size k x
k as illustrated to produce M output maps 530 of size n-k+1 x n-k+1. Each convolution is a 3D convolution involving
the N input maps. It should be noted that the input maps, kernels, and output maps need not be square. A CNN can
include multiple such layers, where the output maps 530 from a previous layer are used as input maps 510 for a

subsequent layer. The backpropagation algorithm can be used to learn the weight values of the k x k x M x N filters.

[0047] For example, in some embodiments of the present invention, the input maps 510 are convolved with

each filter bank to generate a corresponding output map. For example, in case the CNN 500 is being trained to

WO 2019/111118 PCT/IB2018/059516

14

identify handwriting, the input maps 510 are combined with a filter bank that includes convolution kernels
representing a vertical line. The resulting output map 530 identifies vertical lines which may be present in the input
maps 510. Further, another filter bank may include convolution kernels representing a diagonal line, such as going
up and to the right. An output map 530 resulting from a convolution of the input maps 510 with the second filter
bank identifies samples of the training data that contain diagonal lines. The two output maps 530 show different
information for the character, while preserving pixel adjacency. This can result in more efficient character

recognition.

[0048] FIG. 6 illustrates a block diagram of a system 600 for performing adaptive residual gradient
compression for training of a deep learning neural network according to one or more embodiments of the present
invention. System 600 includes a plurality of learner processing systems 610, 620, 630, 640 which are responsible
for preforming deep network learning, for example, as an instance of a non-convex optimization problem. This may
be useful to train deep neural nets with a large number of parameters on large datasets. For example, in some
embodiments of the present invention, when multi-workers (e.g., plurality of learner processing systems 610, 620,
630, 640) train one neural network, each worker computes a subset of training data and communication among
workers may be required; this is usually called data-parallelism. To save communication bandwidth, each worker
sends partial value of gradients and keep the reminding residues locally. System 600 provides a compression
technique that assists in minimizing the amount of data exchanged among accelerators. In particular, system 600
employs an adaptive residual gradient compression scheme that utilizes localized selection of gradient residues, in
which the compression scheme is configured to capture the residues across an entire layer by dividing the entire
residue vector for each layer uniformly into several bins, wherein the fixed length bin size, Ly, is a new hyper-
parameter. In each bin, the maximum of the absolute value of the residue is identified and exchanged among the
plurality of learner processing systems 610, 620, 630, 640 and/or transmitted to a parameter server. Other residues
that are relatively similar in magnitude to this maximum are also exchanged among the plurality of learner
processing systems 610, 620, 630, 640 and/or transmitted to a parameter server. For example, in some
embodiments of the present invention, a residue that is computed for each mini-batch by summing a previous
residue and a latest gradient value obtained from backpropagation. If the sum of its previous residue plus its latest
gradient, with a scale-factor, exceeds the maximum in the bin, those additional residues are included in the set of
values to be sent and/or centrally updated at a server, such as a parameter server. It should be appreciated that,
although four learner processing systems 610, 620, 630, 640 are illustrated in FIG. 6, the present techniques may
be utilized with any suitable number of learner processing systems. In some embodiments of the present invention,
when multi-workers (.e.g., plurality of learner processing systems 610, 620, 630, 640) train one neural hetwork,
each worker computes the subset of training data and communication among workers are required; this is usually
called data-parallelism. To save communication bandwidth, each worker sends partial value of gradients and keep

the reminding residues locally

WO 2019/111118 PCT/IB2018/059516

15

[0049] FIG. 7 illustrates an example process flow 700 for training a DNN, such as a CNN with one or more
convolutional layers 500 in accordance with one or more embodiments of the present invention. The example logic
may be implemented by one or more processors, such as a CPU, a GPU, a digital signal processor (DSP), or any
other processor or a combination thereof, At 702, the CNN is initialized. In some embodiments of the present
invention, the CNN is initialized with random weights. At 704, training data for the CNN 500 is received. In some
embodiments of the present invention, the CNN is pre-set with sample convolutional kernels and biases, which can
be refined to provide consistent and efficient results. In some embodiments of the present invention, the training
data includes a plurality of input training samples 400 such as for example, on the order of tens of thousands of
input training samples 400. The input training samples 400 are associated with an expected output 460. In some
embodiments of the present invention, the inputs 400 are handwriting samples and the expected outputs 460 are an

indication of the correct character for interpreting each handwriting sample.

[0050] In some embodiments of the present invention, DNN training includes training via multiple training
epochs. For example, in some embodiments of the present invention, each epoch includes several mini-batches.
Accordingly, in some embodiments of the present invention, as shown at block 706 the process begins at a mini-
batch of a training epoch by receiving training data (e.g., by learner processing systems 610, 620, 630, 640). Using
the input maps 510 and the convolutional kernels 520, the output maps 530 are generated as described herein, as
shown at block 708 (e.g., by learner processing systems 610, 620, 630, 640). Generating the output maps 530 is
commonly referred to as a “forward pass.” At 710, a determination is made, based on the output maps 530, as to
how close or far off of the CNN was to the expected. At block 712, the degree of error with relation to each of the
matrices and/or vectors that make up the CNN is determined using gradient descent. Determining the relative errors

is referred to as a “backward pass’ (e.g., by learner processing systems 610, 620, 630, 640).

[0051] At block 714, a current gradient vector is obtained on a layer-by-layer basis by each learner of the
system (e.g., by learner processing systems 610, 620, 630, 640). In some embodiments of the present invention,
the current gradient vector for each given neural network layer includes gradient weights of parameters of the given
neural network layer. As will be discussed in further detail below, in some embodiments of the present invention,

the gradient weights are calculated from a mini-batch of training data as opposed to from the entire training data.

[0052] At block 716, a current residue vector and a compressed current residue vector are generated for
each given layer by each learner of the system (e.g., by learer processing systems 610, 620, 630, 640). In some
embodiments of the present invention, the compressed current residue vector is a layer-wise or chunk-wise
compressed current residue vector. In some embodiments of the present invention, the current residue vector
includes residual gradient weights for a given layer of a mini-batch. In some embodiments of the present invention,
the current residue vector is generated by summing the current gradient vector with a prior residue vector (e.g., a

residue vector of a prior mini-batch). In some embodiments of the present invention, the prior residue vector is an

WO 2019/111118 PCT/IB2018/059516

16

empty vector or has null values, which may occur when a run is first initialized. As such, in some embodiments of
the present invention, the summation of the current gradient vector and a prior residue vector results in a current

residue vector being obtained that is the same as the current gradient vector,

[0053] In some embodiments of the present invention, the compressed current residue vector that is
generated at block 716 is generated based, at least in part, on dividing the residual gradient weights of the current
residue vector into a plurality of bins, of a uniform size, and then quantizing a subset of the residual gradient
weights of one or more bins of the plurality of bins, in which the uniform size is a hyper-parameter of the neural
network. In some embodiments of the present invention, the quantizing of the subsst of the residual gradient
weights is based at least in part on calculating a scaling parameter for the mini-batch and calculating a local

maximum of each bin.

[0054] At block 718, the compressed current residue vectors are exchanged among each learner of the
system (e.g., by learner processing systems 610, 620, 630, 640) and/or transmitted to a parameter server. In some
embodiments of the present invention, the exchange includes each learner of the system transmitting the
compressed current residue vector to the other learners of the plurality of learners. At block 720, the compressed
current reduce vectors are decompressed at each learner of the plurality of learns (e.g., by learner processing
systems 610, 620, 630, 640). After decompression, at block 722 each learner of the plurality of learners locally

averages the gradients of the decompressed vectors (e.g., by learner processing systems 610, 620, 630, 640).

[0055] In some embodiments of the present invention, the matrices are then modified to adjust for the error,
as shown at block 724 based on the decompressed vectors. For example, in some embodiments of the present
invention, the convolution kernels 520 are modified based on the output error information and then the modified
kernels are used to determine modifications for each neural network matrix, which is referred to as an “update
pass.” In some embodiments of the present invention, the modified convolutional kernels 520, after being adjusted,
are used for a next mini-batch or epoch of the training, unless the training is deemed completed, as shown at block
726. In some embodiments of the present invention, the modified convolutional kernels 520 from one mini-batch are
used in a subsequent mini-batch. For example, the training may be deemed completed if the CNN identifies the
inputs according to the expected outputs with a predetermined error threshold. If the training is not yet completed,

another training epoch, is performed using the modified convolutional kernels.

[0056] In some embodiments of the present invention, each iteration of the “forward and backward pass’
uses the entire training data. Alternatively, the training data may be divided into mini-batches, or subsets. In a
batched training process, the CNN is propagated on a forward pass to determine an output for a mini-batch, as
shown at block 708. The error function is used to compute how far off the CNN was from the expected output for

the batch, as shown at block 710. A gradient function is determined for the error function. The gradient function, in

WO 2019/111118 PCT/IB2018/059516

17

an example, includes partial derivatives for each entry of each neural network matrix with respect to the error. The
gradient function represents how much to adjust each matrix according to the gradient descent method. The
processor subsequently modifies the matrices, including the convolutional kernels and the biases, according to the
gradient function, as shown at block 724. As shown at block 728, the “forward/backward passes’ are repeated as
long as there are more mini-batches and/or the CNN is not trained. The mini-batch may include any fraction of the

total number of input samples needed to complete a training epoch.

[0057] FIG. 8 illustrates example logic of block 716 for generating a compressed current residue vector in
accordance with one or more embodiments of the present invention. At block 802, a scaled current residue vector is
generated at each learner of the system. The scaled current residue vector includes scaled residual gradient
weights for the given mini-batch. The scaled current residue vector is generated by multiplying the current gradient
vector by a scaling parameter and then summing the prior residue vector with the multiplied gradient vector. In
some embodiments of the present invention, the scale parameter is calculated by minimizing quantization error

according to L2 normalization.

[0058] At block 804, the residual gradient weights of the current residue vector are dividing uniformly into a
plurality of bins of a uniform size, in which the uniform size is a hyper-parameter of the neural network. At block
806, a local maximum is identified for each given residual gradient weight of each given bin. In some embodiments
of the present invention, the local maximum of a given bin is the maximum absolute value of the residual gradient

weights of the given bin.

[0059] At block 808, it is determined for each given residual gradient weight of each given bin whether the
given residual gradient weight has a corresponding scaled residual gradient weight that exceeds the local maximum
of the given bin. At block 810, upon determining that a residual gradient weight that has a corresponding scaled
residual gradient weight exceeds the local maximum of the given bin, a quantizing value for the give residual
gradient weight is generated and the current residue vector is updated. In some embodiments of the present
invention, the current residue vector is updated by substituting the given residual gradient weight of the current
residue vector with the quantized value. At block and then updating the current residue vector by substituting the

given residual gradient weight of the current residue vector with the quantized value.

[0060] The following pseudocode describes two algorithms that can be used to implement process flow 700:

WO 2019/111118 PCT/IB2018/059516

18

Algorithm 1 C mnpum ion Steps

1"\»’ 1‘--"5 r‘}vj}' I
- &

ndate () o Forward/Bachward only
serialize@ra@

¢ 1{} b Collect grad of each layver as & vector

pack{} e AdaComp Compression for each laver
{} & Learner recerves packed grads from others

B Ada«i(_mﬂp Decompression for each layer

yeGradients () o Average among all leamers

oo Lg}*a {3 o> Performed locally at each learner

Algorithm 2 Details of pack{ }

3 i pesidhue + 1 = dW s from serializeSradi)
H o G+ ,,a’ﬂ- > H = Resjdue + 25dW
Ldivide 3 fato Bins of sice T

for i+ 1 lengthi€) /T do & Over all bins

Celenlare o
end for
for i « 1, dength{GY /T deo > Over all bins
for j o 1.7 d@ & Over all indices within each bin

. = Get largest abselute value in each hin

:\

, s i} then Compare 1o local max
(u,{m fom) Qmm{:: s rdex))
eelid Galindex) to o pack vector {sent {n exchanget }}
residuelinder) - Glindex) — Gglindea)
else

residueiindex) s} o No transmission
e} if
el for
end for
[0061] Algorithm 1 shows an example gradient weight communication scheme in accordance with one or

more embodiments of the present invention. Algorithm 2 shows an example compression scheme in accordance
with one or more embodiments of the present invention (referred to in shorthand as “AdaComp”). Algorithm 1 is a
gradient weight communication scheme that can be used to test the compression algorithm of Algorithm 2.
Algorithm 2 is encapsulated within the pack() and unpack() functions of Algorithm 2. These two functions may be
inserted between the backward pass step 712 and the weight-update step 722 of process flow 700, for example.
The pack/unpack functions can be implemented independent of the exchange() function. The exchange() function

used may depend on the particular topology of the CNN (e.g., ring-based vs. parameter-server based).

[0062] Algorithm 2 provides one example of a quantization function that may be utilized within the
compression scheme. A sign bit is used with a scale value to represent an original number. In this example, a single
scale value is used for each given layer in which the scale value is the absolute value average of all elementsin a
game vector for the given layer. Other suitable quantization functions and/or scale values may be utilized in one or

more embodiments of the present invention.

WO 2019/111118 PCT/IB2018/059516

19

[0063] In some embodiments of the present invention, Algorithm 2 selects up to 10 and 100 elements
respectively within each bin through sparsity for bin sizes (Lt) between 50 and 500 elements. In some embodiments
of the present invention, a sparse-index representation of 8-bits is used for Lt sizes that are less than 40 elements.
In some embodiments of the present invention, a 16-bit representation is used for large Lt sizes (e.g., greater than
500 elements and/or up to 10K elements). In some embodiments of the present invention, 2-bits of an 8-bit or 16-bit

representation are used to represent ternarized data values.

[0064] In comparison to traditional 32-bit floating point representations, Algorithm 2 is able to achieve an
effective compression rate of around 40x for convolution layers and around 200x for fully contented and recurrent
layers. One factor that makes Algorithm 2 a robust compress technique is that Algorithm 2 utilizes a self-adjustable
threshold. Algorithm 2 applies a compression scheme that sends additional residual gradients that are close to the
local maximum in each bin, and can therefore automatically adapt based on the number of important gradients in a

mini-batch.

[0065] The present invention may be a system, a method, and/or a computer program product at any
possible technical detail level of integration. The computer program product may include a computer readable
storage medium (or media) having computer readable program instructions thereon for causing a processor to carry

out aspects of the present invention.

[0066] The computer readable storage medium can be a tangible device that can retain and store
instructions for use by an instruction execution device. The computer readable storage medium may be, for
example, but is not limited to, an electronic storage device, a magnetic storage device, an optical storage device, an
electromagnetic storage device, a semiconductor storage device, or any suitable combination of the foregoing. A
non-exhaustive list of more specific examples of the computer readable storage medium includes the following: a
portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash memory), a static random access memory (SRAM), a portable
compact disc read-only memory (CD-ROM), a digital versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised structures in a groove having instructions recorded
thereon, and any suitable combination of the foregoing. A computer readable storage medium, as used herein, is
not to be construed as being transitory signals per se, such as radio waves or other freely propagating
electromagnetic waves, electromagnetic waves propagating through a waveguide or other transmission media (e.g.,

light pulses passing through a fiber-optic cable), or electrical signals transmitted through a wire.

[0067] Computer readable program instructions described herein can be downloaded to respective
computing/processing devices from a computer readable storage medium or to an external computer or external

storage device via a network, for example, the Internet, a local area network, a wide area network and/or a wireless

WO 2019/111118 PCT/IB2018/059516

20

network. The network may comprise copper transmission cables, optical transmission fibers, wireless transmission,
routers, firewalls, switches, gateway computers and/or edge servers. A network adapter card or network interface in
each computing/processing device receives computer readable program instructions from the network and forwards
the computer readable program instructions for storage in a computer readable storage medium within the

respective computing/processing device.

[0068] Computer readable program instructions for carrying out operations of the present invention may be
assembler instructions, instruction-set-architecture (ISA) instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting data, configuration data for integrated circuitry, or either
source code or object code written in any combination of one or more programming languages, including an object
oriented programming language such as Smalltalk, C++, or the like, and procedural programming languages, such
as the "C" programming language or similar programming languages. The computer readable program instructions
may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package,
partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the user's computer through any type of network,
including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external
computer (for example, through the Internet using an Internet Service Provider). In some embodiments, electronic
circuitry including, for example, programmable logic circuitry, field-programmable gate arrays (FPGA), or
programmable logic arrays (PLA) may execute the computer readable program instruction by utilizing state
information of the computer readable program instructions to personalize the electronic circuitry, in order to perform

aspects of the present invention.

[0069] Aspects of the present invention are described herein with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems), and computer program products according to embodiments of the
invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and
combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer

readable program instructions.

[0070] These computer readable program instructions may be provided to a processor of a general purpose
computer, special purpose computer, or other programmable data processing apparatus to produce a machine,
such that the instructions, which execute via the processor of the computer or other programmable data processing
apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block
or blocks. These computer readable program instructions may also be stored in a computer readable storage
medium that can direct a computer, a programmable data processing apparatus, and/or other devices to function in

a particular manner, such that the computer readable storage medium having instructions stored therein comprises

WO 2019/111118 PCT/IB2018/059516

21

an article of manufacture including instructions which implement aspects of the function/act specified in the

flowchart and/or block diagram block or blocks.

[0071] The computer readable program instructions may also be loaded onto a computer, other
programmable data processing apparatus, or other device to cause a series of operational steps to be performed
on the computer, other programmable apparatus or other device to produce a computer implemented process, such
that the instructions which execute on the computer, other programmable apparatus, or other device implement the

functions/acts specified in the flowchart and/or block diagram block or blocks.

[0072] The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and
operation of possible implementations of systems, methods, and computer program products according to various
embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a
module, segment, or portion of instructions, which comprises one or more executable instructions for implementing
the specified logical function(s). In some alternative implementations, the functions noted in the blocks may occur
out of the order noted in the Figures. For example, two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the
functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions or acts or carry out combinations of special purpose

hardware and computer instructions.

[0073] The descriptions of the various embodiments of the present invention have been presented for
purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many
modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope
and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of
the embodiments, the practical application or technical improvement over technologies found in the marketplacs, or

to enable others of ordinary skill in the art to understand the embodiments described herein.

WO 2019/111118 PCT/IB2018/059516

22

CLAIMS

1. A computer-implemented method for adaptive residual gradient compression for training of a deep
learning neural network (DNN), the computer implemented method comprising:

obtaining, by a processor of a first learner of a plurality of learners, a current gradient vector for a
neural network layer of the DNN, wherein the current gradient vector comprises gradient weights of parameters of
the neural network layer that are calculated from a mini-batch of training data;

generating, by the processor, a current residue vector comprising residual gradient weights for the
mini-batch, wherein generating the current residue vector comprises summing a prior residue vector and the current
gradient vector;

generating, by the processor, a compressed current residue vector based at least in part on dividing
the residual gradient weights of the current residue vector into a plurality of bins of a uniform size and quantizing a
subset of the residual gradient weights of one or more bins of the plurality of bins, wherein quantizing the subset of
the residual gradient weights is based at least in part on calculating a scaling parameter for the mini-batch and
calculating a local maximum of each bin, wherein the uniform size of the bins is a hyper-parameter of the DNN; and

transmitting, by the processor, the compressed current residue vector to a second learner of the

plurality of learners.

2. The computer-implemented method of claim 1, wherein generating the compressed current residue
vector comprises:

generating, by the processor, a scaled current residue vector comprising scaled residual gradient
weights for the mini batch, wherein generating the scaled current residue vector comprises multiplying the current
gradient vector by the scaling parameter and summing the prior residue vector with the multiplied gradient vector;

dividing the residual gradient weights of the current residue vector into the plurality of bins of the
uniform size;

identifying, for each bin of the plurality of bins, alocal maximum of the absolute value of the residual
gradient weights of the bin;

determining, for each residual gradient weight of each bin, that a corresponding scaled residual
gradient weight of the scaled residue vector exceeds the local maximum of the bin; and

upon identifying, for each residual gradient weight of each bin, that the corresponding scaled residual
gradient weight of the scaled residue vector exceeds the local maximum of the bin, generating a quantizing value
for the give residual gradient weight and updating the current residue vector by substituting the residual gradient

weight of the current residue vector with the quantized value.

3. The computer-implemented method of claim 2, wherein the scale parameter is calculated by minimizing

quantization error according to L2 normalization.

WO 2019/111118 PCT/IB2018/059516

23

4, The computer-implemented method of claim 2, wherein:
the DNN includes one or more convolution network layers; and

the size of the plurality of bins is set to 50 for the one or more convolution layers.

5. The computer-implemented method of claim 2, wherein:
the DNN includes at least one of more fully connected layers; and

the size of the bins is set to 500 for the one or more fully connected layers.

6. A system for adaptive residual gradient compression for training of a deep learning neural network
(DNN), the system comprising a plurality of learners, wherein at least one leaner of the plurality of learners is
configured to perform a method comprising:

obtaining a current gradient vector for a neural network layer of the DNN, wherein the current gradient
vector comprises gradient weights of parameters of the neural network layer that are calculated from a mini-batch of
training data;

generating a current residue vector comprising residual gradient weights for the mini-batch, wherein
generating the current residue vector comprises summing a prior residue vector and the current gradient vector;

generating a compressed current residue vector based at least in part on dividing the residual gradient
weights of the current residue vector into a plurality of bins of a uniform size and quantizing a subset of the residual
gradient weights of one or more bins of the plurality of bins, wherein quantizing the subset of the residual gradient
weights is based at least in part on calculating a scaling parameter for the mini-batch and calculating a local
maximum of each bin, wherein the uniform size of the bins is a hyper-parameter of the DNN; and

transmitting the compressed current residue vector to a second learner of the plurality of learners.

7. The system of claim 6, wherein generating the compressed current residue vector comprises:

generating, by the processor, a scaled current residue vector comprising scaled residual gradient
weights for the mini batch, wherein generating the scaled current residue vector comprises multiplying the current
gradient vector by the scaling parameter and summing the prior residue vector with the multiplied gradient vector;

dividing the residual gradient weights of the current residue vector into the plurality of bins of the
uniform size;

identifying, for each bin of the plurality of bins, alocal maximum of the absolute value of the residual
gradient weights of the bin;

determining, for each residual gradient weight of each bin, that a corresponding scaled residual
gradient weight of the scaled residue vector exceeds the local maximum of the bin; and

upon identifying, for each residual gradient weight of each bin, that the corresponding scaled residual

gradient weight of the scaled residue vector exceeds the local maximum of the bin, generating a quantizing value

WO 2019/111118 PCT/IB2018/059516

24

for the give residual gradient weight and updating the current residue vector by substituting the residual gradient

weight of the current residue vector with the quantized value.

8. The system of claim 7, wherein the scale parameter is calculated by minimizing quantization error

according to L2 normalization.

9. The system of claim 7, wherein:
the DNN includes one or more convolution network layers; and

the size of the plurality of bins is set to 50 for the one or more convolution layers.

10. The system of claim 7, wherein:
the DNN includes at least one of more fully connected layers; and

the size of the bins is set to 500 for the one or more fully connected layers.

1. A computer program product for adaptive residual gradient compression for training of a deep learning
neural network (DNN), the computer program product comprising a computer readable storage medium having
program instructions embodied therewith, the program instructions executable by a processor of at least a first
leaner of a plurality of learners to cause the first learner to perform a method comprising:

obtaining a current gradient vector for a neural network layer of the DNN, wherein the current gradient
vector comprises gradient weights of parameters of the neural network layer that are calculated from a mini-batch of
training data;

generating a current residue vector comprising residual gradient weights for the mini-batch, wherein
generating the current residue vector comprises summing a prior residue vector and the current gradient vector;

generating a compressed current residue vector based, at least in part, on dividing the residual
gradient weights of the current residue vector into a plurality of bins of a uniform size and quantizing a subset of the
residual gradient weights of one or more bins of the plurality of bins, wherein quantizing the subset of the residual
gradient weights is based at least in part on calculating a scaling parameter for the mini-batch and calculating a
local maximum of each bin, wherein the uniform size of the bins is a hyper-parameter of the DNN; and

transmitting the compressed current residue vector to a second learner of the plurality of learners.

12. The computer program product of claim 11, wherein generating the compressed current residue vector
comprises:

generating, by the processor, a scaled current residue vector comprising scaled residual gradient
weights for the mini batch, wherein generating the scaled current residue vector comprises multiplying the current

gradient vector by the scaling parameter and summing the prior residue vector with the multiplied gradient vector;

WO 2019/111118 PCT/IB2018/059516

25

dividing the residual gradient weights of the current residue vector into the plurality of bins of the
uniform size;

identifying, for each bin of the plurality of bins, alocal maximum of the absolute value of the residual
gradient weights of the bin;

determining, for each residual gradient weight of each bin, that a corresponding scaled residual
gradient weight of the scaled residue vector exceeds the local maximum of the bin; and

upon determining, for each residual gradient weight of each bin, that the corresponding scaled residual
gradient weight of the scaled residue vector exceeds the local maximum of the bin, generating a quantizing value
for the residual gradient weight and updating the current residue vector by substituting the residual gradient weight

of the current residue vector with the quantized value.

13. The computer program product of claim 12, wherein the scale parameter is calculated by minimizing

quantization error according to L2 normalization.

14, The computer program product of claim 12, wherein:
the DNN includes one or more convolution network layers; and

the size of the plurality of bins is set to 50 for the one or more convolution layers.

15. The computer program product of claim 12, wherein:
the DNN includes at least one of more fully connected layers; and

the size of the bins is set to 500 for the one or more fully connected layers.

16. A computer-implemented method for training a deep learning neural network (DNN) via adaptive
residual gradient compression, the computer implemented method comprising:

receiving, by a system comprising a plurality of learners, training data for training of the DNN using one
or more neural network layers;

generating, at each learner of the plurality of learners, a current gradient vector for a neural hetwork
layer from a mini-batch of the training data, wherein the current gradient vector comprises gradient weights of
parameters of the neural network layer;

generating, at each learner of the plurality of learners, a current residue vector comprising residual
gradient weights for the mini-batch, wherein generating the current residue vector comprises summing a prior
residue vector and the current gradient vector;

generating, at each learner of the plurality of learners, a compressed current residue vector based at
least in part on dividing the residual gradient weights of the current residue vector into a plurality of bins of a uniform
size and quantizing a subset of the residual gradient weights of one or more bins of the plurality of bins, wherein

quantizing the subset of the residual gradient weights is based at least in part on calculating a scaling parameter for

WO 2019/111118 PCT/IB2018/059516

26

the mini-batch and calculating a local maximum of each bin, wherein the uniform size of the bins is a hyper-
parameter of the DNN; and
exchanging the compressed current residue vectors among the plurality of learners;
decompressing, at each of the plurality of learners, the compressed current residue vectors; and
updating, at each of the plurality of learners, the gradient weights of the parameters of the neural

network layer.

17. The computer-implemented method of claim 16, wherein generating the compressed current residue
vector comprises:

generating a scaled current residue vector comprising scaled residual gradient weights for the mini
batch, wherein generating the scaled current residue vector comprises multiplying the current gradient vector by the
scaling parameter and summing the prior residue vector with the multiplied gradient vector;

dividing the residual gradient weights of the current residue vector into the plurality of bins of the
uniform size;

identifying, for each bin of the plurality of bins, alocal maximum of the absolute value of the residual
gradient weights of the bin;

determining, for each residual gradient weight of each bin, hat a corresponding scaled residual
gradient weight of the scaled residue vector exceeds the local maximum of the bin; and

upon determining, for each residual gradient weight of each bin, that the corresponding scaled residual
gradient weight of the scaled residue vector exceeds the local maximum of the bin, generating a quantizing value
for the residual gradient weight and updating the current residue vector by substituting the residual gradient weight

of the current residue vector with the quantized value.

18. The computer-implemented method of claim 17, wherein the scale parameter is calculated by

minimizing quantization error according to L2 normalization.

19. The computer-implemented method of claim 17, wherein:
the DNN includes one or more convolution network layers; and

the size of the plurality of bins is set to 50 for the one or more convolution layers.

20. The computer-implemented method of claim 17, wherein:
the DNN includes at least one of more fully connected layers; and

the size of the bins is set to 500 for the one or more fully connected layers.

WO 2019/111118 PCT/IB2018/059516

27

21, A system for training a deep learning neural network (DNN) via adaptive residual gradient
compression, the system comprising a plurality of learners, wherein the system is configured to perform a method
comprising:

receiving training data for training of the DNN using one or more neural network layers;

generating, at each learner of the plurality of learners, a current gradient vector for a neural hetwork
layer from a mini-batch of the training data, wherein the current gradient vector comprises gradient weights of
parameters of the neural network layer;

generating, at each learner of the plurality of learners, a current residue vector comprising residual
gradient weights for the mini-batch, wherein computing the current residue vector comprises summing a prior
residue vector and the current gradient vector;

generating, at each learner of the plurality of learners, a compressed current residue vector based, at
least in part, on dividing the residual gradient weights of the current residue vector into a plurality of bins of a
uniform size and quantizing a subset of the residual gradient weights of one or more bins of the plurality of bins,
wherein quantizing the subset of the residual gradient weights is based at least in part on calculating a scaling
parameter for the mini-batch and calculating a local maximum of each bin, wherein the uniform size of the bins is a
hyper-parameter of the DNN; and

exchanging the compressed current residue vectors among the plurality of learners;

decompressing, at each of the plurality of learners, the compressed current residue vectors; and

updating, at each of the plurality of learners, the gradient weights of the parameters of the neural

network layer.

22. The system of claim 21, wherein generating the compressed current residue vector comprises:

generating a scaled current residue vector comprising scaled residual gradient weights for the mini
batch, wherein generating the scaled current residue vector comprises multiplying the current gradient vector by the
scaling parameter and summing the prior residue vector with the multiplied gradient vector;

dividing the residual gradient weights of the current residue vector into the plurality of bins of the
uniform size;

identifying, for each bin of the plurality of bins, alocal maximum of the absolute value of the residual
gradient weights of the bin;

determining, for each residual gradient weight of each bin, that a corresponding scaled residual
gradient weight of the scaled residue vector exceeds the local maximum of the bin; and

upon determining, for each residual gradient weight of each bin, that the corresponding scaled residual
gradient weight of the scaled residue vector exceeds the local maximum of the bin, generating a quantizing value
for the residual gradient weight and updating the current residue vector by substituting the residual gradient weight

of the current residue vector with the quantized value.

WO 2019/111118 PCT/IB2018/059516

28

23. The system of claim 22, wherein the scale parameter is calculated by minimizing quantization error

according to L2 normalization.

24, The system of claim 22, wherein:
the DNN includes one or more convolution network layers; and

the size of the plurality of bins is set to 50 for the one or more convolution layers.

25, The system of claim 22, wherein:
the DNN includes at least one of more fully connected layers; and

the size of the bins is set to 500 for the one or more fully connected layers.

PCT/IB2018/059516

WO 2019/111118

1/8

L4

\‘
7 anm.

v SR
9 -
ww

%, \!\‘\.{1&1‘.

L

WO 2019/111118 PCT/IB2018/059516
2/8

\ f‘\\
\ss] ° [%’\am
N, \eg/ T ™
N AN 2
AN .
gi N\ &
AN \\\
AN - &
il 5
AN N =l 5 S
R N\ 5 =
NN NN :
\S\\%w\\hg \‘\\ §\Q \\\\}%“E g
€ ~ N

WO 2019/111118

COMMUNIGATION
INFRASTRUCTURE
(8US)

FIG. 3

PCT/IB2018/059516
3/8
300
o] PROCESSOR 32
P
s AN MEMORY .
3"
/
DISPLAY DISPLAY
< ONTERFAGE ONIT
306~"1
SECONDARY MEMORY 3%
| HARD
-1 DISKDRIVE "
/
> [RENOVABLE REMOVABLE
oAl SIORAGE |efe STORAGE
36 DRIVE ONIT
ﬁ REVOVABLE o
A VANINTERFACE |qim| STORAGE |~3%0
ONIT
COMMUNICATION YT
«;; MMUNCAT COMMLE;CAWPA.A

326

WO 2019/111118 PCT/IB2018/059516
4/8

B ana
Ak
ol W
& s
+ O
L3 A
g nman
<
£ o
£d
:&N <
: i Wowow i §
i.i... -~ : B 3 i. “‘“’"s N
.-‘/‘ : W [
%8 3 §
W
Q3
Sg 0¥
P TN ﬁ){/ - SE
ks & .
= dd
o
&
- &L
S P
RN P
Lo
S
™~
s‘k’\, ,ﬁ,
A

4

LO {input)
512512
)

40

PCT/IB2018/059516

WO 2019/111118

5/8

1fding

(T4 X [+3-4)
SZ15 O Xulew e s dew yoey

‘sclew
40198 B S IndIno syj
spaxid H
I+f-u

sdewy Inding W

056 sdew inding <= JEG seig + 076 S|Duda) UoIInjoAuo]

£ Oid

sigjalieieg IjgRUIRIL

Wi ueg

423yl

3
Bueg
Jali

Z
Aueg
4aljid

I yueg
SEMIE

ﬂmxzmm

spnad ¥ »

SEHITNY J:L_

LNdNI

(E RS JEHE

0 saoaid ol pepiaip sixd {u
X 4} 2218 JO Xuew e 51 dew yoeg
‘sdeul y JO ummwm si andul 3yy,

siaxid ¢

mamchgsgmwmx

TG sdeia 1nduy

=
A/./ IaTe Yo
00g

PCT/IB2018/059516

WO 2019/111118

6/8

9 "Oid

W84S JUISS9001] IO |

UESISAS SUIS50001] IDUIBY|

005 S

TIOISAS FUISSQ001] 10U |

W84S JUISS9001] IO |

PCT/IB2018/059516

WO 2019/111118

7/8

oL

o
",

< sauop m.:c NS TS
1//1// \ o

N

vl sjuBlem yiomaU s ajepdn _
: &

_ [sjusipelB jeoo| obeiany

S——— s "

A 0l sicioen passeidin) syl asslduwicnag
&

| 81/ $i0j08A passaldios sy sbueyoxg

_ &

G/ JOJosA snpised jusuno D@wwm&qc‘_oo e gjeisus)

AEN JO109A JuBIpE a?_e: 2 UZa0
5 |
377 Homau ey ybnoiy ssed pieaviorq uiope
&
DL sndhno1oslion sy Buisn Joiie syndiuos
2

857 omeu ey ybinony ssed piemio) uloped

&

YolegiuIL & Yol

A.uuuu

73

w0/ Elep @r; 2k} SAIDISY

A

SpUBEM HOMIBU SZHERIU AjusopURY

£ Ol

PCT/IB2018/059516

WO 2019/111118

8/8

Vo)
WO

o)

8 'Oid

G1%
ANYIVA GHZIINVNO
HHL HLIAM HOLOHA HOAISEH INSYAND HHL A0 LHOIHM INHIAVHD TVAISHE
NHAID HHL ONILOLLLSHNS A2 HOLOHA HNAISEE ANSH N0 HHL ONLIVA4 ANV
JHOMEM INSIQVEO TYNRAISHY HAID §HL ¥0d N TVA DNIZIINY 30 V ONLIVIENAD

NI NHAID HHL
FOWNOANIXVIN TVOOTHHL SA9850XH IVHL IHDHA INSIGVED TVAdISEE GHIVOS
ONIANGASTRIE0D V SVH LHOHMA NLHIAVAD TVAUISHY NFALD JHL dHIGHM
NIE NHATD HOVH A0 LHOHM NLIIGVED TVOATSEN NHALD HOVE 304 ONININ G 1LHA

t

90%
NIH NHAID HOVH 40
LHOIHM NLHIAYED TVIIASHA NEAD HOVHE 304 WIWIXVIN TVOOT V ONIAHALLNG AL

t

08
HZIS WAGAING ¥V 40 SNIH 240 ALTTVAENNId VOINI
JOLOHA NGSHE NSO HHL 40 SLHOHEM INFIGVED TVOGISHEY dHL ONIIALG

1

08
HOIVE INDN NHALD V G4 SLEDHEMA INSIAVED TVAQISHY
dETV.3S SHAVIONT IVHL SOLDHEA HOAISHY INGHEOND GHTIVOS ¥V ONLIVHENED

INTERNATIONAL SEARCH REPORT International application No.
PCT/1B2018/059516

A.

CLASSIFICATION OF SUBJECT MATTER
GO6N 3/08(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B.

FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6N 3/-

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNABS;CNKL VEN;USTXT;IEEE;arXiv:Chia-Yu Chen, adaptive, residu+, gradient, compression, vector+, weight+, DNN,
learner+, +batch+, bin, divid+, quantiz+, scal+, current, AdaComp, Data-Parallel

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2017098171 Al (IBM) 06 April 2017 (2017-04-06) 1-25
the whole document
A CN 104598972 A (UNIV TSINGHUA) 06 May 2015 (2015-05-06) 1-25
the whole document

D Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents: «1> later document published after the international filing date or priority
war d definine th al s £ the art which is idered date and not in conflict with the application but cited to understand the
A t:ggn;?mmg;ﬁ;grelz \jgairgga state of the art which 1s not considere principle or theory underlying the invention
s . P L . . . «x> document of particular relevance; the claimed invention cannot be
E” carlier application or patent but published on or after the international considered novel or cannot be considered to involve an inventive step
filing date ' o ' o when the document is taken alone
“L7” document which may throw doubts on priority claim(s) or which is «y» document of particular relevance; the claimed invention cannot be
?lted. tlo) esFabhsh Fhe pfl}blljlcatlon date of another citation or other considered to involve an inventive step when the document is
special reason (as specified) combined with one or more other such documents, such combination
«“0” document referring to an oral disclosure, use, exhibition or other being obvious to a person skilled in the art
means “&” document member of the same patent family
«p>” document published prior to the international filing date but later than
the priority date claimed
Date of the actual completion of the international search Date of mailing of the international search report
18 March 2019 27 March 2019
Name and mailing address of the [SA/CN Authorized officer
National Intellectual Property Administration, PRC
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing WANG,Kun
100088
China
Facsimile No. (86-10)62019451 Telephone No. (86-10) 62412187

Form PCT/ISA/210 (second sheet) (January 2015)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/1B2018/059516

Patent document

Publication date

Patent family member(s)

Publication date

cited in search report (day/month/year) (day/month/year)
Us 2017098171 Al 06 April 2017 None
CN 104598972 A 06 May 2015 None

Form PCT/ISA/210 (patent family annex) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - claims
	Page 30 - claims
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - drawings
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - wo-search-report
	Page 40 - wo-search-report

