(12) 按照专利合作条约所公布的国际申请
(19) 世界知识产权组织
国际局
(43) 国际公布日
2011年 7 月 7 日 (07.07.2011)
(10) 国际公布号
WO 2011/079790 A1

Title:
毫米波检查设备

Abstract:
A millimeter wave detection apparatus includes optical devices (30, 50, 60), {
used to receive the millimeter wave radiating from the object, and gather the received wave; {
a radiometer receiving device (80), used to receive the energy of the gathered millimeter wave, {
and transform the millimeter wave energy into electric signal; and an imaging device, used to form the temperature image of the detected object according to said electric signal. The millimeter wave detection apparatus provided in present invention has a simple and compact structure, and since passive human body security detection technique with millimeter wave has no damage to human health, the millimeter wave detection apparatus can be used to detect the contraband object hid inside human clothing.

图 1A | Fig. 1A
一种毫米波检查设备包括光学装置（30、50、60），用于接收被检测对象辐射的毫米波，并汇聚接收得到的毫米波；辐射计接收装置（80），用于接收经汇聚的毫米波能量，并将毫米波能量转换成电信号；和成像装置，用于根据所述电信号形成被检测对象的温度图像。本发明提供的毫米波检查设备结构简单紧凑，由于被动式毫米波人体安检技术对人体健康没有伤害；该毫米波检查设备可以对隐藏于人体衣物内的违禁物品进行检测。
毫米波检查设备

技术领域
本发明涉及一种人体安检设备，尤其涉及一种用于人体检查的毫米波检查设备。

背景技术
公知的人体安检设备主要有金属探测器、痕量检查仪、X光透射设备。具体地，金属探测器只对检测金属物质敏感。痕量检查仪只对检测爆炸物和毒品有效。X光透射设备对包括金属/非金属物品、爆炸物、毒品等进行检测，而且可以具备较高的空间分辨率和一定的扫描速度，但是由于X光的致电离辐射对人体健康有一定伤害，因此用于人体安检受到制约。

为了实现对人体安全检查的功能的需要，实有必要提出一种毫米波检查设备，其至少能够有效减轻前述所述一个技术问题或者能够完全消除前述所述一个技术问题。

发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。

相应地，本发明的目的之一在于提供一种能够对人体进行安检的毫米波检查设备。

根据本发明的一方面，其提供一种毫米波检查设备，其中该毫米波检查设备包括：光学装置，用于接收被检测对象反射的毫米波，并汇聚接收到的毫米波；辐射计接收装置，用于接收经汇聚的毫米波能量，并将毫米波能量转换成电信号；和成像装置，根据所述电信号，形成被检测对象的温度图像。

在一个实施例中，所述光学装置进一步包括：摆动反射装置，用于接收并反射来自被检测对象的毫米波；凸透镜装置，用于汇聚来自所述摆动反射装置的毫米波能量；和光路折射反射板装置，用于改变
汇聚后的毫米波的传播路径。

在一个实施例中，摆动反射装置包括：支撑架；摆动反射板，所述摆动反射板转动地支撑在所述支撑架上；和第一驱动电机，所述第一驱动电机与所述摆动反射板连接，用于驱动所述摆动反射板往复摆动。

优选地，所述支撑架包括：第一支撑板；与所述第一支撑板平行且相对的第二支撑板；和多个等长的定位杆，所述多个等长的定位杆的一端与所述第一支撑板连接，另一端与所述第二支撑板连接，所述多个等长的定位杆相互平行，并且分别垂直于所述第一和第二支撑板。

在另一个实施例中，所述摆动反射装置还包括：摆动限位机构，所述摆动限位机构用于限定所述摆动反射板的摆动角度范围，其包括：摆动件，所述摆动件的一端与所述驱动电机连接；和一对限位件，所述一对限位件设置在所述第二支撑板上，所述摆动件的另一端被限制造成在所述一对限位件之间摆动。

优选地，所述摆动反射板的一端形成有转轴，所述摆动反射板的转轴通过轴承转动地支撑在所述第一支撑板上；所述摆动反射板的另一端与所述摆动件连接，用以与所述摆动件同步转动。

在另一个实施例中，所述光路折射反射装置包括：反射板；角度调节机构，用于调节所述反射板的角度；和高度调节机构，用于调节所述反射板的高度。

具体地，所述高度调节机构包括：第一螺柱，所述第一螺柱固定在毫米波检查设备的机械框架上；第二螺柱，所述第二螺柱的螺旋方向与所述第一螺柱相反；螺套，所述螺套的下部与第一螺柱螺纹连接，上部与第二螺柱螺纹连接，通过转动螺套来调节所述反射板的高度；和锁定螺母，所述锁定螺母能够锁定所述高度调节机构的高度。

在一个实施例中，所述角度调节机构包括：转轴，所述反射板通过该转轴转动地连接在所述第二螺柱的顶端。

在另一个实施例中，所述光路折射反射装置还包括限位机构，用于防止所述反射板随螺套一同旋转。
具体地，所述限位机构包括：第一限位板，所述第一限位板的上端与所述反射板连接，下端具有插槽；和第二限位板，所述第二限位板下部固定在毫米波检查设备的机械框架上，上部插入第一限位板的下端插槽中。

在一个实施例中，所述凸透镜装置为双面凸透镜。

在另一个实施例中，所述辐射计接收装置包括：呈线性排列的辐射计；第一定位夹板和第二定位夹板，所述第一定位夹板和所述第二定位夹板通过第一紧固件将所述辐射计固定到它们之间；和支撑架，所述支撑架设置用于调节所述辐射计的角度。

在又一个实施例中，所述毫米波检查设备还包括辐射计温度校准装置，所述辐射计温度校准装置包括常规校准机构，所述常规校准机构的校准温度等于当前环境温度，用于校准辐射计的初值；和高温校准机构，所述高温校准机构的校准温度高于当前环境温度，用于与常规校准机构一起校准辐射计的增益。

具体地，所述常规校准机构包括：可转动的常规校准镂空转筒组件；和第二驱动电机，所述第二驱动电机安装在支架上，用于驱动常规校准镂空转筒组件围绕所述辐射计连续转动。

优选地，所述高温校准机构包括：高温校准半圆板组件；和第三驱动电机，所述第三驱动电机安装在支架上，用于驱动高温校准半圆板组件围绕所述辐射计摆动。

在另一实施例中，所述常规校准镂空转筒组件和所述高温校准半圆板组件围绕同一轴线运动，所述常规校准镂空转筒组件的一端与转轴连接，所述转轴与所述第二驱动电机的输出轴连接；所述转轴的轴端设置有带键的轴孔，所述第二驱动电机的输出轴插入所述转轴的轴孔中，从而实现两者之间的直接对接。

在一个实施例中，所述毫米波检查设备还包括控制装置，用于控制所述毫米波检查设备的操作。

在又一个实施例中，所述毫米波检查设备还包括机架，所述光学装置和所述辐射计接收装置安装到所述机架上。

在另一个实施例中，所述毫米波检查设备还包括用于获取被检测
对象的光学图像的摄像机。

与现有技术相比，在本发明的上述各个实施例中，由于采用毫米波进行安检，具有以下有益技术效果：采用被动式毫米波人体安检技术对人体健康没有伤害；可以对隐藏于人体衣物内的违禁物品进行检测。此外，由于采用了光路折射方式的设计，从而使得设备更为紧凑。

附图说明

本发明的这些和/或其他方面和优点从下面结合附图对优选实施例的描述中将变得明显和容易理解，其中：

图1A和1B分别是根据本发明一个实施例的毫米波检测设备的立体结构示意图；

图1C是根据本发明一个实施例的在对人体进行安检时图1A和图1B中的毫米波检测设备的立体结构示意图；

图2是根据本发明一个实施例的毫米波检测设备中的摆动反射装置的立体结构示意图；

图3是根据本发明一个实施例的毫米波检测设备中的光路折射反射板装置的立体结构示意图；

图4是根据本发明一个实施例的毫米波检测设备中的接收装置的立体结构示意图；

图5是沿图4的线A-A切割获得的剖视图；

图6是根据本发明一个实施例的毫米波检测设备中的高低温校准装置的立体结构示意图；和

图7是图6中的高低温校准装置的俯视局部剖视图。

具体实施方式

以下是根据特定的具体实例说明本发明的具体实施方式，熟悉本领域的技术人员可由以下实施例中所揭示的内容轻易地了解本发明的构造，优点与功效。

本发明亦可藉由其它不同的具体实例加以施行或应用，本说明书
中的各项细节亦可基于不同观点与应用，在不背离本发明的创作之精神下进行各种修改与变更。

再者，以下图式均为简化的示意图式，而仅以示意方式说明本发明的基本构想，故图式中仅显示与本发明有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制，其实际实施时各组件的型态、数量及比例可作随意的变更，且其组件布局形态可能更为复杂。

下面结合实施例进一步说明本发明的具体实施方式。

参见图1A和图1B，根据本发明的一个实施例，提供了一种毫米波检查设备，其中该毫米波检查设备包括：光学装置30、50、60，用于接收被检测对象辐射的毫米波，并汇聚接收到的毫米波；辐射计接收装置80，用于接收经汇聚的毫米波能量，并将毫米波能量转换成电信号；和成像装置（未示出），根据所述电信号，形成被检测对象的温度图像。另外，所述毫米波检查设备还包括辐射计温度校准装置110，将在下文对其进行更详细的描述。

当然，本领域技术人员应当理解，毫米波检查设备还包括控制装置150，用于控制所述毫米波检查设备的操作。具体地，控制系统150发出控制毫米波检查设备中的各个部件的控制指令。成像装置基于辐射计接收装置80获得的电信号，将其转换成图像信息以供检测和识别。显然，其可以采用各种具体实现形式，例如计算机、微处理器和显示单元等。

毫米波检查设备还包括机架20，该机架20用于保护和支撑毫米波检查设备的各个部件，例如光学装置30、50、60和辐射计接收装置80可以被安装到所述机架20上。成像装置可以结合到机架20以与机架20形成一个整体装置，也可以与其它部件电气相连，以实现远程成像。可以理解，所述成像装置可以一体地形成在机架20上，以便于直接观测所获得的温度图像。当然，如本领域技术人员可以想到的，也可以根据各种实际需要将成像装置形成在毫米波检查设备的其它部件中或设置成与毫米波检查设备分离开。

在一种具体实施例中，例如参见图1C，毫米波检查设备还包括获取被检测对象的光学图像的摄像机10。通过摄像机10获取的被检
测对象光学图像可以与毫米波检查设备获取的被检测对象的温度图像关联，作为人体安全检查的参考信息。

具体地，光学装置 30、50、60 进一步包括：摆动反射装置 30，用于接收并反射来自被检测对象的毫米波；凸透镜装置 50，用于汇聚来自所述摆动反射装置 30 的毫米波能量；和光路折射反射板装置 60，用于改变汇聚后的毫米波的传播路径。

在一个实施例中，凸透镜装置 50 为双面凸透镜。

以下将参考图 2 和图 3 分别说明本发明的毫米波检查设备中的摆动反射装置 30 和光路折射反射板装置 60。

参考图 2，在本发明中，图示的摆动反射装置 30 用于毫米波检查设备。但是，需要说明的是，该摆动反射装置 30 还能够适用于其它设备或其它用途。

图 2 显示根据本发明的一个示例性的实施例的摆动反射装置 30 的立体结构示意图。如图所示，在该实施例中，摆动反射装置 30 主要包括支撑架 31、摆动反射板 32，所述摆动反射板 32 转动地支撑在所述支撑架 31 上；和驱动电机 35，所述驱动电机 35 与所述摆动反射板 32 连接，用于驱动所述摆动反射板 32 往复摆动。

支撑架 31 包括第一支撑板 40 和第二支撑板 42，第一支撑板 40 和第二支撑板 42 设置成平行且相对。第一支撑板 40 和第二支撑板 42 均通过螺钉等螺纹连接件固定在毫米波检查设备的机架 20 上。

在一个优选实施例中，为了确保第一支撑板 40 和第二支撑板 42 之间相互平行的位置关系，还提供多个等长的定位杆 41。如图 2 所示，多个等长的定位杆 41 的一端与第一支撑板 40 连接，其另一端与第二支撑板 42 连接。

如图 2 所示，在该优选实施例中，一共有设置了三个等长的定位杆 41、三个等长的定位杆 41 相互平行并且分别垂直于第一和第二支撑板 40、42。但是，需要说明的是，也可以设置两个、四个或更多个等长的定位杆 41。第一支撑板 40 上开设有一个轴承孔（未示出），在该轴承孔中安装有轴承 39。摆动反射板 32 的一端具有转轴（未示出），该转轴支撑在轴承 39 中，从而转动地支撑在第一支撑板 40 上。
为了防止灰尘等进入轴承 39 中，在图示的优选实施例中，在第一支撑板 40 的外侧设置有端盖 38，该端盖 38 通过螺钉固定在第一支撑板 40 上，用于覆盖安装轴承 39 的轴承孔。

在一个优选实施例中，摆动反射装置还包括摆动限位机构 36、37，用于限定所述摆动反射板 32 的摆动角度范围。在图 2 所示的优选实施例中，摆动限位机构包括摆动件 36 和一对限位件 37。

如图 2 所示，驱动电机 35 通过螺钉等螺纹连接件直接固定在第二支撑板 42 的内侧。当然，驱动电机 35 也可以嵌入并固定在第二支撑板 42 中。这有利于减小整个摆动反射装置 30 的体积。

在一个优选实施例中，摆动件 36 的一端与驱动电机 35 直接连

参见图 2，一对限位件 37 设置在第二支撑板 42 上，摆动件 36

的另一端被限制成在一对限位件 37 之间摆动。

更优选地，一对限位件 37 为一对凸起的限位柱。

更优选地，在一对限位件 37 和/或摆动件 36 上套设有弹性套，用于防止冲击和噪声。

在一个优选实施例中，如图 2 所示，摆动件 36 包括位于摆动件 36 的一端的圆盘 36b 和位于摆动件 36 的另一端的摆动杆 36a。

如图 2 所示，在该优选实施例中，驱动电机 35 的转子上形成有

转动盘。摆动件 36 的圆盘 36b 通过螺钉与驱动电机 35 的转动盘直接刚性连接，从而实现与所述摆动件同步转动。

如图 2 所示，摆动反射板 32 的另一端形成有连接圆盘。摆动反射板 32 的连接圆盘通过螺钉与摆动件 36 的圆盘 36b 直接刚性连接，从而实现与驱动电机 35 的直接刚性连接。

在上述优选实施例中，由于摆动反射板 32 与驱动电机 35 直接刚性连接，不需要其它任何传动机构，因此结构简单。而且，驱动电机 35 能够驱动摆动反射板 32 高速往复运动。

在另一个优选实施例中，前述驱动电机 35 采用扭矩电机。但是，本发明不局限于此，也可以采用其它类型的电机，例如步进电机等。

另外，具体地参见图 3，其显示出了根据本发明的一个实施例的
用于毫米波检查设备中光路反射板装置 60 的立体结构示意图。

具体地，光路折射反射板装置 60 包括：反射板 61；角度调节机构 64，用于调节所述反射板 61 的角度；和高度调节机构 65、67，用于调节所述反射板 61 的高度。

进一步地，高度调节机构 65、67、68 包括：第一螺柱 68，所述第一螺柱 68 固定在毫米波检查设备的机架 20 上；第二螺柱 65，所述第二螺柱 65 的螺旋方向与所述第一螺柱 68 相反；螺套 67，所述螺套 67 的上部与第一螺柱 68 螺纹连接，上部与第二螺柱 65 螺纹连接，通过转动螺套 67 来调节所述反射板 61 的高度；和锁定螺母 66，所述锁定螺母 66 能够锁定所述高度调节机构的高度。

另外，角度调节机构 64 包括：转轴 64，所述反射板 61 通过该转轴 64 转动地连接在所述第二螺柱 65 的顶端。具体地，转轴 64 带有螺纹，松开时，反射板 61 可以在一定范围内被调整角度。

在一个优选的实施例中，光路折射反射装置 60 还包括限位机构 62、63，用于防止所述反射板 61 随螺套 67 — 同旋转。具体地，限位机构 62、63 包括：第一限位板 62，所述第一限位板 62 的上端与所述反射板 61 连接，下端具有插槽；和第二限位板 63，所述第二限位板 63 下部固定在毫米波检查设备的机架 20 上，上部插入第一限位板 62 的下端插槽中。具体地，第二限位板 63 嵌入到第一限位板 62 的插槽中，用于防止在转动螺套 67 时，反射板 61 与之一起转动。

可以理解，转动螺套 67 时，第一螺柱 68 和第二螺柱 65 同时向相反方向移动，从而获得了双倍的上升或下降速度。

参考图 4，其显示出根据本发明的一个实施例的用于毫米波检查设备中的辐射计接收装置 80。所述辐射计接收装置 80 包括：呈线性排列的辐射计 83；第一定位夹板 82 和第二定位夹板 84，所述第一定位夹板 82 和所述第二定位夹板 84 通过第一紧固件（未示出，例如螺钉）将所述辐射计 83 固定到它们之间；和支撑架 81，所述支撑架 81 设置用于调节所述辐射计 83 的角度。

具体地，所述支撑架 81 上设置有滑孔 810，所述辐射计接收装置 80 还包括第二紧固件 811，所述第二紧固件 811 穿过所述滑孔 810。
将支撑架 81 与所述第一定位夹板 82 的弯板相连接并能够在所述滑孔 810 中滑动以调整所述第一定位夹板 82 的角度并且因此调节辐射计 83 相对于所述支撑架 81 的方位。

更进一步地，所述第一定位夹板 82 的弯板内侧设置有风扇 91，所述弯板上设有与所述风扇 91 相对应的排风孔 97。

另外，参考图 5，其是沿图 4 的线 A-A 截割获得的剖视图。

第一定位夹板 82 和所述第二定位夹板 84 的表面上分别设置有多个散热翼板 95。所述辐射计接收装置 80 还包括风道隔板 89、90，所述风道隔板 89、90 用于封闭所述散热翼板 95，从而形成风道。所述辐射计接收装置 80 还包括屏蔽筒 92，所述屏蔽筒 92 包围所述第一定位夹板 82、第二定位夹板 84 及辐射计 83，并在所述辐射计 83 的接收方向上留有间隙。

可以理解，所述辐射计接收装置 80 还包括高频放大器 85 以及用于固定高频放大器 85 的高频放大器托架 86 和托架压板 87，所述高频放大器托架 86 具有栅格结构，每一栅格安装一高频放大器 85。

另外地，所述辐射计接收装置 80 还包括数据采集电路板 88，所述数据采集电路板 88 安装于所述第二定位夹板 84 上。

可以理解，需要根据光路设计，按一定角度布置辐射计 83。带散热翼板 95 的第一定位夹板 82、第二定位夹板 84 与风道隔板 89、90 一起限定了散热风道，并通过风扇 91 将辐射计 83 产生的热量带走，从而保证辐射计 83 不受外界温度的影响。

参见图 6 是根据本发明一个实施例的毫米波检查设备中的高低温校准装置的立体结构示意图，图 7 是图 6 中的高低温校准装置的俯视局部剖视图。

如图 6 和图 7 所示，在图示优选实施例中，辐射计温度校准装置 110 包括常温校准机构和高温校准机构。因此，在本文中，也可以将这种辐射计温度校准装置称之为高低温校准装置。具体地，常温校准机构具有等于当前环境温度的校准温度，用于校准辐射计 83 的初值。高温校准机构具有高于当前环境温度的校准温度，用于与常温校准机构一起校准辐射计 83 的增益。
如图6和图7所示，在一个示例性的优选实施例中，常温校准机构主要包括可转动的常温校准镂空转筒组件111和第二驱动电机118。如图7所示，第二驱动电机118安装在支架129上，用于驱动常温校准镂空转筒组件111围绕辐射计83连续转动。

参见图6和图7，高温校准机构主要包括高温校准半圆板组件130和第三驱动电机142。如图7所示，第三驱动电机142安装在支架129上，用于驱动高温校准半圆板组件130围绕辐射计83摆动。

如图6和图7所示，高温校准半圆板组件130设置在常温校准镂空转筒组件111的外侧，并与常温校准镂空转筒组件111之间具有预定的空气间隔，用于防止相互之间的热传导。当然，也可以在常温校准机构和高温校准机构之间通过绝热材料相互热隔离。

如图7所示，在另一个优选实施例中，常温校准镂空转筒组件111和高温校准半圆板组件130绕同一轴线I运动。

如图6所示，在图示的优选实施例中，支架129具有前壁和与前壁相对的后壁。前壁与后壁的一端相互连接，从而形成U形支架。

如图7所示，支架129的前壁上形成有轴承座128，转轴116通过轴承117转动地支撑在轴承座128的通孔中。用挡圈139定位所述轴承117。

在图示的优选实施例中，常温校准镂空转筒组件111的一端与一个带有法兰盘的转轴116连接。转轴116与第二驱动电机118的输出轴连接。优选地，转轴116的轴端钻有带键的轴孔，第二驱动电机118的输出轴插入转轴116的轴孔中，从而实现两者之间的直接对接。

如图6所示，在一个优选实施例中，常温校准机构还包括温度传感器120，用于检测常温校准镂空转筒组件111的温度。优选地，该温度传感器120固定在支架129的顶部上。更优选地，该温度传感器120为红外温度传感器，当然，也可以为适用于本发明的其它类型的温度传感器。

如图6所示，常温校准机构还包括位置传感器121，用于检测常温校准镂空转筒组件111的初始位置。优选地，该位置传感器121为
接近开关，并安装在支架 129 上。同时，在常温校准镂空转筒组件
111 上设置有与位置传感器 121 相对应的凸起。当常温校准镂空转筒
组件 111 位于初始位置时，位置传感器 121 与所述凸起直接相对，从
而来检测常温校准镂空转筒组件 111 的初始位置。

如图 7 所示，常温校准镂空转筒组件 111 主要包括镂空转筒 112
和设置在镂空转筒 112 内侧的吸波材料 113。

如图 7 所示，在一个优选实施例中，常温校准机构还包括隔热
器件 114、115。该隔热器件 114、115 设置在转轴 116 与常温校准镂
空转筒组件 111 的一端 103 之间，用于防止第二驱动电机 118 产生的
热量经转轴 116 传导至常温校准镂空转筒组件 111。

如图 6 和图 7 所示，高温校准半圆板组件 130 的一端通过扇形支
架 137 固定在第一同步齿形带轮 138 上，第一同步齿形带轮 138 通过
轴承转动地支撑在转轴 16 上，第一同步齿形带轮 138 通过同步齿形
带 140 与第三驱动电机 142 的输出轴上的第二同步齿形带轮 141 相连
接。

如图 7 所示，在一个优选实施例中，高温校准半圆板组件 130 从
内向外依次包括：隔热套 131、吸波材料 113、导热板 133、电阻加
热膜 134、保温材料 135 和隔热板 136。

如图 7 所示，在一个优选实施例中，高温校准机构还包括温度传
感器 132。该温度传感器 132 设置在所述高温校准半圆板组件 130 的
内部，与电阻加热膜 134 接触，用于检测所述高温校准半圆板组件
130 的温度。

如图 7 所示，在一个优选实施例中，高温校准机构还包括两个限
位检测器 122，用来限制高温校准半圆板组件 130 的摆动范围，使高
温校准半圆板组件 130 在一对限位检测器 122 所限定的范围内摆动。
优选地，限位检测器 122 为限位接近开关。

如图 6 所示，在一个优选实施例中，高温校准机构还包括张紧轮
143，用于调节同步齿形带 140 的张力。如图 6 所示，张紧轮 143 固
定在支架 129 上，和压在同步齿形带 140 上，使同步齿形带 140 保持
绷紧的状态。
虽然结合附图对本发明进行了说明，但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明，而不能理解为对本发明的一种限制。

虽然本总体发明构思的一些实施例已被显示和说明，本领域普通技术人员将理解，在不背离本总体发明构思的原则和精神的情况下，可对这些实施例做出改变，本发明的范围以权利要求和它们的等同物限定。
1. 一种毫米波检查设备，其中该毫米波检查设备包括：
光学装置 (30、50、60)，用于接收被检测对象辐射的毫米波，
并汇聚接收到的毫米波；
辐射计接收装置 (80)，用于接收经汇聚的毫米波能量，并将毫米波能量转换成电信号；和
成像装置，根据所述电信号，形成被检测对象的温度图像。

2. 根据权利要求 1 所述的毫米波检查设备，其中，所述光学装置 (30、50、60) 进一步包括：
摆动反射装置 (30)，用于接收并反射来自被检测对象的毫米波；
凸透镜装置 (50)，用于汇聚来自所述摆动反射装置 (30) 的毫米波能量；和光路折射反射板装置 (60)，用于改变汇聚后的毫米波的传播路径。

3. 根据权利要求 2 所述的毫米波检查设备，其中所述摆动反射装置 (30) 包括：
支撑架 (31)；摆动反射板 (32)，所述摆动反射板 (32) 转动地支撑在所述支撑架 (31) 上；和第一驱动电机 (35)，所述第一驱动电机 (35) 与所述摆动反射板 (32) 连接，用于驱动所述摆动反射板 (32) 往复摆动。

4. 根据权利要求 3 所述的毫米波检查设备，其中所述支撑架 (31) 包括：
第一支撑板 (40)；与所述第一支撑板 (40) 平行且相对的第二支撑板 (42)，所述多个等长的定位杆 (41)，所述多个等长的定位杆 (41) 的一端与所述第一支撑板 (40) 连接，另一端与所述第二支撑板 (42) 连接，所述多个等长的定位杆 (41) 相互平行，并且分别垂直于所述第一和第二支撑板 (40、42)。
5. 根据权利要求2所述的毫米波检查设备，其中所述摆动反射装置(30)还包括：

摆动限位机构，所述摆动限位机构用于限定所述摆动反射板(32)的摆动角度范围，其包括：

摆动件(36)，所述摆动件(36)的一端与所述驱动电机(35)连接；和

一对限位件(37)，所述一对限位件(37)设置在所述第二支撑板(42)上，所述摆动件(36)的另一端被限制在所述一对限位件(37)之间摆动。

6. 根据权利要求4所述的毫米波检查设备，其中所述摆动反射板(32)的一端形成有转轴，所述摆动反射板(32)的转轴通过轴承(39)转动地支撑在所述第一支撑板(40)上；所述摆动反射板(32)的另一端与所述摆动件(36)连接，用以与所述摆动件同步转动。

7. 根据权利要求2所述的毫米波检查设备，其中所述光路折射反射板装置(60)包括：

反射板(61)；

角度调节机构(64)，用于调节所述反射板(61)的角度；和

高度调节机构(65、67、68)，用于调节所述反射板(61)的高度。

8. 根据权利要求7所述的毫米波检查设备，其中，所述高度调节机构(65、67、68)包括：

第一螺柱(68)，所述第一螺柱(68)固定在毫米波检查设备的机械框架上；

第二螺柱(65)，所述第二螺柱(65)的螺旋方向与所述第一螺柱(68)相反；

螺套(67)，所述螺套(67)的下部与第一螺柱(68)螺纹连接，
上部与第二螺柱 (65) 螺纹连接，通过转动螺套 (67) 来调节所述反射板 (61) 的高度；和
锁定螺母 (66)，所述锁定螺母 (66) 能够锁定所述高度调节机构的高度。

9. 根据权利要求 7 所述的毫米波检查设备，其中，所述角度调节机构 (64) 包括：
转轴 (64)，所述反射板 (61) 通过该转轴 (64) 转动地连接在所述第二螺柱 (65) 的顶端。

10. 根据权利要求 7-9 中任一项所述的毫米波检查设备，所述光路折射反射装置 (60) 还包括限位机构 (62、63)，用于防止所述反射板 (61) 随螺套 (67) 一同旋转。

11. 根据权利要求 10 所述的毫米波检查设备，其中，所述限位机构 (62、63) 包括：
第一限位板 (62)，所述第一限位板 (62) 的上端与所述反射板 (61) 连接，下端具有插槽；和
第二限位板 (63)，所述第二限位板 (63) 下部固定在毫米波检查设备的机械框架上，上部插入第一限位板 (62) 的下端插槽中。

12. 根据权利要求 2 所述的毫米波检查设备，其中，所述凸透镜装置 (50) 为双面凸透镜。

13. 根据权利要求 1 所述的毫米波检查设备，其中，所述辐射计接收装置 (80) 包括：
呈线性排列的辐射计 (83)；
第一定位夹板 (82) 和第二定位夹板 (84)，所述第一定位夹板 (82) 和所述第二定位夹板 (84) 通过第一紧固件将所述辐射计 (83) 固定到它们之间；和
支撑架 (81)，所述支撑架 (81) 设置用于调节所述辐射计 (83) 的角度。

14. 根据权利要求 1 所述的毫米波检查设备，其中，所述毫米波检查设备还包括辐射计温度校准装置 (110)，所述辐射计温度校准装置 (110) 包括

常温校准机构，所述常温校准机构的校准温度等于当前环境温度，用于校准辐射计的初值；和

高温校准机构，所述高温校准机构的校准温度高于当前环境温度，用于与常温校准机构一起校准辐射计的增益。

15. 根据权利要求 14 所述的毫米波检查设备，其中，所述常温校准机构包括：可转动的常温校准空转筒组件 (111)；和第二驱动电机 (118)，所述第二驱动电机 (118) 安装在支架 (129) 上，用于驱动常温校准空转筒组件 (111) 围绕所述辐射计连续转动。

16. 根据权利要求 15 所述的毫米波检查设备，其中，所述高温校准机构包括：高温校准半圆板组件 (130)；和第三驱动电机 (142)，所述第三驱动电机 (142) 安装在支架 (129) 上，用于驱动高温校准半圆板组件 (130) 围绕所述辐射计摆动。

17. 根据权利要求 16 所述的毫米波检查设备，其中，所述常温校准空转筒组件 (111) 和所述高温校准半圆板组件 (130) 绕同轴线运动，所述常温校准空转筒组件 (111) 的一端与转轴 (116) 连接，所述转轴 (116) 与所述第二驱动电机 (118) 的输出轴连接；所述转轴 (116) 的轴端设置有带键的轴孔，所述第二驱动电机 (118) 的输出轴插入所述转轴 (116) 的轴孔中，从而实现两者之间的直接对接。

18. 根据权利要求 1 所述的毫米波检查设备，其中所述毫米波检
查设备还包括控制装置（150），用于控制所述毫米波检查设备的操作。

19. 根据权利要求1所述的毫米波检查设备，其中所述毫米波检查设备还包括机架（20），所述光学装置（30、50、60）和所述辐射计接收装置（80）安装到所述机架（20）上。

20. 根据权利要求1所述的毫米波检查设备，其中所述毫米波检查设备还包括用于获取被检测对象的光学图像的摄像机（10）。
图 2
图 3
A. CLASSIFICATION OF SUBJECT MATTER

See extra sheet

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC: G01V8, G01K11, G01N22

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNKI, VEN, CNPAT: millimeter wave, optic+, imag+, radiomet+

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO03/029772A2 (HRL Lab LLC) 10 Apr. 2003 (10.04.2003) page 6 line 30-page 7 line 27, page 16 lines 11-31, figs. 1-4</td>
<td>1-3, 7, 12, 18-20</td>
</tr>
<tr>
<td>A</td>
<td>CN101644770A (HARBIN INST TECHNOLOGY) 10 Feb. 2010 (10.02.2010) whole document</td>
<td>1-20</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim (S) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed

"I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"& " document member of the same patent family

Date of the actual completion of the international search
28 Mar. 2011 (28.03.2011)

Date of mailing of the international search report

Name and mailing address of the ISA/CN
The State Intellectual Property Office, the P.R.China
8 Xitucheng Rd., Jimen Bridge, Haidian District, Beijing, China 100088
Facsimile No. 86-10-62019451

Authorized officer
YANG, Lisha

Telephone No. (86-10) 62085661

Form PCT/ISA /2.10 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent Documents referred in the Report</th>
<th>Publication Date</th>
<th>Patent Family</th>
<th>Publication Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US2003 122079 A</td>
<td>03.07.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6828556 B</td>
<td>07.12.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW569006B</td>
<td>01.01.2004</td>
</tr>
<tr>
<td>CN101644770A</td>
<td>10.02.2010</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1089950C</td>
<td>28.08.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5760397 A</td>
<td>02.06.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP10153655 A</td>
<td>09.06.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69728928T</td>
<td>07.04.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US49 10523 A</td>
<td>20.03.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO9007130 A</td>
<td>28.06.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP3501055T</td>
<td>07.03.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP2788519B2</td>
<td>20.08.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5073782 A</td>
<td>17.12.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5202692 A</td>
<td>13.04.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5227800 A</td>
<td>13.07.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA1325258 C</td>
<td>14.12.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT121848T</td>
<td>15.05.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE3853684T</td>
<td>15.02.1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA1338522 C</td>
<td>13.08.1996</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

International application No.
PCT/CN20 10/080429

Continuation of A. CLASSIFICATION OF SUBJECT MATTER

G01V8/00 (2006.01)
G01K11/00 (2006.01)
G01N22/00 (2006.01)

Form PCT/ISA/210 (extra sheet) (July 2009)
A. 主题的分类

按照国际专利分类 (IPC) 或者同时按照国家分类和 IPC 两种分类

按 照 国 际 专 利 分 类 (IPC) 或 者 同 时 按 照 国 家 分 类 和 IPC 两 种 分 类

B. 检索领域

检索的最低限度文献 (标明分类系统和分类号)

IPC: G01V8, G01K1 1, G01N22

包含在检索领域中的除最低限度文献以外的检索文献

在 国 际 检 索 时 查 阅 的 电 子 数 据 库 (数 据 库 的 名 称，和 使用 的 检 索 词 (如 使用)

CNKI, VEN, CNPAT: 毫米波, 像, 光学, 辐射计, millimeter wave, optic+, imag+, radiomet+

C. 相关文件

<table>
<thead>
<tr>
<th>类型</th>
<th>引用文件，必要时，指明相关段落</th>
<th>相关的权利要求</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO03/029772A2 (HRL LAB LLC) 10.4月 2003 (10.04.2003) 第 6 页第 30 行 - 第 7 页第 27 行，第 16 页第 11-3 1 行，图 1-4</td>
<td>1-3, 7, 12, 18-20</td>
</tr>
<tr>
<td>A</td>
<td>CN101644770A (哈尔滨工业大学) 10.2 月 2010 (10.02.2010) 全文</td>
<td>1-20</td>
</tr>
<tr>
<td>A</td>
<td>CN1 170306A (欧姆龙株式会社) 14.1 月 1998 (14.01.1998) 全文</td>
<td>1-20</td>
</tr>
</tbody>
</table>

□ 其余文件在 C 栏的续页中列出。

见同族专利附件。

* 引用文件的具体类型:

“A” 为特别相关的表示有技术一般状态的文件
“E” 为国际申请日的当天或之后公布在先申请
“L” 可能对优先权要求构成怀疑的文件，或为确定另一篇引用文件的公布日而引用的或者因其他特殊理由而引用的文件（如具体说明的）
“O” 涉及口头公开、使用、展览或其他方式公开的文件
“P” 公布日先于国际申请日但迟于所要求的优先权日的文件

“T” 在申请日或优先权日之后公布，与申请不相抵触，但为了理解发明之理论或原理的在后文件
“X” 特别相关的文件，单独考虑该文件，认定要求保护的发明不是新颖的或不具有创造性
“Y” 特别相关的文件，当该文件与另一篇或者多篇该类文件结合并且这种结合对于本领域技术人员为显而易见时，要求保护的发明不具有创造性

“Z” 同族专利的文件

国际检索实际完成的日期

28.3 月 2011 (28.03.2011)

国际检索报告邮寄日期

14.4 月 2011 (14.04.2011)

ISA/CN 的名称和邮寄地址:

中华人民共和国国家知识产权局

中国北京市 海淀区 紫荆桥西土城路 6 号 100088

传真号: (86-10)62081451

电 话 号 码: (86-10) 62085661

杨莉莎

PCT/ISA210 表 (第 2 页) (2009 年 7 月)
<table>
<thead>
<tr>
<th>专利文件</th>
<th>公布日期</th>
<th>同族专利</th>
<th>公布日期</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>US2003 122079 A</td>
<td>03.07.2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US6828556 B</td>
<td>07.12.2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TW569906B</td>
<td>01.01.2004</td>
</tr>
<tr>
<td>CN101644770A</td>
<td>10.02.2010</td>
<td>无</td>
<td>无</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN1089950C</td>
<td>28.08.2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5760397 A</td>
<td>02.06.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP10153655 A</td>
<td>09.06.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE69728928T</td>
<td>07.04.2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US4910523 A</td>
<td>20.03.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO9007130 A</td>
<td>28.06.1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP3501055T</td>
<td>07.03.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP27885 19B2</td>
<td>20.08.1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5073782 A</td>
<td>17.12.1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5202692 A</td>
<td>13.04.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US5227800 A</td>
<td>13.07.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA1 325258 C</td>
<td>14.12.1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT121848T</td>
<td>15.05.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE3853684T</td>
<td>15.02.1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA1 338522 C</td>
<td>13.08.1996</td>
</tr>
</tbody>
</table>