(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:19.02.2020 Bulletin 2020/08

(21) Application number: 15766973.0

(22) Date of filing: 03.09.2015

(51) Int Cl.: C07K 16/28 (2006.01)

A61K 39/395 (2006.01) A61P 35/00 (2006.01) C07K 16/30 (2006.01) A61K 39/00 (2006.01)

(86) International application number: **PCT/US2015/048316**

(87) International publication number: WO 2016/036937 (10.03.2016 Gazette 2016/10)

(54) CD123 BINDING AGENTS AND USES THEREOF

CD123-BINDENDE WIRKSTOFFE UND VERWENDUNGEN DAVON AGENTS DE LIAISON CD123 ET LEURS UTILISATIONS

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

Designated Validation States:

MA

- (30) Priority: 05.09.2014 US 201462046682 P
- (43) Date of publication of application: 12.07.2017 Bulletin 2017/28
- (73) Proprietor: Janssen Pharmaceutica NV 2340 Beerse (BE)
- (72) Inventors:
 - GAUDET, Francois Spring House Pennsylvania 19477 (US)
 - ATTAR, Ricardo Spring House Pennsylvania 19477 (US)
 - HARMAN, Benjamin C.
 Spring House
 Pennsylvania 19477 (US)
 - LI, Yingzhe Spring House Pennsylvania 19477 (US)
 - LUO, Jinquan Spring House Pennsylvania 19477 (US)

- MCDAID, Ronan Spring House Pennsylvania 19477 (US)
- POMERANTZ, Steven C. Spring House Pennsylvania 19477 (US)
- TAM, Susan H.
 Spring House
 Pennsylvania 19477 (US)
- TEPLYAKOV, Alexey Spring House Pennsylvania 19477 (US)
- WHEELER, John Spring House Pennsylvania 19477 (US)
- WU, Sheng-Jiun
 Spring House
 Pennsylvania 19477 (US)
 NEMETH John for E
- NEMETH, Jennifer F.
 Spring House
 Pennsylvania 19477 (US)
- (74) Representative: Carpmaels & Ransford LLP
 One Southampton Row
 London WC1B 5HA (GB)
- (56) References cited:

EP-A1- 2 426 148 WO-A2-2013/173820 WO-A1-2012/021934

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- J. CHEN ET AL.: "A new isoform of interleukin-3 receptor alpha with novel differentiation activity and high affinity binding mode. (including Supplementary materials and methods)", THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 284, no. 9, 27 February 2009 (2009-02-27), XP002751219, USA
- C. BOVOLENTA ET AL.: "Human T-cell leukemia virus type 2 induces survival and proliferation of CD34+TF-1 cells through activation of STAT1 and STAT5 by secretion of interferon-gamma and granulocyte macrophage-colony-stimulating factor.", BLOOD, vol. 99, no. 1, 1 January 2002 (2002-01-01), pages 224-231, XP002751220, USA
- S-R. KUO ET AL.: "Engineering a CD123xCD3 bispecific scFv immunofusion for the treatment of leukemia and elimination of leukemia stem cells.", PROTEIN ENGINEERING, DESIGN & SELECTION, vol. 25, no. 10, 2012, pages 561-569, XP002721301.
- S. BROUGHTON ET AL.: "Dual mechanism of interleukin-3 receptor blockade by an anti-cancer antibody.", CELL REPORTS, vol. 8, July 2014 (2014-07), pages 410-419, XP002751221,

Description

TECHNICAL FIELD

[0001] The disclosure provided herein relates to monoclonal antibodies that immunospecifically bind cluster determinant 123 (CD123; also known as IL-3Rα), multispecific antibodies that immunospecifically bind CD123 and cluster determinant 3 (CD3), and methods of producing and using the described antibodies.

BACKGROUND

10

[0002] Approximately every three minutes, a new diagnosis of a blood cancer is made. The most common blood cancers are leukemia, lymphoma and myeloma, which will account for 156,420 new people to be diagnosed in the United States in 2014. Approximately every 10 minutes, someone in the United States dies from a blood cancer. Blood cancers are diseases that can affect the bone marrow, the blood cells, the lymph nodes and other parts of the lymphatic system. These cancers disproportionately target young people, with leukemia being the most common type of cancer in children

These cancers disproportionately target young people, with leukemia being the most common type of cancer in children and adolescents younger than 20.

[0003] One type of blood cancer cell expresses a cell marker known as CD123 (IL-3Rα). Examples of blood cancer cells that express CD123 include blasts and leukemia stem cells. Diseases associated with the expression of CD123 include acute myeloid leukemia (AML), myelodysplastic syndrome (MDS; low and high risk), acute lymphocytic leukemia (ALL, all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), and blastic plasmacytoid dendritic cell neoplasm (DPDCN).

[0004] EP2426148 (A1) describes an antibody to human IL-3R \pm chain, which does not inhibit IL-3 signaling and binds to B domain of the human IL-3R \pm chain but does not bind to C domain of the human IL-3R \pm chain.

[0005] Currently, treatments for these diseases include over 50 individual drugs with others under study and in clinical trials. Radiation therapy (RT) is also commonly used to treat blood cancers and sometimes it is administered along with drug therapy. Immunotherapy, gene therapy and personalized medicine are also used. However, these therapies can have significant side effects and adverse reactions. Thus, there is a need for new and improved treatments for CD123 (IL-3R α)-expressing blood cancers.

30 SUMMARY

35

40

50

[0006] In one aspect, the invention relates to an isolated antibody, or an antigen-binding fragment thereof, comprising a heavy chain and a light chain having:

a. a heavy chain CDR1 having the amino acid sequence of SEQ ID NO: 012, a heavy chain CDR2 having the amino acid sequence of SEQ ID NO: 013, a heavy chain CDR3 having the amino acid sequence of SEQ ID NO: 014, a light chain CDR1 having the amino acid sequence of SEQ ID NO: 015, a light chain CDR2 having the amino acid sequence of SEQ ID NO: 016, and a light chain CDR3 having the amino acid sequence of SEQ ID NO: 017; or b. a heavy chain CDR1 having the amino acid sequence of SEQ ID NO: 051, a heavy chain CDR2 having the amino acid sequence of SEQ ID NO: 053, a light chain CDR1 having the amino acid sequence of SEQ ID NO: 024, a light chain CDR2 having the amino acid sequence of SEQ ID NO: 025, and a light chain CDR3 having the amino acid sequence of SEQ ID NO: 054.

[0007] In one aspect, the invention relates to an isolated CD123 (IL3-R α) x CD3 bispecific antibody or antigen-binding fragment comprising a first heavy chain (HC1), a second heavy chain (HC2), first light chain (LC1) and a second light chain (LC2), such that the HC1 and the LC1 pair to form a first antigen-binding site that immunospecifically binds CD123 (IL3-R α), and the HC2 and the LC2 pair to form a second antigen-binding site that immunospecifically binds CD3, or a CD123 (IL3-R α) x CD3 -bispecific binding fragment thereof, wherein:

i) HC1 and LC1 comprise either of the following pairs:

```
a. SEQ ID NO: 203 and SEQ ID NO: 204, or
```

ii) HC2 and LC2 comprise either of the following pairs:

```
a. SEQ ID NO: 193 and SEQ ID NO: 194,b. SEQ ID NO: 195 and SEQ ID NO: 196,
```

b. SEQ ID NO: 205 and SEQ ID NO: 206, respectively; and

c. SEQ ID NO: 197 and SEQ ID NO: 198, $\,$

10

15

30

35

50

- d. SEQ ID NO: 199 and SEQ ID NO: 200, or
- e. SEQ ID NO: 201 and SEQ ID NO: 202, respectively.
- **[0008]** In one aspect, the invention relates to an isolated CD123 (IL3-R α) x CD3 bispecific antibody or a CD123 (IL3-R α) x CD3-bispecific binding fragment comprising: a) a first heavy chain (HC1); b) a second heavy chain (HC2); c) a first light chain (LC1); and d) a second light chain (LC2), wherein the HC1 and the LC1 pair to form a first antigen-binding site that immunospecifically binds CD123 (IL3-R α), and the HC2 and the LC2 pair to form a second antigen-binding site that immunospecifically binds CD3, wherein
 - a. in the paired heavy and light chain that immunospecifically binds CD3, said heavy chain (HC2) comprises SEQ ID NO: 184 and said light chain (LC2) comprises SEQ ID NO: 190, and
 - b. in the paired heavy and light chain that immunospecifically binds CD123,
 - i. said heavy chain (HC1) comprises SEQ ID NO: 120 and said light chain (LC1) comprises SEQ ID NO: 165, or ii. said heavy chain (HC1) comprises SEQ ID NO: 136 and said light chain LC1) comprises SEQ ID NO: 168.
 - [0009] In one aspect, the invention relates to an isolated cell expressing an antibody or antibody fragment.
- **[0010]** In one aspect, the invention relates to an antibody or antigen-binding fragment thereof of the present invention for use in a method of treating cancer.
- **[0011]** In one aspect, the invention relates to a CD123 (IL3-R α) x CD3 bispecific antibody or bispecific binding fragment for use in a method for inhibiting growth or proliferation of cancer cells, wherein the method comprises: administering a therapeutically effective amount of the CD123 (IL3-R α) x CD3 bispecific antibody or bispecific binding fragment to inhibit the growth or proliferation of cancer cells.
- **[0012]** In one aspect, the invention relates to a CD123 (IL3-R α) x CD3 bispecific antibody or bispecific binding fragment for use in a method for redirecting a T cell to a CD123-expressing cancer cell, wherein the method comprises: administering a therapeutically effective amount of the CD123 (IL3-R α) x CD3 bispecific antibody or bispecific binding fragment to redirect a T cell to a cancer.
 - **[0013]** In one aspect, the invention relates to a pharmaceutical composition comprising a CD123 (IL3-R α) x CD3 bispecific antibody or bispecific binding fragment and a pharmaceutically acceptable carrier.
 - **[0014]** In one aspect, the invention relates to an isolated synthetic polynucleotide encoding an antibody or antibody fragment.
 - **[0015]** In one aspect, the invention relates to a kit comprising an antibody or antigen-binding fragment thereof of the present invention, and packaging for the same.
 - **[0016]** Provided herein are antibodies that immunospecifically bind to CD123 and antigen-binding fragments thereof. Also described are related polynucleotides capable of encoding the provided CD123-specific antibodies and antigen-binding fragments, cells expressing the provided antibodies and antigen-binding fragments, as well as associated vectors and detectably labeled antibodies and antigen-binding fragments. In addition, methods of using the provided antibodies and antigen-binding fragments are described. For example, the CD123-specific antibodies and antigen-binding fragments may be used to diagnose or monitor CD 123-expressing cancer progression, regression, or stability; to determine whether or not a patient should be treated for cancer; or to determine whether or not a subject is afflicted with CD123-expressing cancer and thus may be amenable to treatment with a CD123-specific anti-cancer therapeutic, such as the multispecific antibodies against CD 123 and CD3 described herein.
 - **[0017]** Further provided herein are multispecific antibodies that immunospecifically bind to CD 123 and CD3 and multispecific antigen-binding fragments thereof. Also described are related polynucleotides capable of encoding the provided CD123 x CD3-multispecific antibodies, cells expressing the provided antibodies, as well as associated vectors and detectably labeled multispecific antibodies. In addition, methods of using the provided multispecific antibodies are described. For example, the CD123 x CD3-multispecific antibodies may be used to diagnose or monitor CD123-expressing cancer progression, regression, or stability; to determine whether or not a patient should be treated for cancer; or to determine whether or not a subject is afflicted with CD123-expressing cancer and thus may be amenable to treatment with a CD123-specific anti-cancer therapeutic, such as the CD123 x CD3-multispecific antibodies described herein.

CD123-Specific Antibodies

[0018] Described herein are isolated antibodies and antigen-binding fragments specific for CD123. In some embodiments, the CD123-specific antibodies and antigen-binding fragments bind human CD123 SP1 (SEQ ID NO: 1). In some embodiments, the CD123-specific antibodies and antigen-binding fragments bind human CD123 SP2 (SEQ ID NO: 2). In some embodiments, the CD123-specific antibodies and antigen-binding fragments bind human CD123 SP1 and SP2.

In some embodiments, the CD123-specific antibodies and antigen-binding fragments bind human CD123 SP1 and cynomolgus monkey CD123 (SEQ ID NO: 3). In some embodiments, the CD123-specific antibodies and antigen-binding fragments bind to an epitope including one or more residues from (i) the segment of CD123 SP2 extracellular domain (ECD) comprising residues 195 - 202 (RARERVYE (SEQ ID NO: 234)) and/or the segment of CD123 SP2 ECD comprising residues 156-161 (RKFRYE (SEQ ID NO:232)) and/or the segment of CD123 SP2 ECD comprising residues 173 - 178 (TEQVRD (SEQ ID NO: 233)) or (ii) the segment of CD123 SP2 ECD comprising residues 164-175 (IQKRMQPVITEQ (SEQ ID NO: 228)). and/or the segment of CD123 SP2 ECD comprising residues 184-189 (LLNPGT (SEQ ID NO: 229)). This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x0-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less.

[0019] In some embodiments, the CD123-specific antibody or antigen-binding fragment competes for binding to CD123 with a CD123-specific antibody or antigen-binding fragment that binds to an epitope including one or more residues from (i) the segment of CD123 SP2 ECD comprising residues 195-202 (RARERVYE (SEQ ID NO: 234)) or (ii) the segment of CD123 SP2 ECD comprising residues 164-175 (IQKRMQPVITEQ (SEQ ID NO: 228)). Antibodies or fragments binding to at least one residue in these epitopes may also bind to additional residues in the CD123 ECD including one or more residues from (i) the segment of CD123 SP2 ECD comprising residues 156-161 (RKFRYE (SEQ ID NO:232)) and/or the segment of CD123 SP2 ECD comprising residues 173 - 178 (TEQVRD (SEQ ID NO: 233)) or ii) one or more residues form the segment of CD123 SP2 ECD comprising residues 184-189 (LLNPGT (SEQ ID NO: 229)). This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 5x10-8M or less, 5x10-9M or less, or 1x10-9M or less.

[0020] In some embodiments, the CD123-specific antibodies and antigen-binding fragments, such as those discussed in the preceding two paragraphs, are neutralizing antibodies. A neutralizing CD123-specific antibody or antigen-binding fragment includes those that are capable of inhibiting the binding of IL-3 to CD123 as determined by measuring the decrease in STAT5 phosphorylation upon stimulation of TF-1 cells with rhIL-3.

[0021] In some embodiments, the CD3123-specifc antibodies and antigen-binding fragments can prevent IL-3 binding to the CD123(IL3Ra)/CD131(IL3Rb) receptor. In other embodiments, the CD123-specific antibodies and antigen-binding fragments can prevent the association of the α and β chains of the of the IL3R receptor, (CD123(IL3Ra)/CD131(IL3Rb)). An antibody or antigen binding fragment includes those that are capable of inhibiting the binding of IL3 and/or capable of inhibiting heteromerization of CD123/CD133 as determined by measuring the decrease in association between CD123 and CD131 and measuring the loss of heteromerization with increasing antibody concentration. Table 1 provides a summary of examples of some CD123-specific antibodies described herein:

Table 1. CDR sequences of mAbs generated from phage panning against human CD123 $(\mbox{SEQ\ ID\ NO:})$

5	

ID	H-CDR1	H-CDR2	H-CDR3	L-CDR1	L-CDR2	L-CDR3
I3RB1	DYCMS	VIRGGGSSKYVADSVKG	HSGSERFNELDY (S)	KSSQSVLYSSNNKNYL (9)	A WASTRES (10)	22775TPLT
I3RB2	GYWMH	(7) AIRSDGSSKYYADSVKG	DGVIEDTFDY	RASQSVSSYLA	DASNRAT	(11) QQRSNWPLT
	(12)	(13)	(14)	(15)	(16)	(17)
13RB3	SYW015	GIKYDGGSKYYADSVKG	RWMSYEDY	KSSQSVLYSSNNKNYL		QQYYSTPLT
	(18)	(19)	(20)	(9)	(10)	(11)
I3RB4	GYGMS (21)	AISGSGGSTYYADSVKG (22)	GNWYYGLGFDY (23)	RASQSVSSSYLA	GASSRAT (25)	QQYGSSPLT (26)
I3RB5	GYWMS	(ZZ)	(23) DHELAEEDY	(24) RASOSISSYIN	AASSLOS	(20) Conswerrer
	(27)	(28)	(29)	(30)	(31)	(32)
I3RB6	SYAIS	GIIPIFGTANYAQKFQG	GLFNWSNVALDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(33)	(34)	(35)	(30)	(31)	(32)
I3RB7	SYAIS	GIIPIFGTANYAQKFQG	GKRWLADAGDEDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(33)	(34)	(36)	(30)	(31)	(32)
I3RB8	SYAIS	GIIPIFGTANYAQKFQG	HGFAWNDYSLLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
I3RB9	(33) SYAIS	(34) GIIPIFGTANYAOKEOG	(37) CARWENPPENIDY	(30) RASOSISSYIN	(31) AASSLOS	(32)
	(33)	(34)	(38)	(30)	(31)	QQSYSTPLT (S2)
I3RB10	SYGIS	WISAIFGNTNYAQKFQG	GGLLYYASYLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(39)	(40)	(41)	(30)	(31)	(32)
13RB11	SYGIS	GIIPIPGTANYAOKFOG	DLFSWRYSNFDY	RASQSISSYLN	AASSLQS	QQSYSTPLI
	(39)	(34)	(42)	(30)	(31)	(32)
I3RB12	SYAIS	GIIPIFGTANYAQKFQG	ADRVWDYYLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
*****	(33)	(34)	(43)	(30)	(31)	(32)
I3RB13	SYG18 (39)	GITFIFGNTNYAGREGG (44)	QSGFYVVALDY (45)	RASQSVSSYLA (15)	DASNRAT (18)	QORSNWELT (17)
I3RB14	SYGIS	WISAIFGTTNYAQKFQG	GGPLRYYNHFDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(39)	(46)	(47)	(30)	(31)	(32)
13RB15	SYAIS	GIIPIFGTANYAQKFQG	DLFSLRYSFLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(33)	(34)	(48)	(30)	(31)	(32)
I3RB16	SYAIS	GIIPIFGTANYAQKFQG	GAVWGDQWFDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
****	(33)	(34)	(49)	(30)	(31)	(32)
13RB17	STAIS (33)	GEIPEFCTANYAGKEGG (34)	GALSLWYSFLDY (50)	RASQSISSYLM (30)	AASSLQS (31)	QQSYSTPLT (32)
I3RB18	SYWIS	IIDPSDSDTRYSPSFQG	GDGSTDLDY	RASQSVSSSYLA	GASSRAT	QQDYGFPWT
	(51)	(52)	(53)	(24)	(25)	(54)
13RB19	NYAMS	GIRGNGSSTYYADSVKG	GGPIGAREPHYLHY	RASQSIGUFUN	YASSLQS	QQSYSTPLT
	(55)	(56)	(57)	(58)	(59)	(32)
I3RB20	SYAIS	GIIPIFGTANYAQKFQG	DDQIWGSYHLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(33)	(34)	(60)	(30)	(31)	(32)
I3RB21	SYAIS	GIIFIFGTANYAOKFOG	EGWWGGGKEDY	RASGSVANFLA	AASNRAT	QCYFHWPYT
I3RB22	(33) SYAIS	(34) GIIPIFGTANYAQKFQG	(61) NLFYWADSVYLDY	(62) RASQSVNKWLA	(63) YASNRAT	(64) QQGIDWPRT
ISINDEL	(33)	(34)	(65)	(66)	(67)	(68)
13RB23	SYGIA	CITPIFUTANYAQKFQG	EGSSWKNPRYVFDY	RASQSISSYIN	AASSLOS	QQYFDFPLT
	(39)	(34)	(69)	(30)	(31)	(70)
I3RB24	SYAIS	GIIPIFGTANYAQKFQG	HTDAWGYRLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
5555555555555555	(33)	(34)	(71)	(30)	(31)	(32)
13RB25	SYGIS	GISAIFGNANYAQKEQG	REKWWESYEDY	RASGSISSYLN	AASSLQS	QQSYSTPLT
	(39)	(72)	(73)	DA GOGLIDATA	(31)	COGTGADVE
I3RB26	SYGIS	GIIPIFGTANYAQKFQG	NGFAWSVSGNLDY	RASQSVDNWLA	GASNRAT	QQSISAPYT
	(39)	(34)	(74)	(75)	(76)	(77)

EP 3 189 081 B1

ID	H-CDR1	H-CDR2	H-CDR3	L-CDR1	L-CDR2	L-CDR3
I3RB27	SYAIS	GIIPIFGTANYAOKFOG	AGWWNLRYGLDY	RASQSVAKSLA	AASNRAT	QQFIGWPII
	(33)	(34)	(78)	(73)	(63)	(80)
I3RB28	SYAIS	GIIPIFGTANYAQKFQG	APFTWDYSRLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(33)	(34)	(81)	(30)	(31)	(32)
I3RB29	SYAIS	GIIPIFGTANYAQKFQG	DSRIWSFSLDY	RASQSIGEWLN	AASSLQS	QQYYHFPL:
	(33)	(34)	(82)	(83)	(31)	(84)
I3RB30	SYAIS	WIIPIFGTANYAQKFQG	LVYSSDFDY	RASQSVANWLA	YASNRAT	QQYDGWPR'
	(33)	(85)	(86)	(87)	(67)	(88)
I3RB31	SYAIS	GISAYFGNANYAOKFOG	SYFGDAYFDY	RASQSVDKDLA	GASNRAT	QQYDRAPI'
	(33)	(89)	(90)	(91)	(76)	(92)
I3RB32	SYGIS	GIIPIFGTANYAQKFQG	GAWWAYDTYLDY	RASQSISSYLN	AASSLQS	QQSYSTPL'
	(39)	(34)	(93)	(30)	(31)	(32)
I3RB33	SYGIS	GIIPIFGTANYAQKPQG	GYWHWNYDYLDY	RASQSVNDWLA	GASNRAT	QQYKRAPY:
	(39)	(34)	(94)	(95)	(76)	(96)
I3RB34	SYAIS	GIIPIFGTANYAQKFQG	GWSYYRLDY	RASQSVDKWLA	YASNRAT	QQFDRAPF'
	(33)	(34)	(97)	(98)	(67)	(99)
I3RB35	SYAIS	GIIPIFGTANYAOKFOG	HLFWDAGPLDY	RASQSISSYLN	AASSLQS	QQYFSPPY
	(33)	(34)	(100)	(30)	(31)	(101)
I3RB36	SYGIS	GIIPIFGTANYAQKFQG	DLHVWAYSNFDY	RASQSISSYLN	AASSLQS	QQSYSTPL'
	(39)	(34)	(102)	(30)	(31)	(32)
I3RB37	SYAIS	GIIPIFGTANYAQKFQG	DKTDFPSRLDY	RASQSIATWIN	AASSLQS	QQYITFPL
	(33)	(34)	(103)	(104)	(31)	(105)
I3RB38	SYGIS	GIIPIFGTANYAQKFQG	DLMIWRFENFDY	RASQSISSYLN	AASSLQS	QQSYSTPL'
	(39)	(34)	(106)	(30)	(31)	(32)
I3RB39	SYAIS	GIIPIFGTANYAOKFQG	EYGSLDY	RASQSVADELA	KASNRAT	QQYNGWPW
	(33)	(34)	(107)	(108)	(109)	(110)
I3RB40	SYAIS	GIIPIFGTANYAQKFQG	GQWWADTWFDY	RASQSVAKWLA	GASNRAT	QQYHTAPW'
	(33)	(34)	(111)	(112)	(76)	(113)
I3RB41	SYAMS	AISGSGGSTYYADSVKG	VAYWEFFVYESLDY	RASQSVSSSYLA	GASSRAT	QQYGSSPLY
	(114)	(22)	(115)	(24)	(25)	(26)
I3RB42	SYAMS	AISGSGGSTYYADSVKG	HDWAFWIVFLDY	RASQSVSSYLA	DASNRAT	QQRSNWPL'
	(114)	(22)	(116)	(15)	(16)	(17)
I3RB43	SYWMH	AIRSDGSSKYYADSVKG	DGIVMDTFDY	RASQSVSSYLA	DASNRAT	QQRSNWPI/
	(117)	(13)	(118)	(15)	(16)	(17)
I3RB44	SYWIS	IIDPSDSDTRYSPSFQG	GDGSTDLDY	RASQSISSYLN	AASSLQS	QQSYSTPL
	(51)	(52)	(53)	(30)	(31)	(32)
I3RB47	SYAIS	GIIPIFGTANYAQKFQG	DLFSWRYSNEDY	RASQSISSYLN	AASSLÕS	QQSYSTPL
	(33)	(34)	(42)	(30)	(31)	(32)

[0022] In some embodiments are provided a CD123-specific antibody, or an antigen-binding fragment thereof, comprising a heavy chain comprising a CDR1, a CDR2, and a CDR3 of any one of the I3RB2 and I3RB18 antibodies described in Table 1. In some embodiments are provided a CD123-specific antibody, or an antigen-binding fragment thereof, comprising a heavy chain comprising a CDR1, a CDR2, and a CDR3 of any one of the I3RB2 and I3RB18 antibodies described in Table 1 and a light chain comprising a CDR1, a CDR2, and a CDR3 of any one of the I3RB2 and I3RB18 antibodies described in Table 1. In some embodiments described herein, the CD123-specific antibody or antigen-binding fragment thereof competes for binding to CD123 with an antibody or antigen-binding comprising a heavy chain comprising a CDR1, a CDR2, and a CDR3 of any one of the I3RB2 and I3RB18 antibodies described in Table 1 and a light chain comprising a CDR1, a CDR2, and a CDR3 of any one of the I3RB2 and I3RB18 antibodies described in Table 1.

[0023] The IgG class is divided in four isotypes: IgG1, IgG2, IgG3 and IgG4 in humans. They share more than 95% homology in the amino acid sequences of the Fc regions but show major differences in the amino acid composition and structure of the hinge region. The Fc region mediates effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In ADCC, the Fc region of an antibody binds to Fc receptors (FcgRs) on the surface of immune effector cells such as natural killers and macrophages, leading to the phagocytosis or lysis of the targeted cells. In CDC, the antibodies kill the targeted cells by triggering the complement cascade at the cell surface. The antibodies described herein include antibodies with the described features of the variable domains in combination with any of the IgG isotypes, including modified versions in which the Fc sequence has been modified to effect different effector functions.

[0024] For many applications of therapeutic antibodies, Fc-mediated effector functions are not part of the mechanism of action. These Fc-mediated effector functions can be detrimental and potentially pose a safety risk by causing off-mechanism toxicity. Modifying effector functions can be achieved by engineering the Fc regions to reduce their binding

to FcgRs or the complement factors. The binding of IgG to the activating (FcgRI, FcgRIIa, FcgRIIIa and FcgRIIIb) and inhibitory (FcgRIIb) FcgRs or the first component of complement (C1q) depends on residues located in the hinge region and the CH2 domain. Mutations have been introduced in IgG1, IgG2 and IgG4 to reduce or silence Fc functionalities. The antibodies described herein may include these modifications.

[0025] In one embodiment, the antibody comprises an Fc region with one or more of the following properties: (a) reduced effector function when compared to the parent Fc; (b) reduced affinity to Fcg RI, Fcg RIIa, Fcg RIIb, Fcg RIIIb and/or Fcg RIIIa, (c) reduced affinity to FcgRI (d) reduced affinity to FcgRIIa (e) reduced affinity to FcgRIIb, (f) reduced affinity to Fcg RIIIb or (g) reduced affinity to cgRIIIa.

[0026] In some embodiments, the antibodies or antigen-binding fragments are IgG, or derivatives thereof, e.g., IgG1, IgG2, IgG3, and IgG4 isotypes. In some embodiments wherein the antibody has an IgG1 isotype, the antibody contains L234A, L235A, and/or K409R substitution(s) in its Fc region. In some embodiments wherein the antibody has an IgG4 isotype, the antibody contains S228P, L234A, and L235A substitutions in its Fc region. The antibodies described herein may include these modifications.

[0027] In some embodiments the described antibodies are capable of binding to CD123 with a dissociation constant of 5 nM or less as measured by surface plasmon resonance (SPR). In some embodiments, the antibodies comprise the CDRs of the I3RB2 and I3RB18 antibodies presented in Table 1 above. Assays for measuring affinity by SPR include assays performed using a BIAcore 3000 or Biacore T200 machine, where the assay is performed at room temperature (e.g. at or near 25°C), wherein the antibody capable of binding to CD123 is captured on the BIAcore sensor chip by an anti-Fc antibody (e.g. goat anti-human IgG Fc specific antibody Jackson ImmunoResearch laboratories Prod # 109-005-098) to a level around 75RUs, followed by the collection of association and dissociation data at a flow rate of 40µl/min.

[0028] In addition to the described CD123-specific antibodies and antigen-binding fragments, also provided are polynucleotide sequences capable of encoding the described antibodies and antigen-binding fragments. Vectors comprising the described polynucleotides are also provided, as are cells expressing the CD123-specific antibodies or antigen-binding fragments provided herein. Also described are cells capable of expressing the disclosed vectors. These cells may be mammalian cells (such as 293F cells, CHO cells), insect cells (such as Sf7 cells), yeast cells, plant cells, or bacteria cells (such as E. coli). The described antibodies may also be produced by hybridoma cells.

Methods of using CD123-Specific Antibodies

30

35

40

50

55

[0029] Methods of using the described CD123-specific antibodies or antigen-binding fragments are also disclosed. Particular antibodies for use in the methods discussed in this section include those with the set of CDRs described for the I3RB2 and I3RB18 antibodies in Table 1 above or antibodies that compete for binding to CD123 with one of the I3RB2 and I3RB18 antibodies in Table 1. For example, the antibodies or antigen-binding fragments of the invention may be useful in a method of treating cancer, by inhibiting a biological effect of IL-3 by preventing IL-3 from binding to IL-3R or where the antibody is conjugated to a toxin, so targeting the toxin to the CD123-expressing cancer. Further, these antibodies or antigen-binding fragments may be useful for detecting the presence of CD123 in a biological sample, such as blood or serum; for quantifying the amount of CD123 in a biological sample, such as blood or serum; for use in a method of diagnosing CD123-expressing cancer; determining a method of treating a subject afflicted with cancer; or monitoring the progression of CD123-expressing cancer in a subject. In some embodiments, CD123-expressing cancer may be a hematological cancer, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN). The described methods may be carried out before the subject receives treatment for CD123-expressing cancer, such as treatment with a multispecific antibody against CD123 and CD3. Furthermore, the described methods may be carried out after the subject receives treatment for CD123-expressing cancer, such as treatment with a multispecific antibody against CD123 and CD3 described herein. [0030] The described methods of detecting CD123 in a biological sample include exposing the biological sample to one or more of the CD123-specific antibodies or antigen-binding fragments described herein.

[0031] The described methods of diagnosing CD123-expressing cancer in a subject also involve exposing the biological sample to one or more of the CD123-specific antibodies or antigen-binding fragments described herein; however, the methods also include quantifying the amount of CD123 present in the sample; comparing the amount of CD123 present in the sample to a known standard or reference sample; and determining whether the subject's CD123 levels fall within the levels of CD123 associated with cancer.

[0032] Also described herein are methods of monitoring 123-expressing cancer in a subject. The described methods include exposing the biological sample to one or more of the CD123-specific antibodies or antigen-binding fragments described herein; quantifying the amount of CD123 present in the sample that is bound by the antibody, or antigen-binding fragment thereof; comparing the amount of CD123 present in the sample to either a known standard or reference sample or the amount of CD123 in a similar sample previously obtained from the subject; and determining whether the

subject's CD123 levels are indicative of cancer progression, regression or stable disease based on the difference in the amount of CD123 in the compared samples.

[0033] The samples obtained, or derived from, subjects are biological samples such as urine, blood, serum, plasma, saliva, ascites, circulating cells, circulating tumor cells, cells that are not tissue associated, tissues, surgically resected tumor tissue, biopsies, fine needle aspiration samples, or histological preparations.

[0034] The described CD123-specific antibodies or antigen-binding fragments may be labeled for use with the described methods, or other methods known to those skilled in the art. For example, the antibodies described herein, or antigen-binding fragments thereof, may be labeled with a radiolabel, a fluorescent label, an epitope tag, biotin, a chromophore label, an ECL label, an enzyme, ruthenium, ¹¹¹In-DOTA, ¹¹¹In- diethylenetriaminepentaacetic acid (DTPA), horseradish peroxidase, alkaline phosphatase and beta-galactosidase, or poly-histidine or similar such labels known in the art.

CD123-Specific Antibody Kits

[0035] Described herein are kits including the disclosed CD123-specific antibodies or antigen-binding fragments thereof. The described kits may be used to carry out the methods of using the CD123-specific antibodies or antigen-binding fragments provided herein, or other methods known to those skilled in the art. In some embodiments the described kits may include the antibodies or antigen-binding fragments described herein and reagents for use in detecting the presence of CD123 in a biological sample. Accordingly, the described kits may include one or more of the antibodies, or an antigen-binding fragment(s) thereof, described herein and a vessel for containing the antibody or fragment when not in use, instructions for use of the antibody or fragment, the antibody or fragment affixed to a solid support, and/or detectably labeled forms of the antibody or fragment, as described herein.

CD123 x CD3-Multispecific Antibodies

[0036] Described herein are isolated multispecific antibodies that bind CD123 and CD3 ("CD123 x CD3 multispecific antibodies") and multispecific antigen-binding fragments thereof. In some embodiments an isolated antibody, or an antigen-binding fragment thereof, that binds immunospecifically to CD123 SP2 (IL3-R α) and CD123 SP1 (IL3-R α) is provided.

[0037] In some embodiments, the CD123-specific arm of the multispecific antibody binds human CD123 and/or cynomolgus monkey CD123. In some embodiments, the CD123-specific arm of the CD123 x CD3-multispecific antibodies or antigen-binding fragments binds the SP1 and/or SP2 fragment of human CD123. In preferred embodiments, the CD123 x CD3 multispecific antibody or antigen-binding fragment is a bispecific antibody or antigen-binding fragment. In some embodiments, an isolated CD123 (IL3-R α) x CD3 bispecific antibody comprising: a) a first heavy chain (HC1); b) a second heavy chain (HC2); c) a first light chain (LC1); and d) a second light chain (LC2), wherein the HC1 and the LC1 pair to form a first antigen-binding site that immunospecifically binds CD123 (IL3-R α), and the HC2 and the LC2 pair to form a second antigen-binding site that immunospecifically binds CD3, or a CD123 (IL3-R α) x CD3-bispecific binding fragment thereof is provided. In another embodiment, an isolated cell expressing the antibody or bispecific binding fragment is provided. In some embodiments, the CD123-binding arm (or "CD123-specific arm") of the CD123 x CD3 multispecific antibody is derived from a CD123 antibody described herein (for example, from an I3RB2 or I3RB18 antibody having the CDR sequences listed in Table 1).

[0038] In some embodiments, the CD123-specific arm of the CD123 x CD3-multispecific antibodies or antigen-binding fragments are IgG, or derivatives thereof. In some embodiments the described CD123 x CD3-multispecific antibodies are capable of binding to CD123 with a dissociation constant of 5 nM or less as measured by surface plasmon resonance, or MSD-CAT.

[0039] In some embodiments, the CD3-binding arm (or "CD3-specific arm") of the CD123 x CD3 multispecific antibody is derived from the mouse monoclonal antibody SP34, a mouse IgG3/lambda isotype. (Pessano, S., etal, 1995. EMBO J. 4, 337-344). In some embodiments, the CD3-binding arm of the CD123 x CD3 multispecific antibody comprises one VH domain and one VL domain selected from Table 2. Table 2 provides a summary of examples of some the heavy chains and light chains of the CD3-specific antibodies and antigen-binding fragments.

Table 2. Heavy chains and light chains of the CD3-specific antibodies and antigen-binding fragments.

VH	VL
CD3H141 (SEQ ID NO:184): IGHV3-72*01 with mouse CDRs+ Gly49Ala	CD3L63 (SEQ ID NO:188): IGLV7-46*01 with mouse CDRs + F38V,A48G,Y51G,W59G

55

50

20

30

35

40

45

(continued)

	VH	VL
5	EVQLVESGGGLVQPGGSLRLSCAASGFTF	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTS
· ·	NTYAMNWVRQAPGKGLEWVARIRSKYNNY	NYANWVQQKPGQAPRGLIGGTNKRAPGTPARF
	ATYYAASVKGRFTISRDDSKNSLYLQMNS	SGSLLGGKAALTLSGAQPEDEAEYYCALWYSN
10	LKTEDTAVYYCARHGNFGNSYVSWFAYWG	LWVFGGGTKLTVL
	QGTLVTVSS	
	CD3H142 (SEQ ID NO:185): IGHV3-23*01 with mouse CDRs+ Ser49Ala	CD3L64 (SEQ ID NO:189): IGLV1-51*01 with mouse CDRs + Y38V, L48G Y51G
15	EVQLLESGGGLVQPGGSLRLSCAASGFTF	QSVLTQPPSVSAAPGQKVTISCRSSTGAVTTS
	NTYAMNWVRQAPGKGLEWVARIRSKYNNY	NYANWVQQLPGTAPKGLIGGTNK RAPG IPDRF
	ATYYADSVKGRFTISRDNSKNTLYLQMNS LRAEDTAVYYCAKHGNFGNSYVSWFAYWG	SGSKSGTSATLGITGLQTGDEADYYCALWYSN
20	QGTLVTVSS	LWVFGGGTKLTVL
	CD3H143 (SEQ ID NO:186): IGHV3-23*01 with mouse CDRs+ Ser49Ala, Ala99Val	CD3L66 (SEQ ID NO:190): IGLV7-43*01 with mouse CDRs + F38V,A48G,Y51G,W59G
	EVQLLESGGGLVQPGGSLRLSCAASGFTF	QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTS
25		NYANWVQQKPGQAPRGLIGGTNKRAPGTPARF
	NTYAMNWVRQAPGKGLEWVARIRSKYNNY	SGSLLGGKAALTLSGVQPEDEAEYYCALWYSN
	ATYYADSVKGRFTISRDNSKNTLYLQMNS	LWVFGGGTKLTVL
30	LRAEDTAVYYCVKHGNFGNSYVSWFAYWG	
	QGTLVTVSS	
	CD3H144(SEQ ID NO:187): IGHV3-73*01 with mouse CDRs + Asn57Gly	
35	EVQLVESGGGLVQPGGSLKLSCAA	
	SGFTFNTYAMNWVRQASGKGLEWVGRIRS	
40	KYNGYATYYAASVKGRFTISRDDSKNTAY	
	LQMNSLKTEDTAVYYCTRHGNFGNSYVSW	
	FAYWGQGTLVTVSS	

[0040] In some embodiments, the CD3-specific antibodies and antigen-binding fragments comprise a heavy chain from Table 3 and a light chain from Table 3. Table 3 provides a summary of the matrix of the heavy chains and light chains of the CD3-specific antibodies and antigen-binding fragments.

Table 3. The antibodies created by combining the heavy and light chains.

50

55

rabio of the anabodice of eated by combining the nearly and night entities.				
	Light chain			
Heavy chain	CD3L63	CD3L64	CD3L66	
CD3H141	CD3B143	CD3B144	CD3B146	
CD3H142	CD3B147	CD3B148	CDB150	
CD3H143	CD3B151	CD3B152	CD3B154	
CD3H144	CD3B155	CD3B156	CD3B158	

[0041] The IgG class is divided in four isotypes: IgG1, IgG2, IgG3 and IgG4 in humans. They share more than 95% homology in the amino acid sequences of the Fc regions but show major differences in the amino acid composition and structure of the hinge region. The Fc region mediates effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In ADCC, the Fc region of an antibody binds to Fc receptors (FcgRs) on the surface of immune effector cells such as natural killers and macrophages, leading to the phagocytosis or lysis of the targeted cells. In CDC, the antibodies kill the targeted cells by triggering the complement cascade at the cell surface.

[0042] For many applications of therapeutic antibodies, Fc-mediated effector functions are not part of the mechanism of action. These Fc-mediated effector functions can be detrimental and potentially pose a safety risk by causing off-mechanism toxicity. Modifying effector functions can be achieved by engineering the Fc regions to reduce their binding to FcgRs or the complement factors. The binding of IgG to the activating (FcgRI, FcgRIIa, FcgRIIIa and FcgRIIIb) and inhibitory (FcgRIIb) FcgRs or the first component of complement (C1q) depends on residues located in the hinge region and the CH2 domain. Mutations have been introduced in IgG1, IgG2 and IgG4 to reduce or silence Fc functionalities. Silencing mutations can include, but are not limited to IgG1 AA (F234A, L235A), or IgG4 PAA (S228P, F234A, L235A), or IgG2 AA (V234A, G237A), or IgG1 FEA (L234F, L235E, D265A), or IgG1 FES (L234F/L235E/P331S).

[0043] In one embodiment, the antibody comprises an Fc region with one or more of the following properties: (a) reduced effector function when compared to the parent Fc; (b) reduced affinity to Fcg RI, Fcg RIIa, Fcg RIIb, Fcg RIIIb and/or Fcg RIIIa, (c) reduced affinity to FcgRII (d) reduced affinity to FcgRIIa (e) reduced affinity to FcgRIIb, (f) reduced affinity to Fcg RIIIb or (g) reduced affinity to FcgRIIIa.

[0044] In some embodiments, the CD3-specific antibody or antigen-binding fragment from which the CD3-specific arm of the multispecific antibody is derived is IgG, or a derivative thereof. In some embodiments, the CD3-specific antibody or antigen-binding fragment from which the CD3-specific arm of the multispecific antibody is derived is IgG1, or a derivative thereof. In some embodiments, for example, the Fc region of the CD3-specific IgG1 antibody from which the CD3-binding arm is derived comprises L234A, L235A, and F405L substitutions in its Fc region. In some embodiments, the CD3-specific antibody or antigen-binding fragment from which the CD3-specific arm of the multispecific antibody is derived is IgG4, or a derivative thereof. In some embodiments, for example, the Fc region of the CD3-specific IgG4 antibody from which the CD3-binding arm is derived comprises S228P, L234A, L235A, F405L, and R409K substitutions in its Fc region. In some embodiments, the CD3-specific antibody or antigen-binding fragment from which the CD3specific arm of the multispecific antibody is derived is IgG-AA Fc. In some embodiments, the CD3-specific antibody or antigen-binding fragment from which the CD3-specific arm of the multispecific antibody is derived is IgG-AA Fc-L234A, L235A, and F405L (where L234A, L235A, and F405L are mutations). In some embodiments, the CD3-specific antibody or antigen-binding fragment from which the CD3-specific arm of the multispecific antibody is derived binds CD3ε on primary human T cells and/or primary cynomolgus T cells. In some embodiments, the CD3-specific antibody or antigenbinding fragment from which the CD3-specific arm of the multispecific antibody is derived activates primary human CD4+ T cells and/or primary cynomolgus CD4+ T cells. In some embodiments, the described CD123 x CD3 multispecific antibodies are capable of binding to CD3 on human or cynomolgous monkey T-cells with a dissociation constant of less than 500, or less than 100 or less that 20 nM as determined by competition binding with a labeled anti-CD3 antibody with known affinity

[0045] In addition to the described CD123 x CD3-multispecific antibodies, also provided are polynucleotide sequences capable of encoding the described CD123 x CD3-multispecific antibodies. In some embodiments, an isolated synthetic polynucleotide encoding the HC1, the HC2, the LC1 or the LC2 of the CD123 (IL3-R α) x CD3 bispecific antibody or bispecific binding fragment is provided. Vectors comprising the described polynucleotides are also provided, as are cells expressing the CD123 x CD3-multispecific antibodies provided herein. Also described are cells capable of expressing the disclosed vectors. These cells may be mammalian cells (such as 293F cells, CHO cells), insect cells (such as Sf7 cells), yeast cells, plant cells, or bacteria cells (such as E. coli). The described antibodies may also be produced by hybridoma cells. In some embodiments, methods for generating the CD123 (IL3-R α) x CD3 bispecific antibody or bispecific binding fragment by culturing cells is provided.

[0046] Further provided herein are pharmaceutical compositions comprising the CD123 (IL3-R α) x CD3 multispecific antibodies or antigen-binding fragments and a pharmaceutically acceptable carrier.

Methods of using CD123 x CD3-Multispecific Antibodies

10

30

35

40

50

55

[0047] Methods of using the described CD123 x CD3-multispecific antibodies and multispecific antigen-binding fragments thereof are also disclosed. For example, the CD123 x CD3-multispecific antibodies and multispecific antigen-binding fragments thereof may be useful in the treatment of a CD123-expressing cancer in a subject in need thereof. In some embodiments, the CD123-expressing cancer is a hematological cancer, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DP-

DCN).

10

20

25

35

55

[0048] The described methods of treating CD123-expressing cancer in a subject in need thereof include administering to the subject a therapeutically effective amount of a described CD123 x CD3-multispecific antibody or multispecific antigen-binding fragment thereof. In some embodiments, the subject is a mammal, preferably a human. In preferred embodiments are provided methods for treating a subject having cancer by administering a therapeutically effective amount of the CD123 (IL3-R α) x CD3 bispecific antibody or bispecific antigen-binding fragment to a patient in need thereof for a time sufficient to treat the cancer.

[0049] Further provided herein are methods for inhibiting growth or proliferation of cancer cells by administering a therapeutically effective amount of the CD123 (IL3-R α) x CD3 bispecific antibody or bispecific binding fragment to inhibit the growth or proliferation of cancer cells.

[0050] Also provided herein are methods of redirecting a T cell to a CD123-expressing cancer cell by administering a therapeutically effective amount of the CD123 (IL3-R α) x CD3 bispecific antibody or bispecific binding fragment to redirect a T cell to a cancer.

15 CD123 x CD3-Specific Antibody Kits

[0051] Described herein are kits including the disclosed CD123 x CD3-multispecific antibodies. The described kits may be used to carry out the methods of using the CD123 x CD3-multispecific antibodies provided herein, or other methods known to those skilled in the art. In some embodiments the described kits may include the antibodies described herein and reagents for use in treating a CD123-expressing cancer. Accordingly, the described kits may include one or more of the multispecific antibodies, or a multispecific antigen-binding fragment(s) thereof, described herein and a vessel for containing the antibody or fragment when not in use, and/or instructions for use of the antibody or fragment, the antibody or fragment affixed to a solid support, and/or detectably labeled forms of the antibody or fragment, as described herein.

BRIEF DESCRIPTION OF THE DRAWINGS

[0052]

- Figure 1. Figure 1 shows the pDisplay vector used for cloning CD123 extracellular domains.
 - Figure 2. Figure 2A, Figure 2B, and Figure 2C) shows a cell binding assay that demonstrated the binding potential of phage panel positive binders to CD123 expressing cells.
 - Figure 3. Figure 3 shows a competition ELISA between the antibody panel and the anti-CD 123 antibody 7G3.
 - Figure 4. Figure 4 (Figure 4A and Figure 4B) shows a CD123 cell-based STAT5 functional assay. Figure 4C shows a dose-dependence CD123 cell-based STAT5 functional assay for I3RB18 and 7G3 antibodies.
 - Figure 5. Figure 5 (Figure 5A, Figure 5B, and Figure 5C) shows the binding of Mabs I3RB2, I3RB18, and 7G3 to endogenous CD123 expressed on AML cell line, OCI-AML5.
 - Figure 6. Figure 6 (Figure 6A and Figure 6B) shows a competitive binding assay between labeled I3RB2 and I3RB18 mAbs and other anti-CD 123 Abs identified in the screen.
- Figure 7. Figure 7 (Figure 7A (SEQ ID NO: 232) and Figure 7B (SEQ ID NO:232)) shows the results of epitope mapping studies by hydrogen/deuterium exchange-mass spectrometry (HDX-MS) showing differences in deuterium levels for CD123 SP2 in the presence or absence of Fab.
 - Figure 8. Figure 8 shows the Antibody residues involved in binding of CD123 sp2 observed in the cocrystal structure of the I3RB18 derived scFv and CD123 SP2 ECD. Numbering: CD123 sp2 in ovals; CDRs of I3RB18 in squares.
- Figure 9. Figure 9A shows the co-crystal structure of CD123 sp2:I3RB18 (labeled B18) and Figure 9B shows the cocrystal structure of CD123 sp1:CSL362 Fab, a humanized form of mAb 7G3 from PDB entry 4JZJ.
 - Figure 10. Figure 10 shows the amino acid sequence of SP34 with sequential numbering. CDRs in AbM definition (K.R. Abhinandan and A. C. Martin, 2008. Mol. Immunol. 45, 3832-3839) are underlined. Ser230 is the last HC residue present in papain-cleaved Fab. Residues 231-455 are from IGHG3_MOUSE (mouse IgG3, isoform 2).
- Figure 11. Figure 11 shows the variable domain of SP34 with key residues at VL/VH interface shown. Residues 38, 48, and 51 in VL (labeled) are in contact with CDR-H3.
 - Figure 12. Figure 12 shows the Human Framework Adaptation ("HFA") variants for V_H (SEQ ID NOS 5 and 184-187, respectively, in order of appearance) and V_L (SEQ ID NOS 4 and 188-190, respectively, in order of appearance). The numbering is sequential; CDRs in the AbM definition are underlined; residues that differ from SP34 are highlighted in bold; back mutations in HFA variants are bold and underlined.
 - Figure 13. Figure 13 shows binding of SP34 HFA variants to primary Human T cells.
 - Figure 14. Figure 14 shows binding of SP34 HFA variants to Cynomolgus primary T cells.
 - Figure 15. Figure 15 shows that SP34 HFA variants activate primary human T cells in vitro. Negative controls are

shown in white and positive controls are shown in black.

10

15

40

50

- Figure 16. Figure 16 shows that SP34 HFA variants activate primary cynomolgus T cells *in vitro*. Negative controls are shown in white and positive controls are shown in black.
- Figure 17. Figure 17 shows the correlation of binding and activation by SP34 HFA variants. Average binding and CD69 Mean Fluorescence Intensity ("MFI") values for human (Figure 17A) and cynomolgus (Figure 17B) were plotted against each other.
 - Figure 18. Figure 18 shows a T-cell mediated cytotoxicity assay for donor M6587 (Figure 18A) and donor M7020 (Figure 18B) with the MV4-11 cell line.
 - Figure 19. Figure 19 shows a T-cell mediated cytotoxicity assay for donor M6587 (Figure 19A) and donor M7020 (Figure 19B) with the OCI-M2 cell line.
 - Figure 20. Figure 20 shows a T-cell mediated cytotoxicity assay for donor M6587 (Figure 20A) and donor M7020 (Figure 20B) with the OCI-AML cell line.
 - Figure 21. Figure 21 shows the efficacy of I3RB186 in the KG-1 tumor xenograft model.
 - Figure 22. Figure 22 shows the efficacy of I3RB186 in the KG-1 tumor xenograft model by fluorescence-activated cell sorting (FACS) analysis of peripheral blood on day 30 at CD45+ (Figure 22A) and CD8+/CD4+ (Figure 22B).
 - Figure 23. Figure 23 shows the efficacy of I3RB186 in KG-1 tumor xenograft model by FACS analysis of peripheral blood on day 53 post tumor implantation at CD45+ (Figure 23A) and CD8+/CD4+ (Figure 23B).
 - Figure 24. Figure 24 shows the efficacy of I3RB186 in KG-1 tumor xenograft model by showing body weight change with treatment.
- Figure 25. Figure 25 shows the efficacy of CD123 x CD3 bispecific Ab I3RB186 with control null arm bispecific Abs I3RB191 and I3RB192 in the KG-1 tumor xenograft model.
 - Figure 26. Figure 26 shows the efficacy of CD123 x CD3 bispecific Ab I3RB186 with control null arm bispecific Abs I3RB191 and I3RB192 in the KG-1 tumor xenograft model by FACS analysis on day 36 post tumor implantation at CD45+ (Figure 26A) and CD8+/CD4+ (Figure 26B).
- Figure 27. Figure 27 shows the efficacy of CD123 x CD3 bispecific Ab I3RB186 with control null arm bispecific Abs I3RB191 and I3RB192 in the KG-1 tumor xenograft model by FACS analysis on day 63 post tumor implantation at CD45+ (Figure 27A) and CD8+/CD4+ (Figure 27B).
 - Figure 28. Figure 28 shows the efficacy of CD123 x CD3 bispecific Ab I3RB186 with control null arm bispecific Abs I3RB191 and I3RB192 in the KG-1 tumor xenograft model by showing body weight change with treatment.
- Figure 29. Figure 29 shows saturation binding cureves used determine the cell binding affinity (Kd) for SP34-2 on primary human T cells (Figure 29A) and cynomolgus monkey T cells (Figure 29B).
 - Figure 30. Figure 30 shows competition binding experiments on primary human T cells (Figure 30A) and cynomolgus monkey T cells (Figure 30B) using labelled antibody. Alexa Fluor^R 488B146, and increasing concentrations of unlabeled CD123 x CD3 antibodies.
- Figure 31. Figure 31 shows T-cell mediated cytotoxicity assay for donor M6948 (Figure 31A) and donor M6521 (Figure 31B) with the OCI-AML cell line.
 - Figure 32. Figure 32 shows T-cell mediated cytotoxicity assay for donor M6948 (Figure 32A) and donor M6521 (Figure 32B) with the KG-1 cell line.
 - Figure 33. Figure 33 shows T-cell mediated cytotoxicity assay for donor M6948 (Figure 33A) and donor M6521 (Figure 33B) with the JIM3 cell line.
 - Figure 34A, B, C and D shows the effect of CD123 x CD3 antibodies on the IL-3 induced heteromerization of CD123 and CD131 for I3RB218 (Figure 34A), 8747 (Figure 34B), I3RB217 (Figure 34C) and 7959 (Figure 34D) Figure 35. Figure 35 shows the efficacy of CD123 x CD3 Ab 7959, and Ab 9958 in the KG-1 tumor xenograft model by comparison of mean tumor volume.
- Figure 36. Figure 36 shows the efficacy of CD123 x CD3 Ab 3978 in the KG-1 tumor xenograft model by comparison of mean tumor volume.
 - Figure 37. Figure 37 shows the efficacy of CD123 x CD3 Ab 8747 in the KG-1 tumor xenograft model by comparison of mean tumor volume.
 - Figure 38. Figure 38 shows the efficacy of CD123 x CD3 Ab 8876 in the KG-1 tumor xenograft model by comparison of mean tumor volume.
 - Figure 39. Figure 39 shows the efficacy of CD123 x CD3 Ab 7959 and Ab 9958 in the KG-1 tumor xenograft model by comparison of body weight change with treatment.
 - Figure 40. Figure 40 shows the efficacy of CD123 x CD3 Ab 3978 in the KG-1 tumor xenograft model by comparison of body weight change with treatment.
- Figure 41. Figure 41 shows the efficacy of CD123 x CD3 Ab 8747 in the KG-1 tumor xenograft model by comparison of body weight change with treatment.
 - Figure 42. Figure 42 shows the efficacy of CD123 x CD3 Ab 8876 in the KG-1 tumor xenograft model by comparison of body weight change with treatment.

Figure 43. Figure 43 shows the in-vivo mouse PK of CD123 x CD3 bispecfic antibodies 3978, 7955, 7959, 9958

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

5 Definitions

10

30

35

50

[0053] Various terms relating to aspects of the description are used throughout the specification and claims. Such terms are to be given their ordinary meaning in the art unless otherwise indicated. Other specifically defined terms are to be construed in a manner consistent with the definitions provided herein.

[0054] As used in this specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the content clearly dictates otherwise. Thus, for example, reference to "a cell" includes a combination of two or more cells, and the like.

[0055] The term "about" as used herein when referring to a measurable value such as an amount, a temporal duration, and the like, is meant to encompass variations of up to $\pm 10\%$ from the specified value, as such variations are appropriate to perform the disclosed methods. Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term "about." Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.

[0056] Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.

[0057] "Isolated" means a biological component (such as a nucleic acid, peptide or protein) has been substantially separated, produced apart from, or purified away from other biological components of the organism in which the component naturally occurs, i.e., other chromosomal and extrachromosomal DNA and RNA, and proteins. Nucleic acids, peptides and proteins that have been "isolated" thus include nucleic acids and proteins purified by standard purification methods. "Isolated" nucleic acids, peptides and proteins can be part of a composition and still be isolated if such composition is not part of the native environment of the nucleic acid, peptide, or protein. The term also embraces nucleic acids, peptides and proteins prepared by recombinant expression in a host cell as well as chemically synthesized nucleic acids. An "isolated" antibody or antigen-binding fragment, as used herein, is intended to refer to an antibody or antigen-binding fragment which is substantially free of other antibodies or antigen-binding fragments having different antigenic specificities (for instance, an isolated antibody that specifically binds to CD123 is substantially free of antibodies that specifically bind antigens other than CD123). An isolated antibody that specifically binds to an epitope, isoform or variant of CD123 may, however, have cross-reactivity to other related antigens, for instance from other species (such as CD123 species homologs).

[0058] "Polynucleotide," synonymously referred to as "nucleic acid molecule," "nucleotides" or "nucleic acids," refers to any polyribonucleotide or polydeoxyribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. "Polynucleotides" include, without limitation single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single-and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, "polynucleotide" refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The term polynucleotide also includes DNAs or RNAs containing one or more modified bases and DNAs or RNAs with backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications may be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically or metabolically modified forms of polynucleotides as typically found in nature, as well as the chemical forms of DNA and RNA characteristic of viruses and cells. "Polynucleotide" also embraces relatively short nucleic acid chains, often referred to as oligonucleotides.

[0059] The meaning of "substantially the same" can differ depending on the context in which the term is used. Because of the natural sequence variation likely to exist among heavy and light chains and the genes encoding them, one would expect to find some level of variation within the amino acid sequences or the genes encoding the antibodies or antigenbinding fragments described herein, with little or no impact on their unique binding properties (e.g., specificity and affinity). Such an expectation is due in part to the degeneracy of the genetic code, as well as to the evolutionary success of conservative amino acid sequence variations, which do not appreciably alter the nature of the encoded protein. Accordingly, in the context of nucleic acid sequences, "substantially the same" means at least 65% identity between two or more sequences, more preferably

at least 75% identity, more preferably at least 80% identity, more preferably at least 85% identity, more preferably at least 90% identity, more preferably at least 91% identity, more preferably at least 92% identity, more preferably at least 93% identity, more preferably at least 94% identity, more preferably at least 95% identity, more preferably at least 96% identity, more preferably at least 97% identity, more preferably at least 98% identity, and more preferably at least 99% or greater identity. The percent identity between two sequences is a function of the number of identical positions shared by the sequences (i.e., % homology = # of identical positions/total # of positions x 100), taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences. The percent identity between two nucleotide or amino acid sequences may e.g. be determined using the algorithm of E. Meyers and W. Miller, Comput. Appl. Biosci 4, 11-17 (1988) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. In addition, the percent identity between two amino acid sequences may be determined using the Needleman and Wunsch, J. Mol. Biol. 48, 444-453 (1970) algorithm.

10

30

35

40

45

50

55

[0060] The degree of variation that may occur within the amino acid sequence of a protein without having a substantial effect on protein function is much lower than that of a nucleic acid sequence, since the same degeneracy principles do not apply to amino acid sequences. Accordingly, in the context of an antibody or antigen-binding fragment, "substantially the same" means antibodies or antigen-binding fragments having 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity to the antibodies or antigen-binding fragments described. Other embodiments include CD123 specific antibodies, or antigen-binding fragments, that have framework, scaffold, or other non-binding regions that do not share significant identity with the antibodies and antigen-binding fragments described herein, but do incorporate one or more CDRs or other sequences needed to confer binding that are 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identical to such sequences described herein. A "vector" is a replicon, such as plasmid, phage, cosmid, or virus in which another nucleic acid segment may be operably inserted so as to bring about the replication or expression of the segment.

[0061] A "clone" is a population of cells derived from a single cell or common ancestor by mitosis. A "cell line" is a clone of a primary cell that is capable of stable growth in vitro for many generations. In some examples provided herein, cells are transformed by transfecting the cells with DNA.

[0062] The terms "express" and "produce" are used synonymously herein, and refer to the biosynthesis of a gene product. These terms encompass the transcription of a gene into RNA. These terms also encompass translation of RNA into one or more polypeptides, and further encompass all naturally occurring post-transcriptional and post-translational modifications. The expression or production of an antibody or antigen-binding fragment thereof may be within the cytoplasm of the cell, or into the extracellular milieu such as the growth medium of a cell culture.

[0063] The terms "treating" or "treatment" refer to any success or indicia of success in the attenuation or amelioration of an injury, pathology or condition, including any objective or subjective parameter such as abatement, remission, diminishing of symptoms or making the condition more tolerable to the patient, slowing in the rate of degeneration or decline, making the final point of degeneration less debilitating, improving a subject's physical or mental well-being, or prolonging the length of survival. The treatment may be assessed by objective or subjective parameters; including the results of a physical examination, neurological examination, or psychiatric evaluations.

[0064] An "effective amount" or "therapeutically effective amount" refers to an amount effective, at dosages and for periods of time necessary, to achieve a desired therapeutic result. A therapeutically effective amount of a CD123 x CD3 antibody may vary according to factors such as the disease state, age, sex, and weight of the individual, and the ability of the antibody to elicit a desired response in the individual. A therapeutically effective amount is also one in which any toxic or detrimental effects of the antibody or antibody portion are outweighed by the therapeutically beneficial effects.

[0065] "Antibody" refers to all isotypes of immunoglobulins (IgG, IgA, IgE, IgM, IgD, and IgY) including various monomeric, polymeric and chimeric forms, unless otherwise specified. Specifically encompassed by the term "antibody" are polyclonal antibodies, monoclonal antibodies (mAbs), and antibody-like polypeptides, such as chimeric antibodies and humanized antibodies.

[0066] Antigen-binding fragments are any proteinaceous structure that may exhibit binding affinity for a particular antigen. Antigen-binding fragments include those provided by any known technique, such as enzymatic cleavage, peptide synthesis, and recombinant techniques. Some antigen-binding fragments are composed of portions of intact antibodies that retain antigen-binding specificity of the parent antibody molecule. For example, antigen-binding fragments may comprise at least one variable region (either a heavy chain or light chain variable region) or one or more CDRs of an antibody known to bind a particular antigen. Examples of suitable antigen-binding fragments include, without limitation diabodies and single-chain molecules as well as Fab, F(ab')2, Fc, Fabc, and Fv molecules, single chain (Sc) antibodies, individual antibody light chains, individual antibody heavy chains, chimeric fusions between antibody chains or CDRs and other proteins, protein scaffolds, heavy chain monomers or dimers, light chain monomers or dimers, dimers consisting of one heavy and one light chain, a monovalent fragment consisting of the VL, VH, CL and CH1 domains, or a monovalent antibody as described in WO2007059782, bivalent fragments comprising two Fab fragments linked by a disulfide bridge at the hinge region, a Fd fragment consisting essentially of the V. sub. H and C. sub. H1 domains; a Fv fragment consisting essentially of the VL and VH domains of a single arm of an antibody, a dAb fragment (Ward et al., Nature 341, 544-546

(1989)), which consists essentially of a VH domain and also called domain antibodies (Holt et al; Trends Biotechnol. 2003 Nov.; 21(11):484-90); camelid or nanobodies (Revets et al; Expert Opin Biol Ther. 2005 Jan.; 5(1):111-24); an isolated complementarity determining region (CDR), and the like. All antibody isotypes may be used to produce antigen-binding fragments. Additionally, antigen-binding fragments may include non-antibody proteinaceous frameworks that may successfully incorporate polypeptide segments in an orientation that confers affinity for a given antigen of interest, such as protein scaffolds. Antigen-binding fragments may be recombinantly produced or produced by enzymatic or chemical cleavage of intact antibodies. The phrase "an antibody or antigen-binding fragment thereof" may be used to denote that a given antigen-binding fragment incorporates one or more amino acid segments of the antibody referred to in the phrase. When used herein in the context of two or more antibodies or antigen-binding fragments compete for binding to CD123, e.g. compete for CD123 binding in the assay described in Example 9. For some pairs of antibodies or antigen-binding fragments, competition or blocking in the assay of the Examples is only observed when one antibody is coated on the plate and the other is used to compete, and not vice versa. Unless otherwise defined or negated by context, the terms "competes with" or "cross-competes with" when used herein is also intended to cover such pairs of antibodies or antigen-binding fragments.

10

30

35

40

50

55

[0067] The term "epitope" means a protein determinant capable of specific binding to an antibody. Epitopes usually consist of surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics. Conformational and nonconformational epitopes are distinguished in that the binding to the former but not the latter is lost in the presence of denaturing solvents. The epitope may comprise amino acid residues directly involved in the binding and other amino acid residues, which are not directly involved in the binding, such as amino acid residues which are effectively blocked or covered by the specifically antigen binding peptide (in other words, the amino acid residue is within the footprint of the specifically antigen binding peptide).

[0068] "Specific binding" or "immunospecific binding" or derivatives thereof when used in the context of antibodies, or antibody fragments, represents binding via domains encoded by immunoglobulin genes or fragments of immunoglobulin genes to one or more epitopes of a protein of interest, without preferentially binding other molecules in a sample containing a mixed population of molecules. Typically, an antibody binds to a cognate antigen with a K_d of less than about 1x10⁻⁸ M, as measured by a surface plasmon resonance assay or a cell binding assay. Phrases such as "[antigen]-specific" antibody (e.g., CD123-specific antibody) are meant to convey that the recited antibody specifically binds the recited antigen.

[0069] The term " k_d " (sec⁻¹), as used herein, refers to the dissociation rate constant of a particular antibody-antigen interaction. Said value is also referred to as the k_{off} value.

[0070] The term "k_a" (M⁻¹ sec⁻¹), as used herein, refers to the association rate constant of a particular antibody-antigen interaction.

[0071] The term "K_D" (M), as used herein, refers to the dissociation equilibrium constant of a particular antibody-antigen interaction.

[0072] The term " K_A " (M^1), as used herein, refers to the association equilibrium constant of a particular antibody-antigen interaction and is obtained by dividing the k_a by the k_d .

[0073] The term "subject" refers to human and non-human animals, including all vertebrates, e.g., mammals and non-mammals, such as non-human primates, mice, rabbits, sheep, dogs, cats, horses, cows, chickens, amphibians, and reptiles. In many embodiments of the described methods, the subject is a human.

[0074] The term "sample" as used herein refers to a collection of similar fluids, cells, or tissues (e.g., surgically resected tumor tissue, biopsies, including fine needle aspiration), isolated from a subject, as well as fluids, cells, or tissues present within a subject. In some embodiments the sample is a biological fluid. Biological fluids are typically liquids at physiological temperatures and may include naturally occurring fluids present in, withdrawn from, expressed or otherwise extracted from a subject or biological source. Certain biological fluids derive from particular tissues, organs or localized regions and certain other biological fluids may be more globally or systemically situated in a subject or biological source. Examples of biological fluids include blood, serum and serosal fluids, plasma, lymph, urine, saliva, cystic fluid, tear drops, feces, sputum, mucosal secretions of the secretory tissues and organs, vaginal secretions, ascites fluids such as those associated with non-solid tumors, fluids of the pleural, pericardial, peritoneal, abdominal and other body cavities, fluids collected by bronchial lavage and the like. Biological fluids may also include liquid solutions contacted with a subject or biological source, for example, cell and organ culture medium including cell or organ conditioned medium, lavage fluids and the like. The term "sample," as used herein, encompasses materials removed from a subject or materials present in a subject.

[0075] A "known standard" may be a solution having a known amount or concentration of CD123, where the solution may be a naturally occurring solution, such as a sample from a patient known to have early, moderate, late, progressive, or static cancer, or the solution may be a synthetic solution such as buffered water having a known amount of CD123 diluted therein. The known standards, described herein may include CD123 isolated from a subject, recombinant or

purified CD123 protein, or a value of CD123 concentration associated with a disease condition.

[0076] The term "CD3" refers to the human CD3 protein multi-subunit complex. The CD3 protein multi-subunit complex is composed to 6 distinctive polypeptide chains. These include a CD3 γ chain (SwissProt P09693), a CD3 δ chain (SwissProt P04234), two CD3 ϵ chains (SwissProt P07766), and one CD3 ζ chain homodimer (SwissProt 20963), and which is associated with the T cell receptor α and β chain. The term "CD3" includes any CD3 variant, isoform and species homolog which is naturally expressed by cells (including T cells) or can be expressed on cells transfected with genes or cDNA encoding those polypeptides, unless noted.

[0077] As used herein, the terms "alpha subunit of the IL-3 receptor," "IL $3R\alpha$," "CD123," "IL $3R\alpha$ chain" and "IL $3R\alpha$ subunit" refer interchangeably to an antigenic determinant detectable on leukemia precursor cells, which immunobinds interleukin-3 (IL3). In a specific embodiment, the CD123 is the human CD123. In a specific embodiment, the CD123 is cynolmolgus monkey CD123. In a specific embodiment, the CD123 is CD123 SP1. In a specific embodiment, the CD123 is CD123 SP2. The term "CD123" includes any CD123 variant, isoform and species homolog, unless noted.

[0078] A "CD123 x CD3 antibody" is a multispecific antibody, optionally a bispecific antibody, which comprises two different antigen-binding regions, one of which binds specifically to the antigen CD123 and one of which binds specifically to CD3. A multispecific antibody can be a bispecific antibody, diabody, or similar molecule (see for instance PNAS USA 90(14), 6444-8 (1993) for a description of diabodies). The bispecific antibodies, diabodies, and the like, provided herein may bind any suitable target in addition to a portion of CD123. The term "bispecific antibody" is to be understood as an antibody having two different antigen-binding regions defined by different antibody sequences. This can be understood as different target binding but includes as well binding to different epitopes in one target.

[0079] A "reference sample" is a sample that may be compared against another sample, such as a test sample, to allow for characterization of the compared sample. The reference sample will have some characterized property that serves as the basis for comparison with the test sample. For instance, a reference sample may be used as a benchmark for CD123 levels that are indicative of a subject having cancer. The reference sample does not necessarily have to be analyzed in parallel with the test sample, thus in some instances the reference sample may be a numerical value or range previously determined to characterize a given condition, such as CD123 levels that are indicative of cancer in a subject. The term also includes samples used for comparative purposes that are known to be associated with a physiologic state or disease condition, such as CD123-expressing cancer, but that have an unknown amount of CD123.

[0080] The term "progression," as used in the context of progression of CD 123-expressing cancer, includes the change of a cancer from a less severe to a more severe state. This may include an increase in the number or severity of tumors, the degree of metastasis, the speed with which the cancer is growing or spreading, and the like. For example, "the progression of colon cancer" includes the progression of such a cancer from a less severe to a more severe state, such as the progression from stage I to stage II, from stage II to stage III, etc.

[0081] The term "regression," as used in the context of regression of CD123-expressing cancer, includes the change of a cancer from a more severe to a less severe state. This could include a decrease in the number or severity of tumors, the degree of metastasis, the speed with which the cancer is growing or spreading, and the like. For example, "the regression of colon cancer" includes the regression of such a cancer from a more severe to a less severe state, such as the progression from stage III to stage II, from stage II to stage I, etc.

[0082] The term "stable" as used in the context of stable CD123-expressing cancer, is intended to describe a disease condition that is not, or has not, changed significantly enough over a clinically relevant period of time to be considered a progressing cancer or a regressing cancer.

[0083] The embodiments described herein are not limited to particular methods, reagents, compounds, compositions or biological systems, which can, of course, vary.

CD123-Specific Antibodies and Antigen-Binding Fragments

10

20

30

35

40

45

50

55

[0084] Described herein are isolated monoclonal antibodies or antigen-binding fragments that specifically bind CD123. The general structure of an antibody molecule comprises an antigen binding domain, which includes heavy and light chains, and the Fc domain, which serves a variety of functions, including complement fixation and binding antibody receptors.

[0085] The described CD123-specific antibodies or antigen-binding fragments include all isotypes, IgA, IgD, IgE, IgG and IgM, and synthetic multimers of the four-chain immunoglobulin structure. The described antibodies or antigen-binding fragments also include the IgY isotype generally found in hen or turkey serum and hen or turkey egg yolk.

[0086] The CD123-specific antibodies and antigen-binding fragments may be derived from any species by recombinant means. For example, the antibodies or antigen-binding fragments may be mouse, rat, goat, horse, swine, bovine, chicken, rabbit, camelid, donkey, human, or chimeric versions thereof. For use in administration to humans, non-human derived antibodies or antigen-binding fragments may be genetically or structurally altered to be less antigenic upon administration to a human patient.

[0087] In some embodiments, the antibodies or antigen-binding fragments are chimeric. As used herein, the term

"chimeric" refers to an antibody, or antigen-binding fragment thereof, having at least some portion of at least one variable domain derived from the antibody amino acid sequence of a non-human mammal, a rodent, or a reptile, while the remaining portions of the antibody, or antigen-binding fragment thereof, are derived from a human.

[0088] In some embodiments, the antibodies are humanized antibodies. Humanized antibodies may be chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) that contain minimal sequence derived from non-human immunoglobulin. For the most part, humanized antibodies are human immunoglobulins (recipient antibody) in which residues from a complementary-determining region (CDR) of the recipient are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the desired specificity, affinity, and capacity. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the framework regions are those of a human immunoglobulin sequence. The humanized antibody may include at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin.

10

20

30

35

50

[0089] The antibodies or antigen-binding fragments described herein can occur in a variety of forms, but will include one or more of the I3RB2 or I3RB18 antibody CDRs shown in Table 1.

[0090] Described herein are isolated antibodies and antigen-binding fragments that immunospecifically bind to CD123. In some embodiments, the CD123-specific antibodies or antigen-binding fragments are human IgG, or derivatives thereof. While the CD123-specific antibodies or antigen-binding fragments exemplified herein are human, the antibodies or antigen-binding fragments exemplified may be chimerized.

[0091] In some embodiments are provided a CD123-specific antibody, or an antigen-binding fragment thereof, comprising a heavy chain comprising a CDR1, a CDR2, and a CDR3 of any one of the I3RB2 and I3RB18 antibodies described in Table 1. In some embodiments are provided a CD123-specific antibody, or an antigen-binding fragment thereof, comprising a heavy chain comprising a CDR1, a CDR2, and a CDR3 of any one of the I3RB2 and I3RB18 antibodies described in Table 1 and a light chain comprising a CDR1, a CDR2, and a CDR3 of any one of the I3RB2 and I3RB18 antibodies described in Table 1.

[0092] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 006, a heavy chain CDR2 comprising SEQ ID NO: 007, and a heavy chain CDR3 comprising SEQ ID NO: 008. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 006, a heavy chain CDR2 comprising SEQ ID NO: 007, a heavy chain CDR3 comprising SEQ ID NO: 008, a light chain CDR1 comprising SEQ ID NO: 009, a light chain CDR2 comprising SEQ ID NO: 010, and a light chain CDR3 comprising SEQ ID NO: 011. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 119. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 119 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 164. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0093] In some embodiments, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 012, a heavy chain CDR2 comprising SEQ ID NO: 013, and a heavy chain CDR3 comprising SEQ ID NO: 014. In some embodiments, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 012, a heavy chain CDR2 comprising SEQ ID NO: 013, a heavy chain CDR3 comprising SEQ ID NO: 014, a light chain CDR1 comprising SEQ ID NO: 015, a light chain CDR2 comprising SEQ ID NO: 016, and a light chain CDR3 comprising SEQ ID NO: 017. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 120. In some embodiments, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 120 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 165. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0094] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 018, a heavy chain CDR2 comprising SEQ ID NO: 019, and a heavy chain CDR3 comprising SEQ ID NO: 020. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 018, a heavy chain CDR2 comprising SEQ

ID NO: 019, a heavy chain CDR3 comprising SEQ ID NO: 020, a light chain CDR1 comprising SEQ ID NO: 009, a light chain CDR2 comprising SEQ ID NO: 010, and a light chain CDR3 comprising SEQ ID NO: 011. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 121. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 121 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 164. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0095] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 021, a heavy chain CDR2 comprising SEQ ID NO: 022, and a heavy chain CDR3 comprising SEQ ID NO: 023. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 021, a heavy chain CDR2 comprising SEQ ID NO: 022, a heavy chain CDR3 comprising SEQ ID NO: 023, a light chain CDR1 comprising SEQ ID NO: 024, a light chain CDR2 comprising SEQ ID NO: 025, and a light chain CDR3 comprising SEQ ID NO: 026. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 122. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 122 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 122 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

20

30

35

40

50

55

[0096] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 027, a heavy chain CDR2 comprising SEQ ID NO: 028, and a heavy chain CDR3 comprising SEQ ID NO: 029. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 027, a heavy chain CDR2 comprising SEQ ID NO: 028, a heavy chain CDR3 comprising SEQ ID NO: 029, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 123. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 123 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 123 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0097] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 035. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 035, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 124. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 124 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 124 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0098] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain

CDR3 comprising SEQ ID NO: 036. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 036, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 125. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 125 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 167. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

10

20

30

35

50

55

[0099] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 037. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 037, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 126. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 126 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 167. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0100] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 038. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 038, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 127. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 127 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 127 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0101] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 040, and a heavy chain CDR3 comprising SEQ ID NO: 041. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 041, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 128. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 128 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 167. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0102] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 042. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 042, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 129. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 129 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 129 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0103] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 043. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 034, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR2 comprising SEQ ID NO: 034, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 130. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 130 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 130 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0104] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 044, and a heavy chain CDR3 comprising SEQ ID NO: 045. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 044, a heavy chain CDR3 comprising SEQ ID NO: 045, a light chain CDR1 comprising SEQ ID NO: 015, a light chain CDR2 comprising SEQ ID NO: 016, and a light chain CDR3 comprising SEQ ID NO: 017. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 131. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 131 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 131 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0105] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 046, and a heavy chain CDR3 comprising SEQ ID NO: 047. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 046, a heavy chain CDR3 comprising SEQ ID NO: 047, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 132. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 132 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 167. The heavy chain variable domain and

light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0106] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 048. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 048, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 133. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 133 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 133 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

10

30

35

45

50

55

[0107] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 049. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 049, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 134. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 134 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 134 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0108] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 050. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 050, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 135. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 135 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 135 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0109] In some embodiments, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 051, a heavy chain CDR2 comprising SEQ ID NO: 052, and a heavy chain CDR3 comprising SEQ ID NO: 053. In some embodiments, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 051, a heavy chain CDR2 comprising SEQ ID NO: 052, a heavy chain CDR3 comprising SEQ ID NO: 053, a light chain CDR1 comprising SEQ ID NO: 024, a light chain CDR2 comprising SEQ ID NO: 025, and a light chain CDR3 comprising SEQ ID NO: 054. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of $5 \times 10^{-7} \text{M}$ or less, such as $1 \times 10^{-7} \text{M}$ or less, $5 \times 10^{-8} \text{M}$ or less, $1 \times 10^{-8} \text{M}$ or less, $5 \times 10^{-9} \text{M}$ or less. In some embodiments, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 136. In some embodiments, the CD123-specific antibodies and antigen-binding substantially the

same as, or identical to, SEQ ID NO: 136 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 168. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0110] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 055, a heavy chain CDR2 comprising SEQ ID NO: 056, and a heavy chain CDR3 comprising SEQ ID NO: 057. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 055, a heavy chain CDR2 comprising SEQ ID NO: 056, a heavy chain CDR3 comprising SEQ ID NO: 057, a light chain CDR1 comprising SEQ ID NO: 058, a light chain CDR2 comprising SEQ ID NO: 059, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 137. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 137 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 137 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

10

30

35

40

45

50

55

[0111] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 060. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 060, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 138. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 138 and a light chain variable domain substantially the same as, or identical to, seq ID NO: 138 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0112] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 061. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 061, a light chain CDR1 comprising SEQ ID NO: 062, a light chain CDR2 comprising SEQ ID NO: 063, and a light chain CDR3 comprising SEQ ID NO: 064. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 139. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 139 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 170. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0113] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 065. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 065, a light chain CDR1 comprising SEQ ID NO: 066, a light chain CDR2 comprising SEQ ID NO: 067, and a light chain CDR3 comprising SEQ ID NO: 068. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical

to, SEQ ID NO: 140. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 140 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 171. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0114] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 069. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 069, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 070. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 141 In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 141 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 172. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD123 arm.

10

30

35

40

45

50

55

[0115] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 071. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 071, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 142. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 142 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 142 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0116] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 072, and a heavy chain CDR3 comprising SEQ ID NO: 073. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 073, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 143. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 143 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 143 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0117] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 074. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 074, a light chain CDR1 comprising SEQ ID NO: 075, a light chain CDR2 comprising SEQ ID NO: 076, and a light chain CDR3 comprising SEQ ID NO: 077. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or

less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 144. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 144 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 173. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

10

30

35

45

50

[0118] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 078. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 078, a light chain CDR1 comprising SEQ ID NO: 079, a light chain CDR2 comprising SEQ ID NO: 063, and a light chain CDR3 comprising SEQ ID NO: 080. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 145. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 145 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 174. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0119] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 081. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 081, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 146. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 146 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 167. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0120] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 082. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 082, a light chain CDR1 comprising SEQ ID NO: 083, a light chain CDR2 comprising SEQ ID NO: 081, and a light chain CDR3 comprising SEQ ID NO: 084. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 147. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 147 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 147 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0121] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 085, and a heavy chain CDR3 comprising SEQ ID NO: 086. In some embodiments of the disclosure, the CD123-specific antibodies and antigenbinding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 085, a heavy chain CDR3 comprising SEQ ID NO: 086, a light chain CDR1 comprising SEQ ID NO: 087, a light chain CDR2 comprising SEQ ID NO: 087, and a light chain CDR3 comprising SEQ ID NO: 088. This CD123-specific

antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of $5 \times 10^{-7} \text{M}$ or less, such as $1 \times 10^{-7} \text{M}$ or less, $5 \times 10^{-8} \text{M}$ or less, $5 \times 10^{-9} \text{M}$ or less, or $1 \times 10^{-9} \text{M}$ or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 148. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 148 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 176. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0122] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 089, and a heavy chain CDR3 comprising SEQ ID NO: 090. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 089, a heavy chain CDR3 comprising SEQ ID NO: 090, a light chain CDR1 comprising SEQ ID NO: 091, a light chain CDR2 comprising SEQ ID NO: 091, a light chain CDR2 comprising SEQ ID NO: 091, a light chain CDR2 comprising SEQ ID NO: 092. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 149. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 149 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 149 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0123] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 093. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 093, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 150. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 150 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 150 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0124] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 094. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 094, a light chain CDR1 comprising SEQ ID NO: 095, a light chain CDR2 comprising SEQ ID NO: 096. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 151. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 151 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 151 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0125] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 097. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ

ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 097, a light chain CDR1 comprising SEQ ID NO: 098, a light chain CDR2 comprising SEQ ID NO: 067, and a light chain CDR3 comprising SEQ ID NO: 099. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 152. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 152 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 179. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0126] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO:100. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 100, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 101. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 153. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 153 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 153 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

20

30

35

40

50

55

[0127] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 102. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 102, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 154. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 154 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 154 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0128] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 103. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 103, a light chain CDR1 comprising SEQ ID NO: 104, a light chain CDR2 comprising SEQ ID NO: 104, a light chain CDR2 comprising SEQ ID NO: 105. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 155. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 155 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 151 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0129] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain

CDR3 comprising SEQ ID NO: 106. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 039, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 106, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 156. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 156 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 167. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0130] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 107. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 107, a light chain CDR1 comprising SEQ ID NO: 108, a light chain CDR2 comprising SEQ ID NO: 109, and a light chain CDR3 comprising SEQ ID NO: 110. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 157. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 157. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0131] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 111. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 111, a light chain CDR1 comprising SEQ ID NO: 112, a light chain CDR2 comprising SEQ ID NO: 112, a light chain CDR2 comprising SEQ ID NO: 113. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 158. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 158 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 158 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0132] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 114, a heavy chain CDR2 comprising SEQ ID NO: 022, and a heavy chain CDR3 comprising SEQ ID NO: 115. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 114, a heavy chain CDR2 comprising SEQ ID NO: 022, a heavy chain CDR3 comprising SEQ ID NO: 115, a light chain CDR1 comprising SEQ ID NO: 024, a light chain CDR2 comprising SEQ ID NO: 025, and a light chain CDR3 comprising SEQ ID NO: 026. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 159. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 159 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 159 and a light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0133] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 114, a heavy chain CDR2 comprising SEQ ID NO: 022, and a heavy chain CDR3 comprising SEQ ID NO: 116. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 114, a heavy chain CDR2 comprising SEQ ID NO: 015, a light chain CDR2 comprising SEQ ID NO: 015, a light chain CDR2 comprising SEQ ID NO: 016, and a light chain CDR3 comprising SEQ ID NO: 017. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 160. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 160 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 165. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0134] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 117, a heavy chain CDR2 comprising SEQ ID NO: 013, and a heavy chain CDR3 comprising SEQ ID NO: 118. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 117, a heavy chain CDR2 comprising SEQ ID NO: 013, a heavy chain CDR3 comprising SEQ ID NO: 014, a light chain CDR1 comprising SEQ ID NO: 015, a light chain CDR2 comprising SEQ ID NO: 016, and a light chain CDR3 comprising SEQ ID NO: 017. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 161. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 161 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 165. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0135] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 051, a heavy chain CDR2 comprising SEQ ID NO: 052, and a heavy chain CDR3 comprising SEQ ID NO: 053. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 051, a heavy chain CDR2 comprising SEQ ID NO: 052, a heavy chain CDR3 comprising SEQ ID NO: 053, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10⁻⁷M or less, such as 1x10⁻⁷M or less, 5x10⁻⁸M or less, 1x10⁻⁸M or less, 5x10⁻⁹M or less, or 1x10⁻⁹M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 162. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 162 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 167. The heavy chain variable domain and light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0136] In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, and a heavy chain CDR3 comprising SEQ ID NO: 042. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain CDR1 comprising SEQ ID NO: 033, a heavy chain CDR2 comprising SEQ ID NO: 034, a heavy chain CDR3 comprising SEQ ID NO: 042, a light chain CDR1 comprising SEQ ID NO: 030, a light chain CDR2 comprising SEQ ID NO: 031, and a light chain CDR3 comprising SEQ ID NO: 032. This CD123-specific antibody or antigen-binding fragment may comprise human framework sequences. This CD123-specific antibody or antigen-binding fragment may bind to CD123 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 163. In some embodiments of the disclosure, the CD123-specific antibodies and antigen-binding fragments comprise a heavy chain variable domain substantially the same as, or identical to, SEQ ID NO: 163 and a light chain variable domain substantially the same as, or identical to, SEQ ID NO: 167. The heavy chain variable domain and

light chain variable domain of antibodies discussed in this paragraph are suitable for inclusion in bispecific constructs in which one arm is an anti-CD 123 arm.

[0137] The anti-CD123 antibodies and antigen-binding fragments provided by the invention also include antibodies which compete for binding with the antibodies described above. Competition for binding can be determined using a competition binding ELISA, in line with the technique described below in Example 5. Competitive binding may be determined by detecting at least 20% inhibition of the binding of a first antibody by a second antibody, irrespective of the order in which the antibodies are bound to CD123 (i.e. if when antibody A is bound to CD123 before antibody B, only 10% inhibition is observed, but when antibody B is bound to CD123 before antibody A, 30% inhibition is observed, then because greater than 20% inhibition has been observed in one of the experiments, competitive binding may be concluded).

[0138] In some embodiments, the antibodies or antigen-binding fragments are IgG, or derivatives thereof, e.g., IgG1, IgG2, IgG3, and IgG4 isotypes. In some embodiments wherein the antibody has an IgG1 isotype, the antibody contains L234A, L235A, and K409R substitution(s) in its Fc region. In some embodiments wherein the antibody has an IgG4 isotype, the antibody contains S228P, L234A, and L235A substitutions in its Fc region. The specific antibodies defined by CDR and/or variable domain sequence discussed in the above paragraphs may include these modifications.

[0139] Also disclosed are isolated polynucleotides that encode the antibodies or antigen-binding fragments that immunospecifically bind to CD123. The isolated polynucleotides capable of encoding the variable domain segments provided herein may be included on the same, or different, vectors to produce antibodies or antigen-binding fragments.

[0140] Polynucleotides encoding recombinant antigen-binding proteins also are within the scope of the disclosure. In some embodiments, the polynucleotides described (and the peptides they encode) include a leader sequence. Any leader sequence known in the art may be employed. The leader sequence may include, but is not limited to, a restriction site or a translation start site.

[0141] The CD123-specific antibodies or antigen-binding fragments described herein include variants having single or multiple amino acid substitutions, deletions, or additions that retain the biological properties (e.g., binding affinity or immune effector activity) of the described CD123-specific antibodies or antigen-binding fragments. In the context of the present invention the following notations are, unless otherwise indicated, used to describe a mutation; i) substitution of an amino acid in a given position is written as e.g. K409R which means a substitution of a Lysine in position 409 with an Arginine; and ii) for specific variants the specific three or one letter codes are used, including the codes Xaa and X to indicate any amino acid residue. Thus, the substitution of Arginine for Lysine in position 409 is designated as: K409R, or the substitution of any amino acid residue for Lysine in position 409 is designated as K409X. In case of deletion of Lysine in position 409 it is indicated by K409*. The skilled person may produce variants having single or multiple amino acid substitutions, deletions, or additions.

30

35

40

50

55

[0142] These variants may include: (a) variants in which one or more amino acid residues are substituted with conservative or nonconservative amino acids, (b) variants in which one or more amino acids are added to or deleted from the polypeptide, (c) variants in which one or more amino acids include a substituent group, and (d) variants in which the polypeptide is fused with another peptide or polypeptide such as a fusion partner, a protein tag or other chemical moiety, that may confer useful properties to the polypeptide, such as, for example, an epitope for an antibody, a polyhistidine sequence, a biotin moiety and the like. Antibodies or antigen-binding fragments described herein may include variants in which amino acid residues from one species are substituted for the corresponding residue in another species, either at the conserved or nonconserved positions. In other embodiments, amino acid residues at nonconserved positions are substituted with conservative or nonconservative residues. The techniques for obtaining these variants, including genetic (deletions, mutations, etc.), chemical, and enzymatic techniques, are known to persons having ordinary skill in the art. [0143] The CD123-specific antibodies or antigen-binding fragments described herein may embody several antibody isotypes, such as IgM, IgD, IgG, IgA and IgE. In some embodiments the antibody isotype is IgG1, IgG2, IgG3, or IgG4 isotype, preferably IgG1 or IgG4 isotype. Antibody or antigen-binding fragment thereof specificity is largely determined by the amino acid sequence, and arrangement, of the CDRs. Therefore, the CDRs of one isotype may be transferred to another isotype without altering antigen specificity. Alternatively, techniques have been established to cause hybridomas to switch from producing one antibody isotype to another (isotype switching) without altering antigen specificity. Accordingly, such antibody isotypes are within the scope of the described antibodies or antigen-binding fragments.

[0144] The CD123-specific antibodies or antigen-binding fragments described herein have binding affinities for CD123 SP1 that include a dissociation constant (K_D) of less than about 5×10^{-7} M, preferably less than about 5×10^{-8} M. In some embodiments, the CD123-specific antibodies or antigen-binding fragments described herein have binding affinities for CD123 SP2 that include a dissociation constant (K_D) of less than about 5×10^{-7} M, preferably less than about 5×10^{-8} M. The affinity of the described CD123-specific antibodies, or antigen-binding fragments, may be determined by a variety of methods known in the art, such as surface plasmon resonance or ELISA-based methods. Assays for measuring affinity by SPR include assays performed using a BIAcore 3000 machine, where the assay is performed at room temperature (e.g. at or near 25°C), wherein the antibody capable of binding to CD123 is captured on the BIAcore sensor chip by an anti-Fc antibody (e.g. goat anti-human IgG Fc specific antibody Jackson ImmunoResearch laboratories Prod # 109-005-098) to a level around 75RUs, followed by the collection of association and dissociation data at a flow rate

of $40\mu l/min$.

10

20

30

35

40

50

55

[0145] Also provided are vectors comprising the polynucleotides described herein. The vectors can be expression vectors. Recombinant expression vectors containing a sequence encoding a polypeptide of interest are thus contemplated as within the scope of this disclosure. The expression vector may contain one or more additional sequences such as but not limited to regulatory sequences (e.g., promoter, enhancer), a selection marker, and a polyadenylation signal. Vectors for transforming a wide variety of host cells are well known and include, but are not limited to, plasmids, phagemids, cosmids, baculoviruses, bacmids, bacterial artificial chromosomes (BACs), yeast artificial chromosomes (YACs), as well as other bacterial, yeast and viral vectors.

[0146] Recombinant expression vectors within the scope of the description include synthetic, genomic, or cDNA-derived nucleic acid fragments that encode at least one recombinant protein which may be operably linked to suitable regulatory elements. Such regulatory elements may include a transcriptional promoter, sequences encoding suitable mRNA ribosomal binding sites, and sequences that control the termination of transcription and translation. Expression vectors, especially mammalian expression vectors, may also include one or more nontranscribed elements such as an origin of replication, a suitable promoter and enhancer linked to the gene to be expressed, other 5' or 3' flanking non-transcribed sequences, 5' or 3' nontranslated sequences (such as necessary ribosome binding sites), a polyadenylation site, splice donor and acceptor sites, or transcriptional termination sequences. An origin of replication that confers the ability to replicate in a host may also be incorporated.

[0147] The transcriptional and translational control sequences in expression vectors to be used in transforming vertebrate cells may be provided by viral sources. Exemplary vectors may be constructed as described by Okayama and Berg, 3 Mol. Cell. Biol. 280 (1983).

[0148] In some embodiments, the antibody- or antigen-binding fragment-coding sequence is placed under control of a powerful constitutive promoter, such as the promoters for the following genes: hypoxanthine phosphoribosyl transferase (HPRT), adenosine deaminase, pyruvate kinase, beta-actin, human myosin, human hemoglobin, human muscle creatine, and others. In addition, many viral promoters function constitutively in eukaryotic cells and are suitable for use with the described embodiments. Such viral promoters include without limitation, Cytomegalovirus (CMV) immediate early promoter, the early and late promoters of SV40, the Mouse Mammary Tumor Virus (MMTV) promoter, the long terminal repeats (LTRs) of Maloney leukemia virus, Human Immunodeficiency Virus (HIV), Epstein Barr Virus (EBV), Rous Sarcoma Virus (RSV), and other retroviruses, and the thymidine kinase promoter of Herpes Simplex Virus. In one embodiment, the CD123-specific antibody or antigen-binding fragment thereof coding sequence is placed under control of an inducible promoter such as the metallothionein promoter, tetracycline-inducible promoter, doxycycline-inducible promoter, promoters that contain one or more interferon-stimulated response elements (ISRE) such as protein kinase R 2',5'-oligoadenylate synthetases, Mx genes, ADAR1, and the like.

[0149] Vectors described herein may contain one or more Internal Ribosome Entry Site(s) (IRES). Inclusion of an IRES sequence into fusion vectors may be beneficial for enhancing expression of some proteins. In some embodiments the vector system will include one or more polyadenylation sites (e.g., SV40), which may be upstream or downstream of any of the aforementioned nucleic acid sequences. Vector components may be contiguously linked, or arranged in a manner that provides optimal spacing for expressing the gene products (i.e., by the introduction of "spacer" nucleotides between the ORFs), or positioned in another way. Regulatory elements, such as the IRES motif, may also be arranged to provide optimal spacing for expression.

[0150] The vectors may comprise selection markers, which are well known in the art. Selection markers include positive and negative selection markers, for example, antibiotic resistance genes (e.g., neomycin resistance gene, a hygromycin resistance gene, a kanamycin resistance gene, a tetracycline resistance gene, a penicillin resistance gene), glutamate synthase genes, HSV-TK, HSV-TK derivatives for ganciclovir selection, or bacterial purine nucleoside phosphorylase gene for 6-methylpurine selection (Gadi et al., 7 Gene Ther. 1738-1743 (2000)). A nucleic acid sequence encoding a selection marker or the cloning site may be upstream or downstream of a nucleic acid sequence encoding a polypeptide of interest or cloning site.

[0151] The vectors described herein may be used to transform various cells with the genes encoding the described antibodies or antigen-binding fragments. For example, the vectors may be used to generate CD123-specific antibody or antigen-binding fragment-producing cells. Thus, another aspect features host cells transformed with vectors comprising a nucleic acid sequence encoding an antibody or antigen-binding fragment thereof that specifically binds CD123, such as the antibodies or antigen-binding fragments described and exemplified herein.

[0152] Numerous techniques are known in the art for the introduction of foreign genes into cells and may be used to construct the recombinant cells for purposes of carrying out the described methods, in accordance with the various embodiments described and exemplified herein. The technique used should provide for the stable transfer of the heterologous gene sequence to the host cell, such that the heterologous gene sequence is heritable and expressible by the cell progeny, and so that the necessary development and physiological functions of the recipient cells are not disrupted. Techniques which may be used include but are not limited to chromosome transfer (e.g., cell fusion, chromosome mediated gene transfer, micro cell mediated gene transfer), physical methods (e.g., transfection, spheroplast fusion,

microinjection, electroporation, liposome carrier), viral vector transfer (e.g., recombinant DNA viruses, recombinant RNA viruses) and the like (described in Cline, 29 Pharmac. Ther. 69-92 (1985)). Calcium phosphate precipitation and polyethylene glycol (PEG)-induced fusion of bacterial protoplasts with mammalian cells may also be used to transform cells. [0153] Cells suitable for use in the expression of the CD123-specific antibodies or antigen-binding fragments described herein are preferably eukaryotic cells, more preferably cells of plant, rodent, or human origin, for example but not limited to NSO, CHO, CHOK1, perC.6, Tk-ts13, BHK, HEK293 cells, COS-7, T98G, CV-1/EBNA, L cells, C127, 3T3, HeLa, NS1, Sp2/0 myeloma cells, and BHK cell lines, among others. In addition, expression of antibodies may be accomplished using hybridoma cells. Methods for producing hybridomas are well established in the art.

[0154] Cells transformed with expression vectors described herein may be selected or screened for recombinant expression of the antibodies or antigen-binding fragments described herein. Recombinant-positive cells are expanded and screened for subclones exhibiting a desired phenotype, such as high level expression, enhanced growth properties, or the ability to yield proteins with desired biochemical characteristics, for example, due to protein modification or altered post-translational modifications. These phenotypes may be due to inherent properties of a given subclone or to mutation. Mutations may be effected through the use of chemicals, UV-wavelength light, radiation, viruses, insertional mutagens, inhibition of DNA mismatch repair, or a combination of such methods.

Methods of using CD123-specific antibodies for treatment

10

15

20

30

35

40

45

50

55

[0155] Provided herein are CD123-specific antibodies or antigen-binding fragments thereof for use in therapy. In particular, these antibodies or antigen-binding fragments may be useful in treating cancer, such as CD123-expressing cancer. Accordingly, the invention provides CD123 antibodies or antigen-binding fragments for use in a method of treating cancer comprising administering an antibody as described by the invention, such as CD123-specific antibodies or antigenbinding fragments. For example, the use may be by inhibiting a biological effect of IL-3 by preventing IL-3 from binding to IL-3R or where the antibody is conjugated to a toxin, so targeting the toxin to the CD 123-expressing cancer. In some embodiments CD123-expressing cancer includes hematological cancer, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN). The antibodies for use in these methods include those described herein above, for example a CD123-specific antibody or antigen-binding fragment that binds to an epitope including one or more residues from the segment of CD123 SP2 ECD comprising residues 195 - 202 (RARERVYE (SEQ ID NO: 234)) and/or the segment of CD123 SP2 ECD comprising residues 156-161 (RKFRYE (SEQ ID NO:232)) and/or the segment of CD123 SP2 ECD comprising residues 173 - 178 (TEQVRD (SEQ ID NO: 233)). Also useful for use in these methods are I3RB2 and I3RB18 antibodies with the features set out in Table 1, for example the CDRs or variable domain sequences, and in the further discussion of these antibodies. [0156] In some embodiments described herein, immune effector properties of the CD123-specific antibodies may be enhanced or silenced through Fc modifications by techniques known to those skilled in the art. For example, Fc effector functions such as Clq binding, complement dependent cytotoxicity (CDC), antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cell-mediated phagocytosis (ADCP), down regulation of cell surface receptors (e.g., B cell receptor; BCR), etc. may be provided and/or controlled by modifying residues in the Fc responsible for these activities. [0157] "Antibody-dependent cell-mediated cytotoxicity" or "ADCC" refers to a cell-mediated reaction in which nonspecific cytotoxic cells that express Fc receptors (FcRs) (e.g. Natural Killer (NK) cells, neutrophils, and macrophages) recognize bound antibody on a target cell and subsequently cause lysis of the target cell.

[0158] The ability of monoclonal antibodies to induce ADCC can be enhanced by engineering their oligosaccharide component. Human IgG1 or IgG3 are N-glycosylated at Asn297 with the majority of the glycans in the well known biantennary G0, G0F, G1, G1F, G2 or G2F forms. Antibodies produced by non-engineered CHO cells typically have a glycan fucose content of about at least 85%. The removal of the core fucose from the biantennary complex-type oligosaccharides attached to the Fc regions enhances the ADCC of antibodies via improved Fc.gamma.RIlla binding without altering antigen binding or CDC activity. Such mAbs can be achieved using different methods reported to lead to the successful expression of relatively high defucosylated antibodies bearing the biantennary complex-type of Fc oligosaccharides such as control of culture osmolality (Konno et al., Cytotechnology 64:249-65, 2012), application of a variant CHO line Lecl3 as the host cell line (Shields et al., J Biol Chem 277:26733-26740, 2002), application of a variant CHO line EB66 as the host cell line (Olivier et al., MAbs; 2(4), 2010; Epub ahead of print; PMID:20562582), application of a rat hybridoma cell line YB2/0 as the host cell line (Shinkawa et al., J Biol Chem 278:3466-3473, 2003), introduction of small interfering RNA specifically against the .alpha. 1,6-fucosyltrasferase (FUT8) gene (Mori et al., Biotechnol Bioeng 88:901-908, 2004), or coexpression of .beta.-1,4-N-acetylglucosaminyltransferase III and Golgi .alpha.-mannosidase II or a potent alpha-mannosidase I inhibitor, kifunensine (Ferrara et al., J Biol Chem 281:5032-5036, 2006, Ferrara et al., Biotechnol Bioeng 99:652-65, 2008).

[0159] In some embodiments described herein, ADCC elicited by the CD123 antibodies may also be enhanced by certain substitutions in the antibody Fc. Exemplary substitutions are for example substitutions at amino acid positions

256, 290, 298, 312, 356, 330, 333, 334, 360, 378 or 430 (residue numbering according to the EU index) as described in U.S. Pat. No. 6,737,056.

Methods of detecting CD123

5

10

30

35

45

50

55

[0160] Provided herein are methods for detecting CD123 in a biological sample by contacting the sample with an antibody, or antigen-binding fragment thereof, described herein. As described herein, the sample may be derived from urine, blood, serum, plasma, saliva, ascites, circulating cells, circulating tumor cells, cells that are not tissue associated (*i.e.*, free cells), tissues (*e.g.*, surgically resected tumor tissue, biopsies, including fine needle aspiration), histological preparations, and the like. In some embodiments the described methods include detecting CD123 in a biological sample by contacting the sample with any of the CD123-specific antibodies or antigen-binding fragments thereof described herein. **[0161]** In some embodiments the sample may be contacted with more than one of the CD123-specific antibodies or antigen-binding fragments described herein. For example, a sample may be contacted with a first CD123-specific antibody, or antigen-binding fragment thereof, wherein the first antibody or antigen-binding fragment and the second antibody or antigen-binding fragment are not the same antibody or antigen-binding fragment. In some embodiments, the first antibody, or antigen-binding fragment thereof, may be affixed to a surface, such as a multiwell plate, chip, or similar substrate prior to contacting the sample. In other embodiments the first antibody, or antigen-binding fragment thereof, may not be affixed, or attached, to anything at all prior to contacting the sample.

[0162] The described CD123-specific antibodies and antigen-binding fragments may be detectably labeled. In some embodiments labeled antibodies and antigen-binding fragments may facilitate the detection CD123 via the methods described herein. Many such labels are readily known to those skilled in the art. For example, suitable labels include, but should not be considered limited to, radiolabels, fluorescent labels, epitope tags, biotin, chromophore labels, ECL labels, or enzymes. More specifically, the described labels include ruthenium, ¹¹¹In-DOTA, ¹¹¹In- diethylenetriaminepentaacetic acid (DTPA), horseradish peroxidase, alkaline phosphatase and beta-galactosidase, poly-histidine (HIS tag), acridine dyes, cyanine dyes, fluorone dyes, oxazin dyes, phenanthridine dyes, rhodamine dyes, Alexa Fluor® dyes, and the like.

[0163] The described CD123-specific antibodies and antigen-binding fragments may be used in a variety of assays to detect CD123 in a biological sample. Some suitable assays include, but should not be considered limited to, western blot analysis, radioimmunoassay, surface plasmon resonance, immunofluorimetry, immunoprecipitation, equilibrium dialysis, immunodiffusion, electrochemiluminescence (ECL) immunoassay, immunohistochemistry, fluorescence-activated cell sorting (FACS) or ELISA assay.

[0164] In some embodiments described herein, CD123 antibodies or antigen-binding fragments thereof of the invention can be used in a method of detection of CD123-expressing cancer cells in a subject to determine that the subject may be treated with a therapeutic agent directed against CD123.

[0165] CD123 is present at detectable levels in blood and serum samples. Thus, provided herein are methods for detecting CD123 in a sample derived from blood, such as a serum sample, by contacting the sample with an antibody, or antigen-binding fragment thereof, that specifically binds CD123. The blood sample, or a derivative thereof, may be diluted, fractionated, or otherwise processed to yield a sample upon which the described method may be performed. In some embodiments, CD123 may be detected in a blood sample, or a derivative thereof, by any number of assays known in the art, such as, but not limited to, western blot analysis, radioimmunoassay, surface plasmon resonance, immunofluorimetry, immunoprecipitation, equilibrium dialysis, immunodiffusion, electrochemiluminescence (ECL) immunoassay, immunohistochemistry, fluorescence-activated cell sorting (FACS) or ELISA assay.

Methods for Diagnosing Cancer

[0166] Provided herein are CD123 antibodies or antigen-binding fragments thereof of the invention for use in methods for diagnosing CD123-expressing cancer in a subject. In some embodiments CD123-expressing cancer includes hematological cancers, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN). In some embodiments, as described above, detecting CD123 in a biological sample, such as a blood sample or a serum sample, provides the ability to diagnose cancer in the subject from whom the sample was obtained. Alternatively, in some embodiments other samples such as a histological sample, a fine needle aspirate sample, resected tumor tissue, circulating cells, circulating tumor cells, and the like, may also be used to assess whether the subject from whom the sample was obtained has cancer. In some embodiments, it may already be known that the subject from whom the sample was obtained has cancer, but the type of cancer afflicting the subject may not yet have been diagnosed or a preliminary diagnosis may be unclear, thus detecting CD123 in a biological sample obtained from the subject can allow for, or clarify, diagnosis of the cancer. For example, a subject may

be known to have cancer, but it may not be known, or may be unclear, whether the subject's cancer is CD123-expressing. [0167] In some embodiments the described methods involve assessing whether a subject is afflicted with CD123expressing cancer by determining the amount of CD123 that is present in a biological sample derived from the subject; and comparing the observed amount of CD 123 with the amount of CD 123 in a control, or reference, sample, wherein a difference between the amount of CD123 in the sample derived from the subject and the amount of CD123 in the control, or reference, sample is an indication that the subject is afflicted with a CD123-expressing cancer. In another embodiment the amount of CD123 observed in a biological sample obtained from a subject may be compared to levels of CD123 known to be associated with certain forms or stages of cancer, to determine the form or stage of the subject's cancer. In some embodiments the amount of CD123 in the sample derived from the subject is assessed by contacting the sample with an antibody, or an antigen-binding fragment thereof, that immunospecifically binds CD123, such as the CD123-specific antibodies described herein. The sample assessed for the presence of CD123 may be derived from urine, blood, serum, plasma, saliva, ascites, circulating cells, circulating tumor cells, cells that are not tissue associated (i.e., free cells), tissues (e.g., surgically resected tumor tissue, biopsies, including fine needle aspiration), histological preparations, and the like. In some embodiments CD123-expressing cancer includes hematological cancer, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN). In some embodiments the subject is a human.

10

20

30

35

40

50

[0168] In some embodiments the method of diagnosing a CD123-expressing cancer will involve: contacting a biological sample of a subject with a CD123-specific antibody, or an antigen-binding fragment thereof (such as those derivable from the I3RB2 and I3RB18 antibodies and fragments provided in Table 1), quantifying the amount of CD123 present in the sample that is bound by the antibody or antigen-binding fragment thereof, comparing the amount of CD123 present in the sample to a known standard or reference sample; and determining whether the subject's CD123 levels fall within the levels of CD123 associated with cancer. In an additional embodiment, the diagnostic method can be followed with an additional step of administering or prescribing a cancer-specific treatment. In another embodiment, the diagnostic method can be followed with an additional step of transmitting the results of the determination to facilitate treatment of the cancer. In some embodiments the cancer-specific treatment may be directed against CD123-expressing cancers, such as the CD123 x CD3 multispecific antibodies described herein.

[0169] In some embodiments the described methods involve assessing whether a subject is afflicted with CD123-expressing cancer by determining the amount of CD123 present in a blood or serum sample obtained from the subject; and comparing the observed amount of CD123 with the amount of CD123 in a control, or reference, sample, wherein a difference between the amount of CD 123 in the sample derived from the subject and the amount of CD123 in the control, or reference, sample is an indication that the subject is afflicted with a CD123-expressing cancer.

[0170] In some embodiments the control, or reference, sample may be derived from a subject that is not afflicted with CD123-expressing cancer. In some embodiments the control, or reference, sample may be derived from a subject that is afflicted with CD123-expressing cancer. In some embodiments where the control, or reference, sample is derived from a subject that is not afflicted with CD 123-expressing cancer, an observed increase in the amount of CD 123 present in the test sample, relative to that observed for the control or reference sample, is an indication that the subject being assessed is afflicted with CD123-expressing cancer, an observed decrease or similarity in the amount of CD123 present in the test sample, relative to that observed for the control or reference sample, is an indication that the subject being assessed is not afflicted with CD123-expressing cancer. In some embodiments where the control or reference sample is derived from a subject that is afflicted with CD123-expressing cancer, an observed similarity in the amount of CD123 present in the test sample, relative to that observed for the control or reference sample, is an indication that the subject being assessed is afflicted with CD123-expressing cancer. In some embodiments where the control or reference sample is derived from a subject that is afflicted with CD123-expressing cancer, an observed decrease in the amount of CD123 present in the test sample, relative to that observed for the control or reference sample, is an indication that the subject being assessed is not afflicted with CD123-expressing cancer.

[0171] In some embodiments the amount of CD123 in the sample derived from the subject is assessed by contacting the sample with an antibody, or an antigen-binding fragment thereof, that specifically binds CD123, such as the antibodies described herein. The sample assessed for the presence of CD123 may be derived from a blood sample, a serum sample, circulating cells, circulating tumor cells, cells that are not tissue associated (*i.e.*, free cells), tissues (e.g., surgically resected tumor tissue, biopsies, including fine needle aspiration), histological preparations, and the like.

[0172] In various aspects, the amount of CD123 is determined by contacting the sample with an antibody, or antigen-binding fragment thereof, that specifically binds CD123. In some embodiments, the sample may be contacted by more than one type of antibody, or antigen-binding fragment thereof, that specifically binds CD123. In some embodiments, the sample may be contacted by a first antibody, or antigen-binding fragment thereof, that specifically binds CD123 and then contacted by a second antibody, or antigen-binding fragment thereof, that specifically binds CD123. CD123-specific antibodies or antigen-binding fragments such as those described herein may be used in this capacity.

[0173] Various combinations of the CD123-specific antibodies and antigen-binding fragments can be used to provide a "first" and "second" antibody or antigen-binding fragment to carry out the described diagnostic methods. In some embodiments CD123-expressing cancer includes a hematological cancer, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN). [0174] In certain embodiments, the amount of CD123 is determined by western blot analysis, radioimmunoassay, immunofluorimetry, immunoprecipitation, equilibrium dialysis, immunodiffusion, electrochemiluminescence (ECL) immunoassay, immunohistochemistry, fluorescence-activated cell sorting (FACS) or ELISA assay.

[0175] In various embodiments of the described diagnostic methods a control or reference sample is used. This sample may be a positive or negative assay control that ensures the assay used is working properly; for example, an assay control of this nature might be commonly used for immunohistochemistry assays. Alternatively, the sample may be a standardized reference for the amount of CD123 in a biological sample from a healthy subject. In some embodiments, the observed CD123levels of the tested subject may be compared with CD123 levels observed in samples from subjects known to have CD123-expressing cancer. In some embodiments, the control subject may be afflicted with a particular cancer of interest. In some embodiments, the control subject is known to have early stage cancer, which may or may not be CD123-expressing cancer. In some embodiments, the control subject is known to have intermediate stage cancer, which may or may not be CD123-expressing cancer. In some embodiments, the control subject is known to have late stage, which may or may not be CD 123-expressing cancer.

Methods for Monitoring Cancer

10

20

30

35

40

45

50

55

[0176] Provided herein are methods for monitoring CD123-expressing cancer in a subject. In some embodiments CD123-expressing cancer includes a hematological cancer, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN). In some embodiments the described methods involve assessing whether CD123-expressing cancer is progressing, regressing, or remaining stable by determining the amount of CD 123 that is present in a test sample derived from the subject; and comparing the observed amount of CD123 with the amount of CD123 in a biological sample obtained, in a similar manner, from the subject at an earlier point in time, wherein a difference between the amount of CD123 in the test sample and the earlier sample provides an indication of whether the cancer is progressing, regressing, or remaining stable. In this regard, a test sample with an increased amount of CD123, relative to the amount observed for the earlier sample, may indicate progression of a CD123-expressing cancer. Conversely, a test sample with a decreased amount of CD123, relative to the amount observed for the earlier sample, may indicate regression of a CD123-expressing cancer.

[0177] Accordingly, a test sample with an insignificant difference in the amount of CD123, relative to the amount observed for the earlier sample, may indicate a state of stable disease for a CD123-expressing cancer. In some embodiments the amount of CD123 in a biological sample derived from the subject is assessed by contacting the sample with an antibody, or an antibody fragment thereof, that specifically binds CD123, such as the antibodies described herein. The sample assessed for the presence of CD123 may be derived from urine, blood, serum, plasma, saliva, ascites, circulating cells, circulating tumor cells, cells that are not tissue associated (i.e., free cells), tissues (e.g., surgically resected tumor tissue, biopsies, including fine needle aspiration), histological preparations, and the like. In some embodiments the subject is a human.

[0178] In some embodiments the methods of monitoring a CD123-expressing cancer will involve: contacting a biological sample of a subject with a CD123-specific antibody, or antigen-binding fragment thereof (such as those derivable from the antibodies and fragments provided in Table 1), quantifying the amount of CD123 present in the sample, comparing the amount of CD123 present in the sample to the amount of CD123 determined to be in a biological sample obtained, in a similar manner, from the same subject at an earlier point in time; and determining whether the subject's CD123 level has changed over time. A test sample with an increased amount of CD123, relative to the amount observed for the earlier sample, may indicate progression of cancer. Conversely, a test sample with a decreased amount of CD123, relative to the amount observed for the earlier sample, may indicate regression of a CD123-expressing cancer. Accordingly, a test sample with an insignificant difference in the amount of CD123, relative to the amount observed for the earlier sample, may indicate a state of stable disease for a CD123-expressing cancer. In some embodiments, the CD123 levels of the sample may be compared to a known standard or a reference sample, alone or in addition to the CD123 levels observed for a sample assessed at an earlier point in time. In an additional embodiment, the diagnostic method can be followed with an additional step of administering a cancer-specific treatment. In some embodiments the cancer-specific treatment may be directed against CD123-expressing cancers, such as the CD123 x CD3 multispecific antibodies described herein.

[0179] In various aspects, the amount of CD123 is determined by contacting the sample with an antibody, or antigen-binding fragment thereof, that specifically binds CD123. In some embodiments, the sample may be contacted by more

than one type of antibody, or antigen-binding fragment thereof, that specifically binds CD123. In some embodiments, the sample may be contacted by a first antibody, or antigen-binding fragment thereof, that specifically binds CD123 and then contacted by a second antibody, or antigen-binding fragment thereof, that specifically binds CD123. Antibodies such as those described herein may be used in this capacity.

[0180] Various combinations of the antibodies and antigen-binding fragments described in Table 1 can be used to provide a "first" and "second" antibody or antigen-binding fragment to carry out the described monitoring methods. In some embodiments CD123-expressing cancer includes a hematological cancer, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DP-DCN).

[0181] In certain embodiments, the amount of CD123 is determined by western blot analysis, radioimmunoassay, immunofluorimetry, immunoprecipitation, equilibrium dialysis, immunodiffusion, electrochemiluminescence (ECL) immunoassay, immunohistochemistry, fluorescence-activated cell sorting (FACS) or ELISA assay.

15 Kits for Detecting CD123

10

30

35

50

55

[0182] Provided herein are kits for detecting CD123 in a biological sample. These kits include one or more of the CD123-specific antibodies described herein, or an antigen-binding fragment thereof, and instructions for use of the kit. **[0183]** The provided CD123-specific antibody, or antigen-binding fragment, may be in solution; lyophilized; affixed to a substrate, carrier, or plate; or detectably labeled.

[0184] The described kits may also include additional components useful for performing the methods described herein. By way of example, the kits may comprise means for obtaining a sample from a subject, a control or reference sample, e.g., a sample from a subject having slowly progressing cancer and/or a subject not having cancer, one or more sample compartments, and/or instructional material which describes performance of a method of the invention and tissue specific controls or standards.

[0185] The means for determining the level of CD123 can further include, for example, buffers or other reagents for use in an assay for determining the level of CD 23. The instructions can be, for example, printed instructions for performing the assay and/or instructions for evaluating the level of expression of CD123.

[0186] The described kits may also include means for isolating a sample from a subject. These means can comprise one or more items of equipment or reagents that can be used to obtain a fluid or tissue from a subject. The means for obtaining a sample from a subject may also comprise means for isolating blood components, such as serum, from a blood sample. Preferably, the kit is designed for use with a human subject.

Multispecific Antibodies

[0187] The binding domains of the anti-CD 123 antibodies described herein recognize cells expressing CD123 on their surface. As noted above, CD123 expression can be indicative of a cancerous cell. More specific targeting to particular subsets of cells can be achived by making bispecific molecules, such as antibodies or antibody fragments, which bind to CD123 and to another target. Examples of such further targets include CD3 and CD33. This is achieved by making a molecule which comprises a first region binding to CD 123 and a second binding region binding to the further antigen. The antigen-binding regions can take any form that allows specific recognition of the target, for example the binding region may be or may include a heavy chain variable domain or an Fv (combination of a heavy chain variable domain and a light chain variable domain). Accordingly, bispecific molecules comprising two different antigen-binding regions which bind CD123 and another antigen, respectively, are provided.

[0188] Some of the multispecific antibodies described herein comprise two different antigen-binding regions which bind CD123 and CD3, respectively. In preferred embodiments, multispecific antibodies that bind CD123 and CD3 (CD123 x CD3-multispecific antibodies) and multispecific antigen-binding fragments thereof are provided. In some embodiments, the CD123 x CD3-multispecific antibody comprises a first heavy chain (HCI) and a first light chain (LC1) that pair to form a first antigen-binding site that immunospecifically binds CD123 and a second heavy chain (HC2) and a second light chain (LC2) that pair to form a second antigen-binding site that immunospecifically binds CD3. In preferred embodiments, the CD123 x CD3-multispecific antibody is a bispecific antibody comprising a CD123-specific arm comprising a first heavy chain (HC1) and a first light chain (LC1) that pair to form a first antigen-binding site that immunospecifically binds CD123 and a CD3-specific arm comprising second heavy chain (HC2) and a second light chain (LC2) that pair to form a second antigen-binding site that immunospecifically binds CD3. In some embodiments, the bispecific antibodies of the invention include antibodies having a full length antibody structure. "Full length antibody" as used herein refers to an antibody having two full length antibody heavy chains and two full length antibody light chains. A full length antibody heavy chain (HC) includes heavy chain variable and constant domains VH, CHI, CH2, and CH3. A full length antibody light chain (LC) includes light chain variable and constant domains VH, CHI, CH2, and CH3. A full length antibody light chain (LC) includes light chain variable and constant domains VH, CHI, CH2, and CH3. A full length antibody light chain (LC) includes light chain variable and constant domains VL and CL. The full length antibody may be lacking

the C-terminal lysine (K) in either one or both heavy chains. The term "Fab-arm" or "half molecule" refers to one heavy chain-light chain pair that specifically binds an antigen.

[0189] The CD123-binding arm of the multispecific antibodies provided herein may be derived from any of the CD123specific antibodies described above. In some embodiments, the CD123-binding arm binds to an epitope including one or more residues from (i) the segment of CD123 SP2 ECD comprising residues 195 - 202 (RARERVYE (SEQ ID NO: 234)) and/or the segment of CD123 SP2 ECD comprising residues 156-161 (RKFRYE (SEQ ID NO:232)) and/or the segment of CD123 SP2 ECD comprising residues 173 - 178 (TEQVRDR (SEQ ID NO: 233) or (ii) the segment of CD123 SP2 ECD comprising residues 164 - 175 (IQKRMQPVITEQ (SEQ ID NO: 228)) and/or the segment of CD123 SP2 ECD comprising residues 184-189 (LLNPGT (SEQ ID NO: 229)). In some embodiments, the CD123-binding arm competes for binding to CD123 with a CD123-specific antibody or antigen-binding fragment that binds to an epitope including one or more residues from (i) the segment of CD123 SP2 ECD comprising residues 195 - 202 (RARERVYE (SEQ ID NO: 234)) and/or the segment of CD123 SP2 ECD comprising residues 156-161 (RKFRYE (SEQ ID NO:232 and/or the segment of CD123 SP2 ECD comprising residues 173 - 178 (TEQVRDR (SEQ ID NO: 233)) or (ii) the segment of CD123 SP2 ECD comprising residues 164 - 175 (IQKRMQPVITEQ (SEQ ID NO: 228)) and/or the segment of CD123 SP2 ECD comprising residues 184-189 (LLNPGT (SEQ ID NO: 229)).CD 123-binding arms binding to at least one residue in these epitopes may also bind to additional residues in the CD123 ECD. In some embodiments, the CD123-binding arm is neutralizing. A neutralizing CD123-binding arm includes those that are capable of inhibiting the binding of IL-3 to CD123 as determined by measuring the decrease in STAT5 phosphorylation upon stimulation of TF-1 cells with rhlL-3. In some embodiments of the bispecific antibodies, the CD123-binding arm binds human CD123 SP1, preferably the extracellular domain thereof.

10

20

30

35

45

50

55

[0190] In some exemplary embodiments of such CD123 SP1-binding arms, the first antigen-binding region which binds CD123 comprises a heavy chain CDR1, CDR2, and CDR3 derived from an I3RB2 or I3RB18 antibody clone as described in Table 1. In some exemplary embodiments of such CD123 SP1-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain CDR1, CDR2, and CDR3 and light chain CDR1, CDR2, and CDR3 derived from an I3RB2 or I3RB18 antibody clone as described in Table 1. In some exemplary embodiments of the disclosure of such CD123 SP1-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain CDR1, CDR2, and CDR3 of clone I3RB1, I3RB2, I3RB5, I3RB6, I3RB7, I3RB8, I3RB9, I3RB11, I3RB12, I3RB16, I3RB17, I3RB18, I3RB19, I3RB20, I3RB21, I3RB22, I3RB24, I3RB28, I3RB29, I3RB30, I3RB32, I3RB33, I3RB34, I3RB35, I3RB36, I3RB37, I3RB38, I3RB40, or I3RB47. In some exemplary embodiments of the disclosure of such CD123 SP1-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain CDR1, CDR2, and CDR3 and light chain CDR1, CDR2, and CDR3 of clone I3RB1, I3RB2, I3RB5, I3RB6, I3RB7, I3RB8, I3RB9, I3RB11, I3RB12,13RB16,13RB17,13RB18,13RB19,13RB20,13RB21,13RB22,13RB24,13RB28, I3RB29, I3RB30, I3RB32, I3RB33, I3RB34, I3RB35, I3RB36, I3RB37, I3RB38, I3RB40, or I3RB47. In some exemplary embodiments of such CD123 SP1-binding arms, the first antigen-binding region which binds CD123 comprises a heavy chain variable domain derived from an I3RB2 or I3RB18 antibody clone as described in Table 1. In some exemplary embodiments of such CD123 SP1-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain variable domain and light chain variable domain derived from an I3RB2 or I3RB18 antibody clone as described in Table 1. In some exemplary embodiments of the disclosure of such CD123 SP1-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain variable domain of clone I3RB1, I3RB2, I3RB5, I3RB6, I3RB7, I3RB8, I3RB9, I3RB11, I3RB12, I3RB16, I3RB17, I3RB18, I3RB19, I3RB20, I3RB21, I3RB22, I3RB24, I3RB28, I3RB29, I3RB30, I3RB32, I3RB33, I3RB34, I3RB35, I3RB36, I3RB37, I3RB38, I3RB40, or I3RB47. In some exemplary embodiments of the disclosure of such CD123 SP1-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain variable domain and light chain variable domain of clone I3RB1, I3RB2, I3RB5, I3RB6, I3RB7, I3RB8, I3RB9, I3RB11, I3RB12, I3RB16, I3RB17, I3RB18, I3RB19, I3RB20, I3RB21, I3RB22, I3RB24, I3RB28, I3RB29, I3RB30, I3RB32, I3RB33, I3RB34, I3RB35, I3RB36, I3RB37, I3RB38, I3RB40, or I3RB47.

[0191] In some embodiments of the bispecific antibodies, the CD123-binding arm binds human CD123 SP2, preferably the extracellular domain thereof. In preferred embodiments of the bispecific antibodies, the CD123-binding arm binds human CD123 SP1 and human CD123 SP2, and more preferably the extracellular domains thereof. In some exemplary embodiments of such CD123 SP2-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain CDR1, CDR2, and CDR3 of clone I3RB2 or I3RB18. In some exemplary embodiments of such CD123 SP2-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain CDR1, CDR2, and CDR3 and light chain CDR1, CDR2, and CDR3 of clone I3RB2 or I3RB18. In some exemplary embodiments of such CD123 SP2-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain variable domain of clone I3RB2 or I3RB18. In some exemplary embodiments of such CD123 SP2-binding arms, the first antigen-binding region which binds CD123 comprises heavy chain variable domain of clone I3RB2 or I3RB18.

[0192] In some embodiments of the bispecific antibodies, the CD123-binding arm also binds cynomolgus CD123, preferably the extracellular domain thereof.

[0193] In some embodiments of the bispecific antibodies, the CD123-binding arm is derived from a CD123-specific

antibody that competes for binding to CD123 with antibody clone I3RB2, I3RB60, I3RB70, I3RB79, or I3RB118. In some embodiments of the bispecific antibodies, the CD123-binding arm is derived from a CD123-specific antibody that competes for binding to CD123 with antibody clone I3RB18, I3RB49, or I3RB55. Competition for binding can be determined using a competition binding ELISA, in line with the technique described below in Example 5. Competitive binding may be determined by detecting at least 20% inhibition of the binding of a first antibody by a second antibody, irrespective of the order in which the antibodies are bound to CD123 (*i.e.* if when antibody A is bound to CD123 before antibody B, only 10% inhibition is observed, but when antibody B is bound to CD123 before antibody A, 30% inhibition is observed, then because greater than 20% inhibition has been observed in one of the experiments, competitive binding may be concluded).

[0194] In some embodiments, the CD123-binding arm of the multispecific antibody is IgG, or a derivative thereof, e.g., IgG1, IgG2, IgG3, and IgG4 isotypes. In some embodiments wherein the CD123-binding arm has an IgG1 isotype, it contains L234A, L235A, and K409R substitution(s) in its Fc region. In some embodiments wherein the CD123-binding arm has an IgG4 isotype, it contains S228P, L234A, and L235A substitution(s) in its Fc region.

10

30

35

50

55

[0195] In some embodiments of the bispecific antibodies, the second antigen-binding arm binds human CD3. In some preferred embodiments, the CD3-specific arm of the CD123 x CD3 bispecific antibody is derived from a CD3-specific antibody that binds and activates human primary T cells and/or cynomolgus monkey primary T cells. In some embodiments, the CD3-binding arm binds to an epitope at the N-terminus of CD3ε. In some embodiments, the CD3-binding arm contacts an epitope including the six N-terminal amino acids of CD3ε. In some embodiments, the CD3-specific binding arm of the bispecific antibody is derived from the mouse monoclonal antibody SP34, a mouse IgG3/lambda isotype. In some embodiments, the CD3-binding arm comprises the CDRs of antibody SP34. Such CD3-binding arms may bind to CD3 with an affinity of 5x10-7M or less, such as 1x10-7M or less, 5x10-8M or less, 1x10-8M or less, 5x10-9M or less, or 1x10-9M or less. The CD3-specific binding arm may be a humanized version of an arm of mouse monoclonal antibody SP34. Human framework adaptation (HFA) may be used to humanize the anti-CD3 antibody from which the CD3-specific arm is derived. In some embodiments of the bispecific antibodies, the CD3-binding arm comprises a heavy chain and light chain pair selected from Table 2. In some embodiments, the CD3-binding arm of the CD123 x CD3 bispecific antibody is derived from Table 3.

[0196] In some embodiments, the CD3-binding arm is IgG, or a derivative thereof. In some embodiments, the CD3-binding arm is IgG1, IgG2, IgG3, or IgG4. In some embodiments wherein the CD3-binding arm has an IgG1 isotype, it contains L234A, L235A, and F405L substitution(s) in its Fc region. In some embodiments wherein the CD3-binding arm has an IgG4 isotype, it contains S228P, L234A, L235A, F405L, and R409K substitution(s) in its Fc region. In some embodiments, the antibodies or antigen-binding fragments are IgG-AA Fc. In some embodiments, the antibodies or antigen-binding fragments are IgG-AA Fc-L234A, L235A, and F405L. In some embodiments, the antibodies or antigen-binding fragments bind CD3 $_{\rm E}$ on primary human T cells. In some embodiments, the antibodies or antigen-binding fragments bind CD3 $_{\rm E}$ on primary cynomolgus T cells. In some embodiments, the antibodies or antigen-binding fragments activate primary human CD4+ T cells. In some embodiments, the antibodies or antigen-binding fragments activate primary cynomolgus CD4+ T cells.

[0197] In some embodiments are provided a CD123 x CD3 bispecific antibody having a CD123-binding arm comprising a heavy chain of antibody clone I3RB179, I3RB180, I3RB181, I3RB182, I3RB183, I3RB186, I3RB187, I3RB188, I3RB189, CD3B191, Ab 7959, Ab3978, Ab 7955, Ab 9958, Ab 8747, Ab 8876, Ab 4435, or Ab 5466. In some embodiments are provided a CD123 x CD3 bispecific antibody having a CD123-binding arm comprising a heavy chain and light chain of antibody clone I3RB179, I3RB180, I3RB181, I3RB182, I3RB183, I3RB186, I3RB187, I3RB188, I3RB189, CD3B191, Ab 7959, Ab3978, Ab 7955, Ab 9958, Ab 8747, Ab 8876, Ab 4435, or Ab 5466. In some embodiments are provided a CD123 x CD3 bispecific antibody having a CD3-binding arm comprising a heavy chain of antibody clone I3RB179, I3RB180, I3RB181, I3RB182, I3RB183, I3RB186, I3RB187, I3RB188, I3RB189, CD3B191, Ab 7959, Ab3978, Ab 7955, Ab 9958, Ab 8747, Ab 8876, Ab 4435, or Ab 5466. In some embodiments are provided a CD123 x CD3 bispecific antibody having a CD3-binding arm comprising a heavy chain and light chain of antibody clone I3RB179, I3RB180, I3RB181, I3RB182, I3RB183, I3RB186, I3RB187, I3RB188, I3RB189, CD3B191, Ab 7959, Ab3978, Ab 7955, Ab 9958, Ab 8747, Ab 8876, Ab 4435, or Ab 5466. In some embodiments are provided a CD123 x CD3 bispecific antibody having a CD123binding arm comprising a heavy chain of antibody clone I3RB179, I3RB180, I3RB181, I3RB182, I3RB183, I3RB186, I3RB187, I3RB188, I3RB189, CD3B191, mAB 7959, Ab3978, Ab 7955, Ab 9958, Ab 8747, Ab 8876, Ab 4435, or Ab 5466 and a CD3-binding arm comprising a heavy chain of antibody clone I3RB179, I3RB180, I3RB181, I3RB182, I3RB183, I3RB186, I3RB187, I3RB188, I3RB189, CD3B191, AbB 7959, Ab3978, Ab 7955, Ab 9958, Ab 8747, Ab 8876, Ab 4435, or Ab 5466. In some embodiments are provided a CD123 x CD3 bispecific antibody having a CD123-binding arm comprising a heavy chain and light chain of antibody clone I3RB179, I3RB180, I3RB181, I3RB182, I3RB183, I3RB186, I3RB187, I3RB188, I3RB189, CD3B191, Ab 7959, Ab3978, Ab 7955, Ab 9958, Ab 8747, Ab 8876, Ab 4435, or Ab 5466and a CD3-binding arm comprising a heavy chain and light chain of antibody clone I3RB179, I3RB180, I3RB181, I3RB182, I3RB183, I3RB186, I3RB187, I3RB188, I3RB189, CD3B191, Ab 7959, Ab3978, Ab 7955, Ab 9958, Ab 8747, Ab 8876, Ab 4435, or Ab 5466.

10

30

35

40

45

50

55

[0198] Preferred CD123 x CD3 bispecific antibodies are provided in Tables 13 and 17.

[0199] Different formats of bispecific antibodies have been described and were recently reviewed by Chames and Baty (2009) Curr Opin Drug Disc Dev 12: 276.

[0200] In some embodiments, the bispecific antibody of the present invention is a diabody, a cross-body, or a bispecific antibody obtained via a controlled Fab arm exchange as those described in the present invention.

[0201] In some embodiments, the bispecific antibodies include IgG-like molecules with complementary CH3 domains to force heterodimerisation; recombinant IgG-like dual targeting molecules, wherein the two sides of the molecule each contain the Fab fragment or part of the Fab fragment of at least two different antibodies; IgG fusion molecules, wherein full length IgG antibodies are fused to an extra Fab fragment or parts of Fab fragment; Fc fusion molecules, wherein single chain Fv molecules or stabilized diabodies are fused to heavy-chain constant-domains, Fc-regions or parts thereof; Fab fusion molecules, wherein different Fab-fragments are fused together; ScFv- and diabody-based and heavy chain antibodies (e.g., domain antibodies, nanobodies) wherein different single chain Fv molecules or different diabodies or different heavy-chain antibodies (e.g. domain antibodies, nanobodies) are fused to each other or to another protein or carrier molecule.

[0202] In some embodiments, IgG-like molecules with complementary CH3 domains molecules include the Triomab/Quadroma (Trion Pharma/Fresenius Biotech), the Knobs-into-Holes (Genentech), CrossMAbs (Roche) and the electrostatically-matched (Amgen), the LUZ-Y (Genentech), the Strand Exchange Engineered Domain body (SEED-body)(EMD Serono), the Biclonic (Merus) and the DuoBody (Genmab A/S).

[0203] In some embodiments, recombinant IgG-like dual targeting molecules include Dual Targeting (DT)-Ig (GSK/Domantis), Two-in-one Antibody (Genentech), Cross-linked Mabs (Karmanos Cancer Center), mAb2 (F-Star) and CovX-body (CovX/Pfizer).

[0204] In some embodiments, IgG fusion molecules include Dual Variable Domain (DVD)-Ig (Abbott), IgG-like Bispecific (InnClone/Eli Lilly), Ts2Ab (MedImmune/AZ) and BsAb (Zymogenetics), HERCULES (Biogen Idec) and TvAb (Roche).

[0205] In some embodiments, Fc fusion molecules include to ScFv/Fc Fusions (Academic Institution), SCORPION (Emergent BioSolutions/Trubion, Zymogenetics/BMS), Dual Affinity Retargeting Technology (Fc-DART) (MacroGenics) and Dual(ScFv).sub.2-Fab (National Research Center for Antibody Medicine--China).

[0206] In some embodiments, Fab fusion bispecific antibodies include F(ab)2 (Medarex/AMGEN), Dual-Action or Bis-Fab (Genentech), Dock-and-Lock (DNL) (ImmunoMedics), Bivalent Bispecific (Biotecnol) and Fab-Fv (UCB-Celltech). ScFv-, diabody-based and domain antibodies include but are not limited to Bispecific T Cell Engager (BITE) (Micromet), Tandem Diabody (Tandab) (Affimed), Dual Affinity Retargeting Technology (DART) (MacroGenics), Single-chain Diabody (Academic), TCR-like Antibodies (AIT, ReceptorLogics), Human Serum Albumin ScFv Fusion (Merrimack) and COMBODY (Epigen Biotech), dual targeting nanobodies (Ablynx), dual targeting heavy chain only domain antibodies.

[0207] Full length bispecific antibodies of the invention may be generated for example using Fab arm exchange (or half molecule exchange) between two mono specific bivalent antibodies by introducing substitutions at the heavy chain CH3 interface in each half molecule to favor heterodimer formation of two antibody half molecules having distinct specificity either in vitro in cell-free environment or using co-expression. The Fab arm exchange reaction is the result of a disulfide-bond isomerization reaction and dissociation-association of CH3 domains. The heavy-chain disulfide bonds in the hinge regions of the parent mono specific antibodies are reduced. The resulting free cysteines of one of the parent monospecific antibodies form an inter heavy-chain disulfide bond with cysteine residues of a second parent mono specific antibody molecule and simultaneously CH3 domains of the parent antibodies release and reform by dissociation-association. The CH3 domains of the Fab arms may be engineered to favor heterodimerization over homodimerization. The resulting product is a bispecific antibody having two Fab arms or half molecules which each bind a distinct epitope, i.e. an epitope on CD123 (IL3-Rα) and an epitope on CD3.

[0208] "Homodimerization" as used herein refers to an interaction of two heavy chains having identical CH3 amino acid sequences. "Homodimer" as used herein refers to an antibody having two heavy chains with identical CH3 amino acid sequences.

[0209] "Heterodimerization" as used herein refers to an interaction of two heavy chains having non-identical CH3 amino acid sequences. "Heterodimer" as used herein refers to an antibody having two heavy chains with non-identical CH3 amino acid sequences.

[0210] The "knob-in-hole" strategy (see, e.g., PCT Inti. Publ. No. WO 2006/028936) may be used to generate full length bispecific antibodies. Briefly, selected amino acids forming the interface of the CH3 domains in human IgG can be mutated at positions affecting CH3 domain interactions to promote heterodimer formation. An amino acid with a small side chain (hole) is introduced into a heavy chain of an antibody specifically binding a first antigen and an amino acid with a large side chain (knob) is introduced into a heavy chain of an antibody specifically binding a second antigen. After co-expression of the two antibodies, a heterodimer is formed as a result of the preferential interaction of the heavy chain with a "hole" with the heavy chain with a "knob". Exemplary CH3 substitution pairs forming a knob and a hole are (expressed as modified position in the first CH3 domain of the first heavy chain/modified position in the second CH3

domain of the second heavy chain): T366Y/F405A, T366W/ F405W, F405W/Y407A, T394W/Y407T, T394S/Y407A, T366W/T394S, F405W/T394S and T366W/T366S L368A Y407V.

10

30

35

40

45

50

55

antibodies may also be produced by hybridoma cells.

[0212] In addition to methods described above, bispecific antibodies of the invention may be generated in vitro in a cell-free environment by introducing asymmetrical mutations in the CH3 regions of two mono specific homodimeric antibodies and forming the bispecific heterodimeric antibody from two parent monospecific homodimeric antibodies in reducing conditions to allow disulfide bond isomerization according to methods described in Inti. Pat. Publ. No. WO2011/131746. In the methods, the first monospecific bivalent antibody (e.g., anti-CD123 (IL3-R α) antibody) and the second monospecific bivalent antibody (e.g., anti-CD3 antibody) are engineered to have certain substitutions at the CH3 domain that promotes heterodimer stability; the antibodies are incubated together under reducing conditions sufficient to allow the cysteines in the hinge region to undergo disulfide bond isomerization; thereby generating the bispecific antibody by Fab arm exchange. The incubation conditions may optimally be restored to non-reducing conditions. Exemplary reducing agents that may be used are 2-mercaptoethylamine (2-MEA), dithiothreitol (DTT), dithioerythritol (DTE), glutathione, tris (2-carboxyethyl)phosphine (TCEP), L-cysteine and beta-mercaptoethanol, preferably a reducing agent selected from the group consisting of: 2-mercaptoethylamine, dithiothreitol and tris (2-carboxyethyl)phosphine. For example, incubation for at least 90 min at a temperature of at least 20° C in the presence of at least 25 mM 2-MEA or in the presence of at least 0.5 mM dithiothreitol at a pH from 5-8, for example at pH of 7.0 or at pH of 7.4 may be used. [0213] In addition to the described CD123 x CD3-multispecific antibodies, also provided are polynucleotide sequences capable of encoding the described CD123 x CD3-multispecific antibodies. Vectors comprising the described polynucleotides are also provided, as are cells expressing the CD123 x CD3-multispecific antibodies provided herein. Also described are cells capable of expressing the disclosed vectors. These cells may be mammalian cells (such as 293F cells, CHO cells), insect cells (such as Sf7 cells), yeast cells, plant cells, or bacteria cells (such as E. coli). The described

Therapeutic composition and methods of treatment using multispecific antibodies and multispecific antigenbinding fragments thereof

[0214] The CD123 bispecific antibodies discussed above, for example the CD123 x CD3 bispecific antibodies discussed above, are useful in therapy. In particular, the CD123 bispecific antibodies are useful in treating cancer. Also provided herein are therapeutic compositions for the treatment of a hyperproliferative disorder in a mammal which comprises a therapeutically effective amount of a multispecific antibody or multispecific antigen-binding fragment described herein and a pharmaceutically acceptable carrier. In preferred embodiments, the multispecific antibody is a CD123 x CD3multispecific antibody as described herein, or a multispecific antigen-binding fragment thereof, and more preferably a CD123 x CD3-bispecific antibody as described herein, or a CD123 x CD3-bispecific antigen-binding fragment thereof. In one embodiment said pharmaceutical composition is for the treatment of a CD123-expressing cancer, including (but not limited to) the following: CD123-expressing hematological cancers, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large Bcell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN); and other cancers yet to be determined in which CD123 is expressed. Particular bispecific antibodies that may be used to treat cancer, such as hematological cancer, including the specific cancers discussed above, include antibodies 7959, 3978, 7955, 9958, 8747, 4435, and 5466. One example of a useful bispecific antibody for treating cancer, such as hematological cancer, including these specific cancers is antibody 9958. Another example of a useful bispecific antibody for treating cancer, such as hematological cancer, including these specific cancers is antibody 3978. Another example of a useful bispecific antibody for treating cancer, such as hematological cancer, including these specific cancers is antibody 8747. Another example of a useful bispecific antibody for treating cancer, such as hematological cancer, including is these specific cancers is antibody 7959.

[0215] The pharmaceutical compositions provided herein comprise: a) an effective amount of a multispecific antibody or antibody fragment of the present invention, and b) a pharmaceutically acceptable carrier, which may be inert or physiologically active. In preferred embodiments, the multispecific antibody is a CD123 x CD3-multispecific antibody as described herein, or a multispecific antigen-binding fragment thereof, and more preferably a CD 123 x CD3-bispecific

antibody as described herein, or a CD123 x CD3-bispecific antigen-binding fragment thereof. As used herein, the term "pharmaceutically acceptable carriers" includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, and the like that are physiologically compatible. Examples of suitable carriers, diluents and/or excipients include one or more of water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, and the like, as well as any combination thereof. In many cases, it will be preferable to include isotonic agents, such as sugars, polyalcohols, or sodium chloride in the composition. In particular, relevant examples of suitable carrier include: (1) Dulbecco's phosphate buffered saline, pH.about.7.4, containing or not containing about 1 mg/mL to 25 mg/mL human serum albumin, (2) 0.9% saline (0.9% w/v sodium chloride (NaCl)), and (3) 5% (w/v) dextrose; and may also contain an antioxidant such as tryptamine and a stabilizing agent such as Tween 20 ®.

[0216] The compositions herein may also contain a further therapeutic agent, as necessary for the particular disorder being treated. Preferably, the multispecific antibody or antibody fragment and the supplementary active compound will have complementary activities that do not adversely affect each other. In a preferred embodiment, the further therapeutic agent is cytarabine, an anthracycline, histamine dihydrochloride, or interleukin 2. In a preferred embodiment, the further therapeutic agent is a chemotherapeutic agent.

10

30

35

50

55

ening, flavoring or stabilizing products.

[0217] The compositions of the invention may be in a variety of forms. These include for example liquid, semi-solid, and solid dosage forms, but the preferred form depends on the intended mode of administration and therapeutic application. Typical preferred compositions are in the form of injectable or infusible solutions. The preferred mode of administration is parenteral (e.g. intravenous, intramuscular, intraperinoneal, subcutaneous). In a preferred embodiment, the compositions of the invention are administered intravenously as a bolus or by continuous infusion over a period of time. In another preferred embodiment, they are injected by intramuscular, subcutaneous, intra-articular, intrasynovial, intratumoral, peritumoral, intralesional, or perilesional routes, to exert local as well as systemic therapeutic effects.

[0218] Sterile compositions for parenteral administration can be prepared by incorporating the antibody, antibody fragment or antibody conjugate of the present invention in the required amount in the appropriate solvent, followed by sterilization by microfiltration. As solvent or vehicle, there may be used water, saline, phosphate buffered saline, dextrose, glycerol, ethanol, and the like, as well as combination thereof. In many cases, it will be preferable to include isotonic agents, such as sugars, polyalcohols, or sodium chloride in the composition. These compositions may also contain adjuvants, in particular wetting, isotonizing, emulsifying, dispersing and stabilizing agents. Sterile compositions for parenteral administration may also be prepared in the form of sterile solid compositions which may be dissolved at the time of use in sterile water or any other injectable sterile medium.

[0219] The multispecific antibody or antibody fragment may also be orally administered. As solid compositions for oral administration, tablets, pills, powders (gelatine capsules, sachets) or granules may be used. In these compositions, the active ingredient according to the invention is mixed with one or more inert diluents, such as starch, cellulose, sucrose, lactose or silica, under an argon stream. These compositions may also comprise substances other than diluents, for example one or more lubricants such as magnesium stearate or talc, a coloring, a coating (sugar-coated tablet) or a glaze.

[0220] As liquid compositions for oral administration, there may be used pharmaceutically acceptable solutions, suspensions, emulsions, syrups and elixirs containing inert diluents such as water, ethanol, glycerol, vegetable oils or paraffin oil. These compositions may comprise substances other than diluents, for example wetting, sweetening, thick-

[0221] The doses depend on the desired effect, the duration of the treatment and the route of administration used; they are generally between 5 mg and 1000 mg per day orally for an adult with unit doses ranging from 1 mg to 250 mg of active substance. In general, the doctor will determine the appropriate dosage depending on the age, weight and any other factors specific to the subject to be treated.

[0222] Also provided herein are methods for killing a CD123+ cell by administering to a patient in need thereof a multispecific antibody which binds said CD123 and is able to recruit T cells to kill said CD123+ cell (i.e., T cell redirection). Any of the multispecific antibodies or antibody fragments of the invention may be used therapeutically. In preferred embodiments, the multispecific antibody is a CD123 x CD3-multispecific antibody as described herein, or a multispecific antigen-binding fragment thereof, and more preferably a CD123 x CD3-bispecific antibody as described herein, or a CD123 x CD3-bispecific antigen-binding fragment thereof.

[0223] In a preferred embodiment, multispecific antibodies or antibody fragments of the invention are used for the treatment of a hyperproliferative disorder in a mammal. In a more preferred embodiment, one of the pharmaceutical compositions disclosed above, and which contains a multispecific antibody or antibody fragment of the invention, is used for the treatment of a hyperproliferative disorder in a mammal. In one embodiment, the disorder is a cancer. In particular, the cancer is a CD123-expressing cancer, including (but not limited to) the following: CD123-expressing hematological cancers, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN); and other cancers yet to be determined in which CD123 is expressed. In preferred embodiments, the multispecific antibody is a CD123 x CD3-multispecific antibody as described herein, or a multispecific antipody as

described herein, or a CD123 x CD3-bispecific antigen-binding fragment thereof.

10

15

20

30

35

40

45

50

55

[0224] Accordingly, the pharmaceutical compositions of the invention are useful in the treatment or prevention of a variety of cancers, including (but not limited to) the following: a CD123-expressing cancer, including (but not limited to) the following: CD123-expressing hematological cancers, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN); and other cancers yet to be determined in which CD123 is expressed.

[0225] Similarly, further disclosed herein is a method for inhibiting the growth of selected cell populations comprising contacting CD123-expressing target cells, or tissue containing such target cells, with an effective amount of a multispecific antibody or antibody fragment of the present invention, either alone or in combination with other cytotoxic or therapeutic agents, in the presence of a peripheral blood mononuclear cell (PBMC). In preferred embodiments, the multispecific antibody is a CD123 x CD3-multispecific antibody as described herein, or a multispecific antigen-binding fragment thereof, and more preferably a CD123 x CD3-bispecific antibody as described herein, or a CD123 x CD3-bispecific antigen-binding fragment thereof. In a preferred embodiment, the further therapeutic agent is cytarabine, an anthracycline, histamine dihydrochloride, or interleukin 2. In a preferred embodiment, the further therapeutic agent is a chemotherapeutic agent. The method for inhibiting the growth of selected cell populations can be practiced in vitro, in vivo, or ex vivo.

[0226] Examples of *in vitro* uses include treatments of autologous bone marrow prior to their transplant into the same patient in order to kill diseased or malignant cells; treatments of bone marrow prior to its transplantation in order to kill competent T cells and prevent graft-versus-host-disease (GVHD); treatments of cell cultures in order to kill all cells except for desired variants that do not express the target antigen; or to kill variants that express undesired antigen. The conditions of non-clinical *in vitro* use are readily determined by one of ordinary skill in the art.

[0227] Examples of clinical *ex vivo* use are to remove tumor cells from bone marrow prior to autologous transplantation in cancer treatment. Treatment can be carried out as follows. Bone marrow is harvested from the patient or other individual and then incubated in medium containing serum to which is added the cytotoxic agent of the invention. Concentrations range from about 10 uM to 1 uM, for about 30 min to about 48 hr at about 37 °C. The exact conditions of concentration and time of incubation, i.e., the dose, are readily determined by one of ordinary skill in the art. After incubation the bone marrow cells are washed with medium containing serum and returned to the patient by i.v. infusion according to known methods. In circumstances where the patient receives other treatment such as a course of ablative chemotherapy or total-body irradiation between the time of harvest of the marrow and reinfusion of the treated cells, the treated marrow cells are stored frozen in liquid nitrogen using standard medical equipment.

[0228] For clinical *in vivo* use, a therapeutically effective amount of the multispecific antibody or antigen-binding fragment is administered to a subject in need thereof. For example, the CD123 x CD3-multispecific antibodies and multispecific antigen-binding fragments thereof may be useful in the treatment of a CD123-expressing cancer in a subject in need thereof. In some embodiments, the CD123-expressing cancer is a hematological cancer, such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS, low or high risk), acute lymphocytic leukemia (ALL, including all subtypes), diffuse large B-cell lymphoma (DLBCL), chronic myeloid leukemia (CML), or blastic plasmacytoid dendritic cell neoplasm (DPDCN). In preferred embodiments, the multispecific antibody is a CD123 x CD3-multispecific antibody as described herein, or a multispecific antigen-binding fragment thereof, and more preferably a CD123 x CD3-bispecific antibody as described herein, or a CD123 x CD3-bispecific antigen-binding fragment thereof. In some embodiments, the subject is a mammal, preferably a human. In some embodiments, the multispecific antibody or antigen-binding fragment will be administered as a solution that has been tested for sterility.

[0229] Dosage regimens in the above methods of treatment and uses are adjusted to provide the optimum desired response (e.g., a therapeutic response). For example, a single bolus may be administered, several divided doses may be administered over time or the dose may be proportionally reduced or increased as indicated by the exigencies of the therapeutic situation. Parenteral compositions may be formulated in dosage unit form for ease of administration and uniformity of dosage.

[0230] The efficient dosages and the dosage regimens for the multispecific antibodies and fragments depend on the disease or condition to be treated and may be determined by one skilled in the art. An exemplary, non-limiting range for a therapeutically effective amount of a compound of the present invention is about 0.001-10 mg/kg, such as about 0.001-5 mg/kg, for example about 0.001-2 mg/kg, such as about 0.001-1 mg/kg, for instance about 0.001, about 0.01, about 1 or about 10 mg/kg.

[0231] A physician or veterinarian having ordinary skill in the art may readily determine and prescribe the effective amount of the pharmaceutical composition required. For example, the physician or veterinarian could start doses of the multispecific antibody or fragment employed in the pharmaceutical composition at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved. In general, a suitable daily dose of a bispecific antibody of the present invention will be that amount of the compound which is the lowest dose effective to produce a therapeutic effect. Administration may e.g. be parenteral, such as intravenous, intramuscular or subcutaneous. In one embodiment, the multispecific antibody or fragment may be administered by

infusion in a weekly dosage of calculated by mg/m2. Such dosages can, for example, be based on the mg/kg dosages provided above according to the following: dose (mg/kg)x70: 1.8. Such administration may be repeated, e.g., 1 to 8 times, such as 3 to 5 times. The administration may be performed by continuous infusion over a period of from 2 to 24 hr, such as of from 2 to 12 hr. In one embodiment, the multispecific antibody or fragment may be administered by slow continuous infusion over a long period, such as more than 24 hours, in order to reduce toxic side effects.

[0232] In one embodiment, the multispecific antibody or fragment may be administered in a weekly dosage of calculated as a fixed dose for up to eight times, such as from four to six times when given once a week. Such regimen may be repeated one or more times as necessary, for example, after six months or twelve months. Such fixed dosages can, for example, be based on the mg/kg dosages provided above, with a body weight estimate of 70 kg. The dosage may be determined or adjusted by measuring the amount of bispecific antibody of the present invention in the blood upon administration by for instance taking out a biological sample and using anti-idiotypic antibodies which target the CD123 antigen binding region of the multispecific antibodies of the present invention.

[0233] In one embodiment, the multispecific antibody or fragment may be administered by maintenance therapy, such as, e.g., once a week for a period of six months or more.

[0234] A multispecific antibody or fragment may also be administered prophylactically in order to reduce the risk of developing cancer, delay the onset of the occurrence of an event in cancer progression, and/or reduce the risk of recurrence when a cancer is in remission.

[0235] The multispecific antibodies and fragments thereof as described herein may also be administered in combination therapy, i.e., combined with other therapeutic agents relevant for the disease or condition to be treated. Accordingly, in one embodiment, the antibody-containing medicament is for combination with one or more further therapeutic agent, such as a chemotherapeutic agent. In some embodiemtns, the other therapeutic agent is cytarabine, an anthracycline, histamine dihydrochloride, or interleukin 2. Such combined administration may be simultaneous, separate or sequential, in any order. For simultaneous administration the agents may be administered as one composition or as separate compositions, as appropriate.

[0236] In one embodiment, a method for treating a disorder involving cells expressing CD123 in a subject, which method comprises administration of a therapeutically effective amount of a multispecific antibody or fragment, such as a CD123 x CD3 bispecific antibody described herein, and radiotherapy to a subject in need thereof is provided. In one embodiment is provided a method for treating or preventing cancer, which method comprises administration of a therapeutically effective amount of a multispecific antibody or fragment, such as a CD123 x CD3 antibody described herein, and radiotherapy to a subject in need thereof. Radiotherapy may comprise radiation or associated administration of radiopharmaceuticals to a patient is provided. The source of radiation may be either external or internal to the patient being treated (radiation treatment may, for example, be in the form of external beam radiation therapy (EBRT) or brachytherapy (BT)). Radioactive elements that may be used in practicing such methods include, e.g., radium, cesium-137, iridium-192, americium-241, gold-198, cobalt-57, copper-67, technetium-99, iodide-123, iodide-131, and indium-III.

Kits

10

20

30

35

40

50

55

[0237] Also provided herein are includes kits, e.g., comprising a described multispecific antibody or antigen-binding fragment thereof and instructions for the use of the antibody or fragemtn for killing of particular cell types. In preferred embodiments, the multispecific antibody is a CD 123 x CD3-multispecific antibody as described herein, or a multispecific antigen-binding fragment thereof, and more preferably a CD123 x CD3-bispecific antibody as described herein, or a CD 123 x CD3-bispecific antigen-binding fragment thereof. The instructions may include directions for using the multispecific antibody or antigen-binding fragment thereof in vitro, in vivo or ex vivo.

[0238] Typically, the kit will have a compartment containing the multispecific antibody or antigen-binding fragment thereof. The multispecific antibody or antigen-binding fragment thereof may be in a lyophilized form, liquid form, or other form amendable to being included in a kit. The kit may also contain additional elements needed to practice the method described on the instructions in the kit, such a sterilized solution for reconstituting a lyophilized powder, additional agents for combining with the multispecific antibody or antigen-binding fragment thereof prior to administering to a patient, and tools that aid in administering the multispecific antibody or antigen-binding fragment thereof to a patient.

Diagnostic Uses

[0239] The multispecific antibodies and fragments described herein may also be used for diagnostic purposes. Thus, also provided are diagnostic compositions comprising a multispecific antibody or fragments as defined herein, and to its use. In preferred embodiments, the multispecific antibody is a CD123 x CD3-multispecific antibody as described herein, or a multispecific antigen-binding fragment thereof, and more preferably a CD123 x CD3-bispecific antibody as described herein, or a CD123 x CD3-bispecific antigen-binding fragment thereof. In one embodiment, the present invention provides a kit for diagnosis of cancer comprising a container comprising a bispecific CD123 x CD3 antibody,

and one or more reagents for detecting binding of the antibody to CD123. Reagents may include, for example, fluorescent tags, enzymatic tags, or other detectable tags. The reagents may also include secondary or tertiary antibodies or reagents for enzymatic reactions, wherein the enzymatic reactions produce a product that may be visualized. For example, the multispecific antibodies described herein, or antigen-binding fragments thereof, may be labeled with a radio label, a fluorescent label, an epitope tag, biotin, a chromophore label, an ECL label, an enzyme, ruthenium, ¹¹¹In-DOTA, ¹¹¹Indiethylenetriaminepentaacetic acid (DTPA), horseradish peroxidase, alkaline phosphatase and beta-galactosidase, or poly-histidine or similar such labels known in the art.

[0240] The following examples are provided to supplement the prior disclosure and to provide a better understanding of the subject matter described herein. These examples should not be considered to limit the described subject matter. It is understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be apparent to persons skilled in the art.

Example 1: Materials

10

15

20

30

35

40

45

50

55

Generation of CD123 cell lines

[0241] A set of pDisplay[™] vectors presenting human CD123 SP1 ECD (amino acids 20 - 305) (SEQ ID NO:1), human CD123 SP2 ECD (amino acids 19 - 227 of SEQ ID NO:2), and cyno CD123 ECD (amino acid 19 - 305 of SEQ ID NO:3) were generated for use as screening tools to assess the anti-CD123 leads. A mammalian expression vector that allows display of proteins on the cell surface, pDisplay (Invitrogen) was used (Figure 1). Proteins expressed from pDisplay[™] are fused at the N-terminus to the murine Ig κ -chain leader sequence, which directs the protein to the secretory pathway, and at the C-terminus to the platelet derived growth factor receptor (PDGFR) transmembrane domain, which anchors the protein to the plasma membrane, displaying it on the extracellular side. Recombinant proteins expressed from pDisplay[™] contain the hemagglutinin A and myc epitopes for detection by western blot or immunofluorescence. The CMV promoter drives expression.

[0242] Vectors were transiently transfected into HEK293T cells using standard methods. Transfected 293F adherent cells were selected for stable plasmid integration, then single cell sorted and the CD123 surface receptor expression was quantified by FACS using the BangsLabs Quantum FITC-5kit (Catalog #855, Bangs Laboratories, Inc). A set of 10 single cell clones for each cell line were selected for screening, and quantified for CD123 ECD expression. The cell lines used for subsequent hit screening had surface expression of approximately 500,000 CD123 ECD copies per cell.

Generation of Soluble CD123 ECD Protein

[0243] Recombinant human CD123 SP1 ECD-His tag protein (Lot #LV081110A), corresponding to amino acid 20 to 305 of CD123 SP1 (SEQ ID NO:1) was obtained from R&D Systems (#301-R3/CF) for use in phage panning and hit screening. The protein was tested for endotoxin prior to use and was biotinylated for phage panning studies. This material was also used for binding and affinity measurements.

[0244] Recombinant human CD123 SP2 ECD protein corresponding to amino acids 18-225 of human CD123 SP2(SEQ ID NO: 2) was purified for use in binding and affinity measurements. cDNA was prepared using gene synthesis techniques (U.S. Pat. No. 6,670,127; U.S. Pat. No. 6,521,427). Plasmids for expression of the synthetic soluble CD123 ECD SP2 were prepared using standard molecular biology techniques. The CD123 ECD SP2 gene fragment with an N-terminal gp67 signal sequence and a c-terminal 6-His tag was cloned into the Eco RI and Not I sites of pFastbac1 (Invitrogen) and expressed with the Bac to Bac system (Invitrogen) in High Five Cells (Invitrogen). The secreted protein (SEQ ID NO: 226) was purified through HisTrap (GE) and Superdex 75 (GE) columns. This material was used for binding and affinity measurements and epitope mapping.

[0245] The soluble CD123 ECD proteins were biotinylated using the SureLink Biotinylation Kit (KPL #86-00-01) as per the manufacturer's instructions. Proteins were run on SDS/PAGE to confirm monomeric state.

Anti-CD3 antibody for x-ray crystallography

[0246] SP34 mAb, mouse IgG3/lambda isotype, was purchased from BD Biosciences Pharmingen (San Diego, CA), Cat. No. 556611 and comprising the Light and Heavy chains shown in SEQ ID NOs: 4 and 5, respectively.

Example 2: Identification of Anti-human CD123 mAbs

[0247] Solution panning of the de novo Human Fab-plX libraries [Shi, L., et al J Mol Biol, 2010. 397(2): p. 385-396. WO 2009/085462], consisting of VH1-69, 3-23 and 5-51 heavy chain libraries paired with Vkl-39, 3-11, 3-20 and 4-1 light chain libraries, was performed using a biotinylated antigen-streptavidin magnetic bead capture method as described

(Rothe et al., J. Mol. Biol. 376:1182-1200, 2008; Steidl et al., Mol. Immunol. 46: 135-144, 2008) in four subsequent rounds. [0248] The pIX gene was excised from phagemid DNA following the fourth round of panning to generate soluble histagged Fab coding regions. Fabs were expressed in E. coli and screened for binding to recombinant human CD123 SP1 ECD-His tag protein in an ELISA .Briefly, 96-well Nunc Maxisorp plates (Nunc #437111) were coated with sheep antihuman Fd (The Binding Site #PC075) in PBS at 1μg/mL overnight at 4°C. Bacterial colonies containing the Fab expression vector were grown in 450 μL of 2xYT (Carbenecillin) in deep-well culture plates until turbid (OD600 ≈ 0.6). Fab expression was induced by the addition of IPTG to a concentration of 1 mM. Cultures were grown overnight at 30°C and then clarified by centrifugation. Anti-Fd coated Maxisorp plates were washed once with TBS, 0.5% Tween-20 (Sigma #79039-10PAK) and blocked with 200 µL PBS-Tween (0.5%) + nonfat dried milk (3%) per well for one hr at room temperature. At this step and all subsequent steps plates are washed three times with TBS, 0.5% Tween-20 (Sigma #79039-10PAK). Each well received 50 µL of Fab supernatant followed by one hr incubation at room temperature. After washing, 50uL of biotinylated CD123 was added and incubated for one hour at room temperature. After washing, 50 μ L of Streptavidin:HRP (Pierce #21130) was added at a 1:5000 dilution and plates were incubated for one hour at room temperature. Plates were washed and 50uL chemiluminescent substrate. PoD (Roche # 121-5829500001), was added according to manufacturer's instructions. Plates were then read for luminescence on an EnVision (Perkin Elmer) plate reader. Wells displaying signal >5-fold over background were considered hits.

5

10

15

20

25

30

35

40

45

50

55

[0249] Clones that demonstrated binding to recombinant human CD123 SP1 ECD-His tag protein were sequenced in the heavy (HC) and light chain (LC) variable regions. A total of 52 unique Fab sequences were identified via phage panning and 45 were ultimately converted to IgG1 isotype by in-fusion cloning. (Table 1) In-fusion cloning was performed by PCR-amplification using PCR SuperMix High Fidelity kit (Life Technologies # 10790-020), of the HC and LC variable regions and cloning into Esp3I sites in vDR149 for HC and vDR157 for LC using the In-Fusion® HD Cloning Plus kit (Clontech # 638909). VH and VL of the hits are shown below in Table 4.

Table 1. CDR sequences of mAbs generated from phage panning against recombinant human CD123 SP1 ECD-His tag protein (corresponding SEQ ID NOs are listed in parentheses)

ID	H-CDR1	H-CDR2	H-CDR3	L-CDR1	L-CDR2	L-CDR3
I3RB1	DYGMS	VIRGGGSSKYYADSVKG	HSGSFRENELDY	KSSOSVLYSSNNKNYI		COMMERCIA
I3RB2	(6) GYWMH	(7) AIRSDGSSKYYADSVKG	(8) DGVIEDTFDY	rasosvssyla	(10) Dasnrat	(11) QORSNWPLT
IJIDE	(12)	(13)	(14)	(15)	(16)	(17)
13RB3	SYMMS	GIKYDØGSKYYADSVKG	KWMSYFDY	KSSQSVLYSSNNKNYI		QQYYSTPLT
	(18)	(19)	(20)	(9)	(10)	(11)
I3RB4	GYGMS	AISGSGGSTYYADSVKG	GNWYYGLGFDY	RASQSVSSSYLA	GASSRAT	QQYGSSPLT
	(21)	(22)	(23)	(24)	(25)	(26)
I3RB5	GYWAIS	GINYDGESTYYADSVKG	DHELAEFDY	RASQSISSYLN	AASSLOS	QQSYSTPLT
	(27)	(28)	(29)	(30)	(31)	(32)
I3RB6	SYAIS	GIIPIFGTANYAQKFQG	GLFNWSNVALDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
I3RB7	(33)	(34) GIIPIFGIANYAOKEOG	(35) KRWLADAGDEDY	(30) RASQSISSYLN	(31) ************************************	(32)
13KB/	(33)	(34)	(36)	(30)	Anasiya (31)	235151FW1 (32)
I3RB8	SYAIS	GIIPIFGTANYAOKFOG	HGFAWNDYSLLDY	RASOSISSYLN	AASSLOS	OOSYSTPLT
	(33)	(34)	(37)	(30)	(31)	(32)
I3RB9	SYAIS	GIIPIFGTANYAÇKEÇG	GARWENPPENLDY	RASQSISSYLN	AASSLOS	QQSYSTRLT
	(33)	(34)	(38)	(30)	(31)	(32)
I3RB10	SYGIS	WISAIFGNTNYAQKFQG	GGLLYYASYLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(39)	(40)	(41)	(30)	(31)	(32)
I3RB11	SYGIS	GIIPIFGTANYAQKEQG	DLESWRYSNEDY	RASQSISSYLN	AASS1QS	QQSYSTPLT
	(39)	(34)	(42)	(30)	(31)	(32)
I3RB12	SYAIS	GIIPIFGTANYAQKFQG	ADRVWDYYLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
13RB13	(33)	(34) GIIPIFGNTNYAGKFOG	(43) OSGEY/VELDY	(30) RASOSVSSYLA	(31)	(32)
138013	SYGIS (39)	(44)	gadrivvnuu: (45)	racysyssila (15)	DASNRAT (16)	QQRSNWPLT (17)
I3RB14	SYGIS	WISAIFGTTNYAOKFOG	GGPLRYYNHFDY	RASOSISSYLN	AASSLOS	OOSYSTPLT
	(39)	(46)	(47)	(30)	(31)	(32)
13RB15	SYAIS	GITEIFCTANVAOKEOG	DLESLEYSELDY	RASOSISSYIN	AACCCC	occession.
	(33)	(34)	(48)	(30)	(31)	(32)
I3RB16	SYAIS	GIIPIFGTANYAQKFQG	GAVWGDQWFDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(33)	(34)	(49)	(30)	(31)	(32)
13RB17	SYAIS	GIIFIFGTANYAOKEOG	GALSEWYSFLDY	RASQSISSYLN	AASSIQS	QQSYSTFLT
13RB17	STAIS	GITFIEGTANYACKECG (34)	SALSIWYSFLDY (50)	FASCSISSYLN (30)	AASSLGS (31)	(3)

ID	H-CDR1	H-CDR2	H-CDR3	L-CDR1	L-CDR2	L-CDR3
I3RB18	SYWIS	IIDPSDSDTRYSPSFQG	GDGSTDLDY	RASQSVSSSYLA	GASSRAT	QQDYGFPWT
****************	(51)	(52)	(53)	(24)	(25)	(54)
13RB19	NYAMS	GIRGNESSTYYADSVKE (56)	GGPIGARFPDYLDY	RASGSIGDFLN	YASSIQS (59)	QQSXSTPLT (32)
I3RB20	(55) SYAIS	GIIPIFGTANYAQKFQG	(57) DDQIWGSYHLDY	(88) RASQSISSYLN	AASSLOS	QQSYSTPLT
	(33)	(34)	(60)	(30)	(31)	(32)
13RB21	SYAIS	GIIPIFGTANYAÇKFQG	EGWWGQGKFDY	RASQSVANFLA	AASNRAT	QQYFHWPYT
	(33)	(34)	(61)	(62)	(63)	(64)
I3RB22	SYAIS	GIIPIFGTANYAQKFQG (34)	NLFYWADSVYLDY	RASQSVNKWLA	YASNRAT	QQGIDWPRT
13RB23	(33) **#**	GIIPIFGTANYAQKEQG	(65) EGSSWKNPAYVEDY	(66) RASQSISSYLN	(67) AASSIQS	(68) OQYFDFPLT
	(39)	(34)	(69)	(30)	(31)	(70)
I3RB24	SYAIS	GIIPIFGTANYAQKFQG	HTDAWGYRLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(33)	(34)	(71)	(30)	(31)	(32)
13RB25	STGIS	GISAIFGNANTACKECG	REKWWESYEDY	RASQSISSYLN	AASSLQS	QQSYSTRLT
I3RB26	(39) SYGIS	(72) GIIPIFGTANYAQKFQG	(73) NGFAWSVSGNLDY	(30) Rasqsvdnwla	(31) GASNRAT	(32) QQSISAPYT
ISINDES	(39)	(34)	(74)	(75)	(76)	(77)
13RB27	SYAIS	GIIPIFGTANYAQKEQG	AGWWNLRYGLDY	RASQSVAKSLA	AASNRAT	QQFIGWPIT
	(33)	(34)	(78)	(79)	(63)	(80)
I3RB28	SYAIS	GIIPIFGTANYAQKFQG	APFTWDYSRLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
13RB29	(33) STAIS	(34) GIIPIEGTANYACKEOG	(81) DSRIWSESEDY	(30) RASCSIGEWEN	(31) AASSLCS	(32) QCYYHEPLT
2381122	(33)	(34)	(82)	(83)	######################################	(84)
I3RB30	SYAIS	WIIPIFGTANYAQKFQG	LVYSSDFDY	RASQSVANWLA	YASNRAT	QQYDGWPRT
	(33)	(85)	(86)	(87)	(67)	(88)
13RB31	SYAIS	GISAYEGNANYAQKEQG	SYEGDAYEDY	RASQSVDKDLA	GASNRAT	QOYDRAPIT
I3RB32	(33) SYGIS	(89) GIIPIFGTANYAQKFQG	(90) Gawwaydtyldy	(91) RASQSISSYLN	(76) AASSLQS	(92) QQSYSTPLT
138632	(39)	(34)	(93)	(30)	(31)	(32)
13RB33	SYGIS	GILPIPGTANYAOKEOG	GYWHWN YDYLLDY	RASCSVNDWLA	GASNEAT	CCYKRAPYT
	(39)	(34)	(94)	(95)	(76)	(96)
I3RB34	SYAIS	GIIPIFGTANYAQKFQG	GWSYYRLDY	RASQSVDKWLA	YASNRAT	QQFDRAPFT
13RB35	(33)	(34)	(97)	(98)	(67)	(99)
LIMBII	SYAIS (33)	GIIPIFETANYAÇKEÇG (34)	HLFWDAGPLDY (100)	RASQSISSYLN (30)	AASSLQS (S1)	QQYESPRYT (101)
I3RB36	SYGIS	GIIPIFGTANYAQKFQG	DLHVWAYSNFDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
	(39)	(34)	(102)	(30)	(31)	(32)
13RB37	SYAIS	GIIPIFGTANYAQKFQG	DKTDFPSRLDY	rasqsiatwln	AASSLQS	QQYITFPLT
T25520	(33)	(34)	1103)	(154)	(31)	(105)
I3RB38	SYGIS (39)	GIIPIFGTANYAQKFQG (34)	DLMIWRFENFDY (106)	RASQSISSYLN (30)	AASSLQS (31)	QQSYSTPLT (32)
13RB39	STAIS	GIIPIFGTANYACKFCC	EXCELDY	RASQSVADELA	KASNRAT	QQYNGWPWT
	(33)	(34)	(107)	(108)	(109)	(110)
I3RB40	SYAIS	GIIPIFGTANYAQKFQG	GQWWADTWFDY	RASQSVAKWLA	GASNRAT	QQYHTAPWT
000000000000000000000000000000000000000	(33)	(34)	(111)	(112)	(76)	(113)
13RB41	SYAMS (114)	AISGSGGSTYYADSVKG (22)	VAYWEFFVYESLDY (115)	RASOSVESSYLA (24)	GASSRAT (25)	QQYGSSPLT (26)
I3RB42	SYAMS	AISGSGGSTYYADSVKG	HDWAFWIVFLDY	RASQSVSSYLA	DASNRAT	QQRSNWPLT
	(114)	(22)	(116)	(15)	(16)	(17)
13RB43	SYMMH	AIRSDGSSKYYADSVKG	DGIVMOTFOY	RASCSVSSYLA	DASNRAT	QCRSNWPLT
	(117)	(13)	(118)	(15)	(16)	(17)
I3RB44	SYWIS (51)	IIDPSDSDTRYSPSFQG	GDGSTDLDY	RASQSISSYLN	AASSLQS	QQSYSTPLT
13RB47	(51) STAIS	(52) CIIBIFCTANYAOKEOS	(53) DLESWRYSNEDY	(30) RASOSISSYLN	(31) AASSLQS	(32) OOSYSTRLE
	(33)	(34)	(A2)	(30)	(31)	(32)

Table 4: V_H and V_L sequences of mAbs generated from phage panning against CD123

	mAb AA ID	VH Amino Acid Sequence	SEQ ID NO :	VL Amino Acid Sequence	SEQ ID NO
5	13RB01	EVQLLESGGGLVQPGGSLRLSC AASGFTFSDYGMSWVRQAPGKG LEWVSVIRGGGSSKYYADSVKG RFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKHSGSFRFNELDY WGQGTLVTVSS	119	DIVMTQSPDSLAVSLGERAT INCKSSQSVLYSSNNKNYLA WYQQKPGQPPKLLIYWASTR ESGVPDRFSGSGSGTDFTLT ISSLQAEDVAVYYCQQYYST PLTFGQGTKVEIK	164
15	I3RB02	EVQLLESGGGLVQPGGSLRLSC AASGFTFSGYWMHWVRQAPGKG LEWVSAIRSDGSSKYYADSVKG RFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKDGVIEDTFDYWG QGTLVTVSS	120	EIVLTQSPATLSLSPGERAT LSCRASQSVSSYLAWYQQKP GQAPRLLIYDASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQRSNWPLTFGQ GTKVEIK	165
20	I3RB03	EVQLLESGGGLVQPGGSLRLSC AASGFTFSSYWMSWVRQAPGKG LEWVSGIKYDGGSKYYADSVKG RFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKKWMSYFDYWGQG TLVTVSS	121	DIVMTQSPDSLAVSLGERAT INCKSSQSVLYSSNNKNYLA WYQQKPGQPPKLLIYWASTR ESGVPDRFSGSGSGTDFTLT ISSLQAEDVAVYYCQQYYST PLTFGQGTKVEIK	164
30	I3RB04	EVQLLESGGGLVQPGGSLRLSC AASGFTFSGYGMSWVRQAPGKG LEWVSAISGSGGSTYYADSVKG RFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKGNWYYGLGFDYW GQGTLVTVSS	122	EIVLTQSPGTLSLSPGERAT LSCRASQSVSSSYLAWYQQK PGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLE PEDFAVYYCQQYGSSPLTFG QGTKVEIK	166
35	13RB05	EVQLLESGGGLVQPGGSLRLSC AASGFTFSGYWMSWVRQAPGKG LEWVSGINYDGGSTYYADSVKG RFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKDHFLAEFDYWGQ GTLVTVSS	123	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
40 45	I3RB06	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGLFNWSNVALDY WGQGTLVTVSS	124	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
50	I3RB07	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGKRWLADAGDFD YWGQGTLVTVSS	125	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
55	13RB08	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTTTADESTSTAYMELSSLRS	126	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP	167

	mAb AA ID	VH Amino Acid Sequence	SEQ ID NO :	VL Amino Acid Sequence	SEQ ID NO
5		EDTAVYYCARHGFAWNDYSLLD YWGQGTLVTVSS		EDFATYYCQQSYSTPLTFGQ GTKVEIK	
10	I3RB09	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGARWFNPPENLD YWGQGTLVTVSS	127	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	
15	I3RB10	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGWISAIFGNTNYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGGLLYYASYLDY WGQGTLVTVSS	128	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
25	I3RB11	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARDLFSWRYSNFDY WGQGTLVTVSS	129	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
30	I3RB12	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARADRVWDYYLDYW GQGTLVTVSS	130	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
35 40	I3RB13	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGGIIPIFGNTNYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARQSGFYVVRLDYW GQGTLVTVSS	131	EIVLTQSPATLSLSPGERAT LSCRASQSVSSYLAWYQQKP	
45	I3RB14	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGWISAIFGTTNYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGGPLRYYNHFDY WGQGTLVTVSS	132	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
50 55	I3RB15	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARDLFSLRYSFLDY WGQGTLVTVSS	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK		167

	mAb AA ID	VH Amino Acid Sequence	SEQ ID NO :	VL Amino Acid Sequence	SEQ ID NO
5 10	I3RB16	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS GQGTLVTVSS	134	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP GTKVEIK	167
15	I3RB17	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGALSLWYSFLDY WGQGTLVTVSS	135	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
20	I3RB18	EVQLVQSGAEVKKPGESLKISC KGSGYSFTSYWISWVRQMPGKG LEWMGIIDPSDSDTRYSPSFQG QVTISADKSISTAYLQWSSLKA SDTAMYYCARGDGSTDLDYWGQ GTLVTVSS	136	EIVLTQSPGTLSLSPGERAT LSCRASQSVSSSYLAWYQQK PGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLE PEDFAVYYCQQDYGFPWTFG QGTKVEIK	168
30	I3RB19	EVQLLESGGGLVQPGGSLRLSC AASGFTFSNYAMSWVRQAPGKG LEWVSGIRGNGSSTYYADSVKG RFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKGGPIGARFPDYL DYWGQGTLVTVSS	137	DIQMTQSPSSLSASVGDRVT ITCRASQSIGDFLNWYQQKP GKAPKLLIYYASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	169
35	13RB20	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARDDQIWGSYHLDY WGQGTLVTVSS	138	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
40	I3RB21	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCAREGWWGQGKFDYW GQGTLVTVSS	139	EIVLTQSPATLSLSPGERAT LSCRASQSVANFLAWYQQKP GQAPRLLIYAASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQYFHWPYTFGQ GTKVEIK	170
50	I3RB22	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARNLFYWADSVYLD YWGQGTLVTVSS	140	EIVLTQSPATLSLSPGERAT LSCRASQSVNKWLAWYQQKP GQAPRLLIYYASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQGIDWPRTFGQ GTKVEIK	171

	mAb AA ID	VH Amino Acid Sequence	SEQ ID NO :	VL Amino Acid Sequence	SEQ ID NO
5 10	I3RB23	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCAREGSSWKNPRYVF DYWGQGTLVTVSS	141	EIVLTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQYFDFPLTFGQ GTKVEIK	172
15	13RB24	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARHTDAWGYRLDYW GQGTLVTVSS	142	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
20	I3RB25	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGGISAIFGNANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARRFKWWESYFDYW GQGTLVTVSS	143	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
30	13RB26	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARNGFAWSVSGNLD YWGQGTLVTVSS	144	DIQMTQSPATLSLSPGERAT LSCRASQSVDNWLAWYQQKP GQAPRLLIYGASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQSISAPYTFGQ GTKVEIK	173
35	I3RB27	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARAGWWNLRYGLDY WGQGTLVTVSS	145	EIVLTQSPATLSLSPGERAT LSCRASQSVAKSLAWYQQKP GQAPRLLIYAASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQFIGWPITFGQ GTKVEIK	174
40 45	13RB28	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARAPFTWDYSRLDY WGQGTLVTVSS	146	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
50	13RB29	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARDSRIWSFSLDYW GQGTLVTVSS	147	DIQMTQSPSSLSASVGDRVT ITCRASQSIGEWLNWYQQKP	

	mAb AA ID	VH Amino Acid Sequence	SEQ ID NO :	VL Amino Acid Sequence	SEQ ID NO
5 10	I3RB30	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGWIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARLVYSSDFDYWGQ GTLVTVSS	148	EIVLTQSPATLSLSPGERAT LSCRASQSVANWLAWYQQKP GQAPRLLIYYASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQYDGWPRTFGQ GTKVEIK	176
15	I3RB31	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGISAYFGNANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARSYFGDAYFDYWG QGTLVTVSS	149	EIVLTQSPATLSLSPGERAT LSCRASQSVDKDLAWYQQKP GQAPRLLIYGASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQYDRAPITFGQ GTKVEIK	177
20	13RB32	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGAWWAYDTYLDY WGQGTLVTVSS	150	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
30	13RB33	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGYWHWNYDYLDY WGQGTLVTVSS	151	EIVLTQSPATLSLSPGERAT LSCRASQSVNDWLAWYQQKP GQAPRLLIYGASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQYKRAPYTFGQ GTKVEIK	178
35	13RB34	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGWSYYRLDYWGQ GTLVTVSS	152	EIVLTQSPATLSLSPGERAT LSCRASQSVDKWLAWYQQKP GQAPRLLIYYASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQFDRAPFTFGQ GTKVEIK	179
40 45	I3RB35	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARHLFWDAGPLDYW GQGTLVTVSS	153	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQYFSPPYTFGQ GTKVEIK	180
50	13RB36	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARDLHVWAYSNFDY WGQGTLVTVSS	154	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167

(continued)

	mAb AA ID	VH Amino Acid Sequence	SEQ ID NO :	VL Amino Acid Sequence	SEQ ID NO
5 10	I3RB37	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARDKTDFPSRLDYW GQGTLVTVSS	155	DIQMTQSPSSLSASVGDRVT ITCRASQSIATWLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQYITFPLTFGQ GTKVEIK	181
15	13RB38	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYGISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARDLMIWRFENFDY WGQGTLVTVSS	156	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
20 25	13RB39	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCAREYGSLDYWGQGT LVTVSS	157	EIVLTQSPATLSLSPGERAT LSCRASQSVADFLAWYQQKP GQAPRLLIYKASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQYNGWPWTFGQ GTKVEIK	182
30	13 RB40	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARGQWWADTWFDYW GQGTLVTVSS	158	EIVLTQSPATLSLSPGERAT LSCRASQSVAKWLAWYQQKP GQAPRLLIYGASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQYHTAPWTFGQ GTKVEIK	183
35	I3RB41	EVQLLESGGGLVQPGGSLRLSC AASGFTFSSYAMSWVRQAPGKG LEWVSAISGSGGSTYYADSVKG RFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKVAYWEFFVYESL DYWGQGTLVTVSS	159	EIVLTQSPGTLSLSPGERAT LSCRASQSVSSSYLAWYQQK PGQAPRLLIYGASSRATGIP DRFSGSGSGTDFTLTISRLE PEDFAVYYCQQYGSSPLTFG QGTKVEIK	166
40	I3RB42	EVQLLESGGGLVQPGGSLRLSC AASGFTFSSYAMSWVRQAPGKG LEWVSAISGSGGSTYYADSVKG RFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKHDWAFWIVFLDY WGQGTLVTVSS	160	EIVLTQSPATLSLSPGERAT LSCRASQSVSSYLAWYQQKP GQAPRLLIYDASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQRSNWPLTFGQ GTKVEIK	165
50	I3RB43	EVQLLESGGGLVQPGGSLRLSC AASGFTFSSYWMHWVRQAPGKG LEWVSAIRSDGSSKYYADSVKG RFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKDGIVMDTFDYWG QGTLVTVSS	161	EIVLTQSPATLSLSPGERAT LSCRASQSVSSYLAWYQQKP GQAPRLLIYDASNRATGIPA RFSGSGSGTDFTLTISSLEP EDFAVYYCQQRSNWPLTFGQ GTKVEIK	165

(continued)

mAb AA ID	VH Amino Acid Sequence	SEQ ID NO :	VL Amino Acid Sequence	SEQ ID NO
13RB44	EVQLLESGAEVKKPGESLKISC KGSGYSFTSYWISWVRQMPGKG LEWMGIIDPSDSDTRYSPSFQG QVTISADKSISTAYLQWSSLKA SDTAMYYCARGDGSTDLDYWGQ GTLVTVSS	162	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ GTKVEIK	167
13RB47	QVQLVQSGAEVKKPGSSVKVSC KASGGTFSSYAISWVRQAPGQG LEWMGGIIPIFGTANYAQKFQG RVTITADESTSTAYMELSSLRS EDTAVYYCARDLFSWRYSNFDY WGQGTLVTVSS	163	DIQMTQSPSSLSASVGDRVT ITCRASQSISSYLNWYQQKP GKAPKLLIYAASSLQSGVPS RFSGSGSGTDFTLTISSLQP EDFATYYCQQSYSTPLTFGQ	167

Example 3: MSD Cell Binding to hCD123 SP1, hCD123 SP2, and cynoCD123 SP1

[0250] Binding of CD123 antibodies to engineered pDisplay cells was assessed using a MSD (Mesoscale) cell binding assay. The object of the screening assay was to identify antibodies that bound to cells expressing hCD123 SP1 and SP2 as well as cross reactivity with cells expressing cynoCD123 SP1.

[0251] Cells were immobilized and phages were assayed in triplicate. Briefly, expression supernatants or purified CD 123 antibodies were normalized to 10 μ g/mL. 5000 cells per well were plated into a 384 well plate (MA6000, cat. L21XB, MSD) and allowed to adhere for 2 hr. Cells were then blocked with 20% FBS in PBS (Gibco) for 15 mins. Antibody supernatants were then added and left at RT for 1 hr. Cells were washed 3 times with PBS and a ruthenium labeled secondary antibody (Jackson Immuno Research) was then added at 1 μ g/mL and incubated for 1 hr at room temperature. A further washing step was then applied and 35 μ L per well of MSD Read buffer T (surfactant free) was then added and incubated for 30 min for detection. Plates were then read using Sector Imager 2400 (MSD). Data was normalized to controls and graphed using GraphPad Prism Version 5. A positive binder was determined to be a hit with a signal 3x greater than background (Figure 2A, B and C). The assay was repeated for data consistency and top binders were selected for further development. The following hits were positive for binding to all three cell lines: I3RB2, 13RB5, 13RB8, 13RB18, 13RB20, 13RB21, and I3RB35.

Example 4: Affinity measurements by SPR.

ProteOn Affinity Measurements

5

10

15

30

35

40

45

50

55

[0252] The affinities of 29 anti-CD 123 candidates to recombinant human CD123 SP1 ECD and CD123 SP2 ECD were measured by Surface Plasmon Resonance (SPR) using a ProteOn XPR36 protein interaction array system (Bio-Rad).

[0253] The rates of CD123 SP1 ECD or CD123 SP2 ECD association and dissociation were measured for each variant. The biosensor surface was prepared by covalently coupling Goat anti-Human IgG (Fc) to the surface of a GLC chip (BioRad) using the manufacturer instructions for amine-coupling chemistry. Approximately 8800 RU (response units) of Goat anti-Human IgG (Fc) antibody (Jackson ImmunoResearch laboratories Prod # 109-005-098) were immobilized. The RU immobilized also included a goat anti-mouse Fc antibody that was added to capture other antibodies not included in the ones reported here. Since the mixture was 1:1 about 50% of these RU immobilized are expected to be goat anti-human Fc. The kinetic experiments were performed at 25 °C in running buffer (PBS pH 7.4, 0.005% P20, 3 mM EDTA). 4-fold (1:3) serial dilutions of human CD123 SP1 ECD and CD123 SP2 ECD, starting at 400 nM were prepared in running buffer. An average of 300 RU of mAb (174-600) were captured on each channel of the sensor chip. The reference spots (Goat anti-Human IgG (Fc)-modified surface) containing no candidate captured were used as a reference surface. Capture of mAb was followed by 3 min injection (association phase) of antigen at 40 μ L/min, followed by 10 min of buffer flow (dissociation phase). The chip surface was regenerated by injection of 0.85% phosphoric acid at 100 μ L/min. Data was processed on the instrument software. Double reference subtraction of the data was performed by subtracting the curves generated by buffer injection from the reference-subtracted curves for analyte injections. Kinetic analysis of the

data was performed using 1:1 Langmuir binding model with group fit. The result for each mAb was reported in the format of K_a (kon or on-rate), Kd (koff or off-rate), K_D (Equilibrium dissociation constant) (Table 5).

[0254] The results indicated that all 29 mAbs bound to CD123 SP1 ECD, but only six of those showed binding to CD 123 SP2 ECD. In order to access data reproducibility, four of the antibodies were run at least in duplicate. In general, the results indicated good reproducibility between replicates, except for I3RB1 which has slow on-rates.

Table 5. Affinity assessment for phage panel 1 hits by SPR

CD123 SP1		CD123 SP1	1		CD123 SP2	
Sample	kon	koff	K _D	kon	koff	K _D
Name	(1/Ms)	(1/s)	(nM)	(1/Ms)	(1/s)	(nM)
I3RB1	2.37E+04	5.69E-04	24.00	1.48E+04	4.57E-04	30.8
I3RB1	6.22E+03	1.88E-04	30.30	3.52E+03	3.70E-04	105
I3RB1	5.97E+04	7.82E-05	1.31	2.67E+04	≤5e-5	≤1.87
I3RB1	6.06E+04	2.45E-04	4.05	1.57E+04	1.50E-04	9.59
I3RB2	1.06E+06	4.77E-03	4.50	1.81E+06	3.35E-03	1.85
I3RB5	8.91E+05	1.14E-02	12.80	1.32E+06	6.43E-03	4.88
I3RB5	8.61E+05	1,11E-02	12.90	1.52E+06	6.23E-03	4.09
I3RB6	5.14E+05	5.93E-03	11.50	NBO		
I3RB7	9.54E+05	1.47E-02	15.40	NBO		
I3RB8	5.68E+05	1.95E-03	3.43	NBO		
I3RB9	6.80E+05	8.43E-03	12.40	NBO		
I3RB11	8.74E+05	2.53E-03	2.89	NBO		
I3RB12	8.12E+05	7.80E-03	9.61	NBO		
13RB16	4.24E+05	2.12E-03	5.00	NBO		
I3RB16	3.87E+05	2.23E-03	5.77	NBO		
I3RB17	5.85E+05	2.01E-03	3.44	NBO		
I3RB18	1.44E+06	8.20E-04	0.57	2.69E+06	9.78E-04	0.363
I3RB19	2.11E+05	2.51E-02	119.00	3.34E+05	1.61E-02	48.3
I3RB20	6.31E+05	1.06E-03	1.68	NBO		

	I3RB21	5.21E+05	1.14E-03	2.19	NBO		
	I3RB22	2.57E+05	1.06E-03	4.12	NBO		
	I3RB24	1.13E+06	2.26E-01	201.00	NBO		
İ	I3RB28	5.28E+05	2.11E-03	3.99	NBO		
İ	I3RB29	2.24E+05	1.32E-03	5.90	NBO		
Ī	I3RB30	7.25E+05	3.02E-03	4.17	1.45E+05	4.80E-02	330
Ì	I3RB32	8.68E+05	9.42E-04	1.09	NBO		
	I3RB33	4.17E+05	1.77E-03	4.23	NBO		
Ī	I3RB34	4.97E+05	2.83E-02	56.80	NBO		
Ī	I3RB35	1.04E+06	2.93E-03	2.83	NBO		
İ	I3RB36	6.75E+05	1.66E-03	2.47	NBO		
	I3RB37	1.07E+06	6.69E-03	6.27	NBO		
	I3RB37	1.21E+06	6.21E-03	5.15	NBO		
	I3RB38	8.88E+05	4.34E-04	0.49	NBO ^I		
İ	I3RB40	5.74E+05	3.46E-03	6.02	NBO		
	I3RB47	1.59E+05	2.12E-03	13.40	NBO		

¹NBO = no binding observed

Biacore Affinity Measurements.

5

10

15

20

25

30

35

50

[0255] Affinity of several antibodies for the CD123 SP1 ECD and CD123 SP2 ECD was also measured by surface plasmon resonance (SPR) in both mAb and Fab format using a Biacore instrument. Kinetic studies were performed at 25° C using a Biacore 3000 (BIAcore, Inc., now part of GE Healthcare). Goat anti-Human IgG (Fc) specific antibody (Jackson ImmunoResearch laboratories Prod # 109-005-098) was covalently attached to two flow cells (normally 1 and 2) of the carboxymethyl dextran coated gold surfaces (CM-5 Chip, Biacore). Sheep anti-Human Fd specific antibody (The binding site Prod # PC075) was covalently attached to two flow cells (normally 3 and 4) of the carboxymethyl dextran coated gold surfaces (CM-5 Chip, Biacore). The carboxymethyl groups of dextran were activated with N-Ethyl-N'-(3-Dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The antibodies were coupled at pH 4.5 in 10 mM sodium acetate. Any remaining reactive sites on the surface were blocked by reaction with ethanolamine. For kinetic binding measurements, anti-CD 123 antibodies were captured onto the anti-human Fcγ specific antibody, while the Fabs were captured onto the anti-Fd specific antibody by injecting the anti-CD 123 molecules at a flow rate of 5 or 6 μL/min. About 75 RU of antibody and about 50 RU of Fab were captured, respectively. Ab and Fab capture was followed by injection of human CD123 SP1 or human CD123 SP2 at concentrations between 1.6 nM and 400 nM at 40 μL/min. Association data was collected for 2 min followed by 10 min of dissociation. The surface was regenerated with $30~\mu L$ of 100~mM H3PO4 $100~\mu L$ /min. All samples were prepared in D-PBS containing 3 mM EDTA and 0.005% surfactant P20. Data reported is the difference in SPR signal between the flow cell containing the captured antibody or Fab and a reference cell without captured antibody or Fab. Additional instrumental contributions to the signal were removed by subtraction of the data from the blank injection from the reference-subtracted signal. Data were performed in triplicate and analyzed by fitting association and dissociation phases at all concentrations (global fit) with a 1:1 binding model using the BIAevaluation software (BIAcore, Inc.). Duplicate experiments were performed and were in good agreement. Data presented is an average.

[0256] The results showed that the affinity of CD123 SP1 ECD and CD123 SP2 ECD binding to mAbs (I3RB2, I3RB18, I3RB35, I3RB37) are in agreement with their corresponding Fabs (I3RB120, I3RB119, I3RB121, I3RB122) (Table 6.). The results for all the anti-CD123 analyzed also showed that the affinity range for the Fab binding to CD123 SP1 ECD and CD123 SP2 ECD is 1.8-46.9 nM and 0.4-12.5 nM, respectively; while the affinity range for the mAb binding is 1.2-52 nM and 0.3-11.7 nM, respectively.

Table 6. Affinity and on-/off-rate values for anti-CD123 Phage 1 hits obtained by SPR (Biacore).

Construct	Class	rhCD123	rhCD123	rhCD123 SP1	rhCD123 SP1
		SP1	SP2	k on Ave(M ⁻¹ s ⁻¹)	k off ave (s ⁻¹)
		K _D (nM)	K _D (nM)		
I3RB2	Mab	7.7	1.4	4.81E+05	3.72E-03
I3RB120	Fab	8.5	1.4	3.57E+05	3.04E-03
13RB18	Mab	1.2	0.3	6.88E+05	8.08E-04
I3RB119	Fab	1.8	0.4	4.93E+05	8.91E-04

Construct	Class	rhCD123	rhCD123	rhCD123 SP1	rhCD123 SP1
		SP1	SP2	k on Ave(M ⁻¹ s ⁻¹)	k off ave (s ⁻¹)
		K _D (nM)	K _D (nM)		
I3RB35	Mab	4.8	ND	5.40E+05	2.58E-03
I3RB121	Fab	6.3	1.2**	3.87E+05	2.45E-03
I3RB37	Mab	9.7	ND	5.45E+05	5.30E-03
I3RB122	Fab	11.5	ND	3.93E+05	4.50E-03

^{**}Assay response is lower than expected

ND: apparent binding, but signal outside of acceptance criteria; (< 5 RU and bad data quality or irregular sensogram)

Example 5: Competition with 7G3

5

10

15

20

25

30

35

40

45

50

CD123 Competitive assay by ELISA

[0257] The CD123 antibody panel was screened in a 7G3 binding competition ELISA. 7G3 is a neutralizing monoclonal antibody, the epitope for which has been localized to within the first 50 amino acids of the CD123 SP1 antigen (US6177078B1). 7G3 mAb was purchased from BD Biosciences Pharmingen (San Diego, CA, Cat. No. 554526) and labeled with MSD Sulfo-Tag™ NHS-ester according to manufacturer's instructions (Meso Scale Discovery).

[0258] For CD123 competitive ELISA, 96-well clear maxisorb plates were treated with 100 μ L/well of 2 μ g/mL anti-6x histidine (R&D Systems Cat #: MAB050) made in bicarbonate buffer, pH 9.4 (Pierce #: 28382) and incubated at 4 °C overnight. The plates were then washed three times with ELISA wash buffer, (PBS, 0.01% Tween-20) and then blocked with 300 μ L/well of StartingBlock containing Tween-20, PBST, (Thermo Scientific #: 37539). All wells were treated with 1 ng of recombinant huCD123 ECD SP1 and the plates were incubated at room temperature for 1 hr. Unbound huCD123 ECD SP1 was washed with ELISA wash buffer. 7G3 or mouse IgG2A (mIgG2A), was prepared in expression media (FreeStyleTM Expression media. Gibco #: 12338-018) at 20 μ g/mL and added in duplicates to the plate at 50 μ l/well to

their respective wells whereas the test anti-CD 123 mAbs were added at 50 μ l/well of 2 μ g/mL or neat to the remaining wells and the plates were incubated for 1 hr at room temperature with moderate shaking. Biotinylated 7G3 was then added to a final concentration of 100 ng/mL to all of the wells and the plates were incubated for an additional 1 hr. The plates were then washed three times with ELISA wash buffer and bound biotinylated 7G3 was detected using SA-HRP conjugate at an optical density of 450 nm.

[0259] Anti-CD 123 mAbs that inhibited 7G3:CD123 binding were defined at 20% inhibition of activity. That is, an antibody was considered to be an inhibitor if it was able to inhibit the binding of the biotinylated 7G3 to the human CD123 ECD by at least 20%. Based on this selection criterion, three inhibitors were identified: 13RB18, 13RB34, and 13RB44 (Figure 3).

Example 6: Functional pSTAT5 Assay

10

30

35

40

50

55

[0260] To assess agonist or antagonist activity of the antibodies, the panel was screened in a cell-based assay of IL-3-induced STAT5 phosphorylation using TF-1 cells (where purchased). The presence of anti-CD 123 mAb inhibitor causes a decrease in STAT5 phosphorylation upon stimulation with rhIL-3. A 20% inhibition criterion was used in the STAT5 functional assay (20% inhibition of rhIL-3 activity).

[0261] Approximately 50,000 TF-1 (human erythroleukaemia) cells were plated in each well of a 96-well plate in 60 μ L of RPMI containing 10%FBS and incubated at 37 °C with 5% CO2 incubator overnight. All samples were prepared in expression media (FreeStyleTM Expression media. Gibco #: 12338-018). The control samples received 70 μ L/well of either 20 μ g/mL 7G3, or mlgG2A isotype control. To the remaining wells, 70 μ L/well of 2 μ g/mL or neat antihumanCD123 mAb samples were added. All samples were incubated for 1 hr at 37 °C with 5% CO2 incubator. The cells were then treated with recombinant human IL-3, rhIL-3, (PeproTech catalog#: 200-03) at a final concentration of 10 ng/mL in RPMI containing 10% FBS with the exception of zero-, 7G3-, or isotype-only treated cells. The samples were then incubated for additional 15 min at 37 °C with 5% CO2 incubator. Cells were lysed with 46.7 μ I ice-cold complete lysis buffer per well and the samples were incubated on ice for 30 min. Lysates were mixed by pipetting up and down 10 times. Phosphorylated STAT5 (pSTAT5a,b) was then determined using Phospho(Tyr694)/Total STAT5a,b kit from Meso Scale Discovery (MSD #: K15163D-2) and following the manufacturer's instructions.

[0262] Anti-CD 123 mAbs that inhibited STAT5 phosphorylation by rhIL-3 were defined at 20% inhibition of activity. That is, an antibody was considered to be an inhibitor if it was able to inhibit the phosphorylation of STAT5 by rhIL-3 by at least 20%.

[0263] Five mAbs demonstrated ability to block IL-3 stimulation of STAT5 (Figure 4A). These five included 13RB18 as well as 13RB19, 13RB30, 13RB34, and 13RB44. However, when tested at 1 μ g/mL, only one antibody, 13RB18, blocked the IL-3 stimulation of STAT5 phosphorylation in TF-1 cells (Figure 4B). Furthermore, 13RB18 (B18) showed dose dependence in this assay (Figure 4C). From these data, it was concluded that I3RB18 is the only antagonistic antibody.

Example 7: Confirmation of monovalent affinity on hCD123

[0264] The Fab binding of the two anti-CD123 hits (I3RB120 (I3RB2 Fab), I3RB119 (I3RB18 Fab) to cell-surface expressed human or cyno CD123 SP1 was analyzed in duplicate by MSD-Cell Affinity Technology to obtain a measure of the monovalent binding to cell-surface CD123.

[0265] Monovalent affinities of the selected anti-CD123 leads for cell-surface expressed hCD123 or cynoCD123 were performed using MSD-cell affinity technique (MSD-CAT) method. The MSD-CAT was developed in-house as a labelfree method to determine affinity using intact cells in a high throughput format. These experiments were performed to assess the binding affinity and specificity of anti-CD123 candidates to cell-surface human or cynomolgus (cyno) CD123 SP1. This analysis allowed comparing the affinities of the anti-CD123 candidates to the human and cyno antigen in the absence of recombinant soluble cyno CD123. Cell lines used were human pDisplay CD123SP1 and cyno pDisplay CD123SP1. In order to measure the affinity of these interactions using the MSD-CAT method, a series of mixtures with a fixed concentration of anti-CD123 (1000, 200, 40 and/or 8 pM) and varying concentrations of cells (1.5 x10⁷-0 762 x10⁷ cells/mL) were prepared and allowed to reach equilibrium by rotating the plates for 24 hr at 4 °C. These samples were prepared in DMEM Glutamax medium containing 0.05% Azide, 1% BSA, 3 mM EDTA. The receptor numbers of (3.15-4.18) X 10⁶ hCD123/cell and (4.78-9.24) 10⁶ cyCD123/cell were converted to M receptor concentration in the mixture on the basis of the volume of reaction, the cell density (cells/L) and the Avogadro's number. This resulted in a concentration range of 104 nM to 5.3 pM for human CD123 and 12 nM to 0.6 pM for cyno CD123. After equilibration the plate was centrifuged for 5 min ~1000 rpm and free anti-CD3 detected on the supernatant. The free anti-CD123 in the mixture was detected by electro chemioluminesce (ECL) using Mesoscale Discovery (MSD) reader instrument. For detection of free anti-CD123 in the equilibrated mixture by Electrochemiluminescene Immunoassays (ECL) detection plates were prepared. To prepare detection plates (plate bound antigen on SA-MSD plates) MSD Streptavidin Standard

plates were blocked with 50 μL/well of assay buffer (PBS, (Life Sciences GIBCO 14190-136), 0.05% Tween 20, 0.2% BSA) for 5 min. The assay buffer was removed without washing and 50 μL/well of 0.7 μg/mL of biotinylated antigen in assay buffer were added to MSD plates and incubated overnight (~16 hr at 4 °C). After overnight incubation, the plates were blocked by adding 150 μLwell of assay buffer without removing coating antigen, incubated for ~1 hr at ambient temperature and washed 5 times with wash buffer (assay buffer without BSA). 50 µL/well of the supernantants from samples plate were transferred to antigen-coated plates, incubated for 60 min, and then washed three times with wash Buffer. After this 50 μL per well of ruthenium labeled detection antibody(anti-human H+L) were added and incubated for 1 hr. After 1 hr the plates were washed and 150 μL of MSD Read Buffer (prepared by diluting 1:4 of stock into d. H₂O) were added per well. The plates were read immediately on the MSD Sector Imager 6000 Reader for luminescence levels. ECL signal detected by MSD was expressed in term of % free antibody in the mixture and the data was analyzed to determine affinity using a user defined equation (derived from the law of mass action) introduced in Prism software. The data show that I3RB18 and its Fab (13RB119) are the tightest binders to cell-surface CD123 SP1 with pM affinity (or apparent affinity for the mAb) but binds >10-fold weaker to cyno CD123 SP1. For I3RB18 and its Fab (13RB119) it was not possible to get an affinity value for either the mAb or Fab against cynoSP1 expressing cells. All that can be said is that the affinity is > 12 nM. However, while I3RB120 binds with nM affinity to both antigens its binds with equal or < 5-fold affinities to human and cyno CD123 SP1. The affinities obtained via SPR for hCD123 SP1 are weaker than observed on cells. This difference is most likely due to the presentation of the antigen on the cell surface and the location of the antibody's epitope. Results are shown in Table 7.

Table 7. Affinity values of Fabs to CD123 cells obtained by MSD-CAT

			•	
	hCD123 cells	hCD123 cells	cynoCD123 cells	cynoCD123 cells
	K _D (assay-1)	K _D (assay-2)	K _D (assay-1)	K _D (assay-2)
Fab I3RB119	293 pM	367 pM	>15 nM ^a	>11.9 nM ^a
Fab I3RB120	~3.37 pM 3.44 nM ^b	~3.84 nM 3.81 nM ^b	2.4 nM	>11.9 nM ^a
mAb I3RB18	55 ^c pM	343 ^c pM	832 ^c pM	>11.9 ^c nM ^a
mAb 7G3	-	154 pM	-	57 pM

^a This K_D is greater than the value listed, but an actual value could not be determined.

[0266] The affinity measured for the I3RB2 Fab is consistent with the mAb data obtained via Proteon. Additionally, there is good cynoCD123 cell binding with this Fab, giving a clear indication that I3RB2 is a cross-reactive hit. The assessment of the I3RB18 mAb, and its corresponding Fab (I3RB119) indicate that the affinities obtained via Proteon for recombinant CD123 SP1 are weaker than observed on cells; 1 nM for recombinant protein vs 55-300 pM for cells. This difference is most likely due to the presentation of the antigen on the cell surface and the location of the antibody's epitope. It was not possible to get an affinity value for either the mAb or Fab (affinity > 12 nM). This would suggest that the antibody is not cross-reactive in a monovalent format. The previous cell binding data indicated cross-reactivity, which was most likely facilitated by the bivalent binding to the cell surface.

Example 8: Endogenous Cell Binding

10

20

25

30

35

45

50

55

[0267] Confirmation of binding of I3RB2 and I3RB18 to endogenous CD123 on AML cells was measured. OCI-AML5 cells (DSMZ), which express approximately 75,000 copies of CD123 on the cell surface, were used in a dose dependent MSD cell binding assay. Binding of CD123 antibodies to AML cells was assessed using a MSD (Mesoscale) cell binding assay. Briefly, expression supernatants or purified CD123 antibodies were used at a dose range of 40 μ g/mL to 0.039 μ g/mL. 50,000 cells per well we plated into a 96 well plate (Mesoscale high bind plate) and allowed to adhere for 2 hr. Cells were then blocked with 20% FBS in PBS plus Fc blocker (Fc blocker is the purified Fc portion of a papin-cleaved antibody antibody (SEQ ID NO 209) for 15 min. Antibody supernatants were then added and left at RT for 1 hr. Cells were washed 3 times with PBS and a ruthenium labeled secondary antibody (Jackson Immuno Research) was then added at 1 μ g/mL and incubated for 1 hr at room temperature. A further washing step was then applied and 150 μ Lul per well of MSD Read buffer T (surfactant free) was then added and incubated for 30 mins for detection. Plates were then read using Sector Imager 2400 (MSD). Data was normalized to controls and graphed using GraphPad Prism Version

^b In this fit a parameter called Bo was constrained to obtain an exact number instead of an approximation. The fitting algorithm sometimes gives an approximation when there is variability in the curve

^c This is apparent K_D because it could be affected by avidity due to bivalent binding.

5.

5

10

15

20

30

35

40

45

50

[0268] The results showed that I3RB2 and I3RB18 bind to the endogenous CD123 expressed on OCI-AML5 cells in a dose dependent manner (Figures 5A and B). The positive control, mAb 7G3, was also included in this assay as a comparator (Figure 5C).

Example 9: Competition binding analysis of CD123mABs with 13RB2 and 13RB18

[0269] A competition study was conducted for 13RB2 and 13RB18 against other cross-reactive CD123 SP1/SP2 hits and the 7G3 control to determine the anti-CD 123 antibody competition groups or "epitope bins".

[0270] For competitive ELISA, 5 μL (20 μg/mL) of purified human CD123 ECD protein generated as described in Example 1 was coated on MSD HighBind plate (Meso Scale Discovery, Gaithersburg, MD) per well for 2 hr at room temperature. A 150 μL-aliquot of 5% MSD Blocker A buffer (Meso Scale Discovery) was added to each well and incubated for 2 hr at room temperature. Plates were washed three times with 0.1 M HEPES buffer, pH 7.4, followed by the addition of the mixture of labeled anti-CD123 mAb with different competitor anti-CD123 mAbs. Labeled antibodies (20 nM) were incubated 2 μM of unlabeled anti-CD123 competitor antibodies, and then added to the designated wells in a volume of 25 μL mixture. After a 2-hr incubation with gentle shaking at room temperature, plates were washed 3 times with 0.1 M HEPES buffer (pH 7.4). MSD Read Buffer T was diluted with distilled water (4-fold) and dispensed at a volume of 150 μL/well and analyzed with a SECTOR Imager 6000. Antibodies were labeled with MSD Sulfo-Tag MNHS-ester according to manufacturer's instructions (Meso Scale Discovery).

[0271] The competition ELISA results indicate that I3RB2 competes with 13RB60, 13RB70, 13RB79 and 13RB118 but does not compete with other antibodies including I3RB18 (Figure 6A). It should be noted, that when I3RB2 was labeled, competition was observed with I3RB60; however, when I3RB60 was labeled, competition was not observed. One possible reason for this is some non-specific binding interactions. When I3RB18 was assessed, it was found to compete with 13RB49 and 13RB55, but not with 13RB2 (Figure 6B).

[0272] The competition binning analysis defined two competition groups for the cross-reactive CD123 SP1/SP2 antibodies (Table 8). Monoclonal antibody I3RB2 does not compete with I3RB18 and they belong to different epitope groups. Group 1 (Dark Grey) includes mAbs 13RB2, 13RB60, I3RB70, I3RB79 and I3R118. Group 2 (Light Grey) consists of mAbs I3RB18, I3RB49 and I3RB55. The commercial mAb 7G3 does not compete with any in-house anti-CD 123 antibodies.

Table 8. Results of Competition binding of Ru-labeled I3RB2 and I3RB18 to anti-CD123 Abs

		Ru-labeled antibody					
Competitor	I3RB2	I3RB70	I3RB79	I3RB18	I3RB55	I3RB60	7G3
13RB2	+	+	+				
13RB60	+	+	+	—	±	+	
13RB70	+	+	+	—	±		
13RB79	+	+	+		±		
13RB118 (B102)	+	+	+			_	
13RB18				+	#		_
13RB49				+	+		_
13RB55		_		+	+		
7G3		_		_	_		+

Example 10: Epitope Mapping of I3RB2 and I3RB18

H/D Exchange studies.

55

[0273] To identify the epitopes for I3RB2 and I3RB18 on human CD123, solution hydrogen/deuterium exchange-mass spectrometry (HDX-MS) was performed using the corresponding Fabs. For H/D exchange, the procedures used to analyze the Fab perturbation were similar to that described previously (Hamuro et al., J. Biomol. Techniques 14:171-182,

2003; Horn et al., Biochemistry 45:8488-8498, 2006) with some modifications. The CD123 SP2 ECD antigen was used for these studies since the antigen is less complex than the SP1 molecule due to a reduced number of glycosylation sites. Recombinant CD123 SP2 ECD (SEQ ID NO:226) was incubated in a deuterated water solution for predetermined times resulting in deuterium incorporation at exchangeable hydrogen atoms. The deuterated CD123 SP2 ECD was in complex with either I3RB119 (Fab of I3RB18) or I3RB120 (Fab of I3RB2) in 43 μ L deuterium oxide (D₂O) at 4 °C for 30 sec, 2 min, 10 min and 60 min. The exchange reaction was quenched by low pH and the proteins were digested with pepsin. The deuterium levels at the identified peptides were monitored from the mass shift on LC-MS. As a reference control, CD123 SP2 ECD sample was processed similarly except that it was not in complex with the Fab molecules. Regions bound to the Fab were inferred to be those sites relatively protected from exchange and thus contain a higher fraction of deuterium than the reference CD123 SP2 ECD sample. About 94% of the protein could be mapped to specific peptides.

[0274] The solution HDX-MS perturbation maps of CD123 ECD SP2 with I3RB119 and I3RB120 are shown in Figure 7A and 7B, respectively. One segment, residues 176-184 (RARERVYEF (SEQ ID NO: 227)), corresponding to amino acid residues 195 - 202 of CD123 sp2, is strongly protected by I3RB119. Two different regions, residues 145-156 (IQKRMQPVITEQ (SEQ ID NO: 228)) and residues 165-170 (LLNPGT (SEQ ID NO: 229)), corresponding to residues 164 - 175 and residues 184 - 189 of CD123 sp2 respectively, were recognized by I3RB120. These HDX-MS results suggest the peptide level epitopes for I3RB119 and I3RB120. There were no overlapped epitope regions for these two antibodies. These results are in agreement with the previous competition binding data that I3RB2 and I3RB18 do not compete with each other.

Example 11: Epitope mapping of anti-CD123 antibody I3RB18 by Crystal Structure

20

30

35

[0275] The binding epitope of antibody I3RB18 was determined by X-ray crystallography.

[0276] The single-chain Fv fragment of anti-CD123 mAb I3RB18 was produced in the form: VL-(Gly4Ser)4-VH-Gly-His6 (SEQ ID NO:230). It was expressed in HEK293 Expi cells and purified by affinity (HisTrap) and ion exchange (Source 15S and Mono S) chromatography.

[0277] The sp2 isoform of human CD123 ECD (SEQ ID NO:231) with a C-terminal 8xHis tag was expressed in baculovirus-infected insect cells and purified by affinity (HisTrap) and size-exclusion (Superdex 75) chromatography.

[0278] The CD123:I3RB18 scFv complex was prepared by mixing 1.8 mg CD123 (1.1 mg/mL) with 2.4 mg scFv (1.6 mg/mL) at an approximate molar ratio of 1:1.2 (excess of scFv) and incubated overnight at 4°C. A small-scale (150 μg)

SEC indicated complex formation. The protein was concentrated to 18 mg/mL in 20 mM HEPES, pH 7.5, 100 mM NaCl. **[0279]** Crystallization was carried out by the vapor diffusion method at 20°C in a sitting drop format in MRC 2-well crystallization plates (Swissci). The crystals of the complex suitable for X-ray experiment were obtained under conditions: 2.0 M (NH4)2SO4, 0.1 M MES buffer, pH 6.5. Crystal data are given in Table 9. One crystal was transferred to the mother liquor supplemented with 24% glycerol, frozen in liquid nitrogen, and used for X-ray diffraction data collection. The structure was determined at 3.5 Å resolution.

Table 9. Crystal data, X-ray data, and refinement statistics.

	rabio or or your data, x re	ay data, and romi	omone otationoo.
	Crystal data		
40	Space group	P4 ₁ 2 ₁ 2	
	Unit cell axes (Å)	111.32, 111.32	, 192.19
	Molecules/asym.unit	2	
	V _m (Å ³ /Da)	2.86	
45	Solvent content (%)	57	
	X-ray data		
	Resolution (Å)	50-3.56	(3.70-3.56)
50	No.measured reflections	136,381	(5,853)
	No.unique reflections	13,977	(929)
	Completeness (%)	93.4	(64.2)
	Redundancy	9.8	(6.3)
	R-merge	0.195	(0.490)
55	<i <sub="">0></i>	10.8	(2.3)
	B-factor (Wilson) (Å2)	66.1	

(continued)

Refinement	
Resolution (Å)	20-3.56
No. refls used in refinement	13,128
Completeness (%)	92.1
Number of all atoms	6568
Number of water molecules	0
R-factor (%)	23.1
R-free (%) (5% data)	32.3
RMSD bond lengths (Å)	0.005
RMSD bond angles (°)	1.1
Mean B-factor (Å ²)	120.3
Values for the highest resolut	tion shall are in narentheses

Values for the highest-resolution shell are in parentheses.

[0280] I3RB18 binds CD123 sp2 at the C-terminal (proximal to cell surface) domain of the ECD. The epitope is conformational and includes three segments of the CD 123 sp2 chain, residues 156 - 161 (RKFRYE, (SEQ ID NO:232)), 173 - 178 (TEQVRD, (SEQ ID NO: 233)) and 195 - 202 (RARERVYE (SEQ ID NO: 234)) corresponding to residues 234 - 239, 251-256 and 273 - 280 of CD123 spl.. The antibody-antigen interactions are predominantly electrostatic. The epitope on CD123 sp2 contains a large number of basic residues, whereas the CDRs of I3RB18 are populated with acidic residues. The antibody residues involved in binding of CD123 include 7 residues from the light chain and 9 residues from the heavy chain (Fig. 8). All CDRs except LCDR2 are involved in binding.

[0281] The binding of I3RB18 to CD123 sp2 (Figure 9A) differentiates it from another anti-CD 123 antibody, 7G3, which binds the N-terminal domain 1 of the CD123 sp1 ECD as shown in the crystal structure of the humanized 7G3 Fab, CSL362, in complex with CD123 sp1 (Figure 9B) (pdb:4JZJBroughton et al. Cell Rep. 2014; 8:410-419).

Example 11: Crystal Structure of an anti-CD3 Fab

[0282] The crystal structure of the SP34 Fab was determined at 2.1 Å resolution. It revealed the complete amino acid sequence and identified the possible mouse germlines from which the SP34 mAb was derived.

Materials

5

10

15

20

25

30

35

45

50

55

[0283] SP34 mAb, mouse IgG3/lambda isotype, was purchased from BD Biosciences Pharmingen (San Diego, CA), Cat. No. 556611. According to the technical data sheet, it was purified from tissue culture supernatant by affinity chromatography and stored at 4 °C. The Fab fragment was produced by papain digestion of mAb (Pierce, Cat # 44985, Thermofisher) and was separated from Fc using Nab Protein A Plus Spin column (Pierce, Cat # 44985, Thermofisher) according to manufacturer's protocol. The Fab was further purified on a MonoS column (GE Healthcare) equilibrated with 20 mM MES, pH 6.5 (buffer A). Elution was performed with buffer A in 13-28 % gradient of 1 M NaCl in 50 column volumes. Fractions corresponding to the main peak were pooled, concentrated to 9.2 mg/mL and used for crystallization.

Crystallization

[0284] Crystallization was carried out by the vapor diffusion method at 20 °C in a sitting drop format in 96-well Corning 3550 plates. The Fab crystal used for X-ray analysis was obtained from 12% PEG 3350, 0.2 M K/Na tartrate (pH 7.4), 3% isopropanol and 3% dioxane. Crystal data are given in Table 10.

Table 10 Crystal Data, X-ray data and refinement statistics

Crystal data		
Space group	P21	
Unit cell axes (Å)		55.14, 141.23, 61.29
Unit cell angles (°)		90, 99.02, 90
Molecules/asym.unit		2
Vm (Å3/Da)		2.48
Solvent content (%)	50	

(continued)

	Crystal data		
5			
3	X-ray data		
	Resolution (Å)	30-2.1	$(2.15-2.10)^*$
	No.measured reflections	179,42 20	(11,506)
	No.unique reflections	53,483	(3,667)
10	Completeness (%)	98.9	(92.5)
	Redundancy	3.4	(3.1)
	R-merge	0.038	(0.393)
	<l o=""></l>	18.7	(3.8)
	B-factor (Wilson) (Å2)	45.4	
15			
	Refinement		
	Resolution (Å)	15-2.1	
	No. refls used in refinement	52,212	
20	Completeness (%)	96.8	
	No. all atoms	6,886	
	No water molecules	219	
	R-factor (%)	20.5	
25	R-free (%)	26.2	
25	RMSD bond lengths (Å)	0.008	
	RMSD bond angles (°)	1.2	
	RMSD B-factor main-chain (Å2)	2.7	
	Mean B-factor (Å2)	53.7	
30	* Numbers in parentheses are for	the highest reso	olution shell.

X-ray data collection and structure determination

[0285] For X-ray data collection, one crystal was soaked for a few seconds in the mother liquor supplemented with 20% glycerol and flash frozen in liquid nitrogen. Diffraction data were collected at the Advanced Photon Source (Argonne, IL) IMCA beamline using a Pilatus CCD detector. X-ray data statistics are given in Table 10.

[0286] The structure was solved by molecular replacement using a Fab model constructed from mouse anti-Thomsen-Friedenreich Antigen antibody Jaa-F11 (PDB 3gnm), which is a IgG3/kappa isotype. All crystallographic calculations were performed with the CCP4 suite of programs [CCP4. 1994, Acta Crystallogr. D50:760-763.]. Model adjustments were carried out using the program COOT [Emsley P, and Cowtan K. 2004. Acta Crystallogr. D60:2126-2132.]. The refinement statistics are given in Table 10.

[0287] The sequence of SP34 is shown in Figure 10, with residues 1 - 215 of the light chain and residues 1-230 of the heavy chain derived directly from the electron density map, and with residues 231 - 455 derived from IGHG3_MOUSE (mouse IgG3, isoform 2).

Example 12: Human Framework Adaptation of anti-CD3 antibody SP34

[0288] Anti-CD3 murine antibody SP34 was humanized by the Human Framework Adaptation method (Fransson, et al, JMB, 2010 398(2):214-31). Four different heavy chains were combined with three different light chains to produce 12 humanized variants.

SP34 Humanization and Affinity Maturation

Selection of human germlines

50

55

[0289] A matrix of four human heavy and three light v region sequences were selected for testing. Selection of human germlines were based solely on the overall sequence similarity to SP34 in the framework region (FR). Neither the CDR

sequences, nor their length or canonical structures, were considered in this selection.

[0290] The closest matches for the heavy chain are human GLs IGHV3-72 and IGHV3-73. Another GL, IGHV3-23 was selected because of its high frequency of occurrence in the human B-cell repertoire.

[0291] The closest matches for the light chain are human lambda GLs IGLV7-43 (aka 7a), IGLV7-46 (aka 7b) and IGLV1-51 (aka lb). IGLV7-46 is virtually identical to IGLV7-43, but has an advantage of Ala at position 2, i.e. as in SP34. [0292] Selected J-regions are the following: IGHJ1 for the heavy chain; IGLJ3 for the lambda light chain

Back mutations

[0293] To preserve the conformation of CDR-H3, residues in several framework positions in VL, most notably positions Val38, Gly48 and Gly51 (Figure 11) must be retained. These 'back mutations' were added into the humanization plan.
[0294] The Asn at position 57 of the heavy chain does not have good side chain density in the structure. It also sits in the middle of CDR-H2 and points away from the typical binding site. Based upon this analysis, it may not contribute to binding significantly. In addition, the backbone geometry sits in a region most favorable for a Gly residue in the Ramachadran plot. Thus it was truncated to Gly in the maturation plan to allow necessary flexibility and potentially improve stability (by reducing non-glycine related locat structural strain) while not impacting binding.
[0295] There were several other considerations made in the humanization design. First, human GLs IGLV7-46 and IGLV7-43 introduce a Trp at position 59 with an unwanted oxidation potential. Two other GLs have Gly at this position,

which corresponds to the mouse sequence. Therefore, Gly59 was preserved in both IGLV7-46 and IGLV7-43 variants. Finally, Ala at position 49 of VH may be essential. Also, the residue at position 99 (Val in SP34) may impact antigen binding. To test these positions, back mutations were introduced in some variants (Figure 12)

HFA matrix

20

30

35

40

45

50

55

[0296] The HFA matrix (Table 11) is composed of four variants of VH and three variants of VL (Figure 12). For the purpose of HFA, AbM CDR definition (K.R. Abhinandan and A. C. Martin, 2008. Mol. Immunol. 45, 3832-3839) is used. [0297] The variants for VH:

CD3H141 (SEQ ID NO:184): IGHV3-72*01 with mouse CDRs+ Gly49Ala

EVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYAA SVKGRFTISRDDSKNSLYLQMNSLKTEDTAVYYCARHGNFGNSYVSWFAYWGQGTLVTVSS

CD3H142 (SEQ ID NO:185): IGHV3-23*01 with mouse CDRs+ Ser49Ala

EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYAD SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAKHGNFGNSYVSWFAYWGQGTLVTVSS

CD3H143 (SEQ ID NO:186): IGHV3-23*01 with mouse CDRs+ Ser49Ala, Ala99Val

EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKGLEWVARIRSKYNNYATYYAD SVKGRFTISRDNSKNTLYLOMNSLRAEDTAVYYCVKHGNFGNSYVSWFAYWGOGTLVTVSS

CD3H144(SEQ ID NO:187): IGHV3-73*01 with mouse CDRs + Asn57Gly

EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKGLEWVGRIRSKYNGYATYYAA SVKGRFTISRDDSKNTAYLQMNSLKTEDTAVYYCTRHGNFGNSYVSWFAYWGQGTLVTVSS

[0298] The variants for VL:

CD3L63 (SEQ ID NO:188): IGLV7-46*01 with mouse CDRs + F38V,A48G,Y51G,W59G

QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARF SGSLLGGKAALTLSGAOPEDEAEYYCALWYSNLWVFGGGTKLTVL

CD3L64 (SEQ ID NO:189): IGLV1-51*01 with mouse CDRs + Y38V, L48G, Y51G

QSVLTQPPSVSAAPGQKVTISCRSSTGAVTTSNYANWVQQLPGTAPKGLIGGTNKRAPGIPDRF SGSKSGTSATLGITGLQTGDEADYYCALWYSNLWVFGGGTKLTVL

CD3L66 (SEQ ID NO:190): IGLV7-43*01 with mouse CDRs + F38V,A48G,Y51G,W59G

QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQAPRGLIGGTNKRAPGTPARF SGSLLGGKAALTLSGVOPEDEAEYYCALWYSNLWVFGGGTKLTVL

Table 11 Matrix of CD3 Heavy and Light chains

	Table 11 Matrix of Obs Heavy and Light Chains							
20	(All were prepared with IgG1-AA Fc containing L234A, L235A, and F405L)							
20		CD3L63 (LV7-46/W59G) SEQ ID NO:188	CD3L64 (LV1-51) SEQ ID NO:189	CD3L66 (LV7-43/W59G) SEQ ID NO: 190				
25	CD3H141 (HV3-72 + G49A) SEQ ID NO: 184	CD3B143	CD3B144	CD3B146				
25	CD3H142 (HV3-23 + S49A) SEQ ID NO:185	CD3B147	CD3B148	CD3B150				
	CD3H143 (HV3-23 +S49A, A99V) SEQ ID NO: 186	CD3B151	CD3B152	CD3B154				
30	CD3H144 (VH3-73 with G49) SEQ ID NO:187	CD3B155	CD3B156	CD3B158				

[0299] Amino acid sequences were back-translated to DNA and cDNA was prepared using gene synthesis techniques (U.S. Pat. No. 6,670,127; U.S. Pat. No. 6,521,427). Heavy chain (HC) v regions were subcloned onto human IgG1-AA Fc containing L234A, L235A, and F405L mutations using an in-house expression vector with the CMV promoter using standard molecular biology techniques. Light chain (LC) variable regions were subcloned onto a human Lambda (λ) constant regions using an in-house expression vector with the CMV promoter using standard molecular biology techniques. Resulting plasmids were transfected into Expi293F cells (Invitrogen) and mAbs were expressed. Purification was by standard methods using a Protein A column (hiTrap MAbSelect SuRe column). After elution, the pools were dialyzed into D-PBS, pH 7.2. The VH and VL sequence of the antibodies are shown in Table 12.

65

15

10

5

35

45

50

Table 12. The VH and VL sequences of anti-CD3 antibodies

5	mAb	НС	VH Amino Acid sequence	SEQ ID NO:	LC	VL Amino Acid sequence	SEQ ID NO:
10	CD3B1 43	CD3H 141	EVQLVESGGGLVQPG GSLRLSCAASGFTFN TYAMNWVRQAPGKGL EWVARIRSKYNNYAT YYAASVKGRFTISRD DSKNSLYLQMNSLKT EDTAVYYCARHGNFG NSYVSWFAYWGQGTL VTVSS	184	CD3L 63	QAVVTQEPSLTVSP GGTVTLTCRSSTGA VTTSNYANWVQQKP GQAPRGLIGGTNKR APGTPARFSGSLLG GKAALTLSGAQPED EAEYYCALWYSNLW VFGGGTKLTVL	188
20	CD3B1 44	CD3H 141	EVOLVESGGGLVQPG GSLRLSCAASGFTFN TYAMNWVRQAPGKGL EWVARIRSKYNNYAT YYAASVKGRFTISRD DSKNSLYLQMNSLKT EDTAVYYCARHGNFG NSYVSWFAYWGQGTL VTVSS	184	CD3L 64	QSVLTQPPSVSAAP GQKVTISCRSSTGA VTTSNYANWVQQLP GTAPKGLIGGTNKR APGIPDRFSGSKSG TSATLGITGLQTGD EADYYCALWYSNLW VFGGGTKLTVL	189
30	CD3B1 46	CD3H 141	EVQLVESGGGLVQPG GSLRLSCAASGFTFN TYAMNWVRQAPGKGL EWVARIRSKYNNYAT YYAASVKGRFTISRD DSKNSLYLQMNSLKT EDTAVYYCARHGNFG NSYVSWFAYWGQGTL VTVSS	184	CD3L 66	QTVVTQEPSLTVSP GGTVTLTCRSSTGA VTTSNYANWVQKP GQAPRGLIGGTNKR APGTPARFSGSLLG GKAALTLSGVQPED EAEYYCALWYSNLW VFGGGTKLTVL	190
4045	CD3B1 47	CD3H 142	EVQLLESGGGLVQPG GSLRLSCAASGFTFN TYAMNWVRQAPGKGL EWVARIRSKYNNYAT YYADSVKGRFTISRD NSKNTLYLQMNSLRA EDTAVYYCAKHGNFG NSYVSWFAYWGQGTL VTVSS	185	CD3L 63	QAVVTQEPSLTVSP GGTVTLTCRSSTGA VTTSNYANWVQQKP GQAPRGLIGGTNKR APGTPARFSGSLLG GKAALTLSGAQPED EAEYYCALWYSNLW VFGGGTKLTVL	188
50	CD3B1 48	CD3H 142	EVQLLESGGGLVQPG GSLRLSCAASGFTFN TYAMNWVRQAPGKGL EWVARIRSKYNNYAT	185	CD3L 64	QSVLTQPPSVSAAP GQKVTISCRSSTGA VTTSNYANWVQQLP GTAPKGLIGGTNKR	189

5			YYADSVKGRFTISRD NSKNTLYLQMNSLRA EDTAVYYCAKHGNFG NSYVSWFAYWGQGTL VTVSS EVQLLESGGGLVQPG			APGIPDRFSGSKSG TSATLGITGLQTGD EADYYCALWYSNLW VFGGGTKLTVL	
10	CD3B1 50	CD3H 142	GSLRLSCAASGFTFN TYAMNWVRQAPGKGL EWVARIRSKYNNYAT YYADSVKGRFTISRD NSKNTLYLQMNSLRA EDTAVYYCAKHGNFG NSYVSWFAYWGQGTL VTVSS	185	CD3L 66	GGTVTLTCRSSTGA VTTSNYANWVQQKP GQAPRGLIGGTNKR APGTPARFSGSLLG GKAALTLSGVQPED EAEYYCALWYSNLW VFGGGTKLTVL	190
20	CD3B1 51	CD3H 143	EVQLLESGGGLVQPG GSLRLSCAASGFTFN TYAMNWVRQAPGKGL EWVARIRSKYNNYAT YYADSVKGRFTISRD NSKNTLYLQMNSLRA EDTAVYYCVKHGNFG NSYVSWFAYWGQGTL VTVSS	186	CD3L 63	QAVVTQEPSLTVSP GGTVTLTCRSSTGA VTTSNYANWVQQKP GQAPRGLIGGTNKR APGTPARFSGSLLG GKAALTLSGAQPED EAEYYCALWYSNLW VFGGGTKLTVL	188
30	CD3B1 52	CD3H 143	EVQLLESGGGLVQPG GSLRLSCAASGFTFN TYAMNWVRQAPGKGL EWVARIRSKYNNYAT YYADSVKGRFTISRD NSKNTLYLQMNSLRA EDTAVYYCVKHGNFG NSYVSWFAYWGQGTL VTVSS	186	CD3L 64	QSVLTQPPSVSAAP GQKVTISCRSSTGA VTTSNYANWVQQLP GTAPKGLIGGTNKR APGIPDRFSGSKSG TSATLGITGLQTGD EADYYCALWYSNLW VFGGGTKLTVL	189
40 45	CD3B1 54	CD3H 143	EVQLLESGGGLVQPG GSLRLSCAASGFTFN TYAMNWVRQAPGKGL EWVARIRSKYNNYAT YYADSVKGRFTISRD NSKNTLYLQMNSLRA EDTAVYYCVKHGNFG NSYVSWFAYWGQGTL VTVSS	186	CD3L 66	QTVVTQEPSLTVSP GGTVTLTCRSSTGA VTTSNYANWVQQKP GQAPRGLIGGTNKR APGTPARFSGSLLG GKAALTLSGVQPED EAEYYCALWYSNLW VFGGGTKLTVL	190
50	CD3B1 55	CD3H 144	EVQLVESGGGLVQPG GSLKLSCAASGFTFN TYAMNWVRQASGKGL EWVGRIRSKYNGYAT YYAASVKGRFTISRD DSKNTAYLQMNSLKT EDTAVYYCTRHGNFG NSYVSWFAYWGQGTL VTVSS	187	CD3L 63	QAVVTQEPSLTVSP GGTVTLTCRSSTGA VTTSNYANWVQQKP GQAPRGLIGGTNKR APGTPARFSGSLLG GKAALTLSGAQPED EAEYYCALWYSNLW VFGGGTKLTVL	188

5	CD3B1 56	CD3H 144	EVQLVESGGGLVQPG GSLKLSCAASGFTFN TYAMNWVRQASGKGL EWVGRIRSKYNGYAT YYAASVKGRFTISRD DSKNTAYLQMNSLKT EDTAVYYCTRHGNFG NSYVSWFAYWGQGTL VTVSS	187	CD3L 64	QSVLTQPPSVSAAP GQKVTISCRSSTGA VTTSNYANWVQQLP GTAPKGLIGGTNKR APGIPDRFSGSKSG TSATLGITGLQTGD EADYYCALWYSNLW VFGGGTKLTVL	189
15	CD3B1 58	CD3H 144	EVQLVESGGGLVQPG GSLKLSCAASGFTFN TYAMNWVRQASGKGL EWVGRIRSKYNGYAT YYAASVKGRFTISRD DSKNTAYLQMNSLKT EDTAVYYCTRHGNFG NSYVSWFAYWGQGTL VTVSS	187	CD3L 66	QTVVTQEPSLTVSP GGTVTLTCRSSTGA VTTSNYANWVQQKP GQAPRGLIGGTNKR APGTPARFSGSLLG GKAALTLSGVQPED EAEYYCALWYSNLW VFGGGTKLTVL	190

[0300] A monospecific anti-CD3 antibody CD3B143 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 184 and the VL of SEQ ID NO: 188 and an IgG1 constant region with L234A, L235A, F405L substitution. A monospecific anti-CD3 antibody CD3B144 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 184 and the VL of SEQ ID NO: 189 and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B146 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 184 and the VL of SEQ ID NO: 190) and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B147 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 185 and the VL of SEQ ID NO: 188) and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B148 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 185 and the VL of SEQ ID NO: 189 and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B150 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 185 and the VL of SEQ ID NO: 190 and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B151 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 186 and the VL of SEQ ID NO: 188 and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B152 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 186 and the VL of SEQ ID NO: 189 and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B154 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 186 and the VL of SEQ ID NO: 190 and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B155 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 187 and the VL of SEQ ID NO: 188 and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B156 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 187 and the VL of SEQ ID NO: 189 and an IgG1 constant region with L234A, L235A, and F405L substitutions. A monospecific anti-CD3 antibody CD3B158 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 187 and the VL of SEQ ID NO: 190 and an IgG1 constant region with L234A, L235A, and F405L substitutions.

Example 13: Endogenous cell binding of the humanized anti-CD3 hits to primary T cells

30

[0301] The resulting panel of anti-CD3 antibodies was tested for binding against cell-surface CD3ε on primary human T cells. To do this, binding of antibodies from expression supernatants was visualized using a polyclonal anti-human secondary antibody and analyzed by flow cytometry. Briefly, binding of anti-CD3 antibodies to cell-surface CD3ε was assessed by flow cytometry using primary Human T lymphocytes purified by negative selection (Biological Specialty, Colmar, USA). Expression supernatants or purified antibodies were normalized to 10μg/ml in media or FACS buffer (BD BioSciences), respectively. 2x10⁵ cells were aliquoted into wells of a 96 well round-bottomed plate (CoStar) for labeling. Antibodies in expression supernatant were added to cells and incubated for 45 min at 4 °C. Following centrifugation at 1300rpm for 3 min and removal of supernatant, 50 μL ofanti-human IgG (H+L) Alexa Fluor 647 secondary antibody (Life technologies Inc.) was incubated with the cells at a final concentration of 10μg/mL for 30 min at 4 °C away from direct

light. Following washing and resuspension in 30 μ L FACs buffer (BD BioSciences). Sample collection was performed on an Intellicyt HTFC system using ForeCyt software. Viable single cells were gated prior to analysis of binding using the green or red fixable live/dead dyes (Life Technologies Inc.) and forward/side scatter area and height parameters, respectively. Graphs were generated in GraphPad Prism version 5 using mean fluorescence intensity values.

[0302] Although a titration series was run, an intermediate concentration is presented in Figure 13 for clarity. Two inhouse phage-derived antibodies with the same Fc region as the therapeutic antibodies were used as controls: G11 (HC SEQ ID NO:222, LC SEQ ID NO:223), a non-cyno cross-reactive, agonistic antibody was used as a positive control and CD3B94 (HC-SEQ ID NO:224, LC - SEQ ID NO:225) a non-binder / non-agonistic antibody was used to assess non-specific binding. The commercial SP34 antibody was not used as a comparator in this assay since it is a mouse antibody and the use of a different secondary detection reagent would have prohibited direct comparison with the variants tested. [0303] The data demonstrates an array of binding potential within the panel of humanized anti-CD3 hits, with two antibodies (CD3B144, CD3B152) showing complete loss of binding to human T cells The remaining antibodies showed a range of binding potential that could be broadly split into strong and weak binders using G11 binding as an arbitrary threshold. Using these parameters, seven strong binders and seven weak binders were identified from the panel of variants (Figure 13).

[0304] Binding analysis of the anti-CD3 hits to primary cynomolgusCD4+ T cells was then tested in order to assess the retention of cross-reactivity. Purified CD4+ T cells from the peripheral blood of cynomolgus monkeys (Zen Bio, Triangle Research Park, USA were used). Assay protocols were similar to those described above. Since G11 does not cross-react with cynomolgusCD3ε, CD3B124, an in-house chimeric SP34-derived antibody having the VH and VL of SP34 with murine framework and a human IgG1 Fc was used as a positive control in this assay (Figure 14). Interestingly, several variants showed decreased binding potential compared to that seen with human cells. This included the strong binders CD3B150, CD3B151 and CD3B154, in which binding was reduced, and several weak binders where binding could no longer be detected over background. This loss of binding was not related to a specific immunoglobulin chain, suggesting that the combination of heavy and light chains played a role in the loss of cross-reactivity. Together, these assays allowed the identification of variants that retained species cross-reactivity between human and cynomolgus CD3ε.

Example 14: Functional analysis of the humanized anti-CD3 hits in primary T cells

10

20

30

35

40

50

55

[0305] Binding analysis demonstrated that the panel of humanized anti-CD3 hits showed a range of binding potential to human and cynomolgusT-cells. To investigate the capacity of each variant to induce activation in via CD3 ϵ crosslinking, primary T-cells were cultured overnight in the presence of bead-conjugated antibody. The following day, cells were harvested and labeled with an anti-CD69 antibody to measure activation (Figure 15). Humanized anti-CD3 antibodies were bound to protein A coated magnetic beads (SpheroTech, Lake forest, USA) by overnight incubation with antibody at $10 \,\mu g/mL$. The following day, $2x10^5$ primary human T cells were plated in round-bottomed cell culture plates in triplicate and $2x10^5$ coated beads were added. Following overnight culture at 37 °C, cells were harvested and labeled with anti-CD69 Alexa Fluor® 488 antibody (clone FN50; Biolegend) to assess the up-regulation of this activation marker. Sample collection and analysis were performed as described above for binding. Several negative controls were run, including T-cells alone, T-cells with non-coated beads, and T-cells with isotype control (CD3B94)-coated beads. All of these showed similar mean fluorescence intensity values comparable to unstained T-cells indicating that background was low in this assay. Several positive controls were run for comparison, including OKT3 (US5929212) and commercially available SP34-2 antibody.

[0306] The humanized anti-CD3 hits were then tested for their capacity to activate primary cynomolgus CD4+ T cells (Zen Bio, Triangle Research Park, USA) in the same assay (Figure 16). The FN50 anti-CD69 antibody has been described as being cross-reactive with non-human protein and could therefore be used to test activation of these cells.

[0307] The human and cynomolgus activation data correlated with the binding data in that the panel of hits displayed a range of activation potentials. A number of the strong binders showed the capacity to activate human T-cells to an equivalent or greater extent when compared to commercially available SP34-2. Several variants showed activation potential that was lower compared SP34-2, whereas some binders did not show evidence of CD69 stimulation. The inability to activate was only seen in the variants that showed no or weak binding and all strong binders showed some level of activation, suggesting a correlation between binding and activation potentials for both human (Figure 17A) and cynomolgus(Figure 17B).

Example 15: Preparation of the Antibodies in a Bispecific Format in IgG1 L234A, L235A

[0308] Several monospecific CD123 antibodies were expressed as IgG1, having Fc substitutions L234A, L235A, and K409R (on anti-CD123) (numbering according to the EU index) in their Fc regions. The monospecific antibodies were expressed in HEK cell lines. The monospecific CD3 antibodies were IgG1 with Fc substitutions L234A, L235A, and F405L.

[0309] A monospecific anti-CD123 antibody I3RB135-K409R was generated comprising the VH and VL regions of an

anti-CD123 antibody I3RB2 having the VH of SEQ ID NO: 120 and the VL of SEQ ID NO: 165 and an IgG1 constant region with L234A, L235A, and K409R substitution.

[0310] A monospecific anti-CD123 antibody I3RB125-K409R was generated comprising the VH and VL regions of an anti-CD 123 antibody I3RB18 having the VH of SEQ ID NO: 136 and the VL of SEQ ID NO: 168 and an IgG1 constant region with L234A, L235A, and K409R substitution.

[0311] As a control, a monospecific anti-RSV antibody, B21M, was generated comprising the VH and VL regions having the VH of SEQ ID NO: 191 and the VL of SEQ ID NO: 192 and an IgG1 constant region with L234A, L235A, and either K409R or F405L to partner as the null arm with either the CD3 or CD123 arm of a bispecific antibody.

[0312] The monospecific antibodies were purified using standard methods using a Protein A column (HiTrap MabSelect SuRe column). After elution, the pools were dialyzed into D-PBS, pH 7.2.

[0313] The monospecific anti-CD123 antibodies were combined in matrix in *in-vitro* Fab arm exchange to generate bispecific antibodies that were subsequently characterized further (Table 13).

Table 13. Matrix of CD123 x CD3 mAbs to form bispecific antibodies

10

15

50

		CD123 ARMS	}	Control
		I3RB135	I3RB125	B21M, 409R
		(I3RB2)	(I3RB18)	
CD3 mAb	CD3B146	I3RB179	13RB186	I3RB192
	CD3B147	I3RB180	I3RB187	I3RB193
	CD3B151	13RB181	I3RB188	I3RB194
	CD3B154	I3RB182	I3RB189	I3RB195
	CD3B155	13RB183	CD3B191	I3RB196
Control	B21M, F405L	I3RB185	I3RB191	I3RB198
mAb				

[0314] Bispecific CD123 x CD3 antibodies were generated by combining a monospecific CD3 mAb and a monospecific CD123 mAb in *in-vitro* Fab arm exchange (as described in WO2011/131746). Briefly, at about 1-20 mg/mL at a molar ratio of 1.08:1 of anti-CD123/anti-CD3 antibody in PBS, pH 7-7.4 and 75 mM 2-mercaptoethanolamine (2-MEA) was mixed together and incubated at 25-37 °C. for 2-6 hr, followed by removal of the 2-MEA via dialysis, diafiltration, tangential flow filtration and/or spinned cell filtration using standard methods. Control bispecific antibodies with an anti-RSV-(B21M) arm were generated similarly.

[0315] The generated monospecific anti-CD3 and CD123 antibodies were mixed for in vitro Fab arm exchange in matrix and characterized in various assays. The bispecific antibody I3RB179-Ab comprises the CD3 binding arm of mAb CD3B146-F405L and the CD123 binding arm of mAb I3RB135-K409R. The bispecific antibody I3RB186-Ab comprises the CD3 binding arm of mAb CD3B146-F405L and the CD123 binding arm of mAb I3RB125-K409R. The bispecific

antibody I3RB180-Ab comprises the CD3 binding arm of mAb CD3B147-F405L and the CD123 binding arm of mAb I3RB135-K409R. The bispecific antibody I3RB187-Ab comprises the CD3 binding arm of mAb CD3B147-F405L and the CD123 binding arm of mAb I3RB125-K409R. The bispecific antibody I3RB181-Ab comprises the CD3 binding arm of mAb CD3B151-F405L and the CD123 binding arm of mAb I3RB135-K409R. The bispecific antibody I3RB188-Ab comprises the CD3 binding arm of mAb CD3B155-F405L and the CD123 binding arm of mAb I3RB125-K409R. The bispecific antibody I3RB182-Ab comprises the CD3 binding arm of mAb CD3B154-F405L and the CD123 binding arm of mAb CD3B154-F405L and the CD123 binding arm of mAb CD3B154-F405L and the CD123 binding arm of mAb I3RB125-K409R. The bispecific antibody I3RB183-Ab comprises the CD3 binding arm of mAb CD3B155-F405L and the CD123 binding arm of mAb I3RB125-K409R. The bispecific antibody CD3B191-Ab comprises the CD3 binding arm of mAb CD3B155-F405L and the CD123 binding arm of mAb I3RB125-K409R.

[0316] For control bispecific antibodies, anti-RSV antibody, B21M (HC SEQ ID NO: 207 - shown with F405L mutation, LC SEQ ID NO:208), was combined with either the CD3 arm or CD123 arms as follows. The bispecific antibody I3RB185-Ab comprises the anti-RSV binding arm of mAb B21M-F405L and the CD123 binding arm of mAb I3RB135-K409R. The bispecific antibody I3RB191-Ab comprises the anti-RSV binding arm of mAb B21M-F405L and the CD123 binding arm of mAb B21M-K409R and the CD3 binding arm of mAb CD3B146-F405L. The bispecific antibody I3RB193-Ab comprises the RSV binding arm of mAb B2M-F409R and the CD3 binding arm of mAb CD3B147-F405L. The bispecific antibody I3RB194-Ab comprises the anti-RSV binding arm of mAb B2M-F409R and the CD3 binding arm of mAb CD3B151-F405L. The bispecific antibody I3RB195-Ab comprises the anti-RSV binding arm of mAb B21M-K409R and the CD3 binding arm of mAb CD3B154-F405L. The bispecific antibody I3RB196-Ab comprises the RSV binding arm of mAb B21M-K409R and the CD3 binding arm of mAb CD3B155-F405L.

[0317] Heavy and Light chains for the CD123 x CD3 bispecific Abs are shown below in Table 14.

Table 14. Heavy and Light Chain Sequences for bispecific IgG1 antibodies

25	Ab		Amino Acid Sequence
	I3RB179	Heavy chain 1 CD3B146 (SEQ ID NO:193)	EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKG
			LEWVGRIRSKYNGYATYYAASVKGRFTISRDDSKNTAYLQMNSL
30		·	KTEDTAVYYCTRHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH
			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD
35			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT
			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY
			RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR
40			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL
			HNHYTQKSLSLSPGK
45		Light Chain 1	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ
		CD3B146 (SEQ ID NO:194)	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY
			YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK

55

50

5

10

15

(continued)

	Ab		Amino Acid Sequence
5			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
10		Heavy chain 2	EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYWMHWVRQAPGKG
		I3RB135 (I3RB2) (SEQ ID NO:203)	LEWVSAIRSDGSSKYYADSVKGRFTISRDNSKNTLYLQMNSLRA
			EDTAVYYCAKDGVIEDTFDYWGQGTLVTVSSASTKGPSVFPLAP
			SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
15			QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
			SCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCV
			VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL
			TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT
20			LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT
			PPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
			KSLSLSPGK
25		Light Chain 2 I3RB135 (I3RB2) (SEQ ID NO:204)	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP
			RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC
			QQRSNWPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV
30			VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS
			STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
	I3RB180	Heavy chain 1 CD3B147 (SEQ ID NO:195)	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG
35			LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL
			RAEDTAVYYCAKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
40			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH
			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD
			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT
45			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY
			RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR
			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL
50			HNHYTQKSLSLSPGK
		Light Chain 1	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ

	Ab		Amino Acid Sequence				
5		CD2D447 (CEO ID	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY				
J		CD3B147 (SEQ ID NO: 196)	YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK				
			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA				
10			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS				
10		Heavy chain 2	EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYWMHWVRQAPGKG				
		I3RB135 (I3RB2) (SEQ ID NO:203)	LEWVSAIRSDGSSKYYADSVKGRFTISRDNSKNTLYLQMNSLRA				
			EDTAVYYCAKDGVIEDTFDYWGQGTLVTVSSASTKGPSVFPLAP				
15			SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL				
			QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK				
			SCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCV				
20			VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL				
			TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT				
			LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT				
25			PPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQ				
			KSLSLSPGK				
		Light Chain 2	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP				
30		I3RB135 (I3RB2) (SEQ ID NO:204)	RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC				
			QQRSNWPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV				
			VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS				
35			STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC				
	I3RB181	Heavy chain 1	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG				
		CD3B151 (SEQ ID NO:197)	LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL				
40			RAEDTAVYYCVKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS				
			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH				
			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD				
45			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT				
			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY				
			RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR				
50			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE				
50			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL				

	Ab		Amino Acid Sequence					
5			HNHYTQKSLSLSPGK					
		Light Chain 1	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ					
		CD3B151 (SEQ ID NO: 198)	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY					
			YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK					
10			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA					
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS					
		Heavy chain 2	EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYWMHWVRQAPGKG					
15		I3RB135 (I3RB2) (SEQ ID NO:203)	LEWVSAIRSDGSSKYYADSVKGRFTISRDNSKNTLYLQMNSLRA					
			EDTAVYYCAKDGVIEDTFDYWGQGTLVTVSSASTKGPSVFPLAP					
			SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL					
20			QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK					
			SCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCV					
			VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL					
25			TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT					
			LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT					
			PPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQ					
30			KSLSLSPGK					
		Light Chain 2	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP					
		I3RB135 (I3RB2) (SEQ ID NO:204)	RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC					
35			QQRSNWPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV					
			VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS					
			STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC					
40	I3RB182	Heavy chain 1	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG					
		CD3B154 (SEQ ID NO:199)	LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL					
		,	RAEDTAVYYCVKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS					
45			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH					
45			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD					
			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT					
			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY					
50			DUVIGUL MUL NURDARGENEVERIN VI DY DI ERMI GRYRUUDD					

(continued)

	Ab		Amino Acid Sequence				
5			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE				
			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL				
			HNHYTQKSLSLSPGK				
10		Light Chain 1	QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ				
10		CD3B154 (SEQ ID NO:200)	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEY				
			YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK				
			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA				
15			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS				
		Heavy chain 2	EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYWMHWVRQAPGKG				
		I3RB135 (I3RB2) (SEQ ID NO:203)	LEWVSAIRSDGSSKYYADSVKGRFTISRDNSKNTLYLQMNSLRA				
20			EDTAVYYCAKDGVIEDTFDYWGQGTLVTVSSASTKGPSVFPLAP				
			SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL				
			QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK				
25			SCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCV				
			VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL				
			TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT				
30			LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT				
			PPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQ				
			KSLSLSPGK				
35		Light Chain 2	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP				
		I3RB135 (I3RB2) (SEQ ID NO:204)	RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC				
			QQRSNWPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV				
40			VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS				
			STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC				
	I3RB183	Heavy chain 1	EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKG				
45		CD3B155 (SEQ ID NO: 201)	LEWVGRIRSKYNGYATYYAASVKGRFTISRDDSKNTAYLQMNSL				
		,	KTEDTAVYYCTRHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS				
			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH				
50			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD				
50			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT				

(continued)

	Ab		Amino Acid Sequence
5			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY
			RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR
			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
10			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL
10			HNHYTQKSLSLSPGK
		Light Chain 1	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ
		CD3B155 (SEQ ID NO: 202)	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY
15			YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK
			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
20		Heavy chain 2	EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYWMHWVRQAPGKG
		I3RB135 (I3RB2) (SEQ ID NO:203)	LEWVSAIRSDGSSKYYADSVKGRFTISRDNSKNTLYLQMNSLRA
			EDTAVYYCAKDGVIEDTFDYWGQGTLVTVSSASTKGPSVFPLAP
25			SSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL
			QSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPK
			SCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCV
30			VVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVL
			TVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYT
			LPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTT
35			PPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQ
			KSLSLSPGK
		Light Chain 2 I3RB135 (I3RB2)	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP
40		(SEQ ID NO:204)	RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC
			QQRSNWPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV
			VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS
45			STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
	I3RB186	Heavy chain 1	EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKG
		CD3B146 (SEQ ID NO:193)	LEWVGRIRSKYNGYATYYAASVKGRFTISRDDSKNTAYLQMNSL
50			KTEDTAVYYCTRHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
30			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH

(continued)

	Ab		Amino Acid Sequence					
5			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD					
			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT					
			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY					
10			RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR					
10			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE					
			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL					
			HNHYTQKSLSLSPGK					
15		Light Chain 1	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ					
		CD3B146 (SEQ ID NO:194)	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY					
			YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK					
20			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA					
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS					
		Heavy chain 2	EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWISWVRQMPGKG					
25		I3RB125 (I3RB18) (SEQ ID NO: 205)	LEWMGIIDPSDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKA					
			SDTAMYYCARGDGSTDLDYWGQGTLVTVSSASTKGPSVFPLAPS					
			SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ					
30			SSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS					
			CDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV					
			VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT					
35			VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL					
			PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP					
			PVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQK					
40			SLSLSPGK					
		Light Chain 2	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQA					
		I3RB125 (I3RB18) (SEQ ID NO: 206)	PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY					
45			CQQDYGFPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS					
			VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL					
			SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC					
50	I3RB187	Heavy chain 1	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG					

(continued)

	Ab		Amino Acid Sequence				
5		0D0D447.40F0.ID	LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL				
J		CD3B147 (SEQ ID NO:195)	RAEDTAVYYCAKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS				
			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH				
40			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD				
10			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT				
			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY				
			RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR				
15			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE				
			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL				
			HNHYTQKSLSLSPGK				
20		Light Chain 1 CD3B147 (SEQ ID	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ				
		NO: 196)	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY				
			YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK				
25			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA				
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS				
		Heavy chain I3RB125 (I3RB18) (SEQ ID NO: 205)	EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWISWVRQMPGKG				
30			LEWMGIIDPSDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKA				
			SDTAMYYCARGDGSTDLDYWGQGTLVTVSSASTKGPSVFPLAPS				
			SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ				
35			SSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS				
			CDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV				
			VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT				
40			VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL				
			PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP				
			PVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQK				
45			SLSLSPGK				
		Light Chain I3RB125 (I3RB18)	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQA				
		(SEQ ID NO: 206)	PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY				
50			CQQDYGFPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS				
			VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL				
			SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC				

	Ab		Amino Acid Sequence
5	I3RB188	Heavy chain 1	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG
		CD3B151 (SEQ ID NO:197)	LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL
			RAEDTAVYYCVKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
10			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH
			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD
			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT
15			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY
15			RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR
			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL
20			HNHYTQKSLSLSPGK
		Light Chain 1	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ
		CD3B151 (SEQ ID NO: 198)	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY
25			YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK
			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
30		Heavy chain I3RB125 (I3RB18)	EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWISWVRQMPGKG
		(SEQ ID NO: 205)	LEWMGIIDPSDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKA
			SDTAMYYCARGDGSTDLDYWGQGTLVTVSSASTKGPSVFPLAPS
35			SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
			SSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS
			CDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV
40			VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT
			VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL
			PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP
45			PVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQK
			SLSLSPGK
		Light Chain I3RB125 (I3RB18)	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQA
50		(SEQ ID NO: 206)	PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY
			CQQDYGFPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS
			VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL
55			SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

	Ab		Amino Acid Sequence				
5	I3RB189	Heavy chain 1	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG				
		CD3B154 (SEQ ID NO:199)	LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL				
			RAEDTAVYYCVKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS				
10			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH				
70			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD				
			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT				
15			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY				
15			RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR				
			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE				
•			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL				
20			HNHYTQKSLSLSPGK				
		Light Chain 1	QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ				
		CD3B154 (SEQ ID NO:200)	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEY				
25			YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK				
			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA				
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS				
30		Heavy chain I3RB125 (I3RB18)	EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWISWVRQMPGKG				
		(SEQ ID NO: 205)	LEWMGIIDPSDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKA				
			SDTAMYYCARGDGSTDLDYWGQGTLVTVSSASTKGPSVFPLAPS				
35			SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ				
			SSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS				
			CDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV				
40			VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT				
			VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL				
			PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP				
45			PVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQK				
			SLSLSPGK				
		Light Chain I3RB125 (I3RB18)	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQA				
50		(SEQ ID NO: 206)	PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY				
			CQQDYGFPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL				
55			SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC				

	Ab		Amino Acid Sequence
5	CD3B19	Heavy chain 1 CD3B155 (SEQ ID NO: 201)	EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKG
	'		LEWVGRIRSKYNGYATYYAASVKGRFTISRDDSKNTAYLQMNSL
			KTEDTAVYYCTRHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
10			VFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH
,0			TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVD
			KKVEPKSCDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRT
15			PEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTY
15			RVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPR
			EPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPE
			NNYKTTPPVLDSDGSFLLYSKLTVDKSRWQQGNVFSCSVMHEAL
20			HNHYTQKSLSLSPGK
		Light Chain 1	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ
		CD3B155 (SEQ ID NO: 202)	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY
25			YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK
			ATLVCLISDFYPGAVTVAWKGDSSPVKAGVETTTPSKQSNNKYA
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
30		Heavy chain I3RB125 (I3RB18)	EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWISWVRQMPGKG
		(SEQ ID NO: 205)	LEWMGIIDPSDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKA
			SDTAMYYCARGDGSTDLDYWGQGTLVTVSSASTKGPSVFPLAPS
35			SKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
			SSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKS
			CDKTHTCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVV
40			VDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLT
			VLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTL
			PPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP
45			PVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQK
			SLSLSPGK
		Light Chain I3RB125 (I3RB18)	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQA
50		(SEQ ID NO: 206)	PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY
			CQQDYGFPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS
			VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL
55			SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

Example 16: Evaluation of Bispecific Antibodies in Functional Cell Killing Assay

25

30

35

50

[0318] T-cell mediated cytotoxicity assay is a functional assay to evaluate the CD123 x CD3 bispecific antibodies for cell lysis using T-cells from healthy donors.

[0319] The protocol of Laszlo, et al was followed (Laszlo, G., et al 2014 BLOOD 123:4, 554-561). Briefly, effector cells were harvested, counted, washed, and resuspended to 1X10^6 cells/ml in RPMI (10% FBS) cell media. Target cells were labeled with CFSE (Invitrogen #C34554) and resuspended to 2X10⁵ cells/mL in RPMI (Invitrogen #61870-036) with 10% FBS (Invitrogen #10082-147). Effectors and CFSE-labeled target cells were mixed at E:T=5:1 in sterile 96-well round bottom plates. A 5 μ L aliquot of each bispecific antibody was added to each well containing various concentrations. Cultures were incubated for 48 hrs at 37 °C under 5% CO₂. After 48hr, The LIVE/DEAD® Fixable Near-IR Dead Cell Stain buffer (life technologies Cat# L10119) was added to samples, and cultures were incubated for 20 min in the dark at RT, washed, and resuspended in 170 μ L FACs buffer. The drug-induced cytotoxicity was determined using CANTO II flow cytometer (BD Biosciences) and analyzed with FlowJo Software or Dive software (BD Biosciences). The population of interest is the double positive CFSE+/ live/dead+ cells.

[0320] The results of the T-cell mediated cell lysis of AML cell lines MV4-11 (Figure 18A and B), OCI-AML5 (Figure 19A and B), and OCI-M2 (Figure 20A and B) after 48 hr incubation at 37 °C, 5% CO₂ are shown. The MV4-11 and OCI-AML5 are CD123 expression cell lines, and the OCI-M2 has significant low CD123 expression. The Effector/Target ratio for this study was 5:1. A 2 mg/mL aliquot of Fc blocker was added to block Fc function.

[0321] Both I3RB2 and I3RB18 antibodies, when combined with an anti-CD3 antibody into a bispecific format, are efficacious at specifically killing CD123+ cells.Additionally, the data allow for a clear ranking between the I3RB135 (I3RB2-based) and I3RB125 (I3RB18-based) bispecific antibodies with the I3RB125 x CD3 bispecific antibodies being more potent than I3RB135 x CD3 bispecific antibodies. Within each family, the CD3B146- and CD3B155- based bispecific antibodies (higher affinity mAbs) were more potent than the CD3B151- and CD3B154- based bispecific antibodies. Low levels of dose-dependent background cytotoxicity are seen with low CD123 expression cell line OCI-M2.

Example 17: Evaluation of Bispecific Antibody, I3RB186 in a Tumor Model of Disease Materials and Methods

[0322] Cell line. In order to determine the efficacy of the bispecific antibody, I3RB186 in vivo, commercially available tumor cell lines with high CD123 expression were chosen for efficacy studies. The KG-1 (DSMZ, catalog number ACC 14) human acute myelogenous leukemia (AML) tumor cells were maintained in vitro in RPMI medium supplemented with heat inactivated fetal bovine serum (10% v/v) at 37 °C in an atmosphere of 5% CO₂ in air. The cells were routinely subcultured two to three times weekly. The cells growing in an exponential growth phase were harvested and counted for tumor cell inoculation.

[0323] Preparation of Human PBMCs for engrafting. Human, Mononuclear Enriched Cells (Catalog 213-15-04), obtained from Biological Specialty Corporation (Colmar, PA), were used for hlgG1-AA molecule testing. PBMCs were isolated via Ficoll density gradient separation (Ficoll-Paque ™ Plus, GE Healthcare Bio-Sciences AB, Catalog 17-1440-03), and aliquoted at 50x10⁶ cells per vial in freezing media (Recovery Cell Culture Freezing Medium, Gibco, Catalog 12648-010). Vials were stored at -80 °C for approximately 24 hours, and then transferred to liquid nitrogen for long term storage. Frozen isolated peripheral blood mononuclear cell vials (100x10⁶ cells per vial, Catalog PB009-3) obtained from HemaCare (Van Nuys, CA) were used for IgG4 molecule testing. To thaw PBMCs, frozen vials were placed in a water bath at 37 °C.Cells were transferred to a conical tube containing cold thawing media. The conical tube was centrifuged, and cells were resuspended in sterile PBS. Cell viability was assessed using trypan blue exclusion method. Cells were resuspended to a cell concentration of 50x10⁶ cells per mL in sterile PBS for injection.

[0324] Peripheral blood collection for FACS analysis. For this, $50~\mu L$ of blood was collected from each animal via retro-orbital sinus into lithium heparin coated tubes. A $25~\mu L$ aliquot of blood from each sample was placed into $175~\mu L$ media (RPMI with 10% FBS) in each of two 96-well plates. The plates were centrifuged and red blood cells lysed using three treatments with ACK lysing buffer. Remaining cells were consolidated for each sample and stained for CD45, CD3, CD8, and CD4 to quantify circulating human T lymphocytes (see Mouse Peripheral Blood Harvesting/Staining: Protocol for Leukocyte Isolation and FACS analysis).

[0325] Protocol for Leukocyte FACS analysis. Protocol for Leukocyte FACS analysis. Peripheral blood was collected up to two times during the study for Fluorescence-activated Cell Sorting (FACS) analysis of circulating human PBMCs. Whole blood $(25\mu\text{L})$ was diluted in 175 μL of RPMI media in 96 well plates. Plates were centrifuged at 1400 rpm for 4 min and supernatant was decanted. Cells were resuspended in 200 μL of ACK lysing buffer and incubated on ice for 5 min. After centrifugation at 1300 rpm for 5 min, supernatant was aspirated. Cells were retreated with ACK lysing buffer two more times and were washed once in 200 μL PBS and recentrifuged at 1500 rpm for 5 min. Cell pellets were resuspended in 50 μL /well of antibody cocktail in PBS containing Live/Dead stain (Invitrogen, cat# L10119, 0.25 μL /well of stock. Stock is 1 vial diluted in 150 μL DMSO) and incubated at room temperature in the dark for 30 min. The following antibodies were used to label cells: CD4 (Becton Dickinson Cat. 557922, 0.5 μL /well), CD8 (Invitrogen, Q010055, 0.5

 μ L of a 1:10 dilution in PBS/well), CD3 (Becton Dickinson, cat. 558117, 0.5 μ L/well), CD45 (BioLegend cat. 304006, 0.5 μ L/well). Cell were washed 3X with FACS buffer (200 μ L/well) and resuspended in 170 μ L FACS Buffer. Sample collection was performed on a BD LSR Fortessa Flow Cytometry Analyzer. Viable single cells were gated prior to analysis using Near-IR live/dead dye (Life Technologies Inc.) and forward/side scatter area and height parameters, respectively. Data was analyzed using BD FACS Diva software version 7.

[0326] In vivo design. Female NSG (NOD.Cg- $Prkdc^{scid}$ $Il2rg^{tm1}Wjl/SzJ$) mice were subcutaneously inoculated with KG-1 cells (5x10⁶ cells in phosphate buffered saline in a volume of 200 μ L) on the dorsal flank of each animal. The day of tumor cell inoculation was denoted as day 0. Tumor measurements were monitored twice weekly beginning seven days post-implantation, until tumor volumes ranged between 100-150 mm³ (fourteen days post-implantation), at which point mice were randomized by tumor volume into treatment groups. Mice were then intravenously (lateral tail vein) engrafted with human peripheral blood mononuclear cells (PBMCs) ($10x10^6$ cells in phosphate buffered saline in a volume of 200 μ L). Immediately following PBMC engraftment, mice received intravenous therapy bispecific Ab I3RB186 (bispecific diluted in PBS and dosed at a volume of 100 μ L). Treatment occurred approximately every other day for a total of five doses (see Table 15 for exact dosing days). Tumor measurements and body weights were recorded twice weekly.

[0327] The endpoints of the studies were tumor growth inhibition, maximal tumor burden (group mean greater than 1500 mm³), and body weight loss greater than 20% treatment initiation body weight. Tumor size was measured twice weekly in two dimensions using a caliper and the volume was expressed in mm³ using the formula: V=0.5axb² where and b are the long and short diameters of the tumor, respectively. Complete tumor regression (CR) is defined as tumors that are reduced to below the limit of palpation (50 mm³). Partial tumor regression (PR) is defined as tumors that are reduced from initial tumor volume. A minimum duration of CR or PR in three or more successive tumor measurements is required for a CR or PR to be considered durable.

[0328] The engraftment of human PBMCs leads to eventual graft-versus-host disease (GVHD) in the mice, where the engrafted donor T cells become activated and infiltrate the host tissues, leading to organ failure, extreme body weight loss, and inevitably, death. To monitor the onset and severity of GVHD in this model, body weight was recorded twice weekly and expressed in grams (g). Percent body weight change was calculated using the formula: Body weight change = [(C-I)/I]*100 where C is the current body weight and I is the body weight at the initiation of treatment.

[0329] Summary statistics, including mean and the standard error of the mean (SEM), are provided for the tumor volume of difference in tumor volume among each group at each time-point are shown in corresponding study tables. Statistical analysis of difference in tumor volume among the groups were evaluated using a two-way ANOVA repeated measures test, followed by Bonferroni post-test, using GraphPad Prism version 5.01. p<0.05 was considered to be statistically significant.

Efficacy of CD123xCD3 IgG1, F234A, L235A Bispecific Abs

[0330] NSG mice were subcutaneously inoculated with KG-1 cells, and then intravenously engrafted with human PBMCs described previously and dosed with the CD123 x CD3 bispecific Ab, I3RB186 at doses of 0.01, 0.1, 1, and 10 μ g per animal, when tumors were established (mean tumor volume = 102 +/- 5.9 mm³), as described previously. A subset of tumor-bearing mice were not engrafted with PBMCs but were dosed, as controls for the mechanism of the bispecific in the absence of control bispecific Abs. Also, a subset of non-tumor-bearing mice were engrafted with PBMCs and dosed, as controls for peripheral blood FACS analysis (see **Table 15** for study design).

Table 15. Dosing Schedule for in-vivo efficacy of I3RB186

Group	N	Tumor	РВМС	Treatment	Dose (μg/ animal)	Dosing Route	Dosing Schedule (Days Post- Implantation)	Blood Sampling (Days tumor Implantation)	
1	10	+	-	PBS	0	i.v.	14, 17, 20, 22, 24	30	
2	10	+	-	I3RB186	10	i.v.	14, 17, 20, 22, 24	30	
3	10	+	-	I3RB186	1	i.v.	14, 17, 20, 22, 24	30	
4	10	+	ı	I3RB186	0.1	i.v.	14, 17, 20, 22, 24	30	
5	10	+	i	I3RB186	0.01	i.v.	14, 17, 20, 22, 24	30	
6	10	+	+	PBS	0	i.v.	14, 17, 20, 22, 24	30	
7	10	+	+	I3RB186	10	i.v.	14, 17, 20, 22, 24	30	

10

15

30

35

(continued)

Group	N	Tumor	РВМС	Treatment	Dose (μg/ animal)	Dosing Route	Dosing Schedule (Days Post- Implantation)	Blood Sampling (Days tumor Implantation)
8	10	+	+	I3RB186	1	i.v.	14, 17, 20, 22, 24	30, 53
9	10	+	+	I3RB186	0.1	i.v.	14, 17, 20, 22, 24	30, 53
10	10	+	+	I3RB186	0.01	i.v.	14, 17, 20, 22, 24	30
11	5	-	+	PBS	0	i.v.	14, 17, 20, 22, 24	30, 53
12	5	-	+	I3RB186	10	i.v.	14, 17, 20, 22, 24	30, 53
13	5	-	+	I3RB186	1	i.v.	14, 17, 20, 22, 24	30, 53
14	5	-	+	I3RB186	0.1	i.v.	14, 17, 20, 22, 24	30, 53
15	5	-	+	I3RB186	0.01	i.v.	14, 17, 20, 22, 24	30, 53

Results of in-vivo efficacy study

[0331] Figure 21 shows the efficacy of CD123xCD3 IgG1-AA bispecific, I3RB186 - IgG1, F234A, L235A, in KG-1 human AML xenografts when human PBMCs are present, at two doses, 0.1 and 1 μ g per animal (p<0.001). Bispecific at 1 μ g per animal (gray closed square) showed more immediate anti-tumor efficacy than at 0.1 μ g, with complete regressions occurring in 3/8 animals, and partial regressions occurring in 3/8 animals. However, tumor regrowth was seen in 6/8 mice beginning at day 55 post-tumor implantation. Bispecific at 0.1 μ g per animal (gray closed diamond) showed delayed but better efficacy with complete and partial regressions occurring in all animals. The data demonstrate the necessity of the presence of effector T lymphocytes for target cell killing with bispecific antibodies.

[0332] Figure 22 shows the FACS analysis of peripheral blood collected from mice on day 30 post-tumor implantation. An increase in CD45+ cells, driven by an increase in CD8+ T lymphocytes, was apparent in tumor-bearing animals treated with 0.1 and 1 μ g bispecific antibodies. This expansion of CD8+ T lymphocytes only occurred when target cells (KG-1) were present, in groups where anti-tumor efficacy was observed. Alternately, 10 μ g bispecific appeared to clear CD45+ PBMCs from peripheral blood. This clearance of effector cells may account for the lack of efficacy seen at this dose. [0333] Figure 23 shows the FACS analysis of peripheral blood collected from mice on day 53 post-tumor implantation. CD45+, CD8+, and CD4+ cells were at similar levels in tumor-bearing mice treated with 0.1 and 1 μ g bispecific, as in non-tumor bearing mice treated with PBS and 0.01 and 0.1 μ g bispecific. Non-tumor bearing mice treated with 1 and 10 μ g bispecific had very low levels of CD45+, CD8+, and CD4+ cells; the cause of this is currently unknown.

[0334] Figure 24 shows the mean body weight change of treatment groups over time. As described previously, body weight loss is correlated with onset and severity of GVHD, which is caused by activated T cells. In both tumor-bearing and non-tumor bearing mice, body weight loss was most severe with treatment with 0.1 μ g bispecific antibody. Tumor-bearing mice treated with 1 μ g bispecific did not experience severe body weight loss. T lymphocytes were present at day 53 post-tumor implantation (by FACS analysis, Figure 23), however the lack of body weight loss and GVHD onset indicates a loss of activated T cells, which may account for the tumor regrowth seen in this group beginning on day 55 post-tumor implantation (Figure 21).

Example 18. Evaluation of I3RB186 and control bispecific Abs (I3RB191 and I3RB192) in-vivo

[0335] In the second in -vivo experiment, bispecific Ab controls were added, I3RB191, a CD3 null arm and I3RB192, a CD123 null arm Ab. The protocol was the same as for Example 16. KG-1 human AML tumor xenografts were subcutaneously implanted into female NSG mice. Fourteen days after implant, mice were randomized by tumor volume to treatment groups. Human PBMCs were intravenously implanted, followed by intravenous treatment with I3RB186, and I3RB191 and I3RB192 control bispecific Abs at 1 µg per animal (see dosing schedule on Table 16). Treatment occurred on days 14, 16, 18, 21, and 23 days after tumor implant. Arrows in the figure show the bispecific Ab administration days.

55

50

5

10

15

20

25

30

35

Table 16 Dosing Schedule for 2nd in-vivo experiment

5

10

15

20

35

40

50

Group	N	Tumor	РВМС	Treatment	Dose (μg/ animal)	Dosing Route	Dosing Schedule (Days Post-tumor Implantation)	Blood Sampling (Days Post-tumor Implantation)
1	8	+	+	PBS	0	i.v.	14, 16, 18, 21, 23	36
2	8	+	+	I3RB192	1	i.v.	14, 16, 18, 21, 23	36
3	8	+	+	I3RB191	1	i.v.	14, 16, 18, 21,23	36
4	8	+	+	I3RB186	1	i.v.	14, 16, 18, 21, 23	36, 63
5	8	+	-	PBS	0	i.v.	14, 16, 18, 21, 23	N/A
6	8	+	-	I3RB192	1	i.v.	14, 16, 18, 21, 23	N/A
7	8	+	-	I3RB191	1	i.v.	14, 16, 18, 21, 23	N/A
8	8	+	-	I3RB186	1	i.v.	14, 16, 18, 21, 23	N/A
9	4	-	+	PBS	0	i.v.	14, 16, 18, 21, 23	36, 63
10	4	-	+	I3RB186	1	i.v.	14, 16, 18, 21, 23	36, 63

[0336] The anti-tumor activity of the bispecific Abs is shown as change in tumor size (mm3) over time (Figure 25). Treatment with 13RB186 at 1 μ g significantly inhibited tumor growth (p<0.001) compared to that of PBS and control bispecific Ab-treated animals.

[0337] On day 36 post-tumor implantation, peripheral blood was collected for FACS analysis of circulating human PBMCs. Unlike the first study, there was no difference in the frequency of human CD45+ PBMCs (a) or CD8+ and CD4+ T lymphocyte frequencies (b) in animals treated with I3RB186 compared with PBS and I3RB191 (Figure 26). CD45+, CD8+, and CD4+ cells were at lower frequencies in tumor-bearing and non-tumor bearing animals treated with I3RB192, the CD123 null arm control bispecific Ab.

[0338] On day 63 post-tumor implantation, peripheral blood was collected for FACS analysis of circulating human PBMCs. Of the tumor-bearing animals, only animals treated with I3RB186 at 1 µg remained (Figure 27). There was an elevation in frequency of CD45+ human PBMCs (a) and CD8+ T lymphocytes (b) in tumor-bearing animals treated with 1 µg I3RB186, compared with non-tumor bearing animals treated with PBS or 1 µg I3RB186 (Figure 25). CD4+ T lymphocytes were at similar frequencies across all remaining groups. Non-tumor bearing mice treated with PBS and 1 µg I3RB186 had very low frequencies of CD45+, CD8+, and CD4+ cells.

[0339] Figure 28 shows the mean body weight change of treatment groups over time. As described previously, body weight loss is correlated with onset and severity of GVHD, which is caused by activated T cells. In tumor-bearing mice, there was a greater loss in body weight with treatment with 1 μg bispecific antibody, compared to all other groups. This is contradictory to the first study, where tumor-bearing mice treated with 1 μg bispecific did not experience severe body weight loss. T lymphocytes were present at day 63 post-tumor implantation (Figure 27), however the efficacy at the 1 μg dose was not as pronounced as in the first study (Figures 21,25).

Example 19. Preparation of the Antibodies in a Bispecific Format in IgG4 S228P, F234A, L235A

[0340] Several of the monospecific CD3 and CD123 antibodies were expressed as IgG4, having Fc substitutions S228P, F234A, and L235Ax (CD123 arm) or S228P, F234A, L235A, F405L, and R409K(CD3 arm) (numbering according to EU index) in their Fc regions. The monospecific antibodies were expressed in CHO cell lines under CMV promoters. [0341] A monospecific anti-CD3 antibody CD3B219 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 184 and the VL of SEQ ID NO: 190 and an IgG4 constant region with S228P, F234A, L235A, F405L, and R409K substitutions. A monospecific anti-CD3 antibody CD3B217 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 186 and the VL of SEQ ID NO: 188 and an IgG4 constant region with S228P, F234A, L235A, F405L, and R409K substitution. A monospecific anti-CD3 antibody CD3B218 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 186 and the VL of SEQ ID NO: 190 and IgG4 constant region with S228P, F234A, L235A, F405L, and R409K substitutions. A monospecific anti-CD3 antibody CD3B220 was generated comprising the VH and VL regions having the VH of SEQ ID NO: 187 and the VL of SEQ ID NO: 188 and IgG4 constant region with S228P, F234A, L235A, F405L, and R409K substitutions.

[0342] A monospecific anti-CD 123 antibody I3RB218 was generated comprising the VH and VL regions of an anti-CD123 antibody I3RB2 having the VH of SEQ ID NO: 120 and the VL of SEQ ID NO: 165 and an IgG4 constant region

with S228P, F234A, and L235A substitutions. A monospecific anti-CD123 antibody I3RB217 was generated comprising the VH and VL regions of an anti-CD123 antibody I3RB18 having the VH of SEQ ID NO: 136 and the VL of SEQ ID NO: 168 and an IgG4 constant region with S228P, F234A, and L235A substitutions.

[0343] As a control, a monospecific anti-RSV antibody, derived from B21M, was generated comprising the VH and VL regions having the VH of SEQ ID NO: 191 and the VL of SEQ ID NO: 192 and an IgG4 constant region with S228P, F234A, L235A, or F234A, L235A, R409K, F405L to partner as the null arm with either the CD3 or CD 123 arm of a bispecific antibody.

[0344] The monospecific antibodies were purified, and the generated monospecific anti-CD3 and CD123 antibodies were mixed for in vitro Fab arm exchange in matrix (Table 12) as previously described in Example 15 and characterized in various assays. The bispecific antibody -Ab 7959 comprises the CD3 binding arm of mAb CD3B219 -F405L, R409K and the CD123 binding arm of mAb I3RB217 -R409. The bispecific antibody Ab 3978 comprises the CD3 binding arm of mAb CD3B217 -F405L, R409K and the CD123 binding arm of mAb I3RB217 -R409. The bispecific antibody Ab 7955 comprises the CD3 binding arm of mAb CD3B218 -F405L, R409K and the CD123 binding arm of mAb I3RB217 -R409. The bispecific antibody 9958 Ab comprises the CD3 binding arm of mAb CD3B220 -F405L, R409K and the CD123 binding arm of mAb I3RB217 -R409. The bispecific antibody Ab 8747 comprises the CD3 binding arm of mAb CD3B219 -F405L, R409K and the CD123 binding arm of mAb I3RB218 -R409. The bispecific antibody Ab 8876 comprises the CD3 binding arm of mAb CD3B217 -F405L, R409K and the CD123 binding arm of mAb CD3B217 -F405L, R409K and the CD123 binding arm of mAb I3RB218 -R409. The bispecific antibody Ab 5466 comprises the CD3 binding arm of mAb CD3B220 -F405L, R409K and the CD123 binding arm of mAb I3RB218 -R409. The bispecific antibody Ab 5466 comprises the CD3 binding arm of mAb CD3B220 -F405L, R409K and the CD123 binding arm of mAb I3RB218 -R409.

[0345] For control bispecific antibodies, B2M1 in the IgG4 PAA format was generated, purified and, combined with either the CD3 arm or CD123 arms following the matrix in the table 17 below.

CD3B219 CD3B217 CD3B218 CD3B220 B21MlgG4, (I3RB146) SEQ (I3RB151) SEQ (I3RB154) SEQ (I3RB155) SEQ F045L CD3 ID NO:210, 211 ID NO:212, 213 ID NO:214,215 ID NO:216,217 null I3RB217 CD3 null 1 7959 3978 7955 9958 (I3RB18) SEQ ID (4309)NO:218, 219 I3RB218(I3RB2) CD3 null 2 SEQ ID NO:220, 8747 8876 4435 5466 (6601)221 B21M IgG4, CD123 CD3 K409R CD123 CD123 null 1 CD123 null 2 CD123 null 3 CD123 null 4 null (3244) null

Table 17 Matrix of IgG4 bispecific antibodies

[0346] Heavy and Light chains for CD123 x CD3 bispecific antibodies are shown in Table 18.

Table 18. Heavy and Light Chain Sequences for bispecific Abs IgG4-PAA

Ab	Chain	Amino Acid Sequence
7959 Heavy chain 1		EVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG
	CD3B219 (I3RB146) SEQ ID NO:210	LEWVARIRSKYNNYATYYAASVKGRFTISRDDSKNSLYLQMNSL
	SEQ ID NO.210	KTEDTAVYYCARHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
		VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH
		TFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVD
		KRVESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV
		TCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVV
		SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ

55

10

15

20

25

30

35

40

45

(continued)

	Ab	Chain	Amino Acid Sequence
5			VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
5			KTTPPVLDSDGSFLLYSKLTVDKSRWQEGNVFSCSVMHEALHNH
			YTQKSLSLSK
		Light Chain 1	QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ
10		CD3B219 (I3RB146) SEQ ID NO:211	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEY
		OLQ ID NO.211	YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK
			ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
15		Heavy chain 2 I3RB217	EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWISWVRQMPGKG
		(I3RB18) SEQ ID NO: 218,	LEWMGIIDPSDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKA
		210,	SDTAMYYCARGDGSTDLDYWGQGTLVTVSSASTKGPSVFPLAPC
			SRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
20			SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKY
			GPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
			SQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH
			QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPS
25			QEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL
			DSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS
			LSLGK
		Light Chain 2 13RB217 (13RB18) SEQ ID NO: 219	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQA
30			PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY
			CQQDYGFPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS
			VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL
			SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
35	3978	Heavy chain 1	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG
		CD3B217 (I3RB151) SEQ ID NO:212	LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL
		0LQ 1D 140.212	RAEDTAVYYCVKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
10			VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH
40			TFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVD
			KRVESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV
			TCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVV
45			SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ
.0			VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY

87

(continued)

	Ab	Chain	Amino Acid Sequence
5			KTTPPVLDSDGSFLLYSKLTVDKSRWQEGNVFSCSVMHEALHNH YTQKSLSLSK
10		Light Chain 1 CD3B217 (I3RB151) SEQ ID NO:213	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
15		Heavy chain 2 I3RB217 (I3RB18) SEQ ID NO: 218,	EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWISWVRQMPGKG LEWMGIIDPSDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKA SDTAMYYCARGDGSTDLDYWGQGTLVTVSSASTKGPSVFPLAPC SRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
20			SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKY GPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV SQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPS QEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL
25			DSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS LSLGK
30		Light Chain 2 I3RB217 (I3RB18) SEQ ID NO: 219	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQA PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY CQQDYGFPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
35	7955	Heavy chain 1 CD3B218 (I3RB154) SEQ ID NO:214	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL RAEDTAVYYCVKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH
40			TFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVD KRVESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV TCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
45			KTTPPVLDSDGSFLLYSKLTVDKSRWQEGNVFSCSVMHEALHNH YTQKSLSLSLGK

88

50

(continued)

	Ab	Chain	Amino Acid Sequence
5		Light Chain 1 CD3B218 (I3RB154) SEQ ID NO:215	QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEY YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
, •		Heavy chain 2 I3RB217 (I3RB18) SEQ ID NO: 218,	EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWISWVRQMPGKG LEWMGIIDPSDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKA SDTAMYYCARGDGSTDLDYWGQGTLVTVSSASTKGPSVFPLAPC
15			SRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKY GPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV SQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH
20			QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPS QEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS LSLGK
25 30		Light Chain 2 I3RB217 (I3RB18) SEQ ID NO: 219	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQA PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY CQQDYGFPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
	9958	Heavy chain 1 CD3B220 (I3RB155) SEQ ID NO:216	EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKG LEWVGRIRSKYNAYATYYAASVKGRFTISRDDSKNTAYLQMNSL KTEDTAVYYCTRHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
35			VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH TFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVD KRVESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV TCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVV
40			SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY KTTPPVLDSDGSFLLYSKLTVDKSRWQEGNVFSCSVMHEALHNH YTQKSLSLSLGK
45		CD3B220 (I3RB155) SEQ ID NO:217	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK

89

(continued)

	Ab	Chain	Amino Acid Sequence
5			ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA
3			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
		Heavy chain 2 I3RB217	EVQLVQSGAEVKKPGESLKISCKGSGYSFTSYWISWVRQMPGKG
		(I3RB18) SEQ ID NO: 218,	LEWMGIIDPSDSDTRYSPSFQGQVTISADKSISTAYLQWSSLKA
10		210,	SDTAMYYCARGDGSTDLDYWGQGTLVTVSSASTKGPSVFPLAPC
			SRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQ
			SSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKY
			GPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV
15			SQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLH
			QDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPS
			QEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL
			DSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLS
20			LSLGK
		Light Chain 2 I3RB217	EIVLTQSPGTLSLSPGERATLSCRASQSVSSSYLAWYQQKPGQA
		(I3RB18) SEQ ID NO: 219	PRLLIYGASSRATGIPDRFSGSGSGTDFTLTISRLEPEDFAVYY
		210	CQQDYGFPWTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTAS
25			VVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSL
			SSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
	8747	Heavy chain 1	EVQLVESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG
		CD3B219 (I3RB146) SEQ ID NO:210	LEWVARIRSKYNNYATYYAASVKGRFTISRDDSKNSLYLQMNSL
30			KTEDTAVYYCARHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
			VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH
			TFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVD
			KRVESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV
35			TCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVV
			SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ
			VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY
			KTTPPVLDSDGSFLLYSKLTVDKSRWQEGNVFSCSVMHEALHNH
40			YTQKSLSLSK
		Light Chain 1	QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ
		CD3B219 (I3RB146) SEQ ID NO:211	APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEY
45		010 ID 110.211	YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK
45			ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA
			ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS

90

50

(continued)

	Ab	Chain	Amino Acid Sequence
5		Heavy chain 2 I3RB218 (I3RB2) SEQ ID NO:220	EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYWMHWVRQAPGKG LEWVSAIRSDGSSKYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKDGVIEDTFDYWGQGTLVTVSSASTKGPSVFPLAP CSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESK YGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPP
15			SQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV LDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL SLSLGK
20		Light Chain 2 I3RB218 (I3RB2) SEQ ID NO:221	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC QQRSNWPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
25	88761	Heavy chain 1 CD3B217 (I3RB151) SEQ ID NO:212	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL RAEDTAVYYCVKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH
30			TFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVD KRVESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV TCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ
35			VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY KTTPPVLDSDGSFLLYSKLTVDKSRWQEGNVFSCSVMHEALHNH YTQKSLSLSLGK
40		Light Chain 1 CD3B217 (I3RB151) SEQ ID NO:213	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
45 50		Heavy chain 2 I3RB218 (I3RB2) SEQ ID NO:220	EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYWMHWVRQAPGKG LEWVSAIRSDGSSKYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKDGVIEDTFDYWGQGTLVTVSSASTKGPSVFPLAP CSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL

(continued)

	Ab	Chain	Amino Acid Sequence
5			QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESK YGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVL
10			HQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPP SQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV LDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL SLSLGK
15		Light Chain 2 I3RB218 (I3RB2) SEQ ID NO:221	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC QQRSNWPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
20	4435	Heavy chain 1 CD3B218 (I3RB154) SEQ ID NO:214	EVQLLESGGGLVQPGGSLRLSCAASGFTFNTYAMNWVRQAPGKG LEWVARIRSKYNNYATYYADSVKGRFTISRDNSKNTLYLQMNSL RAEDTAVYYCVKHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
25			VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH TFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVD KRVESKYGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV TCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVV SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ
30			VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY KTTPPVLDSDGSFLLYSKLTVDKSRWQEGNVFSCSVMHEALHNH YTQKSLSLSLGK
35		Light Chain 1 CD3B218 (I3RB154) SEQ ID NO:215	QTVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGVQPEDEAEY YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS
40		Heavy chain 2 I3RB218 (I3RB2) SEQ ID NO:220	EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYWMHWVRQAPGKG LEWVSAIRSDGSSKYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKDGVIEDTFDYWGQGTLVTVSSASTKGPSVFPLAP
45			CSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESK YGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVL

92

	Ab	Chain	Amino Acid Sequence
5			HQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPP SQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV LDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL SLSLGK
10 15		Light Chain 2 I3RB218 (I3RB2) SEQ ID NO:221	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC QQRSNWPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC
15	5466	Heavy chain 1 CD3B220 (I3RB155) SEQ ID NO:216	EVQLVESGGGLVQPGGSLKLSCAASGFTFNTYAMNWVRQASGKG LEWVGRIRSKYNAYATYYAASVKGRFTISRDDSKNTAYLQMNSL KTEDTAVYYCTRHGNFGNSYVSWFAYWGQGTLVTVSSASTKGPS
20			VFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVH TFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVD KRVESKYGPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEV TCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVV
25			SVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY KTTPPVLDSDGSFLLYSKLTVDKSRWQEGNVFSCSVMHEALHNH YTQKSLSLSLGK
30		CD3B220 (I3RB155) SEQ ID NO:217	QAVVTQEPSLTVSPGGTVTLTCRSSTGAVTTSNYANWVQQKPGQ APRGLIGGTNKRAPGTPARFSGSLLGGKAALTLSGAQPEDEAEY YCALWYSNLWVFGGGTKLTVLGQPKAAPSVTLFPPSSEELQANK ATLVCLISDFYPGAVTVAWKADSSPVKAGVETTTPSKQSNNKYA
35		Heavy chain 2 I3RB218 (I3RB2) SEQ ID NO:220	ASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS EVQLLESGGGLVQPGGSLRLSCAASGFTFSGYWMHWVRQAPGKG LEWVSAIRSDGSSKYYADSVKGRFTISRDNSKNTLYLQMNSLRA EDTAVYYCAKDGVIEDTFDYWGQGTLVTVSSASTKGPSVFPLAP
40			CSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVL QSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESK YGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVD VSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVL
45			HQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPP SQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPV LDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL SLSLGK
50		Light Chain 2 I3RB218 (I3RB2) SEQ ID NO:221	EIVLTQSPATLSLSPGERATLSCRASQSVSSYLAWYQQKPGQAP RLLIYDASNRATGIPARFSGSGSGTDFTLTISSLEPEDFAVYYC QQRSNWPLTFGQGTKVEIKRTVAAPSVFIFPPSDEQLKSGTASV
55			VCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLS STLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC

Example 20. CD123 monovalent affinity of bispecific antibodies in IgG4-PAA format using recombinant antigen

[0347] Surface plasmon resonance (SPR) experiments were performed to determine the kinetics and affinity for the binding of CD3XCD123 bispecific antibodies to human CD123 SP1 ECD and CD123 SP2 ECD.

5

10

15

20

25

30

35

40

45

50

55

[0348] The affinities of anti-CD123 xCD3 bispecific Abs 3978, 7955, 7959, 9958 8876, 8747, 5466 for recombinant human CD123 SP1 and recombinant human CD123 SP2 ECD were measured by surface plasmon resonance (SPR) using a Biacore instrument. Kinetic studies were performed at 25° C using a Biacore T200 (Biacore, Inc., now part of GE Healthcare). Goat anti-Human IgG (Fc) specific antibody (Jackson ImmunoResearch laboratories Prod # 109-005-098) was covalently attached to the carboxymethyl dextran coated gold surfaces of a CM-5 sensor chip (GE Healthcare). The carboxymethyl groups of dextran were activated with N-Ethyl-N'-(3-Dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The anti-Fc antibody was coupled at pH 4.5 in 10 mM sodium acetate. Any remaining reactive sites on the surface were blocked by reaction with ethanolamine. For kinetic binding measurements, anti-CD123 antibodies were captured onto the anti-human Fcγ specific antibody, 40-70 RU of antibody were captured. Ab capture was followed by injection of human CD123 SP1 or human CD123 SP2 at concentrations between 0.4nM and 400 nM at 40 µL/min. Association data was collected for 2 min followed by 10 min of dissociation. The surface was regenerated with 30 μL of 100 mM H3PO4 100 μL/min, followed by 50 mM NaOH. The samples for kinetic analysis were prepared in PBS-based buffer (D-PBS containing 3 mM EDTA and 0.005% surfactant P20). Data reported is the difference in SPR signal between the flow cell containing the captured antibody and a reference cell without captured antibody. Additional instrumental contributions to the signal were removed by subtraction of the data from the blank injection from the reference-subtracted signal. Data were analyzed by fitting association and dissociation phases at all concentrations (global fit) with a 1:1 binding model using the BIAevaluation software (BIAcore, Inc.). Table 20 and 21 summarize the kinetic and affinity results obtained by Biacore. Both tables show the data obtained during three or more independent experiments.

[0349] Biacore data show that within the same family I3RB18-derived bispecific Abs and I3RB2-derived bispecific Abs bind with similar affinities to CD123 SP1 (Table 19) and with similar affinities to CD123 SP2 (Table 20) I3RB18-derived bispecific Abs bind to recombinant CD123 SP1 > 10-fold tighter than I3RB2-derived bispecific Abs with affinities \sim 1 nM and 14 nM, respectively. When binding to recombinant CD123 SP2, I3RB18 derived bispecific Abs bind > 5-fold tighter than I3RB2 derived bispecific Abs with affinities \sim 0.3 nM and 1.7 nM, respectively. Standard deviations in Tables 19 and 20 indicate that the data were very reproducible.

Table 19 Biacore kinetic and affinity data for the binding of bispecific antibodies to recombinant human CD123 SP1.

Sample ID	Common name	k _{on} Ave (M ⁻¹ s ⁻¹)	k _{on} STDEV (M ⁻¹ s ⁻¹)	k _{off} Ave (s ⁻¹)	k _{off} STDEV (s ⁻¹)	K _D Ave (nM)	K _D STDEV (nM)
3978	CD123(B18) x CD3(B151)	5.64E+05	3.82E+04	8.30E- 04	4.70E-05	1.47	0.129
7955	CD123(B18) x CD3(B154)	5.62E+05	4.53E+04	8.40E- 04	5.30E-05	1.49	0.153
7959	CD123(B18) x CD3(B146)	5.79E+05	3.55E+04	8.80E- 04	5.40E-05	1.53	0.132
9958	CD123(B18) x CD3(B155m)	5.87E+05	4.57E+04	7.90E- 04	5.00E-05	1.34	0.135
8876	CD123(B2) x CD3(B151)	3.43E+05	1.10E+04	4.90E- 03	1.20E-04	14.4	0.583
4435	CD123(B2) x CD3(B154)	3.37E+05	1.25E+04	4.80E- 03	1.60E-04	14.3	0.713
8747	CD123(B2) x CD3(B146)	3.37E+05	1.25E+04	4.80E- 03	2.10E-04	14.3	0.821
5466	CD123(B2) x CD3(B155m)	3.71E+05	6.43E+03	5.10E- 03	6.70E-05	13.7	0.298
3244	B21M x B21M	NB	NB	NB	NB	NB	NB

(continued)

Sample ID	Common name	k _{on} Ave (M ⁻¹ s ⁻¹)	k _{on} STDEV (M ⁻¹ s ⁻¹)	k _{off} Ave (s ⁻¹)	k _{off} STDEV (s ⁻¹)	K _D Ave (nM)	K _D STDEV (nM)
I3RB18	Mab for Fab I3RB119	7.73E+05	5.68E+04	7.20E- 04	3.60E-05	0.935	0.083
NB - no bniding							

Table 20. Biacore kinetic and affinity data for the binding of anti-CD123 bispecific antibodies to recombinant human CD123 SP2

Sample ID	Common name	k _{on} Ave (M ⁻¹ s ⁻¹)	k _{on} STDEV (M ⁻¹ s ⁻¹)	k _{off} Ave (s ⁻¹)	k _{off} STDEV (s ⁻¹)	K _D Ave (nM)	K _D STDEV (nM)
3978	CD123(B18) x CD3(B151)	3.12E+06	6.34E+05	1.10E-03	5.30E-05	0.356	0.074
7955	CD123(B18) x CD3(B154)	3.33E+06	9.37E+05	1.10E-03	2.90E-05	0.344	0.097
7959	CD123(B18) x CD3(B146)	3.78E+06	5.43E+05	1.30E-03	1.30E-04	0.335	0.06
9958	CD123(B18) x CD3(B155m)	3.57E+06	9.82E+05	1.10E-03	6.90E-05	0.311	0.088
8876	CD123(B2) x CD3(B151)	2.83E+06	4.07E+05	5.00E-03	1.30E-04	1.75	0.255
4435	CD123(B2) x CD3(B154)	2.88E+06	5.51E+05	5.00E-03	3.20E-04	1.74	0.349
8747	CD123(B2) x CD3(B146)	3.19E+06	1.05E+06	5.20E-03	4.50E-04	1.63	0.558
5466	CD123(B2) x CD3(B155m)	2.88E+06	2.86E+05	4.90E-03	2.80E-04	1.69	0.193
3244	B21M x B21M	NB	NB	NB	NB	NB	NB

Example 21. CD123 monovalent affinity of bispecific antibodies in IgG4-PAA format to cell-surface expressed antigen by MSD-CAT

[0350] Monovalent affinities of the selected anti-CD 123 bispecifc antibodies for cell-surface expressed hCD123 SP1 and SP2 were performed using MSD-cell affinity technique (MSD-CAT) method. The MSD-CAT was developed in-house as a label-free method to determine affinity using intact cells in a high throughput format. These experiments were performed to assess the binding affinity and specificity of anti-CD 123 candidates to cell-surface human CD123 SP1 and CD123 SP2. Cell lines used were human pDisplay CD123SP1 and pDisplay CD123SP2. A negative control antibody was used to test if the bispecific Abs scaffold bound nonspecifically to the cells and differentiate nonspecific versus specific binding to CD123. In order to measure the affinity of these interactions using the MSD-CAT method, a series of mixtures with a fixed concentration of anti-CD123 (800, 160, 32 and 6 pM) and varying concentrations of cells (20 Million to 1016 cells/mL) were prepared and allowed to reach equilibrium by rotating the plates for 24 hours at 4°C. These samples were prepared in DMEM Glutamax medium containing 0.05% Azide, 1% BSA, 3 mM EDTA. The receptor numbers of (0.29-1.08) x 10⁶ hCD123 SP1/cell and (0.57-1.5) x 10⁶ hCD123 SP2/ were converted to M receptor concentration in the mixture on the basis of the volume of reaction, the cell density (cells/L) and the Avogadro's number. This resulted in a concentrations ranging from of 35 nM to 0.5 M for human CD123 SP1; and 49nM to 0.97 pM for human CD123 SP2. After equilibration the plate was centrifuged for 5 minutes ~1000 rpm and free anti-CD3 detected on the supernatant. The free anti-CD 123 in the mixture was detected by electro chemioluminesce (ECL) using mesoscale

discovery (MSD) reader instrument. For detection of free anti-CD 123 in the equilibrated mixture by Electrochemiluminescene Immunoassays (ECL) detection plates were prepared. To prepare detection plates (plate bound antigen on SA-MSD plates) MSD Streptavidin Standard plates were blocked with 50 uL/well of assay buffer (PBS, (Life Sciences GIBCO 14190-136), 0.05% Tween 20, 0.2% BSA) for 5 minutes. The assay buffer was removed without washing and 50 uL/well of 0.7 ug/mL of biotinylated antigen in assay buffer were added to MSD plates and incubated overnight (~16 hours at 4°C). After overnight incubation, the plates were blocked by adding 150 uL/well of assay buffer without removing coating antigen, incubated for ~1 hour at ambient temperature and washed 5 times with wash buffer (assay buffer without BSA). 50 uL/well of the supernantants from samples plate were transferred to antigen-coated plates, incubated for 60 minutes, and then washed 3 times with wash buffer. After this 50 uL per well of ruthenium labeled detection antibody(antihuman H+L) were added and incubated for 1 hour. After 1 hour the plates were washed with wash buffer and 150 uL of MSD Read Buffer (Read Buffer T 4X, R92TD-2, MSD) were added per well. The plates were read immediately on the MSD Sector Imager 6000ä Reader for luminescence levels. ECL signal detected by MSD was expressed in terms of % free antibody in the mixture and the data was analyzed to determine affinity using a user defined equation (derived from the law of mass action) introduced in Prism software. Results for MSD-CAT experiments are shown in Table 21.

10

15

20

25

30

35

40

50

Table 21. MSD-CAT affinity data show the binding of anti-CD123 molecules to cell-surface human CD123 SP1 and human CD123 SP2. The data were fit using non-linear least square analysis with a 1:1 binding model.

Sample ID	K _D [pM] human CD123 SP1 cells	K _D [pM] human CD123 SP2 cells
3978	153 ± 124	528 ± 296
7955	136 ± 105	436 ± 255
7959	149 ± 98	461 ± 290
9958	121 ± 80	538 ± 430
8876	1291 ± 556	2450 ± 2104
4435	1531 ± 1093	3701 ± 1898
8747	1761 ± 1337	2211 ± 1003
5466	2431 ± 1222	1722 ± 1638
3244	No binding	No binding
I3RB18 mAb	*47 ± 14	*49 ± 36
I3RB2 mAb	NA	*36 ± 20

[0351] MSD-CAT affinities of Bispecific Abs for cell-surface CD123 SP1 are >6-fold tighter than SPR data for recombinant CD123 SP1; However, the affinities for cell-surface CD123 SP2 are similar to recombinant CD123 SP2 (< 2-fold different). The difference in SPR versus MSD-CAT affinities for CD123 SP1 is most likely due to the presentation of the antigen on the cell surface in comparison to the recombinant antigen. MSD-CAT showed that I3RB18-derived bispecific Abs (3978, 7955, 7959, 9958) are the tightest binders to cell-surface human CD123 SP1 and human CD123 SP2 with pM affinities. I3RB18-derived affinities are about 10-fold and about 5-fold tighter than I3RB2-derived bispecific Abs to cell-surface CD123 SP1 and CD123 SP2, respectively. The affinities were similar for bispecific Abs within the same family. [0352] Overall, molecular interaction analyses using Biacore and MSD-CAT are in agreement showing that I3RB18-derived bispecific Abs bind tighter to recombinant and cell-surface human CD123 (SP1 and SP2) than for I3RB2-derived bispecific Abs.

Example 22. CD123 monovalent affinity of bispecific antibodies in IgG4-PAA format to cell-surface expressed antigen by flow cytometry

[0353] Flow cytometry was used to measure affinity values of several CD123xCD3 bispecfic Abs for CD3 on human T cells (Biological Specialty, Colmar, USA) and cynomolgus monkey T cells (Zen Bio, Triangle Research Park, USA). The format involved competition binding using a fixed concentration of labeled anti-CD3 mAb of known affinity and increasing concentrations of unlabeled test Abs (Ashkenazi A et al. PNAS: 88:10535, 1991.). The anti-CD3 mAb used was CD3B146 hu IgG1-AlaAla F405L antibody with an affinity value similar to SP34-2. The Kd for SP34-2 was determined using saturation binding and examples of human and cynomolgous monkey T-cell binding curves are shown in Figure

29. Figure 30 shows the competition binding with labeled B146 and various concentrations of unlabeled CD123 x CD3 bispecific antibodies obtained for human (Figure 30 A) and cyomolgous (Figure 30 B) T-cells. Comparable values were obtained for human and cynomolgus monkey T cells. There appear to be three CD3 affinity groups among the samples analyzed: high (9-15 nM), medium (25-50 nM) and low (110-270 nM) which are summarized in Table 22.

TABLE 22. Affinity values (Kd) for CD123 x CD3 bispecific antibodies to human or cynomolgus T cells - competition binding using labeled B146 and increasing concentrations of unlabeled antibodies

5

10

15

20

25

30

35

50

55

	Human T-cells	Cyno T-cells
bispecific Abs	Kd (nM)	Kd (nM)
3978	241.2+/-57.3	215.0+/-17.1
8876	169.2 +/- 27.9	109.6 +/- 4.8
CD123 null 2	266 +/- 78.0	217 +/- 18.0
7955	209.6 +/- 31.8	169.1 +/- 8.8
4435	173.6 +/- 48.6	138.9 +/-/2.8
CD123 null 3	200.5 +/- 67.3	236.7 +/- 16.4
7959	11.0 +/- 4.3	11.2 +/- 0.3
8747	9.6 +/- 1.5	9.5 +/- 0.1
CD123 null 1	13.2 +/- 3.0	13.4 +/- 0.3
9958	43.0 +/- 10.6	29.1 +/- 1.2
5466	27.9 +/- 9.3	25.3 +/- 1.1
CD123 null 4	48.6 +/- 14.8	36.8 +/- 0.5
CD3B146	3.2 +/- 1.2	1.1 +/-/ 0.1

Example 23 Evaluation of IgG4-PAA CD123 x CD3 Bispecific Abs in Functional Cell Killing Assay

[0354] T-cell mediated cytotoxicity assay as described in Example 16 was used to evaluate the CD123 x CD3 bispecific Abs for cell lysis using T-cells from two healthy donors. For these experiments, OCI-AML5, KG-1 and JIM3 cells were used. JIM3 is a myeloma tumor line and has no CD123 expression and was used as a control. Cells were treated for 48 hours with bispecific Abs. The E:T ratio for this study was 5:1, and 2mg/mL Fc blocker was added to block Fc function. [0355] The results of the T-cell mediated cell lysis of AML cell lines OCI-AML (Figure 31), KG-1 (Figure 32), and JIM3 (Figure 33) after 48 hr incubation at 37 °C, 5% CO₂ are shown. The MV4-11 and OCI-AML5 are CD123 expression cell lines, and the JIM3 has very little or no CD123 expression. The Effector/Target ratio for this study was 5:1. A 2 mg/mL aliquot of Fc blocker was added to block Fc function.

[0356] Results are similar to the previous cell-killing experiments with CD123 x CD3 bispecific Abs in the IgG1-AA format. Both I3RB217 (I3RB18) and I3RB218 (I3RB2) antibodies, when combined with an anti-CD3 antibody into a bispecific format, are efficacious at specifically killing CD123+ cells. Cell-killing is specific to CD123-containing cells, as demonstrated by the lack of effect on JIM3 cells. Additionally, the data allow for a clear ranking between the I3RB218 (I3RB2-based) and I3RB217 (I3RB18-based) bispecific antibodies with the I3RB217 x CD3 bispecific Abs being more potent than I3RB218 x CD3 Bispecific Abs, in agreement with previous cell killing data.

Example 24. Evaluation of Bispecific Antibodies in Receptor heterodimerization assay

[0357] The DiscoveRx Receptor Dimerization assay for IL3RA/CD131 (DiscoveRx 93-0969-C1) was used to evaluate the ability of the CD123 antibodies to prevent the IL3-induced heteromerization of II,3R α (CD123)/IL3R β (CD131). The CD123 and CD131 are tagged with ProLink $^{\text{TM}}$ (PK) or Enzyme Acceptor (EA). Upon IL3-induced activation, the proteins

dimerize to form the IL3 receptor, forcing the two β -gal components to complement and create an active enzyme. Active β -gal generates a chemiluminescent signal in the presence of substrate. Anti-CD123 antibodies or bispecific antibodies that show decreasing signal with increasing antibody concentration are positive for preventing heterodimerization.

[0358] The cells were tested for increases in enzyme activity in the presence of the IL-3 ligand using PathHunter® Detection Reagents (DiscoveRx) according to the manufacturer's protocol. HEK293 IL3RA-PK / CSF2RB-EA cell lines were plated in 20 uL assay media in quadruplicate on 384-well plates with 5,000 cells / well. Antibody stocks were serially diluted in 0.1% BSA / PBS such that the high concentration of compound was 10 ug / mL. The high dose was serially diluted 1:3 with 11 doses tested. 5 μ l of diluted antibody was added to the wells. Cells were incubated for 1 hour at 37C. A recombinant human IL-3 stock solution at 100 μ g / mL was diluted such that 5 μ l of a 60 ng / mL dilution of IL-3 was added to each well. The final concentration of IL-3 used was 10 ng / mL. Cells were incubated an additional 6 hours at 37C. PathHunter Flash Detection Reagent containing lysis buffer and enzyme substrate was added to the cells, incubated 30 minutes at room temperature and read on the Envision luminometer. Data was analyzed using GraphPad Prism 6. Curves are fit using a sigmoidal dose response with variable slope (four parameter) with no constraints; fit method= least squares (normal fit).

[0359] IgG4 PAA bispecific antibodies 8747 and 7959, as well as the parental antibodies I3RB218 and I3RB217 were run in the assay The assay was run two independent times in the presence of 10 ng/ml of IL-3 and the positive control CD123 antibody 7G3 was used as a comparator in the assay. Antibodies that contained the anti-CD123 arm I3RB18 sequence, I3RB217 and 7959, (Figure 34C and D) were able to prevent formation of a functional IL-3 receptor in the presence of IL-3 ligand. Antibodies that contained the anti-CD 123 arm I3RB2, I3RB218 and 8747 (Figure 34A and B) did not prevent formation of functional IL-3 receptor in this assay. This correlates with previous data that showed I3RB18 could inhibit downstream signaling associated with a functional IL-3 receptor

Example 24. Evaluation of Several Bispecific Antibodies in the KG-1 tumor model

10

15

20

30

35

40

45

50

55

[0360] Several of the CD123 x CD3 bispecific Abs were evaluated for efficacy in the KG-1 AML murine model as previously described. The protocol was the same for this study as in Examples 16 and 17, except that frozen isolated peripheral blood mononuclear cell vials (100x10⁶ cells per vial, Catalog PB009-3) obtained from HemaCare (Van Nuys, CA) were used for testing the IgG4 bispecific antibodies. NSG mice were subcutaneously inoculated with KG-1 cells, and then intravenously engrafted with human PBMCs when tumors were established (mean tumor volume = 135.7 +/-4.7 mm3). Mice were then dosed with IgG4 PAA CD123 x CD3 bispecific Abs with various affinities and corresponding control bispecific Abs at a range of doses, as described in. Table 23.

Table 23. Dosing Schedule for 3rd in vivo study

Group	N	Tumor	РВМС	Treatment	Dose (μg/ animal)	Dosing Route	Dosing Schedule (Days Post-tumor Implantation)	Blood Sampling (Days Post-tumor Implantation)
1	10	+	+	PBS	0	i.v.	14, 16, 18, 21, 23	31
2	10	+	+	7959	0.1	i.v.	14, 16, 18, 21, 23	31
3	10	+	+	7959	1	i.v.	14, 16, 18, 21, 23	31
4	10	+	+	9958	0.1	i.v.	14, 16, 18, 21, 23	31
5	10	+	+	9958	1	i.v.	14, 16, 18, 21, 23	31
6	10	+	+	8747	0.1	i.v.	14, 16, 18, 21, 23	31
7	10	+	+	8747	1	i.v.	14, 16, 18, 21, 23	31
8	10	+	+	8747	10	i.v.	14, 16, 18, 21, 23	31
9	10	+	+	3978	0.1	i.v.	14, 16, 18, 21, 23	31
10	10	+	+	3978	1	i.v.	14, 16, 18, 21, 23	31
11	10	+	+	3978	10	i.v.	14, 16, 18, 21, 23	31
12	10	+	+	8876	0.1	i.v.	14, 16, 18, 21, 23	31
13	10	+	+	8876	1	i.v.	14, 16, 18, 21, 23	31
14	10	+	+	8876	10	i.v.	14, 16, 18, 21, 23	31

(continued)

5

10

15

20

25

30

35

40

50

Group	N	Tumor	РВМС	Treatment	Dose (μg/ animal)	Dosing Route	Dosing Schedule (Days Post-tumor Implantation)	Blood Sampling (Days Post-tumor Implantation)
15	10	+	+	CD3 null 1	0.1	i.v.	14, 16, 18, 21, 23	31
16	10	+	+	CD3 null 1	1	i.v.	14, 16, 18, 21, 23	31
17	10	+	+	CD3 null 1	10	i.v.	14, 16, 18, 21, 23	31
18	10	+	+	CD3 null 2	0.1	i.v.	14, 16, 18, 21, 23	31
19	10	+	+	CD3 null 2	1	i.v.	14, 16, 18, 21, 23	31
20	10	+	+	CD3 null 2	10	i.v.	14, 16, 18, 21, 23	31
21	10	+	+	CD123 null	0.1	i.v.	14, 16, 18, 21, 23	31
22	10	+	+	CD123 null	1	i.v.	14, 16, 18, 21, 23	31
23	10	+	+	CD123 null	10	i.v.	14, 16, 18, 21, 23	31
24	10	+	+	CD123 null 2	0.1	i.v.	14, 16, 18, 21, 23	31
25	10	+	+	CD123 null 2	1	i.v.	14, 16, 18, 21, 23	31
26	10	+	+	CD123 null 2	10	i.v.	14, 16, 18, 21, 23	31

[0361] Results of in vivo efficacy studies with multiple CD123 x CD3 bispecific Abs are shown in Figures 35 - 42. Figures 35 - 38 show the efficacy of CD123 x CD3 IgG4-PAA bispecific Abs at various affinities and doses in KG-1 human AML xenografts. In Figure 35, bispecific Abs with high affinity CD123 and CD3 arms had significant efficacy compared to PBS and control bispecific Abs from days 25 through 36 post-tumor implantation (p<0.001). Bispecific Ab 9958 at the 1 μ g dose had significant efficacy compared to 0.1 μ g, and both doses of bispecific Ab 7959 by day 36 post-tumor implantation (p<0.01). This indicates high affinity CD123 and CD3 arms are necessary for pronounced efficacy in this model.

[0362] In Figure 36, bispecific Ab 3978 at the 10 μ g dose had significant efficacy compared to PBS and control bispecific Abs from day 28 (p<0.05) through day 36 (p<0.001) post-tumor implantation, the 1 μ g dose from day 32 (p<0.05) through day 36 (p<0.01) post-tumor implantation, and the 0.1 μ g dose from day 32 (p<0.01) through day 36 (p<0.001) post-tumor implantation. There is a dose-dependent response with this bispecific Ab, indicating a high affinity CD123 arm at a high dose can result in efficacy in this model.

[0363] In Figure 37, bispecific Ab 8747 at the 0.1 μ g dose had significant efficacy compared to PBS and control bispecific Abs from days 32 through 36 post-tumor implantation (p<0.001), and compared to the 1 and 10 μ g doses by day 36 post-tumor implantation (p<0.001). This indicates a high affinity CD3 arm at a low dose can result in efficacy in this model.

[0364] In Figure 38, bispecific Ab 8876 did not have significant efficacy compared to PBS and control bispecific Abs at any dose.

[0365] Figures 39 - 42 show the mean body weight change of treatment groups over time. As described previously, body weight loss is correlated with onset and severity of GVHD, which is caused by activated T cells.

[0366] Animals treated with bispecific Ab 7959 at 0.1 μ g and bispecific Ab 9958 at 1 μ g had more severe and earlier onset body weight loss than those treated with PBS, control bispecific Abs, and the other doses of bispecific Ab 7959 and bispecific Ab 9958 (Figure 39). This correlates with the significant anti-tumor efficacy seen at 1 μ g bispecific Ab 9958 (Figure 35).

[0367] Animals treated with bispecific Ab 3978 at the 10 μ g dose had more severe and earlier onset body weight loss compared with those treated with PBS and control bispecific Abs (Figure 40). The mice treated with the 1 μ g and 0.1 μ g doses followed in body weight loss in a dose-dependent manner. The dose-dependent weight loss correlates with the dose dependent anti-tumor efficacy seen in Figure 36).

[0368] Animals treated with bispecific Ab 8747 at the 0.1 μ g dose had similar body weight loss to that of the PBS-treated group, however, mice regained body weight beginning day 39 post-tumor implantation (Figure 41). There was no body weight loss with the 1 or 10 μ g doses. The weight loss seen at the 0.1 μ g dose correlates with anti-tumor efficacy seen at this dose (Figure 37).

[0369] Animals treated with bispecific Ab 8876 did not show weight loss different from that of PBS or control bispecific treated mice (Figure 42), corresponding to the lack of anti-tumor efficacy seen with this bispecific antibody (Figure 38). [0370] In summary, the CD123 x CD3 bispecific Abs shows consistent efficacy in a CD123 expressing human AML cell line, KG-1, only in the presence of effector cells (T lymphocytes). T cell expansion was seen shortly after the dosing period, only in the presence of disease (KG-1 xenografts). Additionally, bispecific efficacy is correlated with GVHD onset as measured by body weight loss, indicating activated T lymphocytes are present. Together, these data indicate that the CD123 x CD3 bispecific has anti-tumor efficacy through the proposed mechanism of target and effector cell engagement, and T cell killing.

Example 24. In vivo Mouse PK studies

10

15

30

35

40

50

55

[0371] Test Ab articles were formulated in phosphate-buffered saline at 0.2 mg/mL. Concentrations were confirmed using the Nanodrop spectrophotometer, and then sterile-filtered with 0.2 micron syringe filters.

[0372] Transgenic animals used in these studies are derived from C57BL/6 mice. Tg32 licensed from the Jackson Laboratory (Bar Harbor) have their endogenouse mouse FcRn α gene knocked out and are transgenic with the human FcRn α gene under the control of the native human gene promoter. Tg32 hemi refer to mice hemizygous for the FcRn transgene, the latter derived by mating homozygous transgenic mice with FcRn α knockout mice. A significant correlation was observed between the PK of human antibodies and the PK in primates with the Tg32 hemi mouse model, and therefore it was used in the following PK studies to evaluate Ab half-life. All mouse breeding was done at SAGE Research Labs Boyertown, PA Facility.

[0373] For the study, 6 week old mice were used with 48 female Tg32 hemi mice injected IV with hlgG4-PAA bispecific Abs using 5 mice per group. Retro-orbital bleeds were taken at the same time points.

[0374] After sample collection, a serum analysis was conducted. Concentrations of human lgG in the serum samples were determined by an electrochemiluminescent immunoassay with the MESO Scale Discovery (MSD) format. Streptavidin MSD plates were coated with 50 μ L/well of 2 μ g/mL biotinylated F(ab')2 goat anti hu lgG (H+L, Jackson lot 109-066-08) in Starting Block T20 (Thermo) overnight, 4 °C. Plates were washed with PBS buffer, and samples diluted in 10% mouse serum (Bioreclamations, NY) in Starting Block T20. Included on each plate was a standard curve of each test article, starting at 0.1 mg/mL with serial 2-fold dilutions. Plates were incubated for 2-3 h, RT on a shaker, washed and then incubated with 2 μ g/mL MSD-TAG (ruthenium-labeled anti-human lgG mAb, R10Z8E9, MSD) for 1 hr, RT on a shaker. Plates were washed and 200 μ L MSD Read Buffer (MSD) was added and read on the MSD Sector Imager 6000. [0375] To determine whether the PK serum samples had notable immune titers that could affect the PK of test samples,

an ELISA was performed on Maxisorb plates (Nunc) coated with the respective test article at 10 µg/mL and incubated overnight at 4 °C. Serum samples were diluted in 1% BSA-PBS and incubated on the plates for 2-3 h with shaking at RT. Horseradish peroxidase-conjugated donkey anti-mouse IgG (Jackson ImmunoResearch) was used to detect captured antibody; followed by 3,3',5,5'-tetramethylbenzidine addition (Fitzgerald) for substrate development. Plates were read and spectrophotometer readings that were three times greater than buffer or control sera values were considered positive. Immune titers were expressed as 1/serum dilution. No immune titers were observed (data not shown).

[0376] Finally, the pharmacokinetics for the molecules was determined. Terminal half-life (t1/2) calculations of the elimination phase for PK studies were determined using the 1-phase exponential decay model fitted by linear regression of natural log concentration vs. time using Prism version 5.01 software (GraphPad Software, Inc.). Two phase models were ruled out because for each test article, the best-fit model was a 1-phase exponential decay model as determined by nonsignificance of the extra sum of squares F test (p > 0.05) for the majority of animals. The least squares nonlinear decay model was weighted by 1/fitted concentration. Half-life calculations of the elimination phase were determined using the formula $t1/2 = ln2/\beta$ where β is the -slope of the line fitted by the least square regression analysis starting after first-dose.

[0377] In the PK study described here, the terminal half-life value for an antibody was determined by taking the average of the t1/2 values calculated for each animal within the test group. Outliers in the studies were identified as animals either showing a mouse anti-human IgG titer greater than a 1 to 1000 about 7d after dose or an initial serum value that was more than 2-fold lower than values for other mice in the group, perhaps due to not being fully dosed.

[0378] The human PK predictions from the mouse data were based on observed half-life differences in huFcRn-transgenic mice vs humans for a panel of eight human IgG antibodies whose clearance was believed to not be significantly impacted by target binding in either mice or humans. Based on those analyses, it was estimated that the terminal half-life in humans for the CD123 x CD3 bispecific Abs would be 2-4-fold longer than what was observed in the huFcRn-transgenic mice, an extrapolation that assumes the influence of target binding on clearance is comparable in mice and

humans. Table 24 summarizes the observed mouse half-life values for the various Bispecific antibody variants and the corresponding predicted human values which reflect that assumption. Because the well-known human PK prediction method based on allometric scaling across species has not been validated using the mouse PK data, allometric scaling was not used for the predictions. The PK results are shown in Figure 43 with the serum concentration vs. time. PK profiles display a linear decline of serum concentration over the course of 28 days. The estimated mouse half-life values for all the CD123 x CD3 Bispecific antibody Abs were similar, between 5.2-6.6 days. Minimal immune titers (<1:40) were observed in all groups. The mouse PK data (with mean +/- standard deviation) along with predicted human clearance and human half-life values are summarized in Tables 24. The human half-life prediction assumes that target binding in humans is not greater than in mice.

[0379] The IgG4-PAA bispecific antibody Abs showed similar values between the I3RB2 and I3RB18 groups in mice. Mouse half-life calculations of the elimination phase were determined using the 1-phase exponential decay model fitted by linear regression of natural log concentrations vs time as described. The half-life values calculated for the eight Bispecific antibodies Abs in Tg32 hemi mice were: 3978, 6.6 +/- 0.7 days; 7955, 5.2 +/- 0.4 days; 7959, 6.6 +/- 0.6 days; 9958, 6.4 +/- 0.7 days; 8876, 4.1 +/- 0.7 days; 4435, 5.4 +/- 1.0 days; 8747, 6.4 +/- 0.4 days; 5466, 5.6 +/- 0.1 days. The human PK predictions from the mouse data were based on observed half-life differences in huFcRn-transgenic mice vs humans. Based on those analyses, the estimated terminal half-life in humans for the CD123xCD3 bispecific antibodies would be 2 to 4-fold longer than what was observed in the huFcRn-transgenic mice, assuming the influence of target binding on clearance is comparable in mice and humans. Table 24 summarizes the observed mouse half-life values for the Bispecific antibody variants and the corresponding predicted human values which reflect that assumption.

20

5

10

15

Table 24. Summary of PK of CD123 x CD3 IgG4-PAA Bispecific Abs

25	
30	
35	
40	
45	
50	

Bispecific Ab	Animal No.	T1/2 (day)	Mean calc. T1/2 (day)	Predicted hT1/2 (day)
3978	2	6.71	6.59+0.66	13.2-26.4
	5	7.08	_	
	7	5.44		
	22	7.02		
	28	6.71		
7955	1	4.85	5.24+0.43	10.5 - 21.0
	6	4.80		
	8	5.31		
	9	5.39		
	10	5.85		
7959	3	6.31	6.63+0.57	13.2-26.4
	12	7.53		
	13	6.28		
	16	6.86		
	33	6.16		
9958	4	7.15	6.36 <u>+</u> 0.68	12.7 - 25.4
	15	5.60		
	18	6.88		
	19	5.77		
	20	6.40		
8876	21	4.65	5.19 <u>+</u> 0.70	10.4 - 20.8
	22	6.05		
	23	4.40		
	24	5.10		
	35	5.73		
4435	17	5.39	5.42 <u>+</u> 0.95	10.8 - 21.6
	27	3.96		
	29	5.66		
	30	5.47		
	36	6.60		

(continued)

	Bispecific Ab	Animal No.	T1/2 (day)	Mean calc. T1/2 (day)	Predicted hT1/2 (day)
_	8747	14	6.38	6.37+0.37	12.7 - 25.4
5		25	6.49		
		31	5.78		
		32	6.80		
		34	6.41		
10	5466	26	4.81	5.64 <u>+</u> 0.96	11.3 - 22.6
		37	5.68		
		38	4.53		
		39	6.61		
15		40	6.54		

[0380] Results of mouse PK studies with CD123XCD3 bispecific antibodies show that the observed t1/2 values in Tg32 hemi mice compare favorably to 8 clinical antibodies profiled in the same manner.(Tam, et al, MAbs (2013) 5(3):3987-405).

SEQUENCE LISTING

[0381]

20

25 <110> Francois, Gaudet Nemeth, Jennifer F Attar, Ricardo F Harman, Benjamin C Li, Yingzhe
30 Luo, Jinquan McDaid, Ronan F Pomerantz, Steven C Tam, Susan H Teplyakov, Alexey
35 Wheeler, John

Wu, Sheng-Juin

<120> CD123 BINDING AGENTS AND USES THEREOF

40 <130> 620466B2

<160> 234

<170> PatentIn version 3.5

<210> 1 <211> 378

<212> PRT

<213> Homo sapiens

<400> 1

55

45

	Met 1	Val	Leu	Leu	Trp 5	Leu	Thr	Leu	Leu	Leu 10	Ile	Ala	Leu	Pro	Cys 15	Leu
5	Leu	Gln	Thr	Lys 20	Glu	Asp	Pro	Asn	Pro 25	Pro	Ile	Thr	Asn	Leu 30	Arg	Met
10	Lys	Ala	Lys 35	Ala	Gln	Gln	Leu	Thr 40	Trp	Asp	Leu	Asn	Arg 45	Asn	Val	Thr
15	Asp	Ile 50	Glu	Cys	Val	Lys	Asp 55	Ala	Asp	Tyr	Ser	Met 60	Pro	Ala	Val	Asn
	Asn 65	Ser	Tyr	Cys	Gln	Phe 70	Gly	Ala	Ile	Ser	Leu 75	Cys	Glu	Val	Thr	Asn 80
20	Tyr	Thr	Val	Arg	Val 85	Ala	Asn	Pro	Pro	Phe 90	Ser	Thr	Trp	Ile	Leu 95	Phe
25	Pro	Glu	Asn	Ser 100	Gly	Lys	Pro	Trp	Ala 105	Gly	Ala	Glu	Asn	Leu 110	Thr	Cys
30	Trp	Ile	His 115	Asp	Val	Asp	Phe	Leu 120	Ser	Cys	Ser	Trp	Ala 125	Val	Gly	Pro
	Gly	Ala	Pro	Ala	Asp	Val	Gln	Tyr	Asp	Leu	Tyr	Leu	Asn	Val	Ala	Asn
35																
40																
45																
50																
55																

5	Arg 145	Arg	Gln	Gln	Tyr	Glu 150	Cys	Leu	His	Tyr	Lys 155	Thr	Asp	Ala	Gln	Gly 160
10	Thr	Arg	Ile	Gly	Cys 165	Arg	Phe	Asp	Asp	Ile 170	Ser	Arg	Leu	Ser	Ser 175	Gly
10	Ser	Gln	Ser	Ser 180	His	Ile	Leu	Val	A rg 185	Gly	Arg	Ser	Ala	Ala 190	Phe	Gly
15	Ile	Pro	Cys 195	Thr	Asp	Lys	Phe	Val 200	Val	Phe	Ser	Gln	Ile 205	Glu	Ile	Leu
20	Thr	Pro 210	Pro	Asn	Met	Thr	Ala 215	Lys	Cys	Asn	Lys	Thr 220	His	Ser	Phe	Met
	His 225	Trp	Lys	Met	Arg	Ser 230	His	Phe	Asn	Arg	Lys 235	Phe	Arg	Tyr	Glu	Leu 240
25	Gln	Ile	Gln	Lys	Arg 245	Met	Gln	Pro	Val	Ile 250	Thr	Glu	Gln	Val	Arg 255	Asp
30	Arg	Thr	Ser	Phe 260	Gln	Leu	Leu	Asn	Pro 265	Gly	Thr	Tyr	Thr	Val 270	Gln	Ile
35	Arg	Ala	Arg 275	Glu	Arg	Val	Tyr	Glu 280	Phe	Leu	Ser	Ala	Trp 285	Ser	Thr	Pro
	Gln	Arg 290	Phe	Glu	Cys	Asp	Gln 295	Glu	Glu	Gly	Ala	Asn 300	Thr	Arg	Ala	Trp
40	A rg 305	Thr	Ser	Leu	Leu	Ile 310	Ala	Leu	Gly	Thr	Leu 315	Leu	Ala	Leu	Val	Cys 320
45	Val	Phe	Val	Ile	Cys 325	Arg	Arg	Tyr	Leu	Val 330	Met	Gln	Arg	Leu	Phe 335	Pro
50	Arg	Ile	Pro	His 340	Met	Lys	Asp	Pro	Ile 345	Gly	Asp	Ser	Phe	Gln 350	Asn	Asp
	Lys	Leu	Val 355	Val	Trp	Glu	Ala	Gly 360	Lys	Ala	Gly	Leu	Glu 365	Glu	Cys	Leu
55	Val	Thr 370	Glu	Val	Gln	Val	Val 375	Gln	Lys	Thr						

<210> 2 <211> 300 <212> PRT

5	<213> F	lomo s	sapien	S													
J	<400> 2																
10		Met 1	Val	Leu	Leu	Trp 5	Leu	Thr	Leu	Leu	Leu 10	Ile	Ala	Leu	Pro	Cys 15	Leu
		Leu	Gln	Thr	Lys 20	Glu	Gly	Gly	Lys	Pro 25	Trp	Ala	Gly	Ala	Glu 30	Asn	Leu
15		Thr	Cys	Trp 35	Ile	His	Asp	Val	Asp 40	Phe	Leu	Ser	Cys	Ser 45	Trp	Ala	Val
20		Gly	Pro 50	Gly	Ala	Pro	Ala	Asp 55	Val	Gln	Tyr	Asp	Leu 60	Tyr	Leu	Asn	Val
25		Ala 65	Asn	Arg	Arg	Gln	Gln 70	Tyr	Glu	Cys	Leu	His 75	Tyr	Lys	Thr	Asp	A la 80
		Gln	Gly	Thr	Arg	Ile 85	Gly	Cys	Arg	Phe	Asp 90	Asp	Ile	Ser	Arg	Leu 95	Ser
30		Ser	Gly	Ser	Gln 100	Ser	Ser	His	Ile	Leu 105	Val	Arg	Gly	Arg	Ser 110	Ala	Ala
35		Phe	Gly	Ile 115	Pro	Cys	Thr	Asp	Lys 120	Phe	Val	Val	Phe	Ser 125	Gln	Ile	Glu
40		Ile	Leu 130	Thr	Pro	Pro	Asn	Met 135	Thr	Ala	Lys	Cys	Asn 140	Lys	Thr	His	Ser
		Phe 145	Met	His	Trp	Lys	Met 150	Arg	Ser	His	Phe	Asn 155	Arg	Lys	Phe	Arg	Tyr 160
45		Glu	Leu	Gln	Ile	Gln 165	Lys	Arg	Met	Gln	Pro 170	Val	Ile	Thr	Glu	Gln 175	Val
50		Arg	Asp	Arg	Thr 180	Ser	Phe	Gln	Leu	Leu 185	Asn	Pro	Gly	Thr	Tyr 190	Thr	Val
55		Gln	Ile	Arg 195	Ala	Arg	Glu	Arg	Val 200	Tyr	Glu	Phe	Leu	Ser 205	Ala	Trp	Ser
		Thr	Pro 210	Gln	Arg	Phe	Glu	Cys 215	Asp	Gln	Glu	Glu	Gly 220	Ala	Asn	Thr	Arg

	Ala 225	Trp	Arg	Thr	Ser	Leu 230	Leu	Ile	Ala	Leu	Gly 235	Thr	Leu	Leu	Ala	Leu 240
5	Val	Cys	Val	Phe	Val 245	Ile	Cys	Arg	Arg	Tyr 250	Leu	Val	Met	Gln	A rg 255	Leu
10	Phe	Pro	Arg	Ile 260	Pro	His	Met	Lys	Asp 265	Pro	Ile	Gly	Asp	Ser 270	Phe	Gln
15	Asn	Asp	Lys 275	Leu	Val	Val	Trp	Glu 280	Ala	Gly	Lys	Ala	Gly 285	Leu	Glu	Glu
15	Cys	Leu 290	Val	Thr	Glu	Val	Gln 295	Val	Val	Gln	Lys	Thr 300				
20	<210> 3 <211> 378 <212> PRT <213> Macac	a fasci	cularis	3												
25	<400> 3															
	Met 1	Thr	Leu	Leu	Trp 5	Leu	Thr	Leu	Leu	Leu 10	Val	Ala	Thr	Pro	Cys 15	Leu
30	Leu	Arg	Thr	Lys 20	Glu	Asp	Pro	Asn	Ala 25	Pro	Ile	Arg	Asn	Leu 30	Arg	Met
35	Lys	Glu	Lys 35	Ala	Gln	Gln	Leu	Met 40	Trp	Asp	Leu	Asn	Arg 45	Asn	Val	Thr
40	Asp	Val 50	Glu	Cys	Ile	_	Gly 55		_	Tyr			Pro	Ala	Met	Asn
	Asn 65	Ser	Tyr	Cys	Gln	Phe 70	Gly	Ala	Ile	Ser	Leu 75	Cys	Glu	Val	Thr	Asn 80
45	Tyr	Thr	Val	Arg	Val 85	Ala	Ser	Pro	Pro	Phe 90	Ser	Thr	Trp	Ile	Leu 95	Phe
50	Pro	Glu	Asn	Ser 100	Gly	Thr	Pro	Arg	Ala 105	Gly	Ala	Glu	Asn	Leu 110	Thr	Cys
	Trp	Val	His 115	Asp	Val	Asp	Phe	Leu 120	Ser	Cys	Ser	Trp	Val 125	Val	Gly	Pro
55	Ala	Ala 130	Pro	Ala	Asp	Val	Gln 135	Tyr	Asp	Leu	Tyr	Leu 140	Asn	Asn	Pro	Asn

		er Hi 45	s Glu	Gln	Tyr	Arg 150	Cys	Leu	His	Tyr	Lys 155	Thr	Asp	Ala	Arg	Gly 160
5	Tì	hr Gl	n Ile	Gly	Cys 165	Arg	Phe	Asp	Asp	Ile 170	Ala	Pro	Leu	Ser	A rg 175	Gly
10	Se	er Gl	n Ser	Ser 180	His	Ile	Leu	Val	Arg 185	Gly	Arg	Ser	Ala	Ala 190	Val	Ser
15	13	le Pr	o Cys		Asp	Lys	Phe	Val 200	Phe	Phe	Ser	Gln	Ile 205	Glu	Arg	Leu
	Tì	hr Pr 21	o Pro	Asn	Met	Thr	Gly 215	Glu	Cys	Asn	Glu	Thr 220	His	Ser	Phe	Met
20		is Tr 25	p Lys	Met	Lys	Ser 230	His	Phe	Asn	Arg	Lys 235	Phe	Arg	Tyr	Glu	Leu 240
25	Aı	rg Il	e Gln	Lys	Arg 245	Met	Gln	Pro	Val	Arg 250	Thr	Glu	Gln	Val	Arg 255	Asp
30	Tì	nr Th	ır Ser	Phe 260	Gln	Leu	Pro	Asn	Pro 265	Gly	Thr	Tyr	Thr	Val 270	Gln	Ile
	Aı	rg Al	a Arg 275		Thr	Val	Tyr	Glu 280	Phe	Leu	Ser	Ala	Trp 285	Ser	Thr	Pro
35	G I	ln Ar 29	g Phe	Glu	Cys	Asp	Gln 295	Glu	Glu	Gly	Ala	Ser 300	Ser	Arg	Ala	Trp
40		rg Th	ır Ser	Leu	Leu	Ile 310	Ala	Leu	Gly	Thr	Leu 315	Leu	Ala	Leu	Leu	Cys 320
45	Vā	al Ph	ie Leu	Ile	Cys 325	Arg	Arg	Tyr	Leu	Val 330	Met	Gln	Arg	Leu	Phe 335	Pro
	Aı	rg Il	e Pro	His 340	Met	Lys	Asp	Pro	Ile 345	Gly	Asp	Thr	Phe	Gln 350	Gln	Asp
50	Ly	ys Le	u Val 355		Trp	Glu	Ala	Gly 360	Lys	Ala	Gly	Leu	Glu 365	Glu	Суѕ	Leu
55	Va	al Se 37	er Glu '0	Val	Gln	Val	Val 375	Glu	Lys	Thr						
	<210> 4 <211> 215															

	<213> N	lus mı	ısculu	S													
5	<400> 4																
		Gln 1	Ala	Val	Val	Thr 5	Gln	Glu	Ser	Ala	Leu 10	Thr	Thr	Ser	Pro	Gly 15	Glu
10		Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
15		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Glu 40	Lys	Pro	Asp	His	Leu 45	Phe	Thr	Gly
20		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Val 60	Pro	Ala	Arg	Phe
		Ser 65	Gly	Ser	Leu	Ile	Gly 70	Asp	Lys	Ala	Ala	Leu 75	Thr	Ile	Thr	Gly	Ala 80
25		Gln	Thr	Glu	Asp	Glu 85	Ala	Ile	Tyr	Phe	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
30		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln	Pro
35		Lys	Ser	Ser 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
		Glu	Thr 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Thr	Ile	Thr 140	Asp	Phe	Tyr	Pro
40		Gly 145	Val	Val	Thr	Val	Asp 150	Trp	Lys	Val	Asp	Gly 155	Thr	Pro	Val	Thr	Gln 160
45		Gly	Met	Glu	Thr	Thr 165	Gln	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Met
50		Ala	Ser	Ser	Tyr 180	Leu	Thr	Leu	Thr	Ala 185	Arg	Ala	Trp	Glu	Arg 190	His	Ser
		Ser	Tyr	Ser 195	Cys	Gln	Val	Thr	His 200	Glu	Gly	His	Thr	Val 205	Glu	Lys	Ser
55		Leu	Ser 210	Arg	Ala	Asp	Cys	Ser 215									

<210> 5

<212> PRT

5	<211> 455 <212> PRT <213> Mus musculus <400> 5
10	
15	
20	
25	
30	
35	
40	

	Glu 1	Val	Lys	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Lys 15	Gly
5	Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
10	Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Asp
	Ser 65	Val	Lys	Asp	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Gln	Ser	Ile 80
20	Leu	Tyr	Leu	Gln	Met 85	Asn	Asn	Leu	Lys	Thr 90	Glu	Asp	Thr	Ala	Met 95	Tyr
25	Tyr	Cys	Val	Arg 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
30	Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ala 125	Ala	Thr	Thr
	Thr	Ala 130	Pro	Ser	Val	Tyr	Pro 135	Leu	Val	Pro	Gly	Cys 140	Ser	Asp	Thr	Ser
35	Gly 145	Ser	Ser	Val	Thr	Leu 150	Gly	Cys	Leu	Val	Lys 155	Gly	Tyr	Phe	Pro	Glu 160
40	Pro	Val	Thr	Val	Lys 165	Trp	Asn	Tyr	Gly	Ala 170	Leu	Ser	Ser	Gly	Val 175	Arg
45	Thr	Val	Ser	Ser 180	Val	Leu	Gln	Ser	A la 185	Phe	Tyr	Ser	Leu	Ser 190	Ser	Leu
	Val	Thr	Val 195	Pro	Ser	Ser	Thr	Trp 200	Pro	Ser	Gln	Thr	Val 205	Ile	Cys	Asn
50	Val	Ala 210	His	Pro	Ala	Ser	Lys 215	Thr	Glu	Leu	Ile	Lys 220	Arg	Ile	Glu	Pro
55	Arg 225	Ile	Pro	Lys	Pro	Ser 230	Thr	Pro	Pro	Gly	Ser 235	Ser	Cys	Pro	Pro	Gly 240

		Asn	Ile	Leu	Gly	Gly 245	Pro	Ser	Val	Phe	11e 250	Phe	Pro	Pro	Lys	Pro 255	Lys
5		Asp	Ala	Leu	Met 260	Ile	Ser	Leu	Thr	Pro 265	Lys	Val	Thr	Cys	Val 270	Val	Val
10		Asp	Val	Ser 275	Glu	Asp	Asp	Pro	Asp 280	Val	His	Val	Ser	Trp 285	Phe	Val	Asp
15		Asn	Lys 290	Glu	Val	His	Thr	Ala 295	Trp	Thr	Gln	Pro	Arg 300	Glu	Ala	Gln	Tyr
		Asn 305	Ser	Thr	Phe	Arg	Val 310	Val	Ser	Ala	Leu	Pro 315	Ile	Gln	His	Gln	Asp 320
20		Trp	Met	Arg	Gly	Lys 325	Glu	Phe	Lys	Cys	Lys 330	Val	Asn	Asn	Lys	Ala 335	Leu
25		Pro	Ala	Pro	Ile 340	Glu	Arg	Thr	Ile	Ser 345	Lys	Pro	Lys	Gly	Arg 350	Ala	Gln
30		Thr	Pro	Gln 355	Val	Tyr	Thr	Ile	Pro 360	Pro	Pro	Arg	Glu	Gln 365	Met	Ser	Lys
		Lys	Lys 370	Val	Ser	Leu	Thr	Cys 375	Leu	Val	Thr	Asn	Phe 380	Phe	Ser	Glu	Ala
35		Ile 385	Ser	Val	Glu	Trp	Glu 390	Arg	Asn	Gly	Glu	Leu 395	Glu	Gln	Asp	Tyr	Lys 400
40		Asn	Thr	Pro	Pro	Ile 405	Leu	Asp	Ser	Asp	Gly 410	Thr	Tyr	Phe	Leu	Tyr 415	Ser
45		Lys	Leu	Thr	Val 420	Asp	Thr	Asp	Ser	Trp 425	Leu	Gln	Gly	Glu	Ile 430	Phe	Thr
45		Cys	Ser	Val 435	Val	His	Glu	Ala	Leu 440	His	Asn	His	His	Thr 445	Gln	Lys	Asn
50		Leu	Ser 450	Arg	Ser	Pro	Gly	Lys 455									
55	<210> 6 <211> 5 <212> P <213> A	rRT	I Sequ	ıence													
	<220>																

```
<223> H-CDR1 of I3RB1
        <400> 6
5
                                          Asp Tyr Gly Met Ser
        <210> 7
        <211> 17
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> H-CDR2 of I3RB1
15
        <400> 7
               Val Ile Arg Gly Gly Ser Ser Lys Tyr Tyr Ala Asp Ser Val Lys
                                                           10
20
               Gly
        <210> 8
25
        <211> 12
        <212> PRT
        <213> Artificial Sequence
        <220>
30
        <223> H-CDR3 of I3RB1
        <400> 8
                         His Ser Gly Ser Phe Arg Phe Asn Glu Leu Asp Tyr
35
                                            5
        <210> 9
        <211> 17
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> L-CDR1 of I3RB1, I3RB3
45
        <400> 9
               Lys Ser Ser Gln Ser Val Leu Tyr Ser Ser Asn Asn Lys Asn Tyr Leu
                                   5
                                                                                   15
50
               Ala
        <210> 10
        <211> 7
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> L-CDR2 of I3RB1, I3RB3
        <400> 10
5
                                      Trp Ala Ser Thr Arg Glu Ser
        <210> 11
        <211>9
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> L-CDR3 of I3RB1, I3RB3
15
        <400> 11
                                 Gln Gln Tyr Tyr Ser Thr Pro Leu Thr
                                                     5
20
        <210> 12
        <211> 5
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> H-CDR1 of I3RB2
        <400> 12
30
                                           Gly Tyr Trp Met His
                                                               5
        <210> 13
35
        <211> 17
        <212> PRT
        <213> Artificial Sequence
        <220>
40
        <223> H-CDR2 of I3RB2, I3RB43
        <400> 13
                Ala Ile Arg Ser Asp Gly Ser Ser Lys Tyr Tyr Ala Asp Ser Val Lys
45
                Gly
50
        <210> 14
        <211> 10
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> H-CDR3 of I3RB2
        <400> 14
```

Asp Gly Val Ile Glu Asp Thr Phe Asp Tyr

<210> 15 5 <211> 11 <212> PRT <213> Artificial Sequence <220> 10 <223> L-CDR1 of I3RB2, I3RB13, I3RB42, I3RB43 <400> 15 Arg Ala Ser Gln Ser Val Ser Ser Tyr Leu Ala 15 1 <210> 16 <211> 7 <212> PRT 20 <213> Artificial Sequence <220> <223> L-CDR2 of I3RB2, I3RB13, I3RB42, I3RB43 25 <400> 16 Asp Ala Ser Asn Arg Ala Thr 30 <210> 17 <211> 9 <212> PRT <213> Artificial Sequence 35 <220> <223> L-CDR3 of I3RB2, I3RB39, I3RB42, I3RB43 <400> 17 40 Gln Gln Arg Ser Asn Trp Pro Leu Thr 5 <210> 18 <211> 5 45 <212> PRT <213> Artificial Sequence <220> <223> H-CDR1 of I3RB3 50 <400> 18 Ser Tyr Trp Met Ser 5 1 55 <210> 19 <211> 17 <212> PRT

```
<213> Artificial Sequence
        <220>
        <223> H-CDR2 of I3RB3
5
        <400> 19
               Gly Ile Lys Tyr Asp Gly Gly Ser Lys Tyr Tyr Ala Asp Ser Val Lys
                                   5
                                                           10
10
               Gly
        <210> 20
15
        <211> 8
        <212> PRT
        <213> Artificial Sequence
        <220>
20
        <223> H-CDR3 of I3RB3
        <400> 20
                                  Lys Trp Met Ser Tyr Phe Asp Tyr
25
        <210> 21
        <211> 5
        <212> PRT
30
        <213> Artificial Sequence
        <220>
        <223> H-CDR1 of I3RB4
35
        <400> 21
                                          Gly Tyr Gly Met Ser
40
        <210> 22
        <211> 17
        <212> PRT
        <213> Artificial Sequence
45
        <220>
        <223> H-CDR2 of I3RB4, I3RB41, I3RB42
        <400> 22
50
               Ala Ile Ser Gly Ser Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys
                                                           10
               1
                                                                                    15
               Gly
55
        <210> 23
        <211> 11
        <212> PRT
```

```
<213> Artificial Sequence
        <220>
        <223> H-CDR3 of I3RB4
5
        <400> 23
                            Gly Asn Trp Tyr Tyr Gly Leu Gly Phe Asp Tyr
10
        <210> 24
        <211> 12
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> L-CDR1 of I3RB4, I3RB18, I3RB41
        <400> 24
20
                          Arg Ala Ser Gln Ser Val Ser Ser Ser Tyr Leu Ala
                                                                        10
        <210> 25
25
        <211> 7
        <212> PRT
        <213> Artificial Sequence
30
        <223> L-CDR2 of I3RB4, I3RB18, I3RB41
        <400> 25
                                       Gly Ala Ser Ser Arg Ala Thr
35
                                                           5
                                       1
        <210> 26
        <211>9
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> L-CDR3 of I3RB4, I3RB41
45
        <400> 26
                                 Gln Gln Tyr Gly Ser Ser Pro Leu Thr
                                  1
                                                      5
        <210> 27
50
        <211> 5
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> H-CDR1 of I3RB5
        <400> 27
```

Gly Tyr Trp Met Ser 1 5

<210> 28 5 <211> 17 <212> PRT <213> Artificial Sequence <220> 10 <223> H-CDR2 of I3RB5 <400> 28 Gly Ile Asn Tyr Asp Gly Gly Ser Thr Tyr Tyr Ala Asp Ser Val Lys 15 10 Gly 20 <210> 29 <211>9 <212> PRT <213> Artificial Sequence 25 <220> <223> H-CDR3 of I3RB5 <400> 29 30 Asp His Phe Leu Ala Glu Phe Asp Tyr 5 <210> 30 <211> 11 35 <212> PRT <213> Artificial Sequence <223>L-CDR1 of I3RB5, I3RB6, I3RB7, I3RB8, I3RB9, I3RB10, I3RB11, I3RB12, I3RB14, I3RB15, I3RB16, I3RB17, 40 I3RB20, I3RB23, I3RB24, I3RB25, I3RB28, I3RB32, I3RB35, I3RB36, I3RB38, I3RB44, I3RB47 <400> 30 Arg Ala Ser Gln Ser Ile Ser Ser Tyr Leu Asn 45 <210> 31 <211> 7 <212> PRT 50 <213> Artificial Sequence <220> <223>L-CDR2 of I3RB5, I3RB6, I3RB7, I3RB8, I3RB9, I3RB10, I3RB11, I3RB12, I3RB14, I3RB15, I3RB16, I3RB17, I3RB20, I3RB23, I3RB24, I3RB25, I3RB28, I3RB29, I3RB32, I3RB35, I3RB36, I3RB37, I3RB38, I3RB44, I3RB47 55 <400> 31

Ala Ala Ser Ser Leu Gln Ser 1 5

<210> 32 5 <211>9 <212> PRT <213> Artificial Sequence <220> 10 <223>L-CDR3 of I3RB5, I3RB6, I3RB7, I3RB8, I3RB9, I3RB10, I3RB11, I3RB12, I3RB14, I3RB15, I3RB16, I3RB17, I3RB19, I3RB20, I3RB24, I3RB25, I3RB28, I3RB32, I3RB36, I3RB38, I3RB44, I3RB47 <400> 32 15 Gln Gln Ser Tyr Ser Thr Pro Leu Thr 1 5 <210> 33 <211>5 20 <212> PRT <213> Artificial Sequence <220> <223> H-CDR1 of I3RB6, I3RB7, I3RB8, I3RB9, I3RB12, I3RB15, I3RB16, I3RB17, I3RB20, I3RB21, I3RB22, 25 I3RB24, I3RB27, I3RB28, I3RB29, I3RB30, I3RB31, I3RB34, I3RB35, I3RB37, I3RB39, I3RB40, I3RB47 <400> 33 Ser Tyr Ala Ile Ser 30 5 <210> 34 <211> 17 <212> PRT 35 <213> Artificial Sequence <220> <223> H-CDR2 of I3RB6, I3RB7, I3RB8, I3RB9, I3RB11, I3RB12, I3RB15, I3RB16, I3RB17, I3RB20, I3RB21, I3RB22, I3RB23, I3RB24, I3RB26, I3RB27, I3RB28, I3RB29, I3RB32, I3RB33, I3RB34, I3RB35, I3RB36, I3RB37, I3RB38, I3RB39, I3RB40, I3RB47 40 <400> 34 Gly Ile Ile Pro Ile Phe Gly Thr Ala Asn Tyr Ala Gln Lys Phe Gln 45 Gly <210> 35 50 <211> 12 <212> PRT <213> Artificial Sequence 55 <220> <223> H-CDR3 of I3RB6 <400> 35

Gly Leu Phe Asn Trp Ser Asn Val Ala Leu Asp Tyr

```
<210> 36
5
        <211> 13
        <212> PRT
        <213> Artificial Sequence
        <220>
10
        <223> H-CDR3 of I3RB7
        <400> 36
                       Gly Lys Arg Trp Leu Ala Asp Ala Gly Asp Phe Asp Tyr
15
                                                                    10
        <210> 37
        <211> 13
        <212> PRT
20
        <213> Artificial Sequence
        <220>
        <223> H-CDR3 of I3RB8
25
        <400> 37
                       His Gly Phe Ala Trp Asn Asp Tyr Ser Leu Leu Asp Tyr
30
        <210> 38
        <211> 13
        <212> PRT
        <213> Artificial Sequence
35
        <220>
        <223> H-CDR2 of I3RB9
        <400> 38
40
                       Gly Ala Arg Trp Phe Asn Pro Pro Glu Asn Leu Asp Tyr
                                           5
        <210> 39
        <211> 5
45
        <212> PRT
        <213> Artificial Sequence
        <223> H-CDR1 of I3RB10, I3RB11, I3RB13, I3RB14, I3RB23, I3RB25, I3RB26, I3RB32, I3RB33, I3RB36, I3RB38
50
        <400> 39
                                           Ser Tyr Gly Ile Ser
                                                               5
                                           1
55
        <210> 40
        <211> 17
        <212> PRT
```

```
<213> Artificial Sequence
        <220>
        <223> H-CDR2 of I3RB10
5
        <400> 40
               Trp Ile Ser Ala Ile Phe Gly Asn Thr Asn Tyr Ala Gln Lys Phe Gln
                                                            10
10
               Gly
        <210> 41
15
        <211> 12
        <212> PRT
        <213> Artificial Sequence
        <220>
20
        <223> H-CDR2 of I3RB10
        <400> 41
                         Gly Gly Leu Leu Tyr Tyr Ala Ser Tyr Leu Asp Tyr
25
        <210> 42
        <211> 12
        <212> PRT
30
        <213> Artificial Sequence
        <220>
        <223> H-CDR3 of I3RB11, I3RB47
35
        <400> 42
                         Asp Leu Phe Ser Trp Arg Tyr Ser Asn Phe Asp Tyr
                                             5
40
        <210> 43
        <211> 11
        <212> PRT
        <213> Artificial Sequence
45
        <220>
        <223> H-CDR of I3RB12
        <400> 43
50
                            Ala Asp Arg Val Trp Asp Tyr Tyr Leu Asp Tyr
        <210> 44
        <211> 17
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> H-CDR2 of I3RB13
        <400> 44
5
               Gly Ile Ile Pro Ile Phe Gly Asn Thr Asn Tyr Ala Gln Lys Phe Gln
               Gly
10
        <210> 45
        <211> 11
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> H-CDR3 of I3RB13
        <400> 45
20
                           Gln Ser Gly Phe Tyr Val Val Arg Leu Asp Tyr
        <210> 46
25
        <211> 17
        <212> PRT
        <213> Artificial Sequence
30
        <223> H-CDR2 of I3RB14
        <400> 46
               Trp Ile Ser Ala Ile Phe Gly Thr Thr Asn Tyr Ala Gln Lys Phe Gln
35
               Gly
40
        <210> 47
        <211> 12
        <212> PRT
        <213> Artificial Sequence
45
        <220>
        <223> H-CDR3 of I3RB14
        <400> 47
50
                         Gly Gly Pro Leu Arg Tyr Tyr Asn His Phe Asp Tyr
                                            5
        <210> 48
        <211> 12
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> H-CDR3 of I3RB15
        <400> 48
5
                         Asp Leu Phe Ser Leu Arg Tyr Ser Phe Leu Asp Tyr
        <210> 49
        <211> 11
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> H-CDR3 of I3RB16
15
        <400> 49
                            Gly Ala Val Trp Gly Asp Gln Trp Phe Asp Tyr
20
        <210> 50
        <211> 12
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> H-CDR3 of I3RB17
        <400> 50
30
                         Gly Ala Leu Ser Leu Trp Tyr Ser Phe Leu Asp Tyr
                                              5
                                                                      10
        <210> 51
35
        <211> 5
        <212> PRT
        <213> Artificial Sequence
        <220>
40
        <223> H-CDR1 of I3RB18, I3RB44
        <400> 51
                                           Ser Tyr Trp Ile Ser
45
        <210> 52
        <211> 17
        <212> PRT
50
        <213> Artificial Sequence
        <220>
        <223> H-CDR2 of I3RB18, I3RB44
55
        <400> 52
```

Ile Ile Asp Pro Ser Asp Ser Asp Thr Arg Tyr Ser Pro Ser Phe Gln

10

```
5
                Gly
         <210> 53
         <211> 9
         <212> PRT
10
         <213> Artificial Sequence
         <220>
         <223> H-CDR3 of I3RB18, I3RB44
15
         <400> 53
                                  Gly Asp Gly Ser Thr Asp Leu Asp Tyr
                                                      5
20
         <210> 54
         <211>9
         <212> PRT
         <213> Artificial Sequence
25
         <220>
         <223> L-CDR3 of I3RB18
         <400> 54
30
                                  Gln Gln Asp Tyr Gly Phe Pro Trp Thr
                                                      5
         <210> 55
         <211> 5
35
         <212> PRT
         <213> Artificial Sequence
         <220>
         <223> H-CDR1 of I3RB19
40
         <400> 55
                                            Asn Tyr Ala Met Ser
                                            1
                                                                 5
45
         <210> 56
         <211> 17
         <212> PRT
         <213> Artificial Sequence
50
         <220>
         <223> H-CDR2 of I3RB19
         <400> 56
```

55

Gly Ile Arg Gly Asn Gly Ser Ser Thr Tyr Tyr Ala Asp Ser Val Lys

10

```
5
               Gly
        <210> 57
        <211> 14
        <212> PRT
10
        <213> Artificial Sequence
        <220>
        <223> H-CDR3 of I3RB19
15
        <400> 57
                    Gly Gly Pro Ile Gly Ala Arg Phe Pro Asp Tyr Leu Asp Tyr
                                                                 10
20
        <210> 58
        <211> 11
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> L-CDR1 of I3RB19
        <400> 58
30
                            Arg Ala Ser Gln Ser Ile Gly Asp Phe Leu Asn
                                               5
        <210> 59
        <211> 7
35
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> L-CDR2 of I3RB19
40
        <400> 59
                                      Tyr Ala Ser Ser Leu Gln Ser
45
        <210> 60
        <211> 12
        <212> PRT
        <213> Artificial Sequence
50
        <220>
        <223> H-CDR3 of I3RB20
        <400> 60
55
                         Asp Asp Gln Ile Trp Gly Ser Tyr His Leu Asp Tyr
```

10

5

```
<210> 61
        <211> 11
        <212> PRT
        <213> Artificial Sequence
5
        <220>
        <223> H-CDR3 of I3RB21
        <400> 61
10
                            Glu Gly Trp Trp Gly Gln Gly Lys Phe Asp Tyr
        <210> 62
15
        <211> 11
        <212> PRT
        <213> Artificial Sequence
        <220>
20
        <223> L-CDR1 of I3RB21
        <400> 62
                            Arg Ala Ser Gln Ser Val Ala Asn Phe Leu Ala
25
                                                                          10
        <210> 63
        <211> 7
        <212> PRT
30
        <213> Artificial Sequence
        <220>
        <223> L-CDR2 of I3RB21, I3RB27
35
        <400> 63
                                      Ala Ala Ser Asn Arg Ala Thr
                                                           5
40
        <210> 64
        <211> 9
        <212> PRT
        <213> Artificial Sequence
45
        <220>
        <223> L-CDR3 of I3RB21
        <400> 64
50
                                 Gln Gln Tyr Phe His Trp Pro Tyr Thr
                                                      5
        <210> 65
        <211> 13
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> H-CDR3 of I3RB22
        <400> 65
5
                       Asn Leu Phe Tyr Trp Ala Asp Ser Val Tyr Leu Asp Tyr
        <210> 66
        <211> 11
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> L-CDR1 of I3RB22
15
        <400> 66
                           Arg Ala Ser Gln Ser Val Asn Lys Trp Leu Ala
                                               5
20
        <210> 67
        <211> 7
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> L-CDR2 of I3RB22, I3RB30, I3RB34
        <400> 67
30
                                     Tyr Ala Ser Asn Arg Ala Thr
                                                         5
        <210> 68
35
        <211>9
        <212> PRT
        <213> Artificial Sequence
        <220>
40
        <223> L-CDR3 of I3RB22
        <400> 68
                                Gln Gln Gly Ile Asp Trp Pro Arg Thr
45
        <210> 69
        <211> 14
        <212> PRT
50
        <213> Artificial Sequence
        <220>
        <223> H-CDR3 of I3RB23
55
        <400> 69
                    Glu Gly Ser Ser Trp Lys Asn Pro Arg Tyr Val Phe Asp Tyr
                                                                10
```

55	1		5	10	
	<400> 73	Phe Lus Trr	Tro Glu Ser	Tyr Phe Asp Tyr	
50	<220> <223> H-CDR3 of I3RB25				
45	<210> 73 <211> 11 <212> PRT <213> Artificial Sequence				
40	Gly				
	Gly Ile Ser Al	la Ile Phe G 5	ly Asn Ala A	sn Tyr Ala Gln Ly: 0	s Phe Gln 15
35	<223> H-CDR2 of I3RB25 <400> 72				
30	<213> Artificial Sequence <220>				
	<210> 72 <211> 17 <212> PRT				
25	His 1	Thr Asp Ala	Trp Gly Tyr	Arg Leu Asp Tyr 10	
	<400> 71				
20	<220> <223> H-CDR3 of I3RB24				
15	<210> 71 <211> 11 <212> PRT <213> Artificial Sequence				
10		Gln Gln Tyr 1	Phe Asp Phe 5	Pro Leu Thr	
	<400> 70				
5	<220> <223> L-CDR of I3RB23				
	<210> 70 <211> 9 <212> PRT <213> Artificial Sequence				
	<210> /0				

```
<210> 74
        <211> 13
        <212> PRT
        <213> Artificial Sequence
5
        <220>
        <223> H-CDR3 of I3RB26
        <400> 74
10
                       Asn Gly Phe Ala Trp Ser Val Ser Gly Asn Leu Asp Tyr
                                            5
        <210> 75
15
        <211> 11
        <212> PRT
        <213> Artificial Sequence
        <220>
20
        <223> L-CDR1 of I3RB26
        <400> 75
                            Arg Ala Ser Gln Ser Val Asp Asn Trp Leu Ala
25
        <210> 76
        <211> 7
        <212> PRT
30
        <213> Artificial Sequence
        <220>
        <223> L-CDR2 of I3RB26, I3RB31, I3RB33, I3RB40
35
        <400> 76
                                      Gly Ala Ser Asn Arg Ala Thr
                                                           5
40
        <210> 77
        <211> 9
        <212> PRT
        <213> Artificial Sequence
45
        <220>
        <223> L-CDR3 of I3RB26
        <400> 77
50
                                 Gln Gln Ser Ile Ser Ala Pro Tyr Thr
                                                      5
        <210> 78
        <211> 12
55
        <212> PRT
        <213> Artificial Sequence
        <220>
```

```
<223> H-CDR3 of I3RB27
        <400> 78
5
                         Ala Gly Trp Trp Asn Leu Arg Tyr Gly Leu Asp Tyr
        <210> 79
        <211> 11
10
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> L-CDR1 of I3RB27
15
        <400> 79
                            Arg Ala Ser Gln Ser Val Ala Lys Ser Leu Ala
                                                5
20
        <210> 80
        <211> 9
        <212> PRT
        <213> Artificial Sequence
25
        <220>
        <223> L-CDR3 of I3RB27
        <400> 80
30
                                 Gln Gln Phe Ile Gly Trp Pro Ile Thr
                                                    5
        <210> 81
35
        <211> 12
        <212> PRT
        <213> Artificial Sequence
        <220>
40
        <223> H-CDR3 of I3RB28
        <400> 81
                         Ala Pro Phe Thr Trp Asp Tyr Ser Arg Leu Asp Tyr
45
        <210> 82
        <211> 11
        <212> PRT
50
        <213> Artificial Sequence
        <220>
        <223> H-CDR3 of I3RB29
55
        <400> 82
```

Asp Ser Arg Ile Trp Ser Phe Ser Leu Asp Tyr

		1	5		10	
5	<210> 83 <211> 11 <212> PRT <213> Artificial Sequence					
10	<220> <223> L-CDR1 of I3RB29					
	<400> 83					
15	A: 1	rg Ala Ser (Gln Ser Ile G 5		Leu Asn 10	
20	<210> 84 <211> 9 <212> PRT <213> Artificial Sequence					
	<220> <223> L-CDR3 of I3RB29					
25	<400> 84					
		Gln Gln : 1	Tyr Tyr His P 5	he Pro Leu !	Thr	
30	<210> 85 <211> 17 <212> PRT <213> Artificial Sequence					
35	<220> <223> H-CDR2 of I3RB30					
	<400> 85					
40	Trp Ile Ile 1	Pro Ile Pho 5	e Gly Thr Ala	Asn Tyr Ala 10	a Gln Lys	Phe Gln 15
45	Gly					
	<210> 86 <211> 9 <212> PRT					
50	<213> Artificial Sequence					
	<220> <223> H-CDR3 of I3RB30					
55	<400> 86					
		Leu Val '	Tyr Ser Ser A	sp Phe Asp !	Tyr	

```
<210> 87
        <211> 11
        <212> PRT
        <213> Artificial Sequence
5
        <220>
        <223> L-CDR1 of I3RB30
        <400> 87
10
                            Arg Ala Ser Gln Ser Val Ala Asn Trp Leu Ala
                                               5
        <210> 88
15
        <211>9
        <212> PRT
        <213> Artificial Sequence
        <220>
20
        <223> L-CDR3 of I3RB30
        <400> 88
                                Gln Gln Tyr Asp Gly Trp Pro Arg Thr
25
        <210> 89
        <211> 17
        <212> PRT
30
        <213> Artificial Sequence
        <220>
        <223> H-CDR2 of I3RB31
35
        <400>89
               Gly Ile Ser Ala Tyr Phe Gly Asn Ala Asn Tyr Ala Gln Lys Phe Gln
                                                            10
40
               Gly
        <210> 90
        <211> 10
45
        <212> PRT
        <213> Artificial Sequence
        <220>
        <223> H-CDR3 of I3RB31
50
        <400> 90
                              Ser Tyr Phe Gly Asp Ala Tyr Phe Asp Tyr
                                                  5
                                                                          10
55
        <210> 91
        <211> 11
        <212> PRT
```

```
<213> Artificial Sequence
        <220>
        <223> L-CDR1 of I3RB31
5
        <400> 91
                            Arg Ala Ser Gln Ser Val Asp Lys Asp Leu Ala
                                                                         10
10
        <210> 92
        <211> 9
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> L-CDR3 of I3RB31
        <400> 92
20
                                 Gln Gln Tyr Asp Arg Ala Pro Ile Thr
                                                     5
        <210> 93
25
        <211> 12
        <212> PRT
        <213> Artificial Sequence
        <220>
30
        <223> H-CDR3 of I3RB32
        <400> 93
                         Gly Ala Trp Trp Ala Tyr Asp Thr Tyr Leu Asp Tyr
35
                                              5
                                                                      10
        <210> 94
        <211> 12
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> H-CDR3 of I3RB33
45
        <400> 94
                         Gly Tyr Trp His Trp Asn Tyr Asp Tyr Leu Asp Tyr
                         1
                                              5
                                                                      10
        <210> 95
50
        <211> 11
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> L-CDR1 of I3RB33
        <400> 95
```

Arg Ala Ser Gln Ser Val Asn Asp Trp Leu Ala 1 5 10

<210> 96 5 <211> 9 <212> PRT <213> Artificial Sequence <220> 10 <223> L-CDR3 of I3RB33 <400> 96 Gln Gln Tyr Lys Arg Ala Pro Tyr Thr 15 <210> 97 <211>9 <212> PRT 20 <213> Artificial Sequence <220> <223> H-CDR3 of I3RB34 25 <400> 97 Gly Trp Ser Tyr Tyr Arg Leu Asp Tyr 30 <210> 98 <211> 11 <212> PRT <213> Artificial Sequence 35 <220> <223> L-CDR1 of I3RB34 <400> 98 40 Arg Ala Ser Gln Ser Val Asp Lys Trp Leu Ala <210> 99 <211> 9 45 <212> PRT <213> Artificial Sequence <220> <223> L-CDR3 of I3RB34 50 <400> 99 Gln Gln Phe Asp Arg Ala Pro Phe Thr 5 1 55 <210> 100 <211> 11 <212> PRT

```
<213> Artificial Sequence
        <220>
        <223> H-CDR3 of I3RB35
5
        <400> 100
                            His Leu Phe Trp Asp Ala Gly Pro Leu Asp Tyr
10
        <210> 101
        <211> 9
        <212> PRT
        <213> Artificial Sequence
15
        <220>
        <223> L-CDR3 of I3RB35
        <400> 101
20
                                 Gln Gln Tyr Phe Ser Pro Pro Tyr Thr
        <210> 102
25
        <211> 12
        <212> PRT
        <213> Artificial Sequence
30
        <223> H-CDR3 of I3RB36
        <400> 102
                          Asp Leu His Val Trp Ala Tyr Ser Asn Phe Asp Tyr
35
                          1
                                              5
                                                                       10
        <210> 103
        <211> 11
        <212> PRT
        <213> Artificial Sequence
40
        <220>
        <223> H-CDR3 of I3RB37
45
        <400> 103
                            Asp Lys Thr Asp Phe Pro Ser Arg Leu Asp Tyr
                            1
                                                5
                                                                         10
        <210> 104
50
        <211> 11
        <212> PRT
        <213> Artificial Sequence
55
        <220>
        <223> L-CDR1 of I3RB37
        <400> 104
```

Arg Ala Ser Gln Ser Ile Ala Thr Trp Leu Asn <210> 105 5 <211> 9 <212> PRT <213> Artificial Sequence <220> 10 <223> L-CDR3 of I3RB37 <400> 105 Gln Gln Tyr Ile Thr Phe Pro Leu Thr 15 <210> 106 <211> 12 <212> PRT 20 <213> Artificial Sequence <220> <223> H-CDR3 of I3RB38 25 <400> 106 Asp Leu Met Ile Trp Arg Phe Glu Asn Phe Asp Tyr 5 30 <210> 107 <211> 7 <212> PRT <213> Artificial Sequence 35 <220> <223> H-CDR3 of I3RB39 <400> 107 40 Glu Tyr Gly Ser Leu Asp Tyr <210> 108 <211> 11 45 <212> PRT <213> Artificial Sequence <220> <223> L-CDR1 of I3RB39 50 <400> 108 Arg Ala Ser Gln Ser Val Ala Asp Phe Leu Ala 1 5 10 55 <210> 109

<211> 7 <212> PRT

	<213> Artificial Sequence											
E	<220> <223> L-CDR2 of I3RB39)										
5	<400> 109											
					Ala	Ser	Asn	_	Ala	Thr		
10	<210> 110			1				5				
	<210> 110 <211> 9 <212> PRT <213> Artificial Sequence											
15	<220> <223> L-CDR3 of I3RB39	1										
20	<400> 110											
			Gln 1	Gln	Tyr	Asn	Gly 5	Trp	Pro	Trp	Thr	
25	<210> 111 <211> 11 <212> PRT <213> Artificial Sequence											
30	<220> <223> H-CDR3 of I3RB40)										
	<400> 111											
35	G 1		Gln	Trp	Trp	Ala 5	Asp	Thr	Trp	Phe	Asp 10	Tyr
40	<210> 112 <211> 11 <212> PRT <213> Artificial Sequence											
	<220> <223> L-CDR1 of I3RB40											
45	<400> 112											
	A 1		Ala	Ser	Gln	Ser 5	Val	Ala	Lys	Trp	Leu 10	Ala
50	<210> 113 <211> 9 <212> PRT <213> Artificial Sequence											
55	<220> <223> L-CDR3 of I3RB40)										
	<400> 113											

Gln Gln Tyr His Thr Ala Pro Trp Thr <210> 114 5 <211> 5 <212> PRT <213> Artificial Sequence <220> 10 <223> H-CDR1 of I3RB41, I3RB42 <400> 114 Ser Tyr Ala Met Ser 15 5 <210> 115 <211> 14 <212> PRT 20 <213> Artificial Sequence <220> <223> H-CDR3 of I3RB41 25 <400> 115 Val Ala Tyr Trp Glu Phe Phe Val Tyr Glu Ser Leu Asp Tyr 30 <210> 116 <211> 12 <212> PRT <213> Artificial Sequence 35 <220> <223> H-CDR3 of I3RB42 <400> 116 40 His Asp Trp Ala Phe Trp Ile Val Phe Leu Asp Tyr <210> 117 <211> 5 45 <212> PRT <213> Artificial Sequence <220> <223> H-CDR1 of I3RB43 50 <400> 117 Ser Tyr Trp Met His 5 1 55

<210> 118 <211> 10 <212> PRT

	<213> A	Artificia	I Sequ	ience													
5	<220> <223> H	H-CDR	3 of I3	RB43													
Ü	<400> 1	18															
10					Asp 1	Gly	Ile	Val	Met 5	Asp	Thr	Phe	Asp	Tyr 10			
	<210> 1 <211> 1 <212> F	21 PRT															
15	<213> A	Artificia	I Sequ	ience													
	<220> <223> \	/H of I	3RB01	I													
20	<400> 1	19															
		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
25		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asp	Tyr
30		Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
35		Ser	Val 50	Ile	Arg	Gly	Gly	Gly 55	Ser	Ser	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val
		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
40		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
45		Ala	Lys	His	Ser 100	Gly	Ser	Phe	Arg	Phe 105	Asn	Glu	Leu	Asp	Tyr 110	Trp	Gly
		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
50	<210> 1	20															
	<211> 1 <211> 1 <212> F <213> A	19 PRT	l Segi	ience													
55		пиныа	, ocqt	20110E													
	<220> <223> \	/H of I3	3RB02	2													

<400> 120

5		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Gly	Tyr
10		Trp	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15		Ser	Ala 50	Ile	Arg	Ser	Asp	Gly 55	Ser	Ser	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val
20		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Lys	Asp	Gly 100	Val	Ile	Glu	Asp	Thr 105	Phe	Asp	Tyr	Trp	Gly 110	Gln	Gly
30		Thr	Leu	Val 115	Thr	Val	Ser	Ser									
35	<210> 1 <211> 1 <212> F <213> A	I17 PRT	l Sequ	uence													
40	<220> <223> \		3RB03	3													
	<400> 1	121															
45																	
50																	
55																	

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
_																	_
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
		Trp	Met		Trp	Val	Arg	Gln		Pro	Gly	Lys	Gly		Glu	Trp	Val
10				35					40					45			
		Ser	Gly 50	Ile	Lys	Tyr	Asp	Gly 55	Gly	Ser	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val
15		Lys	Gly	Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr
		65					70					75					80
20		Leu	Gln	Met	Asn	Ser	Leu	Arg	Ala	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Lys	Lys	Trp 100	Met	Ser	Tyr	Phe	Asp 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Leu
30		Val	Thr	Val 115	Ser	Ser											
	<210> 1 <211> 1																
35	<212> F	PRT															
35	<213> A	Aruncia	ıı seqt	uence													
	<223> \	/H of I	3RB04	4													
40	<400> 1	122															
45																	
50																	
55																	

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Gly	Tyr
10		Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15		Ser	Ala 50	Ile	Ser	Gly	Ser	Gly 55	Gly	Ser	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val
		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
20		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Lys	Gly	Asn 100	Trp	Tyr	Tyr	Gly	Leu 105	Gly	Phe	Asp	Tyr	Trp 110	Gly	Gln
30	~210\ ·		Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
35	<210> < < 211> < < 212> I < < 213> / < < 220> < < 223> \ < < > < < > < < > < < > < < > < < > < < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < > < < >	118 PRT Artificia															
40	<400>		ONDU	,													
45																	
50																	

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Gly	Tyr
10		Trp	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15		Ser	Gly 50	Ile	Asn	Tyr	Asp	Gly 55	Gly	Ser	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val
		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
20		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Lys	Asp	His 100	Phe	Leu	Ala	Glu	Phe 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
20		Leu	Val	Thr 115	Val	Ser	Ser										
30	<210> ° <211> ° <212> F	121 PRT															
35	<213> / <220> <223> \																
40	<400>	124															
45																	
70																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Суѕ	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Gly	Leu 100	Phe	Asn	Trp	Ser	Asn 105	Val	Ala	Leu	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210>																
35	<211> <212> < <213> /	PRT	الممك ا	IANCA													
	<220> <223>																
40	<400>	125															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Gly	Lys 100	Arg	Trp	Leu	Ala	Asp 105	Ala	Gly	Asp	Phe	Asp 110	Tyr	Trp
30		Gly	Gln	Gly 115	Thr	Leu	Val	Thr	Val 120	Ser	Ser						
	<210> 1 <211> 1 <212> 1	122 PRT	l Com	10000													
35	<213> / <220> <223> \																
40	<400>	126															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	His	Gly 100	Phe	Ala	Trp	Asn	Asp 105	Tyr	Ser	Leu	Leu	Asp 110	Tyr	Trp
30		Gly	Gln	Gly 115	Thr	Leu	Val	Thr	Val 120	Ser	Ser						
	<210> <211> <211> <212> <213> <	122 PRT	l Sequ	uence													
35	<220> <223>																
40	<400>	127															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Gly	Ala 100	Arg	Trp	Phe	Asn	Pro 105	Pro	Glu	Asn	Leu	Asp 110	Tyr	Trp
30		Gly	Gln	Gly 115	Thr	Leu	Val	Thr	Val 120	Ser	Ser						
35	<210> <211> <212> <213>	121 PRT	l Sequ	uence													
	<220> <223>	VH of I	3RB10)													
40	<400>	128															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Trp 50	Ile	Ser	Ala	Ile	Phe 55	Gly	Asn	Thr	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Gly	Gly 100	Leu	Leu	Tyr	Tyr	Ala 105	Ser	Tyr	Leu	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> 1 <211> 1 <212> F <213> A	21 PRT	l Seau	Jence													
35	<220> <223> V																
40	<400> 1	29															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Asp	Leu 100	Phe	Ser	Trp	Arg	Tyr 105	Ser	Asn	Phe	Asp	Tyr 110	Trp	Gly
30			Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> 1 <211> 1 <212> F <213> A	20 PRT	l Sequ	uence													
35	<220> <223> \	/H of I	3RB12	2													
40	<400> 1	30															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Ala	Asp 100	Arg	Val	Trp	Asp	Tyr 105	Tyr	Leu	Asp	Tyr	Trp 110	Gly	Gln
30		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
35	<210><211><211><212><213>	120 PRT	l Sequ	uence													
	<220> <223>	VH of I	3RB13	3													
40	<400>	131															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Asn	Thr	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Gln	Ser 100	Gly	Phe	Tyr	Val	Val 105	Arg	Leu	Asp	Tyr	Trp 110	Gly	Gln
30		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
	<210> 1 <211> 1 <212> F <213> A	21 PRT	l Seau	ience													
35	<220> <223> \																
40	<400> 1	32															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Trp 50	Ile	Ser	Ala	Ile	Phe 55	Gly	Thr	Thr	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Gly	Gly 100	Pro	Leu	Arg	Tyr	Tyr 105	Asn	His	Phe	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> 211> 3 <211> 3 <212> 1 <213> 4	121 PRT	l Sequ	uence													
35	<220> <223> \																
40	<400>	133															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
45		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Asp	Leu 100	Phe	Ser	Leu	Arg	Tyr 105	Ser	Phe	Leu	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
35	<210> 1 <211> 1 <212> 1 <213> 7	120 PRT	l Segi	uence													
	<220> <223> \																
40	<400>	134															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Gly	Ala 100	Val	Trp	Gly	Asp	Gln 105	Trp	Phe	Asp	Tyr	Trp 110	Gly	Gln
30		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
	<210> 7 <211> 7 <212> F <213> 7	121 PRT	l Seau	uence													
35	<220> <223> \																
40	<400> 1	135															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Gly	Ala 100	Leu	Ser	Leu	Trp	Tyr 105	Ser	Phe	Leu	Asp	Tyr 110	Trp	Gly
20		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
30	<210> 1 <211> 1 <212> F	18 PRT	l C														
35	<213> A <220> <223> \																
40	<400> 1	36															
45																	
-																	
50																	
55																	

		Glu 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
5		Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Gly	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Ser	Tyr
10		Trp	Ile	Ser 35	Trp	Val	Arg	Gln	Met 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Met
		Gly	Ile 50	Ile	Asp	Pro	Ser	Asp 55	Ser	Asp	Thr	Arg	Tyr 60	Ser	Pro	Ser	Phe
15		Gln 65	Gly	Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Ser	Thr	Ala	Tyr 80
20		Leu	Gln	Trp	Ser	Ser	Leu	Lys	Ala	Ser	Asp	Thr	Ala	Met	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Gly	Asp 100	Gly	Ser	Thr	Asp	Leu 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
30		Leu	Val	Thr 115	Val	Ser	Ser										
	<210> 1 <211> 1 <212> 1	123															
35	<213> /	Artificia	l Sequ	ience													
	<220> <223> \	√H of I	3RB19)													
40	<400>	137															
45																	
50																	
55																	

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Asn	Tyr
10		Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15		Ser	Gly 50	Ile	Arg	Gly	Asn	Gly 55	Ser	Ser	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val
		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
20		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Lys	Gly	Gly 100	Pro	Ile	Gly	Ala	Arg 105	Phe	Pro	Asp	Tyr	Leu 110	Asp	Tyr
30		Trp	Gly	Gln 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser					
	<210> 1 <211> 1 <212> F <213> A	21 PRT	l Segu	ience													
35	<220> <223> \																
40	<400> 1	38															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Asp	Asp 100	Gln	Ile	Trp	Gly	Ser 105	Tyr	His	Leu	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> <211> <212> <213>	120 PRT	l Seau	Jence													
35	<220> <223>																
40	<400>	139															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
45		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu		Thr	Ala	Val	Tyr	_	Cys
						85					90					95	
25		Ala	Arg	Glu	Gly 100	Trp	Trp	Gly	Gln	Gly 105	Lys	Phe	Asp	Tyr	Trp 110	Gly	Gln
30		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
	<210> 1																
	<211> ′<212> F																
35	<213> /		l Sequ	ience													
	<220> <223> \	√H of I	3RB22	2													
40	<400> 1	140															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Ty r 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Asn	Leu 100	Phe	Tyr	Trp	Ala	Asp 105	Ser	Val	Tyr	Leu	Asp 110	Tyr	Trp
20		Gly	Gln	Gly 115	Thr	Leu	Val	Thr	Val 120	Ser	Ser						
30	<210> 1 <211> 1 <212> F	123 PRT	l Com	10000													
35	<213> A <220> <223> \																
40	<400> 1	141															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Glu	Gly 100	Ser	Ser	Trp	Lys	Asn 105	Pro	Arg	Tyr	Val	Phe 110	Asp	Tyr
30		Trp	Gly	Gln 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser					
	<210> < <211> < <212> I <213> /	120 PRT	l Segu	ience													
35	<220> <223>																
40	<400>	142															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	His	Thr 100	Asp	Ala	Trp	Gly	Tyr 105	Arg	Leu	Asp	Tyr	Trp 110	Gly	Gln
30		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
	<210>																
	<211> ′																
35	<213> /		l Sequ	ience													
	<220> <223> \	√H of I	3RB25	5													
40	<400>	143															
45																	
50																	
<i>EE</i>																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ser	Ala	Ile	Phe 55	Gly	Asn	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Arg	Phe 100	Lys	Trp	Trp	Glu	Ser 105	Tyr	Phe	Asp	Tyr	Trp 110	Gly	Gln
30		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
	<210> < < 211> < < 212> < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213> / < < 213	122 PRT	l Segu	uence													
35	<220> <223> \																
40	<400>	144															
45																	
50																	

Ser Val Lys Val Ser Cys Lys Ala Ser C	30
Gly Ile Ser Trp Val Arg Gln Ala Pro 0 35 40	
Gly Gly Ile Ile Pro Ile Phe Gly Thr 2 50 55	Ala Asn Tyr Ala Gln Lys Phe 60
Gln Gly Arg Val Thr Ile Thr Ala Asp (65 70	Glu Ser Thr Ser Thr Ala Tyr 75 80
Met Glu Leu Ser Ser Leu Arg Ser Glu 285	Asp Thr Ala Val Tyr Tyr Cys 90 95
Ala Arg Asn Gly Phe Ala Trp Ser Val 3 100 105	Ser Gly Asn Leu Asp Tyr Trp 110
Gly Gln Gly Thr Leu Val Thr Val Ser S 115 120	Ser
<210> 145 <211> 121 <212> PRT <213> Artificial Sequence	
35 <220> <223> VH of I3RB27	
<400> 145 40	
45	
50	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Суѕ	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Ala	Gly 100	Trp	Trp	Asn	Leu	Arg 105	Tyr	Gly	Leu	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> 1																
	<211> 1																
35	<213>		l Sequ	uence													
	<220> <223> \	√H of I	3RB28	3													
40	<400>	146															
45																	
50																	
<i>EE</i>																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Ala	Pro 100	Phe	Thr	Trp	Asp	Tyr 105	Ser	Arg	Leu	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> 1 <211> 1 <212> F <213> A	120 PRT	l Sequ	uence													
35	<220> <223> \																
40	<400> 1	147															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Asp	Ser 100	Arg	Ile	Trp	Ser	Phe 105	Ser	Leu	Asp	Tyr	Trp 110	Gly	Gln
30		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
	<210> < <211> < <212> I <213> /	118 PRT	l Segu	ience													
35	<220> <223> \																
40	<400>	148															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Trp 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Leu	Val 100	Tyr	Ser	Ser	Asp	Phe 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
30		Leu	Val	Thr 115	Val	Ser	Ser										
	<210> 1																
	<211> 1																
35	<213> A		l Sequ	uence													
	<220> <223> \	/H of I	3RB31	1													
40	<400> 1	149															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ser	Ala	Tyr	Phe 55	Gly	Asn	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Ser	Tyr 100	Phe	Gly	Asp	Ala	Tyr 105	Phe	Asp	Tyr	Trp	Gly 110	Gln	Gly
30		Thr	Leu	Val 115	Thr	Val	Ser	Ser									
	<210><211><211><212><213>	121 PRT	ıl Segi	ience													
35	<220> <223>																
40	<400>	150															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Gly	Ala 100	Trp	Trp	Ala	Tyr	Asp 105	Thr	Tyr	Leu	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> < <211> < <212> I <213> /	121 PRT	ıl Segi	ience													
35	<220> <223> \																
40	<400>	151															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Gly	Tyr 100	Trp	His	Trp	Asn	Tyr 105	Asp	Tyr	Leu	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
35	<210> 7 <211> 7 <212> 8 <213> 7	118 PRT	l Sequ	ıence													
	<220> <223> \	VH of I	3RB34	1													
40	<400>	152															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Gly	Trp 100	Ser	Tyr	Tyr	Arg	Leu 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
30		Leu	Val	Thr 115	Val	Ser	Ser										
	<210> 7 <211> 7 <212> F <213> 7	120 PRT	l Sogu	ionco													
35	<220> <223> \																
40	<400> ^	153															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	His	Leu 100	Phe	Trp	Asp	Ala	Gly 105	Pro	Leu	Asp	Tyr	Trp 110	Gly	Gln
30			Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
35	<210> <211> <212> <213>	121 PRT	l Sequ	uence													
	<220> <223>		3RB36	6													
40	<400>	154															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Asp	Leu 100	His	Val	Trp	Ala	Tyr 105	Ser	Asn	Phe	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> 1																
	<211> 1																
35	<213> A	Artificia	I Sequ	ience													
	<220> <223> \	√H of I	3RB37	7													
40	<400> 1	155															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Asp	Lys 100	Thr	Asp	Phe	Pro	Ser 105	Arg	Leu	Asp	Tyr	Trp 110	Gly	Gln
30			Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
	<210> <211> <212> <213>	121 PRT	I Sequ	uence													
35	<220> <223>	۷H of I	3RB38	3													
40	<400>	156															
45																	
50																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Gly	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Asp	Leu 100	Met	Ile	Trp	Arg	Phe 105	Glu	Asn	Phe	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> 7 <211> 7 <212> F <213> 7	116 PRT	الموك ال	ience													
35	<220> <223> \																
40	<400> ^	157															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Glu	Tyr 100	Gly	Ser	Leu	Asp	Tyr 105	Trp	Gly	Gln	Gly	Thr 110	Leu	Val
30		Thr	Val	Ser 115	Ser												
	<210> 1 <211> 1																
35	<212> F	PRT	l Sequ	uence													
	<220> <223> \	√H of I	3RB40)													
40	<400> ^	158															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Arg	Gly	Gln 100	Trp	Trp	Ala	Asp	Thr 105	Trp	Phe	Asp	Tyr	Trp 110	Gly	Gln
30		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
	<210> 1 <211> 1 <212> F <213> A	23 PRT	l Sequ	ience													
35	<220> <223> \		3RB41	I													
40	<400> 1	159															
45																	
50																	

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15		Ser	Ala 50	Ile	Ser	Gly	Ser	Gly 55	Gly	Ser	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val
		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
20		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Lys	Val	Ala 100	Tyr	Trp	Glu	Phe	Phe 105	Val	Tyr	Glu	Ser	Leu 110	Asp	Tyr
30		Trp	Gly	Gln 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser					
	<210><211><211><212><	121 PRT	ıl Seni	ience													
35	<220> <223>																
40	<400>	160															
45																	
50																	

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
45		Ser	Ala 50	Ile	Ser	Gly	Ser	Gly 55	Gly	Ser	Thr	Tyr	Tyr 60	Ala	Asp	Ser	Val
15		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
20		Leu	Gln	Met	Asn		Leu	Arg	Ala	Glu	_	Thr	Ala	Val	Tyr	_	Cys
						85					90					95	
25		Ala	Lys	His	Asp 100	Trp	Ala	Phe	Trp	Ile 105	Val	Phe	Leu	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> 1																
	<211> 1																
35	<213> /		I Sequ	ience													
	<220> <223> \	/H of I	3RB43	3													
40	<400> 1	161															
45																	
50																	
55																	

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Tyr
10		Trp	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15		Ser	Ala 50	Ile	Arg	Ser	Asp	Gly 55	Ser	Ser	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val
		Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
20		Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25		Ala	Lys	Asp	Gly 100	Ile	Val	Met	Asp	Thr 105	Phe	Asp	Tyr	Trp	Gly 110	Gln	Gly
		Thr	Leu	Val 115	Thr	Val	Ser	Ser									
30	<210> 1 <211> 1 <212> F	18 PRT	d Sogu	Jones													
35	<213> A <220> <223> \																
40	<400> 1	62															
45																	
50																	
55																	

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
5		Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Gly	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Ser	Tyr
10		Trp	Ile	Ser 35	Trp	Val	Arg	Gln	Met 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Met
15		Gly	Ile 50	Ile	Asp	Pro	Ser	Asp 55	Ser	Asp	Thr	Arg	Tyr 60	Ser	Pro	Ser	Phe
		Gln 65	Gly	Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Ser	Thr	Ala	Tyr 80
20		Leu	Gln	Trp	Ser	Ser 85	Leu	Lys	Ala	Ser	Asp 90	Thr	Ala	Met	Tyr	Tyr 95	Cys
25		Ala	Arg	Gly	Asp 100	Gly	Ser	Thr	Asp	Leu 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
30		Leu	Val	Thr 115	Val	Ser	Ser										
	<210> 1 <211> 1 <212> F	21 PRT	l Com	10000													
35	<213> A <220> <223> V																
40	<400> 1	63															
45																	
50																	
55																	

		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
5		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
10		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe
15		Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
20		Met	Glu	Leu	Ser	Ser	Leu	Arg	Ser	Glu	Asp	Thr	Ala	Val	Tyr	Tyr	Cys
						85					90					95	
25		Ala	Arg	Asp	Leu 100	Phe	Ser	Trp	Arg	Tyr 105	Ser	Asn	Phe	Asp	Tyr 110	Trp	Gly
30		Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser							
	<210> 1																
	<211> 1																
35	<213>		I Sequ	ience													
	<220> <223> \	/L of I3	BRB1,	I3RB3	3												
40	<400>	164															
45																	
50																	
55																	

		Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
5		Glu	Arg	Ala	Thr 20	Ile	Asn	Cys	Lys	Ser 25	Ser	Gln	Ser	Val	Leu 30	Tyr	Ser
10		Ser	Asn	Asn 35	Lys	Asn	Tyr	Leu	Ala 40	Trp	Tyr	Gln	Gln	Lys 45	Pro	Gly	Gln
15		Pro	Pro 50	Lys	Leu	Leu	Ile	Tyr 55	Trp	Ala	Ser	Thr	Arg 60	Glu	Ser	Gly	Val
		Pro 65	Asp	Arg	Phe	Ser	Gly 70	Ser	Gly	Ser	Gly	Thr 75	Asp	Phe	Thr	Leu	Thr 80
20		Ile	Ser	Ser	Leu	Gln 85	Ala	Glu	Asp	Val	Ala 90	Val	Tyr	Tyr	Cys	Gln 95	Gln
25		Tyr	Tyr	Ser	Thr 100	Pro	Leu	Thr	Phe	Gly 105	Gln	Gly	Thr	Lys	Val 110	Glu	Ile
		Lys															
30	<210> 1 <211> 1 <212> F <213> A	07 PRT	l Sequ	uence													
35	<220> <223> \	/L of I3	BRB2,	I3RB1	3, I3R	B42, I	I3RB4	3									
	<400> 1	65															
40																	
45																	
50																	
55																	

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Tyr
10		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
15		Tyr	Asp 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
20		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Arg	Ser	Asn	Trp	Pro 95	Leu
25		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
30	<210> 7 <211> 7 <212> F <213> 7	108 PRT	ıl Seqı	uence													
	<220> <223> \	√L of I	3RB4,	I3RB4	! 1												
35	<400>	166															
40																	
45																	
50																	
55																	

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Ser
10		Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu
15		Ile	Tyr 50	Gly	Ala	Ser	Ser	Arg 55	Ala	Thr	Gly	Ile	Pro 60	Asp	Arg	Phe	Ser
		Gly 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Arg	Leu	Glu 80
20		Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	Gln 90	Gln	Tyr	Gly	Ser	Ser 95	Pro
25		Leu	Thr	Phe	Gly	Gln	_	Thr	Lys	Val	Glu		Lys				
30	<210> 1 <211> 1 <212> F <213> A	107 PRT	ıl Sequ	ience			100					105					
35	<220> <223> \ I3RB20,													RB14,	I3RB	15, I3F	RB16, I3RB17,
40	<400> 1	67															
45																	
50																	
55																	

		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
5		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Ser 30	Ser	Tyr
10		Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
15		Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
20		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Ser	Tyr	Ser	Thr	Pro 95	Leu
25		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
30	<210> 1 <211> 1 <212> F <213> A	08 PRT	l Segu	ience													
	<220> <223> \																
35	<400> 1	68															
40		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Ser
45		Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu
50																	
55																	

		Ile	Tyr 50	Gly	Ala	Ser	Ser	Arg 55	Ala	Thr	Gly	Ile	Pro 60	Asp	Arg	Phe	Ser
5		Gly 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Arg	Leu	Glu 80
10		Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	Gln 90	Gln	Asp	Tyr	Gly	Phe 95	Pro
		Trp	Thr	Phe	Gly 100	Gln	Gly	Thr	Lys	Val 105	Glu	Ile	Lys				
15	<210> 1 <211> 1 <212> F <213> A	07 PRT	l Sequ	ience													
20	<220> <223> \	/L of I3	BRB19														
25	<400> 1	69															
		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
30		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Gly 30	Asp	Phe
35		Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
40		Tyr	Tyr 50	Ala	Ser	Ser	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
45		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Ser	Tyr	Ser	Thr	Pro 95	Leu
50		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
55	<210> 1 <211> 1 <212> F	07 PRT	I Co	ions:													
55	<213> A <220> <223> V																

<400> 170

5		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ala 30	Asn	Phe
10		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
15		Tyr	Ala 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
20		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Phe	His	Trp	Pro 95	Tyr
25		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
30	<210> 1 <211> 1 <212> F <213> A	07 PRT	ıl Seqı	uence													
35	<220> <223> \		3RB22	?													
40	<400> 1	71															
45																	
50																	
55																	

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Asn 30	Lys	Trp
10		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
15		Tyr	Tyr 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
15		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
20		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Gly	Ile	Asp	Trp	Pro 95	Arg
				Tì	nr Pl	he Gi	Ly G	ln G	Ly Tl	hr Ly	ys Va	al G	lu I	le Ly	ys		
25							10	00	_		_	10	05		-		
20	<210> 1 <211> 1 <212> F	07															
30	<213> A	Artificia	ıl Sequ	uence													
30	<220> <223> V	/L of I3	3RB23	}													
35	<400> 1	72															
40																	
45																	
50																	
55																	

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
5		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Ser 30	Ser	Tyr
10		Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
15		Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
20		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Phe	Asp	Phe	Pro 95	Leu
25		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
30	<210> 1 <211> 1 <212> F	07 PRT	l Com														
30	<213> A <220> <223> V																
35	<400> 1	73															
		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
40		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Asp 30	Asn	Trp
45		Leu	Ala	Trp	Tyr	Gln	Gln	Lys	Pro	Gly	Gln	Ala	Pro	Arg	Leu	Leu	Ile
50																	
55																	

				35					40					45			
5		Tyr	Gly 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
10		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Ser	Ile	Ser	Ala	Pro 95	Tyr
15		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
20	<210> 7 <211> 7 <212> F <213> 7	I07 PRT	ıl Seqı	uence													
25	<220> <223> \	/L of I	3RB27														
	<400> 1	174															
30		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
35		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ala 30	Lys	Ser
		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
40		Tyr	Ala 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
45		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
50		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Phe	Ile	Gly	Trp	Pro 95	Ile
		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
55	<210> 1 <211> 1 <212> F <213> A	I07 PRT	ıl Segi	Jence													

	<220> <223> V	L of I3	RB29														
5	<400> 1	75															
		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
10		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Gly 30	Glu	Trp
15		Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
20		Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
25		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Tyr	His	Phe	Pro 95	Leu
30		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
35	<210> 1 <211> 1 <212> P <213> A	07 PRT	l Sequ	ience													
	<220> <223> V	L of I3	RB30														
40	<400> 1	76															
45																	
50																	

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ala 30	Asn	Trp
10		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
45		Tyr	Tyr 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
15		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
20		Glu	Asp	Phe	Ala	Val	Tyr	Tyr	Cys	Gln	Gln	Tyr	Asp	Gly	Trp	Pro	Arg
						8	5				9	0				9	5
25		T	hr P	he G		ln G	ly T	hr L	ys V		lu I 05	le L	ys				
30	<210> 1 <211> 1 <212> F <213> A	07 PRT	l Sequ	uence													
35	<220> <223> V <400> 1		3RB31														
40																	
45																	
50																	
55																	

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Asp 30	Lys	Asp
10		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
15		Tyr	Gly 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
20		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Asp	Arg	Ala	Pro 95	Ile
25		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
	<210> 1 <211> 1 <212> P	07 PRT															
30	<213> A <220> <223> V																
35	<400> 1																
		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
40		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Asn 30	Asp	Trp
45																	
50																	
55																	

		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
5		Tyr	Gly 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
10		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
45		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Lys	Arg	Ala	Pro 95	Tyr
15		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
20	<210> 7 <211> 7 <212> F <213> 7	107 PRT	ıl Seqı	uence													
25	<220> <223> \	√L of I3	3RB34														
	<400>	179															
30		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
35		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Asp 30	Lys	Trp
		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
40		Tyr	Tyr 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
45		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
50		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Phe	Asp	Arg	Ala	Pro 95	Phe
		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
55	<210> 7 <211> 7 <212> F <213> 7	107 PRT	ıl Seqi	uence													

<220>

	<223> V	L of I3	RB35														
5	<400> 1	80															
		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
10		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Ser 30	Ser	Tyr
15		Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
20		Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
25		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Phe	Ser	Pro	Pro 95	Tyr
30		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
35	<210> 1 <211> 1 <212> F <213> A	07 PRT	l Sequ	uence													
	<220> <223> V	L of I3	BRB37	ı													
10	<400> 1	81															
1 5		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Ala 30	Thr	Trp
50		Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
55		Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro

5 10 15		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Ile	Thr	Phe	Pro 95	Leu
15		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
	<210> < <211> < <212> I <213> /	107 PRT	l Sequ	uence													
20	<220> <223> \	/L of I3	BRB39														
20	<400>	182															
		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ala 30	Asp	Phe
25		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
30		Tyr	Lys 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
35		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Asn	Gly	Trp	Pro 95	Trp
40		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
45	<210> 1 <211> 1 <212> 1 <213> 2	107 PRT	l Sequ	uence													
50	<220> <223> \	VL of I3	3RB40														
	<400>	183															

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ala 30	Lys	Trp
10		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
		Tyr	Gly 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
15		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro
20		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	His	Thr	Ala	Pro 95	Trp
25		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
	<210> 1 <211> 1 <212> F	25 PRT	J Sogu	Jones													
30	<213> A <220> <223> 0			derice													
35	<400> 1	84															
40																	
45																	
50																	
55																	

		Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
10		Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15		Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Ala
		Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Ser 80
20						85			Leu		90					95	
25					100				Phe	105					Ser 110	Trp	Phe
30	<210>		Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125			
35	<211> <211> <212> I <213> /	125 PRT	l Sequ	uence													
	<220> <223> 0		42														
40																	
45																	
50																	

		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
10		Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15		Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Ala
		Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Ser 80
20		Leu	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Lys	Thr 90	Glu	Asp	Thr	Ala	Val 95	Tyr
25		Tyr	Cys	Ala	Arg 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
30		Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125			
25	<210> 1 <211> 1 <212> F <213> A	25 PRT	l Sequ	uence													
35	<220> <223> 0	D3H1	43														
40	<400> 1	86															
		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
45		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
50		Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val

		Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Asp
5		Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asn	Ser	Lys	Asn	Thr 80
10		Leu	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Arg	Ala 90	Glu	Asp	Thr	Ala	Val 95	Tyr
45		Tyr	Cys	Val	Lys 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
15		Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125			
20	<210> 1 <211> 1 <212> F <213> A	25 PRT	l Sequ	ience													
25	<220> <223> C	D3H1	44														
	<400> 1	87															
30		Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
35		Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
		Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Ser	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
40		Gly	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Gly	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Ala
45		Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Thr 80
50		Ala	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Lys	Thr 90	Glu	Asp	Thr	Ala	Val 95	Tyr
		Tyr	Cys	Thr	Arg 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
55		Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125			

	<210> <211> <212>	109															
5		Artificia	ıl Sequ	ience													
	<220> <223>	CD3L6	3														
10	<400>	188															
		Gln 1	Ala	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
15		Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
20		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
25		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
20		Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Ala 80
30		Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
35		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu			
40	<210><211><211><212>	109 PRT	ıl Çogu	ionco													
40	<220>	Artificia CD3L6		ience													
45	<400>	189															
50																	

		Gln 1	Ser	Val	Leu	Thr 5	Gln	Pro	Pro	Ser	Val 10	Ser	Ala	Ala	Pro	Gly 15	Gln
5		Lys	Val	Thr	Ile 20	Ser	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
10		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Leu	Pro	Gly	Thr	Ala 45	Pro	Lys	Gly
15		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Ile 60	Pro	Asp	Arg	Phe
		Ser 65	Gly	Ser	Lys	Ser	Gly 70	Thr	Ser	Ala	Thr	Leu 75	Gly	Ile	Thr	Gly	Leu 80
20		Gln	Thr	Gly	Asp	Glu 85	Ala	Asp	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
25		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu			
30	<210> 1 <211> 1 <212> F <213> A	109 PRT	l Sequ	uence													
	<220> <223> (CD3L6	6														
35	<400> 1	90															
40																	
45																	
50																	
55																	

		Gln 1	Thr	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
5		Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
10		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
15		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
		Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Val 80
20		Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
25		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu			
30	<210> 1 <211> 1 <212> F <213> A	20 PRT	l Segu	ience													
	<220> <223> E			201100													
35	<400> 1	91															
		Gln 1	Ile	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Thr 10	Leu	Val	Lys	Pro	Thr 15	Gln
40																	
45																	
50																	
55																	

		Thr	Leu	Thr	Leu 20	Thr	Cys	Thr	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
5		Gly	Met	Gly 35	Val	Ser	Trp	Ile	Arg 40	Gln	Pro	Pro	Gly	Lys 45	Ala	Leu	Glu
10		Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser
15		Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Thr	Lys	Asp	Thr 75	Ser	Lys	Asn	Gln	Val 80
		Val	Leu	Thr	Met	Thr 85	Asn	Met	Asp	Pro	Val 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
20		Cys	Ala	Arg	Leu 100	Tyr	Gly	Phe	Thr	Tyr 105	Gly	Phe	Ala	Tyr	Trp 110	Gly	Gln
25		Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120								
30	<210> 19 <211> 1 <212> P <213> A	11 RT	l Sequ	ience													
	<220> <223> B	21M \	/L														
35	<400> 19	92															
40		Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
40		Glu	Arg	Ala	Thr 20	Ile	Asn	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Asp 30	Tyr	Asn
45		Gly	Ile	Ser 35	Tyr	Met	His	Trp	Tyr 40	Gln	Gln	Lys	Pro	Gly 45	Gln	Pro	Pro
50		Lys	Leu 50	Leu	Ile	Tyr	Ala	Ala 55	Ser	Asn	Pro	Glu	Ser 60	Gly	Val	Pro	Asp
		Arg 65	Phe	Ser	Gly	Ser	Gly 70	Ser	Gly	Thr	Asp	Phe 75	Thr	Leu	Thr	Ile	Ser 80
55		Ser	Leu	Gln	Ala	Glu 85	Asp	Val	Ala	Val	Tyr 90	Tyr	Cys	Gln	Gln	Ile 95	Ile

Glu Asp Pro	Trp Thr	Phe Gly	Gln Gly	Thr Lys	Val (Glu Ile	Lys
	100		105			110	

5	<210> 193 <211> 455 <212> PRT <213> Artificia	l Sequ	ence													
10	<220> <223> CD3B1	46 HC														
	<400> 193															
15	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
20	Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
	Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Ser	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
25	Gly	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Gly	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Ala
30	Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Thr 80
35	Ala	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Lys	Thr 90	Glu	Asp	Thr	Ala	Val 95	Tyr
	Tyr	Cys	Thr	Arg 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
40	Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Ser	Thr
45	Lys	Gly 130	Pro	Ser	Val	Phe	Pro 135	Leu	Ala	Pro	Ser	Ser 140	Lys	Ser	Thr	Ser
50	Gly 1 4 5	Gly	Thr	Ala	Ala	Leu 150	Gly	Cys	Leu	Val	Lys 155	Asp	Tyr	Phe	Pro	Glu 160
	Pro	Val	Thr	Val	Ser 165	Trp	Asn	Ser	Gly	Ala 170	Leu	Thr	Ser	Gly	Val 175	His
55	Thr	Phe	Pro	Ala 180	Val	Leu	Gln	Ser	Ser 185	Gly	Leu	Tyr	Ser	Leu 190	Ser	Ser

	Val	Val	Thr 195	Val	Pro	Ser	Ser	Ser 200	Leu	Gly	Thr	Gln	Thr 205	Tyr	Ile	Cys
5	Asn	Val 210	Asn	His	Lys	Pro	Ser 215	Asn	Thr	Lys	Val	Asp 220	Lys	Lys	Val	Glu
10	Pro 225	Lys	Ser	Cys	Asp	Lys 230	Thr	His	Thr	Cys	Pro 235	Pro	Cys	Pro	Ala	Pro 240
	Glu	Ala	Ala	Gly	Gly 245	Pro	Ser	Val	Phe	Leu 250	Phe	Pro	Pro	Lys	Pro 255	Lys
15	Asp	Thr	Leu	Met 260	Ile	Ser	Arg	Thr	Pro 265	Glu	Val	Thr	Cys	Val 270	Val	Val
20	Asp	Val	Ser 275	His	Glu	Asp	Pro	Glu 280	Val	Lys	Phe	Asn	Trp 285	Tyr	Val	Asp
25	Gly	Val 290	Glu	Val	His	Asn	Ala 295	Lys	Thr	Lys	Pro	Arg 300	Glu	Glu	Gln	Tyr
	Asn 305	Ser	Thr	Tyr	Arg	Val 310	Val	Ser	Val	Leu	Thr 315	Val	Leu	His	Gln	Asp 320
30	Trp	Leu	Asn	Gly	Lys 325	Glu	Tyr	Lys	Cys	Lys 330	Val	Ser	Asn	Lys	Ala 335	Leu
35	Pro	Ala	Pro	Ile 340	Glu	Lys	Thr	Ile	Ser 345	Lys	Ala	Lys	Gly	Gln 350	Pro	Arg
40	Glu	Pro	Gln 355	Val	Tyr	Thr	Leu	Pro 360	Pro	Ser	Arg	Asp	Glu 365	Leu	Thr	Lys
40	Asn	Gln 370	Val	Ser	Leu	Thr	Cys 375	Leu	Val	Lys	Gly	Phe 380	Tyr	Pro	Ser	Asp
45	Ile 385	Ala	Val	Glu	Trp	Glu 390	Ser	Asn	Gly	Gln	Pro 395	Glu	Asn	Asn	Tyr	Lys 400
50	Thr	Thr	Pro	Pro	Val 405	Leu	Asp	Ser	Asp	Gly 410	Ser	Phe	Leu	Leu	Tyr 415	Ser
	Lys	Leu	Thr	Val 420	Asp	Lys	Ser	Arg	Trp 425	Gln	Gln	Gly	Asn	Val 430	Phe	Ser
55	Cys	Ser	Val 435	Met	His	Glu	Ala	Leu 440	His	Asn	His	Tyr	Thr 445	Gln	Lys	Ser

Leu Ser Leu Ser Pro Gly Lys 450 455

5	<210> 194 <211> 215 <212> PRT <213> Artificia	al Sequ	uence													
10	<220> <223> CD3B ²	146 LC														
	<400> 194															
15	Gln 1	Ala	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
20	Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
	Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
25	Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
30	Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Ala 80
35	Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
	Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln	Pro
40	Lys	Ala	Ala 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
45	Gln	Ala 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Leu	Ile	Ser 140	Asp	Phe	Tyr	Pro
50	Gly 145	Ala	Val	Thr	Val	A la 150	Trp	Lys	Gly	Asp	Ser 155	Ser	Pro	Val	Lys	Ala 160
50	Gly	Val	Glu	Thr	Thr 165	Thr	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Ala
55	Ala	Ser	Ser	Tyr 180	Leu	Ser	Leu	Thr	Pro 185	Glu	Gln	Trp	Lys	Ser 190	His	Arg

Ser	Tyr	Ser	Cys	Gln	Val	Thr	His	Glu	${ t Gly}$	Ser	Thr	Val	Glu	Lys	Thr
		195					200					205			

5	Val	Ala E 210	Pro	Thr	Glu	Cys	Ser 215	
10	<210> 195 <211> 455 <212> PRT <213> Artificia	ıl Seque	nce					
15	<220> <223> CD3B1 <400> 195	47 HC						
20								
25								
30								
35								
40								
45								
50								

	Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
10	Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Asp
	Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asn	Ser	Lys	Asn	Thr 80
20	Leu	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Arg	Ala 90	Glu	Asp	Thr	Ala	Val 95	Tyr
25	Tyr	Cys	Ala	Lys 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
30	Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Ser	Thr
	Lys	Gly 130	Pro	Ser	Val	Phe	Pro 135	Leu	Ala	Pro	Ser	Ser 140	Lys	Ser	Thr	Ser
35	Gly 145	Gly	Thr	Ala	Ala	Leu 150	Gly	Cys	Leu	Val	Lys 155	Asp	Tyr	Phe	Pro	Glu 160
40	Pro	Val	Thr	Val	Ser 165	Trp	Asn	Ser	Gly	Ala 170	Leu	Thr	Ser	Gly	Val 175	His
	Thr	Phe	Pro	Ala	Val	Leu	Gln	Ser	Ser	Gly	Leu	Tyr	Ser	Leu	Ser	Ser
45																
50																
55																

				100					100					190		
5	Val	Val	Thr 195	Val	Pro	Ser	Ser	Ser 200	Leu	Gly	Thr	Gln	Thr 205	Tyr	Ile	Cys
10	Asn	Val 210	Asn	His	Lys	Pro	Ser 215	Asn	Thr	Lys	Val	Asp 220	Lys	Lys	Val	Glu
	Pro 225	Lys	Ser	Cys	Asp	Lys 230	Thr	His	Thr	Cys	Pro 235	Pro	Cys	Pro	Ala	Pro 240
15	Glu	Ala	Ala	Gly	Gly 245	Pro	Ser	Val	Phe	Leu 250	Phe	Pro	Pro	Lys	Pro 255	Lys
20	Asp	Thr	Leu	Met 260	Ile	Ser	Arg	Thr	Pro 265	Glu	Val	Thr	Cys	Val 270	Val	Val
	Asp	Val	Ser 275	His	Glu	Asp	Pro	Glu 280	Val	Lys	Phe	Asn	Trp 285	Tyr	Val	Asp
25	Gly	Val 290	Glu	Val	His	Asn	Ala 295	Lys	Thr	Lys	Pro	Arg 300	Glu	Glu	Gln	Tyr
30	Asn 305	Ser	Thr	Tyr	Arg	Val 310	Val	Ser	Val	Leu	Thr 315	Val	Leu	His	Gln	Asp 320
35	Trp	Leu	Asn	Gly	Lys 325	Glu	Tyr	Lys	Cys	Lys 330	Val	Ser	Asn	Lys	Ala 335	Leu
	Pro	Ala	Pro	Ile 340	Glu	Lys	Thr	Ile	Ser 345	Lys	Ala	Lys	Gly	Gln 350	Pro	Arg
40	Glu	Pro	Gln 355	Val	Tyr	Thr	Leu	Pro 360	Pro	Ser	Arg	Asp	Glu 365	Leu	Thr	Lys
45	Asn	Gln 370	Val	Ser	Leu	Thr	Cys 375	Leu	Val	Lys	Gly	Phe 380	Tyr	Pro	Ser	Asp
50	Ile 385	Ala	Val	Glu	Trp	Glu 390	Ser	Asn	Gly	Gln	Pro 395	Glu	Asn	Asn	Tyr	Lys 400
	Thr	Thr	Pro	Pro	Val 405	Leu	Asp	Ser	Asp	Gly 410	Ser	Phe	Leu	Leu	Tyr 415	Ser
55	Lys	Leu	Thr	Val 420	Asp	Lys	Ser	Arg	Trp 425	Gln	Gln	Gly	Asn	Val 430	Phe	Ser

5		Leu	Ser 450	Leu	Ser	Pro	Gly	Lys 455
10	<210> 19 <211> 21 <212> Pl <213> Al	15 RT	l Sequ	uence				
15	<220> <223> C <400> 19		47 LC					
20								
25								
30								
35								
40								
45								
50								
55								

	1		Ala	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
5	T	Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
10	P	Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
15	I	Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
		Ser 55	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Ala 80
20	G	€ln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
25	I	Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln	Pro
30	I	Ľуs	Ala	Ala 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
	G	Sln	Ala 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Leu	Ile	Ser 140	Asp	Phe	Tyr	Pro
35		Sly L45	Ala	Val	Thr	Val	A la 150	Trp	Lys	Gly	Asp	Ser 155	Ser	Pro	Val	Lys	Ala 160
40	G	Sly	Val	Glu	Thr	Thr 165	Thr	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Ala
	P	Ala	Ser	Ser	Tyr	Leu	Ser	Leu	Thr	Pro	Glu	Gln	Trp	Lys	Ser	His	Arg
45					180					185					190		
50	S	Ser	Tyr	Ser 195	Cys	Gln	Val	Thr	His 200	Glu	Gly	Ser	Thr	Val 205	Glu	Lys	Thr
	V	/al	Ala 210	Pro	Thr	Glu	Cys	Ser 215									
55	<210> 197 <211> 458 <212> PR <213> Art	5 !T	l Sequ	ience													

<220>

	<223> C	D3B1	51 HC	;													
5	<400> 1	97															
		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
10		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
15		Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
20		Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Asp
		Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asn	Ser	Lys	Asn	Thr 80
25		Leu	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Arg	Ala 90	Glu	Asp	Thr	Ala	Val 95	Tyr
30		Tyr	Cys	Val	Lys 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
35		Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Ser	Thr
		Lys	Gly 130	Pro	Ser	Val	Phe	Pro 135	Leu	Ala	Pro	Ser	Ser 140	Lys	Ser	Thr	Ser
40		Gly 145	Gly	Thr	Ala	Ala	Leu 150	Gly	Cys	Leu	Val	Lys 155	Asp	Tyr	Phe	Pro	Glu 160
45		Pro	Val	Thr	Val	Ser 165	Trp	Asn	Ser	Gly	Ala 170	Leu	Thr	Ser	Gly	Val 175	His
50																	

	Thr	Phe	Pro	Ala 180	Val	Leu	Gln	Ser	Ser 185	Gly	Leu	Tyr	Ser	Leu 190	Ser	Ser
5	Val	Val	Thr 195	Val	Pro	Ser	Ser	Ser 200	Leu	Gly	Thr	Gln	Thr 205	Tyr	Ile	Cys
10	Asn	Val 210	Asn	His	Lys	Pro	Ser 215	Asn	Thr	Lys	Val	Asp 220	Lys	Lys	Val	Glu
15	Pro 225	Lys	Ser	Cys	Asp	Lys 230	Thr	His	Thr	Cys	Pro 235	Pro	Cys	Pro	Ala	Pro 240
15	Glu	Ala	Ala	Gly	Gly 245	Pro	Ser	Val	Phe	Leu 250	Phe	Pro	Pro	Lys	Pro 255	Lys
20	Asp	Thr	Leu	Met 260	Ile	Ser	Arg	Thr	Pro 265	Glu	Val	Thr	Cys	Val 270	Val	Val
25	Asp	Val	Ser 275	His	Glu	Asp	Pro	Glu 280	Val	Lys	Phe	Asn	Trp 285	Tyr	Val	Asp
	Gly	Val 290	Glu	Val	His	Asn	Ala 295	Lys	Thr	Lys	Pro	A rg 300	Glu	Glu	Gln	Tyr
30	Asn 305	Ser	Thr	Tyr	Arg	Val 310	Val	Ser	Val	Leu	Thr 315	Val	Leu	His	Gln	Asp 320
35	Trp	Leu	Asn	Gly	Lys 325	Glu	Tyr	Lys	Cys	Lys 330	Val	Ser	Asn	Lys	Ala 335	Leu
40	Pro	Ala	Pro	Ile 340	Glu	Lys	Thr	Ile	Ser 345	Lys	Ala	Lys	Gly	Gln 350	Pro	Arg
	Glu	Pro	Gln 355	Val	Tyr	Thr	Leu	Pro 360	Pro	Ser	Arg	Asp	Glu 365	Leu	Thr	Lys
45	Asn	Gln 370	Val	Ser	Leu	Thr	Cys 375	Leu	Val	Lys	Gly	Phe 380	Tyr	Pro	Ser	Asp
50	Ile 385	Ala	Val	Glu	Trp	Glu 390	Ser	Asn	Gly	Gln	Pro 395	Glu	Asn	Asn	Tyr	Lys 400
55	Thr	Thr	Pro	Pro	Val 405	Leu	Asp	Ser	Asp	Gly 410	Ser	Phe	Leu	Leu	Tyr 415	Ser
	Lys	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Gln	Gly	Asn	Val	Phe	Ser

				420					425					430		
5	Cys	Ser	Val 435	Met	His	Glu	Ala	Leu 440	His	Asn	His	Tyr	Thr 445	Gln	Lys	Ser
10	<210> 198 <211> 215 <212> PRT <213> Artificia	Ser 450		Ser	Pro	Gly	Lys 455									
15	<220> <223> CD3B ²															
20	<400> 198															
25																
30																
35																
40																
45																
50																

		Gln 1	Ala	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
5		Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
10		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
15		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
		Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Ala 80
20		Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
25		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln	Pro
30		Lys	Ala	Ala 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
		Gln	Ala 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Leu	Ile	Ser 140	Asp	Phe	Tyr	Pro
35		Gly 145	Ala	Val	Thr	Val	Ala 150	Trp	Lys	Gly	Asp	Ser 155	Ser	Pro	Val	Lys	Ala 160
40		Gly	Val	Glu	Thr	Thr 165	Thr	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Ala
45		Ala	Ser	Ser	Tyr 180	Leu	Ser	Leu	Thr	Pro 185	Glu	Gln	Trp	Lys	Ser 190	His	Arg
7 5		Ser	Tyr	Ser 195	Cys	Gln	Val	Thr	His 200	Glu	Gly	Ser	Thr	Val 205	Glu	Lys	Thr
50		Val	Ala 210	Pro	Thr	Glu	Cys	Ser 215									
55	<210> 1 <211> 4 <212> F <213> A	155 PRT	l Sequ	ıence													
	<220>																

<223> CD3B154 HC

<400> 199

55

5	Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
10	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
15	Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
	Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Asp
20	Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asn	Ser	Lys	Asn	Thr 80
25	Leu	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Arg	Ala 90	Glu	Asp	Thr	Ala	Val 95	Tyr
30	Tyr	Cys	Val	Lys 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
	Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Ser	Thr
35	Lys	Gly 130	Pro	Ser	Val	Phe	Pro 135	Leu	Ala	Pro	Ser	Ser 140	Lys	Ser	Thr	Ser
40	Gly 145	Gly	Thr	Ala	Ala	Leu 150	Gly	Cys	Leu	Val	Lys 155	Asp	Tyr	Phe	Pro	Glu 160
45																
50																

	Pro	Val	Thr	Val	Ser 165	Trp	Asn	Ser	Gly	Ala 170	Leu	Thr	Ser	Gly	Val 175	His
5	Thr	Phe	Pro	Ala 180	Val	Leu	Gln	Ser	Ser 185	Gly	Leu	Tyr	Ser	Leu 190	Ser	Ser
10	Val	Val	Thr 195	Val	Pro	Ser	Ser	Ser 200	Leu	Gly	Thr	Gln	Thr 205	Tyr	Ile	Cys
	Asn	Val 210	Asn	His	Lys	Pro	Ser 215	Asn	Thr	Lys	Val	Asp 220	Lys	Lys	Val	Glu
15	Pro 225	Lys	Ser	Cys	Asp	Lys 230	Thr	His	Thr	Cys	Pro 235	Pro	Cys	Pro	Ala	Pro 240
20	Glu	Ala	Ala	Gly	Gly 245	Pro	Ser	Val	Phe	Leu 250	Phe	Pro	Pro	Lys	Pro 255	Lys
25	Asp	Thr	Leu	Met 260	Ile	Ser	Arg	Thr	Pro 265	Glu	Val	Thr	Cys	Val 270	Val	Val
	Asp	Val	Ser 275	His	Glu	Asp	Pro	Glu 280	Val	Lys	Phe	Asn	Trp 285	Tyr	Val	Asp
30	Gly	Val 290	Glu	Val	His	Asn	Ala 295	Lys	Thr	Lys	Pro	Arg 300	Glu	Glu	Gln	Tyr
35	Asn 305	Ser	Thr	Tyr	Arg	Val 310	Val	Ser	Val	Leu	Thr 315	Val	Leu	His	Gln	Asp 320
40	Trp	Leu	Asn	Gly	Lys 325	Glu	Tyr	Lys	Cys	Lys 330	Val	Ser	Asn	Lys	Ala 335	Leu
40	Pro	Ala	Pro	Ile 340	Glu	Lys	Thr	Ile	Ser 345	Lys	Ala	Lys	Gly	Gln 350	Pro	Arg
45	Glu	Pro	Gln 355	Val	Tyr	Thr	Leu	Pro 360	Pro	Ser	Arg	Asp	Glu 365	Leu	Thr	Lys
50	Asn	Gln 370	Val	Ser	Leu	Thr	Cys 375	Leu	Val	Lys	Gly	Phe 380	Tyr	Pro	Ser	Asp
	Ile 385	Ala	Val	Glu	Trp	Glu 390	Ser	Asn	Gly	Gln	Pro 395	Glu	Asn	Asn	Tyr	Lys 400
55	Thr	Thr	Pro	Pro	Val 405	Leu	Asp	Ser	Asp	Gly 410	Ser	Phe	Leu	Leu	Tyr 415	Ser

		Lys	Leu	Thr	Val 420	Asp	Lys	Ser	Arg	Trp 425	Gln	Gln	Gly	Asn	Val 430	Phe	Ser
5		Cys	Ser	Val 435	Met	His	Glu	Ala	Leu 440	His	Asn	His	Tyr	Thr 445	Gln	Lys	Ser
10		Leu	Ser 450	Leu	Ser	Pro	Gly	Lys 455									
15	<210> 2 <211> 2 <212> F <213> A	215 PRT	l Sequ	uence													
	<220> <223> 0	D3B1	54 LC														
20	<400> 2	200															
25		Gln 1	Thr	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
		Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
30		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
35		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
40		Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Val 80
4 0		Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
45		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln	Pro
50		Lys	Ala	Ala 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
		Gln	Ala 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Leu	Ile	Ser 140	Asp	Phe	Tyr	Pro
55		Gly 145	Ala	Val	Thr	Val	Ala 150	Trp	Lys	Gly	Asp	Ser 155	Ser	Pro	Val	Lys	Ala 160

		Gly	Val	Glu	Thr	Thr 165	Thr	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Ala
5		Ala	Ser	Ser	Tyr 180	Leu	Ser	Leu	Thr	Pro 185	Glu	Gln	Trp	Lys	Ser 190	His	Arg
10		Ser	Tyr	Ser 195	Cys	Gln	Val	Thr	His 200	Glu	Gly	Ser	Thr	Val 205	Glu	Lys	Thr
		Val	Ala 210	Pro	Thr	Glu	Cys	Ser 215									
15 20	<210> 2 <211> 4 <212> P <213> A	55 PRT	l Sequ	ience													
	<220> <223> C	D3B1	55 HC	;													
25	<400> 2			~ 1	_		~ 1	_	~ 1	a 1	~ 1	_		~ 1	_	~ 1	~ 1
		GIU 1	vaı	GIN	Leu	vai 5	GIU	ser	стА	GTÀ	10	ьеu	vaı	GIN	Pro	15	СТĀ
30		Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
35		Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Ser	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
40		Gly	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Gly	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Ala
		Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Thr 80
45		Ala	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Lys	Thr 90	Glu	Asp	Thr	Ala	Val 95	Tyr
50		Tyr	Cys	Thr	Arg 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
55		Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Ser	Thr
		Lys	Gly 130	Pro	Ser	Val	Phe	Pro 135	Leu	Ala	Pro	Ser	Ser 140	Lys	Ser	Thr	Ser

	Gly 145	Gly	Thr	Ala	Ala	Leu 150	Gly	Cys	Leu	Val	Lys 155	Asp	Tyr	Phe	Pro	Glu 160
5	Pro	Val	Thr	Val	Ser 165	Trp	Asn	Ser	Gly	Ala 170	Leu	Thr	Ser	Gly	Val 175	His
10	Thr	Phe	Pro	Ala 180	Val	Leu	Gln	Ser	Ser 185	Gly	Leu	Tyr	Ser	Leu 190	Ser	Ser
	Val	Val	Thr 195	Val	Pro	Ser	Ser	Ser 200	Leu	Gly	Thr	Gln	Thr 205	Tyr	Ile	Cys
15	Asn	Val 210	Asn	His	Lys	Pro	Ser 215	Asn	Thr	Lys	Val	Asp 220	Lys	Lys	Val	Glu
20	Pro 225	Lys	Ser	Cys	Asp	Lys 230	Thr	His	Thr	Cys	Pro 235	Pro	Cys	Pro	Ala	Pro 240
25	Glu	Ala	Ala	Gly	Gly 245	Pro	Ser	Val	Phe	Leu 250	Phe	Pro	Pro	Lys	Pro 255	Lys
	Asp	Thr	Leu	Met 260	Ile	Ser	Arg	Thr	Pro 265	Glu	Val	Thr	Cys	Val 270	Val	Val
30	Asp	Val	Ser 275	His	Glu	Asp	Pro	Glu 280	Val	Lys	Phe	Asn	Trp 285	Tyr	Val	Asp
35	Gly	Val 290	Glu	Val	His	Asn	Ala 295	Lys	Thr	Lys	Pro	Arg 300	Glu	Glu	Gln	Tyr
	Asn 305	Ser	Thr	Tyr	Arg	Val 310	Val	Ser	Val	Leu	Thr 315	Val	Leu	His	Gln	Asp 320
40	Trp	Leu	Asn	Gly	Lys 325	Glu	Tyr	Lys	Cys	Lys 330	Val	Ser	Asn	Lys	Ala 335	Leu
45	Pro	Ala	Pro	Ile 340	Glu	Lys	Thr	Ile	Ser 345	Lys	Ala	Lys	Gly	Gln 350	Pro	Arg
50	Glu	Pro	Gln 355	Val	Tyr	Thr	Leu	Pro 360	Pro	Ser	Arg	Asp	Glu 365	Leu	Thr	Lys
	Asn	Gln 370	Val	Ser	Leu	Thr	Cys 375	Leu	Val	Lys	Gly	Phe 380	Tyr	Pro	Ser	Asp
55	Ile 385	Ala	Val	Glu	Trp	Glu 390	Ser	Asn	Gly	Gln	Pro 395	Glu	Asn	Asn	Tyr	Lys 400

		Thr	Thr	Pro	Pro	Val 405	Leu	Asp	Ser	Asp	Gly 410	Ser	Phe	Leu	Leu	Tyr 415	Ser
5		Lys	Leu	Thr	Val 420	Asp	Lys	Ser	Arg	Trp 425	Gln	Gln	Gly	Asn	Val 430	Phe	Ser
10		Cys	Ser	Val 435	Met	His	Glu	Ala	Leu 440	His	Asn	His	Tyr	Thr 445	Gln	Lys	Ser
		Leu	Ser 450	Leu	Ser	Pro	Gly	Lys 455									
15	<210> 2 <211> 2 <212> P <213> A	15 PRT	l Sequ	ience													
20	<220> <223> C	:D3B1	55 LC														
25	<400> 2																
		Gln 1	Ala	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
30		Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
35		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
40		Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Ala 80
45		Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
50		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln	Pro
		Lys	Ala	Ala 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
55		Gln	Ala 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Leu	Ile	Ser 140	Asp	Phe	Tyr	Pro

	Gly 1 4 5	Ala	Val	Thr	Val	Ala 150	Trp	Lys	Gly	Asp	Ser 155	Ser	Pro	Val	Lys	Ala 160
5	Gly	Val	Glu	Thr	Thr 165	Thr	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Ala
10	Ala	Ser	Ser	Tyr 180	Leu	Ser	Leu	Thr	Pro 185	Glu	Gln	Trp	Lys	Ser 190	His	Arg
	Ser	Tyr	Ser 195	Cys	Gln	Val	Thr	His 200	Glu	Gly	Ser	Thr	Val 205	Glu	Lys	Thr
15	Val	Ala 210	Pro	Thr	Glu	Cys	Ser 215									
20	<210> 203 <211> 449 <212> PRT <213> Artificia	ıl Seqı	uence													
25	<220> <223> I3RB13	85 HC														
30	<400> 203															
35																
40																
45																
50																
55																

	Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Gly	Tyr
10	Trp	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ser	Ala 50	Ile	Arg	Ser	Asp	Gly 55	Ser	Ser	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val
	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
20	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25	Ala	Lys	Asp	Gly 100	Val	Ile	Glu	Asp	Thr 105	Phe	Asp	Tyr	Trp	Gly 110	Gln	Gly
30	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
	Pro	Leu	Ala	Pro	Ser	Ser	Lys	Ser	Thr	Ser	Gly	Gly	Thr	Ala	Ala	Leu
35																
40																
45																
45																
50																
55																

5	Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
	Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
10	Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
15	Ser	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Ile	Cys	Asn	Val	Asn 205	His	Lys	Pro
20	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Lys	Val	Glu	Pro	Lys 220	Ser	Cys	Asp	Lys
25	Thr 225	His	Thr	Cys	Pro	Pro 230	Cys	Pro	Ala	Pro	Glu 235	Ala	Ala	Gly	Gly	Pro 240
23	Ser	Val	Phe	Leu	Phe 245	Pro	Pro	Lys	Pro	Lys 250	Asp	Thr	Leu	Met	Ile 255	Ser
30	Arg	Thr	Pro	Glu 260	Val	Thr	Cys	Val	Val 265	Val	Asp	Val	Ser	His 270	Glu	Asp
35	Pro	Glu	Val 275	Lys	Phe	Asn	Trp	Tyr 280	Val	Asp	Gly	Val	Glu 285	Val	His	Asn
	Ala	Lys 290	Thr	Lys	Pro	Arg	Glu 295	Glu	Gln	Tyr	Asn	Ser 300	Thr	Tyr	Arg	Val
40	Val 305	Ser	Val	Leu	Thr	Val 310	Leu	His	Gln	Asp	Trp 315	Leu	Asn	Gly	Lys	Glu 320
45	Tyr	Lys	Cys	Lys	Val 325	Ser	Asn	Lys	Ala	Leu 330	Pro	Ala	Pro	Ile	Glu 335	Lys
50	Thr	Ile	Ser	Lys 340	Ala	Lys	Gly	Gln	Pro 345	Arg	Glu	Pro	Gln	Val 350	Tyr	Thr
	Leu	Pro	Pro 355	Ser	Arg	Asp	Glu	Leu 360	Thr	Lys	Asn	Gln	Val 365	Ser	Leu	Thr
55	Cys	Leu 370	Val	Lys	Gly	Phe	Tyr 375	Pro	Ser	Asp	Ile	Ala 380	Val	Glu	Trp	Glu

		Ser 385	Asn	Gly	Gln	Pro	Glu 390	Asn	Asn	Tyr	Lys	Thr 395	Thr	Pro	Pro	Val	Leu
5		Asp	Ser	Asp	Gly	Ser 405	Phe	Phe	Leu	Tyr	Ser 410	Arg	Leu	Thr	Val	Asp 415	Lys
10		Ser	Arg	Trp	Gln 420	Gln	Gly	Asn	Val	Phe 425	Ser	Cys	Ser	Val	Met 430	His	Glu
15		Ala	Leu	His 435	Asn	His	Tyr	Thr	Gln 440	Lys	Ser	Leu	Ser	Leu 445	Ser	Pro	Gly
		Lys															
20	<210> : <211> : <212> : <213> :	214 PRT	l Sequ	uence													
25	<220> <223>	I3RB13	5 LC														
	<400>	204															
30																	
35																	
40																	
45																	
50																	
55																	

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Tyr
10		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
15		Tyr	Asp 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
20		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Arg	Ser	Asn	Trp	Pro 95	Leu
25		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
30		Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
		Thr	Ala	Ser	Val	Val	Cys	Leu	Leu	Asn	Asn	Phe	Tyr	Pro	Arg	Glu	Ala
35			130					135					140				
		Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
40		Glu	Ser	Val	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser
45		Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
50		Ala	Cys	Glu 195	Val	Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser
		Phe	Asn 210	Arg	Gly	Glu	Cys										
55	<210> 2 <211> 4 <212> P <213> A	48 RT	l Sequ	uence													

<220>

	<223> I3	3RB12	5 HC														
5	<400> 2	05															
		Glu 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
10		Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Gly	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Ser	Tyr
15		Trp	Ile	Ser 35	Trp	Val	Arg	Gln	Met 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Met
20		Gly	Ile 50	Ile	Asp	Pro	Ser	Asp 55	Ser	Asp	Thr	Arg	Tyr 60	Ser	Pro	Ser	Phe
		Gln 65	Gly	Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Ser	Thr	Ala	Tyr 80
25		Leu	Gln	Trp	Ser	Ser 85	Leu	Lys	Ala	Ser	Asp 90	Thr	Ala	Met	Tyr	Tyr 95	Cys
30		Ala	Arg	Gly	Asp 100	Gly	Ser	Thr	Asp	Leu 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
35		Leu	Val	Thr 115	Val	Ser	Ser	Ala	Ser 120	Thr	Lys	Gly	Pro	Ser 125	Val	Phe	Pro
40																	
45																	
50																	
50																	
55																	

	Leu	Ala 130	Pro	Ser	Ser	Lys	Ser 135	Thr	Ser	Gly	Gly	Thr 140	Ala	Ala	Leu	Gly
5	Cys 145	Leu	Val	Lys	Asp	Tyr 150	Phe	Pro	Glu	Pro	Val 155	Thr	Val	Ser	Trp	Asn 160
10	Ser	Gly	Ala	Leu	Thr 165	Ser	Gly	Val	His	Thr 170	Phe	Pro	Ala	Val	Leu 175	Gln
45	Ser	Ser	Gly	Leu 180	Tyr	Ser	Leu	Ser	Ser 185	Val	Val	Thr	Val	Pro 190	Ser	Ser
15	Ser	Leu	Gly 195	Thr	Gln	Thr	Tyr	Ile 200	Cys	Asn	Val	Asn	His 205	Lys	Pro	Ser
20	Asn	Thr 210	Lys	Val	Asp	Lys	Lys 215	Val	Glu	Pro	Lys	Ser 220	Cys	Asp	Lys	Thr
25	His 225	Thr	Cys	Pro	Pro	Cys 230	Pro	Ala	Pro	Glu	Ala 235	Ala	Gly	Gly	Pro	Ser 240
	Val	Phe	Leu	Phe	Pro 245	Pro	Lys	Pro	Lys	Asp 250	Thr	Leu	Met	Ile	Ser 255	Arg
30	Thr	Pro	Glu	Val 260	Thr	Cys	Val	Val	Val 265	Asp	Val	Ser	His	Glu 270	Asp	Pro
35	Glu	Val	Lys 275	Phe	Asn	Trp	Tyr	Val 280	Asp	Gly	Val	Glu	Val 285	His	Asn	Ala
40	Lys	Thr 290	Lys	Pro	Arg	Glu	Glu 295	Gln	Tyr	Asn	Ser	Thr 300	Tyr	Arg	Val	Val
	Ser 305	Val	Leu	Thr	Val	Leu 310	His	Gln	Asp	Trp	Leu 315	Asn	Gly	Lys	Glu	Tyr 320
45	Lys	Cys	Lys	Val	Ser 325	Asn	Lys	Ala	Leu	Pro 330	Ala	Pro	Ile	Glu	Lys 335	Thr
50	Ile	Ser	Lys	Ala 340	Lys	Gly	Gln	Pro	Arg 345	Glu	Pro	Gln	Val	Tyr 350	Thr	Leu
55	Pro	Pro	Ser 355	Arg	Asp	Glu	Leu	Thr 360	Lys	Asn	Gln	Val	Ser 365	Leu	Thr	Cys
	Leu	Val	Lys	Gly	Phe	Tyr	Pro	Ser	Asp	Ile	Ala	Val	Glu	Trp	Glu	Ser

			370					375					380				
5		Asn 385	Gly	Gln	Pro	Glu	Asn 390	Asn	Tyr	Lys	Thr	Thr 395	Pro	Pro	Val	Leu	Asp 400
10		Ser	Asp	Gly	Ser	Phe 405	Phe	Leu	Tyr	Ser	Arg 410	Leu	Thr	Val	Asp	Lys 415	Ser
		Arg	Trp	Gln	Gln 420	Gly	Asn	Val	Phe	Ser 425	Cys	Ser	Val	Met	His 430	Glu	Ala
15		Leu	His	Asn 435	His	Tyr	Thr	Gln	Lys 440	Ser	Leu	Ser	Leu	Ser 445	Pro	Gly	Lys
20	<210> 20 <211> 21 <212> Pl <213> Al	15 RT	l Sequ	ience													
25	<220> <223> I3	RB12	5 LC														
	<400> 20	06															
30																	
35																	
40																	
45																	
50																	
55																	

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Ser
10		Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu
45		Ile	Tyr 50	Gly	Ala	Ser	Ser	Arg 55	Ala	Thr	Gly	Ile	Pro 60	Asp	Arg	Phe	Ser
15		Gly 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Arg	Leu	Glu 80
20		Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	Gln 90	Gln	Asp	Tyr	Gly	Phe 95	Pro
25		Trp	Thr	Phe	Gly 100	Gln	Gly	Thr	Lys	Val 105	Glu	Ile	Lys	Arg	Thr 110	Val	Ala
30		Ala	Pro	Ser 115	Val	Phe	Ile	Phe	Pro 120	Pro	Ser	Asp	Glu	Gln 125	Leu	Lys	Ser
30		Gly	Thr 130	Ala	Ser	Val	Val	Cys 135	Leu	Leu	Asn	Asn	Phe 140	Tyr	Pro	Arg	Glu
35		Ala 145	Lys	Val	Gln	Trp	Lys 150	Val	Asp	Asn	Ala	Leu 155	Gln	Ser	Gly	Asn	Ser 160
40		Gln	Glu	Ser	Val	Thr 165	Glu	Gln	Asp		Lys 170		Ser	Thr	Tyr	Ser 175	Leu
		Ser	Ser	Thr	Leu 180	Thr	Leu	Ser	Lys	Ala 185	Asp	Tyr	Glu	Lys	His 190	Lys	Val
45		Tyr	Ala	Cys 195	Glu	Val	Thr	His	Gln 200	Gly	Leu	Ser	Ser	Pro 205	Val	Thr	Lys
50		Ser	Phe 210	Asn	Arg	Gly	Glu	Cys 215									
55	<210> 2 <211> 4 <212> F <213> A	50 PRT	l Seau	ience													
	<220> <223> E																

<400> 207

5	Gln 1	Ile	Thr	Leu	Lys 5	Glu	Ser	Gly	Pro	Thr 10	Leu	Val	Lys	Pro	Thr 15	Gln
	Thr	Leu	Thr	Leu 20	Thr	Cys	Thr	Phe	Ser 25	Gly	Phe	Ser	Leu	Ser 30	Thr	Ser
10	Gly	Met	Gly 35	Val	Ser	Trp	Ile	Arg 40	Gln	Pro	Pro	Gly	Lys 45	Ala	Leu	Glu
15	Trp	Leu 50	Ala	His	Ile	Tyr	Trp 55	Asp	Asp	Asp	Lys	Arg 60	Tyr	Asn	Pro	Ser
20	Leu 65	Lys	Ser	Arg	Leu	Thr 70	Ile	Thr	Lys	Asp	Thr 75	Ser	Lys	Asn	Gln	Val 80
	Val	Leu	Thr	Met	Thr 85	Asn	Met	Asp	Pro	Val 90	Asp	Thr	Ala	Thr	Tyr 95	Tyr
25	Cys	Ala	Arg	Leu 100	Tyr	Gly	Phe	Thr	Tyr 105	Gly	Phe	Ala	Tyr	Trp 110	Gly	Gln
30	Gly	Thr	Leu 115	Val	Thr	Val	Ser	Ser 120	Ala	Ser	Thr	Lys	Gly 125	Pro	Ser	Val
35																
40																
45																
50																
55																

	Phe	Pro 130	Leu	Ala	Pro	Ser	Ser 135	Lys	Ser	Thr	Ser	Gly 140	Gly	Thr	Ala	Ala
5	Leu 145	Gly	Cys	Leu	Val	Lys 150	Asp	Tyr	Phe	Pro	Glu 155	Pro	Val	Thr	Val	Ser 160
10	Trp	Asn	Ser	Gly	Ala 165	Leu	Thr	Ser	Gly	Val 170	His	Thr	Phe	Pro	Ala 175	Val
	Leu	Gln	Ser	Ser 180	Gly	Leu	Tyr	Ser	Leu 185	Ser	Ser	Val	Val	Thr 190	Val	Pro
15	Ser	Ser	Ser 195	Leu	Gly	Thr	Gln	Thr 200	Tyr	Ile	Cys	Asn	Val 205	Asn	His	Lys
20	Pro	Ser 210	Asn	Thr	Lys	Val	Asp 215	Lys	Lys	Val	Glu	Pro 220	Lys	Ser	Cys	Asp
25	Lys 225	Thr	His	Thr	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Ala	Ala	Gly	Gly 240
	Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
30	Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	His	Glu
35	Asp	Pro	Glu 275	Val	Lys	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
40	Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300	Ser	Thr	Tyr	Arg
40	Val 305	Val	Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
45	Glu	Tyr	Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Ala 330	Leu	Pro	Ala	Pro	Ile 335	Glu
50	Lys	Thr	Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
	Thr	Leu	Pro 355	Pro	Ser	Arg	Asp	Glu 360	Leu	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
55	Thr	Cys 370	Leu	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp

	Glu 385	Ser	Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
5	Leu	Asp	Ser	Asp	Gly 405	Ser	Phe	Leu	Leu	Tyr 410	Ser	Lys	Leu	Thr	Val 415	Asp
10	Lys	Ser	Arg	Trp 420	Gln	Gln	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
15	Glu	Ala	Leu 435	His	Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Pro
15	Gly	Lys 450														
20	<210> 208 <211> 218 <212> PRT <213> Artificia	l Sequ	ience													
25	<220> <223> B2M L0	0														
	<400> 208															
30	Asp 1	Ile	Val	Met	Thr 5	Gln	Ser	Pro	Asp	Ser 10	Leu	Ala	Val	Ser	Leu 15	Gly
35	Glu	Arg	Ala	Thr 20	Ile	Asn	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Asp 30	Tyr	Asn
	Gly	Ile	Ser 35	Tyr	Met	His	Trp	Tyr 40	Gln	Gln	Lys	Pro	Gly 45	Gln	Pro	Pro
40	Lys	Leu 50	Leu	Ile	Tyr	Ala	Ala 55	Ser	Asn	Pro	Glu	Ser 60	Gly	Val	Pro	Asp
45	Arg 65	Phe	Ser	Gly	Ser	Gly 70	Ser	Gly	Thr	Asp	Phe 75	Thr	Leu	Thr	Ile	Ser 80
50	Ser	Leu	Gln	Ala	Glu 85	Asp	Val	Ala	Val	Tyr 90	Tyr	Cys	Gln	Gln	Ile 95	Ile
	Glu	Asp	Pro	Trp 100	Thr	Phe	Gly	Gln	Gly 105	Thr	Lys	Val	Glu	Ile 110	Lys	Arg
55	Thr	Val	Ala 115	Ala	Pro	Ser	Val	Phe 120	Ile	Phe	Pro	Pro	Ser 125	Asp	Glu	Gln

		Leu	Lys 130	Ser	GLY	Thr	Ala	Ser 135	Val	Val	Cys	Leu	Leu 140	Asn	Asn	Phe	Tyr
5		Pro 145	Arg	Glu	Ala	Lys	Val 150	Gln	Trp	Lys	Val	Asp 155	Asn	Ala	Leu	Gln	Ser 160
10		Gly	Asn	Ser	Gln	Glu 165	Ser	Val	Thr	Glu	Gln 170	Asp	Ser	Lys	Asp	Ser 175	Thr
15		Tyr	Ser	Leu	Ser 180	Ser	Thr	Leu	Thr	Leu 185	Ser	Lys	Ala	Asp	Tyr 190	Glu	Lys
		His	Lys	Val 195	Tyr	Ala	Cys	Glu	Val 200	Thr	His	Gln	Gly	Leu 205	Ser	Leu	Pro
20		Val	Thr 210	Lys	Ser	Phe	Asn	Arg 215	Gly	Glu	Cys						
25	<210> 20 <211> 20 <212> P <213> A	23 RT	l Sequ	ence													
30	<220> <223> F <400> 20		cker (F	C fraç	gment	of a m	ıAb)										
							D										
35		Thr 1	Cys	Pro	Pro	Cys 5	Pro	Ala	Pro	Glu	Leu 10	Leu	Gly	Gly	Pro	Ser 15	Val
		1				5					10						
35 40		1 Phe	Leu	Phe	Pro 20	5 Pro	Lys	Pro	Lys	Asp 25	10 Thr	Leu	Met	Ile	Ser 30	15	Thr
		1 Phe Pro	Leu Glu	Phe Val 35	Pro 20 Thr	5 Pro Cys	Lys Val	Pro Val	Lys Val 40	Asp 25 Asp	10 Thr Val	Leu Ser	Met His	Ile Glu 45	Ser 30 Asp	15 Arg	Thr Glu
40		1 Phe Pro Val	Leu Glu Lys 50	Phe Val 35	Pro 20 Thr	5 Pro Cys Trp	Lys Val Tyr	Pro Val Val 55	Lys Val 40	Asp 25 Asp Gly	10 Thr Val	Leu Ser Glu	Met His Val 60	Ile Glu 45 His	Ser 30 Asp	15 Arg Pro	Thr Glu Lys
40 45		Phe Pro Val Thr	Leu Glu Lys 50	Phe Val 35 Phe	Pro 20 Thr Asn	5 Pro Cys Trp Glu	Lys Val Tyr Glu 70	Pro Val Val 55	Lys Val 40 Asp	Asp Asp Gly	10 Thr Val Val	Leu Ser Glu Thr 75	Met His Val 60	Ile Glu 45 His	Ser 30 Asp Asn	Arg Pro	Thr Glu Lys Ser 80

		Ser	Lys	Ala 115	Lys	Gly	Gln	Pro	Arg 120	Glu	Pro	Gln	Val	Tyr 125	Thr	Leu	Pro
5		Pro	Ser 130	Arg	Asp	Glu	Leu	Thr 135	Lys	Asn	Gln	Val	Ser 140	Leu	Thr	Cys	Leu
10		Val 145	Lys	Gly	Phe	Tyr	Pro 150	Ser	Asp	Ile	Ala	Val 155	Glu	Trp	Glu	Ser	Asn 160
15		Gly	Gln	Pro	Glu	Asn 165	Asn	Tyr	Lys	Thr	Thr 170	Pro	Pro	Val	Leu	Asp 175	Ser
		Asp	Gly	Ser	Phe 180	Phe	Leu	Tyr	Ser	Lys 185	Leu	Thr	Val	Asp	Lys 190	Ser	Arg
20		Trp	Gln	Gln 195	Gly	Asn	Val	Phe	Ser 200	Cys	Ser	Val	Met	His 205	Glu	Ala	Leu
25		His	Asn 210	His	Tyr	Thr	Gln	Lys 215	Ser	Leu	Ser	Leu	Ser 220	Pro	Gly	Lys	
30	<210> 2 <211> 4 <212> F <213> A	.52 PRT	l Sequ	uence													
	<220> <223> 0	D3B2	19 HC	;													
35	<400> 2	10															
40																	
45																	
50																	
55																	

	Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
5	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
10	Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Ala
	Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Ser 80
20	Leu	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Lys	Thr 90	Glu	Asp	Thr	Ala	Val 95	Tyr
25	Tyr	Cys	Ala	Arg	His	Gly	Asn	Phe	Gly	Asn	Ser	Tyr	Val	Ser	Trp	Phe
30																
35																
40																
45																
50																
55																

									-05							
5	Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Ser	Thr
10	Lys	Gly 130	Pro	Ser	Val	Phe	Pro 135	Leu	Ala	Pro	Cys	Ser 140	Arg	Ser	Thr	Ser
	Glu 145	Ser	Thr	Ala	Ala	Leu 150	Gly	Cys	Leu	Val	Lys 155	Asp	Tyr	Phe	Pro	Glu 160
15	Pro	Val	Thr	Val	Ser 165	Trp	Asn	Ser	Gly	Ala 170	Leu	Thr	Ser	Gly	Val 175	His
20	Thr	Phe	Pro	Ala 180	Val	Leu	Gln	Ser	Ser 185	Gly	Leu	Tyr	Ser	Leu 190	Ser	Ser
	Val	Val	Thr 195	Val	Pro	Ser	Ser	Ser 200	Leu	Gly	Thr	Lys	Thr 205	Tyr	Thr	Cys
25	Asn	Val 210	Asp	His	Lys	Pro	Ser 215	Asn	Thr	Lys	Val	Asp 220	Lys	Arg	Val	Glu
30	Ser 225	Lys	Tyr	Gly	Pro	Pro 230	Cys	Pro	Pro	Cys	Pro 235	Ala	Pro	Glu	Ala	Ala 240
35	Gly	Gly	Pro	Ser	Val 245	Phe	Leu	Phe	Pro	Pro 250	Lys	Pro	Lys	Asp	Thr 255	Leu
	Met	Ile	Ser	Arg 260	Thr	Pro	Glu	Val	Thr 265	Cys	Val	Val	Val	Asp 270	Val	Ser
40	Gln	Glu	Asp 275	Pro	Glu	Val	Gln	Phe 280	Asn	Trp	Tyr	Val	Asp 285	Gly	Val	Glu
45	Val	His 290	Asn	Ala	Lys	Thr	Lys 295	Pro	Arg	Glu	Glu	Gln 300	Phe	Asn	Ser	Thr
50	Tyr 305	Arg	Val	Val	Ser	Val 310	Leu	Thr	Val	Leu	His 315	Gln	Asp	Trp	Leu	Asn 320
	Gly	Lys	Glu	Tyr	Lys 325	Cys	Lys	Val	Ser	Asn 330	Lys	Gly	Leu	Pro	Ser 335	Ser
55	Ile	Glu	Lys	Thr 340	Ile	Ser	Lys	Ala	Lys 345	Gly	Gln	Pro	Arg	Glu 350	Pro	Gln

Pro Val Leu Asp Ser Asp Gly Ser Phe Leu Leu Tyr Ser Lys Leu Tr 415 Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Va 420 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Gly Lys 450 Ser Leu Gly Lys 450 <pre></pre>			Val	Tyr	Thr 355	Leu	Pro	Pro	Ser	Gln 360	Glu	Glu	Met	Thr	Lys 365	Asn	Gln	Val
Pro Val Leu Asp Ser Asp Gly Ser Phe Leu Leu Tyr Ser Lys Leu Tyr Val Leu Asp Lys Ser Asp Gly Ser Phe Leu Leu Tyr Ser Lys Leu Tyr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val A20 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Gly Lys 450 Ser Leu Gly Lys 450 <pre></pre>	5		Ser		Thr	Cys	Leu	Val	_	Gly	Phe	Tyr	Pro		Asp	Ile	Ala	Val
15 Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Variation 435 Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Gly Lys 450 Ser Leu Gly Lys 450 <210> 211 <212> PRT 30 <213> Artificial Sequence <220> <223> CD3B219 LC 35 <400> 211	10			Trp	Glu	Ser	Asn		Gln	Pro	Glu	Asn		Tyr	Lys	Thr	Thr	Pro 400
Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Le 435 Ser Leu Gly Lys	15		Pro	Val	Leu	Asp		Asp	Gly	Ser	Phe		Leu	Tyr	Ser	Lys		Thr
Ser Leu Gly Lys 25			Val	Asp	Lys		Arg	Trp	Gln	Glu		Asn	Val	Phe	Ser		Ser	Val
25 450	20		Met	His		Ala	Leu	His	Asn		Tyr	Thr	Gln	Lys		Leu	Ser	Leu
<211> 215 <212> PRT <220> <223> CD3B219 LC <400> 211 40 45 50	25		Ser		Gly	Lys												
<220> <223> CD3B219 LC 35 <400> 211 40 45 50	30	<211> 2 <212> F	215 PRT	ıl Seau	uence													
 40 45 50 		<220>																
45 50	35	<400> 2	211															
50	40																	
	45																	
55	50																	
77	55																	

		Gln 1	Thr	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
5		Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
10		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
15		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
		Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Val 80
20		Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
25		Leu	Trp	Val		Gly	Gly	Gly	Thr	Lys	Leu	Thr	Val	Leu	Gly	Gln	Pro
					100					105					110		
30		Lys	Ala	Ala 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
35		Gln	Ala 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Leu	Ile	Ser 140	Asp	Phe	Tyr	Pro
		Gly 145	Ala	Val	Thr	Val	Ala 150	Trp	Lys	Ala	Asp	Ser 155	Ser	Pro	Val	Lys	Ala 160
40		Gly	Val	Glu	Thr	Thr 165	Thr	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Ala
45		Ala	Ser	Ser	Tyr 180	Leu	Ser	Leu	Thr	Pro 185	Glu	Gln	Trp	Lys	Ser 190	His	Arg
50		Ser	Tyr	Ser 195	Cys	Gln	Val	Thr	His 200	Glu	Gly	Ser	Thr	Val 205	Glu	Lys	Thr
		Val	Ala 210	Pro	Thr	Glu	Cys	Ser 215									
55	<210> 21 <211> 45 <212> PI <213> Ai	52 RT	l Sequ	ience													

<220>

	<223> C	D3B2	17 HC	;													
5	<400> 2	12															
		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
10		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
15		Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
20		Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Asp
		Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asn	Ser	Lys	Asn	Thr 80
25		Leu	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Arg	Ala 90	Glu	Asp	Thr	Ala	Val 95	Tyr
30																	
35																	
40																	
45																	
50																	
55																	

	Tyr	Cys	Val	Lys 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
5	Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Ser	Thr
10	Lys	Gly 130	Pro	Ser	Val	Phe	Pro 135	Leu	Ala	Pro	Cys	Ser 140	Arg	Ser	Thr	Ser
	Glu 145	Ser	Thr	Ala	Ala	Leu 150	Gly	Cys	Leu	Val	Lys 155	Asp	Tyr	Phe	Pro	Glu 160
15	Pro	Val	Thr	Val	Ser 165	Trp	Asn	Ser	Gly	Ala 170	Leu	Thr	Ser	Gly	Val 175	His
20	Thr	Phe	Pro	Ala 180	Val	Leu	Gln	Ser	Ser 185	Gly	Leu	Tyr	Ser	Leu 190	Ser	Ser
25	Val	Val	Thr 195	Val	Pro	Ser	Ser	Ser 200	Leu	Gly	Thr	Lys	Thr 205	Tyr	Thr	Cys
	Asn	Val 210	Asp	His	Lys	Pro	Ser 215	Asn	Thr	Lys	Val	Asp 220	Lys	Arg	Val	Glu
30	Ser 225	Lys	Tyr	Gly	Pro	Pro 230	Cys	Pro	Pro	Cys	Pro 235	Ala	Pro	Glu	Ala	Ala 240
35	Gly	Gly	Pro	Ser	Val 245	Phe	Leu	Phe	Pro	Pro 250	Lys	Pro	Lys	Asp	Thr 255	Leu
40	Met	Ile	Ser	Arg 260	Thr	Pro	Glu	Val	Thr 265	Cys	Val	Val	Val	Asp 270	Val	Ser
	Gln	Glu	Asp 275	Pro	Glu	Val	Gln	Phe 280	Asn	Trp	Tyr	Val	Asp 285	Gly	Val	Glu
45	Val	His 290	Asn	Ala	Lys	Thr	Lys 295	Pro	Arg	Glu	Glu	Gln 300	Phe	Asn	Ser	Thr
50	Tyr 305	Arg	Val	Val	Ser	Val 310	Leu	Thr	Val	Leu	His 315	Gln	Asp	Trp	Leu	Asn 320
55	Gly	Lys	Glu	Tyr	Lys 325	Cys	Lys	Val	Ser	Asn 330	Lys	Gly	Leu	Pro	Ser 335	Ser
55	Ile	Glu	Lys	Thr	Ile	Ser	Lys	Ala	Lys	Gly	Gln	Pro	Arg	Glu	Pro	Gln

				340					345					350		
5	Val	Tyr	Thr 355	Leu	Pro	Pro	Ser	Gln 360	Glu	Glu	Met	Thr	Lys 365	Asn	Gln	Val
10	Ser	Leu 370	Thr	Cys	Leu	Val	Lys 375	Gly	Phe	Tyr	Pro	Ser 380	Asp	Ile	Ala	Val
	Glu 385	Trp	Glu	Ser	Asn	Gly 390	Gln	Pro	Glu	Asn	Asn 395	Tyr	Lys	Thr	Thr	Pro 400
15	Pro	Val	Leu	Asp	Ser 405	Asp	Gly	Ser	Phe	Leu 410	Leu	Tyr	Ser	Lys	Leu 415	Thr
20	Val	Asp	Lys	Ser 420	Arg	Trp	Gln	Glu	Gly 425	Asn	Val	Phe	Ser	Cys 430	Ser	Val
25	Met	His	Glu 435	Ala	Leu	His	Asn	His 440	Tyr	Thr	Gln	Lys	Ser 445	Leu	Ser	Leu
	Ser	Leu 450	Gly	Lys												
30	<210> 213 <211> 215 <212> PRT <213> Artificia	ıl Seqı	uence													
35	<220> <223> CD3B2	:17 LC														
	<400> 213															
40																
45																
50																

		Gln 1	Ala	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
5		Thr	Val	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
10		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
15		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
15		Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Ala 80
20		Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
25		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln	Pro
		Lys	Ala	Ala 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
30		Gln	Ala 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Leu	Ile	Ser 140	Asp	Phe	Tyr	Pro
35		Gly 145	Ala	Val	Thr	Val	Ala 150	Trp	Lys	Ala	Asp	Ser 155	Ser	Pro	Val	Lys	Ala 160
40		Gly	Val	Glu	Thr	Thr 165	Thr	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Ala
		Ala	Ser	Ser	Tyr 180	Leu	Ser	Leu	Thr	Pro 185	Glu	Gln	Trp	Lys	Ser 190	His	Arg
45		Ser	Tyr	Ser 195	Cys	Gln	Val	Thr	His 200	Glu	Gly	Ser	Thr	Val 205	Glu	Lys	Thr
50		Val	Ala 210	Pro	Thr	Glu	Cys	Ser 215									
55	<210> <211> <212> <213>	452 PRT	l Sequ	uence													
	<220>																

<223> CD3B218 HC

<400> 214

5	Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
10	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
15	Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
	Ala	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Asn	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Asp
20	Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asn	Ser	Lys	Asn	Thr 80
25																
30																
35																
40																
45																
50																
55																

	Leu	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Arg	Ala 90	Glu	Asp	Thr	Ala	Val 95	Tyr
5	Tyr	Cys	Val	Lys 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
10	Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Ser	Thr
	Lys	Gly 130	Pro	Ser	Val	Phe	Pro 135	Leu	Ala	Pro	Cys	Ser 140	Arg	Ser	Thr	Ser
15	Glu 145	Ser	Thr	Ala	Ala	Leu 150	Gly	Cys	Leu	Val	Lys 155	Asp	Tyr	Phe	Pro	Glu 160
20	Pro	Val	Thr	Val	Ser 165	Trp	Asn	Ser	Gly	Ala 170	Leu	Thr	Ser	Gly	Val 175	His
25	Thr	Phe	Pro	Ala 180	Val	Leu	Gln	Ser	Ser 185	Gly	Leu	Tyr	Ser	Leu 190	Ser	Ser
	Val	Val	Thr 195	Val	Pro	Ser	Ser	Ser 200	Leu	Gly	Thr	Lys	Thr 205	Tyr	Thr	Cys
30	Asn	Val 210	Asp	His	Lys	Pro	Ser 215	Asn	Thr	Lys	Val	Asp 220	Lys	Arg	Val	Glu
35	Ser 225	Lys	Tyr	Gly	Pro	Pro 230	Cys	Pro	Pro	Cys	Pro 235	Ala	Pro	Glu	Ala	Ala 240
40	Gly	Gly	Pro	Ser	Val 245	Phe	Leu	Phe	Pro	Pro 250	Lys	Pro	Lys	Asp	Thr 255	Leu
	Met	Ile	Ser	Arg 260	Thr	Pro	Glu	Val	Thr 265	Cys	Val	Val	Val	Asp 270	Val	Ser
45	Gln	Glu	Asp 275	Pro	Glu	Val	Gln	Phe 280	Asn	Trp	Tyr	Val	Asp 285	Gly	Val	Glu
50	Val	His 290	Asn	Ala	Lys	Thr	Lys 295	Pro	Arg	Glu	Glu	Gln 300	Phe	Asn	Ser	Thr
	Tyr 305	Arg	Val	Val	Ser	Val 310	Leu	Thr	Val	Leu	His 315	Gln	Asp	Trp	Leu	Asn 320
55	Gly	Lys	Glu	Tyr	Lys 325	Cys	Lys	Val	Ser	Asn 330	Lys	Gly	Leu	Pro	Ser 335	Ser

		Ile	Glu	Lys	Thr 340	Ile	Ser	Lys	Ala	Lys 345	Gly	Gln	Pro	Arg	G1u 350	Pro	Gln
5		Val	Tyr	Thr 355	Leu	Pro	Pro	Ser	Gln 360	Glu	Glu	Met	Thr	Lys 365	Asn	Gln	Val
10		Ser	Leu 370	Thr	Cys	Leu	Val	Lys 375	Gly	Phe	Tyr	Pro	Ser 380	Asp	Ile	Ala	Val
15		Glu 385	Trp	Glu	Ser	Asn	Gly 390	Gln	Pro	Glu	Asn	Asn 395	Tyr	Lys	Thr	Thr	Pro 400
		Pro	Val	Leu	Asp	Ser 405	Asp	Gly	Ser	Phe	Leu 410	Leu	Tyr	Ser	Lys	Leu 415	Thr
20		Val	Asp	Lys	Ser 420	Arg	Trp	Gln	Glu	Gly 425	Asn	Val	Phe	Ser	Cys 430	Ser	Val
25		Met	His	Glu 435	Ala	Leu	His	Asn	His 440	Tyr	Thr	Gln	Lys	Ser 445	Leu	Ser	Leu
30		Ser	Leu 450	Gly	Lys												
0.5	<210> 2 <211> 2 <212> F <213> A	:15 PRT	l Sequ	ience													
35	<220> <223> 0	D3B2	18 LC														
40	<400> 2		Thr	Val	Val	Thr	Gln	Glu	Pro	Ser	Leu	Thr	Val	Ser	Pro	Gly	Gly
45		1	Val	ሞኮሎ	Tou	5 Thr	Cres	λνα	202	Sor	10 Thr	Cl.	λla	Va 1	ሞኮሎ	15 Thr	Sor
40		1111	vai	1111	Leu 20	1111	cys	ALG	ser	25	1111	GIY	ALG	Val	30	1111	ser
50		Asn	Tyr	Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
		Leu	Ile 50	Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe
55		Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Val 80

		Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
5		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln	Pro
10		Lys	Ala	Ala 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
15		Gln	Ala 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Leu	Ile	Ser 140	Asp	Phe	Tyr	Pro
10		Gly 145	Ala	Val	Thr	Val	Ala 150	Trp	Lys	Ala	Asp	Ser 155	Ser	Pro	Val	Lys	Ala 160
20		Gly	Val	Glu	Thr	Thr 165	Thr	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Ala
25		Ala	Ser	Ser	Tyr 180	Leu	Ser	Leu	Thr	Pro 185	Glu	Gln	Trp	Lys	Ser 190	His	Arg
		Ser	Tyr	Ser 195	Cys	Gln	Val	Thr	His 200	Glu	Gly	Ser	Thr	Val 205	Glu	Lys	Thr
30		Val	Ala 210	Pro	Thr	Glu	Cys	Ser 215									
35	<210> 2 <211> 4 <212> F <213> A	I52 PRT	l Sequ	ience													
40	<220> <223> (D3B2	20 HC	:													
	<400> 2	216															
45		Glu 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
50		Ser	Leu	Lys	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Asn 30	Thr	Tyr
		Ala	Met	Asn 35	Trp	Val	Arg	Gln	Ala 40	Ser	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
55		Gly	Arg 50	Ile	Arg	Ser	Lys	Tyr 55	Asn	Ala	Tyr	Ala	Thr 60	Tyr	Tyr	Ala	Ala

	Ser 65	Val	Lys	Gly	Arg	Phe 70	Thr	Ile	Ser	Arg	Asp 75	Asp	Ser	Lys	Asn	Thr 80
5	Ala	Tyr	Leu	Gln	Met 85	Asn	Ser	Leu	Lys	Thr 90	Glu	Asp	Thr	Ala	Val 95	Tyr
10	Tyr	Cys	Thr	Arg 100	His	Gly	Asn	Phe	Gly 105	Asn	Ser	Tyr	Val	Ser 110	Trp	Phe
	Ala	Tyr	Trp 115	Gly	Gln	Gly	Thr	Leu 120	Val	Thr	Val	Ser	Ser 125	Ala	Ser	Thr
15	Lys	Gly 130	Pro	Ser	Val	Phe	Pro 135	Leu	Ala	Pro	Cys	Ser 140	Arg	Ser	Thr	Ser
20	Glu 145	Ser	Thr	Ala	Ala	Leu 150	Gly	Cys	Leu	Val	Lys 155	Asp	Tyr	Phe	Pro	Glu 160
25	Pro	Val	Thr	Val	Ser 165	Trp	Asn	Ser	Gly	Ala 170	Leu	Thr	Ser	Gly	Val 175	His
	Thr	Phe	Pro	Ala 180	Val	Leu	Gln	Ser	Ser 185	Gly	Leu	Tyr	Ser	Leu 190	Ser	Ser
30	Val	Val	Thr 195	Val	Pro	Ser	Ser	Ser 200	Leu	Gly	Thr	Lys	Thr 205	Tyr	Thr	Cys
35	Asn	Val 210	Asp	His	Lys	Pro	Ser 215	Asn	Thr	Lys	Val	Asp 220	Lys	Arg	Val	Glu
40	Ser 225	Lys	Tyr	Gly	Pro	Pro 230	Cys	Pro	Pro	Cys	Pro 235	Ala	Pro	Glu	Ala	Ala 240
	Gly	Gly	Pro	Ser	Val 245	Phe	Leu	Phe	Pro	Pro 250	Lys	Pro	Lys	Asp	Thr 255	Leu
45	Met	Ile	Ser	Arg 260	Thr	Pro	Glu	Val	Thr 265	Cys	Val	Val	Val	Asp 270	Val	Ser
50	Gln	Glu	Asp 275	Pro	Glu	Val	Gln	Phe 280	Asn	Trp	Tyr	Val	Asp 285	Gly	Val	Glu
	Val	His 290	Asn	Ala	Lys	Thr	Lys 295	Pro	Arg	Glu	Glu	Gln 300	Phe	Asn	Ser	Thr
55	Tyr 305	Arg	Val	Val	Ser	Val 310	Leu	Thr	Val	Leu	His 315	Gln	Asp	Trp	Leu	As n 320

	G:	Ly L	ys '	Glu	Tyr	Lys 325	Cys	Lys	Val	Ser	Asn 330	Lys	Gly	Leu	Pro	Ser 335	Ser
5	I	Le G	lu :	Lys	Thr 340	Ile	Ser	Lys	Ala	Lys 345	Gly	Gln	Pro	Arg	Glu 350	Pro	Gln
10	Vá	al T		Thr 355	Leu	Pro	Pro	Ser	Gln 360	Glu	Glu	Met	Thr	Lys 365	Asn	Gln	Val
15	Se		eu 70	Thr	Cys	Leu	Val	Lys 375	Gly	Phe	Tyr	Pro	Ser 380	Asp	Ile	Ala	Val
15		Lu T: 35	rp (Glu	Ser	Asn	Gly 390	Gln	Pro	Glu	Asn	As n 395	Tyr	Lys	Thr	Thr	Pro 400
20	Pı	ro V	al :	Leu	Asp	Ser 405	Asp	Gly	Ser	Phe	Leu 410	Leu	Tyr	Ser	Lys	Leu 415	Thr
25	Va	al A	sp :	Lys	Ser 420	Arg	Trp	Gln	Glu	Gly 425	Asn	Val	Phe	Ser	Cys 430	Ser	Val
	Ме	et H		Glu 435	Ala	Leu	His	Asn	His 440	Tyr	Thr	Gln	Lys	Ser 445	Leu	Ser	Leu
30	Se	er Lo	eu 50	Gly	Lys												
35	<210> 217 <211> 215 <212> PRT <213> Artifi		eque	ence													
40	<220> <223> CD3	B220	LC														
	<400> 217																
45	G] 1	ln A	la '	Val	Val	Thr 5	Gln	Glu	Pro	Ser	Leu 10	Thr	Val	Ser	Pro	Gly 15	Gly
50	TÌ	nr V	al '	Thr	Leu 20	Thr	Cys	Arg	Ser	Ser 25	Thr	Gly	Ala	Val	Thr 30	Thr	Ser
	As	sn T		Ala 35	Asn	Trp	Val	Gln	Gln 40	Lys	Pro	Gly	Gln	Ala 45	Pro	Arg	Gly
55	Le	eu I. 5		Gly	Gly	Thr	Asn	Lys 55	Arg	Ala	Pro	Gly	Thr 60	Pro	Ala	Arg	Phe

		Ser 65	Gly	Ser	Leu	Leu	Gly 70	Gly	Lys	Ala	Ala	Leu 75	Thr	Leu	Ser	Gly	Ala 80
5		Gln	Pro	Glu	Asp	Glu 85	Ala	Glu	Tyr	Tyr	Cys 90	Ala	Leu	Trp	Tyr	Ser 95	Asn
10		Leu	Trp	Val	Phe 100	Gly	Gly	Gly	Thr	Lys 105	Leu	Thr	Val	Leu	Gly 110	Gln	Pro
15		Lys	Ala	Ala 115	Pro	Ser	Val	Thr	Leu 120	Phe	Pro	Pro	Ser	Ser 125	Glu	Glu	Leu
		Gln	Ala 130	Asn	Lys	Ala	Thr	Leu 135	Val	Cys	Leu	Ile	Ser 140	Asp	Phe	Tyr	Pro
20		Gly 145	Ala	Val	Thr	Val	Ala 150	Trp	Lys	Ala	Asp	Ser 155	Ser	Pro	Val	Lys	Ala 160
25		Gly	Val	Glu	Thr	Thr 165	Thr	Pro	Ser	Lys	Gln 170	Ser	Asn	Asn	Lys	Tyr 175	Ala
30		Ala	Ser	Ser	Tyr 180	Leu	Ser	Leu	Thr	Pro 185	Glu	Gln	Trp	Lys	Ser 190	His	Arg
••		Ser	Tyr	Ser 195	Cys	Gln	Val	Thr	His 200	Glu	Gly	Ser	Thr	Val 205	Glu	Lys	Thr
35		Val	Ala 210	Pro	Thr	Glu	Cys	Ser 215									
40	<210> 2 <211> 4 <212> P <213> A	45 RT	l Sequ	uence													
45	<220> <223> 13 <400> 2		7 HC														
50																	

	Glu 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Glu
5	Ser	Leu	Lys	Ile 20	Ser	Cys	Lys	Gly	Ser 25	Gly	Tyr	Ser	Phe	Thr 30	Ser	Tyr
10	Trp	Ile	Ser 35	Trp	Val	Arg	Gln	Met 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Met
15	Gly	Ile	Ile	Asp	Pro	Ser	Asp	Ser	Asp	Thr	Arg	Tyr	Ser	Pro	Ser	Phe
20																
25																
30																
35																
40																
45																
50																
55																

5	Gln 65	Gly	Gln	Val	Thr	Ile 70	Ser	Ala	Asp	Lys	Ser 75	Ile	Ser	Thr	Ala	Tyr 80
		Gln	Trp	Ser	Ser 85		Lys	Ala	Ser	Asp 90		Ala	Met	Tyr	Tyr 95	
10	Ala	Arg	Gly	Asp 100	Gly	Ser	Thr	Asp	Leu 105	Asp	Tyr	Trp	Gly	Gln 110	Gly	Thr
15	Leu	Val	Thr 115	Val	Ser	Ser	Ala	Ser 120	Thr	Lys	Gly	Pro	Ser 125	Val	Phe	Pro
20	Leu	Ala 130	Pro	Cys	Ser	Arg	Ser 135	Thr	Ser	Glu	Ser	Thr 140	Ala	Ala	Leu	Gly
	Cys 145	Leu	Val	Lys	Asp	Tyr 150	Phe	Pro	Glu	Pro	Val 155	Thr	Val	Ser	Trp	Asn 160
25	Ser	Gly	Ala	Leu	Thr 165	Ser	Gly	Val	His	Thr 170	Phe	Pro	Ala	Val	Leu 175	Gln
30	Ser	Ser	Gly	Leu 180	Tyr	Ser	Leu	Ser	Ser 185	Val	Val	Thr	Val	Pro 190	Ser	Ser
35	Ser	Leu	Gly 195	Thr	Lys	Thr	Tyr	Thr 200	Cys	Asn	Val	Asp	His 205	Lys	Pro	Ser
	Asn	Thr 210	Lys	Val	Asp	Lys	Arg 215	Val	Glu	Ser	Lys	Tyr 220	Gly	Pro	Pro	Cys
40	Pro 225	Pro	Cys	Pro	Ala	Pro 230	Glu	Ala	Ala	Gly	Gly 235	Pro	Ser	Val	Phe	Leu 240
45	Phe	Pro	Pro	Lys	Pro 245	Lys	Asp	Thr	Leu	Met 250	Ile	Ser	Arg	Thr	Pro 255	Glu
50	Val	Thr	Cys	Val 260	Val	Val	Asp	Val	Ser 265	Gln	Glu	Asp	Pro	Glu 270	Val	Gln
	Phe	Asn	Trp 275	Tyr	Val	Asp	Gly	Val 280	Glu	Val	His	Asn	Ala 285	Lys	Thr	Lys
55	Pro	Arg 290	Glu	Glu	Gln	Phe	Asn 295	Ser	Thr	Tyr	Arg	Val 300	Val	Ser	Val	Leu

	Thr 305	Val	Leu	His	Gln	Asp 310	Trp	Leu	Asn	Gly	Lys 315	Glu	Tyr	Lys	Cys	Lys 320
5	Val	Ser	Asn	Lys	Gly 325	Leu	Pro	Ser	Ser	Ile 330	Glu	Lys	Thr	Ile	Ser 335	Lys
10	Ala	Lys	Gly	Gln 340	Pro	Arg	Glu	Pro	Gln 345	Val	Tyr	Thr	Leu	Pro 350	Pro	Ser
15	Gln	Glu	Glu 355	Met	Thr	Lys	Asn	Gln 360	Val	Ser	Leu	Thr	Cys 365	Leu	Val	Lys
,,	Gly	Phe 370		Pro	Ser	Asp	Ile 375	Ala	Val	Glu	Trp	Glu 380	Ser	Asn	Gly	Gln
20	Pro 385	Glu	Asn	Asn	Tyr	Lys 390	Thr	Thr	Pro	Pro	Val 395	Leu	Asp	Ser	Asp	Gly 400
25	Ser	Phe	Phe	Leu	Tyr 405	Ser	Arg	Leu	Thr	Val 410	Asp	Lys	Ser	Arg	Trp 415	Gln
20	Glu	Gly	Asn	Val 420	Phe	Ser	Cys	Ser	Val 425	Met	His	Glu	Ala	Leu 430	His	Asn
30	His	Tyr	Thr 435	Gln	Lys	Ser	Leu	Ser 440	Leu	Ser	Leu	Gly	Lys 445			
35	<210> 219 <211> 215 <212> PRT <213> Artificia	al Sequ	uence													
40	<220> <223> I3RB2	17 LC														
	<400> 219															
45																
50																

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Ser
10		Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu
15		Ile	Tyr 50	Gly	Ala	Ser	Ser	Arg 55	Ala	Thr	Gly	Ile	Pro 60	Asp	Arg	Phe	Ser
		Gly	Ser	Gly	Ser	Gly	Thr	Asp	Phe	Thr	Leu	Thr	Ile	Ser	Arg	Leu	Glu
20		65					70					75					80
		Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	Gln 90	Gln	Asp	Tyr	Gly	Phe 95	Pro
25		Trp	Thr	Phe	Gly 100	Gln	Gly	Thr	Lys	Val 105	Glu	Ile	Lys	Arg	Thr 110	Val	Ala
30		Ala	Pro	Ser 115	Val	Phe	Ile	Phe	Pro 120	Pro	Ser	Asp	Glu	Gln 125	Leu	Lys	Ser
35		Gly	Thr 130	Ala	Ser	Val	Val	Cys 135	Leu	Leu	Asn	Asn	Phe 140	Tyr	Pro	Arg	Glu
		Ala 145	Lys	Val	Gln	Trp	Lys 150	Val	Asp	Asn	Ala	Leu 155	Gln	Ser	Gly	Asn	Ser 160
40		Gln	Glu	Ser	Val	Thr 165	Glu	Gln	Asp	Ser	Lys 170	Asp	Ser	Thr	Tyr	Ser 175	Leu
45		Ser	Ser	Thr	Leu 180	Thr	Leu	Ser	Lys	Ala 185	Asp	Tyr	Glu	Lys	His 190	Lys	Val
50		Tyr	Ala	Cys 195	Glu	Val	Thr	His	Gln 200	Gly	Leu	Ser	Ser	Pro 205	Val	Thr	Lys
		Ser	Phe 210	Asn	Arg	Gly	Glu	Cys 215									
55	<210> 2 <211> 4 <212> P <213> A	46 RT	l Sequ	uence													

	<220> <223> 13	3RB21	18 HC														
5	<400> 2	20															
		Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
10		Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Gly	Tyr
15		Trp	Met	His 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
20		Ser	Ala 50	Ile	Arg	Ser	Asp	Gly 55	Ser	Ser	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val
25																	
30																	
35																	
40																	
45																	
50																	
55																	

	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
5	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
10	Ala	Lys	Asp	Gly 100	Val	Ile	Glu	Asp	Thr 105	Phe	Asp	Tyr	Trp	Gly 110	Gln	Gly
	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
15	Pro	Leu 130	Ala	Pro	Cys	Ser	Arg 135	Ser	Thr	Ser	Glu	Ser 140	Thr	Ala	Ala	Leu
20	Gly 145	Cys	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
25	Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
	Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
30	Ser	Ser	Leu 195	Gly	Thr	Lys	Thr	Tyr 200	Thr	Cys	Asn	Val	Asp 205	His	Lys	Pro
35	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Ser	Lys 220	Tyr	Gly	Pro	Pro
40	Cys 225	Pro	Pro	Cys	Pro	Ala 230	Pro	Glu	Ala	Ala	Gly 235	Gly	Pro	Ser	Val	Phe 240
	Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
45	Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	Gln	Glu	Asp	Pro 270	Glu	Val
50	Gln	Phe	Asn 275	Trp	Tyr	Val	Asp	Gly 280	Val	Glu	Val	His	Asn 285	Ala	Lys	Thr
55	Lys	Pro 290	Arg	Glu	Glu	Gln	Phe 295	Asn	Ser	Thr	Tyr	A rg 300	Val	Val	Ser	Val
55	Leu	Thr	Val	Leu	His	Gln	Asp	Trp	Leu	Asn	Gly	Lys	Glu	Tyr	Lys	Cys

	305					310					315					320
5	Lys	Val	Ser	Asn	Lys 325	Gly	Leu	Pro	Ser	Ser 330	Ile	Glu	Lys	Thr	Ile 335	Ser
10	Lys	Ala	Lys	Gly 340	Gln	Pro	Arg	Glu	Pro 345	Gln	Val	Tyr	Thr	Leu 350	Pro	Pro
10	Ser	Gln	Glu 355	Glu	Met	Thr	Lys	Asn 360	Gln	Val	Ser	Leu	Thr 365	Cys	Leu	Val
15	Lys	Gly 370	Phe	Tyr	Pro	Ser	Asp 375	Ile	Ala	Val	Glu	Trp 380	Glu	Ser	Asn	Gly
20	Gln 385	Pro	Glu	Asn	Asn	Tyr 390	Lys	Thr	Thr	Pro	Pro 395	Val	Leu	Asp	Ser	Asp 400
25	Gly	Ser	Phe	Phe	Leu 405	Tyr	Ser	Arg	Leu	Thr 410	Val	Asp	Lys	Ser	Arg 415	Trp
	Gln	Glu	Gly	Asn 420	Val	Phe	Ser	Cys	Ser 425	Val	Met	His	Glu	Ala 430	Leu	His
30	Asn	His	Tyr 435	Thr	Gln	Lys	Ser	Leu 440	Ser	Leu	Ser	Leu	Gly 445	Lys		
35	<210> 221 <211> 214 <212> PRT <213> Artificia	l Sequ	uence													
40	<220> <223> I3RB21 <400> 221	8 LC														
45																
50																

		Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Ala	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5		Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Tyr
10		Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
15		Tyr	Asp 50	Ala	Ser	Asn	Arg	Ala 55	Thr	Gly	Ile	Pro	Ala 60	Arg	Phe	Ser	Gly
.0		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Glu	Pro 80
20		Glu	Asp	Phe	Ala	Val 85	Tyr	Tyr	Cys	Gln	Gln 90	Arg	Ser	Asn	Trp	Pro 95	Leu
25		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
		Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
30		Thr	Ala 130	Ser	Val	Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala
35		Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
40		Glu	Ser	Val	Thr	Glu 165		_		_				Tyr		Leu 175	Ser
		Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
45		Ala	Cys	Glu 195	Val	Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser
50		Phe	Asn 210	Arg	Gly	Glu	Cys										
	<210> 23 <211> 4 <212> P	47 RT															
55	<213> A <220> <223> G			ience													

<400> 222

5	Glu 1	Val	Gln	Leu	Leu 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Ser	Туг
10	Gly	Met	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ser	Gly 50	Ile	Asn	Gly	Gly	Gly 55	Gly	Ser	Lys	Tyr	Tyr 60	Ala	Asp	Ser	Val
20																
25																
30																
35																
40																
45																
50																
55																

	Lys 65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
5	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
10	Ala	Lys	Thr	Ser 100	Ala	Gln	Arg	Phe	Asp 105	Tyr	Trp	Gly	Gln	Gly 110	Thr	Leu
	Val	Thr	Val 115	Ser	Ser	Ala	Ser	Thr 120	Lys	Gly	Pro	Ser	Val 125	Phe	Pro	Leu
15	Ala	Pro 130	Ser	Ser	Lys	Ser	Thr 135	Ser	Gly	Gly	Thr	Ala 140	Ala	Leu	Gly	Cys
20	Leu 145	Val	Lys	Asp	Tyr	Phe 150	Pro	Glu	Pro	Val	Thr 155	Val	Ser	Trp	Asn	Ser 160
25	Gly	Ala	Leu	Thr	Ser 165	Gly	Val	His	Thr	Phe 170	Pro	Ala	Val	Leu	Gln 175	Ser
	Ser	Gly	Leu	Tyr 180	Ser	Leu	Ser	Ser	Val 185	Val	Thr	Val	Pro	Ser 190	Ser	Ser
30	Leu	Gly	Thr 195	Gln	Thr	Tyr	Ile	Cys 200	Asn	Val	Asn	His	Lys 205	Pro	Ser	Asn
35	Thr	Lys 210	Val	Asp	Lys	Lys	Val 215	Glu	Pro	Lys	Ser	Cys 220	Asp	Lys	Thr	His
	Thr 225	Cys	Pro	Pro	Cys	Pro 230	Ala	Pro	Glu	Leu	Leu 235	Gly	Gly	Pro	Ser	Val 240
40	Phe	Leu	Phe	Pro	Pro 245	Lys	Pro	Lys	Asp	Thr 250	Leu	Met	Ile	Ser	A rg 255	Thr
45	Pro	Glu	Val	Thr 260	Cys	Val	Val	Val	Asp 265	Val	Ser	His	Glu	Asp 270	Pro	Glu
50	Val	Lys	Phe 275	Asn	Trp	Tyr	Val	Asp 280	Gly	Val	Glu	Val	His 285	Asn	Ala	Lys
	Thr	Lys 290	Pro	Arg	Glu	Glu	Gln 295	Tyr	Asn	Ser	Thr	Tyr 300	Arg	Val	Val	Ser
55	Val 305	Leu	Thr	Val	Leu	His 310	Gln	Asp	Trp	Leu	Asn 315	Gly	Lys	Glu	Tyr	Lys 320

		Cys	Lys	Val	Ser	Asn 325	Lys	Ala	Leu	Pro	Ala 330	Pro	Ile	Glu	Lys	Thr 335	Ile
5		Ser	Lys	Ala	Lys 340	Gly	Gln	Pro	Arg	Glu 345	Pro	Gln	Val	Tyr	Thr 350	Leu	Pro
10		Pro	Ser	A rg 355	Asp	Glu	Leu	Thr	Lys 360	Asn	Gln	Val	Ser	Leu 365	Thr	Cys	Leu
15		Val	Lys 370	Gly	Phe	Tyr	Pro	Ser 375	Asp	Ile	Ala	Val	Glu 380	Trp	Glu	Ser	Asn
		Gly 385	Gln	Pro	Glu	Asn	Asn 390	Tyr	Lys	Thr	Thr	Pro 395	Pro	Val	Leu	Asp	Ser 400
20		Asp	Gly	Ser	Phe	Phe 405	Leu	Tyr	Ser	Lys	Leu 410	Thr	Val	Asp	Lys	Ser 415	Arg
25		Trp	Gln	Gln	Gly 420	Asn	Val	Phe	Ser	Cys 425	Ser	Val	Met	His	Glu 430	Ala	Leu
30		His	Asn	His 435	Tyr	Thr	Gln	Lys	Ser 440	Leu	Ser	Leu	Ser	Pro 445	Gly	Lys	
35	<210> 2 <211> 2 <212> F <213> A	14 PRT	l Sequ	ience													
	<220> <223> 0 <400> 2		;														
40			Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
45		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Ser 30	Ser	Tyr
50		Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
55		Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly
-		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80

		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Ser	Tyr	Ser	Leu	Pro 95	Leu
5		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
10		Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
15		Thr	Ala 130	Ser	Val	Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala
75		Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
20		Glu	Ser	Val	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser
25		Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
		Ala	Cys	Glu 195	Val	Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser
30		Phe	Asn 210	Arg	Gly	Glu	Cys										
35	<210> 2: <211> 4: <212> P: <213> A:	51 RT	l Sequ	ience													
40	<220> <223> C	:D3B9	4 HC														
	<400> 2	24															
45		Gln 1	Val	Gln	Leu	Val 5	Gln	Ser	Gly	Ala	Glu 10	Val	Lys	Lys	Pro	Gly 15	Ser
50		Ser	Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Gly	Thr	Phe	Ser 30	Ser	Tyr
		Ala	Ile	Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
55		Gly	Gly 50	Ile	Ile	Pro	Ile	Phe 55	Gly	Thr	Ala	Asn	Tyr 60	Ala	Gln	Lys	Phe

	Gln 65	Gly	Arg	Val	Thr	Ile 70	Thr	Ala	Asp	Glu	Ser 75	Thr	Ser	Thr	Ala	Tyr 80
5	Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
10	Ala	Arg	Asp	Pro 100	Ala	Arg	Leu	Tyr	Ser 105	Tyr	Tyr	Phe	Asp	Tyr 110	Trp	Gly
	Gln	Gly	Thr 115	Leu	Val	Thr	Val	Ser 120	Ser	Ala	Ser	Thr	Lys 125	Gly	Pro	Ser
15	Val	Phe 130	Pro	Leu	Ala	Pro	Ser 135	Ser	Lys	Ser	Thr	Ser 140	Gly	Gly	Thr	Ala
20	Ala 145	Leu	Gly	Cys	Leu	Val 150	Lys	Asp	Tyr	Phe	Pro 155	Glu	Pro	Val	Thr	Val 160
25	Ser	Trp	Asn	Ser	Gly 165	Ala	Leu	Thr	Ser	Gly 170	Val	His	Thr	Phe	Pro 175	Ala
	Val	Leu	Gln	Ser 180	Ser	Gly	Leu	Tyr	Ser 185	Leu	Ser	Ser	Val	Val 190	Thr	Val
30	Pro	Ser	Ser 195	Ser	Leu	Gly	Thr	Gln 200	Thr	Tyr	Ile	Cys	Asn 205	Val	Asn	His
35	Lys	Pro 210	Ser	Asn	Thr	Lys	Val 215	Asp	Lys	Lys	Val	Glu 220	Pro	Lys	Ser	Cys
40	Asp 225	Lys	Thr	His	Thr	Cys 230	Pro	Pro	Cys	Pro	Ala 235	Pro	Glu	Ala	Ala	Gly 240
	Gly	Pro	Ser	Val	Phe 245	Leu	Phe	Pro	Pro	Lys 250	Pro	Lys	Asp	Thr	Leu 255	Met
45	Ile	Ser	Arg	Thr 260	Pro	Glu	Val	Thr	Cys 265	Val	Val	Val	Asp	Val 270	Ser	His
50	Glu	Asp	Pro 275	Glu	Val	Lys	Phe	Asn 280	Trp	Tyr	Val	Asp	Gly 285	Val	Glu	Val
	His	Asn 290	Ala	Lys	Thr	Lys	Pro 295	Arg	Glu	Glu	Gln	Tyr 300	Asn	Ser	Thr	Tyr
55	Arg 305	Val	Val	Ser	Val	Leu 310	Thr	Val	Leu	His	Gln 315	Asp	Trp	Leu	Asn	Gly 320

		Lys	Glu	Tyr	Lys	Cys 325	Lys	Val	Ser	Asn	Lys 330	Ala	Leu	Pro	Ala	Pro 335	Ile
5		Glu	Lys	Thr	Ile 340	Ser	Lys	Ala	Lys	Gly 345	Gln	Pro	Arg	Glu	Pro 350	Gln	Val
10		Tyr	Thr	Leu 355	Pro	Pro	Ser	Arg	Asp 360	Glu	Leu	Thr	Lys	Asn 365	Gln	Val	Ser
15		Leu	Thr 370	Cys	Leu	Val	Lys	Gly 375	Phe	Tyr	Pro	Ser	Asp 380	Ile	Ala	Val	Glu
10		Trp 385	Glu	Ser	Asn	Gly	Gln 390	Pro	Glu	Asn	Asn	Tyr 395	Lys	Thr	Thr	Pro	Pro 400
20		Val	Leu	Asp	Ser	Asp 405	Gly	Ser	Phe	Leu	Leu 410	Tyr	Ser	Lys	Leu	Thr 415	Val
25		Asp	Lys	Ser	Arg 420	Trp	Gln	Gln	Gly	Asn 425	Val	Phe	Ser	Cys	Ser 430	Val	Met
		His	Glu	Ala 435	Leu	His	Asn	His	Tyr 440	Thr	Gln	Lys	Ser	Leu 445	Ser	Leu	Ser
30		Pro	Gly 450	Lys													
35	<210> 22 <211> 21 <212> PI <213> AI	14 RT	l Sequ	ence													
40	<220> <223> C	D3B9	4 LC														
	<400> 22	25															
45		Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
50		Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Arg	Ala 25	Ser	Gln	Ser	Ile	Ser 30	Ser	Tyr
		Leu	Asn	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Lys	Ala	Pro	Lys 45	Leu	Leu	Ile
55		Tyr	Ala 50	Ala	Ser	Ser	Leu	Gln 55	Ser	Gly	Val	Pro	Ser 60	Arg	Phe	Ser	Gly

		Ser 65	Gly	Ser	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
5		Glu	Asp	Phe	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Ser	Tyr	Ser	Thr	Pro 95	Leu
10		Thr	Phe	Gly	Gln 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
15		Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
		Thr	Ala 130	Ser	Val	Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala
20		Lys 145	Val	Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
25		Glu	Ser	Val	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser
30		Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
		Ala	Cys	Glu 195	Val	Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser
35		Phe	Asn 210	Arg	Gly	Glu	Cys										
	<210> 2																
40	<211> 2																
40	<212> P <213> A		l Seai	ience													
			. 0040														
	<220>																
45	<223> C	D123	SP2 v	vith 6H	lis tag												
45	<400> 2	26															
50																	

		Gln 1	Thr	Lys	Glu	Gly 5	Lys	Pro	Trp	Ala	Gly 10	Ala	Glu	Asn	Leu	Thr 15	Cys
5		Trp	Ile	His	Asp 20	Val	Asp	Phe	Leu	Ser 25	Cys	Ser	Trp	Ala	Val 30	Gly	Pro
10		Gly	Ala	Pro 35	Ala	Asp	Val	Gln	Tyr 40	Asp	Leu	Tyr	Leu	Asn 45	Val	Ala	Asn
		Arg	Arg	Gln	Gln	Tyr	Glu	Cys	Leu	His	Tyr	Lys	Thr	Asp	Ala	Gln	Gly
15			50					55					60				
20		Thr 65	Arg	Ile	Gly	Cys	Arg 70	Phe	Asp	Asp	Ile	Ser 75	Arg	Leu	Ser	Ser	Gly 80
		Ser	Gln	Ser	Ser	His 85	Ile	Leu	Val	Arg	Gly 90	Arg	Ser	Ala	Ala	Phe 95	Gly
25		Ile	Pro	Cys	Thr 100	Asp	Lys	Phe	Val	Val 105	Phe	Ser	Gln	Ile	Glu 110	Ile	Leu
30		Thr	Pro	Pro 115	Asn	Met	Thr	Ala	Lys 120	Cys	Asn	Lys	Thr	His 125	Ser	Phe	Met
35		His	Trp 130	Lys	Met	Arg	Ser	His 135	Phe	Asn	Arg	Lys	Phe 140	Arg	Tyr	Glu	Leu
		Gln 145	Ile	Gln	Lys	Arg	Met 150	Gln	Pro	Val	Ile	Thr 155	Glu	Gln	Val	Arg	Asp 160
40		Arg	Thr	Ser	Phe	Gln 165	Leu	Leu	Asn	Pro	Gly 170	Thr	Tyr	Thr	Val	Gln 175	Ile
45		Arg	Ala	Arg	Glu 180	Arg	Val	Tyr	Glu	Phe 185	Leu	Ser	Ala	Trp	Ser 190	Thr	Pro
50		Gln	Arg	Phe 195	Glu	Cys	Asp	Gln	Glu 200	Glu	Gly	Ala	Asn	Thr 205	Arg	Ala	His
		His	His 210	His	His	His											
55	<210> 2 <211> 9 <212> P <213> H	RT	sapien	S													

<400> 227

			Arg A	la A	rg G	lu A: 5	rg V	al T	yr G	lu Pl	ne	
5												
	<210> 228											
	<211> 12											
	<212> PRT											
	<213> Homo sapie	ns										
10	·											
	<400> 228											
		Tle	Gln Lys	Ara	Met	Gln	Pro	Val	Tle	Thr	G1 11	Gln
		1	<u>-</u> -	9	5	U				10	0_0	U
15		_			•					_•		
	<210> 229											
	<211> 6											
	<212> PRT											
	<213> Homo sapie	ne										
20	12 TOP TIOTHO Supic	110										
20	<400> 229											
					Leu	Asn	Pro	Gly	Thr			
				1				5				
25												
	<210> 230											
	<211> 253											
	<212> PRT											
	<213> Artificial Sec	quence										
30												
	<220>											
	<223> I3RB18 scF	v used ir	x-ray cry	stallogi	raphy							
	<400> 230											
35												
40												
40												
45												
50												

	Glu 1	Ile	Val	Leu	Thr 5	Gln	Ser	Pro	Gly	Thr 10	Leu	Ser	Leu	Ser	Pro 15	Gly
5	Glu	Arg	Ala	Thr 20	Leu	Ser	Cys	Arg	Ala 25	Ser	Gln	Ser	Val	Ser 30	Ser	Ser
10	Tyr	Leu	Ala 35	Trp	Tyr	Gln	Gln	Lys 40	Pro	Gly	Gln	Ala	Pro 45	Arg	Leu	Leu
15	Ile	Tyr 50	Gly	Ala	Ser	Ser	Arg 55	Ala	Thr	Gly	Ile	Pro 60	Asp	Arg	Phe	Ser
	Gly 65	Ser	Gly	Ser	Gly	Thr 70	Asp	Phe	Thr	Leu	Thr 75	Ile	Ser	Arg	Leu	Glu 80
20	Pro	Glu	Asp	Phe	Ala 85	Val	Tyr	Tyr	Cys	Gln 90	Gln	Asp	Tyr	Gly	Phe 95	Pro
25	Trp	Thr	Phe	Gly 100	Gln	Gly	Thr	Lys	Val 105	Glu	Ile	Lys	Gly	Gly 110	Gly	Gly
20	Ser	Gly	Gly 115	Gly	Gly	Ser	Gly	Gly 120	Gly	Gly	Ser	Gly	Gly 125	Gly	Gly	Ser
30	Glu	Val 130	Gln	Leu	Val	Gln	Ser 135	Gly	Ala	Glu	Val	Lys 140	Lys	Pro	Gly	Glu
35	Ser 145	Leu	Lys	Ile	Ser	Cys 150	Lys	Gly	Ser	Gly	Tyr 155	Ser	Phe	Thr	Ser	Tyr 160
40	Trp	Ile	Ser	Trp	Val 165	Arg	Gln	Met	Pro	Gly 170	Lys	Gly	Leu	Glu	Trp 175	Met
	Gly	Ile	Ile	Asp 180	Pro	Ser	Asp	Ser	Asp 185	Thr	Arg	Tyr	Ser	Pro 190	Ser	Phe
45	Gln	Gly	Gln 195	Val	Thr	Ile	Ser	Ala 200	Asp	Lys	Ser	Ile	Ser 205	Thr	Ala	Tyr
50	Leu	Gln 210	Trp	Ser	Ser	Leu	Lys 215	Ala	Ser	Asp	Thr	Ala 220	Met	Tyr	Tyr	Cys
55	Ala 225	Arg	Gly	Asp	Gly	Ser 230	Thr	Asp	Leu	Asp	Tyr 235	Trp	Gly	Gln	Gly	Thr 240
	Leu	Val	Thr	Val	Ser 245	Ser	Gly	His	His	His 250	His	His	His			

	<210> 2 <211> 2 <212> F <213> A	215 PRT	ıl Seqı	uence													
5	<220> <223> (CD123	sp2 w	vith 8H	is tag	for cry	/stallo	graphy	′								
10	<400> 2	231															
		Gln 1	Thr	Lys	Glu	Gly 5	Lys	Pro	Trp	Ala	Gly 10	Ala	Glu	Asn	Leu	Thr 15	Суз
15		Trp	Ile	His	Asp 20	Val	Asp	Phe	Leu	Ser 25	Cys	Ser	Trp	Ala	Val 30	Gly	Pro
20		Gly	Ala	Pro 35	Ala	Asp	Val	Gln	Tyr 40	Asp	Leu	Tyr	Leu	Asn 45	Val	Ala	Asn
25		Arg	Arg 50	Gln	Gln	Tyr	Glu	Cys 55	Leu	His	Tyr	Lys	Thr 60	Asp	Ala	Gln	Gly
		Thr 65	Arg	Ile	Gly	Cys	Arg 70	Phe	Asp	Asp	Ile	Ser 75	Arg	Leu	Ser	Ser	Gly 80
30		Ser	Gln	Ser	Ser	His 85	Ile	Leu	Val	Arg	Gly 90	Arg	Ser	Ala	Ala	Phe 95	Gly
35		Ile	Pro	Cys	Thr 100	Asp	Lys	Phe	Val	Val 105	Phe	Ser	Gln	Ile	Glu 110	Ile	Leu
40		Thr	Pro	Pro	Asn	Met	Thr	Ala	Lys	Cys	Asn	Lys	Thr	His	Ser	Phe	Met
40																	
45																	
50																	
55																	

		115						120							125				
5		His	Trp 130	Lys	Met	Arg	Ser	His 135	Phe	Asn	Arg	Lys	Phe 140	Arg	Tyr	Glu	Leu		
10		Gln 145	Ile	Gln	Lys	Arg	Met 150	Gln	Pro	Val	Ile	Thr 155	Glu	Gln	Val	Arg	Asp 160		
		Arg	Thr	Ser	Phe	Gln 165	Leu	Leu	Asn	Pro	Gly 170	Thr	Tyr	Thr	Val	Gln 175	Ile		
15		Arg	Ala	Arg	Glu 180	Arg	Val	Tyr	Glu	Phe 185	Leu	Ser	Ala	Trp	Ser 190	Thr	Pro		
20		Gln	Arg	Phe 195	Glu	Cys	Asp	Gln	Glu 200	Glu	Gly	Ala	Asn	Thr 205	Arg	Ala	His		
25	<210> 2		His 210	His	His	His	His	His 215											
30	<400> 2 000 <210> 2	32																	
35	<211> 6 <212> P <213> H <400> 2	RT Iomo s	sapien	s															
40							Thr 1	Glu	Gln	Val	Arg 5	Asp							
	<210> 2 <211> 8 <212> P <213> H	rRT	sapien	s															
45	<400> 2	34																	
50																			

Arg Ala Arg Glu Arg Val Tyr Glu 1 5

5

10

15

20

25

30

35

45

50

Claims

1. An isolated antibody, or an antigen-binding fragment thereof, comprising a heavy chain and a light chain having:

a. a heavy chain CDR1 having the amino acid sequence of SEQ ID NO: 012, a heavy chain CDR2 having the amino acid sequence of SEQ ID NO: 013, a heavy chain CDR3 having the amino acid sequence of SEQ ID NO: 014, a light chain CDR1 having the amino acid sequence of SEQ ID NO: 015, a light chain CDR2 having the amino acid sequence of SEQ ID NO: 016, and a light chain CDR3 having the amino acid sequence of SEQ ID NO: 017; or

b. a heavy chain CDR1 having the amino acid sequence of SEQ ID NO: 051, a heavy chain CDR2 having the amino acid sequence of SEQ ID NO: 052, a heavy chain CDR3 having the amino acid sequence of SEQ ID NO: 053, a light chain CDR1 having the amino acid sequence of SEQ ID NO: 024, a light chain CDR2 having the amino acid sequence of SEQ ID NO: 025, and a light chain CDR3 having the amino acid sequence of SEQ ID NO: 054.

- 2. The antibody or antigen-binding fragment of claim 1, wherein the heavy chain of the antibody comprises the amino acid sequence of SEQ ID NO: 120, and the light chain of the antibody comprises the amino acid sequence of SEQ ID NO: 165.
- 3. The antibody or antigen-binding fragment of claim 1, wherein the heavy chain of the antibody comprises the amino acid sequence of SEQ ID NO: 136 and light chain of the antibody comprises the amino acid sequence of SEQ ID NO: 168.
- **40 4.** The antibody or antigen-binding fragment of any one of claims 1 to 3, wherein said antibody or antigen-binding fragment is IgG1 or IgG4 isotype.
 - 5. An isolated CD123 (IL3-Rα) x CD3 bispecific antibody or antigen-binding fragment comprising a first heavy chain (HC1), a second heavy chain (HC2), first light chain (LC1) and a second light chain (LC2), such that the HC1 and the LC1 pair to form a first antigen-binding site that immunospecifically binds CD123 (IL3-Rα), and the HC2 and the LC2 pair to form a second antigen-binding site that immunospecifically binds CD3, or a CD123 (IL3-Rα) x CD3 -bispecific binding fragment thereof, wherein:
 - i) HC1 and LC1 comprise either of the following pairs:

a. SEQ ID NO: 203 and SEQ ID NO: 204, or

b. SEQ ID NO: 205 and SEQ ID NO: 206, respectively; and

ii) HC2 and LC2 comprise either of the following pairs:

55

a. SEQ ID NO: 193 and SEQ ID NO: 194,

b. SEQ ID NO: 195 and SEQ ID NO: 196,

c. SEQ ID NO: 197 and SEQ ID NO: 198,

- d. SEQ ID NO: 199 and SEQ ID NO: 200. or
- e. SEQ ID NO: 201 and SEQ ID NO: 202, respectively.
- 6. The bi-specific antibody or antigen-binding fragment of claim 5 wherein HC1 comprises SEQ ID NO: 203 and LC1 comprises SEQ ID NO: 204 and HC2 comprises SEQ ID NO: 193 and LC2 comprises SEQ ID NO: 194.
 - 7. The bi-specific antibody or antigen-binding fragment of claim 5 wherein HC1 comprises SEQ ID NO: 205 and LC1 comprises SEQ ID NO: 206 and HC2 comprises SEQ ID NO: 193 and LC2 comprises SEQ ID NO: 194.
- 8. An isolated CD123 (IL3-Rα) x CD3 bispecific antibody or a CD123 (IL3-Rα) x CD3-bispecific binding fragment comprising:
 - a) a first heavy chain (HC1);
 - b) a second heavy chain (HC2);
 - c) a first light chain (LC1); and
 - d) a second light chain (LC2),

wherein the HC1 and the LC1 pair to form a first antigen-binding site that immunospecifically binds CD123 (IL3- $R\alpha$), and the HC2 and the LC2 pair to form a second antigen-binding site that immunospecifically binds CD3, wherein

- a. in the paired heavy and light chain that immunospecifically binds CD3, said heavy chain (HC2) comprises SEQ ID NO: 184 and said light chain (LC2) comprises SEQ ID NO: 190, and
- b. in the paired heavy and light chain that immunospecifically binds CD123,
 - i. said heavy chain (HC1) comprises SEQ ID NO: 120 and said light chain (LC1) comprises SEQ ID NO: 165, or
 - ii. said heavy chain (HC1) comprises SEQ ID NO: 136 and said light chain (LC1) comprises SEQ ID NO: 168.
- 9. An isolated cell expressing the antibody or antibody fragment of any one of claims 1 to 8.
- 10. An antibody or antigen-binding fragment thereof of any one of claims 1 to 8 for use in a method of treating cancer.
- 11. A CD123 (IL3-Rα) x CD3 bispecific antibody or bispecific binding fragment of any one of claims 5 to 8 for use in a method for inhibiting growth or proliferation of cancer cells, wherein the method comprises: administering a therapeutically effective amount of the CD123 (IL3-Rα) x CD3 bispecific antibody or bispecific binding fragment to inhibit the growth or proliferation of cancer cells.
- 12. A CD123 (IL3-Rα) x CD3 bispecific antibody or bispecific binding fragment of any one of claims 5 to 8 for use in a method for redirecting a T cell to a CD123-expressing cancer cell, wherein the method comprises: administering a therapeutically effective amount of the CD123 (IL3-Rα) x CD3 bispecific antibody or bispecific binding fragment to redirect a T cell to a cancer.
- **13.** A pharmaceutical composition comprising the CD123 (IL3-Rα) x CD3 bispecific antibody or bispecific binding fragment of any one of claims 5 to 8 and a pharmaceutically acceptable carrier.
- 14. An isolated synthetic polynucleotide encoding an antibody or antibody fragment of any one of claims 5 to 8.
- **15.** A kit comprising the antibody or antigen-binding fragment thereof of any one of claims 1 to 8 and packaging for the same.
- **16.** The bi-specific antibody or antigen-binding fragment of any one of claims 5 to 8, wherein said bi-specific antibody or antigen-binding fragment binds immunospecifically to CD123 SP2 (IL-3Ra) and CD123 SP1 (IL3Ra).

55 Patentansprüche

 Isolierter Antikörper oder antigenbindendes Fragment davon, umfassend eine schwere Kette und eine leichte Kette mit:

274

50

45

15

20

25

30

35

a. einer Schwere-Kette-CDR1 mit der Aminosäuresequenz unter SEQ ID NO: 012, einer Schwere-Kette-CDR2 mit der Aminosäuresequenz unter SEQ ID NO: 013, einer Schwere-Kette-CDR3 mit der Aminosäuresequenz unter SEQ ID NO: 014, einer Leichte-Kette-CDR1 mit der Aminosäuresequenz unter SEQ ID NO: 015, einer Leichte-Kette-CDR2 mit der Aminosäuresequenz unter SEQ ID NO: 016 und einer Leichte-Kette-CDR3 mit der Aminosäuresequenz unter SEQ ID NO: 017; oder b. einer Schwere-Kette-CDR1 mit der Aminosäuresequenz unter SEQ ID NO: 051, einer Schwere-Kette-CDR2 mit der Aminosäuresequenz unter SEQ ID NO: 052, einer Schwere-Kette-CDR3 mit der Aminosäuresequenz unter SEQ ID NO: 053, einer Leichte-Kette-CDR1 mit der Aminosäuresequenz unter SEQ ID NO: 024, einer Leichte-Kette-CDR2 mit der Aminosäuresequenz unter SEQ ID NO: 025 und einer Leichte-Kette-CDR3 mit der Aminosäuresequenz unter SEQ ID NO: 054.

- Antikörper oder antigenbindendes Fragment nach Anspruch 1, wobei die schwere Kette des Antikörpers die Aminosäuresequenz unter SEQ ID NO: 120 und die leichte Kette des Antikörpers die Aminosäuresequenz unter SEQ ID NO:165 umfasst.
 - Antikörper oder antigenbindendes Fragment nach Anspruch 1, wobei die schwere Kette des Antikörpers die Aminosäuresequenz unter SEQ ID NO: 136 und leichte Kette des Antikörpers die Aminosäuresequenz unter SEQ ID NO: 168 umfasst.
 - **4.** Antikörper oder antigenbindendes Fragment nach einem der Ansprüche 1 bis 3, wobei es sich bei dem Antikörper bzw. antigenbindenden Fragment um Isotyp IgG1 oder IgG4 handelt.
- 5. Isolierter CD123(IL3-Rα)×CD3-bispezifischer Antikörper oder antigenbindendes Fragment davon, umfassend eine erste schwere Kette (HC1), eine zweite schwere Kette (HC2), erste leichte Kette (LC1) und eine zweite leichte Kette (LC2), so dass die HC1 und die LC1 eine Paarung unter Bildung einer ersten Antigenbindungsstelle, die CD123 (IL3-Rα) immunspezifisch bindet, und die HC2 und die LC2 eine Paarung unter Bildung einer zweiten Antigenbindungsstelle, die CD3 immunspezifisch bindet, eingehen, oder ein CD123(IL3-Rα)×CD3-bispezifisches Bindungsfragment davon, wobei:
 - i) HC1 und LC1 eines der folgenden Paare umfassen:
 - a. SEQ ID NO: 203 und SEQ ID NO: 204 bzw.
 - b. SEQ ID NO: 205 und SEQ ID NO: 206;

und

5

10

15

20

35

40

45

50

55

ii) HC2 und LC2 eines der folgenden Paare umfassen:

a. SEQ ID NO: 193 und SEQ ID NO: 194,

b. SEQ ID NO: 195 und SEQ ID NO: 196,

c. SEQ ID NO: 197 und SEQ ID NO: 198,

d. SEQ ID NO: 199 und SEQ ID NO: 200 bzw.

e. SEQ ID NO: 201 und SEQ ID NO: 202.

6. Bispezifischer Antikörper oder antigenbindendes Fragment davon nach Anspruch 5, wobei HC1 SEQ ID NO: 203 und LC1 SEQ ID NO: 204 umfasst und HC2 SEQ ID NO: 193 und LC2 SEQ ID NO: 194 umfasst.

- 7. Bispezifischer Antikörper oder antigenbindendes Fragment davon nach Anspruch 5, wobei HC1 SEQ ID NO: 205 und LC1 SEQ ID NO: 206 umfasst und HC2 SEQ ID NO: 193 und LC2 SEQ ID NO: 194 umfasst.
 - 8. Isolierter CD123(IL3-Rα)×CD3-bispezifischer Antikörper oder CD123(IL3-Rα)×CD3-bispezifisches Bindungsfragment, umfassend:
 - a) eine erste schwere Kette (HC1);
 - b) eine zweite schwere Kette (HC2);
 - c) eine erste leichte Kette (LC1);
 - d) eine zweite leichte Kette (LC2),

wobei die HC1 und die LC1 eine Paarung unter Bildung einer ersten Antigenbindungsstelle, die CD123 (IL3-R α) immunspezifisch bindet, und die HC2 und die LC2 eine Paarung unter Bildung einer zweiten Antigenbindungsstelle, die CD3 immunspezifisch bindet, eingehen, wobei

a. bei der gepaarten schweren und leichten Kette, die CD3 immunspezifisch bindet, die schwere Kette (HC2) SEQ ID NO: 184 und die leichte Kette (LC2) SEQ ID NO: 190 umfasst, und

- b. bei der gepaarten schweren und leichten Kette, die CD123 immunspezifisch bindet,
 - i. die schwere Kette (HC1) SEQ ID NO: 120 und die leichte Kette (LC1) SEQ ID NO: 165 umfasst oder ii. die schwere Kette (HC1) SEQ ID NO: 136 und die leichte Kette (LC1) SEQ ID NO: 168 umfasst.
- 9. Isolierte Zelle, exprimierend den Antikörper bzw. das Antikörperfragment nach einem der Ansprüche 1 bis 8.
- **10.** Antikörper oder antigenbindendes Fragment davon nach einem der Ansprüche 1 bis 8 zur Verwendung bei einem Verfahren zur Krebsbehandlung.
- 11. CD123(IL3-Rα)×CD3-bispezifischer Antikörper oder bispezifisches Bindungsfragment nach einem der Ansprüche 5 bis 8 zur Verwendung bei einem Verfahren zur Hemmung von Wachstum oder Proliferation von Krebszellen, wobei das Verfahren Folgendes umfasst: Verabreichen einer therapeutisch wirksamen Menge des CD123(IL3-Rα)×CD3-bispezifischen Antikörpers oder bispezifischen Bindungsfragments zum Hemmen des Wachstums bzw. der Proliferation von Krebszellen.
- 12. CD123(IL3-Rα)×CD3-bispezifischer Antikörper oder bispezifisches Bindungsfragment nach einem der Ansprüche 5 bis 8 zur Verwendung bei einem Verfahren zum Umlenken einer T-Zelle auf eine CD123 exprimierende Krebszelle, wobei das Verfahren Folgendes umfasst:
 - Verabreichen einer therapeutisch wirksamen Menge des CD123(IL3-R α)×CD3-bispezifischen Antikörpers oder bispezifischen Bindungsfragments zum Umlenken einer T-Zelle auf einen Krebs.
- 13. Pharmazeutische Zusammensetzung, umfassend den CD123(IL3-Rα)CD3-bispezifischen Anti¬körper bzw. das bispezifische Bindungsfragment nach einem der Ansprüche 5 bis 8 und einen pharmazeutisch unbedenklichen Träger.
 - **14.** Isoliertes synthetisches Polynukleotid, codierend einen Antikörper bzw. ein Antikörperfragment nach einem der Ansprüche 5 bis 8.
 - **15.** Kit, umfassend den Antikörper bzw. das antigenbindende Fragment davon nach einem der Ansprüche 1 bis 8 und Verpackung dafür.
- 16. Bispezifischer Antikörper oder antigenbindendes Fragment davon nach einem der Ansprüche 5 bis 8, wobei der bispezifische Antikörper bzw. das antigenbindende Fragment immunspezifisch an CD123-SP2 (IL-3Ra) und CD123-SP1 (IL3Ra) bindet.

Revendications

5

10

15

20

25

35

45

50

55

1. Anticorps isolé, ou fragment de liaison à l'antigène de celui-ci, comprenant une chaîne lourde et une chaîne légère ayant :

a. une CDR1 de chaîne lourde ayant la séquence d'acides aminés de SEQ ID n°: 012, une CDR2 de chaîne lourde ayant la séquence d'acides aminés de SEQ ID n°: 013, une CDR3 de chaîne lourde ayant la séquence d'acides aminés de SEQ ID n°: 014, une CDR1 de chaîne légère ayant la séquence d'acides aminés de SEQ ID n°: 015, une CDR2 de chaîne légère ayant la séquence d'acides aminés de SEQ ID n°: 016 et une CDR3 de chaîne légère ayant la séquence d'acides aminés de SEQ ID n°: 017; ou b. une CDR1 de chaîne lourde ayant la séquence d'acides aminés de SEQ ID n°: 051, une CDR2 de chaîne lourde ayant la séquence d'acides aminés de SEQ ID n°: 052, une CDR3 de chaîne lourde ayant la séquence d'acides aminés de SEQ ID n°: 053, une CDR1 de chaîne légère ayant la séquence d'acides aminés de SEQ ID n°: 024,

une CDR2 de chaîne légère ayant la séquence d'acides aminés de SEQ ID n°: 025 et une CDR3 de chaîne légère ayant la séquence d'acides aminés de SEQ ID n°: 054.

- 2. Anticorps ou fragment de liaison à l'antigène selon la revendication 1, la chaîne lourde de l'anticorps comprenant la séquence d'acides aminés de SEQ ID n°: 120 et la chaîne légère de l'anticorps comprenant la séquence d'acides aminés de SEQ ID n°: 165.
 - 3. Anticorps ou fragment de liaison à l'antigène selon la revendication 1, la chaîne lourde de l'anticorps comprenant la séquence d'acides aminés de SEQ ID n°: 136 et la chaîne légère de l'anticorps comprenant la séquence d'acides aminés de SEQ ID n°: 168.
 - **4.** Anticorps ou fragment de liaison à l'antigène selon l'une quelconque des revendications 1 à 3, ledit anticorps ou fragment de liaison à l'antigène étant d'isotype IgG1 ou IgG4.
- 5. Anticorps bispécifique anti-CD123 (IL3-Rα) x CD3 isolé ou fragment de liaison aux antigènes comprenant une première chaîne lourde (HC1), une seconde chaîne lourde (HC2), une première chaîne légère (LC1) et une seconde chaîne légère (LC2), de façon telle que la HC1 et la LC1 s'apparient pour former un premier site de liaison à un antigène qui se lie de manière immunospécifique à CD123 (IL3-Rα) et la HC2 et la LC2 s'apparient pour former un second site de liaison à un antigène qui se lie de manière immunospécifique à CD3, ou fragment de liaison bispécifique à CD123 (IL3-Rα) x CD3 de celui-ci, dans lequel :
 - i) HC1 et LC1 comprennent l'une ou l'autre des paires suivantes :

```
a. SEQ ID n°: 203 et SEQ ID n°: 204 ou
```

10

25

30

40

45

50

55

b. SEQ ID n° : 205 et SEQ ID n° : 206, respectivement ; et

ii) HC2 et LC2 comprennent l'une quelconque des paires suivantes :

```
a. SEQ ID n°: 193 et SEQ ID n°: 194,
b. SEQ ID n°: 195 et SEQ ID n°: 196,
c. SEQ ID n°: 197 et SEQ ID n°: 198,
d. SEQ ID n°: 199 et SEQ ID n°: 200 ou
```

- e. SEQ ID n°: 201 et SEQ ID n°: 202, respectivement.
- 6. Anticorps bispécifique ou fragment de liaison aux antigènes selon la revendication 5 dans lequel HC1 comprend SEQ ID n°: 203 et LC1 comprend SEQ ID n°: 204 et HC2 comprend SEQ ID n°: 193 et LC2 comprend SEQ ID n°: 194.
 - 7. Anticorps bispécifique ou fragment de liaison aux antigène selon la revendication 5 dans lequel HC1 comprend SEQ ID n°: 205 et LC1 comprend SEQ ID n°: 206 et HC2 comprend SEQ ID n°: 193 et LC2 comprend SEQ ID n°: 194.
 - 8. Anticorps bispécifique anti-CD123 (IL3-R α) x CD3 isolé ou fragment de liaison bispécifique à CD123 (IL3-R α) x CD3 comprenant :

```
a) une première chaîne lourde (HC1);
```

b) une seconde chaîne lourde (HC2);

- c) une première chaîne légère (LC1); et
- d) une seconde chaîne légère (LC2),

dans lequel la HC1 et la LC1 s'apparient pour former un premier site de liaison à un antigène qui se lie de manière immunospécifique à CD123 (IL3-Rα) et la HC2 et la LC2 s'apparient pour former un second site de liaison à un antigène qui se lie de manière immunospécifique à CD3, dans leguel

a. dans les chaînes lourde et légère appariées qui se lient de manière immunospécifique à CD3, ladite chaîne lourde (HC2) comprend SEQ ID n°: 184 et ladite chaîne légère (LC2) comprend SEQ ID n°: 190 et b. dans les chaînes lourde et légère appariées qui se lient de manière immunospécifique à CD123,

i. ladite chaîne lourde (HC1) comprend SEQ ID n° : 120 et ladite chaîne légère (LC1) comprend SEQ ID n° : 165 ou

ii. ladite chaîne lourde (HC1) comprend SEQ ID n° : 136 et ladite chaîne légère (LC1) comprend SEQ ID n° : 168.

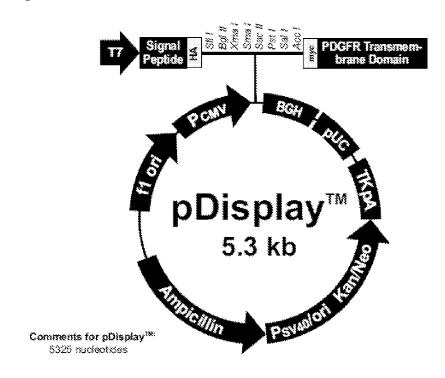
9. Cellule isolée exprimant l'anticorps ou le fragment d'anticorps selon l'une quelconque des revendications 1 à 8.

5

20

25

35


40

45

50

- **10.** Anticorps ou fragment de liaison à l'antigène ou aux antigènes de celui-ci selon l'une quelconque des revendications 1 à 8 destiné à être utilisé dans une méthode de traitement de cancer.
- 11. Anticorps bispécifique anti-CD123 (IL3-Rα) x CD3 ou fragment de liaison bispécifique selon l'une quelconque des revendications 5 à 8 destiné à être utilisé dans une méthode pour l'inhibition de la croissance ou de la prolifération de cellules cancéreuses, la méthode comprenant : l'administration d'une quantité thérapeutiquement efficace de l'anticorps bispécifique anti-CD123 (IL3-Rα) x CD3 ou du fragment de liaison bispécifique pour inhiber la croissance ou la prolifération de cellules cancéreuses.
- 12. Anticorps bispécifique anti-CD123 (IL3-Rα) x CD3 ou fragment de liaison bispécifique selon l'une quelconque des revendications 5 à 8 destiné à être utilisé dans une méthode pour la réorientation d'un lymphocyte T vers une cellule cancéreuse exprimant CD123, la méthode comprenant : l'administration d'une quantité thérapeutiquement efficace de l'anticorps bispécifique anti-CD123 (IL3-Rα) x CD3 ou du fragment de liaison bispécifique pour réorienter un lymphocyte T vers un cancer.
 - **13.** Composition pharmaceutique comprenant l'anticorps bispécifique anti-CD123 (IL3-Rα) x CD3 ou le fragment de liaison bispécifique selon l'une quelconque des revendications 5 à 8 et un vecteur pharmaceutiquement acceptable.
 - **14.** Polynucléotide synthétique isolé codant pour un anticorps ou fragment d'anticorps selon l'une quelconque des revendications 5 à 8.
 - **15.** Kit comprenant l'anticorps ou le fragment de liaison à l'antigène ou aux antigènes de celui-ci selon l'une quelconque des revendications 1 à 8 et un emballage pour celui-ci.
- 30 **16.** Anticorps bispécifique ou fragment de liaison aux antigènes selon l'une quelconque des revendications 5 à 8, ledit anticorps bispécifique ou fragment de liaison aux antigènes se liant de manière immunospécifique à CD123 SP2 (IL-3Ra) et CD123 SP1 (IL3Ra).

Figure 1.

Figure 2A)

a)

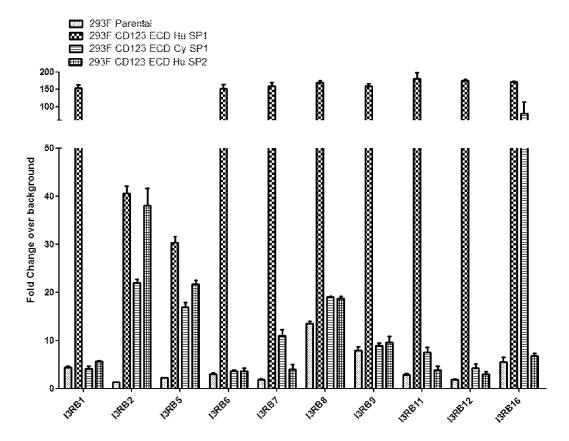


Figure 2 B)

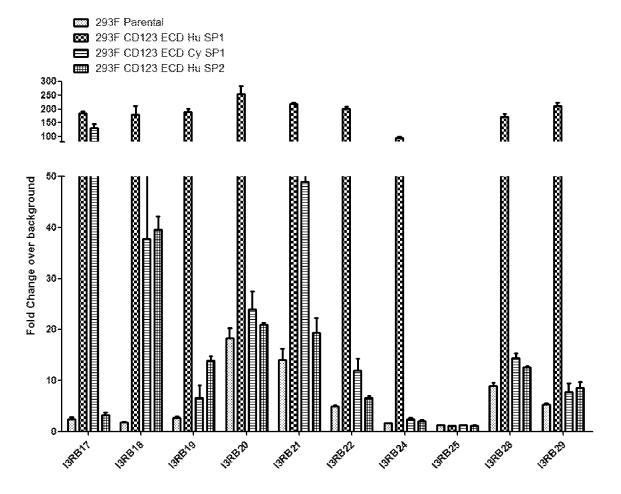
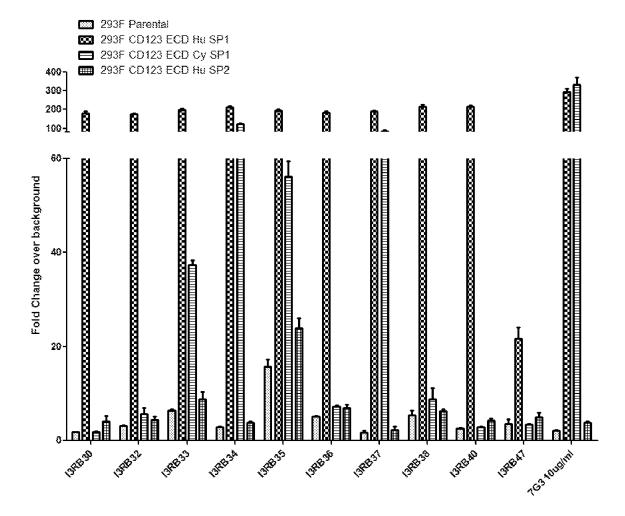



Figure 2 C)

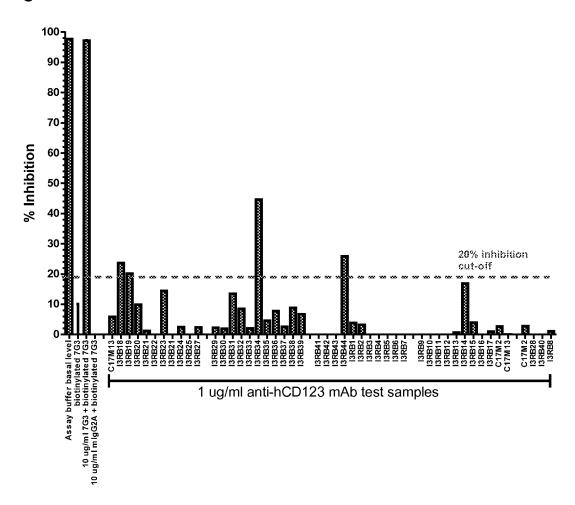
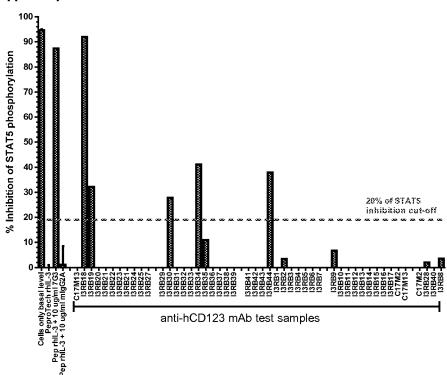
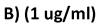
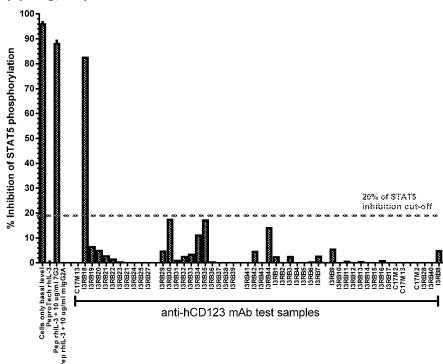





Figure 4.

C) Dose dependence

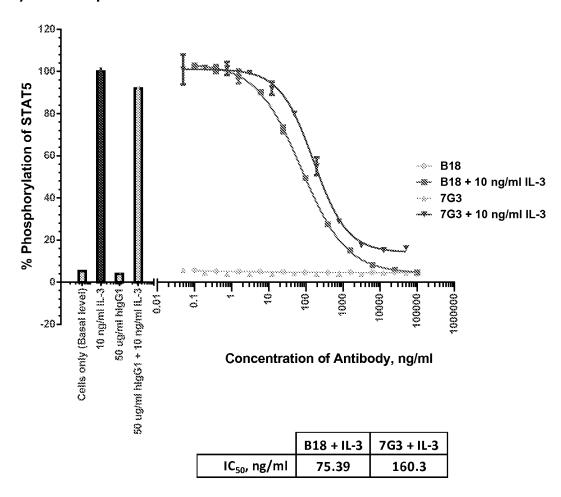
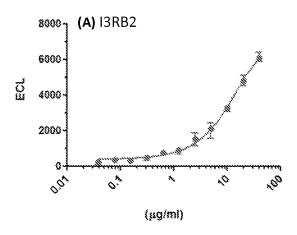
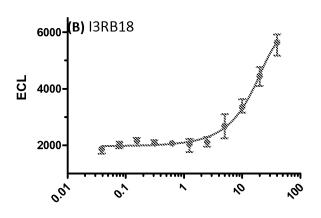




Figure 5.

(C) 7G3

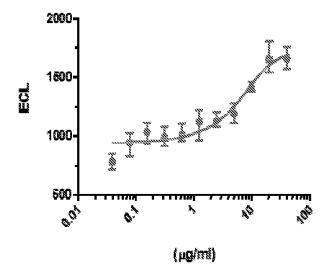
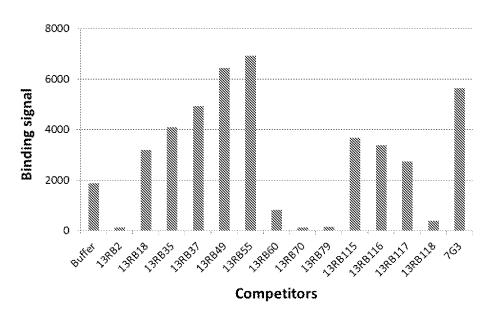
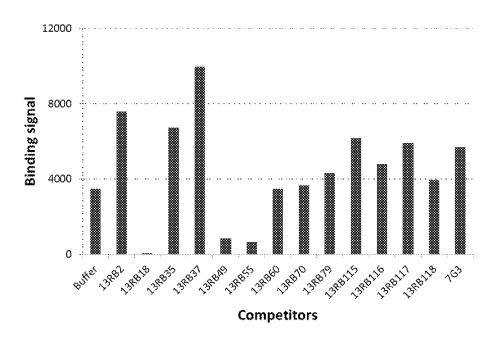




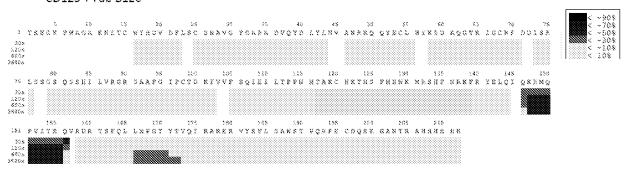
Figure 6.

A) Ru-labeled I3RB2

B) Ru-labeled I3RB18

Figure 7.

A)


CD123 + Fab B119

Numbering begins at amino acid 19 of SP2

B)

CD123 + Fab B120

Numbering begins at amino acid 19 of SP2

Figure 8.

Numbering: ovals refer to residues of CD123 SP2, rectangles refer to residues of SEQ ID NO:230

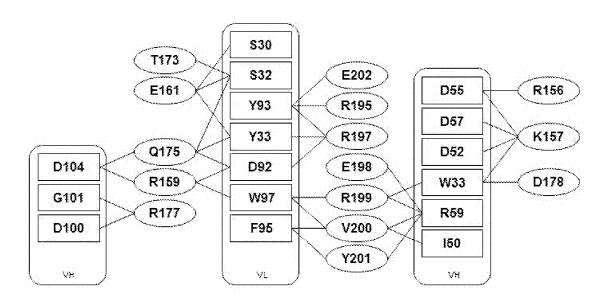
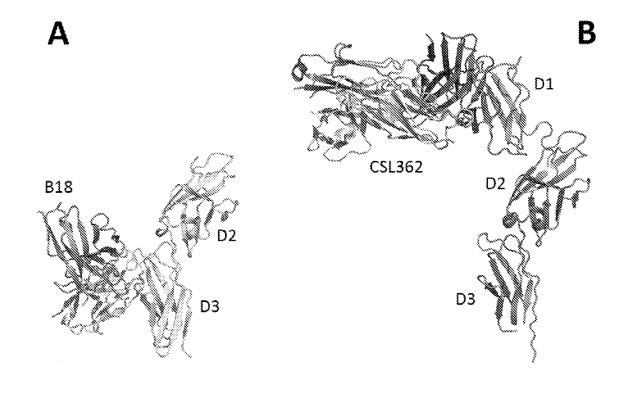



Figure 9.

Figure 10.

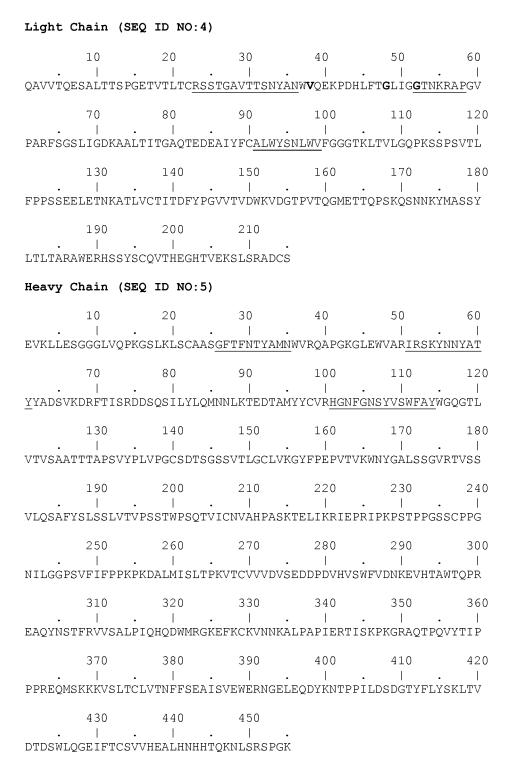
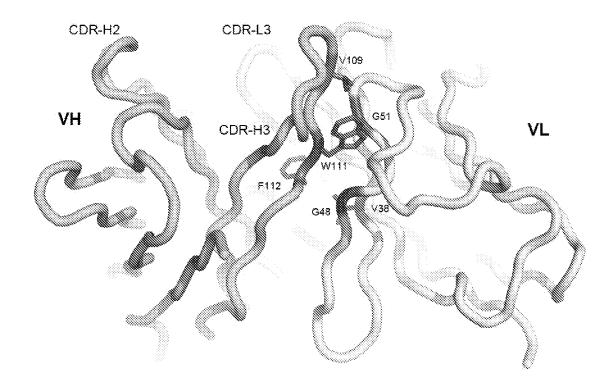



Fig. 11.

Figure 12.

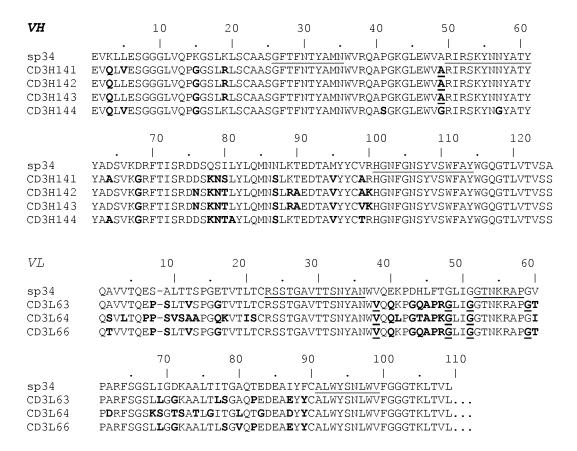


Figure 13.

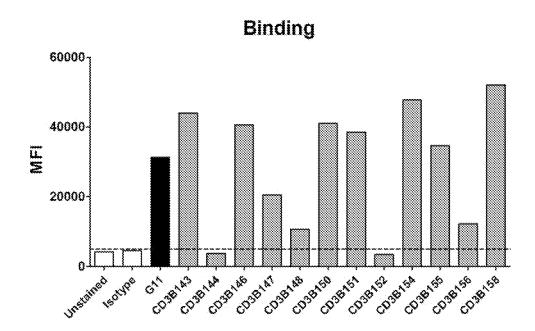


Figure 14.

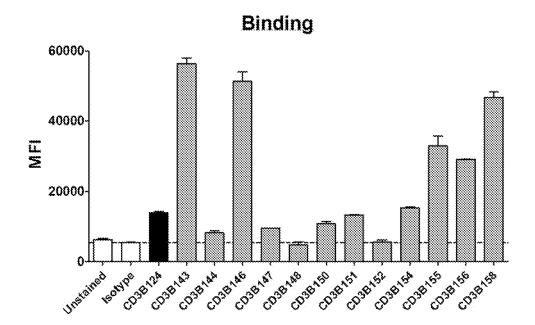


Fig. 15.

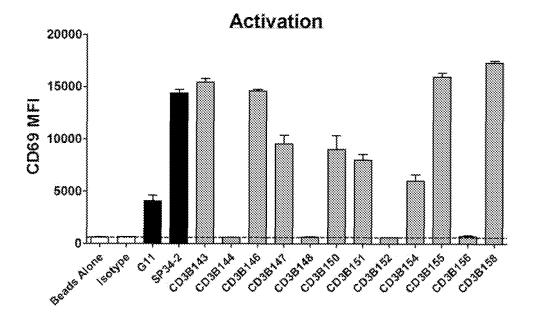


Fig. 16.

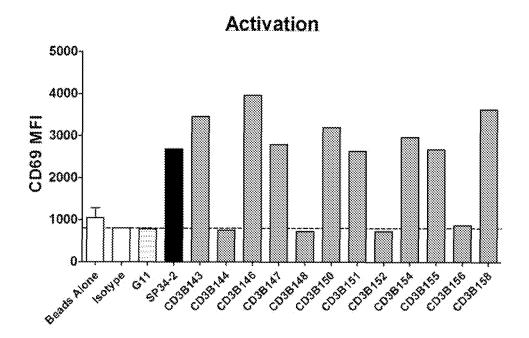
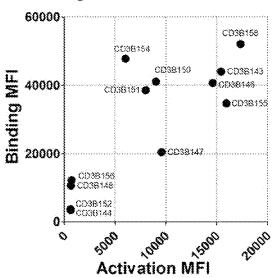



Figure 17

A) Human

Binding Vs Activation - Human

B) Cynomolgous monkey

Binding Vs Activation - Cyno

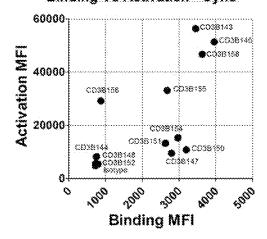
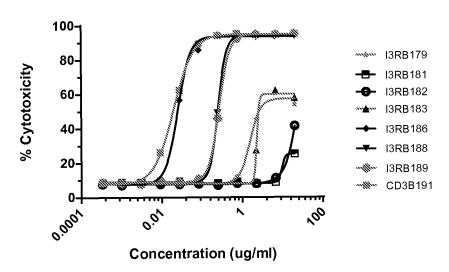



Figure 18.

A) MV4-11, donor M6587

IgG1 MV4-11 +Fc Blocker (48hrs) Donor ID:M6587

B) MV4-11, donor M7020

IgG1 MV4-11 +Fc Blocker (48hrs) Donor ID:M7020

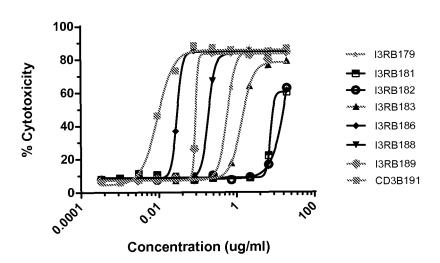
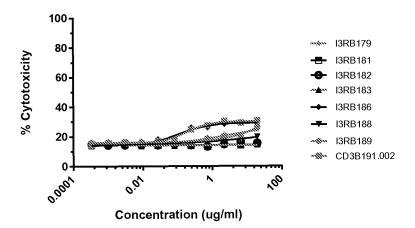



Figure 19.

A) OCI-M2, Donor M6587

IgG1 OCI-M2 +Fc Blocker (48hrs) Donor ID:M6587

B) OCI-M2, Donor M7020

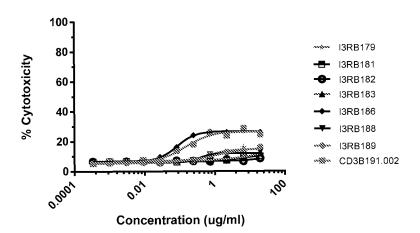
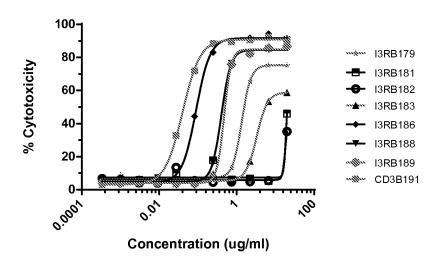
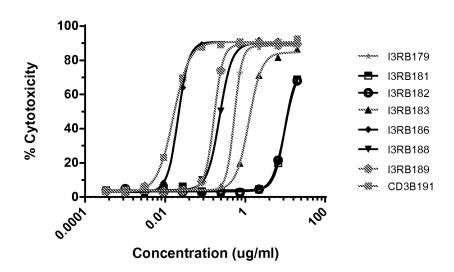



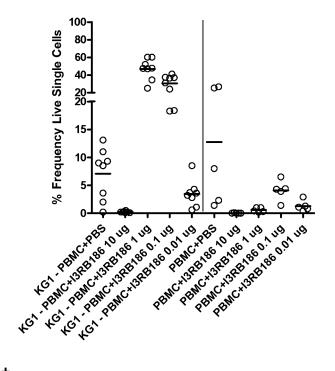
Figure 20.


A) OCI-AML cell line Donor M6587

IgG1 OCI-AML5 +Fc Blocker (48hrs) Donor ID:M6587

B) OCI-AML cell line Donor 7020

IgG1 OCI-AML5 +Fc Blocker (48hrs) Donor ID:M7020



KG1 - PBMC+I3RB186 0.01 ug KG1 - PBMC+I3RB186 0.1 ug KG1 - PBMC+I3RB186 10 ug KG1 - PBMC+I3RB186 1 ug KG1 - 13RB186 0.01 ug KG1 - I3RB186 0.1 ug KG1 - 13RB186 10 ug KG1 - I3RB186 1 ug KG1 - PBMC+PBS KG1 - PBS 31 34 37 41 45 49 52 55 58 62 66 70 73 76 80 83 Day Post-tumor Implantation 1500-1000 Mean Tumor Volume (mm 3 , $\pm \text{SEM}$)

Ξ̈́

Figure 22.

A) CD45+

B) CD8+/CD4+

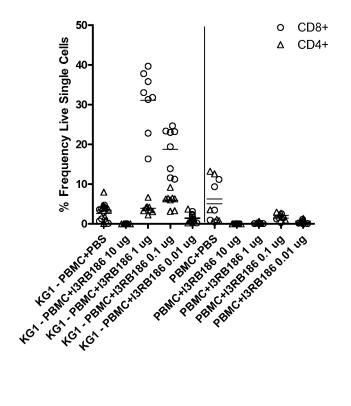
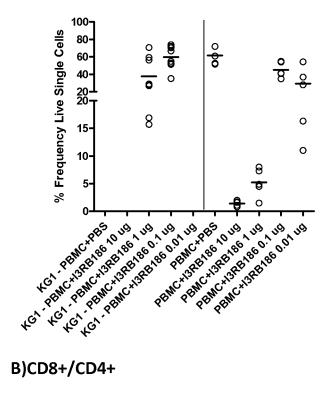
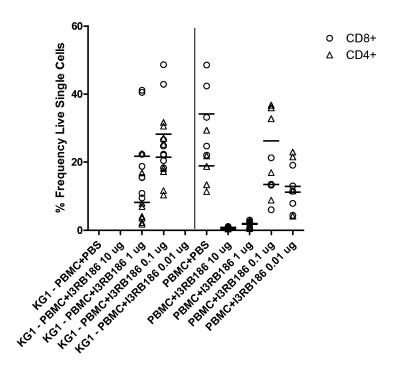




Figure 23.

A)CD45+

B)CD8+/CD4+

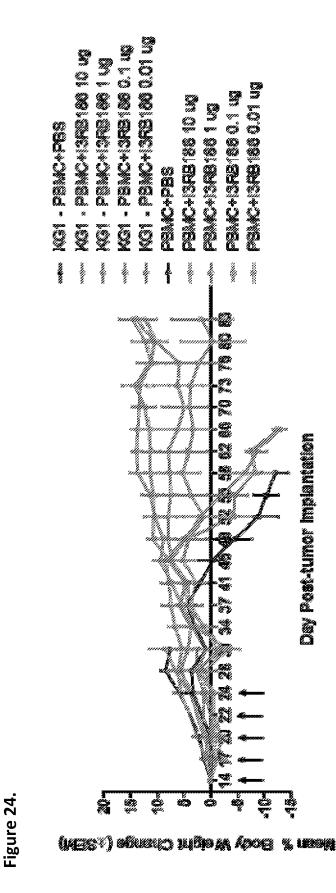


Figure 25.

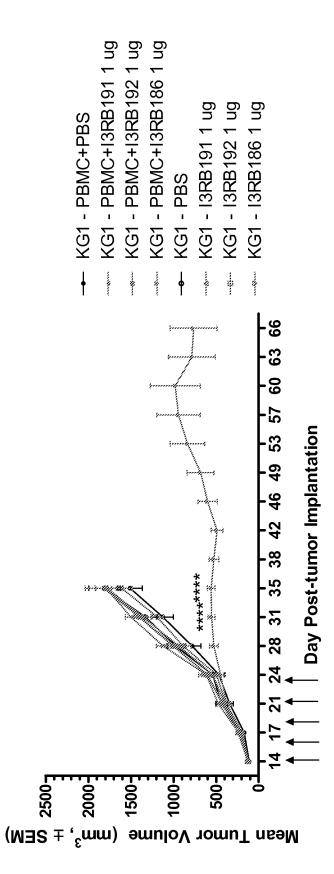
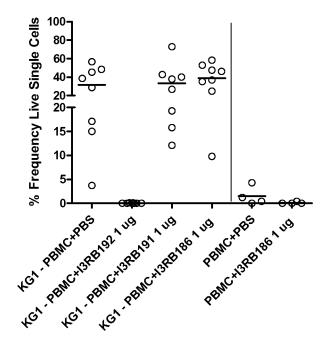
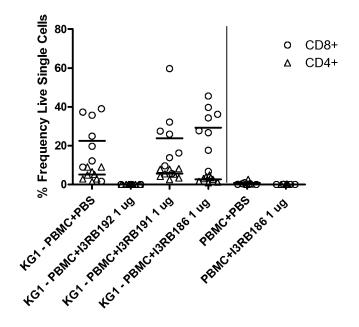
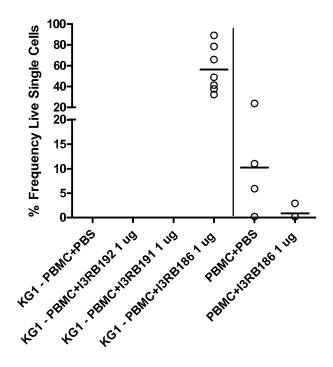
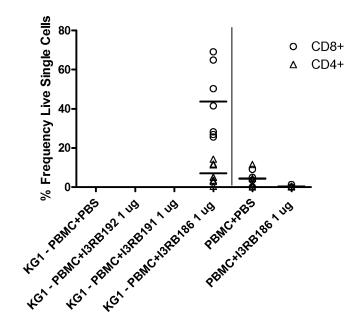
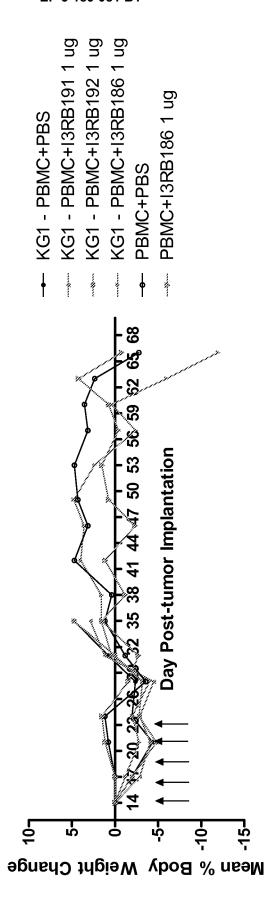



Figure 26.

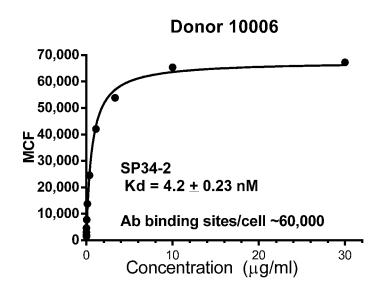
A. CD45 +

B. CD8+/CD4+


Figure 27.

A) CD45 +


B) CD8+/CD4+

309

Figure 29.

B)

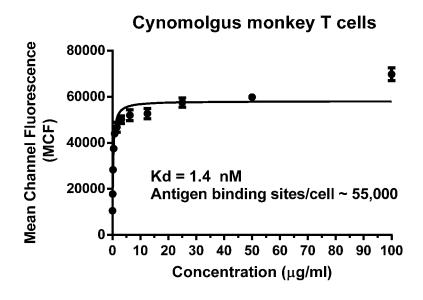
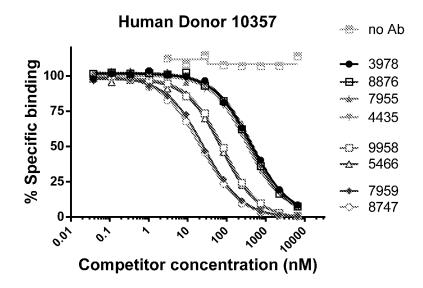



Figure 30.

B)

Cynomolgus monkey T cells

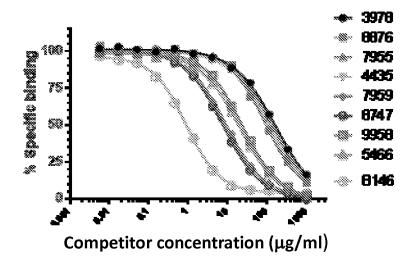
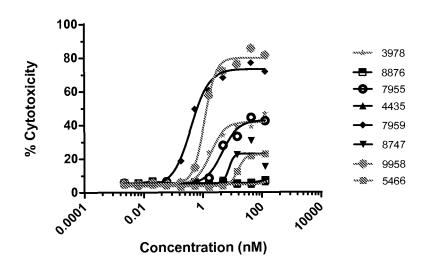



Figure 31.

IgG4-PAA OCI-AML5 +Fc Blocker (48hrs) Donor ID:M6948

IgG4-PAA
OCI-AML5 +Fc Blocker (48hrs)
Donor ID:M6521

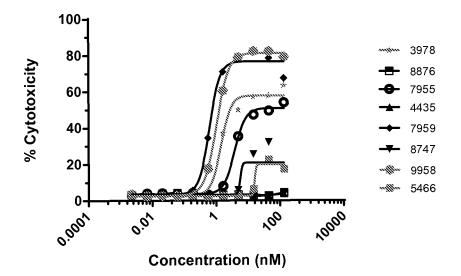
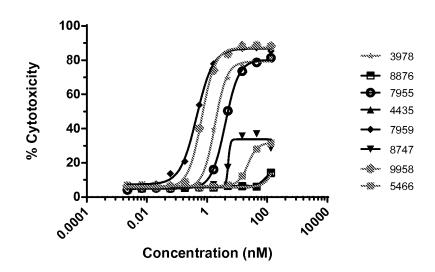
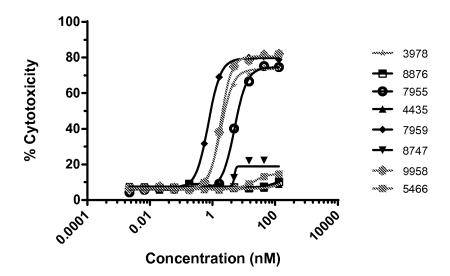
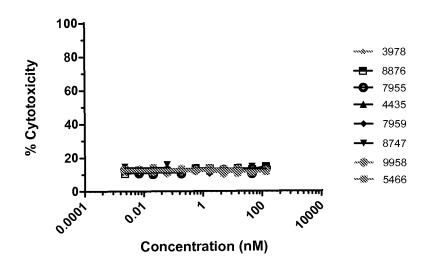
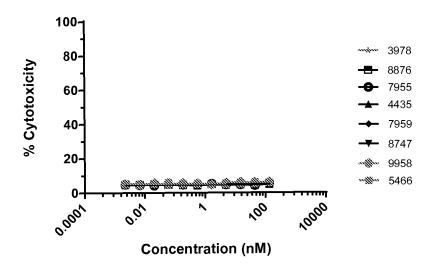
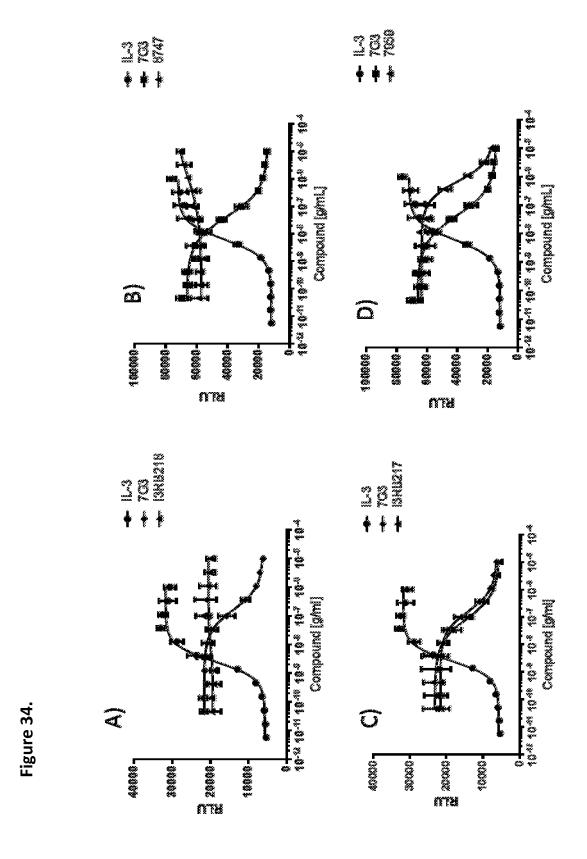
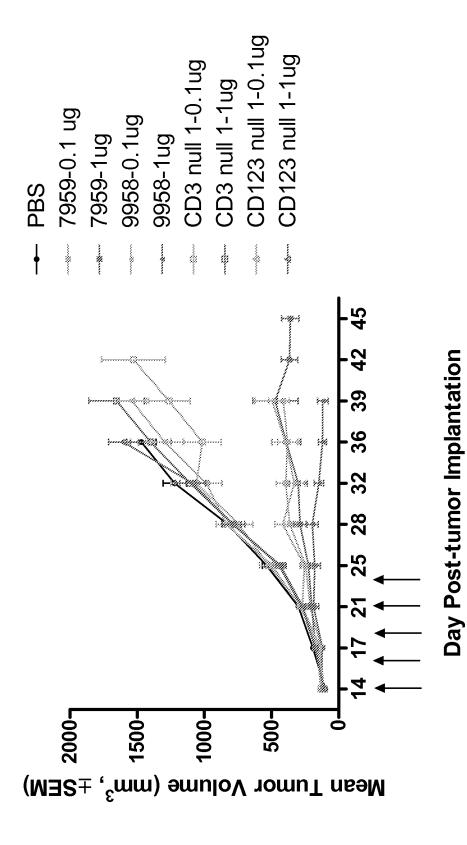



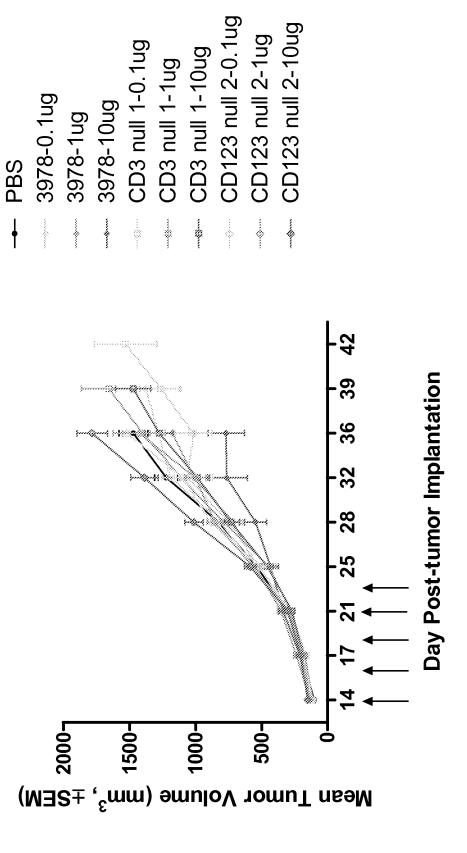
Figure 32.

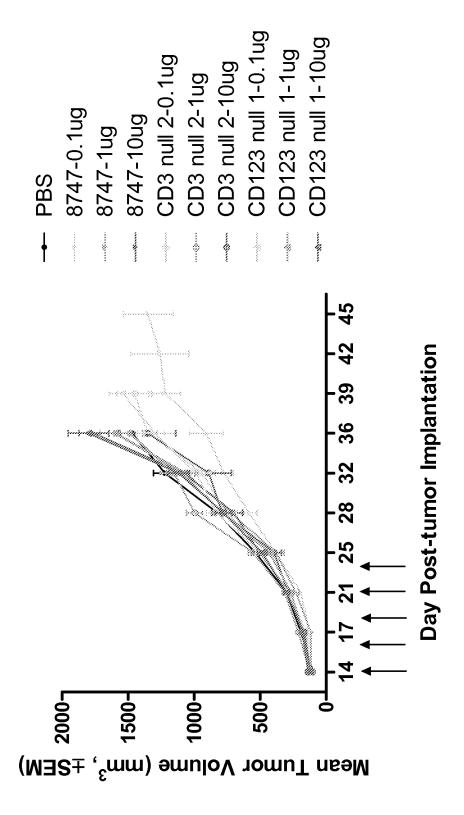
IgG4-PAA KG-1 +Fc Blocker (48hrs) Donor ID:M6948

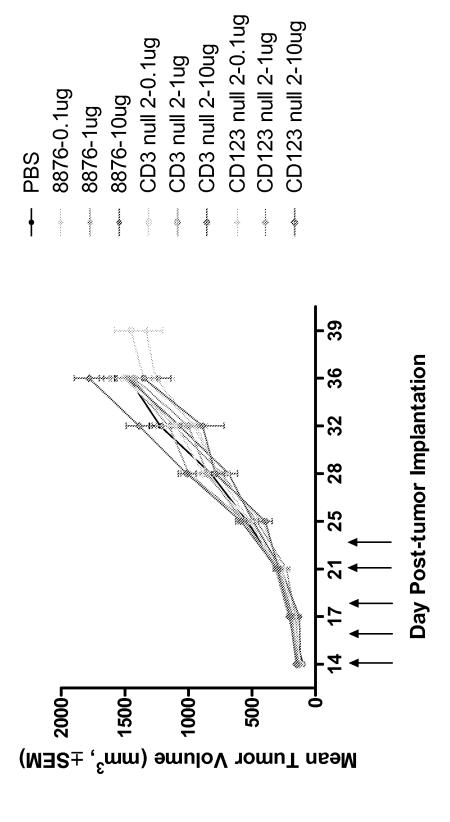




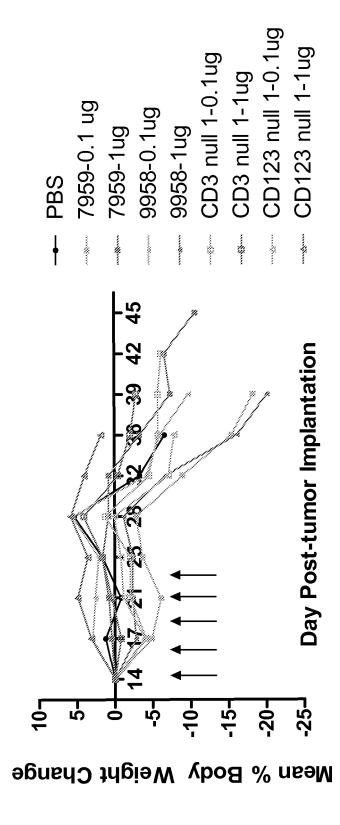

Figure 33.

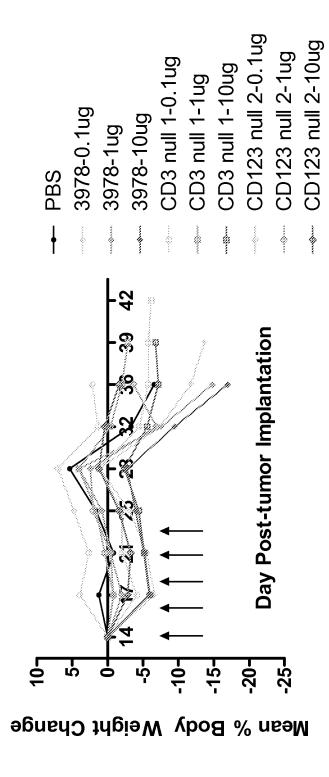












320

Figure 39.

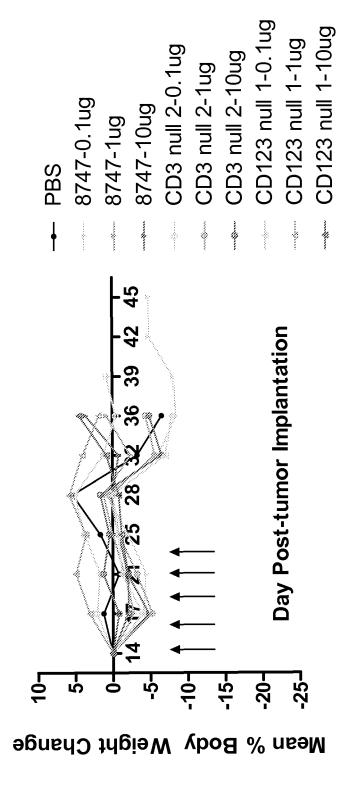


Figure 41.

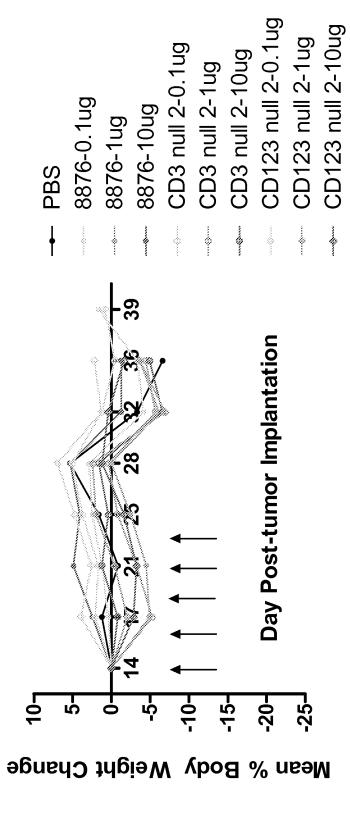
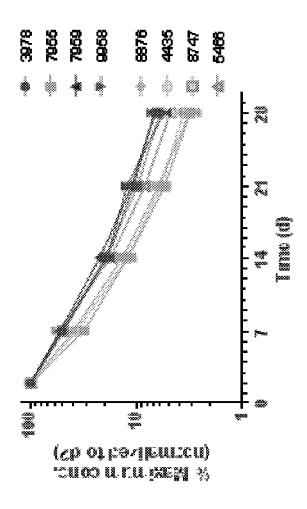



Figure 42.

EP 3 189 081 B1

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- EP 2426148 A1 [0004]
- WO 2007059782 A **[0066]**
- US 6737056 B [0159]
- WO 2006028936 A [0210]
- US 20100015133 A [0211]
- US 20090182127 A [0211]
- US 2010028637 A [0211]
- US 20110123532 A [0211]

- US 20120149876 A [0211]
- US 20130195849 A [0211]
- WO 2011131746 A [0212] [0314]
- US 6670127 B [0244] [0299]
- US 6521427 B [0244] [0299]
- WO 2009085462 A [0247]
- US 6177078 B1 [0257]
- US 5929212 A [0305]

Non-patent literature cited in the description

- PESSANO, S. et al. EMBO J., 1995, vol. 4, 337-344
 [0039]
- K.R. ABHINANDAN; A. C. MARTIN. Mol. Immunol., 2008, vol. 45, 3832-3839 [0052] [0296]
- E. MEYERS; W. MILLER. Comput. Appl. Biosci, 1988, vol. 4, 11-17 [0059]
- NEEDLEMAN; WUNSCH. J. Mol. Biol., 1970, vol. 48, 444-453 [0059]
- WARD et al. Nature, 1989, vol. 341, 544-546 [0066]
- HOLT et al. Trends Biotechnol., November 2003, vol. 21 (11), 484-90 [0066]
- REVETS et al. Expert Opin Biol Ther., January 2005, vol. 5 (1), 111-24 [0066]
- PNAS USA, 1993, vol. 90 (14), 6444-8 **[0078]**
- OKAYAMA; BERG. Mol. Cell. Biol., 1983, vol. 3, 280
 [0147]
- GADI et al. Gene Ther., 2000, vol. 7, 1738-1743 [0150]
- CLINE. Pharmac. Ther., 1985, vol. 29, 69-92 [0152]
- KONNO et al. Cytotechnology, 2012, vol. 64, 249-65 [0158]
- SHIELDS et al. *J Biol Chem*, 2002, vol. 277, 26733-26740 [0158]
- OLIVIER et al. MAbs, 2010, vol. 2 (4 [0158]
- SHINKAWA et al. J Biol Chem, 2003, vol. 278, 3466-3473 [0158]
- MORI et al. Biotechnol Bioeng, 2004, vol. 88, 901-908 [0158]
- FERRARA et al. J Biol Chem, 2006, vol. 281, 5032-5036 [0158]

- FERRARA et al. Biotechnol Bioeng, 2006, vol. 93, 851-861 [0158]
- XHOU et al. *Biotechnol Bioeng*, 2008, vol. 99, 652-65 [0158]
- CHAMES; BATY. Curr Opin Drug Disc Dev, 2009, vol. 12, 276 [0199]
- SHI, L. et al. *J Mol Biol*, 2010, vol. 397 (2), 385-396 [0247]
- ROTHE et al. J. Mol. Biol., 2008, vol. 376, 1182-1200 [0247]
- STEIDL et al. Mol. Immunol., 2008, vol. 46, 135-144
 [0247]
- HAMURO et al. J. Biomol. Techniques, 2003, vol. 14, 171-182 [0273]
- HORN et al. Biochemistry, 2006, vol. 45, 8488-8498
 [0273]
- BROUGHTON et al. Cell Rep., 2014, vol. 8, 410-419
 [0281]
- Acta Crystallogr., 1994, vol. D50, 760-763 [0286]
- EMSLEY P; COWTAN K. Acta Crystallogr., 2004,
 vol. D60, 2126-2132 [0286]
- FRANSSON et al. JMB, 2010, vol. 398 (2), 214-31
 [0288]
- LASZLO, G. et al. BLOOD, 2014, vol. 123 (4), 554-561 [0319]
- ASHKENAZI A et al. PNAS, 1991, vol. 88, 10535
 [0353]
- TAM et al. MAbs, 2013, vol. 5 (3), 3987-405 [0380]