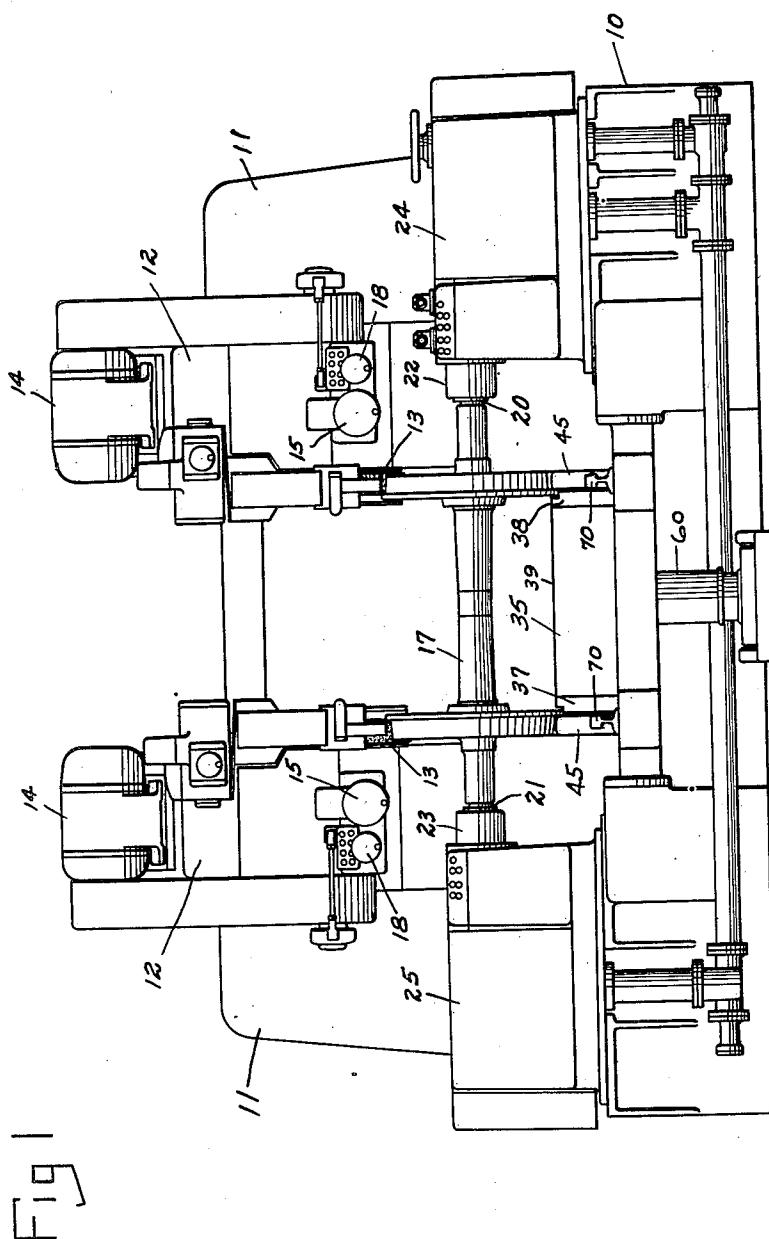


Jan. 27, 1953


H. E. BALSIGER

2,626,492

CAR WHEEL GRINDER

Filed June 7, 1950

4 Sheets-Sheet 1

Impenitent

Harold E. Balsiger

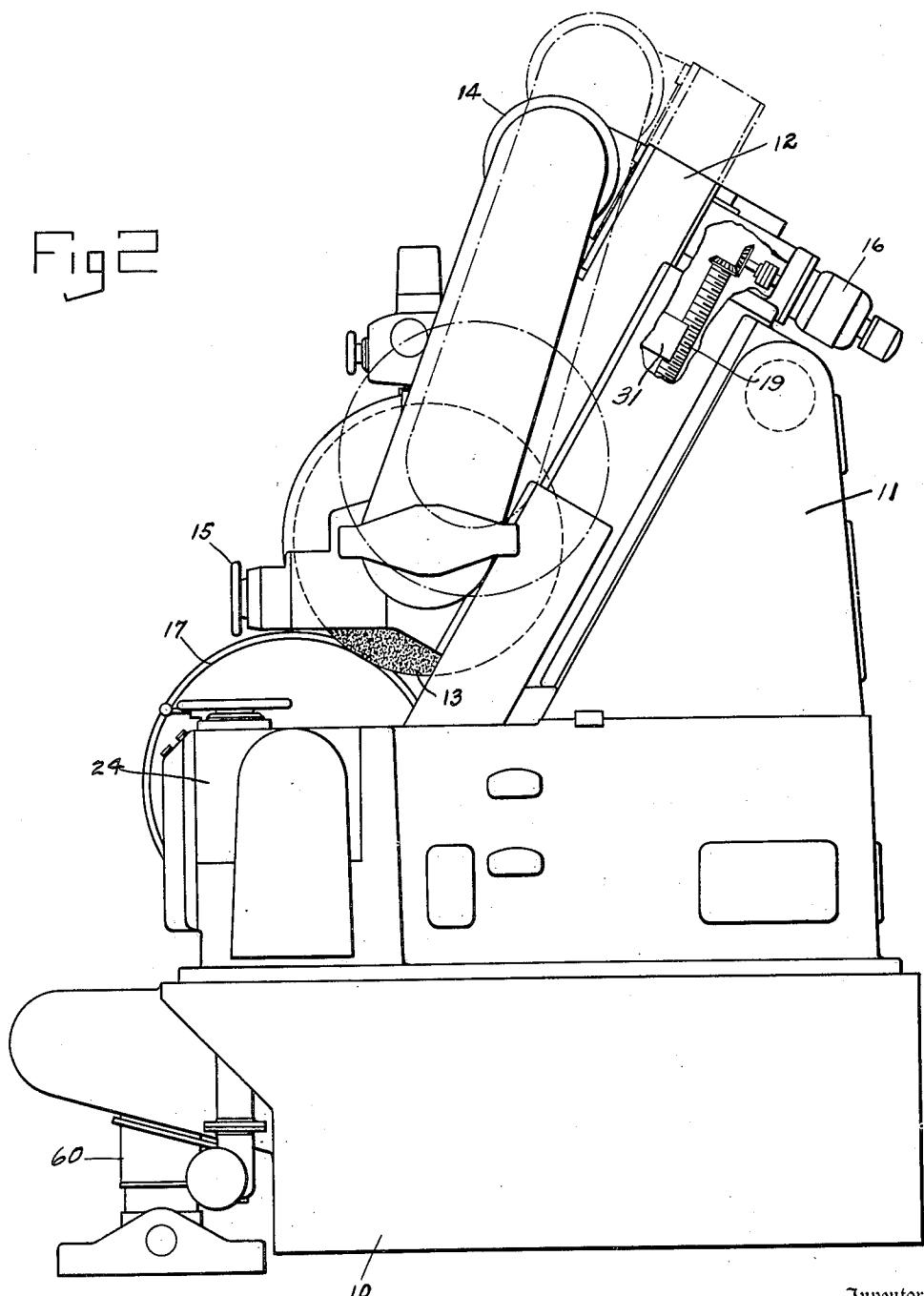
34

Hugh D. Rocke
Attn:

Attorney

Jan. 27, 1953

H. E. BALSIGER


2,626,492

CAR WHEEL GRINDER

Filed June 7, 1950

4 Sheets-Sheet 2

Fig 2

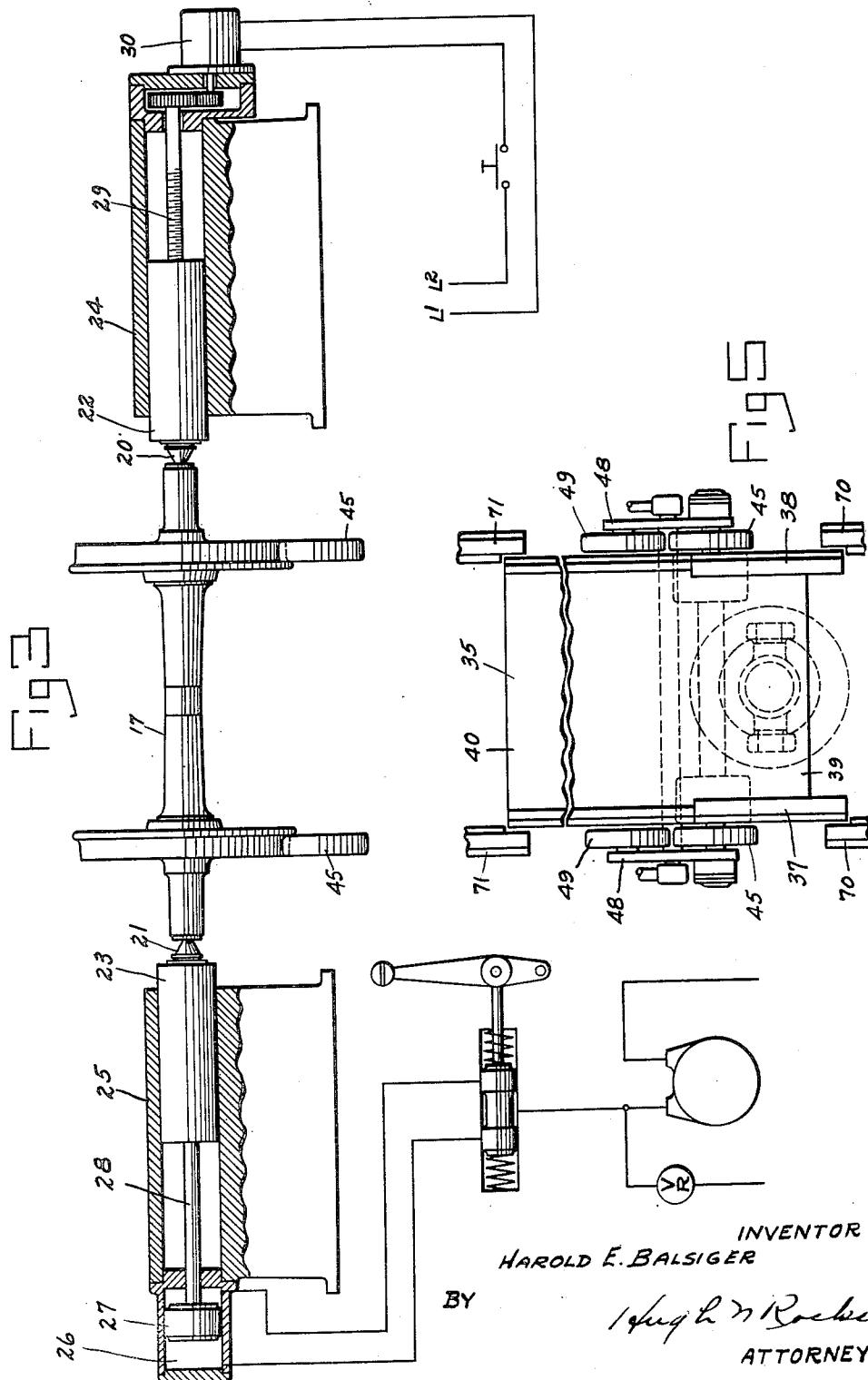
Inventor

HAROLD E. BALSIGER

By

Hugh M. Roberts
Attorney

Jan. 27, 1953

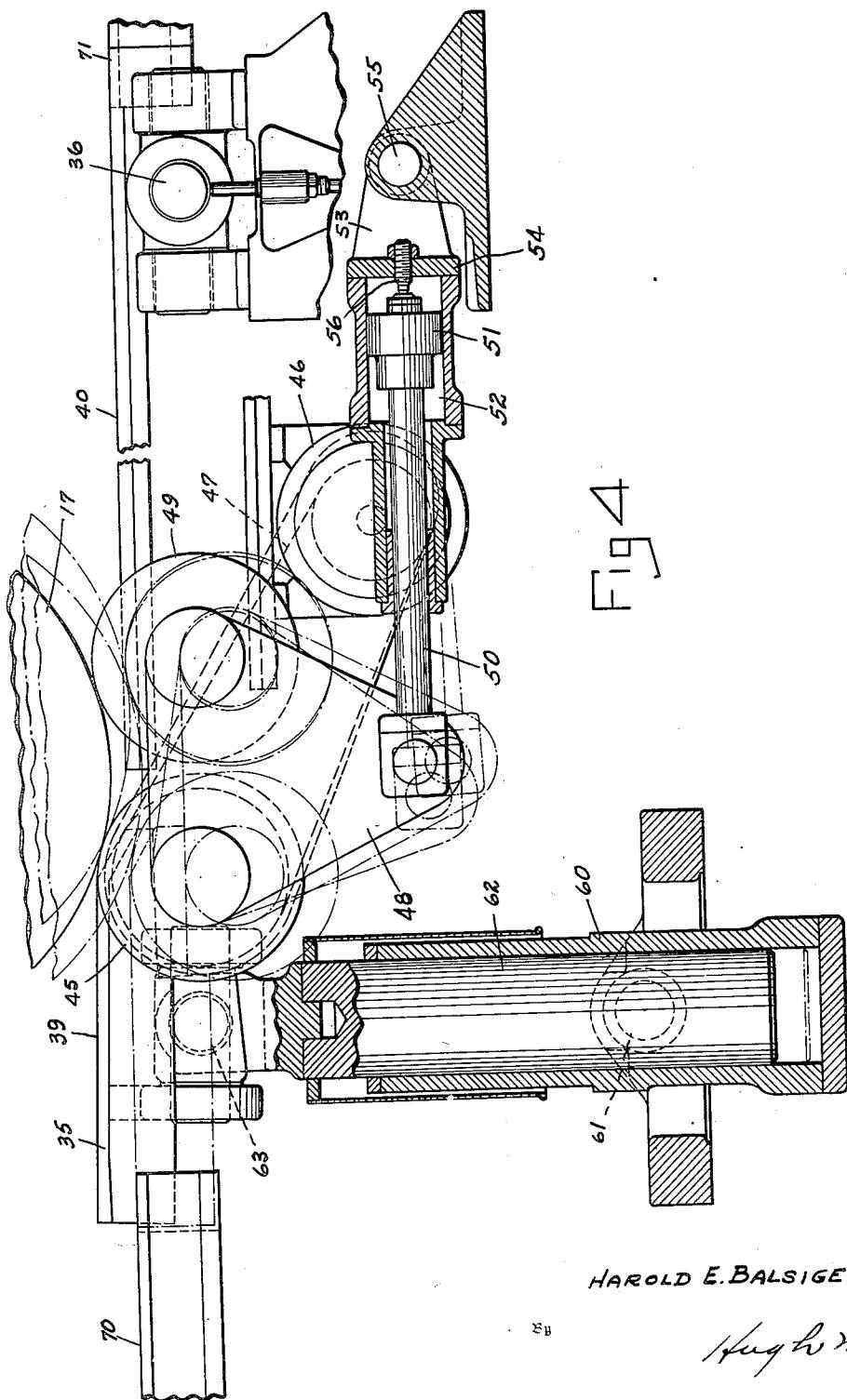

H. E. BALSIGER

CAR WHEEL GRINDER

2,626,492

Filed June 7, 1950

4 Sheets-Sheet 3


Jan. 27, 1953

H. E. BALSIGER
CAR WHEEL GRINDER

2,626,492

Filed June 7, 1950

4 Sheets-Sheet 4

Inventor
HAROLD E. BALSIGER

Hugh W. Roche
Attorney

UNITED STATES PATENT OFFICE

2,626,492

CAR WHEEL GRINDER

Harold E. Balsiger, Waynesboro, Pa., assignor to
Landis Tool Company, Waynesboro, Pa.

Application June 7, 1950, Serial No. 166,560

3 Claims. (Cl. 51—236)

1

This invention relates to grinding machines, particularly to machines for grinding the wheels of railway cars.

In the past, car wheel grinders have been little different from other grinding machines, except for the fact that they usually had separate wheel supports and grinding wheels for each of the wheels in the wheel and axle assembly. Placing the car wheels in the machine for a grinding operation and removing them afterward necessitated a great deal of handling by cranes or other lifting devices.

The first improvement in this type of machine so far as handling was concerned involved means for moving the grinding wheel supports longitudinally of the machine to an inoperative position such that the wheel assembly could be rolled on tracks into the front of the machine and, after a grinding operation, the assembly could pass on through the machine and be removed at the rear. This arrangement required a rather expensive wheel mounting structure, since each wheel support required a longitudinal as well as a transverse slide.

The present invention represents an improvement over this apparatus in that it requires only a transverse slide for each grinding wheel. The work supports and wheel supports are spaced axially a distance greater than the length of the axis. A short transverse backoff movement of the wheel supports then provides a clear passage through the machine for inserting and removing the work. The slight axial movement of the wheels required for adjustment may be effected by shifting the wheel spindle axially.

It is an object of this invention to provide a car wheel grinder in which the wheel and axle assembly may be rolled into the front of the machine on a track and removed at the rear of the machine on the same track.

A further object is to provide a machine for grinding car wheels in which the vertical space between the surface of the grinding wheels and the track may be enlarged by transverse movement of the grinding wheel supports to permit the wheel and axle assembly to pass through the machine.

A further object is to provide means for supporting a wheel and axle assembly on the flanges of the wheels as said assembly enters and leaves the machine.

A further object is to provide means for effecting axial adjustment of the wheel assembly in the machine.

2

Figure 1 is a front elevation of a car wheel grinder.

Figure 2 is an end elevation.

Figure 3 is a front elevation of the work supporting heads, showing means for effecting axial adjustment of the work.

Figure 4 is an end elevation showing the work driving apparatus and the platform tilting means.

Figure 5 is a partial plan view of the platform and work driving means.

In the drawings, numeral 10 indicates the bed of the machine; 11, a triangular slide member having an inclined surface on which are formed suitable guides, slidably supporting wheel base 12. 15 The grinding wheel 13 is rotatably mounted in said wheel base and driven by motor 14. Said wheel base may be moved on slide 11 manually by handwheel 15 operating through suitable gearing, or it may be moved by power in the form of a motor 16 through suitable gearing to feed screw 19. Said screw is connected to wheel base 12 through nut 31. Said wheel may also be adjusted axially by shifting its spindle endwise by means of handwheel 18 acting through suitable gearing. Since the design and mounting of both grinding wheel supports is identical, it is necessary to describe only one.

During a grinding operation, the car wheel assembly 17 is carried rotatably on a pair of work centers 20 and 21 in spindles 22 and 23 which are axially adjustable in work support heads 24 and 25. At the outer end of the left-hand head 25 is a cylinder 26 in which is slidably mounted a piston 27 connected to center 21 by means of piston rod 28. The center 20 in the right-hand head may be adjusted axially by screw 29, which may be rotated either manually or by power. In this case, a gear motor 30 is provided for rotating said screw. Constant pressure from any suitable source is maintained in the left end of cylinder 26 during grinding so that piston 27, along with the work piece and the work centers, will follow any adjustment of screw 29.

The space between the work supports is occupied by a platform 35 substantially flush with the floor level. Said platform extends the entire width of the machine and is pivotally mounted at the rear thereof on a trunnion 36. Spaced guides 37 and 38 support and guide the car wheels on their flanges when said car wheels are introduced into the machine and again when they are removed. The front portion 39 of said platform is slightly higher than the rear portion 40. By supporting the car wheels on the flanges, it is

not necessary to make a break in the tracks in order to engage the treads of the wheels for rotating them.

The means for rotating the car wheels during a grinding operation consists of friction rollers 45 mounted at a point underneath the front portion of the platform 35 and projecting through an opening in said platform to engage the tread of said car wheels. Said rollers are driven by motor 46 through chain belt 47. A triangular bracket 48, pivotally mounted about the same center as roller 45 and having its base adjacent said platform, supports an auxiliary roller 49 in tandem relation to said roller 45. The bottom corner of said bracket is connected to one end of a piston rod 50 attached to a piston 51 in cylinder 52. A bracket 53 forming a part of the head end 54 of said cylinder is pivotally mounted at 55. An adjustable stop 56 in head 54 limits the movement of piston 51 and the parts actuated thereby. Specifically, this stop prevents roller 49 from being urged against the work with too great a force. The pivot 55 is slightly to the rear of the platform pivot 36. The reason for this will be discussed later.

The means for tilting platform 35 is a hydraulic jack comprising a cylinder 60 pivotally mounted on a trunnion 61. An elongated piston 62 slidably mounted in said cylinder is pivotally attached to platform 35 by means of a trunnion 63.

A wheel and axle assembly 17 is rolled off tracks 70 to the flange supporting guides 37 and 38 of platform 35. Said wheels are rolled to the position shown in Figure 4, where they are located by rollers 45 and 49 in a position directly beneath centers 20 and 21. Fluid under pressure is then introduced into the lower end of jack cylinder 60 to move piston 62 upwardly, tilting platform 35 about its pivot 36. Because of the relative positions of pivot 36 and pivot 55, the car wheels 17 are raised substantially vertically to an elevation where they are in substantial alignment with centers 20 and 21.

Center 20 is first moved axially into engagement with the center held in the car wheel axle 45 by means of gear motor 30. Then fluid under pressure is introduced into cylinder 26 to move center 21 into engagement with the opposite end of said axle. Pressure is maintained in the head end of cylinder 26 during the grinding operation, so that endwise adjustment of the car wheel assembly may be effected in either direction solely by screw 29 when driven by motor 30. The movement of the work centers into the axle provides a slight lift to the car wheel assembly, so that the flanges of the wheels clear the guide surfaces 37 and 38.

Grinding wheels 13 are moved rapidly into grinding position by means of feed motor 16. Thereafter, the grinding feed may be effected either manually by hand wheels 15 or by some suitable automatic feed. During the grinding operation, the assembly 17 is rotated by frictional engagement of roller 45 with the treads of the car wheels. Said rollers are driven through a chain belt 47 by motor 46.

After the wheels have been ground, fluid under pressure is directed to the rod end of cylinder 26 to withdraw center 21 from the work. At the same time, gear motor 30 may be actuated to withdraw center 20 from the work.

When released from the centers, the assembly will again rest on the wheel flanges on guides 37 and 38. Platform 35 is still in an inclined

position, but the wheel assembly is prevented from moving thereon by gravity toward the rear of the machine by rollers 49, which are held in the position shown in Figure 4 by piston 51.

Fluid under pressure is then directed into the head end of cylinder 52, moving piston 51 to the left and oscillating bracket 48 in a clockwise direction, so that rollers 49 drop away from the car wheels and permit the assembly to roll 10 along the flange guides to the rear of the machine, from which it is removed to another track 71.

Fluid under pressure is exhausted from the lower end of cylinder 60, allowing piston 62 and platform 35 to return to position to repeat another wheel and axle assembly.

I claim:

1. In a car wheel grinder, a base, means for rotatably supporting car wheel and axle assemblies thereon, including spaced center members upon which said axles are mounted, guides along which the assembly may be moved into the machine in one direction before grinding, including a platform substantially flush with the floor 20 level and having spaced guide means for guiding and supporting said car wheels on the flanges thereof, and means for locating said car wheels on said platform in substantially vertical alignment with said center members, including a pair 25 of rollers pivotally mounted in tandem relation on the underside of said platform, one of said rollers serving to engage the tread of said car wheels for driving same, the other serving to limit the extent of movement of the car wheels 30 along said platform.

2. In a car wheel grinder, a base, means for rotatably supporting car wheel and axle assemblies thereon, including spaced center members upon which said axles are mounted, guides along 40 which the assembly may be moved into the machine in one direction before grinding, including a platform substantially flush with the floor level and having spaced guide means for guiding and supporting said car wheels on the flanges thereof, and means for locating said car wheels on said platform in substantially vertical alignment with said center members, including a pair of rollers pivotally mounted in tandem relation on the underside of said platform, one of said rollers serving to engage the tread of said car wheels for driving same, the other serving to limit the extent of movement of the car wheels along said 45 platform, said second roller being removable at the end of the grinding operation to permit the car wheels to move along said platform to the rear of the machine.

3. In a car wheel grinder, a base, means for rotatably supporting car wheel and axle assemblies thereon, including spaced center members upon which said axles are mounted, guides along which the work piece may be moved into the machine in one direction before grinding, including a pivoted platform substantially flush with the floor level, means for locating said car wheels on said platform in substantially vertical alignment with said center members, including rollers in tandem relation pivotally attached to said platform and adapted to engage the tread of a car wheel, movement of said rollers being controlled by a linkage having a main pivot point offset from the pivot point of said platform, and means for elevating said platform and said rollers to place said work in position to be engaged by said center members, the resultant path 50 55 60 65 70 75

5

of said rollers due to the offset pivot points being substantially a straight vertical line.

HAROLD E. BALSIGER.

REFERENCES CITED

The following references are of record in the file of this patent:

UNITED STATES PATENTS

Number	Name	Date
288,717	McIntyre	Nov. 20, 1883

5

Number
810,903
1,650,422
2,180,529
2,578,250

6

Name	Date
Blechschmidt	Jan. 30, 1906
Brown	Nov. 22, 1927
Kaseberg	Nov. 21, 1939
Jones	Dec. 11, 1951

FOREIGN PATENTS

Country	Date
Great Britain	June 28, 1934

Number
412,523

10