发明名称
一种稀土铜合金及其制备方法

摘要
本发明公开了一种稀土铜合金及其制备方法，采用电解铜、锆、银、稀土元素，其首先按重量百分比加入电解铜，熔铸 20～30 分钟，然后加入 0.03～0.1% 的锆、0.02～0.16% 的银、0.02～0.15% 的稀土元素，熔炼 1～3 分钟后进行浇铸；将浇铸合金在 800～850℃ 保温 1～4 小时，加工形成棒材，锻造变形量 50～80%；将棒材装入热处理炉中，先在 800～950℃ 下保温 30～60 分钟，使其合金元素充分溶入铜基体中，然后进行淬火处理；将淬火后的合金进行 30～80% 的变形处理；将冷拉后的合金在 440～520℃ 保温 1～8 小时；将时效处理后的合金进行 50～70% 的变形处理。本发明具有高强度和高导电性。
1、一种稀土铜合金，其特征在于，包括下述重量百分比的原料：

0.02~0.15%的稀土元素，

0.02~0.16%的银，

0.03~0.1%的锆，

其余为铜和不可避免的杂质元素。

2、根据权利要求1所述的一种稀土铜合金，其特征在于，所述的稀土元素指镉、锆、铋。

3、根据权利要求1或2所述的一种稀土铜合金，其特征在于，所述的稀土元素可以以单一元素加入，也可以混合两两或三种同时加入，两两加入时两种稀土元素按重量比为1:1~1:6；三三加入时三种稀土元素之间的重量比在1:1:1~1:1:5，所加的每种稀土元素含量应在0.02%以上，总的稀土元素含量应在0.15%以下。

4、一种稀土铜合金的制备方法，其特征在于，包括以下步骤：

(1)熔炼：采用电解铜、锆、银、稀土元素，其加入顺序为首先按重量百分比加入电解铜，熔炼20~30分钟，然后加入0.03~0.1%的锆、0.02~0.16%的银、0.02~0.15%的稀土元素，熔炼1~3分钟后进行浇铸；

(2)热锻：将上述浇铸合金在800~850℃保温1~4小时，然后在常规的空气锤上进行锻造加工形成棒材，锻造变形量50~80%；

(3)固溶处理：将棒材装入热处理炉中，在800~950℃下保温30~60分钟，使其合金元素充分溶入铜基体中，然后进行淬火处理；

(4)冷拉：将淬火后的合金进行30~80%的变形处理；
(5)时效处理：将冷拉后的合金在 440~520°C 保温 1~8 小时；

(6)终拉：将时效处理后的合金进行 50~70% 的变形处理。

5. 根据权利要求 4 所述的一种稀土铜合金的制备方法，其特征在于，所述的稀土元素指铈、镧、钕。

6. 根据权利要求 4 或 5 所述的一种稀土铜合金的制备方法，其特征在于，所述的稀土元素可以以单一元素加入，也可以混合两两或三种同时加入。两两加入时两种稀土元素之间的比例重量比 1:1~1:6；三三加入时三种稀土元素之间的比例重量比 1:1:1~1:1:5，所加的每种稀土元素含量在 0.02，混合稀土元素含量在 0.15% 以下。
说明 书

一种稀土铜合金及其制备方法

technical field

本发明涉及一种铜基合金及其制备技术，尤其涉及一种稀土铜合金及其制备方法。

background technology

由于具有良好的导电导热性能、耐腐蚀性能、强度、疲劳性能以及易于制备等特点，铜及其合金在电子、电力、机械以及航天航空领域得到了广泛的应用，成为重要的电子金属材料。对于铜合金材料，既具有高的强度又具有高的导电性一直是大家追求的目标，然而对于铜合金，高强度和高导电性是一对相互矛盾的特性。

目前世界各国正在积极开发高强度高导电铜合金，如 C18040 (Cu-0.3Cr-0.25Sn-0.5Zn) 和 (Cu-0.3Cr-0.1 Zr-0.05Mg-0.02Si) 等，也申请了许多专利，如：US1658186，1778668，2185958，2137282，3027508，4466939，JP213847/83等等。这些专利就 Cu-Fe-P 系、Cu-Ni-Si 系及 Cu-Cr-Zr 系等合金成分，制备方法和对某一特殊性能的改进进行了论述和提出知识产权保护。

美国奥林公司 1993 年申请并于 1998 年获得的授权专利 CN1101081 涉及的是合金，公开了一种含有铬、锆、钴，以及钛等特定添加剂的铜基合金以及生产该铜合金的方法；日本日矿金属株式会社 1999 年在我国获得的授权 CN115789 涉及的也是 Cu-Cr-Zr 系合金。但上述专利的生产工艺复杂，合金元素也没有含有稀土元素，工厂生产比较困难。

授予 Akutsu 等人的美国专利 No.4672048，公开了一种用于引线框架的铜
合金，含有铬、锆、锂、镍、锡、钛、硅、磷元素，强度高达 800MPa，而导电率仅有 69%iACS。

我国国内单位也申请了一些与高强度高导电合金相关的专利。专利 CN1250816 论述的是 Cu-Cr-Zr-B-Nb-RE 合金，其成分较为复杂，主要应用于电阻焊电极材料。专利 CN1285417 涉及的是一种电阻焊电极用高电导率铜基合金，其成分为 Cu-Zr-B-Nb-Mg-RE 合金，其电导率为 48MS/m，硬度（HRB）为 65，性能不高。专利 CN1270434A，涉及的合金主要 Cu-Zr-Zn-Re 高强高导合金，但其 Zn 含量较高，主要是应用于高速列车异步牵引电动机导条与端环。专利 CN1231343 涉及一种 Cu-Cr-Y 铜基合金电极材料及其制备方法，属于合金导电材料，其主要是采用粉末冶金的方法制备材料，成本较高。

中国铁道科学研究院铁科院张强等发明的铜合金接触线 CN1084577A 专利，揭示了一种含有 0.02~0.08%银、0.03~0.13%锡的铜合金接触线，导电率高达 80~90%iACS，而强度仅有 400MPa；中国铁道科学研究院穆恩生等发明的铜合金接触线 CN1159486A 专利，公开的含有 0.20~0.45%镁、0.05~0.25%稀土（镧、铈）的铜合金接触线，导电率 68%iACS，而强度为 450~500MPa，软化温度为 385℃。

发明内容

本发明的目的在于提供一种具有高强度和高导电性兼顾的稀土铜合金及其制备方法。

本发明的技术方案是这样实现的：包括下述重量百分比的原料：

0.02~0.15%的稀土元素，

0.02~0.16%的银，
0.03~0.1%的锆，
其余为铜和不可避免的杂质元素。

所述的稀土元素指镧、镧、铱。

所述的稀土元素可以以单一元素加入，也可以混合两两或三种同时加入，
两两加入时两种稀土元素按重量比为 1:1~1:6；三三加入时三种稀土元素之间的
重量比在 1:1~1:1:5，所加的每种稀土元素含量应在 0.02%以上，总的稀土
元素含量应在 0.15%以下。

一种稀土铜合金的制备方法，包括以下步骤：

(1)熔炼：采用电解铜、锆、银、稀土元素，其加入顺序为首先按重量百分
比加入电解铜，熔炼 20~30 分钟，然后加入 0.03~0.1%的锆、0.02~0.16%的银、
0.02~0.15%的稀土元素，熔炼 1~3 分钟后进行浇铸；

（2）热锻：将上述浇铸合金在 800~850°C 保温 1~4 小时，然后在常规的空气
锤上进行锻造加工形成棒材，锻造变形量 50~80%；

（3）固溶处理：将棒材装入热处理炉中，在 800~950°C 下保温 30~60 分钟，
使其合金元素充分溶入铜基体中，然后进行淬火处理；

（4）冷拉：将淬火后的合金进行 30~80%的变形处理；

（5）时效处理：将冷拉后的合金在 440~520°C 保温 1~8 小时；

（6）终拉：将时效处理后的合金进行 50~70%的变形处理。

所述的稀土元素指镧、镧、铱。

所述的稀土元素可以以单一元素加入，也可以混合两两或三种同时加入，
两两加入时两种稀土元素之间的比例重量比 1:1~1:6；三三加入时三种稀土元
素之间的比例重量比 1:1:1~1:1:5，所加的每种稀土元素含量在 0.02，混合稀土
元素含量在 0.15%以下。

调整稀土元素、银、锆在合金中所占的比例，可以得到不同强度和导电率相结合的合金，以满足实际使用中的不同需求。

本发明所述的铜合金材料属于一种微合金化稀土铜合金。主要包含有铜、银、锆以及稀土元素，其中稀土元素包括铈、镧、钇。稀土元素可以以单一元素加入，也可以混合两两或三种同时加入。银的引入主要是其对铜基体电导率有一定的改善作用，同时具有一定的固溶强化作用以及提高铜的软化温度等。另外考虑银属于贵重金属，在该合金中拟订银的含量为 0.04~0.16%。微量锆的引入主要是考虑其所具有的显著的时效强化性，锆含量太高将会大大降低合金的导电性，而含量过低其所具有的强化效应不显著。稀土的加入除改变本合金的工艺性、利于精炼、除气和微合金化作用外，还可以明显提高合金的导电性、强度、抗高温软化性和耐磨性能等性能。该合金的一个重要特征在于其所具有的高强与导高导的兼顾性，同时还具有优异的耐高温性和磨损性能等。

本发明所述的合金，通过热锻、固溶处理、冷拉、时效等工艺，可以使合金的综合性能达到良好的配合，具有强度 530~620MPa，电导率又能保持在 83~95%IACS 的优点；且软化温度在 550℃以上，在 300℃下退火 2 小时的强度降低率低于 10%，延伸率在 5%以上；并且还具有较高的耐磨性能。其制备方法简单，原料成本低，可以满足现代工业对铜合金高强度高导电性等高性能的要求。

本发明所述的铜合金其含有微量的银、锆以及稀土等元素。与其它的铜合金相比，本发明的另一个突出的特点在于调整合金中各元素的百分含量可
使其达到高强度和高导电性兼顾的特点，能够达到导电率在 80% IACS 以上，同时强度在 600MPa 以上的特点。以往铜合金一般都存在高强度和高导电性的矛盾，要不导电率很高，而强度很低；要不就是导电率很低而强度很高。

按照本发明的制备工艺所制得的铜合金具有高强度与高导电性兼顾的特点，它克服了其它铜合金高强度与高导电相互矛盾的缺陷，其强度能够达到 530~620MPa，电导率仍能保持在 83~95% IACS，其使用寿命比常规的铜合金提高 3~5 倍，且具有高的抗软化性能、高的高温强度和塑性，软化温度达到 550°C 以上，在 300°C 下退火 2 小时强度的降低率低于 10%，延伸率在 7% 以上，同时还具有优异的磨损性能，能够满足对现代工业发展对铜合金高强高导的要求，为铜合金的制备业提高了产品质量和生产率，可产生很大的经济效益。本发明工艺合理、简单，能够保证产品质量。

具体实施例

下面结合实施例对本发明作进一步的详细说明，该领域的技术人员可以根据上述本发明内容对本发明做出一些非本质的改进和调整。

实施例一：

一种稀土铜合金，按重量百分比组成为：0.13%的钯，0.15%的银，0.09%的锆，其余为铜及杂质元素，其制备方法如下：

(1) 熔炼：采用电解铜、锆、银、钯，其加入顺序为首先按重量百分比加入电解铜，熔炼 20 分钟，然后加入重量百分比为 0.13%的钯，0.015%的银，0.09%的锆，熔炼 1.5 分钟后进行浇铸；

(2) 热锻：将上述浇铸合金在 800°C 保温 2 小时，然后在常规的空气锤上进行锻造加工形成棒材，锻造变形量 80%；
(3) 固溶处理：将棒材装入热处理炉中，在 950°C 下保温 35 分钟，使其合金元素充分溶入铜基体中，然后进行淬火处理；

(4) 冷拉：将淬火后的合金进行 36%的变形处理；

(5) 时效处理：将冷拉后的合金在 450°C 保温 4 小时；

(6) 终拉：将时效处理后的合金进行 70%的变形处理。

经过以上熔炼、热锻、固溶、冷变形及时效等冷热加工处理后，该稀土铜合金能够达到：抗拉强度 615MPa，电导率 84.69%IACS、软化温度 570°C、在 300°C 下退火 2 小时的强度降低率为 6.2%、延伸率 12%。

实施例二：

一种稀土铜合金，按重量百分比组成为：0.08%的铱，0.08%的银，0.03%的锆，其余为铜及杂质元素，其制备方法如下：

(1) 熔炼：采用电解铜、锆、银、铱，其加入顺序为首先按重量百分比加入电解铜，熔炼 22 分钟，然后加入重量百分比为 0.08%的铱，0.08%的银，0.03%的锆，熔炼 2 分钟后进行浇铸；

(2) 热锻：将上述浇铸合金在 820°C 保温 3 小时，然后在常规的空气锤上进行锻造加工形成棒材，锻造变形量 75%；

(3) 固溶处理：将棒材装入热处理炉中，在 820°C 下保温 45 分钟，使其合金元素充分溶入铜基体中，然后进行淬火处理；

(4) 冷拉：将淬火后的合金进行 75%的变形处理；

(5) 时效处理：将冷拉后的合金在 500°C 保温 3 小时；

(6) 终拉：将时效处理后的合金进行 55%的变形处理。

经过以上熔炼、热锻、固溶、冷变形及时效等冷热加工处理后，该稀土
铜合金能够达到：抗拉强度 530MPa、电导率 95.36%IACS、软化温度 550°C、在 300°C 下退火 2 小时的强度降低率为 6.5%、延伸率 12%。

实施例三：

一种稀土铜合金，按重量百分比组成为：0.03%的铈，0.04%的银，0.06%的锆，其余为铜及杂质元素，其制备方法如下：

(1)熔炼：采用电解铜、锆、银、铈，其加入顺序为首先按重量百分比加入电解铜，熔炼 24 分钟，然后加入重量百分比为 0.03%的铈，0.04%的银，0.06%的锆，熔炼 3 分钟后进行浇铸；

(2)热锻：将上述浇铸合金在 830°C 保温 3 小时，然后在常规的空气锤上进行锻造加工形成棒材，锻造变形量 55%；

(3)固溶处理：将棒材装入热处理炉中，在 880°C 下保温 60 分钟，使其合金元素充分溶入铜基体中，然后进行淬火处理；

(4)冷拉：将淬火后的合金进行 80%的变形处理；

(5)时效处理：将冷拉后的合金在 440°C 下保温 6 小时；

(6)终拉：将时效处理后的合金进行 70%的变形处理。

经过以上熔炼、热锻、固溶、冷变形及时效等冷热加工处理后，该稀土铜合金能够达到：抗拉强度 550MPa、电导率 93.45%IACS、软化温度 550°C、在 300°C 下退火 2 小时的强度降低率为 6.5%、延伸率 13%。

实施例四：

一种稀土铜合金，按重量百分比组成为：0.06%的铈，0.08 的锆，0.015%的银，0.09%的锆，其余为铜及杂质元素，其制备方法如下：

(1)熔炼：采用电解铜、锆、银、铈、镧，其加入顺序为首先按重量百分
比加入电解铜，熔炼 25 分钟，然后加入重量百分比为 0.06%的铈，0.08%的镧，0.015%的银，0.09%的锆，熔炼 3 分钟后进行浇铸；

(2) 热锻：将上述浇铸合金在 850℃保温 4 小时，然后在常规的空气锤上进行锻造加工形成棒材，锻造变形量 65%；

(3) 固溶处理：将棒材装入热处理炉中，在 950℃下保温 50 分钟，使其合金元素充分溶入铜基体中，然后进行淬火处理；

(4) 冷拉：将淬火后的合金进行 60%的变形处理；

(5) 时效处理：将冷拉后的合金在 500℃保温 5 小时；

(6) 终拉：将时效处理后的合金进行 75%的变形处理。

经过以上熔炼、热锻、固溶、冷变形及时效等冷热加工处理后，该稀土铜合金能够达到：抗拉强度 620MPa、电导率 83.21%IACS、软化温度 570℃、在 300℃下退火 2 小时的强度降低率为 5.9%、延伸率 13%。

实施例五：

一种稀土铜合金，按重量百分比组成为：0.06%的铈，0.06%的铈，0.08%的镧，0.03%的锆，其余为铜及杂质元素，其制备方法如下：

(1) 熔炼：采用电解铜、锆、银、铈、铋，其加入顺序为首先按重量百分比加入电解铜，熔炼 30 分钟，然后加入重量百分比为 0.06%的铈，0.06%的铈，0.08%的镧，0.03%的锆，熔炼 2.5 分钟后进行浇铸；

(2) 热锻：将上述浇铸合金在 850℃保温 3 小时，然后在常规的空气锤上进行锻造加工形成棒材，锻造变形量 80%；

(3) 固溶处理：将棒材装入热处理炉中，在 820℃下保温 40 分钟，使其合金元素充分溶入铜基体中，然后进行淬火处理；
(4) 冷拉：将淬火后的合金进行 30% 的变形处理；

(5) 时效处理：将冷拉后的合金在 440℃ 保温 8 小时；

(6) 终拉：将时效处理后的合金进行 75% 的变形处理。

经过以上熔炼、热锻、固溶、冷变形及时效等冷热加工处理后，该稀土铜合金能够达到：抗拉强度 550MPa、电导率 94.32% IACS、软化温度 570℃、在 300℃ 下退火 2 小时的强度降低率为 5.6%、延伸率 13%。

实施例六：

一种稀土铜合金，按重量百分比组成为：0.05% 的铱，0.03% 的镧，0.04% 的银，0.06% 的锆，其余为铜及杂质元素，其制备方法如下：

(1) 熔炼：采用电解铜、锆、银、铱、镧，其加入顺序为首先按重量百分比加入电解铜，熔炼 20~30 分钟，然后加入重量百分比为 0.05% 的铱，0.034% 的镧，0.04% 的银，0.06% 的锆，熔炼 2 分钟后进行浇铸；

(2) 热锻：将上述浇铸合金在 850℃ 保温 2.5 小时，然后在常规的空气锤上进行锻造加工形成棒材，锻造变形量 80%；

(3) 固溶处理：将棒材装入热处理炉中，在 870℃ 下保温 50 分钟，使其合金元素充分溶入铜基体中，然后进行淬火处理；

(4) 冷拉：将淬火后的合金进行 50% 的变形处理；

(5) 时效处理：将冷拉后的合金在 480℃ 保温 3 小时；

(6) 终拉：将时效处理后的合金进行 60% 的变形处理。

经过以上熔炼、热锻、固溶、冷变形及时效等冷热加工处理后，该稀土铜合金能够达到：抗拉强度 550MPa、电导率 92.65% IACS、软化温度 570℃、在 300℃ 下退火 2 小时的强度降低率为 5.3%、延伸率 12%。
实施例七：

一种稀土铜合金，按重量百分比组成为：0.03%的铈，0.05%的镧，0.05%的铱，0.08%的银，0.06%的镉，其余为铜及杂质元素，其制备方法如下：

（1）熔炼：采用电解铜、锆、银、铈、镧、铱，其加入顺序为首先按重量百分比加入电解铜，熔炼 20~30 分钟，然后加入重量百分比为 0.03%的铈，0.05%的镧，0.05%的铱，0.08%的银，0.06%的镉，熔炼 1 分钟后进行浇铸；

（2）热锻：将上述浇铸合金在 850℃保温 4 小时，然后在常规的空气锤上进行锻造成件，锻造变形量 70%；

（3）固溶处理：将棒材装入热处理炉中，在 870℃下保温 40 分钟，使其合金元素充分溶入铜基体中，然后进行淬火处理；

（4）冷拉：将淬火后的合金进行 36%的变形处理；

（5）时效处理：将冷拉后的合金在 440℃保温 6 小时；

（6）终拉：将时效处理后的合金进行 75%的变形处理。

经过以上熔炼、热锻、固溶、冷变形及时效等冷热加工处理后，该稀土铜合金能够达到：抗拉强度 550MPa、电导率 93.81%IACS、软化温度 570℃、在 300℃下退火 2 小时的强度降低率为 5.0%、延伸率 13%。

在实施例中，稀土元素、银和锆的纯度为 99.5%，铜为一般的电解铜，纯度为 99.5%。合金经热锻、固溶、冷拉、时效和最终冷拉后，主要性能指标详见表 1。
表 1 本发明合金的主要性能指标

<table>
<thead>
<tr>
<th>实施例 1</th>
<th>抗拉强度 (MPa)</th>
<th>电导率 (%IACS)</th>
<th>软化温度 (°C)</th>
<th>300°C 强度降低率 (%)</th>
<th>延伸率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>615</td>
<td>84.69</td>
<td>570</td>
<td>6.2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>实施例 2</td>
<td>530</td>
<td>95.36</td>
<td>550</td>
<td>6.5</td>
<td>14</td>
</tr>
<tr>
<td>实施例 3</td>
<td>550</td>
<td>93.45</td>
<td>550</td>
<td>6.0</td>
<td>13</td>
</tr>
<tr>
<td>实施例 4</td>
<td>620</td>
<td>83.21</td>
<td>570</td>
<td>5.9</td>
<td>13</td>
</tr>
<tr>
<td>实施例 5</td>
<td>550</td>
<td>94.32</td>
<td>570</td>
<td>5.6</td>
<td>13</td>
</tr>
<tr>
<td>实施例 6</td>
<td>550</td>
<td>92.65</td>
<td>560</td>
<td>5.3</td>
<td>12</td>
</tr>
<tr>
<td>实施例 7</td>
<td>550</td>
<td>93.81</td>
<td>570</td>
<td>5.0</td>
<td>13</td>
</tr>
</tbody>
</table>