发明名称

通过将触头支架组合到开关联轴而具有沿径向运动的低压断路器

摘要

本发明涉及一种低压断路器，其中用于建立电流的接触杆(4)直接安装在用于驱动接触杆(4)的旋转开关轴(2)上。接触杆(4)安装在凹口(3)内以及通过接触压簧(10)提高接触杆(4)作用到连接母线(5)的接触面(9)上的压力。接触杆(4)与接触面(9)之间的电接触通过旋转所述开关轴(2)来建立。
1. 一种低压断路器，其包括一在外壳(1)内可绕其纵轴(11)旋转地安装的辊形体(2)，尤其是一开关轴，其中，

- 所述辊形体(2)具有一个或多个在该辊形体(2)的圆形横截面(K)上通过弦(S)确定的、设计为槽缝的凹口(3)，这些凹口分别用于容纳一个接触杆(4)，以及

- 通过所述辊形体(2)的旋转(D)建立所述接触杆(4)与该断路器的一个尤其上部连接母线(5)之间的连接。

2. 按照权利要求1所述的低压断路器，其特征为：所述接触杆(4)基本上平行于所述弦(S)和/或基本上沿切向地布置。

3. 按照权利要求1或2所述的低压断路器，其特征为：所述接触杆(4)在一个第一端(E1)通过一耦合销(7)与所述辊形体(2)连接。

4. 按照权利要求1至3中任一项所述的低压断路器，其特征为：所述接触杆(4)在一个第一端(E1)具有一电缆(8)，用于与一尤其是下部连接母线(6)连接。

5. 按照权利要求1至4中任一项所述的低压断路器，其特征为：所述接触杆(4)布置为使这些接触杆(4)在一个第二端(E2)从所述辊形体(2)的圆周伸出，以及当所述辊形体(2)旋转(D)时用于使接触杆(4)与所述尤其上部连接母线(5)建立电接触，当所述辊形体(2)反转时用于使接触杆(4)与所述连接母线(5)脱开电接触，当实施这两种转动时均规定所述接触杆(4)沿着所述上部连接母线(5)的接触面(9)滑动。

6. 按照权利要求1至5中任一项所述的低压断路器，其特征为：所述辊形体(2)在所述设计为槽缝的凹口(3)内设有一些用于分别安装至少一个弹簧(10)、尤其是接触压簧的安装孔(12)。

7. 按照权利要求6所述的低压断路器，其特征为：所述弹簧(10)设计为螺旋弹簧。
说明书

通过将触头支架组合到开关轴内而具有
沿径向接触运动的低压断路器

本发明涉及一种低压断路器，其包括一个在壳内可绕其纵轴旋转地安装的耦形体，尤其一开关轴。

在迄今已知的低压断路器中，运动的由一个触头支架组成的其中装有一些运动的接触杆的极单元，由一单独的开关轴驱动。在这里开关轴通常通过一耦合杆与运动的极单元连接。在断路器打开时，确保在运动的极单元与固定触头之间在接通状态所要求的接触压力是主要的问题。由于通常参与接通过程的零件数量众多，导致各公差的累加必须加以补偿。在这里所述的这些公差会造成不利的后果，以致需要将开关轴与运动的极单元连接的耦合杆具有可调性。

由于这一原因，开关轴迄今通常通过一可运动地支承的耦合杆与运动的极单元连接，亦即与具有接触杆的触头支架连接。在这里，将接触杆可旋转地安装在触头支架上，以及在接通状态下借助接触压簧增大接触杆在固定触头上的压力。接触压力的可调性或通过直接调整开关轴，亦即通过相对于固定触头移动开关轴的中点来实现，或通过一可调的耦合杆来实现。

在接触杆上的开关触头的运动曲线，基于触头支架的几何形状和接触杆的配置，在一个非常平缓的圆轨迹上延伸，以及可以近似地被看作直线的滑移运动。通过开关触头的这种运动曲线确定了这些有重要意义的测量参数，尤其是所述已接通的触头系统(通过加压造成的接触力)的测量参数，它们对于断路器、尤其在短路条件下的功能具有决定意义。为了达到必要的功能可靠性，借助上面已说明的调整件移动开关轴的中点或可调的耦合杆进行工作。按另一种方案，整个系统设计为在最不利的情况下仍具有足够的可靠性，也就是说此设备设计为超尺寸的(überdimensioniert)。

由 EP1218898 已知一种低压断路器，其包括一个开关箱和一个可运动的触头支架。在这里触头支架设置为可回转的并规定用于安装接触杆。一驱动装置和一将该驱动装置与触头支架连接起来的杠杆链，用于使触头支架绕支承点回转以便接通和断开断路器。
本发明的目的是将低压断路器设计为，能降低用于接触杆运动所需的结构方面的费用以及总体上改进断路器的特性。

此目的通过一种低压断路器达到，它包括一在外壳内可绕其纵轴旋转地安装的触形体，尤其一开关轴，其中，触形体具有一个或多个在该触形体的圆形横截面上通过斜线确定的、设计为槽缝的凹口，用于分别容纳一个接触杆，以及，通过触形体的旋转使所述接触杆与断路器的一个尤其上部连接母线连接。

本发明基于下列认识，在通过开关轴运动接触杆时，如在当今的断路器中那样通常要借助多个零件实现。这些零件公差的累加会对开关的效力带来负面的效果。由于这一原因，按照本发明建议了一种开关轴或一种可旋转地安装的触形体，它将开关轴的功能与触头支架的功能统一于一身。接触杆直接支承在可旋转地安装的触形体上。以此方式节省零件和减小公差。通过唯一地旋转触形体，将力直接传给接触杆，并建立接触杆与固定触头的连接，在本例中为与上部连接母线的连接。在这里避免了通过多个零件的力传递。通过取消迄今已知的方案中所使用的耦合杆和触头支架，使参与接通过程的零件的总公差范围明显减小。在这种情况下不再需要通过改变零件进行调整。

本发明另一项有利设计的特征在于，所述接触杆基本上平行于弦和/或基本上沿切向地布置。通过接触杆的这种有利的布置结构，使接触杆的运动曲线不再如好所直线滑移运动那样延伸，而是当触形体或开关轴旋转时具有一种明显的圆轨迹特征。在接通过程，亦即在触形体旋转期间，可旋转地安装在该触形体上的接触杆在某一个角度上与固定触头相遇。接触杆的切向布置保证建立一种良好的接触。

本发明的另一项有利设计的特征在于，所述接触杆在一个第一端通过耦合销与触形体连接和/或在该第一端具有电缆，用于与尤其下部连接母线连接。而通过与耦合销连接，实现接触杆的可运动性，即，在触形体旋转时或在开关轴旋转时，当接触杆与固定触头相遇时能在固定触头上无障碍地沿着固定触头滑动。除此之外，所述的可运动性与接触压簧相结合，对于在连接母线上所需要的接触压力具有有利的效果。用于固定所述的耦合销安装设在接触杆的下端，由此可以达到使接触杆具有尽可能大的运动能力。由于上面所说的原因，在接触杆的下端固定所述通向一个第二固定触头或通
向下部连接母线的电缆。

本发明的另一项有利设计的特征在于，将所述接触杆布置为，使接触杆在第二端从ในการ形体的圆周伸出，以及当Transactional旋转时用于与上部连接母线建立电接触，当Transactional反转时用于与上部连接母线脱开接触，当实施这两种转动时均规定接触杆在上部连接母线的接触面上沿着之滑动。通过接触杆在Transactional体内或在由开关轴与触头支架组成的组合内的暴露性和露出头的位置以及沿切向地布置，接触杆在与固定触头相遇后还继续旋转。因此，无论在断路器接通时还是在断开时导致接触杆的表面在固定触头上或在本实施例中在上部连接母线上滑动运动。通过此运动方式，在每个开关过程中净化两方的触头，从而导致延长电气使用寿命。

本发明另一项有利设计的特征在于，所述Transactional形体在所述设计为槽缝的凹口内设有一些用于分别安装至少一个弹簧，尤其是接触压簧的安装孔。通过将组合了开关轴和触头支架的Transactional形体也规定用于安装接触压簧，可以对于在断路器中的开关过程实现一种在结构上特别简单而有效的方案。这种方案只需少量零件，以及零件的减少又导致公差的极小化。

本发明另一项有利设计的特征在于，所述弹簧设计为螺旋弹簧。采用此有利的设计，以尽可能有效的方式产生或实现使接触杆压靠到固定触头或上部连接母线上的压力或力。

总之，按本发明的系统与迄今已知的方案相比具有下列优点：

由于省略了一些零件，尤其是耦合杆和触头支架，使得运动的质量较小并因而减少驱动装置所需要的弹簧储能。在这里，驱动装置在本发明中由Transactional的由开关轴和触头支架组成的复合体构成。在断开和闭合过程通过由于接触杆切向安装在Transactional形体上引起的接触元件或触头支支架明显的径向运动，而导致改善触头的自动净化效果。此外，开关轴和触头支架的一体化还导致在开关过程中特别明显的旋转运动，从而改善系统的灭弧特性，使得由于在触头分离后触头支架运动的上升特性曲线产生一个将电弧更迅速地导入灭弧箱内的优先方向，其结果是有可以缩短灭弧时间。通过减少零件数量，功能组“开关单元”的公差带明显变窄。可以取消专门的调整机机构。同样可以减小储能弹簧，因为不必采用超尺寸设计，因为所需零件的数量已减少到最小程度以及无需对公差进行补偿。

下面借助附图详细说明本发明。其中:
图1以横截面图表示一包括轭形体和接触杆的低压断路器；
图2表示外壳打开后一低压断路器的轭形体的俯视图；以及
图3用俯视图和横截面图表示一带有凹口的轭形体。

图1表示一低断路器, 它包括外壳1和一个可旋转地安装的轭形体2。开关具有上部连接母线5和下部连接母线6。下部连接母线6通过连接电缆8与接触杆4连接。接触杆4通过耦合销7固定在轭形体2上。接触杆4在上端E2通过接触压簧10支靠到轭形体2上。左图表示断路器处于打开位置。右图表示断路器处于闭合位置。在闭合位置，接触杆4通过轭形体2的旋转D与上部连接母线5的接触面9达到接触。由此形成开关的连接。

所述接触杆4处于轭形体2的凹口3内，凹口是槽缝状的以及在轭形体2的圆形横截面K上通过弦S确定。

通过轭形体2在图中沿顺时针方向的旋转运动D，接触杆4朝上部连接母线5的接触面9运动。在右图的接通或闭合状态下，通过接触压簧10提高了接触杆4在接触面9上的压力，使得形成可靠的连接。在接通和断开时，接触杆4完成一种准圆形运动，这导致接触杆4的表面沿着上部连接母线5的接触面9滑动。当打开开关时逆时针方向的旋转运动，同样导致接触杆4在接触面9上沿着它滑动。在接通和断开时这种作为径向运动的滑动引起摩擦，从而导致在每个开关过程对触头进行一次净化。

图2表示轭形体2以其纵轴11可旋转地安装在断路器的外壳1内。接触杆4通过耦合销7可运动地嵌装在凹口3内。凹口3设计成槽缝状，所以在凹口3的两侧保持轭形体2具有完整的圆形横截面K以及从侧面包围接触杆4。接触杆4的与借助于耦合销7的嵌装端位置相对的那一端E2从轭形体2的圆形横截面K伸出。接触杆4的该第二端E2处于一个与外壳1的上部连接母线5相同的高度上。在图的表示轭形体2的那一部分中没有表示带有上部和下部连接母线5、6的那半个外壳。为了实施轭形体2的旋转运动D，通过纵轴11施加一个力，此力直接传给接触杆4。在这里可以在轭形体2的凹口3内安装任意多个接触杆4。

图3用侧向俯视图和横截面图表示轭形体2, 它可以被看作是开关轴和触头支架的组合件。轭形体2具有一纵轴11和一些凹口3。这些凹口3在轭形体2的圆形横截面K内通过弦S确定。在凹口3的两侧所述轭形体2保持完整的圆周K, 所以凹口3通过材料隔板彼此隔开。凹口3用于安装
接触杆 4。在铝形体 2 的上部俯视图中表示出了用于安装接触压簧 10 的安装孔 12。

通过施加到纵轴 11 上的旋转运动，使整个铝形体 2 朝上部连接母线 5 运动，以及所述可运动地安装在凹口 3 内的接触杆 4 使触头闭合。

总之，本发明涉及一种低压断路器，其中用于建立电接触的接触杆 4 直接装在用于驱动接触杆 4 的铝形开关轴 2 上。接触杆 4 装在凹口 3 内以及通过接触压簧 10 提高接触杆 4 作用到连接母线 5 的接触面 9 上的压力。通过旋转开关轴 2 来建立接触杆 4 与所述接触面 9 之间的电接触。