

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number
WO 2014/093485 A1

(43) International Publication Date
19 June 2014 (19.06.2014)

(51) International Patent Classification:
C12N 15/82 (2006.01)

(21) International Application Number:
PCT/US2013/074379

(22) International Filing Date:
11 December 2013 (11.12.2013)

(25) Filing Language:
English

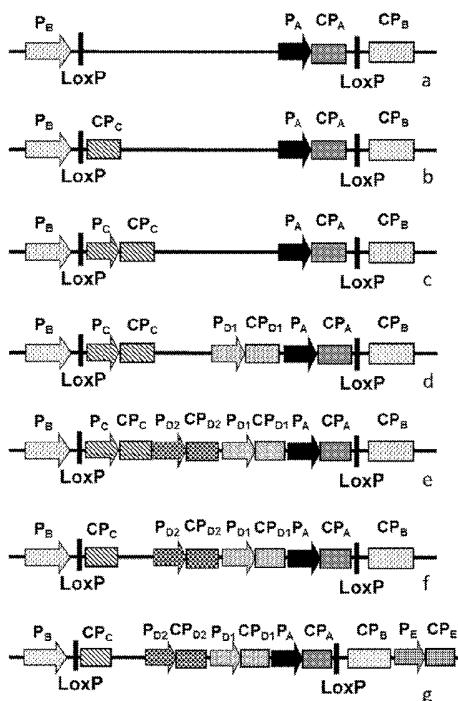
(26) Publication Language:
English

(30) Priority Data:
**61/736,947 13 December 2012 (13.12.2012) US
13/800,447 13 March 2013 (13.03.2013) US**

(71) Applicant: **PIONEER HI-BRED INTERNATIONAL, INC. [US/US]; 7100 N.W. 62nd Avenue, Johnston, Iowa 50131-1014 (US).**

(72) Inventors; and

(71) Applicants : **CHO, Myeong-Je [US/US]; c/o Pioneer Hi-Bred International, Inc., 7250 N.W. 62nd Avenue, Johnston, Iowa 50131-0552 (US). ELLIS, Samuel R. [US/US]; c/o Pioneer Hi-Bred International, Inc., 7250 N.W. 62nd**


Avenue, Johnston, Iowa 50131-0552 (US). **GORDON-KAMM, William J. [US/US]; c/o Pioneer Hi-Bred International, Inc., 7250 N.W. 62nd Avenue, Johnston, Iowa 50131-0552 (US). ZHAO, Zuo-Yu [US/US]; c/o Pioneer Hi-Bred International, Inc., 7250 N.W. 62nd Avenue, Johnston, Iowa 50131-0552 (US).**

(74) Agent: **LAPPEGARD, Kathryn K.; Pioneer Hi-Bred International, Inc., 7250 N.W. 62nd Avenue, Johnston, Iowa 50131-0552 (US).**

(81) Designated States (unless otherwise indicated, for every kind of national protection available): **AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.**

[Continued on next page]

(54) Title: **METHODS AND COMPOSITIONS FOR PRODUCING AND SELECTING TRANSGENIC PLANTS**

(57) Abstract: Compositions and methods are provided for the production and selection of transgenic plants and plant parts, for increasing the transformation frequency of a plant or plant part, and for regulating the expression of a transgene, such as a herbicide tolerance polynucleotide. The methods and compositions allow for the delay in the expression of herbicide tolerance polynucleotides until a point in development during which herbicide selection is more efficient. Compositions comprise polynucleotide constructs comprising an excision cassette that separates a transgene, such as a herbicide tolerance polynucleotide, from its promoter and host cells comprising the same. The excision cassette comprises a polynucleotide encoding a site-specific recombinase operably linked to an inducible promoter and expression of the recombinase leads to excision of the excision cassette and expression of the transgene.

FIG. 9

(84) Designated States (*unless otherwise indicated, for every kind of regional protection available*): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- *with sequence listing part of description (Rule 5.2(a))*

**METHODS AND COMPOSITIONS FOR PRODUCING AND SELECTING
TRANSGENIC PLANTS**

**REFERENCE TO A SEQUENCE LISTING SUBMITTED
AS A TEXT FILE VIA EFS-WEB**

5 The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing, created on March 12, 2013 and having a size of 308 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety.

10

FIELD OF THE INVENTION

The present invention relates to the genetic modification of plants. More particularly, the compositions and methods are directed to the production and selection of transgenic plants.

15

BACKGROUND OF THE INVENTION

Current genetic engineering technology allows for the production of transgenic plants with desired traits. In some instances, it is desirable to delay expression of a transgene until a certain developmental stage is reached or environmental condition is 20 encountered. Such transgenes can confer a desired trait or can serve as a selectable marker to aid in the identification of transgenic plants that have been successfully engineered with a polynucleotide of interest.

For example, herbicide tolerance polynucleotides, which encode polypeptides that confer tolerance to specific herbicides, can be introduced into a plant to generate a 25 herbicide tolerant plant and/or to serve as a selectable marker for the introduction of another polynucleotide of interest. Direct selection with herbicides, such as glyphosate and sulfonylureas, during early stages of transgenic plant production (i.e., tissue proliferation) has been relatively inefficient when transforming maize and sugarcane

(Experimental Example 1 and unpublished data). Larger clusters of maize cells may be less sensitive to herbicides such as glyphosate and some nontransgenic calli may still grow in the presence of the herbicide (Wang *et al.* (2009) *Handbook of Maize: Genetics and Genomics*, J.L. Bennetzen and S. Hake, eds., pp. 609-639). As observed in wheat, 5 however, selection at the stage of regeneration was more effective and escapes were rarely regenerated (Zhou *et al.* (1995) *Plant Cell Rep* 15:159-163; Hu *et al.* (2003) *Plant Cell Rep* 21:1010-1019).

Thus, methods and compositions are needed that allow for the delayed expression 10 of transgenes to reduce the potential for negative effects on transformed tissues, particularly during development. Such methods and compositions would be especially useful for delaying the expression of herbicide tolerance polynucleotides until a stage at which herbicide selection is more efficient.

BRIEF SUMMARY OF THE INVENTION

15 Compositions and methods are provided for the production and selection of transgenic plants and plant parts, for increasing the transformation frequency of a plant or plant part, and for regulating the expression of a transgene, such as a herbicide tolerance polynucleotide. The methods and compositions allow for the delay of the expression of a transgene (e.g., herbicide tolerance polynucleotide) by the presence and subsequent 20 excision of an excision cassette that separates the transgene (e.g., herbicide tolerance polynucleotide) from a promoter that drives its expression. Excision of the excision cassette is mediated by a site-specific recombinase, the expression of which is regulated by an inducible promoter, which results in the operable linkage of the transgene (e.g., herbicide tolerance polynucleotide) and its promoter and subsequent expression of the 25 transgene (e.g., herbicide tolerance polynucleotide). These methods and compositions are useful for delaying the expression of transgenes that might otherwise negatively affect the development or growth of a transformed tissue or plant.

The herbicide tolerance polynucleotide can serve as a means for imparting 30 herbicide tolerance to a plant or plant part and/or can function as a selectable marker, aiding in the identification of a transgenic plant or plant part comprising another

polynucleotide of interest or lacking a polynucleotide of interest that has been excised from the excision cassette. In some of these embodiments, the excision of the excision cassette and expression of the herbicide tolerance polynucleotide is delayed until after the tissue proliferation stage of transgenic plant production to allow for more efficient 5 herbicide selection.

In some embodiments, the inducible promoter regulating the expression of the recombinase, excision of the excision cassette, and expression of the herbicide tolerance polynucleotide is one that is induced by stress (e.g., cold temperatures, desiccation) or by a chemical (e.g., antibiotic, herbicide).

10 Compositions include polynucleotide constructs comprising a promoter that is active in a plant, a herbicide tolerance polynucleotide, and an excision cassette, wherein the excision cassette comprises an inducible promoter operably linked to a site-specific recombinase-encoding polynucleotide, and wherein excision of the excision cassette allows for the operable linkage of the promoter and the herbicide tolerance 15 polynucleotide. Host cells, such as plant cells, and plants and plant parts comprising the polynucleotide constructs are further provided.

The following embodiments are encompassed by the present invention.

1. A polynucleotide construct comprising:
 - a) an excision cassette comprising an expression cassette A (EC_A) 20 comprising:
 - i) a promoter A (P_A), wherein said P_A is an inducible promoter; and
 - ii) a coding polynucleotide A (CP_A) encoding a site-specific recombinase;
 - 25 wherein said P_A is operably linked to said CP_A; and wherein said excision cassette is flanked by a first and a second recombination site, wherein said first and said second recombination sites are recombinogenic with respect to one another and are directly repeated, and wherein said site-specific recombinase can recognize and implement recombination at said first and said second 30 recombination sites; thereby excising said excision cassette;

- b) a coding polynucleotide B (CP_B) encoding a herbicide tolerance polypeptide; and
- c) a promoter B (P_B), wherein said P_B is operably linked to said CP_B after excision of said excision cassette;

5 wherein said P_A and P_B are active in a plant cell.

2. The polynucleotide construct of embodiment 1, wherein said inducible promoter is selected from the group consisting of a stress-inducible promoter and a chemical-inducible promoter.

10 3. The polynucleotide construct of embodiment 2, wherein said chemical-inducible promoter comprises a promoter comprising a tet operator.

15 4. The polynucleotide construct of embodiment 3, wherein said polynucleotide construct further comprises a coding polynucleotide F (CP_F) encoding a sulfonylurea-responsive transcriptional repressor protein, wherein said CP_F is operably linked to a promoter active in a plant cell.

5. The polynucleotide construct of embodiment 2, wherein said stress-inducible promoter can be induced in response to cold, drought, high salinity, desiccation, or a combination thereof.

20 6. The polynucleotide construct of embodiment 2 or 5, wherein said stress-inducible promoter is a maize *rab17* promoter or an active variant or fragment thereof.

7. The polynucleotide construct of any one of embodiments 2, 5 and 6, wherein said stress-inducible promoter has a nucleotide sequence selected from the group consisting of:

- a) the nucleotide sequence having the sequence set forth in SEQ ID NO: 18;
- b) a nucleotide sequence having at least 70% sequence identity to the sequence set forth in SEQ ID NO: 18;

- c) a nucleotide sequence comprising at least 50 contiguous nucleotides of the sequence set forth in SEQ ID NO: 18;
- d) the nucleotide sequence set forth in nucleotides 291-430 of SEQ ID NO: 18; and
- e) a nucleotide sequence having at least 70% sequence identity to the sequence set forth in nucleotides 291-430 of SEQ ID NO: 18.

8. The polynucleotide construct of embodiment 6 or 7, wherein said EC_A further comprises an attachment B (attB) site between said stress-inducible promoter and
10 said CP_A.

9. The polynucleotide construct of embodiment 8, wherein said attB site has a nucleotide sequence selected from the group consisting of:

15 a) a nucleotide sequence having at least 70% sequence identity to the sequence set forth in SEQ ID NO: 20; and

b) the nucleotide sequence set forth in SEQ ID NO: 20.

10. The polynucleotide construct of any one of embodiments 1-9, wherein said site-specific recombinase is selected from the group consisting of FLP, Cre, S-CRE, V-
20 CRE, Dre, SSV1, lambda Int, phi C31 Int, HK022, R, Gin, Tn1721, CinH, ParA, Tn5053, Bxb1, TP907-1, and U153.

11. The polynucleotide construct of any one of embodiments 1-10, wherein said CP_A has the nucleotide sequence selected from the group consisting of:

25 a) the nucleotide sequence set forth in SEQ ID NO: 33 or 35;
 b) a nucleotide sequence having at least 70% sequence identity to
SEQ ID NO: 33 or 35;
 c) a nucleotide sequence encoding a polypeptide having the amino
acid sequence set forth in SEQ ID NO: 34 or 36; and

d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 34 or 36.

12. The polynucleotide construct of any one of embodiments 1-11, wherein P_B 5 is a constitutive promoter.

13. The polynucleotide construct of embodiment 12, wherein said P_B is selected from the group consisting of a ubiquitin promoter, an oleosin promoter, an actin promoter, and a *Mirabilis* mosaic virus (MMV) promoter.

10

14. The polynucleotide construct of any one of embodiments 1-13, wherein said excision cassette further comprises a coding polynucleotide C (CP_C) encoding a selectable marker, wherein said CP_C is operably linked to a promoter active in a plant cell.

15

15. The polynucleotide construct of embodiment 14, wherein said CP_C is operably linked to P_B before excision of the excision cassette.

20

16. The polynucleotide construct of embodiment 14, wherein said excision cassette further comprises a promoter C (P_C), wherein P_C is operably linked to said CP_C.

17. The polynucleotide construct of embodiment 16, wherein said P_C is a constitutive promoter.

25

18. The polynucleotide construct of embodiment 17, wherein said P_C is selected from the group consisting of an ubiquitin promoter, an oleosin promoter, an actin promoter, and a *Mirabilis* mosaic virus (MMV) promoter.

30

19. The polynucleotide construct of any one of embodiments 14-18, wherein said selectable marker is selected from the group consisting of a fluorescent protein, an

antibiotic resistance polypeptide, a herbicide tolerance polypeptide, and a metabolic enzyme.

20. The polynucleotide construct of embodiment 19, wherein said fluorescent protein is selected from the group consisting of a yellow fluorescent protein, a red fluorescent protein, a cyan fluorescent protein, and a green fluorescent protein.

5 21. The polynucleotide construct of embodiment 19, wherein said fluorescent protein comprises a *Discosoma* red fluorescent protein.

10

22. The polynucleotide construct of embodiment 19, wherein said antibiotic resistance polypeptide comprises a neomycin phosphotransferase II.

15

23. The polynucleotide construct of embodiment 19, wherein said herbicide tolerance polypeptide encoded by CP_C comprises a phosphinothricin acetyl transferase.

24. The polynucleotide construct of embodiment 19, wherein said metabolic enzyme comprises a phosphomannose isomerase.

20

25. The polynucleotide construct of any one of embodiments 14-24, wherein said excision cassette comprises more than one polynucleotide encoding a distinct selectable marker, wherein said polynucleotide encoding a selectable marker is operably linked to a promoter active in a plant cell.

25

26. The polynucleotide construct of embodiment 25, wherein said excision cassette comprises at least a first and a second polynucleotide encoding a selectable marker, wherein said first polynucleotide encodes a yellow fluorescent protein, and wherein said second polynucleotide encodes a phosphinothricin acetyl transferase or a neomycin phosphotransferase II.

30

27. The polynucleotide construct of any one of embodiments 1-26, wherein
said herbicide tolerance polypeptide encoded by CP_B confers tolerance to a herbicide
selected from the group consisting of glyphosate, an ALS inhibitor, an acetyl Co-A
carboxylase inhibitor, a synthetic auxin, a protoporphyrinogen oxidase (PPO) inhibitor
5 herbicide, a pigment synthesis inhibitor herbicide, a phosphinothricin acetyltransferase, a
phytoene desaturase inhibitor, a glutamine synthase inhibitor, a
hydroxyphenylpyruvatedioxygenase inhibitor, and a protoporphyrinogen oxidase
inhibitor.

10 28. The polynucleotide construct of embodiment 27, wherein said ALS
inhibitor is selected from the group consisting of a sulfonylurea, a triazolopyrimidine, a
pyrimidinyloxy(thio)benzoate, an imidazolinone, and a
sulfonylaminocarbonyltriazolinone.

15 29. The polynucleotide construct of any one of embodiments 1-28, wherein
said herbicide tolerance polypeptide encoded by CP_B comprises a glyphosate-N-
acetyltransferase (GLYAT) polypeptide or an ALS inhibitor-tolerance polypeptide.

30. The polynucleotide construct of embodiment 29, wherein said
20 polynucleotide encoding said GLYAT polypeptide has a nucleotide sequence selected
from the group consisting of:
a) the nucleotide sequence set forth in SEQ ID NO: 47 or 49;
b) a nucleotide sequence having at least 95% sequence identity to
SEQ ID NO: 47 or 49;
c) a nucleotide sequence encoding a polypeptide having the amino
acid sequence set forth in SEQ ID NO: 48 or 50; and
d) a nucleotide sequence encoding a polypeptide having an amino
acid sequence having at least 95% sequence identity to SEQ ID NO: 48 or 50.

31. The polynucleotide construct of embodiment 29, wherein said ALS inhibitor-tolerance polypeptide comprises the highly resistant ALS (HRA) mutation of acetolactate synthase.

5 32. The polynucleotide constructs of any one of embodiments 1-31, wherein said polynucleotide construct comprises more than one polynucleotide encoding a distinct herbicide tolerance polypeptide, wherein the polynucleotide encoding a herbicide tolerance polypeptide is operably linked to a promoter active in a plant cell.

10 33. The polynucleotide construct of embodiment 32, wherein said polynucleotide construct comprises at least a first and a second polynucleotide encoding a herbicide tolerance polypeptide, wherein said first polynucleotide encodes an ALS inhibitor-tolerance polypeptide and wherein said second polynucleotide encodes a GLYAT polypeptide.

15 34. The polynucleotide construct of any one of embodiments 1-33, wherein said excision cassette further comprises a coding polynucleotide D (CP_D) encoding a cell proliferation factor, wherein said CP_D is operably linked to a promoter active in a plant cell.

20 35. The polynucleotide construct of embodiment 34, wherein said cell proliferation factor is selected from the group consisting of a Lec1 polypeptide, a Kn1 polypeptide, a WUSCHEL polypeptide, a Zwille polypeptide, a babyboom polypeptide, an Aintegumenta polypeptide (ANT), a FUS3 polypeptide, a Kn1 polypeptide, a STM polypeptide, an OSH1 polypeptide, and a SbH1 polypeptide.

25 36. The polynucleotide construct of embodiment 35, wherein said cell proliferation factor is selected from the group consisting of a WUSCHEL polypeptide and a babyboom polypeptide.

37. The polynucleotide construct of any one of embodiments 34-36, wherein said babyboom polypeptide comprises at least two AP2 domains and at least one of the following amino acid sequences:

5 a) the amino acid sequence set forth in SEQ ID NO: 67 or an amino acid sequence that differs from the amino acid sequence set forth in SEQ ID NO: 67 by one amino acid; and

b) the amino acid sequence set forth in SEQ ID NO: 68 or an amino acid sequence that differs from the amino acid sequence set forth in SEQ ID NO: 68 by one amino acid.

10

38. The polynucleotide construct of any one of embodiments 34-36, wherein said CP_D has a nucleotide sequence selected from the group consisting of:

a) the nucleotide sequence set forth in SEQ ID NO: 55, 57, 58, 60, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 99, or 101;

15

b) a nucleotide sequence having at least 70% sequence identity to SEQ ID NO: 55, 57, 58, 60, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 99, or 101;

c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 56, 59, 75, 77, 79, 81, 83, 85, 89, 91, 93, 95, 97, 20 100, or 102; and

d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 56, 59, 75, 77, 79, 81, 83, 85, 89, 91, 93, 95, 97, 100, or 102.

25

39. The polynucleotide construct of any one of embodiments 34-38, wherein said excision cassette further comprises a promoter D (P_D) operably linked to said CP_D.

40. The polynucleotide construct of embodiment 39, wherein said P_D is a constitutive promoter.

30

41. The polynucleotide construct of embodiment 40, wherein said P_D is a ubiquitin promoter or an oleosin promoter.

42. The polynucleotide construct of any one of embodiments 36-41, wherein
5 said excision cassette comprises more than one coding polynucleotide D (CP_D) encoding a distinct cell proliferation factor, wherein the CP_D is operably linked to a promoter active in a plant cell.

43. The polynucleotide construct of embodiment 42, wherein said excision cassette comprises at least a first coding polynucleotide D (CP_{D1}) encoding a babyboom
10 polypeptide and a second coding polynucleotide D (CP_{D2}) encoding a WUSCHEL polypeptide.

44. The polynucleotide construct of any one of embodiments 35, 36, 42, and
15 43, wherein said polynucleotide encoding a WUSCHEL polypeptide has a nucleotide sequence selected from the group consisting of:

a) the nucleotide sequence set forth in SEQ ID NO: 103, 105, 107, or 109; and

b) a nucleotide sequence having at least 70% sequence identity to SEQ ID NO: 103, 105, 107, or 109;

20 c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 104, 106, 108, or 110; and

d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 104, 106, 108, or 110.

25

45. The polynucleotide construct of any one of embodiments 35, 36, 42, 43, and 44, wherein said polynucleotide encoding a WUSCHEL polypeptide is operably linked to a maize In2-2 promoter or a nopaline synthase promoter.

46. The polynucleotide construct of any one of embodiments 1-45, wherein said polynucleotide construct further comprises a coding polynucleotide E (CP_E) encoding a polypeptide of interest, wherein said CP_E is operably linked to a promoter active in a plant cell.

5

47. The polynucleotide construct of embodiment 46, wherein said excision cassette comprises said CP_E.

48. The polynucleotide construct of embodiment 46, wherein said CP_E is 10 outside of the excision cassette.

49. The polynucleotide construct of any one of embodiments 46-48, wherein said polynucleotide construct further comprises a promoter E (P_E) operably linked to said CP_E.

15

50. The polynucleotide construct of embodiment 1, wherein said polynucleotide construct comprises:

- a) a first ubiquitin promoter;
- b) an excision cassette flanked by loxP recombination sites that are

20 are recombinogenic with respect to one another and are directly repeated, wherein said excision cassette comprises:

- i) a polynucleotide encoding a phosphinothricin acetyl transferase (PAT) or a neomycin phosphotransferase II (NPTII);
- ii) a second ubiquitin promoter;
- iii) a polynucleotide encoding a yellow fluorescent protein;
- iv) a promoter comprising a maize *rab17* promoter and an attachment B (attB) site;
- v) a polynucleotide encoding a CRE recombinase;
- vi) a nopaline synthase promoter;
- vii) a polynucleotide encoding a maize Wuschel 2 polypeptide;

- viii) a third ubiquitin promoter; and
- ix) a babyboom polynucleotide; and
- c) a GLYAT polynucleotide;

wherein said first ubiquitin promoter is operably linked to said polynucleotide
5 encoding said PAT or NPTII and wherein said first ubiquitin promoter is operably linked
to said GLYAT polynucleotide upon excision of said excision cassette;

wherein said second ubiquitin promoter is operably linked to said polynucleotide
encoding said yellow fluorescent protein;

wherein said promoter comprising said maize *rab17* promoter and said attB site is
10 operably linked to said polynucleotide encoding said CRE recombinase;

wherein said nopaline synthase promoter is operably linked to said polynucleotide
encoding said maize Wuschel 2 polypeptide;

and wherein said third ubiquitin promoter is operably linked to said babyboom
polynucleotide.

15

51. The polynucleotide construct of embodiment 1, wherein said
polynucleotide construct comprises:

- a) a ubiquitin promoter;
- b) an excision cassette flanked by loxP recombination sites that are
20 are recombinogenic with respect to one another and are directly repeated, wherein said
excision cassette comprises:
 - i) a polynucleotide encoding a *Discosoma* red fluorescent
protein;
 - ii) a promoter comprising a maize *rab17* promoter and an
attachment B (attB) site; and
 - iii) a polynucleotide encoding a CRE recombinase; and
- c) a GLYAT polynucleotide;

wherein said ubiquitin promoter is operably linked to said polynucleotide
encoding said *Discosoma* red fluorescent protein and wherein said ubiquitin promoter is

operably linked to said GLYAT polynucleotide upon excision of said excision cassette; and

wherein said promoter comprising said maize *rab17* promoter and said attB site is operably linked to said polynucleotide encoding said CRE recombinase.

5

52. The polynucleotide construct of embodiment 1, wherein said polynucleotide construct comprises:

- a) a ubiquitin promoter;
- b) an excision cassette flanked by loxP recombination sites that are

10 are recombinogenic with respect to one another and are directly repeated, wherein said excision cassette comprises:

- i) an actin promoter;
- ii) a polynucleotide encoding a *Discosoma* red fluorescent

protein;

15 iii) a promoter comprising a maize *rab17* promoter and an attachment B (attB) site; and

- iv) a polynucleotide encoding a CRE recombinase; and

- c) a GLYAT polynucleotide;

wherein said ubiquitin promoter is operably linked to said GLYAT polynucleotide 20 upon excision of said excision cassette;

wherein said actin promoter is operably linked to said polynucleotide encoding said *Discosoma* red fluorescent protein; and

wherein said promoter comprising said maize *rab17* promoter and said attB site is operably linked to said polynucleotide encoding said CRE recombinase.

25

53. A host cell comprising the polynucleotide construct of any one of embodiments 1-52.

30 54. A plant cell comprising the polynucleotide construct of any one of embodiments 1-52.

55. A plant or plant part comprising said plant cell of embodiment 54.

56. The plant or plant part of embodiment 55, wherein said plant or plant part
5 is a dicot.

57. The plant or plant part of embodiment 55, wherein said plant or plant part
is a monocot.

10 58. The plant or plant part of embodiment 57, wherein said monocot is
selected from the group consisting of maize, rice, sorghum, barley, wheat, millet, oat, rye,
triticale, sugarcane, switchgrass, and turf/forage grass.

15 59. The plant or plant part of any one of embodiments 55-58, wherein said
plant or plant part is recalcitrant.

60. The plant or plant part of embodiment 59, wherein said plant or plant part
is a sugarcane cultivar selected from the group consisting of CP96-1252, CP01-1372,
CPCL97-2730, HoCP85-845, CP89-2143, and KQ228.

20 61. The plant or plant part of any one of embodiments 55-60, wherein said
plant part is a seed.

62. A method for producing a transgenic plant or plant part, said method
25 comprising introducing said polynucleotide construct of any one of embodiments 1-52
into a plant or plant part.

63. A method for regulating the expression of a herbicide tolerance
polynucleotide, wherein said method comprises:

- a) providing the host cell of embodiment 53, the plant cell of embodiment 54, or the plant or plant part of any one of embodiments 55-61; and,
 - b) inducing the expression of said site-specific recombinase, thereby excising said excision cassette from said polynucleotide construct and expressing said 5 herbicide tolerance polynucleotide.

64. A method for selecting a herbicide tolerant plant cell, said method comprising the steps of:

- A) providing a population of plant cells, wherein at least one plant cell 10 in the population comprises a polynucleotide construct comprising:
 - a) an excision cassette comprising an expression cassette A (EC_A) comprising:
 - i) a promoter A (P_A), wherein said P_A is an inducible promoter; and
 - ii) a coding polynucleotide A (CP_A) encoding a site-specific recombinase;
 - wherein said P_A is operably linked to said CP_A;
 - b) a coding polynucleotide B (CP_B) encoding a herbicide tolerance polypeptide; and
 - c) a promoter B (P_B), wherein said P_B is operably linked to said CP_B after excision of said excision cassette;
- wherein said P_A and P_B are active in a plant cell; and
- wherein said excision cassette is flanked by a first and a second recombination site, wherein said first and said second recombination sites are recombinogenic with 20 respect to one another and are directly repeated, and wherein said site-specific recombinase can recognize and implement recombination at said first and said second recombination sites; thereby excising said excision cassette;
- B) inducing the expression of said site-specific recombinase; and

C) contacting said population of plant cells with a herbicide to which said herbicide tolerance polypeptide confers tolerance, thereby selecting for a plant cell having tolerance to said herbicide.

5 65. The method of embodiment 64, wherein said provided population of plant cells is cultured into a population of plant tissues or plants prior to, during, or after said step B), and wherein said step C) comprises contacting said population of plant tissues or plants with said herbicide.

10 66. The method of embodiment 65, wherein said step C) occurs during or after regeneration of said provided population of plant cells into a population of plants.

15 67. The method of embodiment 64, wherein said provided population of plant cells is a population of immature or mature seeds, wherein at least one immature or mature seed within said population of immature or mature seeds comprises said polynucleotide construct.

20 68. The method of embodiment 67, wherein said provided population of seeds is planted prior to, during, or after said step B) to produce a population of plants, and wherein said step C) comprises contacting said population of plants with said herbicide.

25 69. The method of embodiment 75, wherein said provided population of plant cells is a population of plant tissues, wherein at least one plant tissue within said population of plant tissues comprises said polynucleotide construct.

70. The method of embodiment 69, wherein said provided population of plant tissues is cultured into a population of plants prior to, during, or after said step B), and wherein said step C) comprises contacting said population of plants with said herbicide.

71. The method of embodiment 64, wherein said provided population of plant cells is a population of plants, wherein at least one plant within said population of plants comprises said polynucleotide construct.

5 72. The method of any one of embodiments 64-71, wherein said method further comprises introducing said polynucleotide construct into said at least one plant cell before step A).

10 73. The method of any one of embodiments 64-72, wherein said inducible promoter P_A is selected from the group consisting of a stress-inducible promoter and a chemical-inducible promoter.

74. The method of embodiment 73, wherein said chemical-inducible promoter comprises a promoter comprising a tet operator.

15 75. The method of embodiment 74, wherein said polynucleotide construct or said at least one plant cell further comprises a coding polynucleotide F (CP_F) encoding a sulfonylurea-responsive transcriptional repressor protein, wherein said CP_F is operably linked to a promoter active in a plant cell, and wherein said inducing comprises contacting said population of plant cells with a sulfonylurea compound.

76. The method of embodiment 73, wherein said stress-inducible promoter is induced in response to cold, drought, desiccation, high salinity, or a combination thereof.

25 77. The method of embodiment 73 or 76, wherein said stress-inducible promoter comprises a drought-inducible promoter, and wherein said inducing comprises desiccating said population of plant cells.

78. The method of embodiment 77, wherein said desiccating occurs during the maturation of an immature seed.

79. The method of embodiment 73, wherein said stress-inducible promoter is a maize *rab17* promoter or an active variant or fragment thereof.

80. The method of embodiment 73, wherein said stress-inducible promoter has a nucleotide sequence selected from the group consisting of:

- 5 a) the nucleotide sequence having the sequence set forth in SEQ ID NO: 18;
- b) a nucleotide sequence having at least 70% sequence identity to the sequence set forth in SEQ ID NO: 18;
- c) a nucleotide sequence comprising at least 50 contiguous 10 nucleotides of the sequence set forth in SEQ ID NO: 18;
- d) the nucleotide sequence set forth in nucleotides 291-430 of SEQ ID NO: 18; and
- e) a nucleotide sequence having at least 70% sequence identity to the sequence set forth in nucleotides 291-430 of SEQ ID NO: 18.

15

81. The method of embodiment 79 or 80, wherein said EC_A further comprises an attachment B (attB) site between said stress-inducible promoter and said CP_A.

82. The method of embodiment 81, wherein said attB site has a nucleotide 20 sequence selected from the group consisting of:

- a) a nucleotide sequence having at least 70% sequence identity to the sequence set forth in SEQ ID NO: 20; and
- b) the nucleotide sequence set forth in SEQ ID NO: 20.

25 83. The method of any one of embodiments 64-82, wherein said site-specific recombinase is selected from the group consisting of FLP, Cre, S-CRE, V-CRE, Dre, SSV1, lambda Int, phi C31 Int, HK022, R, Gin, Tn1721, CinH, ParA, Tn5053, Bxb1, TP907-1, and U153.

84. The method of any one of embodiments 64-83, wherein said CP_A has the nucleotide sequence selected from the group consisting of:

- a) the nucleotide sequence set forth in SEQ ID NO: 33 or 35;
- b) a nucleotide sequence having at least 70% sequence identity to SEQ ID NO: 33 or 35;
- c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 34 or 36; and
- d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 34 or 36.

10

85. The method of any one of embodiments 64-84, wherein P_B is a constitutive promoter.

86. The method of embodiment 85, wherein said P_B is selected from the group consisting of a ubiquitin promoter, an oleosin promoter, an actin promoter, and a *Mirabilis* mosaic virus promoter.

87. The method of any one of embodiments 64-86, wherein said excision cassette further comprises a coding polynucleotide C (CP_C), wherein said CP_C encodes a selectable marker, wherein said CP_C is operably linked to a promoter active in a plant cell, and wherein said method further comprises a selection step prior to step B), wherein those plant cells within said population of plant cells that comprise said selectable marker are identified and wherein these selected plant cells comprise the population of plant cells that are induced in step B).

25

88. The method of embodiment 87, wherein said CP_C is operably linked to P_B.

89. The method of embodiment 87, wherein said excision cassette further comprises a promoter C (P_C), wherein P_C is operably linked to said CP_C.

30

90. The method of embodiment 89, wherein P_C is a constitutive promoter.

91. The method of embodiment 90, wherein said P_C is selected from the group consisting of a ubiquitin promoter, an oleosin promoter, an actin promoter, and a 5 *Mirabilis* mosaic virus promoter.

92. The method of any one of embodiments 87-91, wherein said selectable marker is selected from the group consisting of a fluorescent protein, an antibiotic resistance polypeptide, a herbicide tolerance polypeptide, and a metabolic enzyme.

10

93. The method of embodiment 92, wherein said fluorescent protein is selected from the group consisting of a yellow fluorescent protein, a red fluorescent protein, a cyan fluorescent protein, and a green fluorescent protein.

15

94. The method of embodiment 92, wherein said fluorescent protein comprises a *Discosoma* red fluorescent protein.

95. The method of embodiment 92, wherein said antibiotic resistance polypeptide comprises a neomycin phosphotransferase II.

20

96. The method of embodiment 92, wherein said herbicide tolerance polypeptide encoded by CP_C comprises a phosphinothricin acetyl transferase.

25

97. The method of embodiment 92, wherein said metabolic enzyme comprises a phosphomannose isomerase.

30

98. The method of any one of embodiments 87-97, wherein said excision cassette comprises more than one polynucleotide encoding a distinct selectable marker, wherein said polynucleotide encoding a selectable marker is operably linked to a promoter active in a plant cell.

99. The method of embodiment 98, wherein said excision cassette comprises at least a first and a second polynucleotide encoding a selectable marker, wherein said first polynucleotide encodes a yellow fluorescent protein, and wherein said second 5 polynucleotide encodes a phosphinothricin acetyl transferase or a neomycin phosphotransferase II.

100. The method of any one of embodiments 64-99, wherein said herbicide tolerance polypeptide encoded by CP_B confers tolerance to a herbicide selected from the 10 group consisting of glyphosate, an ALS inhibitor, an acetyl Co-A carboxylase inhibitor, a synthetic auxin, a protoporphyrinogen oxidase (PPO) inhibitor herbicide, a pigment synthesis inhibitor herbicide, a phosphinothricin acetyltransferase, a phytoene desaturase inhibitor, a glutamine synthase inhibitor, a hydroxyphenylpyruvatedioxygenase inhibitor, and a protoporphyrinogen oxidase inhibitor.

15

101. The method of embodiment 100, wherein said ALS inhibitor is selected from the group consisting of a sulfonylurea, a triazolopyrimidine, a pyrimidinyloxy(thio)benzoate, an imidazolinone, and a sulfonylaminocarbonyltriazolinone.

20

102. The method of any one of embodiments 64-101, wherein said herbicide tolerance polypeptide encoded by CP_B comprises a glyphosate-N-acetyltransferase (GLYAT) polypeptide or an ALS inhibitor-tolerance polypeptide.

25

103. The method of embodiment 102, wherein said polynucleotide encoding said GLYAT polypeptide has a nucleotide sequence selected from the group consisting of:

- a) the nucleotide sequence set forth in SEQ ID NO: 47 or 49;
- b) a nucleotide sequence having at least 95% sequence identity to

30 SEQ ID NO: 47 or 49;

- c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 48 or 50; and
- d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 95% sequence identity to SEQ ID NO: 48 or 50.

5

104. The method of embodiment 102, wherein said ALS inhibitor-tolerance polypeptide comprises the highly resistant ALS (HRA) mutation of acetolactate synthase.

105. The method of any one of embodiments 64-104, wherein said polynucleotide construct comprises more than one polynucleotide encoding a distinct herbicide tolerance polypeptide, wherein said polynucleotide encoding a herbicide tolerance polypeptide is operably linked to a promoter active in a plant cell.

106. The method of embodiment 105, wherein said polynucleotide construct comprises at least a first and a second polynucleotide encoding a herbicide tolerance polypeptide, wherein said first polynucleotide encodes an ALS inhibitor-tolerance polypeptide, and wherein said second polynucleotide encodes a GLYAT polypeptide.

107. The method of any one of embodiments 64-106, wherein said excision cassette further comprises a coding polynucleotide D (CP_D), wherein said CP_D encodes a cell proliferation factor, and wherein said CP_D is operably linked to a promoter active in a plant cell.

108. The method of embodiment 107, wherein said cell proliferation factor is selected from the group consisting of a Lec1 polypeptide, a Kn1 polypeptide, a WUSCHEL polypeptide, a Zwille polypeptide, a babyboom polypeptide, an Aintegumenta polypeptide (ANT), a FUS3 polypeptide, a Kn1 polypeptide, a STM polypeptide, an OSH1 polypeptide, and a SbH1 polypeptide.

109. The method of embodiment 108, wherein said cell proliferation factor is selected from the group consisting of a WUSCHEL polypeptide and a babyboom polypeptide.

5 110. The method of any one of embodiments 107-109, wherein said babyboom polypeptide comprises at least two AP2 domains and at least one of the following amino acid sequences:

10 a) the amino acid sequence set forth in SEQ ID NO: 67 or an amino acid sequence that differs from the amino acid sequence set forth in SEQ ID NO: 67 by one amino acid; and

b) the amino acid sequence set forth in SEQ ID NO: 68 or an amino acid sequence that differs from the amino acid sequence set forth in SEQ ID NO: 68 by one amino acid.

15 111. The method of any one of embodiments 107-109, wherein said CP_D has a nucleotide sequence selected from the group consisting of:

20 a) the nucleotide sequence set forth in SEQ ID NO: 55, 57, 58, 60, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 99, or 101;

b) a nucleotide sequence having at least 70% sequence identity to SEQ ID NO: 55, 57, 58, 60, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 99, or 101;

c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 56, 59, 75, 77, 79, 81, 83, 85, 89, 91, 93, 95, 97, 100, or 102; and

25 d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 56, 59, 75, 77, 79, 81, 83, 85, 89, 91, 93, 95, 97, 100, or 102.

112. The method of any one of embodiments 107-111, wherein said excision cassette further comprises a promoter D (P_D), wherein said P_D is operably linked to said CP_D .

5 113. The method of embodiment 112, wherein said P_D is a constitutive promoter.

114. The method of embodiment 112 or 113, wherein said P_D is an ubiquitin promoter or an oleosin promoter.

10 115. The method of any one of embodiments 107-114, wherein said excision cassette comprises more than one polynucleotide encoding a distinct cell proliferation factor, wherein the polynucleotide encoding a cell proliferation factor is operably linked to a promoter active in a plant cell.

15 116. The method of embodiment 115, wherein said excision cassette comprises at least a first coding polynucleotide D (CP_{D1}) encoding a babyboom polypeptide and a second coding polynucleotide D (CP_{D2}) encoding a WUSCHEL polypeptide.

20 117. The method of any one of embodiments 108, 109, and 116, wherein said polynucleotide encoding a WUSCHEL polypeptide has a nucleotide sequence selected from the group consisting of:

- a) the nucleotide sequence set forth in SEQ ID NO: 103, 105, 107, or 109; and
- b) a nucleotide sequence having at least 70% sequence identity to SEQ ID NO: 103, 105, 107, or 109;
- c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 104, 106, 108, or 110; and

d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 104, 106, 108, or 110.

5 118. The method of any one of embodiments 108, 109, 116, and 117, wherein
said polynucleotide encoding a WUSCHEL polypeptide is operably linked to a maize In2-
2 promoter or a nopaline synthase promoter.

119. The method of any one of embodiments 64-118, wherein said
10 polynucleotide construct further comprises a coding polynucleotide E (CP_E) encoding a
polypeptide of interest, wherein the CP_E is operably linked to a promoter active in a plant
cell.

120. The method of embodiment 119, wherein said excision cassette comprises
15 said CP_E , and wherein said selected herbicide tolerant plant cell lacks said CP_E .

121. The method of embodiment 119, wherein said CP_E is outside of the excision cassette, and wherein said selected herbicide tolerant plant cell comprises said CP_E.

20 122. The method of any one of embodiments 119-121, wherein said polynucleotide construct further comprises a promoter E (P_E) operably linked to said CP_E .

123. The method of embodiment 64, wherein said polynucleotide construct
25 comprises:

- a) a first ubiquitin promoter;
- b) an excision cassette flanked by loxP recombination sites that are recombinogenic with respect to one another and are directly repeated, wherein said excision cassette comprises:

- i) a polynucleotide encoding a phosphinothricin acetyl transferase (PAT) or a neomycin phosphotransferase II (NPTII);
 - ii) a second ubiquitin promoter;
 - iii) a polynucleotide encoding a yellow fluorescent protein;
 - iv) a promoter comprising a maize *rab17* promoter and an attachment B (attB) site;
 - v) a polynucleotide encoding a CRE recombinase;
 - vi) a nopaline synthase promoter;
 - vii) a polynucleotide encoding a maize Wuschel 2 polypeptide;
 - viii) a third ubiquitin promoter; and
 - ix) a babyboom polynucleotide; and
- c) a GLYAT polynucleotide;

wherein said first ubiquitin promoter is operably linked to said polynucleotide encoding said PAT or NPTII and wherein said first ubiquitin promoter is operably linked to said GLYAT polynucleotide upon excision of said excision cassette;

wherein said second ubiquitin promoter is operably linked to said polynucleotide encoding said yellow fluorescent protein;

wherein said promoter comprising said maize *rab17* promoter and said attB site is operably linked to said polynucleotide encoding said CRE recombinase;

wherein said nopaline synthase promoter is operably linked to said polynucleotide encoding said maize Wuschel 2 polypeptide;

and wherein said third ubiquitin promoter is operably linked to said babyboom polynucleotide.

25 124. The method of embodiment 64, wherein said polynucleotide construct
comprises:

- a) a ubiquitin promoter;
- b) an excision cassette flanked by loxP recombination sites that are generic with respect to one another and are directly repeated, wherein said cassette comprises:

- i) a polynucleotide encoding a *Discosoma* red fluorescent protein;
- ii) a promoter comprising a maize *rab17* promoter and an attachment B (attB) site; and
- iii) a polynucleotide encoding a CRE recombinase; and

c) a GLYAT polynucleotide;

wherein said ubiquitin promoter is operably linked to said polynucleotide encoding said *Discosoma* red fluorescent protein and wherein said ubiquitin promoter is operably linked to said GLYAT polynucleotide upon excision of said excision cassette; and

10 and

wherein said promoter comprising said maize *rab17* promoter and said attB site is operably linked to said polynucleotide encoding said CRE recombinase.

125. The method of embodiment 64, wherein said polynucleotide construct
15 comprises:

- a) a ubiquitin promoter;
- b) an excision cassette flanked by loxP recombination sites that are recombinogenic with respect to one another and are directly repeated, wherein said excision cassette comprises:
 - i) an actin promoter;
 - ii) a polynucleotide encoding a *Discosoma* red fluorescent protein;
 - iii) a promoter comprising a maize *rab17* promoter and an attachment B (attB) site; and
 - iv) a polynucleotide encoding a CRE recombinase; and
- c) a GLYAT polynucleotide;

wherein said ubiquitin promoter is operably linked to said GLYAT polynucleotide upon excision of said excision cassette;

wherein said actin promoter is operably linked to said polynucleotide encoding
30 said *Discosoma* red fluorescent protein; and

wherein said promoter comprising said maize *rab17* promoter and said attB site is operably linked to said polynucleotide encoding said CRE recombinase.

126. The method of any one of embodiments 64-125, wherein said plant cells
5 are dicotyledonous.

127. The method of any one of embodiments 64-125, wherein said plant cells
are monocotyledonous.

10 128. The method of embodiment 127, wherein said monocotyledonous plant
cell is selected from the group consisting of maize, rice, sorghum, barley, wheat, millet,
oat, rye, triticale, sugarcane, switchgrass, and turf/forage grass.

15 129. The method of any one of embodiments 64-128, wherein said plant cells
are recalcitrant.

130. The method of embodiment 129, wherein said recalcitrant plant cells are
cells of a sugarcane cultivar selected from the group consisting of CP96-1252, CP01-
1372, CPCL97-2730, HoCP85-845, CP89-2143, and KQ228.

20 131. A method for increasing the transformation frequency of a plant tissue, the
method comprising the steps of:

a) providing a population of plant cells, wherein at least one plant cell
in the population comprises the polynucleotide construct of any one of claims 1-52;

25 b) culturing the population of plant cells in the absence of a herbicide
to which the herbicide tolerance polypeptide confers herbicide resistance for a period of
time sufficient for the population of plant cells to proliferate;

c) inducing the expression of the site-specific recombinase, thereby
excising the excision cassette;

d) contacting the population of plant cells from c) with the herbicide to which the herbicide tolerance polypeptide confers tolerance; and

e) selecting for a plant cell having tolerance to the herbicide, wherein the transformation frequency is increased compared to a comparable plant cell not comprising the excision cassette and selected directly by herbicide selection.

5 132. The method of embodiment 131, wherein the inducing comprises desiccating the population of plant cells.

10 133. The method of embodiment 131 or 132, wherein the population of plant cells is cultured in the absence of the herbicide to which the herbicide tolerance polypeptide confers herbicide resistance for about 1 hour to about 6 weeks prior to excision.

BRIEF DESCRIPTION OF THE FIGURES

15 Figure 1 provides a depiction of vector PHP35648. The vector comprises a coding sequence for the cyan fluorescent protein (CFP), the expression of which is regulated by the ubiquitin promoter (Ubi Pro; comprising the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113)). The PHP35648
20 vector comprises the maize *rab17* promoter with an attachment B site (Rab17 Pro) that drives the expression of the CRE site-specific recombinase. The vector further comprises expression cassettes for the maize Wuschel 2 (WUS2) protein (the expression of which is regulated by the nopaline synthase (Nos) promoter), the maize babyboom (BBM) protein and the maize optimized phosphinothrin acetyl transferase (moPAT) (both of which are
25 regulated by the ubiquitin promoter; comprising the maize ubiquitin promoter (Ubi Pro; comprising the UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113)). The yellow fluorescent protein (YFP) is expressed when a fragment of the vector that is

flanked by LoxP recombination sites (the excision cassette) is excised by the CRE recombinase.

Figure 2 provides a depiction of vector PHP54561. The vector comprises a coding sequence for moPAT or neomycin phosphotransferase II (nptII), the expression of which is regulated by the ubiquitin promoter (Ubi Pro; comprising the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113)). An ubiquitin promoter (Ubi Pro) also regulates the expression of yellow fluorescent protein (YFP) and the maize BBM protein. The PHP54561 vector further comprises the maize *rab17* promoter with an attachment B site (Rab17 Pro) that drives the expression of the CRE recombinase and an expression cassette for WUS2 under the regulation of the Nos promoter. The ubiquitin promoter (Ubi Pro) regulates the expression of the glyphosate-N-acetyltransferase (GLYAT) gene when an excision cassette flanked by LoxP sites is excised by the CRE recombinase.

Figure 3 provides an image of glyphosate selection on tissue proliferation/regeneration medium of tissues of sugarcane cultivars CP01-1372 (top) and CP88-1762 (bottom) that had been transformed with the PHP54561 vector and desiccated.

Figure 4 provides images of glyphosate selection on regeneration/rooting medium of sugarcane cultivars CP01-1372 (left) and CP88-1762 (right) that had been transformed with the PHP54561 vector and desiccated.

Figure 5 provides images of a second round of glyphosate selection on rooting medium containing 30 μ M glyphosate of sugarcane that had been transformed with the PHP54561 vector and desiccated.

Figure 6 provides a depiction of vector PHP54353. The vector comprises a coding sequence for the red fluorescent protein from *Discosoma* (dsRED), the expression of which is regulated by the ubiquitin promoter (Ubi Pro; comprising the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113)). The PHP54353 vector comprises the maize *rab17* promoter with an attachment B site (Rab17

Pro) that drives the expression of the CRE site-specific recombinase. The ubiquitin promoter (Ubi Pro) regulates the expression of the glyphosate-N-acetyltransferase (GLYAT) gene when an excision cassette flanked by LoxP sites is excised by the CRE recombinase.

5 Figure 7 provides a depiction of another polynucleotide construct embodiment. The vector comprises a coding sequence for the red fluorescent protein from *Discosoma* (dsRED), the expression of which is regulated by the actin promoter (Actin Pro). The vector further comprises the maize *rab17* promoter with an attachment B site (Rab17 Pro) that drives the expression of the CRE site-specific recombinase. The ubiquitin promoter
10 (Ubi Pro; comprising the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113) regulates the expression of the glyphosate-N-acetyltransferase (GLYAT) gene when an excision cassette flanked by LoxP sites is excised by the CRE recombinase.

15 Figure 8 provides a depiction of vector PHP55062. The vector comprises a coding sequence for the red fluorescent protein from *Discosoma* (dsRED), the expression of which is regulated by the enhanced *Mirabilis* mosaic virus (dMMV) promoter. The vector further comprises the maize *rab17* promoter with an attachment B site (Rab17 Pro) that drives the expression of the CRE site-specific recombinase. A separate dMMV
20 promoter regulates the expression of a hygromycin phosphotransferase (Hyg (hpt)) gene and also regulates the expression of the glyphosate-N-acetyltransferase (GLYAT) gene when an excision cassette flanked by LoxP sites is excised by the CRE recombinase.

25 Figure 9 provides depictions of various embodiments of the presently disclosed polynucleotide constructs. The constructs all comprise an excision cassette (flanked by LoxP sites) comprising a polynucleotide encoding a site-specific recombinase (CP_A), the expression of which is regulated by an inducible promoter A (P_A). Upon activation of P_A and excision of the excision cassette, promoter B (P_B) is operably linked to the polynucleotide encoding a herbicide tolerance polypeptide (CP_B) and the herbicide tolerance polypeptide is produced. The excision cassette of the constructs of Figures 9b-
30 9g further comprise a polynucleotide encoding a selectable marker (CP_C) in the excision

cassette that is either operably linked to P_B or to another promoter (P_C). The excision cassettes of the constructs of Figures 9d-9g further comprises at least one polynucleotide encoding a cell proliferation factor (CP_{D1} and CP_{D2}), each of which are operably linked to a promoter (P_{D1} or P_{D2} , respectively). The polynucleotide construct of Figure 9g further 5 comprises (outside of the excision cassette) a polynucleotide encoding a polypeptide of interest (CP_E) that is operably linked to a promoter E (P_E).

DETAILED DESCRIPTION OF THE INVENTION

Compositions and methods are provided for regulating the expression of a 10 transgene, such as a herbicide tolerance polynucleotide, for producing and selecting transgenic plants and plant parts, and for increasing the transformation frequency of a plant or plant part. Compositions include polynucleotide constructs comprising an excision cassette, a transgene (e.g., herbicide tolerance polynucleotide) and a promoter that becomes operably linked to the transgene (e.g., herbicide tolerance polynucleotide) 15 upon excision of the excision cassette from the polynucleotide construct. The excision cassette comprises an inducible promoter operably linked to a polynucleotide that encodes a site-specific recombinase and the excision cassette is flanked by a first and a second recombination site, wherein the first and second recombination sites are recombinogenic with respect to one another and are directly repeated, and wherein the 20 site-specific recombinase can recognize and implement recombination at the first and second recombination sites, thereby excising the excision cassette and allowing for the operable linkage of the transgene (e.g., herbicide tolerance polynucleotide) with its promoter. In some embodiments, the polynucleotide construct further comprises a polynucleotide of interest, either within or outside of the excision cassette. In certain 25 embodiments, the excision cassette further comprises at least one coding polynucleotide for a cell proliferation factor, such as a babyboom polypeptide or a Wuschel polypeptide.

In some embodiments, the polynucleotide construct further comprises at least one selectable marker. In some embodiments, the selectable marker is selected from the group consisting of a fluorescent protein, an antibiotic resistance polypeptide, a herbicide 30 tolerance polypeptide, and a metabolic enzyme. In some embodiments, the plant or plant

part is recalcitrant to transformation. In some embodiments, the plant or plant part is a monocotyledonous. In some embodiments the plant or plant part is maize, rice, wheat, barley, sorghum, oats, rye, triticale and sugarcane.

It is intended that the excision cassette is not limited by the number and or order of the coding polynucleotides within the excision cassette. It is envisioned that the excision cassette can be constructed with any number of coding polynucleotides in any order. It is also intended that the polynucleotide construct may also include, beyond the promoter and polynucleotide encoding the herbicide tolerance polypeptide flanking the recombination sites, one or more polynucleotide encoding polypeptide(s) of interest.

The use of the term "polynucleotide" is not intended to limit compositions to polynucleotides comprising DNA. Polynucleotides can comprise ribonucleotides and combinations of ribonucleotides and deoxyribonucleotides. Such deoxyribonucleotides and ribonucleotides include both naturally occurring molecules and synthetic analogues. The polynucleotides also encompass all forms of sequences including, but not limited to, single-, double-, or multi-stranded forms, hairpins, stem-and-loop structures, circular plasmids, and the like.

An "isolated" or "purified" polynucleotide or protein, or biologically active portion thereof, is substantially or essentially free from components that normally accompany or interact with the polynucleotide or protein as found in its naturally occurring environment. Thus, an isolated or purified polynucleotide or protein is substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized. Optimally, an "isolated" polynucleotide is free of sequences (optimally protein encoding sequences) that naturally flank the polynucleotide (*i.e.*, sequences located at the 5' and 3' ends of the polynucleotide) in the genomic DNA of the organism from which the polynucleotide is derived. For example, in various embodiments, the isolated polynucleotide can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb, or 0.1 kb of nucleotide sequence that naturally flank the polynucleotide in genomic DNA of the cell from which the polynucleotide is derived. A protein that is substantially free of cellular material includes preparations of protein having less than

about 30%, 20%, 10%, 5%, or 1% (by dry weight) of contaminating protein. When the protein or biologically active portion thereof is recombinantly produced, optimally culture medium represents less than about 30%, 20%, 10%, 5%, or 1% (by dry weight) of chemical precursors or non-protein-of-interest chemicals.

5 As used herein, a “polynucleotide construct” refers to a polynucleotide molecule comprised of various types of nucleotide sequences having different functions and/or activities. For example, a polynucleotide construct may comprise one or more of any of the following: expression cassettes, coding polynucleotides, regulatory sequences (e.g., enhancers, promoters, termination sequences), origins of replication, restriction sites, 10 recombination sites, and excision cassettes.

The presently disclosed polynucleotide constructs can comprise one or more expression cassettes, wherein a coding polynucleotide is operably linked to a regulatory sequence.

15 As used herein, a “coding polynucleotide” refers to a polynucleotide that encodes a polypeptide and therefore comprises the requisite information to direct translation of the nucleotide sequence into a specified polypeptide. Alternatively, a “coding polynucleotide” can refer to a polynucleotide that encodes a silencing polynucleotide that reduces the expression of target genes. Non-limiting examples of a silencing polynucleotide include a small interfering RNA, micro RNA, antisense RNA, a hairpin 20 structure, and the like.

25 As used herein, an “expression cassette” refers to a polynucleotide that comprises at least one coding polynucleotide operably linked to regulatory sequences sufficient for the expression of the coding polynucleotide. “Operably linked” is intended to mean a functional linkage between two or more elements. For example, an operable linkage between a coding polynucleotide and a regulatory sequence (i.e., a promoter) is a functional link that allows for expression of the coding polynucleotide. Operably linked elements may be contiguous or non-contiguous. When used to refer to the joining of two protein coding regions, by operably linked is intended that the coding regions are in the same reading frame.

An expression cassette will include in the 5'-3' direction of transcription, a transcriptional and translational initiation region (i.e., a promoter), a coding polynucleotide, and a transcriptional and translational termination region (i.e., termination region) functional in plants. The regulatory regions (i.e., promoters, transcriptional regulatory regions, and translational termination regions) and/or the coding polynucleotide may be native/analogous to a host cell comprising the presently disclosed polynucleotide constructs or to each other. Alternatively, the regulatory regions and/or the coding polynucleotide may be heterologous to the host cell or to each other. As used herein, "heterologous" in reference to a sequence is a sequence that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. A heterologous polynucleotide is also referred to herein as a "transgene". For example, a promoter operably linked to a heterologous polynucleotide is from a species different from the species from which the polynucleotide was derived, or, if from the same/analogous species, one or both are substantially modified from their original form and/or genomic locus, or the promoter is not the native promoter for the operably linked polynucleotide. While it may be optimal to express the sequences using heterologous promoters, the native promoter sequences may be used.

The termination region may be native with the transcriptional initiation region, may be native with the operably linked coding polynucleotide, may be native with the host cell, or may be derived from another source (i.e., foreign or heterologous) to the promoter, the coding polynucleotide, the host cell, or any combination thereof. Convenient termination regions are available from the potato proteinase inhibitor (PinII) gene or the Ti-plasmid of *A. tumefaciens*, such as the octopine synthase and nopaline synthase termination regions. See also Guerineau *et al.* (1991) *Mol. Gen. Genet.* 262:141-144; Proudfoot (1991) *Cell* 64:671-674; Sanfacon *et al.* (1991) *Genes Dev.* 5:141-149; Mogen *et al.* (1990) *Plant Cell* 2:1261-1272; Munroe *et al.* (1990) *Gene* 91:151-158; Ballas *et al.* (1989) *Nucleic Acids Res.* 17:7891-7903; and Joshi *et al.* (1987) *Nucleic Acid Res.* 15:9627-9639. In some embodiments, the termination sequence that is operably linked to at least one of the site-specific recombinase-encoding polynucleotide,

the selectable marker-encoding polynucleotide, the cell proliferation marker-encoding polynucleotide, the herbicide tolerance polynucleotide, and the polynucleotide of interest is the termination region from the *pinII* gene. In some of these embodiments, the termination region has the sequence set forth in SEQ ID NO: 1 or an active variant or 5 fragment thereof that is capable of terminating transcription and/or translation in a plant cell.

The expression cassettes may additionally contain 5' leader sequences. Such leader sequences can act to enhance translation. Translation leaders are known in the art and include: picornavirus leaders, for example, EMCV leader (encephalomyocarditis 5' 10 noncoding region) (Elroy-Stein *et al.* (1989) *Proc. Natl. Acad. Sci. USA* 86:6126-6130); potyvirus leaders, for example, TEV leader (tobacco etch virus) (Gallie *et al.* (1995) *Gene* 165(2):233-238), MDMV leader (maize dwarf mosaic virus) (*Virology* 154:9-20), and human immunoglobulin heavy-chain binding protein (BiP) (Macejak *et al.* (1991) *Nature* 353:90-94); untranslated leader from the coat protein mRNA of alfalfa mosaic virus 15 (AMV RNA 4) (Jobling *et al.* (1987) *Nature* 325:622-625); tobacco mosaic virus leader (TMV) (Gallie *et al.* (1989) in *Molecular Biology of RNA*, ed. Cech (Liss, New York), pp. 237-256); and maize chlorotic mottle virus leader (MCMV) (Lommel *et al.* (1991) *Virology* 81:382-385). See also, Della-Cioppa *et al.* (1987) *Plant Physiol.* 84:965-968.

For example, in some of the embodiments, wherein the herbicide tolerance 20 polynucleotide is a GLYAT polynucleotide, the cauliflower mosaic virus (CaMV) 35S enhancer region or tobacco mosaic virus (TMV) omega 5' UTR translational enhancer element is included upstream of a promoter that is operably linked (when the excision cassette is excised) to the GLYAT polynucleotide to enhance transcription (see, for example, U.S. Patent Nos. 7,928,296 and 7,622,641, each of which is herein incorporated 25 by reference in its entirety).

In preparing the expression cassette or polynucleotide construct, the various DNA fragments may be manipulated, so as to provide for the DNA sequences in the proper orientation and, as appropriate, in the proper reading frame. Toward this end, adapters or linkers may be employed to join the DNA fragments or other manipulations may be 30 involved to provide for convenient restriction sites, removal of superfluous DNA,

removal of restriction sites, or the like. For this purpose, *in vitro* mutagenesis, primer repair, restriction, annealing, resubstitutions, e.g., transitions and transversions, may be involved.

Expression cassettes comprise a promoter operably linked to a coding 5 polynucleotide. As used herein, the term "promoter" includes reference to a region of DNA involved in the recognition and binding of RNA polymerase and other proteins to initiate transcription of a coding sequence. Promoters may be naturally occurring promoters, a variant or fragment thereof, or synthetically derived. The term "promoter" refers to the minimal sequences necessary to direct transcription (minimal promoter) as 10 well as sequences comprising the minimal promoter and any number of additional elements, such as operator sequences, enhancers, modulators, restriction sites, recombination sites, sequences located in between the minimal promoter and the coding sequence, and sequences of the 5'-untranslated region (5'-UTR), which is the region of a transcript that is transcribed, but is not translated into a polypeptide, which may or may 15 not influence transcription levels in a desired manner. A "plant promoter" refers to a promoter isolated from a plant or a promoter derived therefrom or a heterologous promoter that functions in a plant.

Although according to the invention, the promoter that drives the expression of the site-specific recombinase is an inducible promoter, various types of promoters can be 20 used for the regulation of the expression of the remaining coding polynucleotides in the presently disclosed polynucleotide constructs. The promoter may be selected based on the desired outcome or expression pattern (for a review of plant promoters, see Potenza *et al.* (2004) *In Vitro Cell Dev Biol* 40:1-22).

Constitutive promoters include, for example, the core promoter of the Rsyn7 25 promoter and other constitutive promoters disclosed in WO 99/43838 and U.S. Patent No. 6,072,050; the core CaMV 35S promoter (Odell *et al.* (1985) *Nature* 313:810-812); rice actin (McElroy *et al.* (1990) *Plant Cell* 2:163-171); ubiquitin (Christensen *et al.* (1989) *Plant Mol. Biol.* 12:619-632 and Christensen *et al.* (1992) *Plant Mol. Biol.* 18:675-689); pEMU (Last *et al.* (1991) *Theor. Appl. Genet.* 81:581-588); MAS (Velten *et al.* (1984) *EMBO J.* 3:2723-2730); ALS promoter (U.S. Patent No. 5,659,026), the 30

Agrobacterium nopaline synthase (NOS) promoter (Bevan *et al.* (1983) *Nucl. Acids Res.* 11:369-385); *Mirabilis* mosaic virus (MMV) promoter (Dey & Maiti (1999) *Plant Mol Biol* 40:771-782; Dey & Maiti (1999) *Transgenics* 3:61-70); histone 2B (H2B) (International Application Publication No. WO 99/43797); banana streak virus (BSV) 5 promoter (Remans *et al.* (2005) *Virus Research* 108:177-186); chloris striate mosaic virus (CSMV) promoter (Zhan *et al.* (1993) *Virology* 193:498-502); Cassava vein mosaic virus (CSVMV) promoter (Verdaguer *et al.* (1998) *Plant Mol Biol* 37:1055-1067); figwort 10 mosaic virus (FMV) promoter (U.S. Patent No. 6,018,100), rice alpha-tubulin (OsTUBA1) promoter (Jeon *et al.* (2000) *Plant Physiol* 123:1005-1014); rice cytochrome C (OsCC1) promoter (Jang *et al.* (2002) *Plant Physiol* 129:1473-1481); maize alcohol dehydrogenase1 (ZmADH1) promoter (Kyozuka *et al.* (1990) *Maydica* 35:353-357; an oleosin promoter (*e.g.*, SEQ ID NO: 2 or a variant or fragment thereof) 15 and the like; each of which is herein incorporated by reference in its entirety. Other constitutive promoters are described in, for example, U.S. Patent Nos. 5,608,149; 5,608,144; 5,604,121; 5,569,597; 5,466,785; 5,399,680; 5,268,463; 5,608,142; and 6,177,611; each of which is herein incorporated by reference in its entirety.

In some embodiments, an inducible promoter can be used, such as from a pathogen-inducible promoter. Such promoters include those from pathogenesis-related proteins (PR proteins), which are induced following infection by a pathogen; *e.g.*, PR 20 proteins, SAR proteins, beta-1,3-glucanase, chitinase, etc. See, for example, Redolfi *et al.* (1983) *Neth. J. Plant Pathol.* 89:245-254; Uknés *et al.* (1992) *Plant Cell* 4:645-656; and Van Loon (1985) *Plant Mol. Virol.* 4:111-116. See also WO 99/43819, herein incorporated by reference. Promoters that are expressed locally at or near the site of pathogen infection include, for example, Marineau *et al.* (1987) *Plant Mol. Biol.* 9:335-25 342; Matton *et al.* (1989) *Mol Plant-Microbe Interact* 2:325-331; Somsisch *et al.* (1986) *Proc. Natl. Acad. Sci. USA* 83:2427-2430; Somsisch *et al.* (1988) *Mol. Gen. Genet.* 2:93-98; and Yang (1996) *Proc. Natl. Acad. Sci. USA* 93:14972-14977. See also, Chen *et al.* (1996) *Plant J.* 10:955-966; Zhang *et al.* (1994) *Proc. Natl. Acad. Sci. USA* 91:2507-2511; Warner *et al.* (1993) *Plant J.* 3:191-201; Siebertz *et al.* (1989) *Plant Cell* 1:961-30 968; U.S. Patent No. 5,750,386 (nematode-inducible); and the references cited therein.

Additional promoters include the inducible promoter for the maize PRms gene, whose expression is induced by the pathogen *Fusarium moniliforme* (see, for example, Cordero *et al.* (1992) *Physiol. Mol. Plant Path.* 41:189-200). Wound-inducible promoters include potato proteinase inhibitor (pin II) gene (Ryan (1990) *Ann. Rev. Phytopath.* 28:425-449; 5 Duan *et al.* (1996) *Nat Biotechnol* 14:494-498); wun1 and wun2, U.S. Patent No. 5,428,148; win1 and win2 (Stanford *et al.* (1989) *Mol. Gen. Genet.* 215:200-208); systemin (McGurl *et al.* (1992) *Science* 225:1570-1573); WIP1 (Rohmeier *et al.* (1993) *Plant Mol. Biol.* 22:783-792; Eckelkamp *et al.* (1993) *FEBS Lett* 323:73-76); MPI gene (Corderok *et al.* (1994) *Plant J.* 6:141-150); and the like, herein incorporated by 10 reference.

Other inducible promoters useful for regulating the expression of any of the coding sequences of the presently disclosed polynucleotide constructs include stress-inducible promoters, such as those described elsewhere herein.

Chemical-regulated promoters can be used to modulate the expression of a gene in 15 a plant through the application of an exogenous chemical regulator. The promoter may be a chemical-inducible promoter, where application of the chemical induces gene expression, or a chemical-repressible promoter, where application of the chemical represses gene expression. Chemical-inducible promoters are known in the art and include, but are not limited to, the maize In2-2 promoter, which is activated by 20 benzenesulfonamide herbicide safeners (De Veylder *et al.* (1997) *Plant Cell Physiol.* 38:568-77), the maize GST promoter (GST-II-27, WO 93/01294), which is activated by hydrophobic electrophilic compounds that are used as pre-emergent herbicides, the PR-1 promoter (Cao *et al.* (2006) *Plant Cell Reports* 6:554-60), which is activated by BTH or benzo(1,2,3)thiaidazole-7-carbothioic acid s-methyl ester, the tobacco PR-1a promoter 25 (Ono *et al.* (2004) *Biosci. Biotechnol. Biochem.* 68:803-7), which is activated by salicylic acid, the copper inducible ACE1 promoter (Mett *et al.* (1993) *PNAS* 90:4567-4571), the ethanol-inducible promoter AlcA (Caddick *et al.* (1988) *Nature Biotechnol* 16:177-80), an estradiol-inducible promoter (Bruce *et al.* (2000) *Plant Cell* 12:65-79), the XVE estradiol-inducible promoter (Zao *et al.* (2000) *Plant J* 24:265-273), the VGE 30 methoxyfenozide inducible promoter (Padidam *et al.* (2003) *Transgenic Res* 12:101-109),

and the TGV dexamethasone-inducible promoter (Bohner *et al.* (1999) *Plant J* 19:87-95). Other chemical-regulated promoters of interest include steroid-responsive promoters (see, for example, the glucocorticoid-inducible promoter in Schena *et al.* (1991) *Proc. Natl. Acad. Sci. USA* 88:10421-10425 and McNellis *et al.* (1998) *Plant J.* 14(2):247-257) and 5 tetracycline-inducible and tetracycline-repressible promoters (see, for example, Gatz *et al.* (1991) *Mol. Gen. Genet.* 227:229-237; Gatz *et al.* (1992) *Plant J* 2:397-404; and U.S. Patent Nos. 5,814,618 and 5,789,156), herein incorporated by reference.

One particular chemical-inducible promoter that is described in more detail elsewhere herein and that can be used in the presently disclosed compositions and 10 methods, particularly to regulate the expression of the site-specific recombinase, is a promoter responsive to sulfonylurea, wherein the promoter comprises operator sequences capable of binding to a sulfonylurea-responsive transcriptional repressor (SuR) protein, such as those described in U.S. Application Publication Nos. 2010/0105141 and 2011/0287936, each of which is herein incorporated by reference in its entirety.

15 Tissue-preferred promoters can be utilized to target enhanced expression of a coding polynucleotide within a particular plant tissue. Tissue-preferred promoters include Kawamata *et al.* (1997) *Plant Cell Physiol.* 38(7):792-803; Hansen *et al.* (1997) *Mol. Gen Genet.* 254(3):337-343; Russell *et al.* (1997) *Transgenic Res.* 6(2):157-168; Rinehart *et al.* (1996) *Plant Physiol.* 112(3):1331-1341; Van Camp *et al.* (1996) *Plant 20 Physiol.* 112(2):525-535; Canevascini *et al.* (1996) *Plant Physiol.* 112(2):513-524; Lam (1994) *Results Probl. Cell Differ.* 20:181-196; and Guevara-Garcia *et al.* (1993) *Plant J.* 4(3):495-505.

Leaf-preferred promoters are known in the art. See, for example, Yamamoto *et al.* (1997) *Plant J.* 12:255-265; Kwon *et al.* (1994) *Plant Physiol.* 105:357-67; Yamamoto *et 25 al.* (1994) *Plant Cell Physiol.* 35:773-778; Gotor *et al.* (1993) *Plant J.* 3:509-18; Orozco *et al.* (1993) *Plant Mol. Biol.* 23:1129-1138; and Matsuoka *et al.* (1993) *Proc. Natl. Acad. Sci. USA* 90:9586-9590. In addition, promoter of cab and rubisco can also be used. See, for example, Simpson *et al.* (1958) *EMBO J* 4:2723-2729 and Timko *et al.* (1988) *Nature* 318:57-58.

Root-preferred promoters are known and can be selected from the many available. See, for example, Hire *et al.* (1992) *Plant Mol. Biol.* 20:207-218 (soybean root-specific glutamine synthase gene); Keller and Baumgartner (1991) *Plant Cell* 3:1051-1061 (root-specific control element in the GRP 1.8 gene of French bean); Sanger *et al.* (1990) *Plant Mol. Biol.* 14:433-443 (root-specific promoter of the mannopine synthase (MAS) gene of *Agrobacterium tumefaciens*); and Miao *et al.* (1991) *Plant Cell* 3:11-22 (full-length cDNA clone encoding cytosolic glutamine synthase (GS), which is expressed in roots and root nodules of soybean). See also Bogusz *et al.* (1990) *Plant Cell* 2:633-641, where two root-specific promoters isolated from hemoglobin genes from the nitrogen-fixing 5 nonlegume *Parasponia andersonii* and the related non-nitrogen-fixing nonlegume *Trema tomentosa* are described. Leach and Aoyagi (1991) describe their analysis of the promoters of the highly expressed rolC and rolD root-inducing genes of *Agrobacterium rhizogenes* (see *Plant Sci* (Limerick) 79:69-76). Teeri *et al.* (1989) used gene fusion to lacZ to show that the *Agrobacterium* T-DNA gene encoding octopine synthase is 10 especially active in the epidermis of the root tip and that the TR2' gene is root specific in the intact plant and stimulated by wounding in leaf tissue (see *EMBO J.* 8:343-350). The TR1' gene, fused to *nptII* (neomycin phosphotransferase II) showed similar 15 characteristics. Additional root-preferred promoters include the VfENOD-GRP3 gene promoter (Kuster *et al.* (1995) *Plant Mol. Biol.* 29:759-772); and rolB promoter (Capana 20 *et al.* (1994) *Plant Mol. Biol.* 25:681-691. See also U.S. Patent Nos. 5,837,876; 5,750,386; 5,633,363; 5,459,252; 5,401,836; 5,110,732; and 5,023,179. Another root-preferred promoter includes the promoter of the phaseolin gene (Murai *et al.* (1983) *Science* 23:476-482 and Sengupta-Gopalan *et al.* (1988) *Proc. Natl. Acad. Sci. USA* 25:3320-3324.

Seed-preferred promoters include both those promoters active during seed development as well as promoters active during seed germination. See Thompson *et al.* (1989) *BioEssays* 10:108, herein incorporated by reference. Such seed-preferred promoters include, but are not limited to, Cim1 (cytokinin-induced message); cZ19B1 (maize 19 kDa zein); and milps (myo-inositol-1-phosphate synthase); (see WO 00/11177 30 and U.S. Patent No. 6,225,529; herein incorporated by reference). For dicots, seed-

preferred promoters include, but are not limited to, bean β -phaseolin, napin, β -conglycinin, soybean lectin, cruciferin, and the like. For monocots, seed-preferred promoters include, but are not limited to, maize 15 kDa zein, 22 kDa zein, 27 kDa gamma zein, waxy, shrunken 1, shrunken 2, globulin 1, oleosin, nuc1, etc. See also WO 5 00/12733, where seed-preferred promoters from *end1* and *end2* genes are disclosed; herein incorporated by reference.

Where low-level expression is desired, weak promoters will be used. Generally, by "weak promoter" is intended a promoter that drives expression of a coding sequence at a low level. By low level is intended at levels of about 1/1000 transcripts to about 10 1/100,000 transcripts to about 1/500,000 transcripts. Alternatively, it is recognized that weak promoters also encompasses promoters that are expressed in only a few cells and not in others to give a total low level of expression. Where a promoter is expressed at unacceptably high levels, portions of the promoter sequence can be deleted or modified to decrease expression levels. Such weak constitutive promoters include, for example, the 15 core promoter of the Rsyn7 promoter (WO 99/43838 and U.S. Patent No. 6,072,050), the core 35S CaMV promoter, and the like.

In some embodiments, at least one of the following promoters is a constitutive promoter: the promoter regulating the expression of the herbicide tolerance polypeptide, the promoter operably linked to the cell proliferation marker, and the promoter driving 20 the expression of the selectable marker present within the excision cassette. In particular embodiments, the selectable marker present within the excision cassette of the presently disclosed polynucleotide constructs is operably linked to a constitutive promoter such that the selectable marker is constitutively expressed until excision of the excision cassette, and the same constitutive promoter then regulates the expression of the herbicide 25 tolerance polypeptide upon excision of the cassette. In some of these embodiments, the constitutive promoter is the maize ubiquitin promoter (Christensen *et al.* (1989) *Plant Mol. Biol.* 12:619-632 and Christensen *et al.* (1992) *Plant Mol. Biol.* 18:675-689), which in some embodiments comprises the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID 30 NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113). In other embodiments, the constitutive

promoter regulating the expression of the selectable marker present within the excision cassette is the enhanced *Mirabilis* mosaic virus (MMV) promoter (Dey & Maiti (1999) Plant Mol Biol 40:771-782; Dey & Maiti (1999) Transgenics 3:61-70). In some embodiments, the polynucleotide encoding a cell proliferation factor (e.g., babyboom polypeptide) is operably linked to a maize ubiquitin promoter (which in some embodiments comprises the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113) or a maize oleosin promoter (e.g., SEQ ID NO: 2 or a variant or fragment thereof).

According to the invention, the promoter that regulates the expression of the site-specific recombinase is an inducible promoter. In some embodiments, the inducible promoter that is operably linked to the site-specific recombinase-encoding polynucleotide comprises a stress-inducible promoter. As used herein, a “stress-inducible promoter” refers to a promoter that initiates transcription when the host cell (e.g., plant cell) or host (e.g., plant or plant part) undergoes stress, including abiotic stress. Non-limiting examples of conditions that can activate stress-inducible promoters include drought, salinity, flood, and suboptimal temperature. Some stress-inducible promoters are only activated by a particular stress (e.g., drought), whereas other stress-inducible promoters can be activated by any type of stress, particularly any type of abiotic stress.

Stress-inducible promoters include those that become activated in response to drought and high salinity (drought-inducible promoters) and cold temperatures (cold-inducible promoters). Some promoters are both drought-inducible and cold-inducible. Many stress-inducible promoters are also activated by abscisic acid (ABA), a phytohormone that is often expressed by plants in response to drought and high-salinity stress. Regulatory pathways by which stress-inducible promoters can become activated include those that are ABA-dependent as well as those that are ABA-independent. Thus, some stress-inducible promoters comprise an ABA-responsive element (ABRE) and respond to ABA. Some of those stress-inducible promoters that are responsive to drought, high salinity, and/or cold temperatures comprise a dehydration-responsive (DRE)/C-repeat (CRT) element. The C-repeat binding factor (CBF)/DREB1

transcription factor, the expression of which is induced by cold stress, and the DREB2 transcription factor, which is induced by dehydration, bind to DRE/CRT elements. In some embodiments, stress-inducible promoters comprise any one of the following *cis*-acting stress-responsive elements: ABRE, CE1, CE3, MYB recognition site (MYBR), 5 MYC recognition site (MYCR), DRE, CRT, low-temperature-responsive element (LTRE), NAC recognition site (NACR), zinc-finger homeodomain recognition site (ZFHDR) and an inducer of CBF expression (ICE) recognition site. Table 1 provides the sequences of these *cis*-acting stress-responsive elements. See Yamaguchi-Shinozaki and Shinozaki (2005) *Trends Plant Sci* 10:1360-1385 and Shinozaki *et al.* (2003) *Curr Opin Plant Biol* 6:410-417, each of which is incorporated by reference in its entirety, for reviews of stress-inducible promoters and the regulatory pathways controlling the same. 10

Table 1. *cis*-Acting regulatory elements in stress-inducible gene expression.*

<i>cis</i> element	Sequence (SEQ ID NO:)	Type of transcription factors that bind to <i>cis</i> elements	Gene	Stress condition
ABRE	PyACGTGGC (3)	bZIP	Em, RAB16	Water deficit, ABA
CE1	TGCCACCGG (4)	ERF/AP2	HVA1	ABA
CE3	ACGGCGTGCCTC (5)	Not known	HVA22	ABA
ABRE	ACGTGTC (6)	bZIP	Osem	ABA
ABRE	ACGTGGC (7), ACGTGTC (8)	bZIP	RD29B	Water deficit, ABA
MYBR	TGGTTAG (9)	MYB	RD22	Water deficit, ABA
MYCR	CACATG (10)	bHLH	RD22	Water deficit, ABA
DRE	TACCGACAT (11)	ERF/AP2	RD29A	Water deficit, cold
CRT	GGCCGACAT (12)	ERF/AP2	Cor15A	Cold
LTRE	GGCCGACGT (13)	ERF/AP2	BN115	Cold
NACR	ACACGCATGT (14)	NAC	ERD1	Water deficit
ZFHDR	Not yet reported	ZFHD	ERD1	Water deficit
ICEr1	GGACACATGTCAGA	Not known	CBF2/	Cold

<i>cis</i> element	Sequence (SEQ ID NO:)	Type of transcription factors that bind to <i>cis</i> elements	Gene	Stress condition
	(15)		DREB1C	
ICEr2	ACTCCG (16)	Not known	CBF2/ DREB1C	Cold

*Adopted from Yamaguchi-Shinozaki and Shinozaki (2005) *Trends Plant Sci* 10:1360-1385

In some embodiments, the inducible promoter that is operably linked to the 5 polynucleotide encoding a site-specific recombinase is a cold-inducible promoter. As used herein, a “cold-inducible promoter” is a promoter that is activated at temperatures that are below optimal temperatures for plant growth. In some embodiments, the cold-inducible promoter is one that is induced in response to temperatures less than about 20°C, less than about 19°C, less than about 18°C, less than about 17°C, less than about 10 16°C, less than about 15°C, less than about 14°C, less than about 13°C, less than about 12°C, less than about 11°C, less than about 10°C, less than about 9°C, less than about 8°C, less than about 7°C, less than about 6°C, less than about 5°C, less than about 4°C, less than about 3°C, less than about 2°C, less than about 1°C, or less than about 0°C.

Cold-inducible promoters may be activated by exposing a plant or plant part to 15 cold temperatures for a period of about 12 hours, about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 1 week, about 2 weeks, about 3 weeks, about 4 weeks, about 5 weeks, about 6 weeks, about 8 weeks, about 9 weeks, about 10 weeks, about 3 months, or more. The temperature required or the necessary amount of 20 time the plant or plant part is exposed to the cold temperatures will vary based on, for example, the promoter, the plant species, the type of explant, and the size of the plant tissue, and can be determined by one of skill in the art.

Cold-inducible promoters can comprise a C-repeat (CRT) and/or a low-temperature-responsive element (LTRE), both of which contain an A/GCCGAC motif that forms the core of the DRE sequence, as well. Non-limiting examples of cold-

inducible promoters include the maize *rab17* promoter (Vilardell *et al.* (1990) *Plant Mol Biol* 14:423-432), the *RD29A* promoter (Uno *et al.* (2000) *PNAS* 97:11632-11637), the *Cor15A* promoter (Baker *et al.* (1994) *Plant Mol Biol* 24:701-713), the *BN115* promoter (Jiang *et al.* (1996) *Plant Mol Biol* 30:679-684), and the *CBF2/DREB1C* promoter (Zarka *et al.* (2003) *Plant Physiol* 133:910-918); each of which is herein incorporated by reference in its entirety.

In some embodiments, the inducible promoter that regulates the expression of the site-specific recombinase is a vernalization promoter, which is a promoter that responds to cold exposure to trigger flowering in plants. Vernalization promoters generally require exposure to cold temperatures for an extended period of time (e.g., at least 2 weeks) for activation. In certain embodiments, activation of a vernalization promoter requires exposure to temperatures less than about 20°C, less than about 19°C, less than about 18°C, less than about 17°C, less than about 16°C, less than about 15°C, less than about 14°C, less than about 13°C, less than about 12°C, less than about 11°C, less than about 10°C, less than about 9°C, less than about 8°C, less than about 7°C, less than about 6°C, less than about 5°C, less than about 4°C, less than about 3°C, less than about 2°C, less than about 1°C, or less than about 0°C for at least 2 weeks, at least 3 weeks, at least 4 weeks, at least 5 weeks, at least 6 weeks, at least 7 weeks, at least 8 weeks, at least 9 weeks, at least 10 weeks, at least 11 weeks, at least 12 weeks, at least 13 weeks, at least 14 weeks, at least 15 weeks, at least 16 weeks, or more. In certain embodiments, activation of a vernalization promoter requires exposure to a temperature of about 4°C for about 2 weeks.

In some embodiments, the vernalization promoter comprises a putative MADS-box protein binding site, referred to herein as CarG-box, the sequence of which is set forth in SEQ ID NO: 114. A non-limiting example of a vernalization promoter is the *Triticum monococcum* VRN1/AP1 promoter set forth in SEQ ID NO: 115 and described in Yan *et al.* (2003) *Proc Natl Acad Sci USA* 100:6263-6268 and U.S. Application Publication No. 2004/0203141, each of which is herein incorporated by reference in its entirety.

In some of those embodiments wherein the inducible promoter that regulates the expression of the site-specific recombinase is a vernalization promoter, the host cell of the polynucleotide construct is a *Brassica* sp., winter wheat, barley, oat, or rye.

In other embodiments, the inducible promoter that regulates the expression of the site-specific recombinase is a drought-inducible promoter. As used herein, a “drought-inducible promoter” or “desiccation-inducible promoter” refers to a promoter that initiates transcription in response to drought conditions, high salinity, and/or dessication of a plant or plant part. Drought-inducible promoters can drive expression in a number of different plant tissues including, but not limited to, root tissue (e.g., root endodermis, root epidermis, or root vascular tissues) and leaf tissue (e.g. epidermis, mesophyll or leaf vascular tissue).

In some embodiments, the drought-inducible promoter comprises a DRE or an early responsive to dehydration 1 (ERD1) cis-acting element (Yamaguchi-Shinozaki and Shinozaki (2004) *Trends Plant Sci* 10:1360-1385; and Shinozaki *et al.* (2003) *Curr Opin Plant Biol* 6:410-417).

The drought-inducible promoter is activated when the plant or plant part comprising the same is desiccated. As used herein, the term “desiccate” refers to a process by which the water content of a plant or plant part is reduced, and can include reference to the natural desiccation process that occurs during the maturation of seeds. Thus, in some embodiments, the drought-inducible promoter is activated in a plant cell comprising the presently disclosed polynucleotide constructs and excision of the excision cassette occurs during the maturation of a seed comprising the plant cell.

A desiccated plant or plant part can comprise about 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 1%, 0.1% or less water than a plant or plant part that has not been dried. The amount of desiccation necessary to activate a drought-inducible promoter or the amount of time needed to desiccate a plant or plant part will vary based on, for example, the promoter, the plant species, the explant type, and the size of the plant tissue.

In some embodiments, a plant or plant part is desiccated and the drought-inducible promoter is activated by exposing the plant or plant part comprising the

drought-inducible promoter to drought conditions. As used herein, “drought” or “drought conditions” can be defined as the set of environmental conditions under which a plant or plant part will begin to suffer the effects of water deprivation, such as decreased stomatal conductance and photosynthesis, decreased growth rate, loss of turgor (wilting), or ovule abortion. For these reasons, plants experiencing drought stress typically exhibit a significant reduction in biomass and yield. Water deprivation may be caused by lack of rainfall or limited irrigation. Alternatively, water deficit may also be caused by high temperatures, low humidity, saline soils, freezing temperatures or water-logged soils that damage roots and limit water uptake to the shoot. Since plant species vary in their capacity to tolerate water deficit, the precise environmental conditions that cause drought stress cannot be generalized.

The drought-inducible promoter may be activated by exposing a plant or plant part to drought conditions for a period of about 1 day, about 2 days, about 3 days, about 4 days, about 5 days, about 6 days, about 1 week, about 2 weeks, about 3 weeks, or more.

In some embodiments, the plant or plant part is desiccated and the drought-inducible promoter activated by incubating the plant or plant part in the absence of liquid medium and optionally on dry filter paper. In some embodiments, the plant or plant part is desiccated by incubating the plant or plant part in a sealed container with a saturated salt solution (e.g., $(\text{NH}_4)_2\text{SO}_4$). In some embodiments, the plant or plant part is incubated in the absence of liquid medium, and optionally, on dry filter paper, and in some embodiments, in a sealed container with a saturated salt solution for about 1 day, about 1.5 days, about 2 days, about 2.5 days, about 3 days, about 3.5 days, about 4 days, about 4.5 days, about 5 days, about 5.5 days, about 6 days, about 6.5 days, about 7 days, about 7.5 days, about 8 days, about 8.5 days, about 9 days, about 9.5 days, about 10 days, or more in order to induce the expression of the drought-inducible promoter.

Non-limiting examples of drought-inducible promoters include the promoters of maize *rab17* (Vilardell *et al.* (1990) *Plant Mol Biol* 14:423-432); *Oryza sativa Em* (Guiltinan *et al.* (1990) *Science* 250:267-271); *Rab16* (Mundy *et al.* (1990) *PNAS* 87:406-410); *HVA1* (Hobo *et al.* (1999) *Plant J* 19:679-689); *HVA22* (Su *et al.* (1998) *Plant Physiol* 117:913-922); *RD29B* and *RD29A* (Uno *et al.* (2000) *PNAS* 97:11632-11637);

RD22 (Abe *et al* (1997) *Plant Cell* 9:1859-1868); *Cor15A* (Baker *et al.* (1994) *Plant Mol Biol* 24:701-713); *BN115* (Jiang *et al.* (1996) *Plant Mol Biol* 30:679-684); *ERD1* (Tran *et al.* (2004) *Plant Cell* 16:2481-2498); *Oryza sativa LEA3* (Xiao *et al.* (2007) *Theor Appl Genet* 115:35-46); *Oryza sativa rab16Bj* (Xiao and Xue (2001) *Plant Cell Rep* 20:667-73); *Brassica LEA3-1* (U.S. Application Publication No. US 2008/0244793); *LEA D7*, *LEA D11*, *LEA D19*, *LEA d34*, and *LEA D113* (Baker *et al.* (1988) *Plant Mol Biol* 11:277-291); *Oryza sativa RAB16* and *Sorghum bicolor DHN2* (Buchanan *et al.* (2004) *Genetics* 168:1639-1654); *Oryza sativa ASR1* (Kuriakose *et al.* (2009) *African J Biotech* 8:4765-73); *Oryza sativa NAC6* (Nakashima *et al.* (2007) *Plant J* 51:617-630); *Oryza sativa SALT* (Garcia *et al.* (1998) *Planta* 207:172-180); *Oryza sativa LIP9* (Aguan *et al.* (1993) *Mol Gen Genet* 240:1-8); *Oryza sativa WS1724* (Takahashi *et al.* (1994) *Plant Mol Biol* 26:339-352); *Oryza sativa WSI18* (Oh *et al.* (2005) *Plant Physiol* 138:341-351); *AREB1*, *AREB2*, and *ABF3* (Yoshida *et al.* (2010) *Plant J* 61:672-685); *Oryza sativa DIP1*, *UGE1*, *R1G1B*, and *RAB21* promoters (Yi *et al.* (2010) *Planta* 232:743-754); cotton *D113* (Luo *et al.* (2008) *Plant Cell Rep* 27:707-717); the *dehydrin* promoter; the *ASI* promoter; the *WGA* promoter; the *P511* promoter; and the *HS70* promoter; the *dehydrin* (DHN) promoter (Robertson *et al.* (1995) *Physiol Plant* 94:470-478); the alpha-amylase/subtilisin inhibitor (ASI) promoter (Furtado *et al.* (2003) *Plant Mol Biol* 52:787-799); the *WGA* promoter; and the *HS70* promoter; each of which is herein incorporated by reference in its entirety.

In some embodiments, the inducible promoter that drives the expression of a site-specific recombinase and subsequent excision of the excision cassette is a Rab17 promoter, such as the maize *rab17* promoter or an active variant or fragment thereof. The maize *rab17* (responsive to abscisic acid) gene (GenBank Accession No. X15994; Vilardell *et al.* (1990) *Plant Mol Biol* 14:423-432; Vilardell *et al.* (1991) *Plant Mol Biol* 17:985-993; each of which is herein incorporated in its entirety) is expressed in late embryos, but its expression can be induced by exposure to abscisic acid, cold temperatures, or water stress. The sequence of the maize *rab17* promoter corresponds to nucleotides 1-558 of GenBank Accession No. X15994, which was disclosed in Vilardell *et al.* (1990) *Plant Mol Biol* 14:423-432 and is set forth in SEQ ID NO: 17. An

alternative maize *rab17* promoter was disclosed in U.S. Patent Nos. 7,253,000 and 7,491,813, each of which is herein incorporated by reference in its entirety, and is set forth in SEQ ID NO: 18. The *rab17* promoter contains four abscisic acid responsive elements (ABRE) (Busk *et al.* (1997) *Plant J* 11:1285-1295, which is herein incorporated by reference in its entirety). The ABRE elements in the maize *rab17* promoter can be found at nucleotides 304-309, 348-353, 363-368, 369-374, 414-419, and 427-432 of SEQ ID NO: 18. The *rab17* promoter also contains drought-responsive elements (DRE), of which the core sequence is identical to the DRE (drought-responsive) and CRT (cold-response elements) elements in *Arabidopsis*. The drought-responsive elements of the maize *rab17* promoter are found at nucleotides 233-238, 299-304, and 322-327 of SEQ ID NO: 18. The CAAT and TATAA box can be found from nucleotides 395 to 398 and 479 to 483 of SEQ ID NO: 18, respectively. In those embodiments wherein the inducible promoter that regulates the expression of the site-specific recombinase is a *rab17* promoter, the expression of the recombinase can be induced by desiccating a host cell (e.g., plant cell) or host (e.g., plant or plant part) or exposing the host cell or host to drought conditions, cold temperatures, or abscisic acid.

In some embodiments, the stress-inducible promoter of the presently disclosed polynucleotide constructs has the sequence set forth in SEQ ID NO: 18 or an active variant or fragment thereof. In other embodiments, the stress-inducible promoter of the presently disclosed polynucleotide constructs has the sequence set forth in SEQ ID NO: 17 or 19 or an active variant or fragment thereof.

In some embodiments of the methods and compositions, the polynucleotide constructs comprise active variants or fragments of the maize *rab17* promoter. An active variant or fragment of a maize *rab17* promoter (e.g., SEQ ID NO: 17, 18, 19) is a polynucleotide variant or fragment that retains the ability to initiate transcription in response to drought conditions, desiccation, cold, and/or ABA. In some of these embodiments, the promoter comprises at least one DRE element. In some embodiments, an active fragment of a maize *rab17* promoter may comprise at least about 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 contiguous nucleotides of SEQ ID NO: 17, 18, or 19, or may have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%,

90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to SEQ ID NO: 17, 18, or 19. In particular embodiments, the promoter of the compositions and methods comprises from about -219 to about -102 of the maize *rab17* promoter (corresponding to nucleotides 291 to 408 of SEQ ID NO: 18). In other embodiments, the 5 active maize *rab17* promoter fragment comprises from about -219 to about -80 of the maize *rab17* promoter (nucleotides 291 to 430 of SEQ ID NO: 18), which comprises most of the DRE and ABRE elements.

In some embodiments, the expression of the site-specific recombinase is regulated by a promoter comprising a maize *rab17* promoter or a fragment or variant thereof, and 10 an attachment site, such as an attachment B (attB) site as described in U.S. Application Publication No. 2011/0167516 (which is herein incorporated by reference in its entirety), and in some of these embodiments, the attB site modifies the activity of the maize *rab17* promoter.

As used herein, a “modulator” refers to a polynucleotide that when present 15 between a promoter and a coding sequence, serves to increase or decrease the activity of the promoter. Non-limiting examples of modulators include recombination sites, operators, and insulators.

Attachment sites are site-specific recombination sites found in viral and bacterial genomes that facilitate the integration or excision of the viral genome into and out of its 20 host genome. Non-limiting examples of a viral and bacterial host system that utilize attachment sites is the lambda bacteriophage and *E. coli* system (Weisberg and Landy (1983) In Lambda II, eds. Hendrix *et al.* (Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.) pp.211-250). The modulator of the maize *rab17* promoter can be an *E. coli* attachment site B (attB) site. The attB site can be a naturally occurring *E. coli* attB site or 25 an active variant or fragment thereof or a synthetically derived sequence. Synthetically derived attB sites and active variants and fragments of naturally occurring attB sites are those that are capable of recombining with a bacteriophage lambda attachment P site, a process that is catalyzed by the bacteriophage lambda Integrase (Int) and the *E. coli* Integration Host Factor (IHF) proteins (Landy (1989) *Ann Rev Biochem* 58: 913-949, 30 which is herein incorporated by reference in its entirety). AttB sites typically have a

length of about 25 nucleotides, with a core 15-base pair sequence that is involved in the actual crossover event. Alternatively, active variants and fragments of naturally occurring attB sites are those that are capable of modulating the activity of a promoter. Non-limiting examples of attB sites that can be used include attB1 (SEQ ID NO: 20), attB2 (SEQ ID NO: 21), attB3 (SEQ ID NO: 22), and attB4 (SEQ ID NO: 23), and variants or fragments thereof. In some embodiments, the modulator is an active variant or fragment of an attB site that is capable of modulating (i.e., increasing, decreasing) the activity of a promoter, but is not capable of recombination with an attachment P site. Non-limiting examples of such active variants of an attB site include those having the sequence set forth in SEQ ID NO: 24, 25, or 26.

In some embodiments, the distance of the modulator (e.g., attB site) from the promoter impacts the ability of the modulator to modify the activity of the promoter. The modulator may be contiguous with the promoter and/or the coding polynucleotide. In other embodiments, a linker sequence separates the promoter sequence and the modulator (e.g., attB site). As used herein, a “linker sequence” is a nucleotide sequence that functions to link one functional sequence with another without otherwise contributing to the expression or translation of a coding polynucleotide. Accordingly, the actual sequence of the linker sequence can vary. The linker sequence can comprise plasmid sequences, restriction sites, and/or regions of the 5'-untranslated region (5'-UTR) of the gene from which the promoter is derived. The linker sequence separating the promoter and the modulator (e.g., attB site) can have a length of about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 400, 500, 1000 nucleotides or greater. In certain embodiments, a linker sequence of about 133 nucleotides separates the maize *rab17* promoter and the modulator (e.g., attB site). In some embodiments, the linker sequence comprises a fragment of the *rab17* 5'-UTR. The fragment of the 5'-UTR can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100 nucleotides, or greater, in length. In certain embodiments, the promoter comprises a linker sequence separating the maize *rab17* promoter and the modulator (e.g., attB site) that comprises 95 nucleotides of the maize *rab17* 5'-UTR. In some of these embodiments, the 95 nucleotide

sequence has the sequence set forth in SEQ ID NO: 27. In certain embodiments, the linker sequence between the maize *rab17* promoter and modulator (e.g., attB site) has the sequence set forth in SEQ ID NO: 28 or a variant or fragment thereof.

In some embodiments, the promoter comprises a linker sequence separating the 5 modulator (e.g., attB site) and the site-specific recombinase-coding polynucleotide. The length and sequence of this linker may also vary and can be about 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300, 400, 500, 1000 nucleotides or greater in length. In certain embodiments, a linker sequence of about 61 nucleotides separates the modulator (e.g., attB site) and the 10 recombinase-encoding polynucleotide. In certain embodiments, the linker sequence between the modulator (e.g., attB site) and the coding polynucleotide has the sequence set forth in SEQ ID NO: 29 or a variant or fragment thereof. In other embodiments, a linker sequence of about 25 nucleotides separates the modulator (e.g., attB site) and the coding polynucleotide. In certain embodiments, the linker sequence between the modulator (e.g., 15 attB site) and the coding polynucleotide has the sequence set forth in SEQ ID NO: 30.

In certain embodiments, the stress-inducible promoter that regulates the expression of the site-specific recombinase has the sequence set forth in SEQ ID NO: 31 or a variant or fragment thereof.

In other embodiments of the presently disclosed compositions and methods, the 20 inducible promoter that regulates the expression of the site-specific recombinase is a chemical-inducible promoter. In some of these embodiments, the chemical-inducible promoter is a sulfonylurea (SU)-inducible promoter that has at least one operator sequence capable of binding to a sulfonylurea-responsive transcriptional repressor (SuR) protein, such as those disclosed in U.S. Application Publication Nos. 2010/0105141 and 25 2011/0287936.

As used herein, a “sulfonylurea-responsive transcriptional repressor” or “SuR” refers to a transcriptional repressor protein whose binding to an operator sequence is controlled by a ligand comprising a sulfonylurea compound. The SuR proteins useful in the presently disclosed methods and compositions include those that bind specifically to 30 an operator sequence in the absence of a sulfonylurea ligand.

In some embodiments, the SuR protein is one that specifically binds to a tetracycline operator, wherein the specific binding is regulated by a sulfonylurea compound. Thus, in some embodiments, the sulfonylurea-inducible promoter comprises at least one tetracycline (tet) operator sequence. Tetracycline operator sequences are known in the art and include the tet operator sequence set forth in SEQ ID NO: 32. The tet operator sequence can be located within 0-30 nucleotides 5' or 3' of the TATA box of the chemical-regulated promoter, including, for example, within 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, or 0 nt of the TATA box. In other instances, the tet operator sequence may partially overlap with the TATA box sequence. In one non-limiting example, the tet operator sequence is SEQ ID NO: 32 or an active variant or fragment thereof.

Useful tet operator containing promoters include, for example, those known in the art (see, e.g., Matzke *et al.* (2003) *Plant Mol Biol Rep* 21:9-19; Padidam (2003) *Curr Op Plant Biol* 6:169-177; Gatz & Quail (1988) *PNAS* 85:1394-1397; Ulmasov *et al.* (1997) *Plant Mol Biol* 35:417-424; Weinmann *et al.* (1994) *Plant J* 5:559-569; each of which is herein incorporated by reference in its entirety). One or more tet operator sequences can be added to a promoter in order to produce a sulfonylurea-inducible promoter. See, for example, Weinmann *et al.* (1994) *Plant J* 5:559-569; Love *et al.* (2000) *Plant J* 21:579-588. In addition, the widely tested tetracycline regulated expression system for plants using the CaMV 35S promoter (Gatz *et al.* (1992) *Plant J* 2:397-404; which is herein incorporated by reference in its entirety) having three tet operators introduced near the TATA box (3XOpT 35S) can be used as the sulfonylurea-inducible promoter.

Thus, a SU-inducible promoter comprising at least one, two, three or more operators capable of binding a SuR (including a tet operator, such as that set forth in SEQ ID NO:32 or an active variant or fragment thereof) can be used to regulate the expression of the site-specific recombinase. Any promoter can be combined with an operator capable of binding a SuR to generate a SU-inducible promoter. In specific embodiments, the promoter is active in plant cells. The promoter can be a constitutive promoter or a non-constitutive promoter. Non-constitutive promoters include tissue-preferred

promoter, such as a promoter that is primarily expressed in roots, leaves, stems, flowers, silks, anthers, pollen, meristem, seed, endosperm, or embryos.

In particular embodiments, the promoter is a plant actin promoter, a banana streak virus promoter (BSV), an MMV promoter, an enhanced MMV promoter (dMMV), a 5 plant P450 promoter, or an elongation factor 1a (EF1A) promoter (U.S. Application Publication No. 20080313776, which is herein incorporated by reference in its entirety).

In those embodiments wherein the inducible promoter that is operably linked to the polynucleotide encoding the site-specific recombinase is a SU-inducible promoter, the host cell further comprises a sulfonylurea-responsive transcriptional repressor (SuR) or 10 the polynucleotide construct comprises a polynucleotide encoding a SuR. Non-limiting examples of SuR polynucleotide and polypeptide sequences include those disclosed in U.S. Application Publication No. 2011/0287936, such as the polypeptide sequences set forth in SEQ ID NOs: 3-419 and the polynucleotide sequences set forth in SEQ ID NOs: 420-836 of U.S. Application Publication No. 2011/0287936, which is herein incorporated 15 by reference in its entirety. Additional non-limiting examples of SuR polynucleotide and polypeptide sequences include those disclosed in U.S. Application Publication No. 2010/0105141, such as the polypeptide sequences set forth in SEQ ID NO: 3-401, 1206- 1213, 1228-1233, and 1240-1243 and the polynucleotide sequences set forth in SEQ ID NO: 434-832, 1214-1221, 1222-1227, 1234-1239, and 1244-1247 of U.S. Application 20 Publication No. 2010/0105141, which is herein incorporated by reference in its entirety.

In those embodiments wherein the presently disclosed polynucleotide constructs further comprise a polynucleotide encoding a SuR, the SuR-encoding polynucleotide is operably linked to a promoter that is active in a plant. The promoter may be a constitutive or a non-constitutive promoter, including a tissue-preferred promoter.

25 In particular embodiments, the promoter that is operably linked to the SuR-encoding polynucleotide comprises operator sequences that are capable of binding to SuR, which allows for autoregulation of the repressor and enhanced induction of the SU-inducible promoter and expression of the site-specific recombinase. See, for example, U.S. Application Publication No. 2011/0287936.

In particular embodiments, the SuR-encoding polynucleotide and optionally, the promoter operably linked thereto, is present within the excision cassette of the presently disclosed polynucleotide constructs, such that the polynucleotide is excised upon induction of the SU-inducible promoter and expression of the site-specific recombinase.

5 A variety of SU compounds can be used to bind to the SuR and induce the SU-inducible promoter. Sulfonylurea molecules comprise a sulfonylurea moiety (–S(O)2NHC(O)NH(R)–). In sulfonylurea herbicides, the sulfonyl end of the sulfonylurea moiety is connected either directly or by way of an oxygen atom or an optionally substituted amino or methylene group to a typically substituted cyclic or acyclic group.

10 At the opposite end of the sulfonylurea bridge, the amino group, which may have a substituent such as methyl (R being CH₃) instead of hydrogen, is connected to a heterocyclic group, typically a symmetric pyrimidine or triazine ring, having one or two substituents such as methyl, ethyl, trifluoromethyl, methoxy, ethoxy, methylamino, dimethylamino, ethylamino and the halogens. Sulfonylurea herbicides can be in the form

15 of the free acid or a salt. In the free acid form, the sulfonamide nitrogen on the bridge is not deprotonated (*i.e.*, –S(O)2NHC(O)NH(R)), while in the salt form, the sulfonamide nitrogen atom on the bridge is deprotonated, and a cation is present, typically of an alkali metal or alkaline earth metal, most commonly sodium or potassium. Sulfonylurea compounds include, for example, compound classes such as pyrimidinylsulfonylurea

20 compounds, triazinylsulfonylurea compounds, thiadiazolylurea compounds, and pharmaceuticals such as antidiabetic drugs, as well as salts and other derivatives thereof. Examples of pyrimidinylsulfonylurea compounds include amidosulfuron, azimsulfuron, bensulfuron, bensulfuron-methyl, chlorimuron, chlorimuron-ethyl, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, flupyrsulfuron-methyl,

25 foramsulfuron, halosulfuron, halosulfuron-methyl, imazosulfuron, mesosulfuron, mesosulfuron-methyl, nicosulfuron, orthosulfamuron, oxasulfuron, primisulfuron, primisulfuron-methyl, pyrazosulfuron, pyrazosulfuron-ethyl, rimsulfuron, sulfometuron, sulfometuron-methyl, sulfosulfuron, trifloxyulfuron and salts and derivatives thereof. Examples of triazinylsulfonylurea compounds include chlorsulfuron, cinosulfuron,

30 ethametsulfuron, ethametsulfuron-methyl, iodosulfuron, iodosulfuron-methyl,

metsulfuron, metsulfuron-methyl, prosulfuron, thifensulfuron, thifensulfuron-methyl, triasulfuron, tribenuron, tribenuron-methyl, triflusulfuron, triflusulfuron-methyl, tritosulfuron and salts and derivatives thereof. Examples of thiadiazolylurea compounds include buthiuron, ethidimuron, tebuthiuron, thiazafluron, thidiazuron, 5 pyrimidinylsulfonylurea compound (e.g., amidosulfuron, azimsulfuron, bensulfuron, chlorimuron, cyclosulfamuron, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrulfuron, foramsulfuron, halosulfuron, imazosulfuron, mesosulfuron, nicosulfuron, orthosulfamuron, oxasulfuron, primisulfuron, pyrazosulfuron, rimsulfuron, sulfometuron, sulfosulfuron and trifloxsulfuron); a triazinylsulfonylurea compound (e.g., 10 chlorsulfuron, cinosulfuron, ethametsulfuron, iodosulfuron, metsulfuron, prosulfuron, thifensulfuron, triasulfuron, tribenuron, triflusulfuron and tritosulfuron); or a thiadiazolylurea compound (e.g., cloransulam, diclosulam, florasulam, flumetsulam, metosulam, and penoxsulam) and salts and derivatives thereof. Examples of antidiabetic drugs include acetohexamide, chlorpropamide, tolbutamide, tolazamide, glipizide, 15 gliclazide, glibenclamide (glyburide), gliquidone, glimepiride and salts and derivatives thereof. In some systems, the SuR polypeptides specifically bind to more than one sulfonylurea compound, so one can chose which SU ligand to apply to the plant.

In some examples, the sulfonylurea compound is selected from the group consisting of chlorsulfuron, ethametsulfuron-methyl, metsulfuron-methyl, thifensulfuron-methyl, sulfometuron-methyl, tribenuron-methyl, chlorimuron-ethyl, nicosulfuron, and rimsulfuron. 20

In other embodiments, the sulfonylurea compound comprises a pyrimidinylsulfonylurea, a triazinylsulfonylurea, a thiadiazolylurea, a chlorosulfuron, an ethametsulfuron, a thifensulfuron, a metsulfuron, a sulfometuron, a tribenuron, a 25 chlorimuron, a nicosulfuron, or a rimsulfuron compound.

In some embodiments, it may be necessary for a plant or plant part that is contacted with a SU in order to induce the SU-inducible promoter to have tolerance to the SU. A host (e.g., a plant or plant part) may be naturally tolerant to the SU ligand, or the host (e.g., the plant or plant part) may be tolerant to the SU ligand as a result of human 30 intervention such as, for example, by the use of a recombinant construct, plant breeding

or genetic engineering. Thus, the host (e.g., the plant or plant part) employed in the various methods disclosed herein can comprise a native or a heterologous sequence that confers tolerance to the sulfonylurea compound.

In some of these embodiments, the presently disclosed polynucleotide constructs 5 can comprise a polynucleotide encoding a sulfonylurea-tolerance polypeptide, which is a polypeptide that when expressed in a host (e.g., plant or plant part) confers tolerance to at least one sulfonylurea. In some of these embodiments, the polynucleotide encoding the SU-tolerance polypeptide is comprised within the excision cassette.

In other embodiments, the herbicide tolerance polypeptide that is expressed upon 10 excision of the excision cassette is a SU-tolerance polypeptide, such that the plant or plant part does not have tolerance to SU prior to the addition of SU to the plant or plant part, but upon the addition of SU, the excision cassette is excised and the SU-tolerance polypeptide is subsequently expressed, which allows for protection of the plant or plant part from damage due to the SU.

15 Sulfonylurea herbicides inhibit growth of higher plants by blocking acetolactate synthase (ALS), also known as, acetohydroxy acid synthase (AHAS). Thus, in some embodiments, the SU-tolerance polypeptide is an ALS inhibitor-tolerance polypeptide, as described elsewhere herein.

When the inducible promoter of the presently disclosed polynucleotide constructs 20 is activated, a site-specific recombinase is expressed, which catalyzes the excision of the excision cassette comprised within the polynucleotide construct. As used herein, an “excision cassette” refers to a polynucleotide that is flanked by recombination sites that are recombinogenic with one another and directly repeated, such that when acted upon by a site-specific recombinase that recognizes the recombination sites, the nucleotide 25 sequence within the recombination sites is excised from the remaining polynucleotide. The excision cassette of the presently disclosed polynucleotide constructs comprise a first expression cassette comprising a site-specific recombinase-encoding polynucleotide operably linked to an inducible promoter and optionally, at least one of a polynucleotide encoding a selectable marker, a polynucleotide encoding a cell proliferation factor, a

polynucleotide encoding a herbicide tolerance polypeptide, and a polynucleotide of interest.

A site-specific recombinase, also referred to herein as a recombinase, is a polypeptide that catalyzes conservative site-specific recombination between its compatible recombination sites, and includes native polypeptides as well as derivatives, variants and/or fragments that retain activity, and native polynucleotides, derivatives, variants, and/or fragments that encode a recombinase that retains activity. The recombinase used in the methods and compositions can be a native recombinase or a biologically active fragment or variant of the recombinase. For reviews of site-specific recombinases and their recognition sites, see Sauer (1994) *Curr Op Biotechnol* 5:521-527; and Sadowski (1993) *FASEB* 7:760-767, each of which is herein incorporated by reference in its entirety.

Any recombinase system can be used in the presently disclosed methods and compositions. Non-limiting examples of site-specific recombinases include FLP, Cre, S-CRE, V-CRE, Dre, SSV1, lambda Int, phi C31 Int, HK022, R, Gin, Tn1721, CinH, ParA, Tn5053, Bxb1, TP907-1, U153, and other site-specific recombinases known in the art, including those described in Thomson and Ow (2006) *Genesis* 44:465-476, which is herein incorporated by reference in its entirety. Examples of site-specific recombination systems used in plants can be found in U.S. Patent Nos. 5,929,301, 6,175,056, 6,331,661; and International Application Publication Nos. WO 99/25821, WO 99/25855, WO 99/25841, and WO 99/25840, the contents of each are herein incorporated by reference.

In some embodiments, the recombinase is a member of the Integrase or Resolvase families, including biologically active variants and fragments thereof. The Integrase family of recombinases has over one hundred members and includes, for example, FLP, Cre, lambda integrase, and R. For other members of the Integrase family, see, for example, Esposito *et al.* (1997) *Nucleic Acids Res* 25:3605-3614; and Abremski *et al.* (1992) *Protein Eng* 5:87-91; each of which are herein incorporated by reference in its entirety. Other recombination systems include, for example, the *Streptomyces* bacteriophage phi C31 (Kuhstoss *et al.* (1991) *J Mol Biol* 20:897-908); the SSV1 site-specific recombination system from *Sulfolobus shibatae* (Maskhelia *et al.* (1993) *Mol*

Gen Genet 237:334-342); and a retroviral integrase-based integration system (Tanaka *et al.* (1998) *Gene* 17:67-76). In some embodiments, the recombinase does not require cofactors or a supercoiled substrate. Such recombinases include Cre, FLP, or active variants or fragments thereof.

5 The FLP recombinase is a protein that catalyzes a site-specific reaction that is involved in amplifying the copy number of the two-micron plasmid of *S. cerevisiae* during DNA replication. FLP recombinase catalyzes site-specific recombination between two FRT sites. The FLP protein has been cloned and expressed (Cox (1993) *Proc Natl Acad Sci USA* 80:4223-4227, which is herein incorporated by reference in its entirety).

10 The FLP recombinase for use in the methods and compositions may be derived from the genus *Saccharomyces*. In some embodiments, a recombinase polynucleotide modified to comprise more plant-preferred codons is used. A recombinant FLP enzyme encoded by a nucleotide sequence comprising maize preferred codons (FLPm) that catalyzes site-specific recombination events is known (the polynucleotide and polypeptide sequence of

15 which is set forth in SEQ ID NO: 33 and 34, respectively; see, *e.g.*, US Patent 5,929,301, which is herein incorporated by reference in its entirety). Additional functional variants and fragments of FLP are known (Buchholz *et al.* (1998) *Nat Biotechnol* 16:657-662; Hartung *et al.* (1998) *J Biol Chem* 273:22884-22891; Saxena *et al.* (1997) *Biochim Biophys Acta* 1340:187-204; Hartley *et al.* (1980) *Nature* 286:860-864; Vozianov *et al.*

20 (2002) *Nucleic Acids Res* 30:1656-1663; Zhu & Sadowski (1995) *J Biol Chem* 270:23044-23054; and U.S. Patent No. 7,238,854, each of which is herein incorporated by reference in its entirety).

The bacteriophage recombinase Cre catalyzes site-specific recombination between two *lox* sites. The Cre recombinase is known (Guo *et al.* (1997) *Nature* 389:40-46; Abremski *et al.* (1984) *J Biol Chem* 259:1509-1514; Chen *et al.* (1996) *Somat Cell Mol Genet* 22:477-488; Shaikh *et al.* (1977) *J Biol Chem* 272:5695-5702; and, Buchholz *et al.* (1998) *Nat Biotechnol* 16:657-662, each of which is herein incorporated by reference in its entirety). Cre polynucleotide sequences may also be synthesized using plant-preferred codons, for example such sequences (moCre; the polynucleotide and polypeptide sequence of which is set forth in SEQ ID NO: 35 and 36, respectively) are described, for

example, in International Application Publication No. WO 99/25840, which is herein incorporated by reference in its entirety. Variants of the Cre recombinase are known (see, for example U.S. Patent No. 6,890,726; Rufer & Sauer (2002) *Nucleic Acids Res* 30:2764-2772; Wierzbicki *et al.* (1987) *J Mol Biol* 195:785-794; Petyuk *et al.* (2004) *J Biol Chem* 279:37040-37048; Hartung & Kisters-Woike (1998) *J Biol Chem* 273:22884-22891; Santoro & Schultz (2002) *Proc Natl Acad Sci USA* 99:4185-4190; Koresawa *et al.* (2000) *J Biochem (Tokyo)* 127:367-372; and Vergunst *et al.* (2000) *Science* 290:979-982, each of which are herein incorporated by reference in its entirety).

5 In some embodiments, the recombinase is a S-CRE, V-CRE recombinase (Suzuki & Nakayama (2011) *Nucl Acid Res* 39(8):e49) or Dre recombinase (Sauer & McDermott (2004) *Nucl Acid Res* 32(20):6086-6095), each of which is herein incorporated by reference in its entirety.

10 In some embodiments, the recombinase is a chimeric recombinase, which is a recombinant fusion protein that is capable of catalyzing site-specific recombination between recombination sites that originate from different recombination systems. For 15 example, if the set of recombination sites comprises a FRT site and a LoxP site, a chimeric FLP/Cre recombinase or active variant or fragment thereof can be used, or both recombinases may be separately provided. Methods for the production and use of such chimeric recombinases or active variants or fragments thereof are described, for example, 20 in International Application Publication No. WO 99/25840; and Shaikh & Sadowski (2000) *J Mol Biol* 302:27-48, each of which are herein incorporated by reference in its entirety.

25 In other embodiments, a variant recombinase is used. Methods for modifying the kinetics, cofactor interaction and requirements, expression, optimal conditions, and/or recognition site specificity, and screening for activity of recombinases and variants are known, see for example Miller *et al.* (1980) *Cell* 20:721-9; Lange-Gustafson and Nash (1984) *J Biol Chem* 259:12724-32; Christ *et al.* (1998) *J Mol Biol* 288:825-36; Lorbach *et al.* (2000) *J Mol Biol* 296:1175-81; Vergunst *et al.* (2000) *Science* 290:979-82; Dorgai *et al.* (1995) *J Mol Biol* 252:178-88; Dorgai *et al.* (1998) *J Mol Biol* 277:1059-70; Yagu *et al.* (1995) *J Mol Biol* 252:163-7; Selimenti *et al.* (2001) *Nucleic Acids Res* 29:5044-51;

Santoro and Schultze (2002) *Proc Natl Acad Sci USA* 99:4185-90; Buchholz and Stewart (2001) *Nat Biotechnol* 19:1047-52; Vozianov *et al.* (2002) *Nucleic Acids Res* 30:1656-63; Vozianov *et al.* (2003) *J Mol Biol* 326:65-76; Klippe *et al.* (1988) *EMBO J* 7:3983-9; Arnold *et al.* (1999) *EMBO J* 18:1407-14; and International Application Publication 5 Nos. WO 03/08045, WO 99/25840, and WO 99/25841; each of which is herein incorporated by reference in its entirety.

By "recombination site" is intended a polynucleotide (native or synthetic/artificial) that is recognized by the recombinase enzyme of interest. As outlined above, many recombination systems are known in the art and one of skill will recognize the 10 appropriate recombination site to be used with the recombinase of interest.

Non-limiting examples of recombination sites include FRT sites including, for example, the native FRT site (FRT1, SEQ ID NO:37), and various functional variants of FRT, including but not limited to, FRT5 (SEQ ID NO:38), FRT6 (SEQ ID NO:39), FRT7 (SEQ ID NO:40), FRT12 (SEQ ID NO: 41), and FRT87 (SEQ 15 ID NO:42). See, for example, International Application Publication Nos. WO 03/054189, WO 02/00900, and WO 01/23545; and Schlake *et al.* (1994) *Biochemistry* 33:12745-12751, each of which is herein incorporated by reference. Recombination sites from the Cre/Lox site-specific recombination system can be used. Such recombination sites include, for example, native LOX sites and 20 various functional variants of LOX.

In some embodiments, the recombination site is a functional variant of a FRT site or functional variant of a LOX site, any combination thereof, or any other combination of recombinogenic or non-recombinogenic recombination sites known. Functional variants include chimeric recombination sites, such as an FRT site fused to a 25 LOX site (see, for example, Luo *et al.* (2007) *Plant Biotech J* 5:263-274, which is herein incorporated by reference in its entirety). Functional variants also include minimal sites (FRT and/or LOX alone or in combination). The minimal native FRT recombination site (SEQ ID NO: 37) has been characterized and comprises a series of domains comprising a pair of 11 base pair symmetry elements, which are the FLP binding sites; the 8 base pair 30 core, or spacer, region; and the polypyrimidine tracts. In some embodiments, at least one

modified FRT recombination site is used. Modified or variant FRT recombination sites are sites having mutations such as alterations, additions, or deletions in the sequence. The modifications include sequence modification at any position, including but not limited to, a modification in at least one of the 8 base pair spacer domain, a symmetry element, and/or a polypyrimidine tract. FRT variants include minimal sites (see, e.g., 5 Broach *et al.* (1982) *Cell* 29:227-234; Senecoff *et al.* (1985) *Proc Natl Acad Sci USA* 82:7270-7274; Gronostajski & Sadowski (1985) *J Biol Chem* 260:12320-12327; Senecoff *et al.* (1988) *J Mol Biol* 201:405-421; and International Application Publication No. 10 WO99/25821), and sequence variants (see, for example, Schlake & Bode (1994) *Biochemistry* 33:12746-12751; Seibler & Bode (1997) *Biochemistry* 36:1740-1747; Umlauf & Cox (1988) *EMBO J* 7:1845-1852; Senecoff *et al.* (1988) *J Mol Biol* 201:405-421; Voziyanov *et al.* (2002) *Nucleic Acids Res* 30:7; International Application 15 Publication Nos. WO 07/011733, WO 99/25854, WO 99/25840, WO 99/25855, WO 99/25853 and WO 99/25821; and U.S. Patent Nos. 7,060,499 and 7,476,539; each of which are herein incorporated by reference in its entirety).

An analysis of the recombination activity of variant LOX sites is presented in Lee *et al.* (1998) *Gene* 216:55-65 and in U.S. Patent No. 6,465,254. Also, see for example, Huang *et al.* (1991) *Nucleic Acids Res* 19:443-448; Sadowski (1995) *In Progress in Nucleic Acid Research and Molecular Biology* 20 Vol. 51, pp. 53-91; U.S. Patent No. 6,465,254; Cox (1989) *In Mobile DNA*, Berg and Howe (eds) American Society of Microbiology, Washington D.C., pp. 116-670; Dixon *et al.* (1995) *Mol Microbiol* 18:449-458; Buchholz *et al.* (1996) *Nucleic Acids Res* 24:3118-3119; Kilby *et al.* (1993) *Trends Genet* 9:413-421; Rossant & Geagy (1995) *Nat Med* 1:592-594; Albert *et al.* (1995) *Plant J* 7:649-659; Bayley *et al.* (1992) *Plant Mol Biol* 18:353-361; Odell *et al.* (1990) *Mol Gen Genet* 223:369-378; Dale & Ow (1991) *Proc Natl Acad Sci USA* 88:10558-10562; Qui *et al.* (1994) *Proc Natl Acad Sci USA* 91:1706-1710; Stuurman *et al.* (1996) *Plant Mol Biol* 32:901-913; Dale *et al.* (1990) *Gene* 91:79-85; and International Application Publication No. WO 01/111058; each of which is herein incorporated 25 by reference in its entirety.

Naturally occurring recombination sites or biologically active variants thereof are of use. Methods to determine if a modified recombination site is recombinogenic are known (see, for example, International Application Publication No. WO 07/011733, which is herein incorporated by reference in its entirety). Variant recognition sites are 5 known, see for example, Hoess *et al.* (1986) *Nucleic Acids Res* 14:2287-300; Albert *et al.* (1995) *Plant J* 7:649-59; Thomson *et al.* (2003) *Genesis* 36:162-7; Huang *et al.* (1991) *Nucleic Acids Res* 19:443-8; Siebler and Bode (1997) *Biochemistry* 36:1740-7; Schlake and Bode (1994) *Biochemistry* 33:12746-51; Thyagarajan *et al.* (2001) *Mol Cell Biol* 21:3926-34; Umlauf and Cox (1988) *EMBO J* 7:1845-52; Lee and Saito (1998) *Gene* 10 216:55-65; International Application Publication Nos. WO 01/23545, WO 99/25851, WO 01/11058, WO 01/07572; and U.S. Patent No. 5,888,732; each of which is herein incorporated by reference in its entirety.

The recombination sites employed in the methods and compositions can be identical or dissimilar sequences, so long as the sites are recombinogenic with respect to 15 one another.

By "recombinogenic" is intended that the set of recombination sites (*i.e.*, dissimilar or corresponding) are capable of recombining with one another. Alternatively, by "non-recombinogenic" is intended the set of recombination sites, in the presence of the appropriate recombinase, will not recombine with one another or recombination between 20 the sites is minimal. Accordingly, it is recognized that any suitable set of recombinogenic recombination sites may be utilized, including a FRT site or functional variant thereof, a LOX site or functional variant thereof, any combination thereof, or any other combination of recombination sites known in the art.

In some embodiments, the recombination sites are asymmetric, and the orientation 25 of any two sites relative to each other will determine the recombination reaction product. Directly repeated recombination sites are those recombination sites in a set of recombinogenic recombination sites that are arranged in the same orientation, such that recombination between these sites results in excision, rather than inversion, of the intervening DNA sequence. Inverted recombination sites are those recombination sites in 30 a set of recombinogenic recombination sites that are arranged in the opposite orientation,

so that recombination between these sites results in inversion, rather than excision, of the intervening DNA sequence. The presently disclosed polynucleotide constructs comprise recombination sites that are recombinogenic with one another and directly repeated so as to result in excision of the excision cassette.

5 The presently disclosed compositions and methods utilize at least one polynucleotide that confers herbicide tolerance. Tolerance to specific herbicides can be conferred by engineering genes into plants which encode appropriate herbicide metabolizing enzymes and/or insensitive herbicide targets. Such polypeptides are referred to as “herbicide tolerance polypeptides”. In some embodiments these enzymes, 10 and the nucleic acids that encode them, originate from a plant. In other embodiments, they are derived from other organisms, such as microbes. *See, e.g., Padgett et al. (1996) “New weed control opportunities: Development of soybeans with a Roundup Ready® gene” and Vasil (1996) “Phosphinothrinic-resistant crops,” both in *Herbicide-Resistant Crops*, ed. Duke (CRC Press, Boca Raton, Florida) pp. 54-84 and pp. 85-91.*

15 An “herbicide” is a chemical that causes temporary or permanent injury to a plant. Non-limiting examples of herbicides that can be employed in the various methods and compositions of the invention are discussed in further detail elsewhere herein. A herbicide may be incorporated into the plant or plant part, or it may act on the plant or plant part without being incorporated into the plant or plant part. An “active ingredient” 20 is the chemical in a herbicide formulation primarily responsible for its phytotoxicity and which is identified as the active ingredient on the product label. Product label information is available from the U.S. Environmental Protection Agency and is updated online at the url oaspub.epa.gov/pestlabl/ppls.own; product label information is also available online at the url www.cdms.net.

25 “Herbicide-tolerant” or “tolerant” in the context of herbicide or other chemical treatment as used herein means that a plant or plant part treated with a particular herbicide or class or subclass of herbicide or other chemical or class or subclass of other chemical will show no significant damage or less damage following that treatment in comparison to an appropriate control plant or plant part. A plant or plant part may be naturally 30 tolerant to a particular herbicide or chemical, or a plant or plant part may be herbicide-

tolerant as a result of human intervention such as, for example, breeding or genetic engineering. An “herbicide-tolerance polypeptide” is a polypeptide that confers herbicide tolerance on a plant or other organism expressing it (*i.e.*, that makes a plant or other organism herbicide-tolerant), and an “herbicide-tolerance polynucleotide” is a 5 polynucleotide that encodes a herbicide-tolerance polypeptide. For example, a sulfonylurea-tolerance polypeptide is one that confers tolerance to sulfonylurea herbicides on a plant or other organism that expresses it, an imidazolinone-tolerance polypeptide is one that confers tolerance to imidazolinone herbicides on a plant or other organism that expresses it; and a glyphosate-tolerance polypeptide is one that confers tolerance to 10 glyphosate on a plant or other organism that expresses it.

Thus, a plant or plant part is tolerant to a herbicide or other chemical if it shows damage in comparison to an appropriate control plant or plant part that is less than the damage exhibited by the control plant or plant part by at least 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 90%, 100%, 150%, 15 200%, 250%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, or 1000% or more. In this manner, a plant or plant part that is tolerant to a herbicide or other chemical shows “improved tolerance” in comparison to an appropriate control plant or plant part. Damage resulting from herbicide or other chemical treatment is assessed by evaluating any parameter of plant growth or well-being deemed suitable by one of skill in the art. 20 Damage can be assessed by visual inspection and/or by statistical analysis of suitable parameters of individual plants or plant parts or of a group of plants or plant parts. Thus, damage may be assessed by evaluating, for example, parameters such as plant height, plant weight, leaf color, leaf length, flowering, fertility, silking, yield, seed production, and the like. Damage may also be assessed by evaluating the time elapsed to a particular 25 stage of development (*e.g.*, silking, flowering, or pollen shed) or the time elapsed until a plant has recovered from treatment with a particular chemical and/or herbicide.

In making such assessments, particular values may be assigned to particular degrees of damage so that statistical analysis or quantitative comparisons may be made. The use of ranges of values to describe particular degrees of damage is known in the art, 30 and any suitable range or scale may be used. For example, herbicide injury scores (also

called tolerance scores) can be assigned as set forth in Table 2. In this scale, a rating of 9 indicates that a herbicide treatment had no effect on a crop, *i.e.*, that no crop reduction or injury was observed following the herbicide treatment. Thus, in this scale, a rating of 9 indicates that the crop exhibited no damage from the herbicide and therefore that the crop
 5 is tolerant to the herbicide. As indicated above, herbicide tolerance is also indicated by other ratings in this scale where an appropriate control plant exhibits a lower score on the scale, or where a group of appropriate control plants exhibits a statistically lower score in response to a herbicide treatment than a group of subject plants.

10 Table 2. Herbicide injury scale (1 to 9 scale scoring system).

Rating	Main categories	Detailed description
9	No Effect	No crop reduction or injury
8	Slight Effect	Slight crop discoloration or stunting
7		Some crop discoloration, stunting, or stunt loss
6		Crop injury more pronounced, but not lasting
5	Moderate Effect	Moderate injury, crop usually recovers
4		Crop injury more lasting, recovery doubtful
3		Lasting crop injury, no recovery

A herbicide does not “significantly damage” a plant or plant part when it either has no effect on a plant or plant part or when it has some effect on a plant or plant part from which the plant later recovers, or when it has an effect which is detrimental but
 15 which is offset, for example, by the impact of the particular herbicide on weeds. Thus, for example, a plant or plant part is not “significantly damaged by” a herbicide or other treatment if it exhibits less than 50%, 40%, 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% decrease in at least one suitable parameter that is indicative of plant health and/or productivity in comparison to an appropriate control plant or plant
 20 part (*e.g.*, an untreated plant or plant part). Suitable parameters that are indicative of plant health and/or productivity include, for example, plant height, plant weight, leaf length, time elapsed to a particular stage of development, flowering, yield, seed production, and the like. The evaluation of a parameter can be by visual inspection and/or by statistical analysis of any suitable parameter. Comparison may be made by

visual inspection and/or by statistical analysis. Accordingly, a plant or plant part is not “significantly damaged by” a herbicide or other treatment if it exhibits a decrease in at least one parameter but that decrease is temporary in nature and the plant or plant part recovers fully within 1 week, 2 weeks, 3 weeks, 4 weeks, or 6 weeks.

5 Conversely, a plant or plant part is significantly damaged by a herbicide or other treatment if it exhibits more than a 50%, 60%, 70%, 80%, 90%, 100%, 110%, 120%, 150%, 170% decrease in at least one suitable parameter that is indicative of plant health and/or productivity in comparison to an appropriate control plant or plant part. Thus, a plant or plant part is significantly damaged if it exhibits a decrease in at least one 10 parameter and the plant or plant part does not recover fully within 1 week, 2 weeks, 3 weeks, 4 weeks, or 6 weeks.

Damage resulting from a herbicide or other chemical treatment of a plant or plant part can be assessed by visual inspection by one of skill in the art and can be evaluated by statistical analysis of suitable parameters. The plant or plant part being evaluated is 15 referred to as the “test plant” or “test plant part.” Typically, an appropriate control plant or plant part is one that expresses the same herbicide-tolerance polypeptide(s) as the plant or plant part being evaluated for herbicide tolerance (*i.e.*, the “test plant”) but that has not been treated with herbicide. In some circumstances, the control plant or plant part is one that has been subjected to the same herbicide treatment as the plant or plant part being 20 evaluated (*i.e.*, the test plant or plant part) but that does not express the enzyme intended to provide tolerance to the herbicide of interest in the test plant or plant part. One of skill in the art will be able to design, perform, and evaluate a suitable controlled experiment to assess the herbicide tolerance of a plant or plant part of interest, including the selection of appropriate test plants or plant part, control plants or plant part, and treatments.

25 Damage caused by a herbicide or other chemical can be assessed at various times after a plant or plant part has been contacted with a herbicide, although in some embodiments, assessment of the plant or plant part for herbicide tolerance occurs during or after rooting/regeneration of the plant or plant part. Often, damage is assessed at about the time that the control plant or plant part exhibits maximum damage. Sometimes, 30 damage is assessed after a period of time in which a control plant or plant part that was

not treated with herbicide has measurably grown and/or developed in comparison to the size or stage at which the treatment was administered. Damage can be assessed at various times, for example, at 12 hours or at 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 days, or three weeks, four weeks, or longer after the test plant or plant part was treated with

5 herbicide. Any time of assessment is suitable as long as it permits detection of a difference in response to a treatment of test and control plants or plant parts.

Thus, as used herein, a “test plant” or “test plant part” is one which has been transformed with the presently disclosed polynucleotide constructs or is a plant or plant part which is descended from a plant or plant part so altered and which comprises the

10 herbicide tolerance polynucleotide.

A “control” or “control plant” or “control plant part” provides a reference point for measuring changes in phenotype of the subject plant or plant part, and may be any suitable plant or plant part. A control plant or plant part may comprise, for example: (a) a wild-type plant or plant part, *i.e.*, an untransformed plant of the same genotype as the test plant or plant part prior to transformation; (b) a plant or plant part of the same genotype as the starting material but which has been transformed with a null construct (*i.e.*, with a construct which has no known effect on the trait of interest, such as a construct comprising a marker gene); (c) a plant or plant part which is a non-transformed segregant among progeny of a subject plant or plant part; (d) a plant or plant part which is

15 genetically identical to the subject plant or plant part but which is not exposed to the same treatment (*e.g.*, herbicide treatment) as the subject plant or plant part; (e) the subject plant or plant part itself, under conditions in which the herbicide tolerance polynucleotide is not expressed; or (f) the subject plant or plant part itself, under conditions in which it has not been exposed to a particular treatment such as, for example, a herbicide or combination of

20 herbicides and/or other chemicals. In some instances, an appropriate control maize plant or plant part comprises a NK603 event (Nielson *et al.* (2004) *European Food Research and Technology* 219:421-427 and Ridley *et al.* (2002) *Journal of Agriculture and Food Chemistry* 50: 7235-7243), an elite stiff stalk inbred plant, a P3162 plant (Pioneer Hi-Bred International), a 39T66 plant (Pioneer Hi-Bred International), or a 34M91 plant

25

(Pioneer Hi-Bred International). In some instances, an appropriate control soybean plant or plant part is a “Jack” soybean plant (Illinois Foundation Seed, Champaign, Illinois).

The herbicide tolerance polypeptides used in the presently disclosed compositions and methods can confer tolerance to any respective herbicide. In some embodiments, the 5 herbicide tolerance polypeptide confers tolerance to a herbicide selected from the group consisting of glyphosate, an ALS inhibitor (e.g., a sulfonylurea), an acetyl Co-A carboxylase inhibitor, a synthetic auxin, a protoporphyrinogen oxidase (PPO) inhibitor herbicide, a pigment synthesis inhibitor herbicide, a phosphinothricin acetyltransferase or a phytoene desaturase inhibitor, a glutamine synthase inhibitor, a 10 hydroxyphenylpyruvatedioxygenase inhibitor, and a protoporphyrinogen oxidase inhibitor.

One herbicide which has been studied extensively is N-phosphonomethylglycine, commonly referred to as glyphosate. Glyphosate is a broad spectrum herbicide that kills both broadleaf and grass-type plants due to inhibition of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (also referred to as “EPSP synthase” or “EPSPS”), an enzyme which is part of the biosynthetic pathway for the production of aromatic amino acids, hormones, and vitamins. Glyphosate-resistant transgenic plants have been produced which exhibit a commercially viable level of glyphosate resistance due to the introduction of a modified *Agrobacterium* CP4 EPSPS. This modified enzyme 20 is targeted to the chloroplast where, even in the presence of glyphosate, it continues to synthesize EPSP from phosphoenolpyruvic acid (“PEP”) and shikimate-3-phosphate. CP4 glyphosate-resistant soybean transgenic plants are presently in commercial use (e.g., as sold by Monsanto under the name “Roundup Ready[®]”).

In some embodiments, the presently disclosed methods and compositions utilize a 25 polynucleotide that encodes a herbicide tolerance polypeptide that confers tolerance to glyphosate. Various sequences which confer tolerance to glyphosate can be employed in the presently disclosed methods and compositions. In some embodiments, the herbicide tolerance polypeptide that confers resistance to glyphosate has glyphosate transferase activity. As used herein, a “glyphosate transferase” polypeptide has the ability to transfer 30 the acetyl group from acetyl CoA to the N of glyphosate, transfer the propionyl group of

propionyl CoA to the N of glyphosate, or to catalyze the acetylation of glyphosate analogs and/or glyphosate metabolites, *e.g.*, aminomethylphosphonic acid. Methods to assay for this activity are disclosed, for example, in U.S. Publication No. 2003/0083480, U.S. Publication No. 2004/0082770, and U.S. Patent No. 7,405,074, WO2005/012515, 5 WO2002/36782 and WO2003/092360. In one embodiment, the transferase polypeptide comprises a glyphosate-N-acetyltransferase “GLYAT” polypeptide.

As used herein, a GLYAT polypeptide or enzyme comprises a polypeptide which has glyphosate-N-acetyltransferase activity (“GLYAT” activity), *i.e.*, the ability to catalyze the acetylation of glyphosate. In specific embodiments, a polypeptide having 10 glyphosate-N-acetyltransferase activity can transfer the acetyl group from acetyl CoA to the N of glyphosate. In addition, some GLYAT polypeptides transfer the propionyl group of propionyl CoA to the N of glyphosate. Some GLYAT polypeptides are also capable of catalyzing the acetylation of glyphosate analogs and/or glyphosate metabolites, *e.g.*, aminomethylphosphonic acid. GLYAT polypeptides are characterized by their structural 15 similarity to one another, *e.g.*, in terms of sequence similarity when the GLYAT polypeptides are aligned with one another. Exemplary GLYAT polypeptides and the polynucleotides encoding them are known in the art and particularly disclosed, for example, in U.S. App. Publ. No. 2003/0083480, and U.S. Patent Nos. 7,462,481, 7,531,339, 7,622,641, and 7,405,074, each of which is herein incorporated by reference in 20 its entirety. In some embodiments, GLYAT polypeptides used in the presently disclosed methods and compositions comprise the amino acid sequence set forth in: SEQ ID NO: 43, 44, 45, 46, 48, or 50. In some embodiments, the GLYAT polynucleotide that encodes the GLYAT polypeptide that is used in the presently disclosed methods and compositions are set forth in SEQ ID NO: 47 or 49. As discussed in further detail elsewhere herein, 25 the use of fragments and variants of GLYAT polynucleotides and other known herbicide-tolerance polynucleotides and polypeptides encoded thereby is also encompassed by the present invention.

Active variants of SEQ ID NOS: 43, 44, 45, 46, 48, or 50 which retain glyphosate N-acetyltransferase activity include sequences which generate a similarity score of at least 30 430 using the BLOSUM62 matrix, a gap existence penalty of 11, and a gap extension

penalty of 1 when optimally aligned with any one of SEQ ID NO. Some aspects of the invention pertain to GAT polypeptides comprising an amino acid sequence that can be optimally aligned with an amino acid sequence selected from the group consisting of SEQ ID NOS: 43, 44, 45, 46, 48, and 50 to generate a similarity score of at least 440, 445, 450, 5 455, 460, 465, 470, 475, 480, 485, 490, 495, 500, 505, 510, 515, 520, 525, 530, 535, 540, 545, 550, 555, 560, 565, 570, 575, 580, 585, 590, 595, 600, 605, 610, 615, 620, 625, 630, 635, 640, 645, 650, 655, 660, 665, 670, 675, 680, 685, 690, 695, 700, 705, 710, 715, 720, 725, 730, 735, 740, 745, 750, 755, or 760 using the BLOSUM62 matrix, a gap existence 10 penalty of 11, and a gap extension penalty of 1. Two sequences are “optimally aligned” when they are aligned for similarity scoring using a defined amino acid substitution matrix (e.g., BLOSUM62), gap existence penalty and gap extension penalty so as to arrive at the highest score possible for that pair of sequences.

Plants expressing GLYAT that have been treated with glyphosate contain the 15 glyphosate metabolite N-acetylglyphosate (“NAG”). The presence of N-acetylglyphosate can serve as a diagnostic marker for the presence of an active GLYAT gene in a plant and can be evaluated by methods known in the art, for example, by mass spectrometry or by immunoassay. Generally, the level of NAG in a plant containing a GLYAT gene that has been treated with glyphosate is correlated with the activity of the GLYAT gene and the amount of glyphosate with which the plant has been treated.

20 Polynucleotides that encode glyphosate tolerance polypeptides that can be used in the presently disclosed methods and compositions include those that encode a glyphosate oxido-reductase enzyme as described more fully in U.S. Patent Nos. 5,776,760 and 5,463,175, which are incorporated herein by reference in their entireties for all purposes.

Other herbicides commonly used for commercial crop production include 25 glufosinate (phosphinothrinicin) and acetolactate synthase (ALS) chemistry such as the sulfonylurea herbicides. Glufosinate is a broad spectrum herbicide which acts on the chloroplast glutamate synthase enzyme. Glufosinate-tolerant transgenic plants have been produced which carry the *bar* gene from *Streptomyces hygroscopicus*. The enzyme encoded by the *bar* gene has N-acetylation activity and modifies and detoxifies 30 glufosinate. Glufosinate-tolerant plants are presently in commercial use (e.g., as sold by

Bayer under the name “Liberty Link[®]”). As described elsewhere herein, sulfonylurea herbicides inhibit growth of higher plants by blocking acetolactate synthase (ALS). Plants containing particular mutations in ALS are tolerant to the ALS herbicides including sulfonylureas.

5 In some embodiments, the herbicide tolerance polypeptide that is utilized in the presently disclosed methods and compositions is an ALS inhibitor-tolerance polypeptide. As used herein, an “ALS inhibitor-tolerance polypeptide” comprises any polypeptide which when expressed in a plant confers tolerance to at least one ALS inhibitor. A variety of ALS inhibitors are known and include, for example, sulfonylurea, 10 imidazolinone, triazolopyrimidines, pyrimidinylbenzoates, and/or sulfonylaminocarbonyltriazolinone herbicides. Additional ALS inhibitors are known and are disclosed elsewhere herein. It is known in the art that ALS mutations fall into different classes with regard to tolerance to sulfonylureas, imidazolinones, triazolopyrimidines, and pyrimidinyl(thio)benzoates, including mutations having the 15 following characteristics: (1) broad tolerance to all four of these groups; (2) tolerance to imidazolinones and pyrimidinyl(thio)benzoates; (3) tolerance to sulfonylureas and triazolopyrimidines; and (4) tolerance to sulfonylureas and imidazolinones.

Various ALS inhibitor-tolerance polypeptides can be employed. In some embodiments, the ALS inhibitor-tolerance polynucleotides contain at least one nucleotide 20 mutation resulting in one amino acid change in the ALS polypeptide. In specific embodiments, the change occurs in one of seven substantially conserved regions of acetolactate synthase. See, for example, Hattori *et al.* (1995) *Molecular Genetics and Genomes* 246:419-425; Lee *et al.* (1998) *EMBO Journal* 7:1241-1248; Mazur *et al.* (1989) *Ann. Rev. Plant Phys.* 40:441-470; and U.S. Patent No. 5,605,011, each of which 25 is incorporated by reference in their entirety. The ALS inhibitor-tolerance polypeptide can be encoded by, for example, the SuRA or SuRB locus of ALS. In specific embodiments, the ALS inhibitor-tolerance polypeptide comprises the C3 ALS mutant, the HRA ALS mutant, the S4 mutant or the S4/HRA mutant or any combination thereof. Different mutations in ALS are known to confer tolerance to different herbicides and 30 groups (and/or subgroups) of herbicides; see, e.g., Tranel and Wright (2002) *Weed*

Science 50:700-712. See also, U.S. Patent No. 5,605,011, 5,378,824, 5,141,870, 5,013,659, and 7,622,641, each of which is herein incorporated by reference in their entirety. See also, SEQ ID NO:51 comprising a soybean HRA sequence; SEQ ID NO:52 comprising a maize HRA sequence; and SEQ ID NO:53 comprising an *Arabidopsis* HRA sequence. The HRA mutation in ALS finds particular use in one embodiment of the invention. The mutation results in the production of an acetolactate synthase polypeptide which is resistant to at least one ALS inhibitor chemistry in comparison to the wild-type protein. For example, a plant expressing an ALS inhibitor-tolerant polypeptide may be tolerant of a dose of sulfonylurea, imidazolinone, triazolopyrimidines, 5 pyrimidinyloxy(thio)benzoates, and/or sulfonylaminocarbonyltriazolinone herbicide that is at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 50, 70, 80, 100, 125, 150, 200, 10 500, or 1000 times higher than a dose of the herbicide that would cause damage to an appropriate control plant. In some embodiments, an ALS inhibitor-tolerant polypeptide comprises a number of mutations.

15 In some embodiments, the ALS inhibitor-tolerance polypeptide confers tolerance to sulfonylurea and imidazolinone herbicides. Sulfonylurea and imidazolinone herbicides inhibit growth of higher plants by blocking acetolactate synthase (ALS), also known as, acetohydroxy acid synthase (AHAS). For example, plants containing particular mutations in ALS (e.g., the S4 and/or HRA mutations) are tolerant to sulfonylurea herbicides. The 20 production of sulfonylurea-tolerant plants and imidazolinone-tolerant plants is described more fully in U.S. Patent Nos. 5,605,011; 5,013,659; 5,141,870; 5,767,361; 5,731,180; 5,304,732; 4,761,373; 5,331,107; 5,928,937; and 5,378,824; and international publication 25 WO 96/33270, which are incorporated herein by reference in their entireties for all purposes. In specific embodiments, the ALS inhibitor-tolerance polypeptide comprises a sulfonamide-tolerant acetolactate synthase (otherwise known as a sulfonamide-tolerant acetohydroxy acid synthase) or an imidazolinone-tolerant acetolactate synthase (otherwise known as an imidazolinone-tolerant acetohydroxy acid synthase).

Often, a herbicide-tolerance polynucleotide that confers tolerance to a particular herbicide or other chemical or a plant expressing it will also confer tolerance to other

herbicides or chemicals in the same class or subclass, for example, a class or subclass set forth in Table 3.

Table 3: Abbreviated version of HRAC Herbicide Classification

I. ALS Inhibitors (WSSA Group 2)	2. Pyriftalid
A. Sulfonylureas	3. Pyribenzoxim
1. Azimsulfuron	4. Pyrithiobac
2. Chlorimuron-ethyl	5. Pyriminobac-methyl
3. Metsulfuron-methyl	E. Imidazolinones
4. Nicosulfuron	1. Imazapyr
5. Rimsulfuron	2. Imazethapyr
6. Sulfometuron-methyl	3. Imazaquin
7. Thifensulfuron-methyl	4. Imazapic
8. Tribenuron-methyl	5. Imazamethabenz-methyl
9. Amidosulfuron	6. Imazamox
10. Bensulfuron-methyl	II. Other Herbicides--Active Ingredients/ Additional Modes of Action
11. Chlorsulfuron	A. Inhibitors of Acetyl CoA carboxylase (ACCase) (WSSA Group 1)
12. Cinosulfuron	1. Aryloxyphenoxypropionates ('FOPs')
13. Cyclosulfamuron	a. Quizalofop-P-ethyl
14. Ethametsulfuron-methyl	b. Diclofop-methyl
15. Ethoxysulfuron	c. Clodinafop-propargyl
16. Flazasulfuron	d. Fenoxaprop-P-ethyl
17. Flupyrifluron- methyl	e. Fluazifop-P-butyl
18. Foramsulfuron	f. Propaquizafop
19. Imazosulfuron	g. Haloxyfop-P-methyl
20. Iodosulfuron-methyl	h. Cyhalofop-butyl
21. Mesosulfuron-methyl	i. Quizalofop-P-ethyl
22. Oxasulfuron	2. Cyclohexanediones ('DIMs')
23. Primisulfuron-methyl	a. Alloxydim
24. Prosulfuron	b. Butroxydim
25. Pyrazosulfuron-ethyl	c. Clethodim
26. Sulfosulfuron	d. Cycloxydim
27. Triasulfuron	e. Sethoxydim
28. Trifloxysulfuron	f. Tepraloxydim
29. Triflusulfuron-methyl	g. Tralkoxydim
30. Tritosulfuron	B. Inhibitors of Photosystem II—HRAC Group C1/ WSSA Group 5
31. Halosulfuron-methyl	1. Triazines
32. Flucetosulfuron	a. Ametryne
B. Sulfonylaminocarbonyltriazolinones	b. Atrazine
1. Flucarbazone	c. Cyanazine
2. Procarbazone	d. Desmetryne
C. Triazolopyrimidines	e. Dimethametryne
1. Cloransulam-methyl	f. Prometon
2. Flumetsulam	g. Prometryne
3. Diclosulam	h. Propazine
4. Florasulam	i. Simazine
5. Metosulam	j. Simetryne
6. Penoxsulam	k. Terbumeton
7. Pyroxulam	
D. Pyrimidinylloxy(thio)benzoates	
1. Bispipyribac	

1. Terbuthylazine	b. Pyridafol
m. Terbutryne	E. Photosystem-I-electron diversion
n. Trietazine	(Bipyridyliums) (WSSA Group 22)
2. Triazinones	1. Diquat
a. Hexazinone	2. Paraquat
b. Metribuzin	F. Inhibitors of PPO (protoporphyrinogen oxidase) (WSSA Group 14)
c. Metamitron	1. Diphenylethers
3. Triazolinone	a. Acifluorfen-Na
a. Amicarbazone	b. Bifenox
4. Uracils	c. Chlomethoxyfen
a. Bromacil	d. Fluoroglycofen-ethyl
b. Lenacil	e. Fomesafen
c. Terbacil	f. Halosafen
5. Pyridazinones	g. Lactofen
a. Pyrazon	h. Oxyfluorfen
6. Phenyl carbamates	2. Phenylpyrazoles
a. Desmedipham	a. Fluazolate
b. Phenmedipham	b. Pyraflufen-ethyl
C. Inhibitors of Photosystem II--HRAC	3. N-phenylphthalimides
Group C2/WSSA Group 7	a. Cinidon-ethyl
1. Ureas	b. Flumioxazin
a. Fluometuron	c. Flumiclorac-pentyl
b. Linuron	4. Thiadiazoles
c. Chlorobromuron	a. Fluthiacet-methyl
d. Chlorotoluron	b. Thidiazimin
e. Chloroxuron	5. Oxadiazoles
f. Dimefuron	a. Oxadiazon
g. Diuron	b. Oxadiargyl
h. Ethidimuron	6. Triazolinones
i. Fenuron	a. Carfentrazone-ethyl
j. Isoproturon	b. Sulfentrazone
k. Isouron	7. Oxazolidinediones
l. Methabenzthiazuron	a. Pentoazone
m. Metobromuron	8. Pyrimidindiones
n. Metoxuron	a. Benzfendizone
o. Monolinuron	b. Butafenicol
p. Neburon	9. Others
q. Siduron	a. Pyrazogyl
r. Tebuthiuron	b. Profluazol
2. Amides	G. Bleaching: Inhibition of carotenoid biosynthesis at the phytoene desaturase step (PDS) (WSSA Group 12)
a. Propanil	1. Pyridazinones
b. Pentanochlor	a. Norflurazon
D. Inhibitors of Photosystem II--HRAC	2. Pyridinecarboxamides
Group C3/ WSSA Group 6	a. Diflufenican
1. Nitriles	b. Picolinafen
a. Bromofenoxim	3. Others
b. Bromoxynil	a. Beflubutamid
c. Ioxynil	b. Fluridone
2. Benzothiadiazinone (Bentazon)	c. Flurochloridone
a. Bentazon	d. Flurtamone
3. Phenylpyridazines	
a. Pyridate	

H. Bleaching: Inhibition of 4-hydroxyphenyl-pyruvate-dioxygenase (4-HPPD) (WSSA Group 28)	b. Thiazopyr
1. Triketones	4. Benzamides
a. Mesotrione	a. Pronamide
b. Sulcotrione	b. Tebutam
2. Isoxazoles	5. Benzenedicarboxylic acids
a. Isoxachlortole	a. Chlorthal-dimethyl
b. Isoxaflutole	N. Inhibition of mitosis/microtubule organization WSSA Group 23)
3. Pyrazoles	1. Carbamates
a. Benzofenap	a. Chlorpropham
b. Pyrazoxyfen	b. Propham
c. Pyrazolynate	c. Carbetamide
4. Others	O. Inhibition of cell division (Inhibition of very long chain fatty acids as proposed mechanism; WSSA Group 15)
a. Benzobicyclon	1. Chloroacetamides
I. Bleaching: Inhibition of carotenoid biosynthesis (unknown target) (WSSA Group 11 and 13)	a. Acetochlor
1. Triazoles (WSSA Group 11)	b. Alachlor
a. Amitrole	c. Butachlor
2. Isoxazolidinones (WSSA Group 13)	d. Dimethachlor
a. Clomazone	e. Dimethanamid
3. Ureas	f. Metazachlor
a. Fluometuron	g. Metolachlor
3. Diphenylether	h. Pethoxamid
a. Aclonifen	i. Pretilachlor
J. Inhibition of EPSP Synthase	j. Propachlor
1. Glycines (WSSA Group 9)	k. Propisochlor
a. Glyphosate	l. Thenylchlor
b. Sulfosate	2. Acetamides
K. Inhibition of glutamine synthetase	a. Diphenamid
1. Phosphinic Acids	b. Napropamide
a. Glufosinate-ammonium	c. Naproanilide
b. Bialaphos	3. Oxyacetamides
L. Inhibition of DHP (dihydropteroate) synthase (WSSA Group 18)	a. Flufenacet
1. Carbamates	b. Mefenacet
a. Asulam	4. Tetrazolinones
M. Microtubule Assembly Inhibition (WSSA Group 3)	a. Fentrazamide
1. Dinitroanilines	5. Others
a. Benfluralin	a. Anilofos
b. Butralin	b. Cafenstrole
c. Dimitramine	c. Indanofan
d. Ethalfluralin	d. Piperophos
e. Oryzalin	P. Inhibition of cell wall (cellulose) synthesis
f. Pendimethalin	1. Nitriles (WSSA Group 20)
g. Trifluralin	a. Dichlobenil
2. Phosphoroamidates	b. Chlorthiamid
a. Amiprofos-methyl	2. Benzamides (isoxaben (WSSA Group 21))
b. Butamiphos	a. Isoxaben
3. Pyridines	3. Triazolocarboxamides (flupoxam)
a. Dithiopyr	a. Flupoxam

(WSSA Group 24)	
1.	Dinitrophenols
a.	DNOC
b.	Dinoseb
c.	Dinoterb
R.	Inhibition of Lipid Synthesis by other than ACC inhibition
1.	Thiocarbamates (WSSA Group 8)
a.	Butylate
b.	Cycloate
c.	Dimepiperate
d.	EPTC
e.	Eprocarb
f.	Molinate
g.	Orbencarb
h.	Pebulate
i.	Prosulfocarb
j.	Benthiocarb
k.	Tiocarbazil
l.	Triallate
m.	Vernolate
2.	Phosphorodithioates
a.	Bensulide
3.	Benzofurans
a.	Benfuresate
b.	Ethofumesate
4.	Halogenated alkanoic acids
(WSSA Group 26)	
a.	TCA
b.	Dalapon
c.	Flupropanate
S.	Synthetic auxins (IAA-like) (WSSA Group 4)
1.	Phenoxycarboxylic acids
a.	Clomeprop
b.	2,4-D
c.	Mecoprop
2.	Benzoic acids
a.	Dicamba
b.	Chloramben
c. TBA	
3.	Pyridine carboxylic acids
a.	Clopyralid
b.	Fluroxypyr
c.	Picloram
d.	Tricyclopyr
4.	Quinoline carboxylic acids
a.	Quinclorac
b.	Quinmerac
5.	Others (benazolin-ethyl)
a.	Benazolin-ethyl
T.	Inhibition of Auxin Transport
1.	Phthalamates; semicarbazones (WSSA Group 19)
a.	Naptalam
b.	Disulfenozopyr-Na
U.	Other Mechanism of Action
1.	Arylaminopropionic acids
a.	Flamprop-M-methyl /-isopropyl
2.	Pyrazolium
a.	Difenoquat
3.	Organoarsenicals
a.	DSMA
b.	MSMA
4.	Others
a.	Bromobutide
b.	Cinmethylin
c.	Cumyluron
d.	Dazomet
e.	Daimuron-methyl
f.	Dimuron
g.	Etobenzanid
h.	Fosamine
i.	Metam
j.	Oxaziclomefone
k.	Oleic acid
l.	Pelargonic acid
m.	Pyributicarb

The presently disclosed methods and compositions can utilize multiple herbicide tolerance polynucleotides. That is, the presently disclosed polynucleotide constructs can comprise more than one coding polynucleotide for a herbicide tolerance polypeptide. In some embodiments, the polynucleotide construct comprises more than one polynucleotide that encodes the same type of herbicide tolerance polypeptide (i.e., more than one GLYAT). In other embodiments, the polynucleotide constructs comprise more than one

herbicide-tolerance coding polynucleotide, wherein each of the coding polynucleotides encodes for a distinct type of herbicide tolerance polypeptide (of a different class or subclass). In some embodiments, the polynucleotide construct comprises at least a first and a second polynucleotide encoding a herbicide tolerance polypeptide, wherein the first and the second polynucleotide encodes a first and a second herbicide tolerance polypeptide that confer tolerance to a first and a second herbicide, wherein the first and second herbicide have different mechanisms of action.

In some of those embodiments wherein the presently disclosed polynucleotide constructs comprise at least two herbicide tolerance polynucleotides, at least two herbicide tolerance polynucleotides are located outside of the excision cassette. In other embodiments, the polynucleotide construct comprises a herbicide tolerance polynucleotide outside of the excision cassette that becomes operably linked to its promoter upon excision of the excision cassette and a second herbicide tolerance polypeptide within the excision cassette.

In some embodiments, the presently disclosed methods and compositions utilize polynucleotides that confer tolerance to glyphosate and at least one ALS inhibitor herbicide. In other embodiments, the presently disclosed methods and compositions utilize polynucleotides that confer tolerance to glyphosate and at least one ALS inhibitor herbicide, as well as, tolerance to at least one additional herbicide.

In addition to glyphosate and ALS inhibitors, the presently disclosed polynucleotide constructs can comprise polynucleotides that encode herbicide tolerance polypeptides that confer tolerance to other types of herbicides. Such additional herbicides, include but are not limited to, an acetyl Co-A carboxylase inhibitor such as quizalofop-P-ethyl, a synthetic auxin such as quinclorac, a protoporphyrinogen oxidase (PPO) inhibitor herbicide (such as sulfentrazone), a pigment synthesis inhibitor herbicide such as a hydroxyphenylpyruvate dioxygenase inhibitor (e.g., mesotrione or sulcotrione), a phosphinothricin acetyltransferase or a phytoene desaturase inhibitor like diflufenican or pigment synthesis inhibitor.

In some embodiments, the presently disclosed polynucleotide constructs comprise polynucleotides encoding polypeptides conferring tolerance to herbicides which inhibit

the enzyme glutamine synthase, such as phosphinothricin or glufosinate (e.g., the *bar* gene or *pat* gene). Glutamine synthetase (GS) appears to be an essential enzyme necessary for the development and life of most plant cells, and inhibitors of GS are toxic to plant cells. Glufosinate herbicides have been developed based on the toxic effect due 5 to the inhibition of GS in plants. These herbicides are non-selective; that is, they inhibit growth of all the different species of plants present. The development of plants containing an exogenous phosphinothricin acetyltransferase is described in U.S. Patent Nos. 5,969,213; 5,489,520; 5,550,318; 5,874,265; 5,919,675; 5,561,236; 5,648,477; 5,646,024; 6,177,616; and 5,879,903, which are incorporated herein by reference in their 10 entireties for all purposes. Mutated phosphinothricin acetyltransferase having this activity are also disclosed. In certain embodiments a maize-optimized PAT gene is used. In some of these embodiments, the maize-optimized PAT gene has the sequence set forth in SEQ ID NO: 54. In some embodiments, the PAT gene is used as a selectable marker 15 as described elsewhere herein and is present within the excision cassette.

15 In still other embodiments, the presently disclosed polynucleotide constructs comprise polynucleotides encoding polypeptides conferring tolerance to herbicides which inhibit protox (protoporphyrinogen oxidase). Protox is necessary for the production of chlorophyll, which is necessary for all plant survival. The protox enzyme serves as the target for a variety of herbicidal compounds. These herbicides also inhibit growth of all 20 the different species of plants present. The development of plants containing altered protox activity which are resistant to these herbicides are described in U.S. Patent Nos. 6,288,306; 6,282,837; and 5,767,373; and international publication WO 01/12825, which are incorporated herein by reference in their entireties for all purposes.

25 In still other embodiments, the presently disclosed polynucleotide constructs may comprise polynucleotides encoding polypeptides involving other modes of herbicide resistance. For example, hydroxyphenylpyruvatedioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is transformed into homogentisate. Molecules which inhibit this enzyme and which bind to the enzyme in order to inhibit transformation of the HPP into homogentisate are useful as herbicides. 30 Plants more resistant to certain herbicides are described in U.S. Patent Nos. 6,245,968;

6,268,549; and 6,069,115; and international publication WO 99/23886, which are incorporated herein by reference in their entireties for all purposes. Mutated hydroxyphenylpyruvateddioxygenase having this activity are also disclosed.

In some embodiments, the methods and compositions can further comprise at least 5 one cell proliferation factor. Expression of a cell proliferation factor, such as babyboom can enhance the transformation frequency of otherwise recalcitrant plants or plant parts. A polynucleotide encoding a cell proliferation factor can be co-transformed into a plant or plant part with the presently disclosed polynucleotide constructs. In other embodiments, the presently disclosed polynucleotide constructs comprise at least one polynucleotide 10 encoding a cell proliferation factor. In some of these embodiments, the at least one polynucleotide encoding a cell proliferation factor is located within the excision cassette of the polynucleotide construct, such that the polynucleotide is excised when the site-specific recombinase is expressed.

As used herein, a “cell proliferation factor” is a polypeptide or a polynucleotide 15 capable of stimulating growth of a cell or tissue, including but not limited to promoting progression through the cell cycle, inhibiting cell death, such as apoptosis, stimulating cell division, and/or stimulating embryogenesis. The polynucleotides can fall into several categories, including but not limited to, cell cycle stimulatory polynucleotides, developmental polynucleotides, anti-apoptosis polynucleotides, hormone polynucleotides, 20 or silencing constructs targeted against cell cycle repressors or pro-apoptotic factors. The following are provided as non-limiting examples of each category and are not considered a complete list of useful polynucleotides for each category: 1) cell cycle stimulatory polynucleotides including plant viral replicase genes such as RepA, cyclins, E2F, prolifera, cdc2 and cdc25; 2) developmental polynucleotides such as Lec1, Kn1 family, 25 WUSCHEL, Zwille, BBM, Aintegumenta (ANT), FUS3, and members of the Knotted family, such as Kn1, STM, OSH1, and SbH1; 3) anti-apoptosis polynucleotides such as CED9, Bcl2, Bcl-X(L), Bcl-W, A1, McL-1, Mac1, Boo, and Bax-inhibitors; 4) hormone polynucleotides such as IPT, TZS, and CKI-1; and 5) silencing constructs targeted against 30 cell cycle repressors, such as Rb, CKI, prohibitin, and wee1, or stimulators of apoptosis such as APAF-1, bad, bax, CED-4, and caspase-3, and repressors of plant developmental

transitions, such as Pickle and WD polycomb genes including FIE and Medea. The polynucleotides can be silenced by any known method such as antisense, RNA interference, cosuppression, chimerplasty, or transposon insertion.

The polynucleotide encoding the cell proliferation factor may be native to the cell or heterologous. Any of a number of cell proliferation factors can be used. In certain embodiments, those cell proliferation factors that are capable of stimulating embryogenesis are used to enhance transformation efficiency. Such cell proliferation factors are referred to herein as embryogenesis-stimulating polypeptides and they include, but are not limited to, babyboom polypeptides.

In some embodiments, the cell proliferation factor is a member of the AP2/ERF family of proteins. The AP2/ERF family of proteins is a plant-specific class of putative transcription factors that regulate a wide variety of developmental processes and are characterized by the presence of an AP2 DNA binding domain that is predicted to form an amphipathic alpha helix that binds DNA (PFAM Accession PF00847). The AP2/ERF proteins have been subdivided into distinct subfamilies based on the presence of conserved domains. Initially, the family was divided into two subfamilies based on the number of DNA binding domains, with the ERF subfamily having one DNA binding domain, and the AP2 subfamily having 2 DNA binding domains. As more sequences were identified, the family was subsequently subdivided into five subfamilies: AP2, DREB, ERF, RAV, and others. (Sakuma *et al.* (2002) *Biochem Biophys Res Comm* 290:998-1009).

Members of the APETALA2 (AP2) family of proteins function in a variety of biological events, including but not limited to, development, plant regeneration, cell division, embryogenesis, and cell proliferation (see, *e.g.*, Riechmann and Meyerowitz (1998) *Biol Chem* 379:633-646; Saleh and Pagés (2003) *Genetika* 35:37-50 and Database of Arabidopsis Transcription Factors at daft.cbi.pku.edu.cn). The AP2 family includes, but is not limited to, AP2, ANT, Glossy15, AtBBM, BnBBM, and maize ODP2/BBM.

U.S. Application Publication No. 2011/0167516, which is herein incorporated by reference in its entirety, describes an analysis of fifty sequences with homology to a maize BBM sequence (also referred to as maize ODP2 or ZmODP2, the polynucleotide and

amino acid sequence of the maize BBM is set forth in SEQ ID NO: 55 and 56, respectively; the polynucleotide and amino acid sequence of another ZmBBM is set forth in SEQ ID NO: 58 and 59, respectively). The analysis identified three motifs (motifs 4-6; set forth in SEQ ID NOs: 61-63), along with the AP2 domains (motifs 2 and 3; SEQ ID NOs: 64 and 65) and linker sequence that bridges the AP2 domains (motif 1; SEQ ID NO: 66), that are found in all of the BBM homologues. Thus, motifs 1-6 distinguish these BBM homologues from other AP2-domain containing proteins (e.g., WRI, AP2, and RAP2.7) and these BBM homologues comprise a subgroup of AP2 family of proteins referred to herein as the BBM/PLT subgroup. In some embodiments, the cell 5 proliferation factor that is used in the methods and compositions is a member of the BBM/PLT group of AP2 domain-containing polypeptides. In these embodiments, the cell proliferation factor comprises two AP2 domains and motifs 4-6 (SEQ ID NOs: 61-63) or a fragment or variant thereof. In some of these embodiments, the AP2 domains have the sequence set forth in SEQ ID NOs: 64 and 65 or a fragment or variant thereof, and in 10 particular embodiments, further comprises the linker sequence of SEQ ID NO: 66 or a fragment or variant thereof. In other embodiments, the cell proliferation factor comprises at least one of motifs 4-6 or a fragment or variant thereof, along with two AP2 domains, which in some embodiments have the sequence set forth in SEQ ID NO: 64 and/or 65 or a fragment or variant thereof, and in particular embodiments have the linker sequence of 15 SEQ ID NO: 66 or a fragment or variant thereof. Based on the phylogenetic analysis, the subgroup of BBM/PLT polypeptides can be subdivided into the BBM, AIL6/7, PLT1/2, AIL1, PLT3, and ANT groups of polypeptides.

20

In some embodiments, the cell proliferation factor is a babyboom (BBM) polypeptide, which is a member of the AP2 family of transcription factors. The BBM 25 protein from *Arabidopsis* (AtBBM) is preferentially expressed in the developing embryo and seeds and has been shown to play a central role in regulating embryo-specific pathways. Overexpression of AtBBM has been shown to induce spontaneous formation of somatic embryos and cotyledon-like structures on seedlings. See, Boutiller *et al.* (2002) *The Plant Cell* 14:1737-1749. The maize BBM protein also induces embryogenesis and 30 promotes transformation (See, U.S. Patent No. 7,579,529, which is herein incorporated by

reference in its entirety). Thus, BBM polypeptides stimulate proliferation, induce embryogenesis, enhance the regenerative capacity of a plant, enhance transformation, and as demonstrated herein, enhance rates of targeted polynucleotide modification.

In some embodiments, the babyboom polypeptide comprises two AP2 domains 5 and at least one of motifs 7 and 10 (set forth in SEQ ID NO: 67 and 68, respectively) or a variant or fragment thereof. In certain embodiments, the AP2 domains are motifs 2 and 3 (SEQ ID NOs: 64 and 65, respectively) or a fragment or variant thereof, and in particular embodiments, the babyboom polypeptide further comprises a linker sequence between AP2 domain 1 and 2 having motif 1 (SEQ ID NO: 66) or a fragment or variant thereof. In 10 particular embodiments, the BBM polypeptide further comprises motifs 4-6 (SEQ ID NOs 61-63) or a fragment or variant thereof. The BBM polypeptide can further comprise motifs 8 and 9 (SEQ ID NOs: 69 and 70, respectively) or a fragment or variant thereof, and in some embodiments, motif 10 (SEQ ID NO: 68) or a variant or fragment thereof.

In some of these embodiments, the BBM polypeptide also comprises at least one of motif 15 14 (set forth in SEQ ID NO: 71), motif 15 (set forth in SEQ ID NO: 72), and motif 19 (set forth in SEQ ID NO: 73), or variants or fragments thereof. The variant of a particular amino acid motif can be an amino acid sequence having at least about 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or greater sequence identity with the motif disclosed herein. Alternatively, variants of a particular amino acid motif 20 can be an amino acid sequence that differs from the amino acid motif by 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids.

Non-limiting examples of babyboom polynucleotides and polypeptides that can be used in the methods and compositions include the *Arabidopsis thaliana* AtBBM (SEQ ID NOs: 74 and 75), *Brassica napus* BnBBM1 (SEQ ID NOs: 76 and 77), *Brassica napus* 25 BnBBM2 (SEQ ID NOs: 78 and 79), *Medicago truncatula* MtBBM (SEQ ID NOs: 80 and 81), *Glycine max* GmBBM (SEQ ID NOs: 82 and 83), *Vitis vinifera* VvBBM (SEQ ID NOs: 84 and 85), *Zea mays* ZmBBM (SEQ ID NOs: 55 and 56 and genomic sequence set forth in SEQ ID NO: 57; or SEQ ID NOs: 58 and 59 and genomic sequence set forth in SEQ ID NO: 60) and ZmBBM2 (SEQ ID NOs: 101 and 102), *Oryza sativa* OsBBM 30 (polynucleotide sequences set forth in SEQ ID NOs: 86 and 87; amino acid sequence set

forth in SEQ ID NO: 89; and genomic sequence set forth in SEQ ID NO: 88), OsBBM1 (SEQ ID NOs: 90 and 91), OsBBM2 (SEQ ID NOs: 92 and 93), and OsBBM3 (SEQ ID NOs: 94 and 95), *Sorghum bicolor* SbBBM (SEQ ID NOs: 96 and 97 and genomic sequence set forth in SEQ ID NO: 98) and SbBBM2 (SEQ ID NOs: 99 and 100) or active fragments or variants thereof. In particular embodiments, the cell proliferation factor is a maize BBM polypeptide (SEQ ID NO: 56, 59, or 102) or a variant or fragment thereof, or is encoded by a maize BBM polynucleotide (SEQ ID NO: 55, 57, 121, 116, or 101) or a variant or fragment thereof.

Thus, in some embodiments, a polynucleotide encoding a cell proliferation factor has a nucleotide sequence having at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the nucleotide sequence set forth in SEQ ID NO: 82, 96, 84, 80, 55, 101, 86, 90, 92, 94, 74, 76, 78, 99, 57, 60, 88, 87, 58, or 98 or the cell proliferation factor has an amino acid sequence having at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence set forth in SEQ ID NO: 83, 97, 85, 81, 56, 102, 89, 91, 93, 95, 75, 77, 79, 59, or 100. In some of these embodiments, the cell proliferation factor has at least one of motifs 7 and 10 (SEQ ID NO: 67 and 68, respectively) or a variant or fragment thereof at the corresponding amino acid residue positions in the babyboom polypeptide. In other embodiments, the cell proliferation factor further comprises at least one of motif 14 (set forth in SEQ ID NO: 71), motif 15 (set forth in SEQ ID NO: 72), and motif 19 (set forth in SEQ ID NO: 73) or a variant or fragment thereof at the corresponding amino acid residue positions in the babyboom polypeptide.

In other embodiments, other cell proliferation factors, such as, Lec1, Kn1 family, WUSCHEL (e.g., WUS1, the polynucleotide and amino acid sequence of which is set forth in SEQ ID NO: 103 and 104; WUS2, the polynucleotide and amino acid sequence of which is set forth in SEQ ID NO: 105 and 106; WUS2 alt, the polynucleotide and amino acid sequence of which is set forth in SEQ ID NO: 107 and 108; WUS3, the polynucleotide and amino acid sequence of which is set forth in SEQ ID NO: 109 and 110), Zwillie, and Aintegumeta (ANT), may be used alone, or in combination with a

babyboom polypeptide or other cell proliferation factor. See, for example, U.S. Application Publication No. 2003/0135889, International Application Publication No. WO 03/001902, and U.S. Patent No. 6,512,165, each of which is herein incorporated by reference.

5 In some embodiments, the polynucleotide construct comprises a polynucleotide encoding a Wuschel polypeptide (see International Application Publication No. WO 01/23575 and U.S. Patent No. 7,256,322, each of which are herein incorporated by reference in its entirety). In certain embodiments, the polynucleotide encoding the Wuschel polypeptide has the sequence set forth in SEQ ID NO: 103, 105, 107, or 109
10 (WUS1, WUS2, WUS2 alt, or WUS3, respectively) or an active variant or fragment thereof. In particular embodiments, the Wuschel polypeptide has the sequence set forth in SEQ ID NO: 104, 106, 108, or 110 (WUS1, WUS2, WUS2 alt, or WUS3, respectively) or an active variant or fragment thereof. In some of these embodiments, the
15 polynucleotide encoding a Wuschel polypeptide is operably linked to a promoter active in the plant, including but not limited to the maize In2-2 promoter or a nopaline synthase promoter.

When multiple cell proliferation factors are used, or when a babyboom polypeptide is used along with any of the abovementioned polypeptides, the polynucleotides encoding each of the factors can be present on the same expression 20 cassette or on separate expression cassettes. When two or more factors are coded for by separate expression cassettes, the expression cassettes can be provided to the plant simultaneously or sequentially. In some embodiments, the polynucleotide construct comprises a polynucleotide encoding a babyboom polypeptide and a polynucleotide encoding a Wuschel polypeptide within the excision cassette such that the cell
25 proliferation factors enhance the transformation frequency of the polynucleotide construct, but are subsequently excised upon desiccation of the transformed plant cell/tissue.

In some embodiments, herbicide tolerance polynucleotides can serve as a 30 selectable marker for the identification of plants or plant parts that further comprise a polynucleotide of interest. Thus, in certain embodiments, the presently disclosed

polynucleotide constructs can further comprise a polynucleotide of interest. In some embodiments, the polynucleotide of interest is operably linked to a promoter that is active in a plant cell. The promoter that is operably linked to the polynucleotide of interest can be a constitutive promoter, an inducible promoter, or a tissue-preferred promoter.

5 In certain embodiments, the polynucleotide of interest, and optionally the operably linked promoter, are located outside of the excision cassette on the polynucleotide construct. In other embodiments, the polynucleotide of interest and optionally its operably linked promoter are located within the excision cassette and the herbicide tolerance polynucleotide serves as a selectable marker to identify those plants or plant
10 parts from which the polynucleotide of interest has been excised.

The polynucleotide of interest may impart various changes in the organism, particularly plants, including, but not limited to, modification of the fatty acid composition in the plant, altering the amino acid content of the plant, altering pathogen resistance, and the like. These results can be achieved by providing expression of
15 heterologous products, increased expression of endogenous products in plants, or suppressed expression of endogenous products in plants.

General categories of polynucleotides of interest include, for example, those genes involved in information, such as zinc fingers, those involved in communication, such as kinases, those involved in biosynthetic pathways, and those involved in housekeeping,
20 such as heat shock proteins. More specific categories of transgenes, for example, include sequences encoding important traits for agronomics, insect resistance, disease resistance, sterility, grain characteristics, oil, starch, carbohydrate, phytate, protein, nutrient, metabolism, digestability, kernel size, sucrose loading, and commercial products.

Traits such as oil, starch, and protein content can be genetically altered in addition
25 to using traditional breeding methods. Modifications include increasing content of oleic acid, saturated and unsaturated oils, increasing levels of lysine and sulfur, providing essential amino acids, and also modification of starch. Protein modifications to alter amino acid levels are described in U.S. Patent Nos. 5,703,049, 5,885,801, 5,885,802, and 5,990,389 and WO 98/20122, herein incorporated by reference.

Insect resistance genes may encode resistance to pests such as rootworm, cutworm, European Corn Borer, and the like. Such genes include, for example, *Bacillus thuringiensis* toxic protein genes (U.S. Patent Nos. 5,366,892; 5,747,450; 5,737,514; 5,723,756; 5,593,881; and Geiser *et al.* (1986) *Gene* 48:109); lectins (Van Damme *et al.* 5 (1994) *Plant Mol. Biol.* 24:825); and the like.

Genes encoding disease resistance traits include detoxification genes, such as against fumonosin (U.S. Patent No. 5,792,931); avirulence (avr) and disease resistance (R) genes (Jones *et al.* (1994) *Science* 266:789; Martin *et al.* (1993) *Science* 262:1432; and Mindrinos *et al.* (1994) *Cell* 78:1089); and the like.

10 Sterility genes can also be encoded in an expression cassette and provide an alternative to physical detasseling. Examples of genes used in such ways include male tissue-preferred genes and genes with male sterility phenotypes such as QM, described in U.S. Patent No. 5,583,210. Other genes include kinases and those encoding compounds toxic to either male or female gametophytic development.

15 Commercial traits can also be encoded on a gene or genes that could, for example increase starch for ethanol production, or provide expression of proteins.

Although the herbicide tolerance polynucleotide can serve as a selectable marker to aid in the identification of transgenic plants that comprise a polynucleotide of interest or lack a polynucleotide of interest, an additional selectable marker may be present in the 20 excision cassette of the presently disclosed polynucleotide constructs that aids in the selection of transgenic plants or plant parts at an earlier point in development when most herbicide selection systems are less efficient. In general, the selectable marker that is present within the excision cassette is one that allows for efficient selection in early stages of plant development and production (e.g., during the tissue proliferation stage of 25 transgenic plant production). For example, the expression of a fluorescent protein can be used to select plants or plant parts that comprise a presently disclosed polynucleotide construct during or prior to tissue proliferation. Proliferating the tissue to a certain mass is generally necessary before regeneration of the tissue into a plant. The expression of the site-specific recombinase is then induced before herbicide selection, which in general, 30 occurs during or after the regeneration of the provided cells or tissues into plants.

“Regenerating” or “regeneration” of a plant cell is the process of growing a plant from the plant cell (e.g., plant protoplast, callus or explant).

Marker genes that can be present within the excision cassette include polynucleotides encoding products that provide resistance against otherwise toxic 5 compounds (e.g. antibiotic resistance) such as those encoding neomycin phosphotransferase II (NEO or nptII) and hygromycin phosphotransferase (HPT), as well as genes conferring resistance to herbicidal compounds, such as glufosinate ammonium, bromoxynil, imidazolinones, and 2,4-dichlorophenoxyacetate (2,4-D), including but not limited to, the selectable marker gene phosphinothricin acetyl transferase (PAT) (Wohlleben *et al.* 10 (1988) *Gene* 70:25-37), which confers resistance to the herbicide Bialaphos. In certain embodiments, the selectable marker that is present within the excision cassette is not a herbicide tolerance polynucleotide.

As used herein, “antibiotic resistance polypeptide” refers to a polypeptide that confers resistance or tolerance to an antibiotic compound to a host cell comprising or 15 secreting the polypeptide.

Additional selectable marker-encoding polynucleotides include those that encode products that can be readily identified, including but not limited to phenotypic markers such as β -galactosidase, and visual markers, such as fluorescent proteins. As used herein, a “fluorescent protein” or “fluorescent polypeptide” refers to a polypeptide that is capable 20 of absorbing radiation (e.g., light at a wavelength in the visible spectrum) at one wavelength and emitting radiation as light at a different wavelength. Non-limiting examples of fluorescent protein include green fluorescent protein (GFP) (Su *et al.* (2004) *Biotechnol Bioeng* 85:610-9 and Fetter *et al.* (2004) *Plant Cell* 16:215-28), cyan 25 fluorescent protein (CYP) (Bolte *et al.* (2004) *J. Cell Science* 117:943-54 and Kato *et al.* (2002) *Plant Physiol* 129:913-42), red fluorescent protein, and yellow fluorescent protein (PhiYFPTM from Evrogen, see, Bolte *et al.* (2004) *J. Cell Science* 117:943-54). For additional selectable markers, see generally, Yarranton (1992) *Curr. Opin. Biotech.* 3:506-511; Christopherson *et al.* (1992) *Proc. Natl. Acad. Sci. USA* 89:6314-6318; Yao *et al.* (1992) *Cell* 71:63-72; Reznikoff (1992) *Mol. Microbiol.* 6:2419-2422; Barkley *et al.* (1980) 30 in *The Operon*, pp. 177-220; Hu *et al.* (1987) *Cell* 48:555-566; Brown *et al.* (1987) *Cell*

49:603-612; Figge *et al.* (1988) *Cell* 52:713-722; Deuschle *et al.* (1989) *Proc. Natl. Acad. Aci. USA* 86:5400-5404; Fuerst *et al.* (1989) *Proc. Natl. Acad. Sci. USA* 86:2549-2553; Deuschle *et al.* (1990) *Science* 248:480-483; Gossen (1993) Ph.D. Thesis, University of Heidelberg; Reines *et al.* (1993) *Proc. Natl. Acad. Sci. USA* 90:1917-1921; Labow *et al.* (1990) *Mol. Cell. Biol.* 10:3343-3356; Zambretti *et al.* (1992) *Proc. Natl. Acad. Sci. USA* 89:3952-3956; Baim *et al.* (1991) *Proc. Natl. Acad. Sci. USA* 88:5072-5076; Wyborski *et al.* (1991) *Nucleic Acids Res.* 19:4647-4653; Hillenand-Wissman (1989) *Topics Mol. Struc. Biol.* 10:143-162; Degenkolb *et al.* (1991) *Antimicrob. Agents Chemother.* 35:1591-1595; Kleinschmidt *et al.* (1988) *Biochemistry* 27:1094-1104; Bonin (1993) Ph.D. Thesis, 5 University of Heidelberg; Gossen *et al.* (1992) *Proc. Natl. Acad. Sci. USA* 89:5547-5551; Oliva *et al.* (1992) *Antimicrob. Agents Chemother.* 36:913-919; Hlavka *et al.* (1985) *Handbook of Experimental Pharmacology*, Vol. 78 (Springer-Verlag, Berlin); Gill *et al.* 10 (1988) *Nature* 334:721-724. Such disclosures are herein incorporated by reference.

The presently provided methods and compositions can also utilize metabolic enzymes as selectable markers. The term “metabolic enzymes” as it relates to selectable markers refer to enzymes that confer a selectable metabolic advantage to cells. Cells expressing the metabolic enzyme are then positively selected for the ability to metabolize and utilize a particular chemical compound that cannot otherwise be metabolized or utilized by other cells not comprising the enzyme. Non-limiting examples of metabolic enzymes for use as selectable markers include D-amino oxidase (encoded by the *doa1* gene), which catalyzes the oxidative deamination of various D-amino acids (see, for example, Erikson *et al.* (2004) *Nature Biotechnology* 22:455-458, which is herein incorporated by reference in its entirety); cyanamide hydratase (encoded by the *cah* gene), which converts cyanamide into urea as a fertilizer source (see, for example, U.S. Patent 20 No. 6,268,547, which is herein incorporated by reference in its entirety); and phosphomannose isomerase (encoded by the *pmi* gene), which catalyzes the reversible inter-conversion of mannose-6-phosphate and fructose-6-phosphate, allowing plant cells to utilize mannose as a carbon source (see, for example, Joersbo *et al.* (1998) *Molecular Breeding* 4:11-117, which is herein incorporated by reference in its entirety). 15 20 25

In some embodiments, the excision cassette comprises more than one selectable marker-coding polynucleotide. In some of these embodiments, the excision cassette comprises both a visual marker and an antibiotic resistance or herbicidal resistance selectable marker. In some of these embodiments, the excision cassette comprises a maize optimized PAT-coding polynucleotide (such as the sequence set forth in SEQ ID NO: 54) or a polynucleotide encoding neomycin phosphotransferase II (NEO or nptII), and a polynucleotide encoding a fluorescent protein, such as yellow fluorescent protein.

The selectable marker-encoding polynucleotide within the excision cassette is operably linked to a promoter that is active in a plant cell. This promoter can be present within or outside of the excision cassette. In some of the embodiments wherein the promoter that is operably linked to the selectable marker-encoding polynucleotide is outside of the excision cassette, this same promoter will become operably linked to the herbicide tolerance polynucleotide after excision of the excision cassette.

In certain embodiments, the promoter that is operably linked to the selectable marker-encoding polynucleotide present within the excision cassette is a constitutive promoter such that the selectable marker will be constitutively expressed in the plant or plant part until excision of the excision cassette. In some of these embodiments, the constitutive promoter is a maize ubiquitin promoter, which in some embodiments comprises the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113).

During the selection of the plant or plant part that expresses the selectable marker that is found within the excision cassette, the plant or plant part can be cultured in the presence of a selection agent. As used herein, a “selection agent” refers to a compound that when contacted with a plant or plant part allows for the identification of a plant or plant part expressing a selectable marker, either positively or negatively. For example, a selection agent for an antibiotic resistance polynucleotide is the antibiotic to which the polynucleotide confers resistance. As a further non-limiting example, a selection agent for a metabolizing enzyme selectable marker is the compound that can only be metabolized and utilized by the cell that expresses the selectable marker.

In particular embodiments wherein the polynucleotide construct is designed for transformation of maize, the polynucleotide construct comprises, outside of the excision cassette, the expression cassettes for a GLYAT polypeptide and an ALS-inhibitor tolerance polypeptide as present in the T-DNA region of plasmid PHP24279 described in 5 U.S. Patent No. 7,928,296, which is herein incorporated by reference in its entirety. In these embodiments, the polynucleotide construct comprises the *glyat4621* gene that was derived from the soil bacterium *Bacillus licheniformis* and was synthesized by a gene shuffling process to optimize the acetyltransferase activity of the GLYAT4621 enzyme (Castle *et al.* (2004) *Science* 304:1151-1154). The polynucleotide construct further 10 comprises a ZM-HRA expression cassette comprising a modified maize acetolactate synthase gene, *zm-hra* (*Zea mays*-highly resistant allele), encoding the ZM-HRA protein, which confers tolerance to a range of ALS-inhibiting herbicides, such as sulfonylureas. In these embodiments, the *glyat4621* gene cassette and the *zm-hra* gene cassette are in 15 reverse orientation. The expression of the *glyat4621* gene is controlled by the ubiquitin regulatory region from maize (*ubiZM1* promoter (SEQ ID NO: 111), 5'UTR (SEQ ID NO: 112), and intron (SEQ ID NO: 112) (Christensen *et al.* (1992)) and the *pinII* terminator (An *et al.* (1989) *Plant Cell* 1:115-122). The expression of the *zm-hra* gene is controlled by the native maize acetolactate synthase promoter (*zm-als* promoter) (Fang *et* 20 *al.* (2000)). The terminator for the *zm-hra* gene is the 3' terminator sequence from the proteinase inhibitor II gene of *Solanum tuberosum* (*pinII* terminator). Upstream of both cassettes are three copies of the enhancer region from the cauliflower mosaic virus (CaMV 35S enhancer, US Application No. 11/508,045, herein incorporated by reference) providing expression enhancement to both cassettes.

In certain embodiments wherein the polynucleotide construct is designed for 25 transformation of soybean (*Glycine max*), the polynucleotide construct comprises, outside of the excision cassette, the expression cassettes for a GLYAT polypeptide and an ALS-inhibitor tolerance polypeptide as present in the *Not I-Asc I* fragment of plasmid PHP20163 described in U.S. Patent No. 7,622,641, which is herein incorporated by reference in its entirety. In these embodiments, the polynucleotide construct comprises 30 the glyphosate acetyltransferase (*glyat*) gene derived from *Bacillus licheniformis* and a

modified version of the soybean acetolactate synthase gene (*zm-hra*). The *glyat* gene was functionally improved by a gene shuffling process to optimize the kinetics of glyphosate acetyltransferase (GLYAT) activity for acetylating the herbicide glyphosate. The *glyat* gene is under the control of the SCP1 promoter and Tobacco Mosaic Virus (TMV) omega 5' UTR translational enhancer element and the proteinase inhibitor II (*pinII*) terminator from *Solanum tuberosum*. The *zm-hra* gene is under the control of the S-adenosyl-L-methionine synthetase (SAMS) promoter and the acetolactate synthase (*gm-als*) terminator, both from soybean.

In other embodiments wherein the polynucleotide construct is designed for transformation of *Brassica*, the polynucleotide construct comprises the expression cassette for a GLYAT polypeptide as present in the plasmid PHP28181 described in U.S. Appl. Publ. No. 2012/0131692, which is herein incorporated by reference in its entirety. In these embodiments, the polynucleotide construct comprises the *glyat4621* gene, which was derived from the soil bacterium *Bacillus licheniformis* and was synthesized by a gene shuffling process to optimize the acetyltransferase activity of the GLYAT4621 enzyme (Castle, *et al.*, (2004) *Science* 304:1151-1154). The expression of the *glyat4621* gene is controlled by the UBQ10 regulatory region from Arabidopsis and the *pinII* terminator. In some of these embodiments, the polynucleotide construct further comprises an expression cassette for an ALS inhibitor tolerance polypeptide.

The presently disclosed compositions and methods can utilize fragments or variants of known polynucleotide or polypeptide sequences. By "fragment" is intended a portion of the polynucleotide or a portion of an amino acid sequence and hence protein encoded thereby. Fragments of a polynucleotide may retain the biological activity of the native polynucleotide and, for example, have promoter activity (promoter fragments), or are capable of stimulating proliferation, inducing embryogenesis, modifying the regenerative capacity of a plant (cell proliferation factor fragments), are capable of conferring herbicide tolerance (herbicide tolerance polypeptide fragments) or catalyzing site-specific recombination (site-specific recombinase fragments). In those embodiments wherein the polynucleotide encodes a polypeptide, fragments of the polynucleotide may encode protein fragments that retain the biological activity of the native protein.

Alternatively, fragments of a polynucleotide that are useful as hybridization probes generally do not retain biological activity or encode fragment proteins that retain biological activity. Thus, fragments of a nucleotide sequence may range from at least about 20, 50, 100, 150, 200, 250, 300, 400, 500 nucleotides, or greater.

5 A fragment of a polynucleotide that encodes a biologically active portion of a cell proliferation factor, for example, will encode at least 15, 25, 30, 50, 100, 150, 200, 250, 300, 400, 500 contiguous amino acids, or up to the total number of amino acids present in the full-length cell proliferation factor. Fragments of a coding polynucleotide that are useful as hybridization probes or PCR primers generally need not encode a biologically 10 active portion of a polypeptide.

"Variants" is intended to mean substantially similar sequences. For polynucleotides, a variant comprises a polynucleotide having deletions at the 5' and/or 3' end; deletion and/or addition of one or more nucleotides at one or more internal sites in the native polynucleotide; and/or substitution of one or more nucleotides at one or more 15 sites in the native polynucleotide. As used herein, a "native" polynucleotide or polypeptide comprises a naturally occurring nucleotide sequence or amino acid sequence, respectively. For polynucleotides encoding polypeptides conservative variants include those sequences that, because of the degeneracy of the genetic code, encode the amino acid sequence the polypeptide (*e.g.*, cell proliferation factor). Naturally occurring 20 variants such as these can be identified with the use of well-known molecular biology techniques, such as, for example, with polymerase chain reaction (PCR) and hybridization techniques. Variant polynucleotides also include synthetically derived polynucleotides, such as those generated, for example, by using site-directed mutagenesis. Generally, variants of a particular will have at least about 40%, 45%, 50%, 55%, 60%, 25 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to that particular polynucleotide as determined by sequence alignment programs and parameters.

30 Variants of a particular polynucleotide that encodes a polypeptide can also be evaluated by comparison of the percent sequence identity between the polypeptide encoded by a variant polynucleotide and the polypeptide encoded by the particular

polynucleotide. Percent sequence identity between any two polypeptides can be calculated using sequence alignment programs and parameters. Where any given pair of polynucleotides is evaluated by comparison of the percent sequence identity shared by the two polypeptides they encode, the percent sequence identity between the two encoded 5 polypeptides is at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity.

"Variant" protein is intended to mean a protein derived from the native protein by deletion of one or more amino acids at the N-terminal and/or C-terminal end of the native protein; deletion and/or addition of one or more amino acids at one or more internal sites 10 in the native protein; and/or substitution of one or more amino acids at one or more sites in the native protein. Variant proteins retain the desired biological activity of the native protein. For example, variant cell proliferation factors stimulate proliferation and variant babyboom polypeptides are capable of stimulating proliferation, inducing embryogenesis, modifying the regenerative capacity of a plant, increasing the transformation efficiency in 15 a plant, increasing or maintaining the yield in a plant under abiotic stress, producing asexually derived embryos in a plant, and/or enhancing rates of targeted polynucleotide modification. Such variants may result from, for example, genetic polymorphism or from human manipulation. Biologically active variants of a native protein will have at least about 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 20 94%, 95%, 96%, 97%, 98%, 99% or more sequence identity to the amino acid sequence for the native protein as determined by sequence alignment programs and parameters. A biologically active variant of a native protein may differ from that protein by as few as 1-15 amino acid residues, as few as 1-10, such as 6-10, as few as 5, as few as 4, 3, 2, or even 1 amino acid residue.

25 Where appropriate, the coding polynucleotides may be optimized for increased expression in the transformed plant. That is, the coding polynucleotides can be synthesized using plant-preferred codons for improved expression. See, for example, Campbell and Gowri (1990) *Plant Physiol.* 92:1-11 for a discussion of host-preferred codon usage. Methods are available in the art for synthesizing plant-preferred genes.

See, for example, U.S. Patent Nos. 5,380,831, and 5,436,391, and Murray *et al.* (1989) *Nucleic Acids Res.* 17:477-498, herein incorporated by reference.

Additional sequence modifications are known to enhance gene expression in a cellular host. These include elimination of sequences encoding spurious polyadenylation signals, exon-intron splice site signals, transposon-like repeats, and other such well-characterized sequences that may be deleterious to gene expression. The G-C content of the sequence may be adjusted to levels average for a given cellular host, as calculated by reference to known genes expressed in the host cell. When possible, the sequence is modified to avoid predicted hairpin secondary mRNA structures.

The following terms are used to describe the sequence relationships between two or more polynucleotides or polypeptides: (a) "reference sequence", (b) "comparison window", (c) "sequence identity", and, (d) "percentage of sequence identity."

(a) As used herein, "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset or the entirety of a specified sequence; for example, as a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence.

(b) As used herein, "comparison window" makes reference to a contiguous and specified segment of a polynucleotide sequence, wherein the polynucleotide sequence in the comparison window may comprise additions or deletions (*i.e.*, gaps) compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two polynucleotides. Generally, the comparison window is at least 20 contiguous nucleotides in length, and optionally can be 30, 40, 50, 100, or longer. Those of skill in the art understand that to avoid a high similarity to a reference sequence due to inclusion of gaps in the polynucleotide sequence a gap penalty is typically introduced and is subtracted from the number of matches.

Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent sequence identity between any two sequences can be accomplished using a mathematical algorithm. Non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988) *CABIOS* 4:11-17; the local alignment algorithm of Smith *et al.* (1981) *Adv. Appl. Math.* 2:482; the global

alignment algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443-453; the search-for-local alignment method of Pearson and Lipman (1988) *Proc. Natl. Acad. Sci.* 85:2444-2448; the algorithm of Karlin and Altschul (1990) *Proc. Natl. Acad. Sci. USA* 87:2264, modified as in Karlin and Altschul (1993) *Proc. Natl. Acad. Sci. USA* 90:5873-5877.

Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: CLUSTAL in the PC/Gene program (available from Intelligenetics, Mountain View, California); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the GCG Wisconsin Genetics Software Package, Version 10 (available from Accelrys Inc., 9685 Scranton Road, San Diego, California, USA). Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins *et al.* (1988) *Gene* 73:237-244 (1988); Higgins *et al.* (1989) *CABIOS* 5:151-153; Corpet *et al.* (1988) *Nucleic Acids Res.* 16:10881-90; Huang *et al.* (1992) *CABIOS* 8:155-65; and Pearson *et al.* (1994) *Meth. Mol. Biol.* 24:307-331. The ALIGN program is based on the algorithm of Myers and Miller (1988) *supra*. A PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used with the ALIGN program when comparing amino acid sequences. The BLAST programs of Altschul *et al.* (1990) *J. Mol. Biol.* 215:403 are based on the algorithm of Karlin and Altschul (1990) *supra*. BLAST nucleotide searches can be performed with the BLASTN program, score = 100, wordlength = 12, to obtain nucleotide sequences homologous to a nucleotide sequence encoding a protein of the invention. BLAST protein searches can be performed with the BLASTX program, score = 50, wordlength = 3, to obtain amino acid sequences homologous to a protein or polypeptide of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul *et al.* (1997) *Nucleic Acids Res.* 25:3389. Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul *et al.* (1997) *supra*. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g., BLASTN for

nucleotide sequences, BLASTX for proteins) can be used. See www.ncbi.nlm.nih.gov. Alignment may also be performed manually by inspection.

Unless otherwise stated, sequence identity/similarity values provided herein refer to the value obtained using GAP Version 10 using the following parameters: % identity and % similarity for a nucleotide sequence using GAP Weight of 50 and Length Weight of 3, and the nwsgapdna.cmp scoring matrix; % identity and % similarity for an amino acid sequence using GAP Weight of 8 and Length Weight of 2, and the BLOSUM62 scoring matrix; or any equivalent program thereof. By "equivalent program" is intended any sequence comparison program that, for any two sequences in question, generates an alignment having identical nucleotide or amino acid residue matches and an identical percent sequence identity when compared to the corresponding alignment generated by GAP Version 10.

GAP uses the algorithm of Needleman and Wunsch (1970) *J. Mol. Biol.* 48:443-453, to find the alignment of two complete sequences that maximizes the number of matches and minimizes the number of gaps. GAP considers all possible alignments and gap positions and creates the alignment with the largest number of matched bases and the fewest gaps. It allows for the provision of a gap creation penalty and a gap extension penalty in units of matched bases. GAP must make a profit of gap creation penalty number of matches for each gap it inserts. If a gap extension penalty greater than zero is chosen, GAP must, in addition, make a profit for each gap inserted of the length of the gap times the gap extension penalty. Default gap creation penalty values and gap extension penalty values in Version 10 of the GCG Wisconsin Genetics Software Package for protein sequences are 8 and 2, respectively. For nucleotide sequences the default gap creation penalty is 50 while the default gap extension penalty is 3. The gap creation and gap extension penalties can be expressed as an integer selected from the group of integers consisting of from 0 to 200. Thus, for example, the gap creation and gap extension penalties can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65 or greater.

GAP presents one member of the family of best alignments. There may be many members of this family, but no other member has a better quality. GAP displays four

figures of merit for alignments: Quality, Ratio, Identity, and Similarity. The Quality is the metric maximized in order to align the sequences. Ratio is the quality divided by the number of bases in the shorter segment. Percent Identity is the percent of the symbols that actually match. Percent Similarity is the percent of the symbols that are similar.

5 Symbols that are across from gaps are ignored. A similarity is scored when the scoring matrix value for a pair of symbols is greater than or equal to 0.50, the similarity threshold. The scoring matrix used in Version 10 of the GCG Wisconsin Genetics Software Package is BLOSUM62 (see Henikoff and Henikoff (1989) *Proc. Natl. Acad. Sci. USA* 89:10915).

(c) As used herein, "sequence identity" or "identity" in the context of two 10 polynucleotides or polypeptide sequences makes reference to the residues in the two sequences that are the same when aligned for maximum correspondence over a specified comparison window. When percentage of sequence identity is used in reference to proteins it is recognized that residue positions which are not identical often differ by 15 conservative amino acid substitutions, where amino acid residues are substituted for other amino acid residues with similar chemical properties (e.g., charge or hydrophobicity) and therefore do not change the functional properties of the molecule. When sequences differ in conservative substitutions, the percent sequence identity may be adjusted upwards to correct for the conservative nature of the substitution. Sequences that differ by such 20 conservative substitutions are said to have "sequence similarity" or "similarity". Means for making this adjustment are well known to those of skill in the art. Typically this involves scoring a conservative substitution as a partial rather than a full mismatch, thereby increasing the percentage sequence identity. Thus, for example, where an identical amino acid is given a score of 1 and a non-conservative substitution is given a score of zero, a conservative substitution is given a score between zero and 1. The 25 scoring of conservative substitutions is calculated, e.g., as implemented in the program PC/GENE (Intelligenetics, Mountain View, California).

(d) As used herein, "percentage of sequence identity" means the value 30 determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) as compared to the reference sequence (which

does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total 5 number of positions in the window of comparison, and multiplying the result by 100 to yield the percentage of sequence identity.

In hybridization techniques, all or part of a known polynucleotide is used as a probe that selectively hybridizes to other corresponding polynucleotides present in a population of cloned genomic DNA fragments or cDNA fragments (*i.e.*, genomic or 10 cDNA libraries) from a chosen organism. The hybridization probes may be genomic DNA fragments, cDNA fragments, RNA fragments, or other oligonucleotides, and may be labeled with a detectable group such as ^{32}P , or any other detectable marker. Thus, for example, probes for hybridization can be made by labeling synthetic oligonucleotides based on the babyboom polynucleotide. Methods for preparation of probes for 15 hybridization and for construction of cDNA and genomic libraries are generally known in the art and are disclosed in Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

For example, the entire coding polynucleotide, or one or more portions thereof, may be used as a probe capable of specifically hybridizing to a corresponding coding 20 polynucleotide and messenger RNAs. To achieve specific hybridization under a variety of conditions, such probes include sequences that are unique among the particular family of coding polynucleotide sequences and are optimally at least about 10 nucleotides in length, and most optimally at least about 20 nucleotides in length. Such probes may be used to amplify corresponding coding polynucleotides from a chosen plant by PCR. This 25 technique may be used to isolate additional coding sequences from a desired plant or as a diagnostic assay to determine the presence of coding sequences in a plant. Hybridization techniques include hybridization screening of plated DNA libraries (either plaques or colonies; see, for example, Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York)).

Hybridization of such sequences may be carried out under stringent conditions. By "stringent conditions" or "stringent hybridization conditions" is intended conditions under which a probe will hybridize to its target sequence to a detectably greater degree than to other sequences (e.g., at least 2-fold over background). Stringent conditions are 5 sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target sequences that are 100% complementary to the probe can be identified (homologous probing). Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing). Generally, a probe is less 10 than about 1000 nucleotides in length, optimally less than 500 nucleotides in length.

Typically, stringent conditions will be those in which the salt concentration is less than about 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion concentration (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 15 nucleotides). Stringent conditions may also be achieved with the addition of destabilizing agents such as formamide. Exemplary low stringency conditions include hybridization with a buffer solution of 30 to 35% formamide, 1 M NaCl, 1% SDS (sodium dodecyl sulphate) at 37°C, and a wash in 1X to 2X SSC (20X SSC = 3.0 M NaCl/0.3 M trisodium citrate) at 50 to 55°C. Exemplary moderate stringency conditions include hybridization 20 in 40 to 45% formamide, 1.0 M NaCl, 1% SDS at 37°C, and a wash in 0.5X to 1X SSC at 55 to 60°C. Exemplary high stringency conditions include hybridization in 50% formamide, 1 M NaCl, 1% SDS at 37°C, and a wash in 0.1X SSC at 60 to 65°C. Optionally, wash buffers may comprise about 0.1% to about 1% SDS. Duration of 25 hybridization is generally less than about 24 hours, usually about 4 to about 12 hours. The duration of the wash time will be at least a length of time sufficient to reach equilibrium.

Specificity is typically the function of post-hybridization washes, the critical factors being the ionic strength and temperature of the final wash solution. For DNA-DNA hybrids, the T_m can be approximated from the equation of Meinkoth and Wahl 30 (1984) *Anal. Biochem.* 138:267-284: $T_m = 81.5^\circ\text{C} + 16.6 (\log M) + 0.41 (\%GC) - 0.61$

(% form) - 500/L; where M is the molarity of monovalent cations, %GC is the percentage of guanosine and cytosine nucleotides in the DNA, % form is the percentage of formamide in the hybridization solution, and L is the length of the hybrid in base pairs. The T_m is the temperature (under defined ionic strength and pH) at which 50% of a complementary target sequence hybridizes to a perfectly matched probe. T_m is reduced by about 1°C for each 1% of mismatching; thus, T_m , hybridization, and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with $\geq 90\%$ identity are sought, the T_m can be decreased 10°C. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (T_m) for the specific sequence and its complement at a defined ionic strength and pH. However, severely stringent conditions can utilize a hybridization and/or wash at 1, 2, 3, or 4°C lower than the thermal melting point (T_m); moderately stringent conditions can utilize a hybridization and/or wash at 6, 7, 8, 9, or 10°C lower than the thermal melting point (T_m); low stringency conditions can utilize a hybridization and/or wash at 11, 12, 13, 14, 15, or 20°C lower than the thermal melting point (T_m). Using the equation, hybridization and wash compositions, and desired T_m , those of ordinary skill will understand that variations in the stringency of hybridization and/or wash solutions are inherently described. If the desired degree of mismatching results in a T_m of less than 45°C (aqueous solution) or 32°C (formamide solution), it is optimal to increase the SSC concentration so that a higher temperature can be used. An extensive guide to the hybridization of nucleic acids is found in Tijssen (1993) *Laboratory Techniques in Biochemistry and Molecular Biology—Hybridization with Nucleic Acid Probes*, Part I, Chapter 2 (Elsevier, New York); and Ausubel *et al.*, eds. (1995) *Current Protocols in Molecular Biology*, Chapter 2 (Greene Publishing and Wiley-Interscience, New York). See Sambrook *et al.* (1989) *Molecular Cloning: A Laboratory Manual* (2d ed., Cold Spring Harbor Laboratory Press, Plainview, New York).

The presently disclosed polynucleotide constructs can be introduced into a host cell. By “host cell” is meant a cell, which comprises a heterologous nucleic acid sequence. Host cells may be prokaryotic cells such as *E. coli*, or eukaryotic cells such as yeast, insect, amphibian, or mammalian cells. In some examples, host cells are

monocotyledonous or dicotyledonous plant cells. In particular embodiments, the monocotyledonous host cell is a sugarcane host cell.

An intermediate host cell may be used, for example, to increase the copy number of the cloning vector and/or to mediate transformation of a different host cell. With an increased copy number, the vector containing the nucleic acid of interest can be isolated in significant quantities for introduction into the desired plant cells. In one embodiment, plant promoters that do not cause expression of the polypeptide in bacteria are employed.

Prokaryotes most frequently are represented by various strains of *E. coli*; however, other microbial strains may also be used. Commonly used prokaryotic control sequences which are defined herein to include promoters for transcription initiation, optionally with an operator, along with ribosome binding sequences, include such commonly used promoters as the beta lactamase (penicillinase) and lactose (lac) promoter systems (Chang *et al.* (1977) *Nature* 198:1056), the tryptophan (trp) promoter system (Goeddel *et al.* (1980) *Nucleic Acids Res.* 8:4057) and the lambda derived P L promoter and N-gene ribosome binding site (Shimatake *et al.* (1981) *Nature* 292:128). The inclusion of selection markers in DNA vectors transfected in *E. coli* is also useful. Examples of such markers include genes specifying resistance to ampicillin, tetracycline, or chloramphenicol.

The vector is selected to allow introduction into the appropriate host cell. Bacterial vectors are typically of plasmid or phage origin. Appropriate bacterial cells are infected with phage vector particles or transfected with naked phage vector DNA. If a plasmid vector is used, the bacterial cells are transfected with the plasmid vector DNA. Expression systems for expressing a protein are available using *Bacillus sp.* and *Salmonella* (Palva *et al.* (1983) *Gene* 22:229-235); Mosbach *et al.* (1983) *Nature* 302:543-545).

Methods are provided for regulating the expression of a herbicide tolerance polynucleotide, wherein a host cell is provided that comprises a presently disclosed polynucleotide construct and the expression of the site-specific recombinase is induced, thereby excising the excision cassette and allowing for the operable linkage of the

herbicide tolerance polynucleotide and its promoter and the expression of the herbicide tolerance polynucleotide.

Such methods allow for the delay of the expression of a herbicide tolerance polynucleotide until a point in development at which herbicide selection is more
5 effective.

Thus, methods are further provided for selecting a herbicide tolerant plant cell, wherein a population of plant cells are provided, wherein at least one plant cell within the population comprises a presently disclosed polynucleotide construct, inducing the expression of the recombinase, and contacting the population of cells with a herbicide to
10 which the herbicide tolerant polypeptide confers tolerance in order to select for the herbicide tolerant plant cell.

As used herein, the term “population of plant cells” may refer to any one of the following: a grouping of individual plant cells; a grouping of plant cells present within a single tissue, plant or plant part; a population of plants; a population of plant tissues
15 either from the same plant or different plants; a population of seeds either from the same plant or different plants; or a population of plant parts either from the same plant or different plants. The provided population of plant cells, plant tissues, plants, or plant parts may be contacted with the herbicide. Alternatively, the provided population of plant cells may be cultured into a population of plant tissues or a population of plants, which is
20 then exposed to the herbicide. Likewise, a provided population of plant seeds may be planted to produce a population of plants, which is then exposed to the herbicide.

In some embodiments, the provided population of plant cells is cultured into a population of plant tissues or plants prior to, during, or after the induction step, and the population of plant tissues or plants is then contacted with the herbicide. In some of these
25 embodiments, the population of plant tissues is contacted with the herbicide during the regeneration of the tissues into plants or the population of plants that were regenerated from the population of plant tissues is contacted with the herbicide.

In certain embodiments, the provided population of plant cells is a population of immature or mature seeds. In some of these embodiments, the provided population of
30 seeds is planted prior to, during, or after the induction step to produce a population of

plants, and the population of plants are contacted with the herbicide. In those embodiments wherein the provided population of plant cells is a population of immature seeds and the inducible promoter that regulates the expression of the site-specific recombinase is a drought-inducible promoter, the drought-inducible promoter is activated 5 in response to the natural desiccation that occurs during the maturation of the immature seed into a mature seed.

In other embodiments, the provided population of plant cells is a population of plant tissues and these plant tissues are cultured into a population of plants prior to, during, or after the induction step and the population of plants are then contacted with the 10 herbicide.

In yet other embodiments, the provided population of plant cells is a population of plants.

In some embodiments, the provision of a plant or plant part comprising a presently disclosed polynucleotide construct comprises introducing the polynucleotide 15 construct into the plant or plant part.

"Introducing" is intended to mean presenting to the organism, such as a plant, or the cell the polynucleotide or polypeptide in such a manner that the sequence gains access to the interior of a cell of the organism or to the cell itself. The methods and compositions do not depend on a particular method for introducing a sequence into an 20 organism or cell, only that the polynucleotide or polypeptide gains access to the interior of at least one cell of the organism. Methods for introducing polynucleotides or polypeptides into plants or plant parts are known in the art including, but not limited to, stable transformation methods, transient transformation methods, and virus-mediated methods.

25 "Stable transformation" is intended to mean that the nucleotide construct introduced into a plant integrates into a genome of the plant and is capable of being inherited by the progeny thereof. "Transient transformation" is intended to mean that a polynucleotide is introduced into the plant and does not integrate into a genome of the plant or a polypeptide is introduced into a plant.

Protocols for introducing polypeptides or polynucleotide sequences into plants may vary depending on the type of plant or plant cell, *i.e.*, monocot or dicot, targeted for transformation. Suitable methods of introducing polypeptides and polynucleotides into plant cells include microinjection (Crossway *et al.* (1986) *Biotechniques* 4:320-334), 5 electroporation (Riggs *et al.* (1986) *Proc. Natl. Acad. Sci. USA* 83:5602-5606, *Agrobacterium*-mediated transformation (U.S. Patent No. 5,563,055 and U.S. Patent No. 5,981,840), direct gene transfer (Paszkowski *et al.* (1984) *EMBO J.* 3:2717-2722), and ballistic particle acceleration (see, for example, U.S. Patent Nos. 4,945,050; U.S. Patent No. 5,879,918; U.S. Patent No. 5,886,244; and, 5,932,782; Tomes *et al.* (1995) in *Plant* 10 *Cell, Tissue, and Organ Culture: Fundamental Methods*, ed. Gamborg and Phillips (Springer-Verlag, Berlin); McCabe *et al.* (1988) *Biotechnology* 6:923-926); and Lec1 transformation (WO 00/28058). Also see Weissinger *et al.* (1988) *Ann. Rev. Genet.* 22:421-477; Sanford *et al.* (1987) *Particulate Science and Technology* 5:27-37 (onion); Christou *et al.* (1988) *Plant Physiol.* 87:671-674 (soybean); McCabe *et al.* (1988) 15 *Bio/Technology* 6:923-926 (soybean); Finer and McMullen (1991) *In Vitro Cell Dev. Biol.* 27P:175-182 (soybean); Singh *et al.* (1998) *Theor. Appl. Genet.* 96:319-324 (soybean); Datta *et al.* (1990) *Biotechnology* 8:736-740 (rice); Klein *et al.* (1988) *Proc. Natl. Acad. Sci. USA* 85:4305-4309 (maize); Klein *et al.* (1988) *Biotechnology* 6:559-563 (maize); U.S. Patent Nos. 5,240,855; 5,322,783; and, 5,324,646; Klein *et al.* (1988) *Plant* 20 *Physiol.* 91:440-444 (maize); Fromm *et al.* (1990) *Biotechnology* 8:833-839 (maize); Hooykaas-Van Slogteren *et al.* (1984) *Nature* 311:763-764; U.S. Patent No. 5,736,369 (cereals); Bytebier *et al.* (1987) *Proc. Natl. Acad. Sci. USA* 84:5345-5349 (Liliaceae); De Wet *et al.* (1985) in *The Experimental Manipulation of Ovule Tissues*, ed. Chapman *et al.* (Longman, New York), pp. 197-209 (pollen); Kaeppeler *et al.* (1990) *Plant Cell Rep* 9:415-418 and Kaeppeler *et al.* (1992) *Theor. Appl. Genet.* 84:560-566 (whisker-mediated transformation); D'Halluin *et al.* (1992) *Plant Cell* 4:1495-1505 (electroporation); Li *et al.* (1993) *Plant Cell Rep* 12:250-255 and Christou and Ford (1995) *Annals of Botany* 75:407-413 (rice); Osjoda *et al.* (1996) *Nat Biotechnol* 14:745-750 (maize via *Agrobacterium tumefaciens*); all of which are herein incorporated by reference.

In specific embodiments, the polynucleotide constructs can be provided to a plant using a variety of transient transformation methods. Such transient transformation methods include, but are not limited to, the introduction of the polynucleotide construct directly into the plant. Such methods include, for example, microinjection or particle bombardment. See, for example, Crossway *et al.* (1986) *Mol Gen. Genet.* 202:179-185; Nomura *et al.* (1986) *Plant Sci.* 44:53-58; Hepler *et al.* (1994) *Proc. Natl. Acad. Sci.* 91:2176-2180 and Hush *et al.* (1994) *J Cell Sci.* 107:775-784, all of which are herein incorporated by reference. Alternatively, the polynucleotide construct can be transiently transformed into the plant using techniques known in the art. Such techniques include 10 viral vector system and the precipitation of the polynucleotide in a manner that precludes subsequent release of the DNA. Thus, the transcription from the particle-bound DNA can occur, but the frequency with which it is released to become integrated into the genome is greatly reduced. Such methods include the use of particles coated with polyethylinine (PEI; Sigma #P3143).

15 In other embodiments, the polynucleotide construct may be introduced into plants or plant parts by contacting plants or plant parts with a virus or viral nucleic acids. Generally, such methods involve incorporating a nucleotide construct within a viral DNA or RNA molecule. It is recognized that the proteins encoded by the various coding polynucleotides of the polynucleotide construct may be initially synthesized as part of a 20 viral polyprotein, which later may be processed by proteolysis *in vivo* or *in vitro* to produce the desired recombinant protein. Further, it is recognized that promoters also encompass promoters utilized for transcription by viral RNA polymerases. Methods for introducing polynucleotides into plants and expressing a protein encoded therein, involving viral DNA or RNA molecules, are known in the art. See, for example, U.S. 25 Patent Nos. 5,889,191, 5,889,190, 5,866,785, 5,589,367, 5,316,931, and Porta *et al.* (1996) *Molecular Biotechnology* 5:209-221; herein incorporated by reference.

Other methods of introducing polynucleotides into a plant or plant part can be used, including plastid transformation methods, and the methods for introducing polynucleotides into tissues from seedlings or mature seeds.

Methods are known in the art for the targeted insertion of a polynucleotide at a specific location in the plant genome. In one embodiment, the insertion of the polynucleotide at a desired genomic location is achieved using a site-specific recombination system. See, for example, WO99/25821, WO99/25854, WO99/25840, 5 WO99/25855, and WO99/25853, all of which are herein incorporated by reference. Briefly, the polynucleotide can be contained in a transfer cassette flanked by two non-recombinogenic recombination sites. The transfer cassette is introduced into a plant or plant part having stably incorporated into its genome a target site which is flanked by two non-recombinogenic recombination sites that correspond to the sites of the transfer 10 cassette. An appropriate recombinase is provided and the transfer cassette is integrated at the target site. The polynucleotide construct is thereby integrated at a specific chromosomal position in the plant genome.

The cells that have been transformed may be grown into plants in accordance with conventional ways. See, for example, McCormick *et al.* (1986) *Plant Cell Rep* 5:81-84.

15 These plants may then be grown, and either pollinated with the same transformed strain or different strains, and the resulting hybrid having constitutive expression of the desired phenotypic characteristic identified. Two or more generations may be grown to ensure that expression of the desired phenotypic characteristic is stably maintained and inherited and then seeds harvested to ensure expression of the desired phenotypic characteristic has 20 been achieved. In this manner, transformed seed (also referred to as “transgenic seed”) having a nucleotide construct, for example, an expression cassette, stably incorporated into their genome is provided. Thus, compositions of the invention include plant cells, plant tissues, plant parts, and plants comprising the presently disclosed polynucleotide constructs. Likewise, the methods of the invention can be performed in plant cells, plant 25 tissues, plant parts, and plants.

In certain embodiments the presently disclosed polynucleotide constructs can be stacked with any combination of polynucleotide sequences of interest in order to create plants with a desired trait. A trait, as used herein, refers to the phenotype derived from a particular sequence or groups of sequences. Plants that have various stacked 30 combinations of traits can be created by any method including, but not limited to, cross-

breeding plants by any conventional or TopCross methodology, or genetic transformation. If the sequences are stacked by genetically transforming the plants, the polynucleotide sequences of interest can be combined at any time and in any order. For example, a transgenic plant comprising one or more desired traits can be used as the target to

5 introduce further traits by subsequent transformation. The traits can be introduced simultaneously in a co-transformation protocol with the polynucleotides of interest provided by any combination of transformation cassettes. For example, if two sequences will be introduced, the two sequences can be contained in separate transformation cassettes (trans) or contained on the same transformation cassette (cis). Expression of the

10 sequences can be driven by the same promoter or by different promoters. In certain cases, it may be desirable to introduce a transformation cassette that will suppress the expression of a polynucleotide of interest. This may be combined with any combination of other suppression cassettes or overexpression cassettes to generate the desired combination of traits in the plant. It is further recognized that polynucleotide sequences

15 can be stacked at a desired genomic location using a site-specific recombination system. See, for example, WO99/25821, WO99/25854, WO99/25840, WO99/25855, and WO99/25853, all of which are herein incorporated by reference.

Any plant species can be transformed, including, but not limited to, monocots and dicots. Examples of plant species of interest include, but are not limited to, corn (*Zea mays*), *Brassica* sp. (e.g., *B. napus*, *B. rapa*, *B. juncea*), particularly those *Brassica* species useful as sources of seed oil, alfalfa (*Medicago sativa*), rice (*Oryza sativa*), rye (*Secale cereale*), sorghum (*Sorghum bicolor*, *Sorghum vulgare*), millet (e.g., pearl millet (*Pennisetum glaucum*), proso millet (*Panicum miliaceum*), foxtail millet (*Setaria italica*), finger millet (*Eleusine coracana*)), sunflower (*Helianthus annuus*), safflower (*Carthamus tinctorius*), wheat (*Triticum* spp.), soybean (*Glycine max*), tobacco (*Nicotiana tabacum*), potato (*Solanum tuberosum*), peanuts (*Arachis hypogaea*), cotton (*Gossypium barbadense*, *Gossypium hirsutum*), sweet potato (*Ipomoea batatas*), cassava (*Manihot esculenta*), coffee (*Coffea* spp.), coconut (*Cocos nucifera*), pineapple (*Ananas comosus*), citrus trees (*Citrus* spp.), cocoa (*Theobroma cacao*), tea (*Camellia sinensis*), banana (*Musa* spp.), avocado (30 *Persea americana*), fig (*Ficus casica*), guava (*Psidium guajava*), mango (*Mangifera*

indica), olive (*Olea europaea*), papaya (*Carica papaya*), cashew (*Anacardium occidentale*), macadamia (*Macadamia integrifolia*), almond (*Prunus amygdalus*), sugar beets (*Beta vulgaris*), sugarcane (*Saccharum* spp.), oats (*Avena*), barley (*Hordeum*), *Arabidopsis*, switchgrass, vegetables, ornamentals, grasses, and conifers.

5 Vegetables include tomatoes (*Lycopersicon esculentum*), lettuce (e.g., *Lactuca sativa*), green beans (*Phaseolus vulgaris*), lima beans (*Phaseolus limensis*), peas (*Lathyrus* spp.), and members of the genus *Cucumis* such as cucumber (*C. sativus*), cantaloupe (*C. cantalupensis*), and musk melon (*C. melo*). Ornamentals include azalea (*Rhododendron* spp.), hydrangea (*Macrophylla hydrangea*), hibiscus (*Hibiscus rosasanensis*), roses (*Rosa* spp.), tulips (*Tulipa* spp.), daffodils (*Narcissus* spp.), petunias (*Petunia hybrida*), carnation (*Dianthus caryophyllus*), poinsettia (*Euphorbia pulcherrima*), and chrysanthemum.

10

Conifers that may be employed in practicing the present invention include, for example, pines such as loblolly pine (*Pinus taeda*), slash pine (*Pinus elliottii*), ponderosa pine (*Pinus ponderosa*), lodgepole pine (*Pinus contorta*), and Monterey pine (*Pinus radiata*); Douglas-fir (*Pseudotsuga menziesii*); Western hemlock (*Tsuga canadensis*); Sitka spruce (*Picea glauca*); redwood (*Sequoia sempervirens*); true firs such as silver fir (*Abies amabilis*) and balsam fir (*Abies balsamea*); and cedars such as Western red cedar (*Thuja plicata*) and Alaska yellow-cedar (*Chamaecyparis nootkatensis*). In specific embodiments, plants of the present invention are crop plants (for example, corn, alfalfa, sunflower, 15 *Brassica*, soybean, cotton, safflower, peanut, sorghum, wheat, millet, tobacco, etc.).
20 Sugarcane (*Saccharum* spp.). In other embodiments, the plants are maize, rice, sorghum, barley, wheat, millet, oats, sugarcane, turfgrass, or switch grass. In specific embodiments, the plant is sugarcane.

Other plants of interest include grain plants that provide seeds of interest, oil-seed 25 plants, and leguminous plants. Seeds of interest include grain seeds, such as corn, wheat, barley, rice, sorghum, rye, etc. Oil-seed plants include cotton, soybean, safflower, sunflower, *Brassica*, maize, alfalfa, palm, coconut, etc. Leguminous plants include beans and peas. Beans include guar, locust bean, fenugreek, soybean, garden beans, cowpea, mungbean, lima bean, fava bean, lentils, chickpea, etc.

In certain embodiments, the plant or plant part is a winter wheat plant or plant part. As used herein, “winter wheat” refers to wheat plants or plant parts that require an extended period of low temperatures to be able to flower. Non-limiting examples of winter wheat include *Triticum aestivum* and *Triticum monococcum*.

5 As used herein, the term “plant part” refers to plant cells, plant protoplasts, plant cell tissue cultures from which plants can be regenerated, plant calli, plant clumps, and plant cells that are intact in plants or parts of plants such as embryos, pollen, ovules, seeds, leaves, flowers, branches, fruit, kernels, ears, cobs, husks, stalks, roots, root tips, anthers, and the like, as well as the parts themselves. Grain is intended to mean the
10 mature seed produced by commercial growers for purposes other than growing or reproducing the species. Progeny, variants, and mutants of the regenerated plants are also included within the scope of the invention, provided that these parts comprise the introduced polynucleotides.

Methods are also provided for increasing transformation frequency, wherein a
15 host cell is provided that comprises a presently disclosed polynucleotide construct comprising an excision cassette separating a polynucleotide encoding a herbicide tolerance polypeptide from its promoter, wherein the excision cassette comprises a polynucleotide encoding a site-specific recombinase that when expressed can excise the excision cassette. The population of plant cells comprising the polynucleotide construct
20 is cultured in the absence of a herbicide to which the herbicide tolerance polypeptide confers herbicide resistance for a period of time sufficient for the population of plant cells to proliferate, followed by the induction of the expression of the site-specific recombinase, thereby excising the excision cassette and allowing for the operable linkage of the herbicide tolerance polynucleotide and its promoter and the expression of the
25 herbicide tolerance polynucleotide allowing for the direct herbicide selection, thereby the transformation frequency is increased compared to a comparable plant cell not comprising the excision cassette and selected directly by herbicide selection. In some embodiments, the herbicide is glyphosate. In some embodiments, the induction comprises desiccating the population of plant cells. In some embodiments the induction
30 comprises cold treatment.

By “period of time sufficient for the population cells to proliferate” is intended to mean that the population of cells has proliferated to a size and quality to produce transgenic events at an optimal level. The time period sufficient for the cells to proliferate may vary depending on the plant species, cultivar, explant and proliferation medium. In some embodiments, the population of plant cells is cultured in the absence of the herbicide to which the herbicide tolerance polypeptide confers herbicide resistance for about 1 hour to about 12 weeks, about 1 day to about 12 weeks, about 1 week to about 12 weeks, or about 1 week to 6 weeks, including but not limited to about 1 hour, 2, hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 7 weeks, 8 weeks, 9 weeks, 10 weeks, 11 weeks, and 12 weeks. In other embodiments, the population of plant cells is cultured in the absence of the herbicide to which the herbicide tolerance polypeptide confers herbicide resistance for about 1 day to about 6 weeks, about 1 day to about 2 weeks, about 1 day to about 4 weeks, about 2 days to about 6 weeks, about 4 days to about 6 weeks, about 1 week to about 6 weeks, about 2 weeks to about 6 weeks, about 2 weeks to about 4 weeks, or about 2 weeks to about 3 weeks prior to excision.

“Transformation frequency” refers to the percentage of plant cells that are successfully transformed with a heterologous nucleic acid after performance of a transformation protocol on the cells to introduce the nucleic acid. In some embodiments, transformation further includes a selection protocol to select for those cells that are expressing one or more proteins encoded by a heterologous nucleic acid of interest. In some embodiments, transformation makes use of a “vector,” which is a nucleic acid molecule designed for transformation into a host cell.

An increased “transformation efficiency,” as used herein, refers to any improvement, such as an increase in transformation frequency, increased quality events frequency, labor saving, and/or decrease in ergonomic impact that impact overall efficiency of the transformation process by reducing the amount of resources required.

In general, upon use of the methods taught herein, transformation frequency is increased by at least about 3%, 5%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or 100% or greater, or even 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-fold or more, than the transformation frequency relative to a control. The 5 “control” provides a reference point for measuring changes in phenotype of the subject plant or plant cell, e.g., transformation frequency/efficiency, callus quality or transformation process time. The control may include, for example, plant cells transformed with a corresponding nucleic acid without the excision cassette.

In certain embodiments, the plant or plant part useful in the presently disclosed 10 methods and compositions is recalcitrant. As used herein, a “recalcitrant plant” or “recalcitrant plant part” is a plant or plant part in which the average transformation frequency using typical transformation methods is relatively low, and typically less than about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, or 30%. The transformation of species, varieties or cultivars 15 recalcitrant to transformation is time consuming, laborious, and inefficient compared to the transformation of non-recalcitrant varieties, with respect to one or more methods of transformation (e.g., *Agrobacterium*-mediated transformation). Non-limiting examples of species recalcitrant to *Agrobacterium*-mediated transformation include, but are not limited to, species of *Lolium* (rye grass), elite varieties of maize, cultivars of sugarcane, 20 species of rice (especially Indica), and various turf grass species. In some embodiments, the recalcitrant plant or plant part is unable to be transformed in the absence of a cell proliferation factor. In certain embodiments, the recalcitrant plant or plant part is an elite maize inbred or a cell or tissue thereof. In other embodiments, the recalcitrant plant or plant part is the sugarcane cultivar CP96-1252, CP01-1372, CPCL97-2730, HoCP85-845, 25 or CP89-2143 or a cell or tissue thereof.

In some embodiments of the present methods the recalcitrant plant part is an 30 explant from a model or recalcitrant inbred or cultivar. In some embodiments of the present methods and compositions, the explant is from a recalcitrant inbred having a type I callus genotype. In some embodiments of the present methods and compositions, the explant is from a recalcitrant maize inbred having a type I callus genotype. Callus in

grasses can be classified as type I or type II, based upon color, texture, regeneration system, and the amount of time required for callus initiation. The morphology of callus has been reported and described in the agronomically important monocot crops such as maize (Armstrong et al. (1985) *Planta* 164:207-214; Assam (2001) *Arab J Biotechnol* 4:247 256; Frame et al. (2000) *In Vitro Cell Dev Biol-Plant* 36:21-29; Lu et al. (1982) *L. Theor Appl Genet* 62:109-112; McCain et al. (1988) *Bot Gazette* 149:16-20; Songstad et al. (1992) *Am J Bot* 79:761-764; Welter et al. (1995) *Plant Cell Rep* 14:725-729; each of which is herein incorporated by reference in its entirety), rice (Chen et al. (1985) *Plant Cell Tissue Organ Cult* 4:51-51; Nakamura et al. (1989) *Japan J Crop Sci* 58:395-403; Rueb et al. (1994) *Plant Cell Tissue Organ Cult* 36:259-264; each of which is herein incorporated by reference in its entirety), sorghum (Jeoung et al. (2002) *Hereditas* 137:20-28; which is herein incorporated by reference in its entirety), sugarcane (Guiderdoni et al. (1988) *Plant Cell Tissue Organ Cult* 14:71-88; which is herein incorporated by reference in its entirety), wheat (Redway et al. (1990) *Theor Appl Genet* 79:609-617; which is herein incorporated by reference in its entirety), and various nonfood grasses. Type I callus is the typical and most prevalent callus formed in monocot species. It is characterized by compact form, slow-growth, white to light yellow in color, and highly organized. This callus is composed almost entirely of cytoplasmic meristematic cells that lack large vacuoles. In maize, type I callus can only be maintained for a few months and cannot be used in suspension cultures; whereas, type II callus can be maintained in culture for extended periods of time and is able to form cell suspensions. Type II callus derived from maize has been described as soft, friable, rapidly growing and exceedingly regenerative but is typically formed at lower frequencies than type I callus. Embryogenic suspension cells can be initiated from type II callus, which few maize lines can form. Although the ability to form type II callus can be backcrossed into agronomically important maize lines, in practice this is time consuming and difficult. Moreover, even for those lines that can form type II callus, the method requires a great deal of time and labor and is, therefore, impractical. Normally, recalcitrant inbred or cultivar genotypes that produce type I callus have low transformation frequencies.

Typically with maize type I inbreds large numbers of embryos or other explants must be

screened to identify sufficient quantities of events, which is expensive and labor intensive.

It is to be noted that the term “a” or “an” entity refers to one or more of that entity; for example, “a polynucleotide” is understood to represent one or more polynucleotides.

5 As such, the terms “a” (or “an”), “one or more,” and “at least one” can be used interchangeably herein.

Throughout this specification and the claims, the words “comprise,” “comprises,” and “comprising” are used in a non-exclusive sense, except where the context requires otherwise.

10 As used herein, the term “about,” when referring to a value is meant to encompass variations of, in some embodiments $\pm 50\%$, in some embodiments $\pm 20\%$, in some embodiments $\pm 10\%$, in some embodiments $\pm 5\%$, in some embodiments $\pm 1\%$, in some embodiments $\pm 0.5\%$, and in some embodiments $\pm 0.1\%$ from the specified amount, as such variations are appropriate to perform the disclosed methods or employ the disclosed 15 compositions.

Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value,

20 regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the presently disclosed subject matter be limited to the specific values recited when defining a range.

25 The following examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL

Example 1. Glyphosate Selection of Transformed Maize Inbred PHR03

Immature embryos from maize inbred PHR03 were harvested 9-13 days post-pollination with embryo sizes ranging from 0.8 – 2.5 mm length and were co-cultivated with *Agrobacterium* strain LBA4404 containing the vector PHP29204 or *Agrobacterium* strain LBA4404 containing the vector PHP32269 on PHI-T medium for 2-4 days in dark conditions. PHP29204: Ubi:DsRed + Ubi:GAT4602. PHP32269: Ubi:PMI + Ubi:MOPAT::YFP. Ubi refers to the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113). The tissues were then transferred to DBC3 medium without selection for one week, and then to DBC3 medium with 0.25 mM or 0.5 mM glyphosate for 3 weeks, and then DBC3 medium with 0.5 mM glyphosate for another 3-4 weeks. The embryos were then transferred to PHI-RF maturation medium with 0.1 mM glyphosate for 2-3 weeks until shoots formed, at which point, the shoots were transferred to MSB medium in Phytatrays containing 100 mg/L cefotaxime for rooting. Plants with good roots were transferred to soil for further growth and a glyphosate spray test. For PMI selection using PHP32269, DBC3 medium containing 12.5 g/L mannose and 5g/L maltose was used for selection. PHI-RF maturation medium without any selective agent or sugar modifications was used for regeneration.

PHI-T medium contains 0.1 μ M copper in MS salts 4.3 mg/L, Nicotinic acid 0.5 mg/L, Pyridoxine HCl 0.5 mg/L, Thiamine HCl 1 mg/L, Myo-inositol 100 mg/L, 2,4-D 2 mg/L, Sucrose 20 g/L, Glucose 10 g/L, L-proline 700 mg/L, MES 0.5 g/L, Acetosyringone 100 μ M, Ascorbic acid 10 mg/L and Agar 8.0 g/L.

PHI-RF is 4.3 g/L MS salts (GIBCO BRL 11117-074), 0.5 mg/L nicotinic acid, 0.1 mg/L thiamine HCl, 0.5 mg/L pyridoxine HCl, 2.0 mg/L glycine, 0.1 g/L myo-inositol, 0.49 μ M cupric sulfate, 0.5 mg/L zeatin (Sigma Z-0164), 1 mg/L IAA, 26.4 μ g/L ABA, thidiazuron 0.1 mg/L, 60 g/L sucrose, 100 mg/L cefotaxime, 8 g/L agar, pH 5.6.

30

Table 4. Transformation frequency of maize inbred PHR03 with PHP29204 or PHP32269.

Vector	No. of embryos	No. of T ₀ events	% Transformation	No. single copy events	% Single Copy Events
PHP29204	300	21	7	13	61.9
PHP32269	90	36	40	16	44.4

The transformation frequency with PHP29204 with glyphosate selection was only 5 7% in the maize inbred PHR03. Overall, glyphosate selection did not provide for a clean selection, a lot of non-transformed tissues were growing, and the morphology of both transformed and non-transformed tissues was irregular.

Example 2. *Agrobacterium*-mediated Sugarcane Transformation Using a Standard Test

10 Vector Without Developmental Genes

Media for Plant Transformation:

Liquid DBC3(M5G) contains MS salts (4.3 g/L) plus maltose (30 g/L); glucose (5 g/L); thiamine-HC1 (1 mg/mL); myo-inositol(0.25 g/L); N-Z-amine-A (casein hydrolysate) (1 g/L); proline (0.69 g/L); CuSO₄ (4.9 μM); 2,4-D (1.0 mg/L); BAP (0.5 mg/L); Adjust 15 volume to 1 L with ddH₂O; pH 5.8 — Adjust pH with 1 M KOH; autoclave.

DBC3 contains MS salts (4.3 g/L) plus maltose (30 g/L); thiamine-HC1 (1 mg/mL); myo-inositol (0.25 g/L); N-Z-amine-A (casein hydrolysate) (1 g/L); proline (0.69 g/L); CuSO₄ (4.9 μM); 2,4-D (1.0 mg/L); BAP (0.5 mg/L); Adjust volume to 1 L with ddH₂O; pH 5.8 — Adjust pH with 1 M KOH; Phytagel (3.5 g/L); autoclave.

20 DBC6 contains MS salts (4.3 g/L) plus maltose (30 g/L); thiamine-HC1 (1 mg/mL); myo-inositol(0.25 g/L); N-Z-amine-A (casein hydrolysate) (1 g/L); proline (0.69 g/L); CuSO₄ (4.9 μM); 2,4-D (0.5 mg/L); BAP (2.0 mg/L); Adjust volume to 1 L with ddH₂O; pH 5.8 — Adjust pH with 1 M KOH; Phytagel (3.5 g/L); autoclave.

MSB contains MS salts and vitamins (4.43 g/L) plus sucrose (20 g/L); myo-inositol (1.0 g/L); indole-3-butyric acid (IBA, 0.5 mg/L); Adjust volume to 1 L with ddH₂O; pH 5.8 — Adjust pH with 1 M KOH; Phytagel (3.5 g/L); autoclave.

Preparation of Agrobacterium Suspension:

Agrobacterium *tumefaciens* harboring a binary vector from a -80° frozen aliquot was streaked out onto solid PHI-L or LB medium containing an appropriate antibiotic and 5 cultured at 28°C in the dark for 2-3 days. A single colony or multiple colonies were picked from the master plate and streaked onto a plate containing PHI-M medium and incubated at 28°C in the dark for 1-2 days. *Agrobacterium* cells were collected from the solid medium using 5 mL 10 mM MgSO₄ medium (*Agrobacterium* infection medium) plus 100 µM acetosyringone. One mL of the suspension was transferred to a 10 spectrophotometer tube and the OD_{500nm} of the suspension was adjusted to 0.35-0.40 at 550 nm using the same medium.

Agrobacterium Infection and Co-cultivation:

Good quality callus tissues induced from *in vitro*-cultured plantlets were collected 15 in an empty Petri dish and exposed to air in the hood for about 30 minutes. Tissue that is younger than 2 months old is considered ideal for transformation. One mL *Agrobacterium* suspension was added to the Petri dish, the tissues were broken or 20 chopped into small pieces, and an additional 1-3 mL *Agrobacterium* (AGL1) suspension was then added to cover all the tissues. The Petri dish was placed into a transparent polycarbonate desiccator container, and the container was covered and connected to an in-house vacuum system for 20 minutes. After infection, the *Agrobacterium* suspension was drawn off from the Petri dish and the tissues were transferred onto 2 layers of VWR 415 filter paper (7.5 cm diameter) of a new Petri dish and 0.7-2.0 mL liquid DBC3 (M5G) medium plus 100 µM acetosyringone was added for cocultivation depending on the 25 amount of tissue collected. The top layer of filter paper containing the infected tissues was transferred to a fresh layer of filter paper of another new Petri dish. The infected tissues were incubated at 21°C in the dark for 3 days.

Selection and Plant Regeneration:

30 Callus tissues were transferred to first round selection DBC3 containing antibiotics (timentin and cefotaxime) and 3 mg/L bialaphos (Meiji Seika, Tokyo, Japan).

Tissues were transferred to 2nd round selection DBC6 containing antibiotics and 3-5 mg/L bialaphos and subcultured for 3 weeks at 26-28°C in dark or dim light conditions. At the 3rd round selection on DBC6 medium containing antibiotics and bialaphos, tissues were broken into smaller pieces and exposed to bright light conditions (30-150 $\mu\text{mol m}^{-2}$ sec $^{-1}$) for 2-3 weeks. Shoot-elongated tissues were broken into small pieces and transferred to MSB regeneration/rooting medium containing antibiotics and 3 mg/L bialaphos. Single plantlets were separated and transferred to soil.

Table 5 shows the results of transformation experiments using 7 U.S. sugarcane cultivars. CP89-2376 and CP88-1762 had >100% transformation frequency at the T₀ plant level using a standard vector containing DsRED and PAT (or moPAT) while the remaining 5 cultivars, CP96-1252, CP01-1372, CPCL97-2730, HoCP85-845 and CP89-2143, were recalcitrant in transformation.

Table 5. Transformation Frequencies at T₀ Plant Level in 7 U.S. Sugarcane Cultivars
Using a Standard Test Vector.

CP96-1252	CP01-1372	CP89-2376	CPCL97-2730	HoCP85-845	CP89-2143	CP88-1762
n.t.*	n.t.	75.0% (6/8)	n.t.	n.t.	n.t.	n.t.
0% (0/8)	0% (0/8)	100.0% (8/8)	0% (0/8)	n.t.	n.t.	n.t.
n.t.	n.t.	87.5% (7/8)	n.t.	n.t.	n.t.	n.t.
n.t.	n.t.	150.0% (12/8)	n.t.	0% (0/8)	n.t.	n.t.
n.t.	n.t.	n.t.	n.t.	n.t.	0% (0/8)	62.5% (5/8)
n.t.	n.t.	100.0% (8/8)	n.t.	n.t.	0% (0/8)	137.5% (11/8)
n.t.	n.t.	187.5% (15/8)	n.t.	n.t.	n.t.	137.5% (11/8)

Transformation Frequency = (# transgenic events / # explants infected with *Agrobacterium*) x 100%

*n.t.: not tested

5 *Confirmation of Transgenic Events:*

The putative stable callus/green tissues/regenerating plants were identified based on the visible RFP marker gene expression. All of these putative transgenic callus tissues were transferred to medium for plant regeneration under standard regeneration conditions. The final confirmation of stable transformation frequency was determined based on

10 molecular analysis such as PCR and Southern blot hybridization.

Example 3. Sugarcane Transformation Using a Developmental Gene (DevGene) Vector

PHP35648 and Excision Test

A DevGene binary vector (PHP35648, Figure 1) with the BBM/WUS gene cassette was initially compared with a standard vector containing PAT or moPAT plus DsRED without the BBM/WUS gene cassette for transformation frequency using two *Agrobacterium* strains, AGL1 and LBA4404, in cultivar CP89-2376 and the recalcitrant cultivar CP01-1372 (Table 6). The DevGene binary vector contains

Ubi::LoxP::CFP+Rab17Pro-attb1::Cre+Nos::ZmWUS2+Ubi::ZmBBM-

20 LoxP::YFP+Ubi::MOPAT (Figure 1); each gene cassette has a 3' terminator. The Lox cassette containing CFP::Cre::WUS::BBM can be excised by Cre recombinase controlled by the Rab17 promoter. The PHP35648 vector was designed to demonstrate the excision efficiency of the excision cassette using visual markers. The PHP35648 excision cassette comprises the cyan fluorescent protein (CFP) controlled by the ubiquitin promoter

25 (comprising the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113)), which is located outside of the loxP site flanking the excision cassette (see Figure 1). Transformants comprising the excision cassette can be visually identified by the presence of the cyan fluorescent protein (CFP). When the

30 excision cassette is excised, the yellow fluorescent protein (YFP) is expressed under the regulation of the ubiquitin promoter. Transformants lacking the excision cassette can be visually identified by the presence of the yellow fluorescent protein (YFP). The ratio of

cyan fluorescent protein (CFP) to yellow fluorescent protein (YFP) can be used to demonstrate the excision efficiency. In PHP35648, the ubiquitin promoter controlling the expression of the moPAT gene product was included outside of the excision cassette as a positive selection to reduce the number of escapes.

5 Callus tissues of all 5 sugarcane cultivars were induced and maintained on DBC3 medium. Tissues were infected with *Agrobacterium* containing the DevGene binary vector PHP35648 in liquid 10 mM MgSO₄ plus 100 µM acetosyringone and then co-cultivated with liquid DBC3 (M5G) medium plus 100 µM acetosyringone on filter paper in Petri dishes at 21°C in the dark. Three days after co-cultivation, the tissues were
10 transferred to DBC3 containing 100 mg/L cefotaxime and 150 mg/L timentin for AGL1 and DBC3 containing 100 mg/L carbenicillin for LBA4404, and incubated at 26°C (±1°C) in the dark or dim light for 3-7 days. Afterwards, the tissues were transferred to the same media as the previous step plus 3 or 5 mg/L bialaphos. After 2 to 3 weeks, the tissues were transferred to 2nd round selection DBC6 containing antibiotics and 3-5 mg/L
15 bialaphos. After two months from the initiation of the experiment, transformation frequency was calculated by the number of tissues showing CFP-expressing sectors divided by the number of explants infected by *Agrobacterium*. AGL1 was more efficient in transformation than LBA4404 in both CP89-2376 and CP01-1372 (Table 6, rows 1 and 2). There was also a genotype difference in transformation frequency; the CP89-2376
20 cultivar had a much higher transformation frequency than the recalcitrant cultivar CP01-1372 using either of the *Agrobacterium* strains.

AGL1 containing the DevGene binary vector PHP35648 was also used to test sugarcane germplasm screening in another set of four experiments (Table 6, rows 3-6) using 5 different cultivars (CP96-1252, CP01-1372, CP89-2376, CPCL97-2730 and
25 HoCP85-845). Callus tissues of all 5 cultivars tested were induced and maintained on DBC3 medium and tissues were infected with AGL1 containing the developmental gene binary vector PHP35648. The use of developmental genes dramatically increased transformation frequency in all 5 cultivars tested. Transformation frequencies in the most amenable cultivar, CP89-2376, using a standard binary vector averaged 116.7% (56/48)
30 (Table 6). In contrast, an average transformation frequency in CP89-2376 from the 5

experiments using the DevGene binary vector PHP35648 was >2,512.5% (>1,005 events/40 tissues infected) (see Table 6, rows 2-6). An increase in transformation frequency was also observed in the recalcitrant cultivars CP96-1252, CP01-1372, CPCL97-2730 and HoCP85-845; with transformation frequencies ranging from 62.5% to 5 1250.0% using AGL1 while no transgenic events were obtained using the standard vector without the BBM/WUS gene cassette from these cultivars (Table 6, row 7).

Table 6. Transformation Frequency in Sugarcane Using a BBM/WUS Developmental Gene Vector PHP35648.

<i>Agrobacterium</i>		Sugarcane Cultivar				
Strain	Binary Vector	CP96-1252	CP01-1372	CP89-2376	CPCL97-2730	HoCP85-845
AGL1	DG ^a	n.t. ^c	37.5% (3/8)	n.t.	n.t.	n.t.
LBA4404	DG	n.t.	0% (0/8)	n.t.	n.t.	n.t.
AGL1	DG	n.t.	>1,250.0% (>100/8)	>6,250.0% (>500/8)	n.t.	n.t.
LBA4404	DG	n.t.	12.5% (1/8)	>1,500% (>120/8)	n.t.	n.t.
AGL1	DG	n.t.	n.t.	687.5% (>55/8)	n.t.	n.t.
AGL1	DG	n.t.	n.t.	>2,500% (>200/8)	175.0% (14/8)	n.t.
AGL1	DG	150.0% (12/8)	62.5% (5/8)	>625.0% (>50/8)	62.5% (6/8)	n.t.
AGL1	DG	n.t.	n.t.	>2,500% (>200/8)	n.t.	187.5% (15/8)
AGL1	Std^b	0% (0/8)	0% (0/8)	116.7% (56/48)	0% (0/8)	0% (0/8)

Each transformation treatment had 8 pieces of callus tissues 0.4-0.5 cm in size.

5 DG^a: developmental gene vector with BBM/WUS gene cassette

Std^b: standard vector without BBM/WUS gene cassette

n.t.^c: not tested

Excision of the LoxP cassette by dessication monitored by visual markers

Transgenic callus tissues were desiccated on dry filter papers for one day to induce excision of the Lox cassette containing CFP::Cre::WUS::BBM by Cre recombinase driven by the Rab17 promoter (Figure 1). Excision was monitored by observing YFP expression on desiccated transgenic callus events by the presence of the UBI:loxP:YFP junction formed as a result of excision (Figure 1). Cre excision occurred on 83 of 87 transgenic events (95.4%) (Table 7). Plants from some transgenic events after excision were regenerated on MSB plus 1-3 mg/L bialaphos and antibiotics.

10 Table 7. Excision Efficiency of the BBM/WUS Gene Cassette in Transgenic Sugarcane Events by Desiccation.

Sugarcane Cultivar	Agrobacterium Strain	Binary Vector	Excision Efficiency (%)
CP89-2376	AGL1	DG ^a	93% (40/43)
CP89-2376	LBA4404	DG	100% (25/25)
CP01-1372	AGL1	DG	100% (13/13)
CP01-1372	LBA4404	DG	0% (0/1)
CP89-2376	AGL1	DG	100% (5/5)
Average			95.4% (83/87)

DG^a: developmental gene (DevGene) vector PHP35648 with BBM/WUS gene cassette

15 Example 4. Sugarcane Excision Induction and Plant Regeneration from Transformed Callus/Green Tissue Events Generated Using a Developmental Gene (DevGene) Vector PHP54561

Generation of Transgenic Events:

A new DevGene binary vector PHP54561 with the BBM/WUS gene cassette was 20 designed as described in Figure 2. The DevGene binary vector PHP54561 contains Ubi::LoxP-moPAT+Ubi:YFP+Rab17Pro-attb1:Cre+Nos:ZmWUS2+Ubi:ZmBBM-LoxP::GLYAT (Figure 2); each gene cassette has a 3' terminator. The Lox cassette

containing moPAT+Ubi:YFP+Rab17Pro-attb1:Cre+Nos:ZmWUS2+Ubi:ZmBBM can be excised by Cre recombinase controlled by the Rab17 promoter. The PHP54561 excision cassette was designed to test the excision efficiency directly by glyphosate tolerance (see Figure 2). The yellow fluorescent protein (YFP) was included in the PHP54561 excision cassette as a visual marker and moPAT as a selection marker prior to excision (see Figure 2). Ubi refers to the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113).

Callus tissues of two U.S. sugarcane cultivars, CP88-1762, CP01-1372 and 10 Australian cultivar, KQ228, were induced and maintained on DBC3 or DBC6 medium. Tissues were infected with *Agrobacterium* containing the DevGene binary vector PHP54561 in liquid 10 mM MgSO₄ plus 100 µM acetosyringone and then co-cultivated with liquid DBC3 (M5G) medium plus 100 µM acetosyringone on the filter paper in Petri dishes at 21°C in the dark. Three days after co-cultivation, the tissues of CP88-15 1762/CP01-1372 and KQ228 were transferred to DBC3 and DBC6 containing 100 mg/L cefotaxime and 150 mg/L timentin, respectively, and incubated at 26°C (±1°C) in the dark or dim light for 3-7 days. Afterwards, the tissues were transferred to the same media as the previous step plus 3 or 5 mg/L bialaphos. After 2 to 3 weeks, the tissues were transferred to 2nd round selection DBC6 containing antibiotics and 3-5 mg/L bialaphos. 20 YFP-expressing sectors were transferred to the same medium for proliferation. After two months from the initiation of the experiment, transformation frequency was calculated by the number of tissues showing YFP-expressing sectors divided by the number of explants infected by *Agrobacterium*. Table 8 demonstrated transformation frequency at the T₀ tissue level in 3 sugarcane cultivars. CP88-1762, an amenable cultivar had 405% 25 transformation. Two recalcitrant cultivars, CP01-1372 and KQ228 also had high transformation frequencies, 885% and 130%, respectively.

Table 8. Transformation Frequencies at the T₀ Tissue Level in Sugarcane with Bialaphos Selection before Excision.

Cultivar	Txn Frequency (%)
CP01-1372*	270% (27/10)
CP01-1372*	1500% (150/10)
Total	885% (177/20)
CP88-1762	400% (40/10)
CP88-1762	410% (41/10)
Total	405% (81/20)
KQ228*	10% (1/10)
KQ228*	250% (25/10)
Total	130% (26/20)

*CP01-1372 and KQ228 are recalcitrant commercial cultivars.

5 *Excision of LoxP Cassette by Desiccation and Plant Regeneration with Glyphosate Selection:*

Transgenic tissues (0.3-0.5 mm in diameter) were transferred to an empty 60 mm x 25 mm Petri dish containing a piece of sterilized glass filter paper (VWR Glass Microfibre filter, 691). The Petri dish was covered with a lid and placed in a container with a tight-seal cover. A Petri dish (or beaker) with ~20 mL of sterilized water with the lid open was placed in the container. The container was kept in a dark culture room for 1-2.5 days at 28°C; the desiccation period was dependent on the degree or size of tissues. After 1-2.5 days of desiccation treatment, the desiccated tissues were transferred to DBC6 proliferation medium with antibiotics and 100 µM glyphosate. The plates were kept in

dim ($10\text{-}50 \mu\text{mol m}^{-2} \text{ sec}^{-1}$) to moderately bright light at $26\text{-}28^\circ\text{C}$ for 2-3 weeks (Figure 3). If necessary, tissues were subcultured for another round on the same medium for another 2-3 weeks to get small green shoots; the plates was kept in a higher intensity of light at $26\text{-}28^\circ\text{C}$. Tissues with shoots were picked up and placed onto MSB regeneration/rooting medium containing antibiotics and $20\text{-}30 \mu\text{M}$ glyphosate in A175 Agar (PhytoTechnology Lab) as a gelling agent. Tissues were cultured under bright light conditions ($50\text{-}200 \mu\text{mol m}^{-2} \text{ sec}^{-1}$) for 3-4 weeks at $26\text{-}28^\circ\text{C}$. When shoots were strong enough, single plantlets were separated and transferred to soil. In general, plants with complete excision exhibited a normal phenotype with greener and faster growth, while plantlets from tissues without excision of the developmental genes or having incomplete excision usually showed a stunted phenotype or bleached shoots, indicating susceptibility to glyphosate (Figures 4 and 5). Plants with a normal phenotype were transferred to soil for further growth, glyphosate spray test and molecular assay.

Table 9 shows LoxP cassette excision efficiency in transgenic events of 3 sugarcane cultivars, CP88-1762, CP01-1372 and KQ228, based on glyphosate resistance of the events. Excision efficiencies ranged from 32% to 68% in these 3 cultivars.

20

25

Table 9. Excision Efficiency with Glyphosate Selection of Transgenic Sugarcane Events by Desiccation.

Cultivar	Transformation Frequency*	# of events desiccated	# of events with green elongated shoots on glyphosate	Excision Efficiency (# of events excised/# of events desiccated)
CP01-1372	270% (27/10)	12	8	66.7% (8/12)
CP01-1372	1500% (150/10)	41	28	68.3% (28/41)
Total	885% (177/20)	53	36	67.9% (36/53)
CP88-1762	400% (40/10)	15	6	40.0% (6/15)
CP88-1762	410% (41/10)	38	20	52.6% (20/38)
Total	405% (81/20)	53	26	49.1% (26/53)
KQ228	10% (1/10)	1	0	0% (0/1)
KQ228	250% (25/10)	21	7	33.3% (7/21)
Total	130% (26/20)	22	7	31.8% (7/22)

*bialaphos selection before excision

5 *Glyphosate Resistance Confirmation by Glyphosate Spray Test:*

T_0 plantlets were then moved to soil and spray tested with 4X glyphosate to confirm excision/ glyphosate resistance. All 72 independent T_0 events from 3 sugarcane cultivars (Table 9) showed strong glyphosate resistance while plants of 3 nontransgenic cultivars were completely killed by glyphosate spray. The final confirmation of stable

transformation frequency is determined based on molecular analysis such as PCR and Southern blot hybridization.

Example 5. Corn Excision Induction and Plant Regeneration from Desiccated T₁

5 Immature Embryos

Corn Transformation:

A corn elite inbred, PHR03 was transformed with *Agrobacterium* strain AGL1 containing the excision vector PHP54353. The PHP54353 vector contains Ubi::LoxP-Ds 10 RED+Rab17-attB::CRE-LoxP::GLYAT (Figure 6). The Lox cassette containing Ds RED+Rab17-attB::CRE can be excised by Cre recombinase controlled by the Rab17 promoter. The PHP54353 excision cassette was designed to demonstrate direct 15 glyphosate selection. Ubi refers to the maize ubiquitin promoter (UBI1ZM PRO; SEQ ID NO: 111), the ubiquitin 5' UTR (UBI1ZM 5UTR; SEQ ID NO: 112), and ubiquitin intron 1 (UBIZM INTRON1; SEQ ID NO: 113).

Immature embryos from maize inbred PHR03 were harvested 9-13 days post-pollination with embryo sizes ranging from 0.8 – 2.5 mm length and were co-cultivated with *Agrobacterium* strain AGL1 containing the excision vector PHP54353 on PHI-T medium for 3 days in dark conditions. These embryos were then transferred to DBC3 20 medium containing 100 mg/L cefotaxime in dim light conditions. RFP-expressing sectors were picked up and proliferated on the same medium. When the tissue proliferation period for each transgenic event was sufficient, tissues were moved to PHI-RF maturation medium. Regenerating shoots were transferred to MSB medium in Phytatrays containing 100 mg/L cefotaxime for rooting. Plants with good roots were 25 transferred to soil for further growth, glyphosate spray test and molecular assay.

PHI-T medium contains 0.1 µM copper in MS salts 4.3 mg/L, Nicotinic acid 0.5 mg/L, Pyridoxine HCl 0.5 mg/L, Thiamine HCl 1 mg/L, Myo-inositol 100 mg/L, 2,4-D 2 mg/L, Sucrose 20 g/L, Glucose 10 g/L, L-proline 700 mg/L, MES 0.5 g/L, Acetosyringone 100 30 µM, Ascorbic acid 10 mg/L and Agar 8.0 g/L.

PHI-RF is 4.3 g/L MS salts (GIBCO BRL 11117-074), 0.5 mg/L nicotinic acid, 0.1 mg/L thiamine HCl, 0.5 mg/L pyridoxine HCl, 2.0 mg/L glycine, 0.1 g/L myo-inositol, 0.49 μ M cupric sulfate, 0.5 mg/L zeatin (Sigma Z-0164), 1 mg/L IAA, 26.4 μ g/L ABA, thidiazuron 0.1 mg/L, 60 g/L sucrose, 100 mg/L cefotaxime, 8 g/L agar, pH 5.6.

5

Immature Embryo Isolation, Desiccation, Selection and Regeneration:

Sterilized immature embryos with 2.0-3.5 mm were placed scutellum side down on sterile fiber glass filter paper in a Petri dish. 300 μ L of DBC6 liquid medium with 100 mg/L cefotaxime was added to the filter paper to prevent over drying. Plates were wrapped

10 with Parafilm and checked for expression of DsRed before desiccation in order to

compare expression after desiccation. Plates were moved into a sterile laminar hood unwrapped and let stand for 2-4 days until the embryos appeared darker and shrunken, and were desiccated. Embryos were then placed scutellum side down onto MSA

regeneration medium containing 100 mg/L cefotaxime with 10-50 μ M glyphosate for

15 selection. Five to 10 days later, DsRed expression is checked in the emerging shoots.

Example 6. Natural Desiccation and Excision in Transgenic Mature Corn Seed

Immature embryos of maize inbred PHR03 were transformed with the excision vector AGL1/PHP54353, the expression of DsRed was visually confirmed, and T_0 20 plantlets were regenerated as described in Example 5. Before moving the T_0 plantlets to soil, the expression of DsRed was again visually confirmed.

Glyphosate resistance confirmation

To confirm that the natural desiccation process that occurs during seed maturation would in fact allow for the excision of DsRed and resistance to glyphosate, seeds 25 collected from T_0 plants crossed with wild-type PHR03 pollen were germinated in soil. By planting seeds straight to soil without any treatments, excision would be a result of natural processes.

Three random events were chosen to be tested by this method. Five mature T_1 seeds each from the following events, PHP54353 T_0 event numbers 6, 7, and 10 were 30 placed in small pots with Metro Mix soil (Sun Gro Horticulture, McFarland, CA) with

fertilizer and placed in the greenhouse. After plants had germinated and grown to about 12-18 cm (10-12 days after planting), the plants were then sprayed with glyphosate + surfactant at 2X or 4X concentration (1X is equivalent to what is used in the field). Before spraying, all pots were evenly spaced and positioned to ensure that they would 5 receive an even distribution of glyphosate. The distance between the sprayer nozzle and the apical meristem of the plants was approximately 18 inches. Within 10-12 days, it was visibly evident which plants were not affected by the herbicide and which plants had been severely damaged.

The results of the spray test are presented in Table 10. From visible spray test 10 results, all wild-type PHR03 plants had been severely damaged, as predicted. It was also clear that 2 out of 4 plants from event number 6 had no signs of damage and continued to grow at a normal rate having not lost any leaf tissue. However, all 5 plants from event number 7 did show damage equivalent to that of the wild-type PHR03 plants, which was not expected. All 4 plants from event number 10 also showed damage equivalent to that 15 of the wild-type PHR03 plants. When the T₀ plants were analyzed for the presence of the DsRED and GLYAT genes, it was discovered that event number 10 did not have the DsRED gene and although the T₀ plant had the GLYAT gene, presumably GLYAT was not expressed because it was not operably linked to a promoter (see Table 10). In event number 13, 3 out of 5 plants showed damage and 2 out of 5 plants were tolerant.

20

Table 10. Glyphosate Spray Test on Plants Germinated from T₁ Mature Corn Seed

Lab event #	DS-RED2INT QPCR of T ₀	GLYAT QPCR of T ₀	Glyphosate Spray Test
6	+	+	2/4 plants damaged; 2/4 plants tolerant
7	+	+	5/5 plants damaged
10	-	+	4/4 plants damaged
13	+	+	3/5 plants damaged; 2/5 plants tolerant
Wild-type	-	-	4/4 plants damaged

Example 7. Tobacco Excision Induction and Plant Regeneration from Transformed Tissue Events

Tobacco Transformation

5 Young leaves are harvested from *in vitro*-cultured tobacco plants and cut into 0.5-1 cm size as an *Agrobacterium* infection target. AGL1/PHP55062 (a standard excision vector, Figure 8) is used for transformation. Transgenic tobacco (cv. Petite havana) plants are generated following the leaf disc method described by Horsch et al. (1985) *Science* 227:1229-1231, which is herein incorporated by reference in its entirety, and
10 50 mg/L hygromycin B was used for selection.

Excision of LoxP Cassette by Desiccation and Plant Regeneration with Glyphosate Selection

15 Tobacco desiccation experiments are conducted to induce excision from transformed tissue events and transformed plants are regenerated. Once tissue from each event having visual marker expression has reached a sufficient size when grown on selection medium with hygromycin, desiccation experiments can be conducted. Tissues (0.3-0.5mm in diameter) are sliced and transferred to an empty 60 mm x 25 mm Petri dish containing a piece of sterilized glass filter paper (VWR Glass Microfibre filter, 691). The
20 Petri dish is covered and placed in a container with a tight-seal cover. An open Petri dish with 15 mL of sterilized water is placed in the container. The container is placed in a dark culture room at 28°C. After 2-3 days of desiccation treatment, the tissues are either directly transferred to regeneration medium or selection medium with antibiotics and 20-50 uM glyphosate using Phytagel as a gelling agent for 2-3 weeks with sealed plates for
25 proliferation and regeneration. The tissues are transferred to regeneration medium with antibiotics and 20-50 uM glyphosate for another 2-4 weeks to generate shoots. Plates are placed in higher intensity light at 26-28°C. When shoots are strong enough, single plantlets are separated and transferred to soil. Leaf samples are collected for qPCR analysis.

30

Example 8. Tobacco Excision Induction and Plant Regeneration from Desiccated T₁ Immature Seeds

T₁ immature seeds from transgenic tobacco plants are isolated, sterilized with 15% Clorox + 2 drops of Tween 20 and rinsed with autoclaved water 3 times. Sterilized 5 immature seeds are placed on sterile fiber glass filter paper in a Petri dish. The Petri dish is covered and moved into a sterile laminar hood unwrapped and incubated for 1-2 days until the seeds are desiccated. Desiccated immature seeds are then placed onto regeneration medium containing 100 mg/L cefotaxime and with 20-50 μ M glyphosate for selection. One to 2 weeks later, DsRed expression is checked in the emerging shoots.

10 Immature seeds that have been properly desiccated have very weak or no DsRed expression as the gene is excised via the LoxP sites. Both transgenic and nontransgenic seeds without desiccation treatment will germinate well on glyphosate-free medium while germination will be completely inhibited for both of them on 20-50 μ M glyphosate.

15 Immature seeds that successfully underwent gene excision by desiccation will have glyphosate resistance and regenerate on medium containing 20-50 μ M glyphosate.

Healthy plantlets are transferred to regeneration medium in Phytatrays containing 100 mg/L cefotaxime and 20-50 μ M glyphosate for further selection and growth.

Example 9. Natural Desiccation and Excision in Transgenic Mature Tobacco Seeds

20 *Mature seed sterilization, Selection/ Regeneration:*

T₁ mature tobacco seed transformed with AGL1/ PHP55062 are sterilized with 20% Clorox + 2 drops Tween 20 and rinsed with autoclaved water 3 times. Sterilized seeds are then transferred to regeneration medium containing 100 mg/L cefotaxime with 20-50 μ M glyphosate for selection. After 5-10 days, DsRed expression is checked in the 25 emerging shoots. Seeds that have been excised will no longer have DsRed expression as the gene is cleaved via the Lox P sites. Those seeds that are successfully excised of DsRed will have glyphosate resistance and regenerate on medium containing glyphosate. Once seeds have healthy shoot and root formation, the plantlets are moved to soil or another regeneration medium containing 100 mg/L cefotaxime in Phytatrays with 20 or 30 50 μ M glyphosate for further selection and growth.

Sowing dry tobacco T₁ seeds straight to soil and glyphosate resistance confirmation:

To confirm that the natural desiccation process that occurs during seed maturation would in fact allow for the excision of DsRed and resistance to glyphosate, seeds 5 collected from T₀ tobacco plants are germinated in soil. By planting seeds straight to soil without any treatments, excision would truly be a result of natural processes. After plants have germinated and grown to about 10-15 cm, the plants are sprayed with glyphosate + surfactant at 2X or 4X concentration (1X is equivalent to what is used in the field). Within 10-12 days, it is visibly evident which plants are not affected by the herbicide and 10 which plants are severely damaged.

Example 10. Soybean Excision Induction and Plant Regeneration from Transformed Tissue Events

Soybean Transformation:

15 Soybean (cv. Jack) mature seeds are sterilized and sliced into half longitudinally and half-seeds are used as an *Agrobacterium* infection target. *Agrobacterium* strain AGL1 containing the PHP55062 vector (a standard excision vector, Figure 8) is used for transformation. Alternatively, soybean embryogenic suspension cultures are transformed with the PHP55062 vector via *Agrobacterium*-mediated transformation as described 20 herein or by the method of particle gun bombardment (Klein *et al.* (1987) *Nature*, 327:70, which is herein incorporated by reference in its entirety).

Transgenic soybean plants are generated following the method described in U.S. Patent No. 7,473,822, which is herein incorporated by reference in its entirety, and 5 to 30 mg/L hygromycin B is used for selection.

25

Excision of LoxP Cassette by Desiccation and Plant Regeneration with Glyphosate Selection:

Soybean desiccation experiments are conducted to induce excision from 30 transformed tissue events and transformed plants are regenerated. Once tissue from each event having visual marker expression has reached a sufficient size when grown on

selection medium with hygromycin, desiccation experiments can be conducted. Tissues (0.3-0.5mm in diameter) are sliced and transferred to an empty 60 mm x 25 mm Petri dish containing a piece of sterilized glass filter paper (VWR Glass Microfibre filter, 691). The Petri dish is covered and placed in a container with a tight-seal cover. An open Petri dish with 15 mL of sterilized water is placed in the container. The container is placed in a dark culture room at 28°C. After 2-3 days of desiccation treatment, the tissues are either directly transferred to regeneration medium with antibiotics and 20-50 µM glyphosate using Phytagel as a gelling agent for 2-3 weeks with sealed plates for proliferation and regeneration. The tissues are transferred to regeneration medium with antibiotics and 20-50 µM glyphosate for another 2-4 weeks to generate shoots. Plates are placed in higher intensity light at 26-28°C. When shoots are strong enough, single plantlets are separated and transferred to soil. Leaf samples were collected for qPCR analysis.

Example 11. Soybean Excision Induction and Plant Regeneration from Desiccated T₁ Immature Seeds

T₁ immature pods from transgenic soybean plants are harvested, sterilized with 15% Clorox + 2 drops of Tween 20 and rinsed with autoclaved water 3 times. Immature seeds are isolated from sterilized pods and placed on sterile fiber glass filter paper in a Petri dish. The Petri dish is covered and moved into a sterile laminar hood unwrapped and incubated for 1-2 days until the seeds are desiccated. Desiccated immature seeds are then placed onto regeneration medium containing 100 mg/L cefotaxime and with 20-50 µM glyphosate for selection. One to 2 weeks later, DsRed expression is checked in the emerging shoots. Immature seeds that have been properly desiccated will have very weak or no DsRed expression as the gene is excised via the LoxP sites. Both transgenic and nontransgenic seeds without desiccation treatment will germinate well on glyphosate-free medium while germination will be completely inhibited for both of them on 20-50 µM glyphosate. Immature seeds that successfully underwent gene excision by desiccation will have glyphosate resistance and regenerate on medium containing 20-50 µM glyphosate.

Healthy plantlets are transferred to regeneration medium in Phytatrays containing 100 mg/L cefotaxime and 20-50 μ M glyphosate for further selection and growth.

Example 12. Natural Desiccation and Excision of Transgenic Mature Soybean Seeds

5 *Mature seed sterilization, Selection/ Regeneration:*

T_1 mature soybean seed transformed with AGL1/PHP55062 are sterilized with 20% Clorox + 2 drops Tween 20 and rinsed with autoclaved water 3 times. Sterilized seeds are then transferred to regeneration medium containing 100 mg/L cefotaxime with 20-50 μ M glyphosate for selection. After 5-10 days, DsRed expression is checked in the 10 emerging shoots. Seeds that have been excised will no longer have DsRed expression as the gene is cleaved via the Lox P sites. Those seeds that are successfully excised of DsRed will have glyphosate resistance and regenerate on medium containing glyphosate. Once seeds have healthy shoot and root formation, the plantlets are moved to soil or another regeneration medium containing 100 mg/L cefotaxime in Phytatrays with 20 or 15 50 μ M glyphosate for further selection and growth.

Sowing dry soybean T_1 seeds straight to soil and glyphosate resistance confirmation:

To confirm that the natural desiccation process that occurs during seed maturation would in fact allow for the excision of DsRed and resistance to glyphosate, seeds 20 collected from T_0 soybean plants are germinated in soil. By planting seeds straight to soil without any treatments, excision would be a result of truly natural processes. After plants have germinated and grown to about 10-15 cm, the plants are sprayed with glyphosate + surfactant at 2X or 4X concentration (1X is equivalent to what is used in the field). Within 10 days, it is visibly evident which plants are not affected by the herbicide and 25 which plants are severely damaged.

Example 13. *Agrobacterium*-mediated Transformation of Wheat using Immature Embryos (IEs) with Standard and Sand treatments

Preparation of Agrobacterium Suspension:

Agrobacterium *tumefaciens* harboring vector of interest was streaked from a -80° frozen 5 aliquot onto solid LB medium containing selection (kanamycin or spectinomycin). The Agrobacterium was cultured on the LB plate at 21°C in the dark for 2-3 days. A single colony was selected from the master plate and was streaked onto an 810D medium plate containing selection and it was incubated at 28°C in the dark overnight. A sterile spatula was used to collect Agrobacterium cells from the solid medium and cells were suspended in ~ 10 5mL wheat infection medium (WI4) with 400 uM acetosyringone (As) (Table 1). The OD of the suspension was adjusted to 0.1 at 600 nm using the same medium.

Wheat Immature Embryo Transformation:

Material preparation, sterilization and sand treatment

15 4-5 spikes were collected, containing immature seeds with 1.5-2.5mm embryos. Immature seeds/wheat grains were then isolated from the spike by pulling downwards on the awn and removing both sets of bracts (the lemma and palea). Wheat grains were surface-sterilized for 15 min in 20% (v/v) bleach (5.25% sodium hypochlorite) plus 1 drop of Tween 20, and then they were washed in sterile water 2-3 times. Immature embryos (IEs) were isolated from the 20 wheat grains and were placed in 1.5 ml of the WI4 medium into 2 mL micro-centrifuge tubes. Immature embryos were isolated and placed in 1 mL of WI4 medium with 0.25 mL of autoclaved sand. The 2 mL microcentrifuge tubes containing the immature embryos were centrifuged at 6k for 30 seconds, vortexed at 4.5, 5 or 6 for 10 seconds, and then centrifuged at 6k for 30 seconds. Embryos were let stood for 20 minutes.

25

Embryo treatments with sand and Infection

WI4 medium was drawn off, and 1.0 ml of Agrobacterium suspension was added to the 2 mL 30 microcentrifuge tubes containing the immature embryos. Embryos were let to stand for 20 minutes. The suspension of Agrobacterium and immature embryos was poured onto wheat co-cultivation medium, WC21 (Table 2). Any embryos left in the tube were transferred to the

plate using a sterile spatula. The immature embryos were placed embryo axis side down on the media, and it was ensured that the embryos were immersed in the solution. The plate was sealed with Parafilm tape and incubated in the dark at 25°C for 3 days of co-cultivation.

5 Media Scheme and selection

After 3 days of co-cultivation immature embryos were transferred embryo axis side down to DBC4 green tissue (GT) induction medium containing 100 mg/L cefotaxime (PhytoTechnology Lab., Shawnee Mission, KS) (Table 3). All embryos were then incubated at 26-28°C in dim light for two weeks, then were transferred to DBC6 tissue (GT) induction medium containing 100 mg/L cefotaxime for another two weeks (Table 4). Regenerable sectors appear 3-4 weeks after transformation and will be ready for regeneration after being isolated. Regenerable sectors were cut from the non-transformed tissues and placed on regeneration media MSA with 100 mg/L cefotaxime (Table 5). Sectors on MSA medium should be placed in bright light for 1.5- 2 weeks or until roots and elongated shoots have formed. After sectors have developed into small plantlets they were transferred to Phyta trays until plantlets are ready to be transferred to soil. During each transfer plantlets were checked for marker gene expression and any non-expressing or chimeric tissues were removed.

Table 11. Liquid Wheat Infection Medium

WI4	
DI water	1000mL
MS salt + Vitamins	4.43 g
Maltose	30 g
Glucose	10 g
MES	1.95 g
2,4-D (0.5 mg/L)	1 ml
Picloram (10 mg/ml)	200 µl
BAP (1 mg/L)	0.5 ml
Adjust PH to 5.8 with KOH	

Table 12. Wheat Co-cultivation Medium

WC21	
DI water	1000mL
MS salt + Vitamins	4.43 g
Maltose	30 g
MES	1.95 g
2,4-D (0.5 mg/L)	1 ml
Picloram (10 mg/ml)	200 µl
BAP (1 mg/L)	0.5 ml
50X CuSO ₄ (0.1 M)	49 µl
Adjust PH to 5.8 with KOH	
Add 3.5 g/L of Phytagel	

Post sterilization	
Acetosyringone (1 M)	400 μ l

Post sterilization	
Acetosyringone (1 M)	400 μ l

Table 13. DBC 4 medium

DBC4	
dd H ₂ O	1000mL
MS salt	4.3 g
Maltose	30 g
Myo-inositol	0.25 g
N-Z-Amine-A	1 g
Proline	0.69 g
Thiamine-HCl (0.1 mg/mL)	10 mL
50X CuSO ₄ (0.1 M)	49 μ L
2,4-D (0.5mg/mL)	2 mL
BAP	1 mL
Adjust PH to 5.8 with KOH	
Add 3.5 g/L of Phytagel	
Post sterilization	
Cefotaxime (100 mg/ml)	1 ml

Table 14. DBC 6 medium

DBC6	
dd H ₂ O	1000mL
MS salt	4.3 g
Maltose	30 g
Myo-inositol	0.25 g
N-Z-Amine-A	1 g
Proline	0.69 g
Thiamine-HCl (0.1 mg/mL)	10 mL
50X CuSO ₄ (0.1 M)	49 μ L
2,4-D (0.5 mg/mL)	1 mL
BAP	2 mL
Adjust PH to 5.8 with KOH	
Add 3.5 g/L of Phytagel	
Post sterilization	
Cefotaxime (100 mg/ml)	1 ml

Table 15. Regeneration MSA medium

MSA	
dd H20	1000mL
MS salt + Vitamins(M519)	4.43 g
Sucrose	20g
Myo- Inositol	1 g
Adjust PH to 5.8 with KOH	
Add 3.5 g/L of Phytagel	
Post sterilization	
Cefotaxime (100 mg/ml)	1 ml

5 Wheat *Agrobacterium*-mediated transformation using immature embryos were conducted with standard treatments and sand treatments to compare the transformation frequencies at T0 plant level.

10 Table 16 shows the transformation frequencies at T0 plant level (T0) for transformation experiments with standard and sand treatments using Standard vector for Pioneer elite spring wheat variety SBC0456D; the binary vectors are difficult constructs for transformation because the visual marker is driven by weak promoter for selection. All experiments were performed with 4.5-6 vortex speed for both standard and sand treatments. Data showed that T0 frequencies ranged from 0% to 1.2% for standard treatments. For sand treatments, T0 frequencies ranged from 5.9% to 6.8%. Results indicated that experiments conducted with sand treatments had higher transformation frequencies comparing to standard 15 treatments.

Table 16. *Agrobacterium*-mediated transformation of immature embryos using standard vector with standard and sand treatments

Treatments	Standard Vortex at 4.5	0.25mL sand Vortex at 4.5	Standard Vortex at 5	0.25mL sand Vortex at 5	Standard Vortex at 6	0.25mL sand Vortex at 6
Transformation Frequency (T0)	0% (0/52)	5.9% (3/51)	0% (0/46)	18.6% (8/43)	0% (0/48)	13.3% (6/45)
			0% (0/54)	3.7% (2/54)	0% (0/66)	1.4% (1/72)
			2.8% (2/71)	1.5% (1/65)		
Average	0% (0/52)	5.9% (3/51)	1.2% (2/171)	6.8% (11/162)	0% (0/114)	6.0% (7/117)

5 All publications and patent applications mentioned in the specification are indicative of the level of those skilled in the art to which this invention pertains. All publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

10 Many modifications and other embodiments of the inventions set forth herein will come to mind to one skilled in the art to which these inventions pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the inventions are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be 15 included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

THAT WHICH IS CLAIMED:

1. A polynucleotide construct comprising:
 - a) an excision cassette, comprising an expression cassette A (EC_A)
5 comprising:
 - i) a coding polynucleotide A (CP_A) encoding a site specific recombinase; and
 - ii) an inducible promoter A (P_A) operably linked to the CP_A;
 - b) a first and a second recombination site flanking the excision
10 cassette;
 - c) a coding polynucleotide B (CP_B) encoding a herbicide tolerance polypeptide; and
 - d) a promoter B (P_B), wherein the P_B is operably linked to the CP_B after excision of the excision cassette.
15
2. The polynucleotide construct of claim 1, wherein the inducible promoter P_A is selected from the group consisting of a stress-inducible promoter and a chemical-inducible promoter.
20
3. The polynucleotide construct of claim 2, wherein said chemical-inducible promoter comprises a promoter comprising a tet operator.
25
4. The polynucleotide construct of claim 3, wherein said polynucleotide construct further comprises a coding polynucleotide F (CP_F) encoding a sulfonylurea-responsive transcriptional repressor protein, wherein said CP_F is operably linked to a promoter active in a plant cell.
30
5. The polynucleotide construct of claim 2, wherein the stress-inducible promoter can be induced in response to cold, drought, high salinity, desiccation, or a combination thereof.

6. The polynucleotide construct of claim 2, wherein the stress-inducible promoter comprises a nucleotide sequence selected from the group consisting of:

a) the nucleotide sequence having the sequence set forth in SEQ ID

5 NO: 18;

b) a nucleotide sequence having at least 70% sequence identity to the sequence set forth in SEQ ID NO: 18;

c) a nucleotide sequence comprising at least 50 contiguous nucleotides of the sequence set forth in SEQ ID NO: 18;

10 d) the nucleotide sequence set forth in nucleotides 291-430 of SEQ ID NO: 18; and

e) a nucleotide sequence having at least 70% sequence identity to the sequence set forth in nucleotides 291-430 of SEQ ID NO: 18.

15 7. The polynucleotide construct of claim 1, wherein the P_B is a constitutive promoter.

8. The polynucleotide construct of claim 7, wherein the P_B is selected from the group consisting of a ubiquitin promoter, an oleosin promoter, an actin promoter, and
20 a *Mirabilis* mosaic virus (MMV) promoter.

9. The polynucleotide construct of claim 1, wherein the excision cassette further comprises a coding polynucleotide C (CP_C) encoding a selectable marker, wherein the CP_C is operably linked to a promoter active in a plant cell.

25

10. The polynucleotide construct of claim 9, wherein the CP_C is operably linked to P_B prior to excision of the excision cassette.

11. The polynucleotide construct of claim 9, wherein the excision cassette
30 further comprises a promoter C (P_C) operably linked to the CP_C .

12. The polynucleotide construct of claim 11, wherein the P_C is a constitutive promoter.

5 13. The polynucleotide construct of claim 9, wherein the selectable marker is selected from the group consisting of a fluorescent protein, an antibiotic resistance polypeptide, a herbicide tolerance polypeptide, and a metabolic enzyme.

10 14. The polynucleotide construct of claim 1, wherein the herbicide tolerance polypeptide encoded by CP_B comprises a glyphosate-N-acetyltransferase (GLYAT) polypeptide or an ALS inhibitor-tolerance polypeptide.

15 15. The polynucleotide construct of claim 14, wherein said ALS inhibitor-tolerance polypeptide comprises the highly resistant ALS (HRA) mutation of acetolactate synthase.

16. The polynucleotide construct of claim 1, wherein the excision cassette further comprises a coding polynucleotide D (CP_D) encoding a cell proliferation factor operably linked to a promoter active in a plant cell.

20 17. The polynucleotide construct of claim 16, wherein the cell proliferation factor is selected from a WUSCHEL polypeptide and a babyboom polypeptide.

25 18. The polynucleotide construct of claim 17, wherein the babyboom polypeptide comprises at least two AP2 domains and at least one of the following amino acid sequences:

a) the amino acid sequence set forth in SEQ ID NO: 67 or an amino acid sequence that differs from the amino acid sequence set forth in SEQ ID NO: 67 by one amino acid; and

b) the amino acid sequence set forth in SEQ ID NO: 68 or an amino acid sequence that differs from the amino acid sequence set forth in SEQ ID NO: 68 by one amino acid.

5 19. The polynucleotide construct of claim 17, wherein the CP_D has a nucleotide sequence selected from the group consisting of:

- a) the nucleotide sequence set forth in SEQ ID NO: 55, 57, 58, 60, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 99, or 101;
- b) a nucleotide sequence having at least 70% sequence identity to

10 SEQ ID NO: 55, 57, 58, 60, 74, 76, 78, 80, 82, 84, 86, 87, 88, 90, 92, 94, 96, 98, 99, or
101;

c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 56, 59, 75, 77, 79, 81, 83, 85, 89, 91, 93, 95, 97, 100, or 102; and

15 d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to the amino acid sequence set forth in SEQ ID NO: 56, 59, 75, 77, 79, 81, 83, 85, 89, 91, 93, 95, 97, 100, or 102.

20. The polynucleotide construct of claim 17, wherein the polynucleotide
20 encoding a WUSCHEL polypeptide has a nucleotide sequence selected from the group
consisting of:

a) the nucleotide sequence set forth in SEQ ID NO: 103, 105, 107, or 109; and

25 b) a nucleotide sequence having at least 70% sequence identity to
SEQ ID NO: 103, 105, 107, or 109;

c) a nucleotide sequence encoding a polypeptide having the amino acid sequence set forth in SEQ ID NO: 104, 106, 108, or 110; and

d) a nucleotide sequence encoding a polypeptide having an amino acid sequence having at least 70% sequence identity to SEQ ID NO: 104, 106, 108, or 30 110.

21. The polynucleotide construct of claim 20, wherein the polynucleotide encoding a WUSCHEL polypeptide is operably linked to a maize In2-2 promoter or a nopaline synthase promoter.

5

22. The polynucleotide construct of claim 16, wherein the excision cassette further comprises a promoter D (P_D) operably linked to the CP_D.

23. The polynucleotide construct of claim 22, wherein the P_D is a constitutive promoter.

10 24. The polynucleotide construct of claim 23, wherein the P_D is a ubiquitin promoter or an oleosin promoter.

15 25. The polynucleotide construct of claim 16, wherein the excision cassette comprises at least a first coding polynucleotide D (CP_{D1}) encoding a babyboom polypeptide and a second coding polynucleotide D (CP_{D2}) encoding a WUSCHEL polypeptide.

20 26. The polynucleotide construct of claim 1, wherein the polynucleotide construct further comprises a coding polynucleotide E (CP_E) encoding a polypeptide of interest, wherein the CP_E is operably linked to a promoter active in a plant cell.

25 27. The polynucleotide construct of claim 26, wherein the CP_E is outside of the first and a second recombination sites flanking the excision cassette.

28. A host cell comprising the polynucleotide construct of claim 1.

29. A plant cell comprising the polynucleotide construct of claim 1.

30

30. A plant or plant part comprising the plant cell of claim 29.

31. The plant or plant part of claim 30, wherein the plant or plant part is a dicot.

5

32. The plant or plant part of claim 30, wherein the plant or plant part is a monocot.

33. The plant or plant part of claim 32, wherein the monocot is selected from 10 the group consisting of maize, rice, sorghum, barley, millet, oat, rye, triticale, sugarcane, switch grass, and turf/forage grass.

34. The plant or plant part of claim 30, wherein the plant or plant part is recalcitrant to transformation.

15

35. The plant or plant part of claim 30, wherein the plant part is a seed.

36. A method for producing a transgenic plant or plant part, said method comprising introducing the polynucleotide construct of claim 1 into a plant or plant part.

20

37. A method for regulating the expression of a herbicide tolerance polynucleotide, wherein the method comprises:

- a) providing the host cell of claim 28; and,
- b) inducing the expression of the site-specific recombinase, thereby

25 excising the excision cassette from the polynucleotide construct and expressing the herbicide tolerance polynucleotide.

38. A method for selecting a herbicide tolerant plant cell, the method comprising the steps of:

A) providing a population of plant cells, wherein at least one plant cell in the population comprises the polynucleotide construct of claim 1;

B) inducing the expression of the site-specific recombinase; and

C) contacting the population of plant cells with a herbicide to which 5 the herbicide tolerance polypeptide confers tolerance, thereby selecting for a plant cell having tolerance to the herbicide.

39. The method of claim 38, wherein the method further comprises introducing the polynucleotide construct into the at least one plant cell before step A).

10

40. The method of claim 38, wherein the inducible promoter A (P_A) is induced in response to cold, drought, desiccation, high salinity or a combination thereof.

15

41. The method of claim 38, wherein the inducing comprises desiccating the population of plant cells.

42. The method of claim 41, wherein the desiccating occurs during the maturation of an immature seed.

20
25

43. The method of claim 38, wherein the excision cassette further comprises a coding polynucleotide C (CP_C), wherein the CP_C encodes a selectable marker operably linked to a promoter, and wherein the method further comprises a selection step prior to step B), wherein those plant cells within the population of plant cells that comprise the selectable marker are identified and wherein these selected plant cells comprise the population of plant cells that are induced in step B).

44. A method for increasing the transformation efficiency of a plant tissue, the method comprising the steps of:

30 a) providing a population of plant cells, wherein at least one plant cell in the population comprises the polynucleotide construct of claim 1;

- b) culturing the population of plant cells in the absence of a herbicide to which the herbicide tolerance polypeptide confers herbicide resistance for a period of time sufficient for the population of plant cells to proliferate;
 - c) inducing the expression of the site-specific recombinase, thereby 5 excising the excision cassette;
 - d) contacting the population of plant cells from c) with the herbicide to which the herbicide tolerance polypeptide confers tolerance; and
 - e) selecting for a plant cell having tolerance to the herbicide, wherein 10 the transformation frequency is increased compared to a comparable plant cell not comprising the excision cassette and selected directly by herbicide selection.

45. The method of claim 44, wherein the inducing comprises desiccating the population of plant cells.

15 46. The method of claim 44, wherein the population of plant cells is cultured in the absence of the herbicide to which the herbicide tolerance polypeptide confers herbicide resistance for about 1 hour to about 6 weeks prior to excision.

1/9

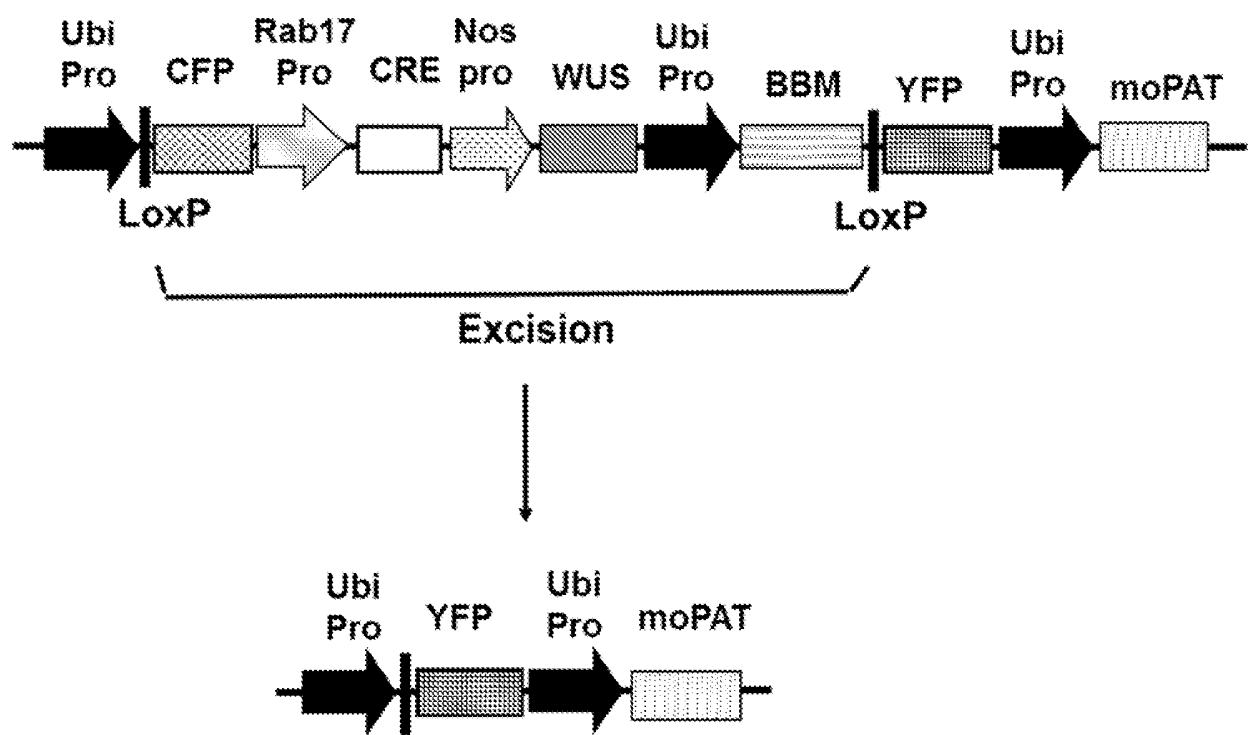


FIG. 1

2/9

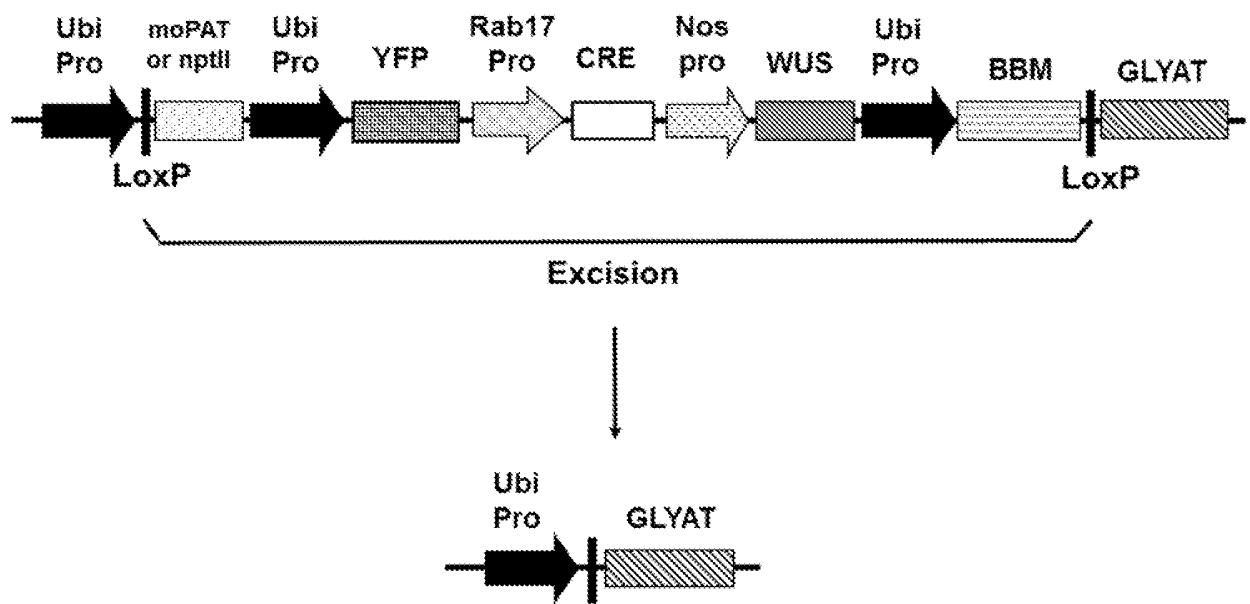
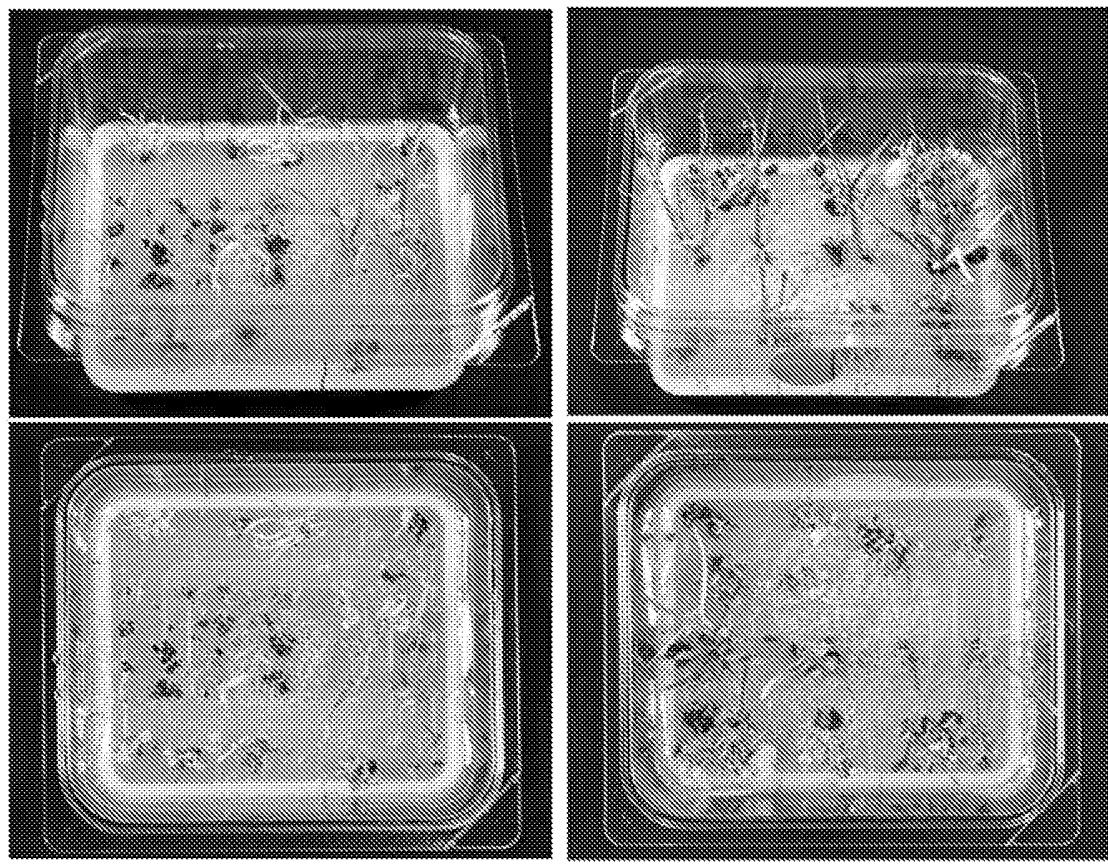
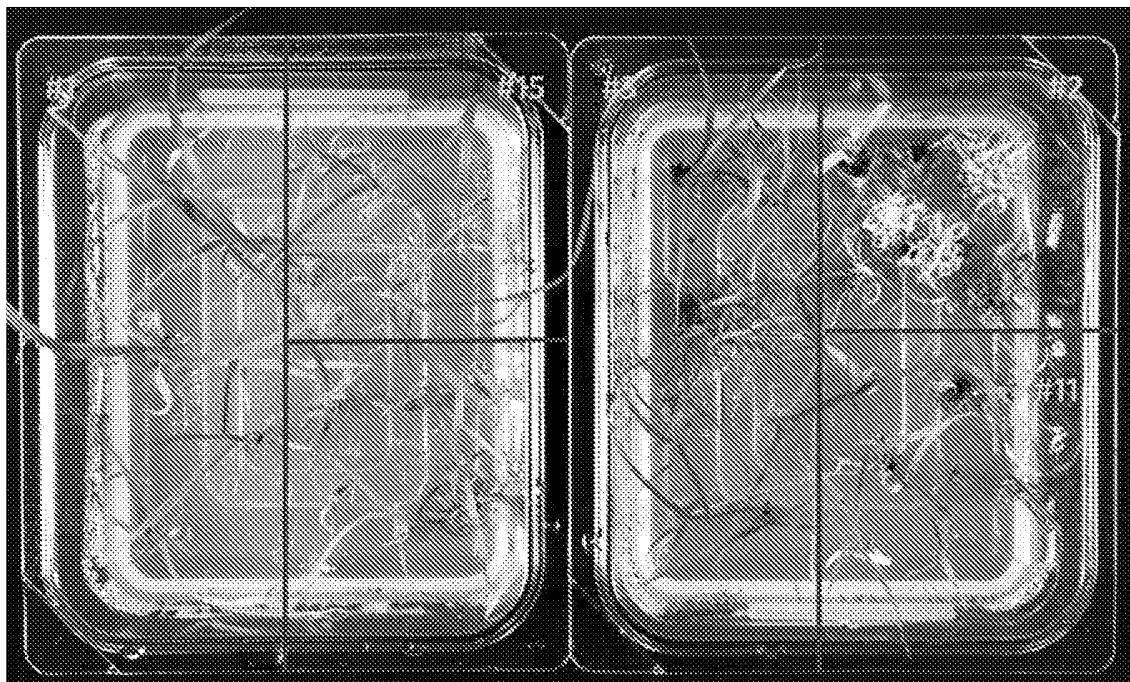



FIG. 2

3/9


FIG. 3

4/9

FIG. 4

5/9

FIG. 5

6/9

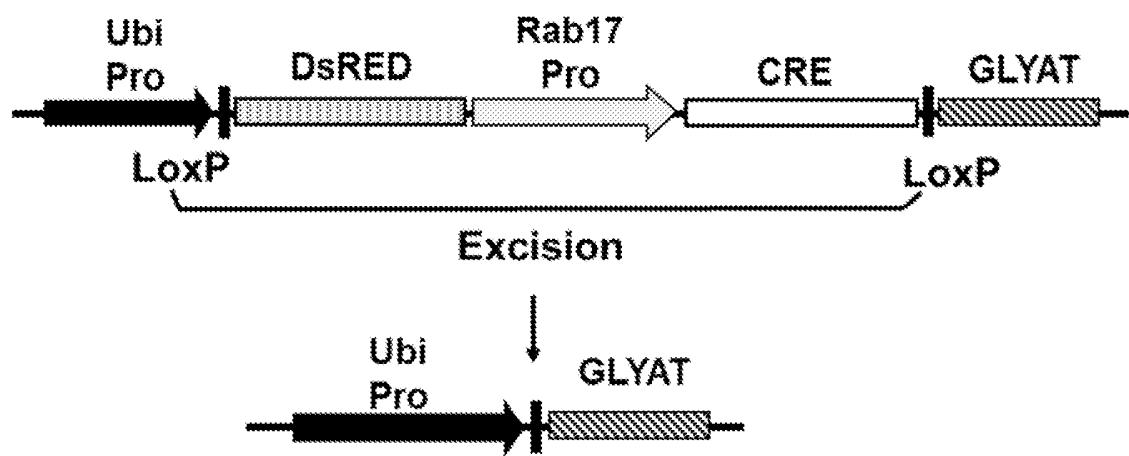


FIG. 6

7/9

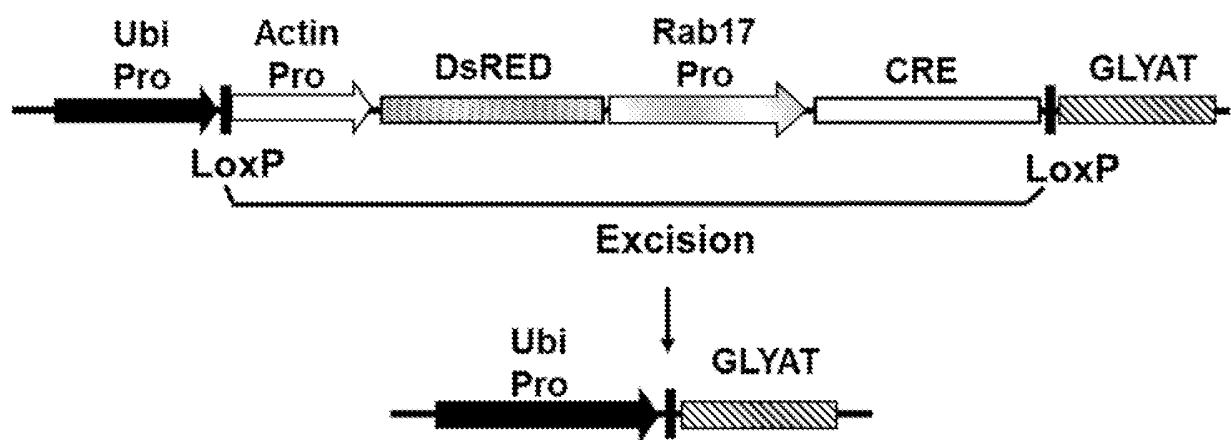


FIG. 7

8/9

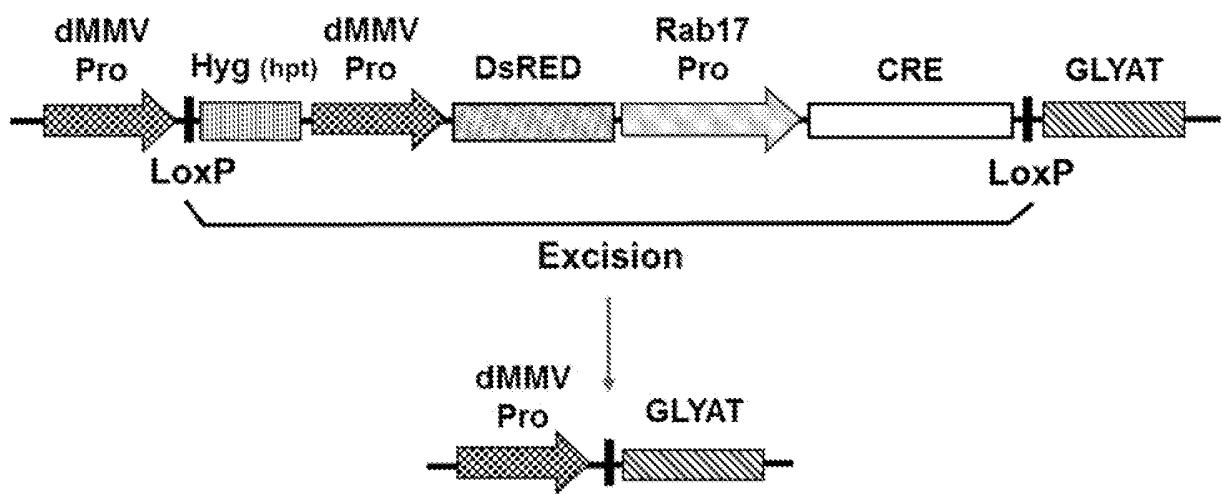


FIG. 8

9/9

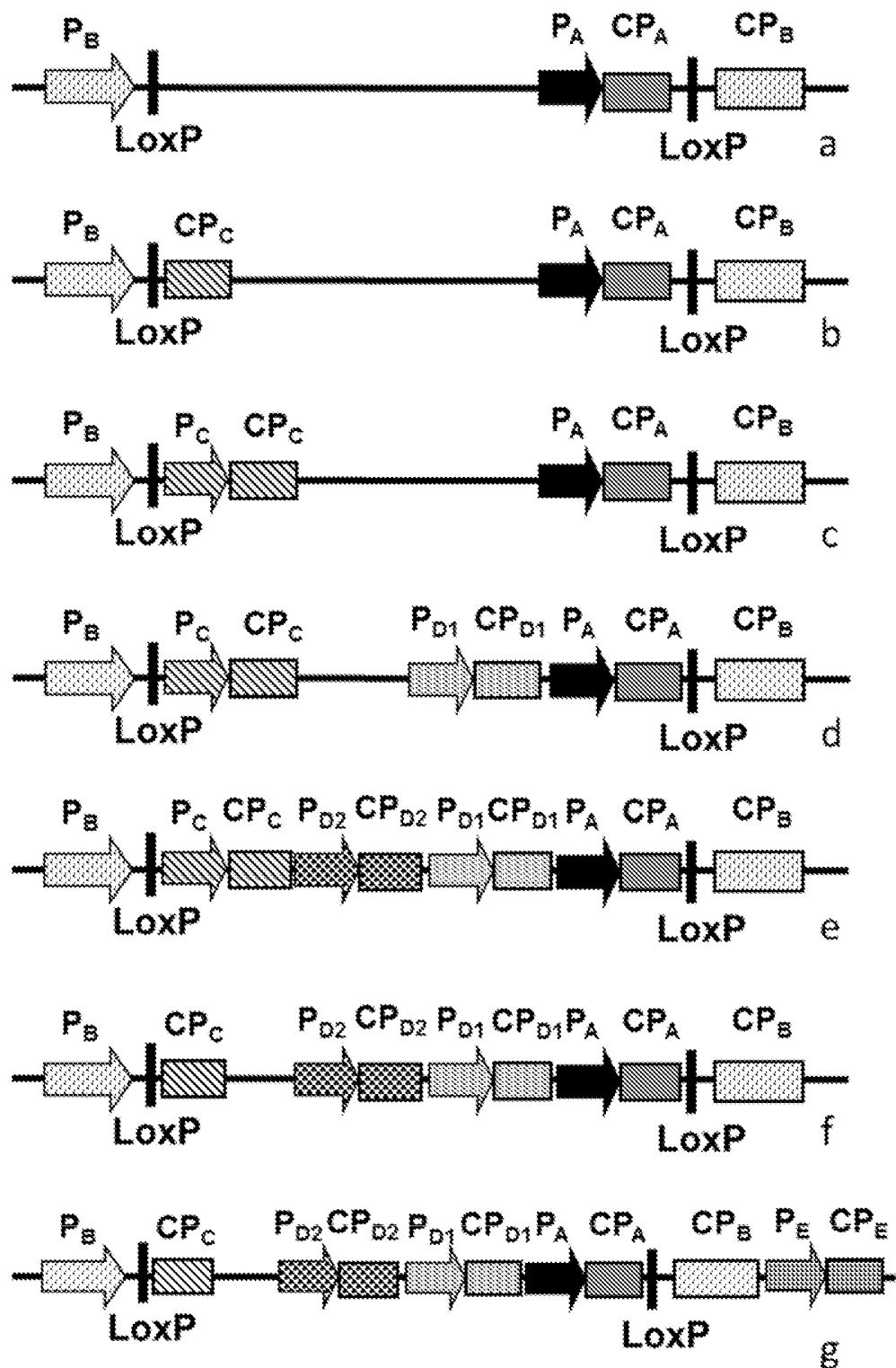


FIG. 9

5312WOPCT_SEQ_LI STI NG.TXT

SEQUENCE LI STI NG

<110> Pioneer Hi - Bred International , Inc.
Cho, Myeong- Je
Gordon-Kamm William James
Ellis, Samuel R.
Zhoa, Zuo- Yu

<120> Methods and Compositions for Producing
and Selecting Transgenic Plants

<130> 035718/430601

<150> 61/736, 947
<151> 2012-12-13

<150> 13/800, 447
<151> 2012-12-13

<160> 115

<170> Fast SEQ for Windows Version 4.0

<210> 1
<211> 318
<212> DNA
<213> Solanum tuberosum

<400> 1
agacttgtcc atcttctgga ttggccaaact taaatataatgt atgaaataaa aggatgcaca 60
catagtgaca tgcataatcac tataatgtgg gcatcaaagt tgggtgttatgt gtgtaaatcac 120
ttagttatctg aataaaagag aaagagatca tccatatttc ttatcctaaa tgaatgtcac 180
gtgtcttat aatcttttga tgaaccagat gcatttcatt aaccaaattcc atatacatat 240
aaatattat catatataat taaatataatcaat tgggttagca aaacaaatct agtctagg 300
tggtttgcga atgcggc 318

<210> 2
<211> 961
<212> DNA
<213> Zea mays

<400> 2
gatccgatgg actatctcat tcctccaaac ccaaacaccc taaatatatc tgcattcg 60
atggcattc ctgtatccct acggccgtgt accccctgtt tagagaacct cccaaaggat 120
aagatggcga agattatgt tgcattgtct ttcatcatat atcgagtctt tccctaggat 180
atattattg gcaatgagca ttacacggtt aatcgatgtga gagaacatgc atctcacctt 240
cagcaaataa ttacgtaat ccatattttt a cgcttctaa ctctcatga gtttctat 300
acaaatttgt tttctggaca ccctaccattt catcctttcc ggagaagaga ggaagtgtcc 360
tcaattttaaa tattgtgtca tgcgtgttgtt cttcacccaa tctcaacagg taccacgc 420
atgtttcca caaatat ttttgtcaca ataaatctt atattatata atatactaaa 480
actatactga cgctcagatg cttttactag tttctgttgtt atgtgtatgtt aggtctacgt 540
ggaccagagaa atgtgagac acgaaagaca aaagaagtaa aagaggcccg gactacggcc 600
cacatgagat tggccccgc caccctccggc aaccaggccgc cgatccaaacg gaagtgcgc 660
cacacacaca acctcgtatat tattcgccgc cggaaaggccgc gcgaccgagg aaggcttgtc 720
ctcgacaccc cctacacagg tgcgcgtgtt ccccccgcac gagtccgcata gcttcccac 780
gccccccgc cagatccgc cttccgcgtgtt gccacccgc tctataaaca cccagctctc 840
cctcgccctc atctacctca ctctgttgtcg ttagctcaagc atcagcggca gccccgg 900
caggagctct gggcagcgtgtt cgcacgtgggtt acctagctt cgctctgttgcgtt 960
a 961

<210> 3
<211> 8
<212> DNA
<213> Artificial Sequence

5312WOPCT_SEQ_LISTING.TXT

<220>		
<223>	Synt hesi zed	
<220>		
<223>	ABRE1	
<400> 3		
yacgt ggc		8
<210> 4		
<211> 9		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>	Synt hesi zed	
<220>		
<223>	CE1	
<400> 4		
t gccaccgg		9
<210> 5		
<211> 11		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>	Synt hesi zed	
<220>		
<223>	CE3	
<400> 5		
acgcgt gcct c		11
<210> 6		
<211> 7		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>	Synt hesi zed	
<220>		
<223>	ABRE2	
<400> 6		
acgt gt c		7
<210> 7		
<211> 7		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223>	Synt hesi zed	
<220>		
<223>	ABRE3	
<400> 7		
acgt ggc		7
<210> 8		
<211> 7		
<212> DNA		

<213> Artificial Sequence	
<220>	
<223> Synt hesized	
<220>	
<223> ABRE4	
<400> 8	
acgt gt c	7
<210> 9	
<211> 7	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synt hesized	
<220>	
<223> MYBR	
<400> 9	
t ggt t ag	7
<210> 10	
<211> 6	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synt hesized	
<220>	
<223> MYCR	
<400> 10	
cacat g	6
<210> 11	
<211> 9	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synt hesized	
<220>	
<223> DRE	
<400> 11	
t accgacat	9
<210> 12	
<211> 9	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Synt hesized	
<220>	
<223> CRT	
<400> 12	
ggccgacat	9
<210> 13	

5312WOPCT_SEQ_LISTING.TXT

<211> 9		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synt hesized		
<220>		
<223> LTRE		
<400> 13		
ggccgacgt		9
<210> 14		
<211> 10		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synt hesized		
<220>		
<223> NACR		
<400> 14		
acacgcat gt		10
<210> 15		
<211> 14		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synt hesized		
<220>		
<223> ICER1		
<400> 15		
ggacacat gt caga		14
<210> 16		
<211> 6		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synt hesized		
<220>		
<223> ICER2		
<400> 16		
act ccg		6
<210> 17		
<211> 558		
<212> DNA		
<213> Zea mays		
<400> 17		
gt act gt aat at t t at at t a t at at aat t a t aaact at aa t at t t caaaa ct at agt at t	60	
t t aaaaat t gc at t aacaac at gt cct aat t ggt act cct gagat act at accct cct gt	120	
t t t aaaat ag t t ggcatt at cgaatt at ca t t t act t t t aat gt t t t c t ctt ct t t t a	180	
at at at t t t a t gaat t t t aa t gt at t t t aa aat gt t at gc agt t cgct ct ggact t t t ct	240	
cgt gcgcct a cact t ggg t g t act gggcct aaat t cagcc t gaccgaccg cct gcatt ga	300	
at aat ggat g agcaccggt a aaat ccgcgt acccaact t t cgagaagaac cgagacgt gg	360	
cggccggc caccgacgca cggcaccagc gact gcacac gt cccgcgg cgt acgt gt a	420	

5312WOPCT_SEQ_LI STI NG TXT

cgt gct gt t c cct cact ggc cgcccaat cc act cat gcat gcccacgt ac acccct gccc 480
 t ggcgcgccc agat cct aat cct t cgccg t t ct gcact t ct gct gcct a t aat ggcgg 540
 cat cgaccgt cacct gct 558

<210> 18
 <211> 508
 <212> DNA
 <213> Zea mays

<400> 18
 ct at agt at t t t aaaat t gc att aacaaac at gt cct aat t ggt act cct gagat act at 60
 accct cct gt t t t aaaat ag tt ggcatt at cgaat t at ca t t t act t t t t aat gt t t c 120
 t ct t ct t t a at at at t t a t gaat t t t aa t gt at t t t aa aat gt t at gc agt t cgct ct 180
 ggact t t ct gct ggcct a cact t ggg t g t act gggcct aaat t cagcc t gaccgaccg 240
 cct gcatt ga at aat ggat g agcaccggta aaat ccgcgt acccaact t t cgagaagaac 300
 cgagacgt gg cggccgggc caccgacgca cggcaccagc gact gcacac gt cccgccc 360
 cgt acgt gt a cgt gct gt t c cct cact ggc cggccaaat cc act cat gcat gcccacgt ac 420
 acccct gccc t ggcgcgccc agat cct aat cct t cgccg t t ct gcact t ct gct gcct a 480
 t aat ggcgg cat cgaccgt cacct gct 508

<210> 19
 <211> 508
 <212> DNA
 <213> Zea mays

<400> 19
 ct at agt at t t t aaaat t gc att aacaaac at gt cct aat t ggt act cct gagat act at 60
 accct cct gt t t t aaaat ag tt ggcatt at cgaat t at ca t t t act t t t t aat gt t t c 120
 t ct t ct t t a at at at t t a t gaat t t t aa t gt at t t t aa aat gt t at gc agt t cgct ct 180
 ggact t t ct cgt ggcct a cact t ggg t g t act gggcct aaat t cagcc t gaccgaccg 240
 cct gcatt ga at aat ggat g agcaccggta aaat ccgcgt acccaact t t cgagaagaac 300
 cgagacgt gg cggccgggc caccgacgca cggcaccagc gact gcacac gt cccgccc 360
 cgt acgt gt a cgt gct gt t c cct cact ggc cggccaaat cc act cat gcat gcccacgt ac 420
 acccct gccc t ggcgcgccc agat cct aat cct t cgccg t t ct gcact t ct gct gcct a 480
 t aat ggcgg cat cgaccgt cacct gct 508

<210> 20
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synt hesized

<220>
 <223> attachment B1 site

<400> 20
 caagt t t gt a caaaaaagca ggct 24

<210> 21
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synt hesized

<220>
 <223> attachment B2 site

<400> 21
 acccagctt ct t gt acaaa gt gg 24

<210> 22
 <211> 22
 <212> DNA
 <213> Artificial Sequence

5312WOPCT_SEQ_LI STI NG TXT

<220>
<223> Synt hesi zed

<220>
<223> attachment B3 site

<400> 22
acaactttgt ataataaagt tg 22

<210> 23
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> attachment B4 site

<400> 23
acaactttgt atagaaaaagt tg 22

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> attachment B1 variant 1

<400> 24
caagt t cgt a caaaaaagca ggct 24

<210> 25
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> attachment B1 variant 2

<400> 25
caagt ttgt a caaaaaggac t ct 23

<210> 26
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> attachment B1 variant 3

<400> 26
caagt gcat a caaaaaggac t gct 24

<210> 27
<211> 95

5312WOPCT_SEQ_LI STI NG TXT

<212> DNA

<213> Zea mays

<400> 27

t caccaccgg cgagccacat cgagaacacg at cgagcaca caagcacgaa gact cgt t t a 60
ggagaaacca caaaccacca agccgt gcaa gcacc 95

<210> 28

<211> 133

<212> DNA

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> Pl asmi d l i nker sequence

<400> 28

t caccaccgg cgagccacat cgagaacacg at cgagcaca caagcacgaa gact cgt t t a 60
ggagaaacca caaaccacca agccgt gcaa gcaccaagct t ggt cacccg gt ccgggcct 120
agaaggccag ct t 133

<210> 29

<211> 61

<212> DNA

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> Pl asmi d l i nker sequence

<400> 29

t cgaaggaga t agaaccaat t ct ct aagga aat act t aac cat ggt cgac t ggat ccaac 60
a 61

<210> 30

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> Pl asmi d l i nker sequence

<400> 30

t cgaaggaga t agaaccgat ccacc 25

<210> 31

<211> 665

<212> DNA

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> Promoter construct comprising Zea mays Rab17
promoter and attB1 site

<400> 31

ct at agt at t t taaaat t gc att aacaaac at gt cct aat t ggt act cct gagat act at 60
accct cct gt t t taaaat ag t t ggcatt at cgaattatca t t t act t t t t aat gt t t c 120
t ctt ct t t a at at at t t t a t gat ttt aa aat gtt at gc agt t cgt ct 180

5312WOPCT_SEQ_LI STI NG TXT

ggact ttt ct	gct ggcct a	cact t ggg t g	t act gggcct	aaat t cagcc	t gaccgaccg	240
cct gcatt ga	at aat ggat g	agcacccgt a	aaat ccgcgt	acccaact t t	cgagaagaac	300
cgagacgt gg	cggggccgggc	caccgacgca	cggcaccagc	gact gcacac	gt cccgcccgg	360
cgt acgt gt a	cgt gct gt t c	cct cact ggc	cgc ccaat cc	act cat gcat	gccca cgt ac	420
acc cct gccg	t ggcgcgccc	agat cct aat	cct t cgc cgg	t t ct gca ct t	ct gct gcct a	480
t aaat ggcgg	cat cgaccgt	cacct gct t c	acc accggcg	agccacat cg	agaacacgt	540
cgagcacaca	agcacgaaga	ct cgt t t agg	agaaaccaca	aaccaccaag	ccgt gcaagc	600
accaagct t g	gt caccgggt	ccggcct ag	aaggccagct	t caagt t t gt	acaaaaaaagc	660
aggct						665

<210> 32

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> tet operat or

<400> 32

act ct at cag t gat agagt 19

<210> 33

<211> 1272

<212> DNA

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> Mai ze opt i mi zed FLP

<220>

<221> CDS

<222> (1)...(1272)

<400> 33

at g ccc cag ttc gac at c ct c tgc aag acc ccc ccc aag gt g ct c gt g	48
Met Pro Glu Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val	
1 5 10 15	

agg cag ttc gt g gag agg ttc gag agg ccc tcc ggc gag aag at c gcc	96
Arg Glu Phe Val Glu Arg Phe Glu Arg Pro Ser Gly Glu Lys Ile Ala	
20 25 30	

ct c tgc gcc gcc gag ct c acc tac ct c tgc tgg at g at c acc cac aac	144
Leu Cys Ala Ala Glu Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn	
35 40 45	

ggc acc gcc att aag agg gcc acc ttc at g tca tac aac acc at c at c	192
Gly Thr Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile	
50 55 60	

tcc aac tcc ctc tcc ttc gac at c gt g aac aag tcc ctc cag ttc aaa	240
Ser Asn Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Glu Phe Lys	
65 70 75 80	

tac aag acc cag aag gcc acc at c ctc gag gcc tcc ctc aag aag ct c	288
Tyr Lys Thr Glu Lys Ala Thr Ile Leu Glu Ala Ser Leu Lys Lys Leu	
85 90 95	

at c ccc gcc tgg gag ttc acc at c at c ccc tac tac ggc cag aag cac	336
Ile Pro Ala Trp Glu Phe Thr Ile Ile Pro Tyr Tyr Gly Glu Lys His	
100 105 110	

5312WOPCT_SEQ_LI STI NG TXT

cag	tcc	gac	atc	acc	gac	atc	gtg	tca	tcc	ctc	cag	ctt	cag	tcc	gag		384
Gn	Ser	Asp	Ile	Thr	Asp	Ile	Val	Ser	Ser	Leu	Gn	Leu	Gn	Phe	Gu		
115							120				125						
tcc	tcc	gag	gag	gct	gac	aag	ggc	aac	tcc	cac	tcc	aag	aag	atg	ctg		432
Ser	Ser	Gu	Gu	Ala	Asp	Lys	Gy	Asn	Ser	His	Ser	Lys	Lys	Met	Leu		
130						135				140							
aag	gcc	ctc	ctc	tcc	gag	ggc	gag	tcc	atc	tgg	gag	atc	acc	gag	aag		480
Lys	Ala	Leu	Leu	Ser	Gu	Gy	Gu	Ser	Ile	Trp	Gu	Ule	Thr	Gu	Lys		
145					150				155						160		
atc	ctc	aac	tcc	tcc	gag	tac	acc	tcc	agg	tcc	act	aag	acc	gag	aag		528
Ile	Leu	Asn	Ser	Phe	Gu	Tyr	Thr	Ser	Arg	Phe	Thr	Lys	Thr	Lys	Thr		
					165				170						175		
ctc	tac	cag	tcc	ctc	tcc	ctc	gcc	acc	tcc	atc	aac	tgc	ggc	agg	tcc		576
Leu	Tyr	Gn	Phe	Leu	Phe	Leu	Ala	Thr	Phe	Ile	Asn	Cys	Gy	Arg	Phe		
					180			185				190					
tca	gac	atc	aag	aac	gtg	gac	ccc	aag	tcc	tcc	aag	ctc	gtg	cag	aac		624
Ser	Asp	Ile	Lys	Asn	Val	Asp	Pro	Lys	Ser	Phc	Lys	Leu	Val	Gn	Asn		
					195		200					205					
aag	tac	ctc	ggc	gtg	atc	atc	cag	tgc	ctc	gtg	acc	gag	acc	aag	acc		672
Lys	Tyr	Leu	Gu	Val	Ile	Ile	Gn	Oys	Leu	Val	Thr	Gu	Thr	Lys	Thr		
					210		215			220							
tcc	gtg	tcc	agg	cac	atc	tac	tcc	tcc	tcc	gct	cgc	ggc	agg	atc	gac		720
Ser	Val	Ser	Arg	His	Ile	Tyr	Phe	Phe	Ser	Ala	Arg	Gy	Arg	Ile	Asp		
					225		230			235					240		
ccc	ctc	gtg	tac	ctc	gac	gag	tcc	ctc	agg	aac	tca	gag	ccc	gtg	ctc		768
Pro	Leu	Val	Tyr	Leu	Asp	Gu	Phe	Leu	Arg	Asn	Ser	Gu	Pro	Val	Leu		
					245			250				255					
aag	agg	gtg	aac	agg	acc	ggc	aac	tcc	tcc	tcc	aac	aag	cag	gag	tac		816
Lys	Arg	Val	Asn	Arg	Thr	Gy	Asn	Ser	Ser	Ser	Asn	Lys	Gn	Gu	Tyr		
					260		265					270					
cag	ctc	ctc	aag	gac	aac	ctc	gtg	agg	tcc	tac	aac	aag	gcc	ctc	aag		864
Gn	Leu	Leu	Lys	Asp	Asn	Leu	Val	Arg	Ser	Tyr	Asn	Lys	Ala	Leu	Lys		
					275		280			285							
aag	aac	gcc	ccc	tac	tcc	atc	tcc	gcc	atc	aag	aac	ggc	ccc	aag	tcc		912
Lys	Asn	Ala	Pro	Tyr	Ser	Ile	Phe	Ala	Ile	Lys	Asn	Gy	Pro	Lys	Ser		
					290		295			300							
cac	atc	ggt	agg	cac	ctc	atg	acc	tcc	tcc	ctc	tca	atg	aag	ggc	ctc		960
His	Ile	Gy	Arg	His	Leu	Met	Thr	Ser	Phe	Leu	Ser	Met	Lys	Gy	Leu		
					305		310			315					320		
acc	gag	ctc	acc	aac	gtg	gtg	ggc	aac	tgg	tcc	gac	aag	agg	gcc	tcc		1008
Thr	Gu	Leu	Thr	Asn	Val	Val	Gy	Asn	Trp	Ser	Asp	Lys	Arg	Ala	Ser		
					325			330							335		
gcc	gtg	gcc	agg	acc	acc	tac	acc	cac	cag	atc	acc	gcc	atc	ccc	gac		1056
Ala	Val	Ala	Arg	Thr	Thr	Tyr	Thr	His	Gn	Ile	Thr	Ala	Ile	Pro	Asp		
					340		345					350					
cac	tac	tcc	gcc	ctc	gtg	tca	agg	tac	tac	gcc	tac	gac	ccc	atc	tcc		1104
His	Tyr	Phe	Ala	Leu	Val	Ser	Arg	Tyr	Tyr	Ala	Tyr	Asp	Pro	Ile	Ser		
					355		360			365							
aag	gag	atg	atc	gcc	ctc	aag	gac	gag	act	aac	ccc	atc	gag	gag	tgg		1152
Lys	Gu	Met	Ile	Ala	Leu	Lys	Asp	Gu	Thr	Asn	Pro	Ile	Gu	Gu	Trp		
					370		375			380							

5312WOPCT_SEQ_LI STI NG TXT

cag cac atc gag cag ctc aag ggc tcc gcc gag ggc tcc atc agg tac	1200
Gl n His Ile Gu Gn Leu Lys Gl y Ser Ala Gl u Gl y Ser Ile Arg Tyr	
385 390 395 400	
ccc gcc tgg aac ggc atc atc tcc cag gag gt g ctc gac tac ctc tcc	1248
Pro Ala Trp Asn Gl y Ile Ile Ser Gl n Gu Val Leu Asp Tyr Leu Ser	
405 410 415	
tcc tac atc aac agg agg atc tga	1272
Ser Tyr Ile Asn Arg Arg Ile	
420	

<210> 34

<211> 423

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> FLPm

<400> 34

Met Pro Gl n Phe Asp Ile Leu Cys Lys Thr Pro Pro Lys Val Leu Val	
1 5 10 15	
Arg Gl n Phe Val Gl u Arg Phe Gl u Arg Pro Ser Gl y Gl u Lys Ile Ala	
20 25 30	
Leu Cys Ala Ala Gl u Leu Thr Tyr Leu Cys Trp Met Ile Thr His Asn	
35 40 45	
Gl y Thr Ala Ile Lys Arg Ala Thr Phe Met Ser Tyr Asn Thr Ile Ile	
50 55 60	
Ser Asn Ser Leu Ser Phe Asp Ile Val Asn Lys Ser Leu Gl n Phe Lys	
65 70 75 80	
Tyr Lys Thr Gl n Lys Ala Thr Ile Leu Gl u Ala Ser Leu Lys Lys Leu	
85 90 95	
Ile Pro Ala Trp Gl u Phe Thr Ile Ile Pro Tyr Tyr Gl y Gl n Lys His	
100 105 110	
Gl n Ser Asp Ile Thr Asp Ile Val Ser Ser Leu Gl n Leu Gl n Phe Gl u	
115 120 125	
Ser Ser Gl u Gu Ala Asp Lys Gl y Asn Ser His Ser Lys Lys Met Leu	
130 135 140	
Lys Ala Leu Leu Ser Gl u Gl y Gl u Ser Ile Trp Gl u Ile Thr Gl u Lys	
145 150 155 160	
Ile Leu Asn Ser Phe Gl u Tyr Thr Ser Arg Phe Thr Lys Thr Lys Thr	
165 170 175	
Leu Tyr Gl n Phe Leu Phe Leu Ala Thr Phe Ile Asn Cys Gl y Arg Phe	
180 185 190	
Ser Asp Ile Lys Asn Val Asp Pro Lys Ser Phe Lys Leu Val Gl n Asn	
195 200 205	
Lys Tyr Leu Gl y Val Ile Ile Gl n Cys Leu Val Thr Gl u Thr Lys Thr	
210 215 220	
Ser Val Ser Arg His Ile Tyr Phe Phe Ser Ala Arg Gl y Arg Ile Asp	
225 230 235 240	
Pro Leu Val Tyr Leu Asp Gl u Phe Leu Arg Asn Ser Gl u Pro Val Leu	
245 250 255	
Lys Arg Val Asn Arg Thr Gl y Asn Ser Ser Asn Lys Gl n Gl u Tyr	
260 265 270	
Gl n Leu Leu Lys Asp Asn Leu Val Arg Ser Tyr Asn Lys Ala Leu Lys	
275 280 285	
Lys Asn Ala Pro Tyr Ser Ile Phe Ala Ile Lys Asn Gl y Pro Lys Ser	
290 295 300	
His Ile Gl y Arg His Leu Met Thr Ser Phe Leu Ser Met Lys Gl y Leu	
305 310 315 320	
Thr Gl u Leu Thr Asn Val Val Gl y Asn Trp Ser Asp Lys Arg Ala Ser	
325 330 335	
Al a Val Al a Arg Thr Thr Tyr Thr His Gl n Ile Thr Ala Ile Pro Asp	

5312WOPCT_SEQ_LISTING.TXT

<210> 35
<211> 1032
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> Mai ze opt i mi zed Cre

<220>
<221> CDS
<222> (1) . . . (1032)

```

<400> 35
atg tcc aac ctg ctg acg gtt cac cag aac ctt ccg gct ctt cca gtg 48
Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val
   1      5          10          15

```

gac	gcg	acg	tcc	gat	gaa	gtc	agg	aag	aac	ctc	atg	gac	atg	ttc	cgc	96
Asp	Ala	Thr	Ser	Asp	Glu	Val	Arg	Lys	Asn	Leu	Met	Asp	Met	Phe	Arg	
			20			25						30				

gac	agg	caa	gcg	t t	c	agc	gag	cac	acc	t gg	aag	at g	ct g	ct c	t cc	gt c	144
Asp	Arg	G	n	Ala	Phe	Ser	Gu	His	Thr	Trp	Lys	Met	Leu	Leu	Ser	Val	
				35				40								45	

ccc gct gag ccc gag gac gt g agg gat tac ctt ctg tac ctg caa gct 240
 Pro Ala Gu Pro Gu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Glu Ala
 65 70 75 80

cgc ggg ctg gca gtg aag acc atc cag caa cac ctt gga caa ctg aac 288
 Arg Gly Leu Ala Val Lys Thr Ile Glu Glu His Leu Gly Glu Leu Asn
 85 90 95

at g ctt cac agg cgc tcc ggc ctc ccg cgc ccc agc gac t cg aac gcc 336
 Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala
 100 105 110

gt g	agc	ctc	gtc	atg	cgc	cgc	atc	agg	aag	gaa	aac	gtc	gat	gcc	ggc	384
Val	Ser	Leu	Val	Met	Arg	Arg	Ile	Arg	Lys	Gl u	Asn	Val	Asp	Ala	Gly	
115					120							125				

gaa agg gca aag cag gcc ct c gcg t t c gag agg acc gat t t c gac cag 432
 Gu Arg Ala Lys Glu Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Glu
 130 135 140

gt c	cgc	agc	ct g	at g	gag	aac	agc	gac	agg	t gc	cag	gac	at t	agg	aac	480
Val	Arg	Ser	Leu	Met	Gl u	Asn	Ser	Asp	Arg	Cys	G n	Asp	I I e	Arg	Asn	
145					150					155					160	

5312WOPCT_SEQ_LI STI NG TXT

ctg gcg ttc ctc gga att gca tac aac acg ctc ctc agg atc gcg gaa	528
Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu	
165 170 175	
att gcc cgc att cgc gtg aag gac att agc cgc acc gac ggc ggc agg	576
Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg	
180 185 190	
atg ctt atc cac att ggc agg acc aag acg ctc gt t tcc acc gca ggc	624
Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly	
195 200 205	
gtc gaa aag gcc ctc agc ctc gga gtg acc aag ctc gt c gaa cgc tgg	672
Val Gu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Gu Arg Trp	
210 215 220	
atc tcc gtg tcc ggc gt c ggc gac gac cca aac aac tac ctc ttc tgc	720
Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys	
225 230 235	
cgc gtc cgc aag aac ggg gtg gct gcc cct agc gcc acc agc caa ctc	768
Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Gln Leu	
245 250 255	
agc acg agg gcc ttg gaa ggt att ttc gag gcc acc cac cgc ctg atc	816
Ser Thr Arg Ala Leu Gu Gly Ile Phe Gu Ala Thr His Arg Leu Ile	
260 265 270	
tac ggc gcg aag gat gac agc ggt caa cgc tac ctc gca tgg tcc ggg	864
Tyr Gly Ala Lys Asp Asp Ser Gly Gln Arg Tyr Leu Ala Trp Ser Gly	
275 280 285	
cac tcc gcc cgc gt t gga gct gct agg gac atg gcc cgc gcc ggt gt t	912
His Ser Ala Arg Val Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val	
290 295 300	
tcc atc ccc gaa atc atg cag gcg ggt gga tgg acg aac gt g aac at t	960
Ser Ile Pro Glu Ile Met Gln Ala Gly Gly Trp Thr Asn Val Asn Ile	
305 310 315 320	
gtc atg aac tac att cgc aac ctt gac agc gag acg ggc gca atg gt t	1008
Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Gly Thr Gly Ala Met Val	
325 330 335	
cgc ctc ctg gaa gat ggt gac tga	1032
Arg Leu Leu Gu Asp Gly Asp	
340	

<210> 36

<211> 343

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> mai ze- opt i mi zed Cre

<400> 36

Met Ser Asn Leu Leu Thr Val His Gln Asn Leu Pro Ala Leu Pro Val	
1 5 10 15	
Asp Ala Thr Ser Asp Glu Val Arg Lys Asn Leu Met Asp Met Phe Arg	
20 25 30	
Asp Arg Gln Ala Phe Ser Glu His Thr Trp Lys Met Leu Leu Ser Val	
35 40 45	

5312WOPCT_SEQ_LI STI NG TXT

Cys Arg Ser Trp Ala Ala Trp Cys Lys Leu Asn Asn Arg Lys Trp Phe
 50 55 60
 Pro Ala Glu Pro Glu Asp Val Arg Asp Tyr Leu Leu Tyr Leu Glu Ala
 65 70 75 80
 Arg Gly Leu Ala Val Lys Thr Ile Glu Glu His Leu Gly Glu Leu Asn
 85 90 95
 Met Leu His Arg Arg Ser Gly Leu Pro Arg Pro Ser Asp Ser Asn Ala
 100 105 110
 Val Ser Leu Val Met Arg Arg Ile Arg Lys Glu Asn Val Asp Ala Gly
 115 120 125
 Glu Arg Ala Lys Glu Ala Leu Ala Phe Glu Arg Thr Asp Phe Asp Glu
 130 135 140
 Val Arg Ser Leu Met Glu Asn Ser Asp Arg Cys Glu Asp Ile Arg Asn
 145 150 155 160
 Leu Ala Phe Leu Gly Ile Ala Tyr Asn Thr Leu Leu Arg Ile Ala Glu
 165 170 175
 Ile Ala Arg Ile Arg Val Lys Asp Ile Ser Arg Thr Asp Gly Gly Arg
 180 185 190
 Met Leu Ile His Ile Gly Arg Thr Lys Thr Leu Val Ser Thr Ala Gly
 195 200 205
 Val Glu Lys Ala Leu Ser Leu Gly Val Thr Lys Leu Val Glu Arg Trp
 210 215 220
 Ile Ser Val Ser Gly Val Ala Asp Asp Pro Asn Asn Tyr Leu Phe Cys
 225 230 235 240
 Arg Val Arg Lys Asn Gly Val Ala Ala Pro Ser Ala Thr Ser Glu Leu
 245 250 255
 Ser Thr Arg Ala Leu Glu Gly Ile Phe Glu Ala Thr His Arg Leu Ile
 260 265 270
 Tyr Glu Ala Lys Asp Asp Ser Gly Glu Arg Tyr Leu Ala Trp Ser Gly
 275 280 285
 His Ser Ala Arg Val Gly Ala Ala Arg Asp Met Ala Arg Ala Gly Val
 290 295 300
 Ser Ile Pro Glu Ile Met Glu Ala Gly Glu Trp Thr Asn Val Asn Ile
 305 310 315 320
 Val Met Asn Tyr Ile Arg Asn Leu Asp Ser Glu Thr Gly Ala Met Val
 325 330 335
 Arg Leu Leu Glu Asp Gly Asp
 340

<210> 37

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> FRT1

<400> 37

gaagt t cct a t a c t t c t a g a g a a t a g g a a c t t c

34

<210> 38

<211> 34

<212> DNA

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> FRT5

<400> 38

gaagt t cct a t a c t c t t t g a g a a t a g g a a c t t c

34

5312WOPCT_SEQ_LISTING.TXT

<210> 39
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> FRT6

<400> 39
gaagt t cct a t a c t t t t g a a g a a t a g g a a a c t t c 34

<210> 40
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> FRT7

<400> 40
gaagt t cct a t a c t t a t t g a a g a a t a g g a a a c t t c 34

<210> 41
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> FRT12

<400> 41
a g t t c c t a t a c t c t a t g t a g a a t a g g a a c t 30

<210> 42
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> FRT87

<400> 42
gaagt t cct a t a c t t c t g g a g a a t a g g a a a c t t c 34

<210> 43
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> 13_6D10 Synt het i c p r o t e i n sequence

<400> 43

5312WOPCT_SEQ_LI_STI_NG.TXT

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Ile Arg
 1 5 10 15
 His Arg Ile Leu Arg Pro Asn Glu Pro Leu Glu Ala Cys Met Tyr Glu
 20 25 30
 Thr Asp Ser Leu Gly Gly Thr Phe His Leu Gly Gly Tyr Tyr Arg Gly
 35 40 45
 Lys Leu Ile Ser Ile Ala Ser Phe Asn Glu Ala Glu His Pro Glu Leu
 50 55 60
 Glu Gly Glu Lys Glu Tyr Glu Leu Arg Gly Met Ala Thr Leu Glu Gly
 65 70 75 80
 Tyr Arg Glu Glu Lys Ala Gly Ser Thr Leu Ile Arg His Ala Glu Glu
 85 90 95
 Leu Leu Arg Lys Lys Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
 100 105 110
 Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Glu Gly Glu
 115 120 125
 Val Tyr Asp Thr Pro Pro Val Glu Pro His Ile Leu Met Tyr Lys Lys
 130 135 140
 Leu Thr
 145

<210> 44

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> 10_4H4 Synthetic protein sequence

<400> 44

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
 1 5 10 15
 His Lys Ile Leu Arg Pro Asn Glu Pro Leu Glu Val Cys Met Tyr Glu
 20 25 30
 Thr Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Phe Tyr Arg Gly
 35 40 45
 Lys Leu Ile Ser Ile Ala Ser Phe His Glu Ala Glu His Ser Glu Leu
 50 55 60
 Glu Gly Glu Lys Glu Tyr Glu Leu Arg Gly Met Ala Thr Leu Glu Gly
 65 70 75 80
 Tyr Arg Glu Glu Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
 85 90 95
 Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
 100 105 110
 Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Glu Gly Glu
 115 120 125
 Val Phe Asp Thr Pro Pro Val Glu Pro His Ile Leu Met Tyr Lys Arg
 130 135 140
 Ile Thr
 145

<210> 45

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> 0_5D3 Synthetic protein sequence

<400> 45

5312WOPCT_SEQ_LI_STI_NG.TXT

Met Leu Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
 1 5 10 15
 His Arg Ile Leu Arg Pro Asn Glu Pro Ile Glu Ala Cys Met Tyr Glu
 20 25 30
 Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Arg Gly
 35 40 45
 Lys Leu Ile Ser Ile Ala Ser Phe His Glu Ala Glu His Ser Glu Leu
 50 55 60
 Glu Gly Glu Lys Glu Tyr Glu Leu Arg Gly Met Ala Thr Leu Glu Gly
 65 70 75 80
 Tyr Arg Glu Glu Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
 85 90 95
 Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
 100 105 110
 Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Glu Gly Glu
 115 120 125
 Ile Phe Glu Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
 130 135 140
 Ile Thr
 145

<210> 46

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> R12G2 Synthetic protein sequence

<400> 46

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Asp Leu Arg
 1 5 10 15
 His Arg Val Leu Arg Pro Asn Glu Pro Ile Glu Ala Cys Met Phe Glu
 20 25 30
 Ser Asp Leu Thr Arg Ser Ala Phe His Leu Gly Gly Phe Tyr Gly Gly
 35 40 45
 Lys Leu Ile Ser Val Ala Ser Phe His Glu Ala Glu His Thr Glu Leu
 50 55 60
 Glu Gly Lys Lys Glu Tyr Glu Leu Arg Gly Val Ala Thr Leu Glu Gly
 65 70 75 80
 Tyr Arg Glu Glu Lys Ala Gly Ser Ser Leu Val Lys His Ala Glu Glu
 85 90 95
 Ile Leu Arg Lys Arg Gly Ala Asp Met Ile Trp Cys Asn Ala Arg Thr
 100 105 110
 Ser Ala Ser Gly Tyr Tyr Arg Lys Leu Gly Phe Ser Glu Glu Gly Glu
 115 120 125
 Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
 130 135 140
 Ile Thr
 145

<210> 47

<211> 442

<212> DNA

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> optimized GAT sequence (GAT4601)

<220>

5312WOPCT_SEQ_LI STI NG TXT

<221> CDS

<222> (2)...(442)

<400> 47

c at g at a gag gt g aaa ccg att aac gca gag gat acc tat gaa cta agg 49
 Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
 1 5 10 15

cat aga at a ctc aga cca aac cag ccg at a gaa gcg tgt at g ttt gaa 97
 His Arg Ile Leu Arg Pro Asn Glu Pro Ile Glu Ala Cys Met Phe Glu
 20 25 30

agc gat tta ctt cgt ggt gca ttt cac tta ggc ggc ttt tac agg ggc 145
 Ser Asp Leu Leu Arg Glu Ala Phe His Leu Glu Glu Phe Tyr Arg Glu
 35 40 45

aaa ct g att tcc at a gct tca ttc cac cag gcc gag cac tcg gaa ct c 193
 Lys Leu Ile Ser Ile Ala Ser Phe His Glu Ala Glu His Ser Glu Leu
 50 55 60

caa ggc cag aaa cag tac cag ctc cga ggt at g gct acc ttg gaa ggt 241
 Glu Glu Glu Lys Glu Tyr Glu Leu Arg Glu Met Ala Thr Leu Glu Glu
 65 70 75 80

t at cgt gag cag aaa gcg gga tca act ct a gtt aaa cac gct gaa gaa 289
 Tyr Arg Glu Glu Lys Ala Glu Ser Thr Leu Val Lys His Ala Glu Glu
 85 90 95

at c ctt cgt aag agg ggg gcg gac at g ctt tgg tgg aat gcg agg aca 337
 Ile Leu Arg Lys Arg Glu Ala Asp Met Leu Trp Cys Asn Ala Arg Thr
 100 105 110

tcc gcc tca ggc tac tac aaa aag tta ggc ttc agc gag cag gga gag 385
 Ser Ala Ser Glu Tyr Tyr Lys Lys Leu Glu Phe Ser Glu Glu Glu Glu
 115 120 125

at a ttt gac acg ccg cca gt a gga cct cac at c ct g at g tat aaa agg 433
 Ile Phe Asp Thr Pro Pro Val Glu Pro His Ile Leu Met Tyr Lys Arg
 130 135 140

at c aca taa 442
 Ile Thr
 145

<210> 48

<211> 146

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesi zed

<220>

<223> opt i mi zed GAT sequence (GAT4601)

<400> 48

Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
 1 5 10 15
 His Arg Ile Leu Arg Pro Asn Glu Pro Ile Glu Ala Cys Met Phe Glu
 20 25 30
 Ser Asp Leu Leu Arg Glu Ala Phe His Leu Glu Glu Phe Tyr Arg Glu
 35 40 45
 Lys Leu Ile Ser Ile Ala Ser Phe His Glu Ala Glu His Ser Glu Leu
 50 55 60
 Glu Glu Glu Lys Glu Tyr Glu Leu Arg Glu Met Ala Thr Leu Glu Glu
 65 70 75 80
 Tyr Arg Glu Glu Lys Ala Glu Ser Thr Leu Val Lys His Ala Glu Glu

5312WOPCT SEQ LI STI NG TXT

<210> 49
<211> 441
<212> DNA
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> optimized GAT sequence (GAT4602)

<220>
<221> CDS
<222> (1) . . . (441)

<400> 49
 at g at a gag gt g aaa ccg att aac gca gag gat acc tat gaa ct a agg 48
 Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Gu Leu Arg
 1 5 10 15

cat	aga	at a	ct c	aga	cca	aac	cag	ccg	at a	gaa	gct	t gt	at g	t t	gaa	96
His	Arg	Ile	Leu	Arg	Pro	Asn	Gln	Pro	Ile	Gu	Ala	Cys	Met	Phe	Gu	
			20					25						30		

agc gat tta ctt cgt ggt gca ttt cac tta ggc ggc tat tac ggg ggc 144
 Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Gly Gly
 35 40 45

aaa ctg att tcc ata gct tca ttc cac cag gcc gag cac tca gaa ctc 192
 Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
 50 55 60

caa ggc cag aaa cag t ac cag ctc c cga ggt at g gct acc t t g gaa ggt 240
 G n G y G n Lys G n Tyr G n Leu Arg G y Met Al a Thr Leu Gl u G y
 65 70 75 80

t at cgt gag cag aag gcg gga t cg agt ct a at t aaa cac gct gaa gaa 288
 Tyr Arg Gu G n Lys Al a G y Ser Ser Leu I I e Lys His Al a Gu Gu
 85 90 95

att	ctt	cgt	aag	agg	ggg	gcg	gac	t ₁ g	ctt	t ₂ g	t ₃ g	t ₄ g	aat	gcg	cgg	aca	336
Ile	Leu	Arg	Lys	Arg	Gly	Ala	Asp	Leu	Leu	Trp	Cys	Asn	Ala	Arg	Thr		
100								105					110				

t cc gcc t ca ggc t ac t ac aaa aag t t a ggc t t c agc gag cag gga gag 384
 Ser Al a Ser Gl y Tyr Tyr Lys Lys Leu Gl y Phe Ser Gu G n Gl y Gl u
 115 120 125

gt a	t t c	gac	acg	ccg	cca	gt a	gga	cct	cac	at c	ct g	at g	t at	aaa	agg	432
Val	Phe	Asp	Thr	Pro	Pro	Val	Gly	Pro	His	Ile	Leu	Met	Tyr	Lys	Arg	
130				135						140						

atc aca taa
Ile Thr
145

5312WOPCT_SEQ_LI STI NG TXT

<210> 50
<211> 146
<212> PRT
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> optimized GAT sequence (GAT4602)

<400> 50
Met Ile Glu Val Lys Pro Ile Asn Ala Glu Asp Thr Tyr Glu Leu Arg
1 5 10 15
His Arg Ile Leu Arg Pro Asn Gln Pro Ile Glu Ala Cys Met Phe Glu
20 25 30
Ser Asp Leu Leu Arg Gly Ala Phe His Leu Gly Gly Tyr Tyr Gly Gly
35 40 45
Lys Leu Ile Ser Ile Ala Ser Phe His Gln Ala Glu His Ser Glu Leu
50 55 60
Gln Gln Lys Gln Tyr Gln Leu Arg Gly Met Ala Thr Leu Glu Gly
65 70 75 80
Tyr Arg Glu Gln Lys Ala Gly Ser Ser Leu Ile Lys His Ala Glu Glu
85 90 95
Ile Leu Arg Lys Arg Gly Ala Asp Leu Leu Trp Cys Asn Ala Arg Thr
100 105 110
Ser Ala Ser Gly Tyr Tyr Lys Lys Leu Gly Phe Ser Glu Gln Gly Glu
115 120 125
Val Phe Asp Thr Pro Pro Val Gly Pro His Ile Leu Met Tyr Lys Arg
130 135 140
Ile Thr
145

<210> 51
<211> 1968
<212> DNA
<213> Glycine max

<220>
<221> misc_feature
<222> (1)...(1968)
<223> HRA sequence

<400> 51
at gcccacaca acacaat ggc ggccaccgct t ccagaacca cccgat t ct c tt ct t cct ct 60
t cacacccca cct t ccccaa acgcat t act agat ccaccc t ccct ct ct c t cat caaacc 120
ct caccaaac ccaaccacgc t ct caaaat c aaat gt t cca t ct ccaaacc ccccacggcg 180
gcccct t ca ccaaggaagc gcccaccacg gagccct t cg t gt cacgggt t cgcct cggc 240
gaacct cgca agggcgccga cat cct t gt g gaggcgt gg agaggcaggg cgt gacgacg 300
gt gt t cgcgt accccggccg t gctt cgat g gagat ccacc agggcgt cac ggcgt ccgcc 360
gcccatt cccga acgt gct ccc gcccacccgag caggccggcg t ct t cggcgc cgaaggct ac 420
gcccgt t cct cccgcct ccc cggcgt ct gc at t gccacct cggcccccgg cgcaccaac 480
ct cgt gagcg gcct cggcga cgct t t aat g gacagcgt cc cagt cgt cgc cat caccggc 540
caggct cggcc gccgat gat cggcaccgac gcct t ccaag aaaccccgat cgt ggaggt g 600
agcagat cca t cacaagca caact acct c at cct cgacg t cgacgacat ccccccgt c 660
gt cgccgagg ct t ctt ctt cgt cggcacct cc ggccgccccg gt cccgt cct cat cgacat t 720
cccaaagacg tt cagcagca act cggcgt g cct aatt t ggg acgagcccgat t aacct cccc 780
ggtt acct cg ccaggct gcc caggcccccc gccgaggccc aat t ggaaca cat t gt caga 840
ct cat cat gg aggccaaaaa gcccgt t ct c t acgt cggcg gt ggcagt t t gaat t ccagt 900
gct gaat t ga ggcgt t t gt t gaact cact ggt at t cccg t t gct agcac t t t aat gggt 960
ct t ggaact t t cct at t gg t gat gaat at t ccct t caga t gct gggt at gcat ggt act 1020
gt t t at gct a act at gct gt t gacaat agt gat t t gt t gc t t gcct t t gg ggt aagggt t 1080
gat gaccgt g t t act gggaa gct t gaggt t t t gct agt a gggt aagat t gt t cacat t 1140
gat at t gat t ct gccgagat t gggagaac aagcaggcgc acgt gt cgggt t t gccggat 1200
t t gaagt t gg cct t gaaggg aat t aat at g at t t t ggagg agaaaggagt ggagggt aag 1260
t t t gat ct t g gaggt t ggag agaagagat t aat gt gcaga aacacaagt t t ccat t gggt 1320
t acaagacat t ccaggacgc gat t t ct ccg cagcat gct a t cgaggt t ct t gat gagt t g 1380

5312WOPCT_SEQ_LI STI NG TXT

act aat ggag	at gct at t gt	t agt act ggg	gt t gggcagc	at caaat gt g	ggct ggcgag	1440
t t t acaagt	acaagagacc	gaggcagt gg	t t gacct cag	ggggct t gg	agccat ggg	1500
t t t ggtat gc	ct gcggct at	t ggt gct gct	gt t gct aacc	ct ggggct gt	t gt ggt t gac	1560
at t gat gggg	at ggt agt t t	cat cat gaat	gt t caggagt	t ggccact at	aagagt ggag	1620
aat ct cccag	t t aagat at t	gt t gt t gaac	aat cagcat t	t gggat ggt	ggt t cagt t g	1680
gaggat aggt	t ct acaagt c	caat agagct	cacacct at c	t t ggagat cc	gt ct agcgag	1740
agcgagat at	t cccaaacat	gct caagt t t	gct gat gct t	gt gggat acc	ggcagcgcga	1800
gt gacgaaga	aggaagagct	t agagcggca	at t cagagaa	t gt t ggacac	ccct ggcccc	1860
t acct t ct t g	at gt cat t gt	gccccat cag	gagcat gt gt	t gcccgt gat	t cccagt aat	1920
ggat cct t ca	aggat gt gat	aact gagggt	gat ggt agaa	cgaggat ac		1968

<210> 52
<211> 1917
<212> DNA
<213> Zea mays

<220>
<221> mi sc_f eat ur e
<222> (1)...(1917)
<223> HRA sequence

<400> 52

cagt acacag	t cct gccat c	accat ccagg	at cat at cct	t gaaagcccc	accact aggg	60
at cat aggca	acacat gct c	ct ggt gt ggg	acgat t at at	ccaaagggta	cggccct gga	120
gt ct cgagc	t ctt ct t t at	cgct gcgcgg	act t cgt t ct	t ct t t gt cac	acggaccgct	180
ggaat gt t ga	accct t t ggc	gat cgt cacg	aaat ct ggt	at at ct cact	t t cat t ct ct	240
gggt t t ccc	agt at gt gt g	cgct ct gt t g	gcct t at aga	acct gt cct c	caact gcacc	300
accat cccca	ggt gct ggt t	gt t t agcaca	aagacct t ca	ct gggaggt t	ct caat t cgg	360
at cat agct a	gct cct gaac	gt t cat gaga	aagct accat	ct ccat cgat	gt caacaaca	420
gt gacacct g	ggt t t gccac	agaagcacca	gcagcagccg	gcaaaccaaa	t cccat agcc	480
ccaagaccag	ct gaagacaa	ccact gcct t	ggccgct t gt	aagt gt agt a	ct gt gccgcc	540
cacat ct ggt	gct gcccac	acct gt gccc	at gat ggcct	cgccct t t cgt	cagct cat ca	600
agaaccc gaa	t agcat at t g	t ggct ggat c	t cct cat t ag	at gt t t at a	cccaaggggg	660
aat t ccct ct	t ct gct gat c	caact cat cg	t t ccat gagc	caaagt caaa	gt ct t ct t	720
gat gt gct t c	ct t caagaag	agcat t cat g	ccct gcaaag	caagct t aac	at ct gcacag	780
at ggacacat	gt ggct gct t	gt t ct t gcca	at ct cagccg	gat caat at c	aacgt gcaca	840
at ct t agcc	t gct t gcaaa	agct caat c	t t ccct gt ca	cgcgat cat c	aaaccgcaca	900
ccaaat gcaa	gcaacagat c	ggct t at cc	act gcat aat	t t gcat acac	cgt cccat gc	960
at act agca	t gcgagaga	cagt gggt cg	t cgct gggga	agt t gccgag	gccccat aaga	1020
gt agt t gt ga	ccgggat t cc	agt cagct cc	acaaagcgat c	gcaact cct c	accagat gct	1080
gcccagccac	cgccccat a	aagaacagggg	cgcccgat t	caccaacaag	acgcagcacc	1140
t gct caagca	act cagt cgc	agggggct t g	ggaaggcgcg	caat gt accc	aggcagact c	1200
at gggct t gt	cccagacagg	caccggccat c	t gct gct gga	t gt cct t ggg	gat gt cgaca	1260
agcacccggcc	ct ggt cgacc	agaggaggcg	aggaagaaag	cct cct gcac	gacgcgggggg	1320
at gt cgt cga	cgt cgaggac	caggt agt t g	t gct t ggt ga	t ggagcggt	gacct cgacg	1380
at gggcgct	cct ggaaggc	gt cgggt gcca	at cat gct c	gcccacct g	t cccgt gat g	1440
gcccaccat gg	ggacggat c	gaggcgcgcg	t cggcgagcg	cgagact ag	gt t ggt ggcg	1500
ccggggccgg	agg t ggcgt	gcagacgcgcg	acgcggcccg	aggagcgcgc	gt agccggag	1560
gcccacaagg	cct cccct t g	ct cgt ggccg	aagaggt ggt	t ggcgt gac	gggggagcgg	1620
gt gagt gcct	ggt ggat ct c	cat ggacgcgc	ccggccgggt	aggcgaagac	gt cgcggacg	1680
ccgcacgcgt	cgagggact c	gacggat g	t cagcaccct	t gggggct c	ggt gggccc	1740
cacggccgg	gccccggt ggc	cgggggagcc	at cggcat gg	cggt gacgc	cgct gagcac	1800
ct gat gggcg	cggcgaggc	gcggcgggt g	gccaggaggt	gcccggccgc	cct cgcct t g	1860
ggcgacgcgg	t agt ggcc	agt gagcgcg	gt agacgcgg	cgccggcggt	gccccat g	1917

<210> 53
<211> 2139
<212> DNA
<213> Arabidopsis

<220>
<221> mi sc_f eat ur e
<222> (1)...(2139)
<223> HRA sequence

<400> 53

aaat acgt ac	ct acgcaccc	t gcgc t acca	t ccct agagc	t gcagct t at	t t t acaaca	60
at t accaaca	acaacaaca	acaacaaca	t t acaat t ac	t at t acaat	t acagt cgac	120

5312WOPCT_SEQ_LI STI NG TXT

ccgggat cca	t ggccggccgc	aacaacaaca	acaacaacat	ct t ct t ccat	ct cct t ct cc	180
accaaaccat	ct cct t cct c	ct ccaaata	ccat t accaa	t ct ccagat	ct ccct cccca	240
t t ct ccct aa	accccaacaa	at cat cct cc	t cct cccgcc	gccgcggt	caaataccagc	300
t ct ccct cct	ccat ct ccgc	cgt gct caac	acaaccacca	at gt cacaac	cact ccct ct	360
ccaaaccaac	ct accaaacc	cgaacat t c	at ct cccgat	t cgct ccaga	t caacccgc	420
aaaggcgct g	at at cct cgt	cgaagct t a	gaacgt caag	ggtt agaaac	cgt at t cgct	480
t accct ggag	gt gcat caat	ggagat t cac	caagcct t aa	ccgcgt ct t c	ct caat ccgt	540
aacgt cct t c	ct cgt cacga	acaaggaggt	gt at t cgcag	cagaaggat a	cgct cgat cc	600
t caggt aaac	caggat ct g	t at agccact	t caggt cccg	gagct acaaa	t ct cgt t agc	660
ggat t agccg	at gcgt t gt t	agat agt gt t	cct ct t gt ag	caat cacagg	acaagt cgct	720
cgt cgt at ga	t t ggt acaga	t gcgt t t caa	gagact ccga	t t gt t gaggt	aacgcgt t cg	780
at t acgaagc	at aact at ct	t gt gat ggat	gt t gaaat a	t ccct aggat	t at t gaggaa	840
gct t t ct t t	t agct act t c	t ggt agacct	ggacat gtt t	t ggt t gat gt	t cct aaagat	900
at t caacaac	agct t gcgat	t cct aat t gg	gaacagggct a	t gagat t acc	t ggt t at at g	960
t ct aggat gc	ct aaacct cc	ggaagat t ct	cat t t ggagc	agat t gt t ag	gt t gat t ct	1020
gagt ct aaga	agcct gt gt t	gt at gt t ggt	ggt ggt t gt t	t gaat t ct ag	cgat gaat t g	1080
ggt aggt t t g	t t gagct t ac	ggggat ccct	gt t gcgat a	cgt t gat ggg	gct gggat ct	1140
t at cct t gt g	at gat gagt t	gt cgt t acat	at gct t ggaa	t gcat gggac	t gt gt at gca	1200
aat t acgct g	t ggagcat ag	t gat t t gt t g	t t ggcgt t t g	gggt aaggt t	t gat gat cgt	1260
gt cacgggt a	agct t gaggc	t t t gct agt	agggct aaga	t t gt t cat at	t gat at t gac	1320
t cggct gaga	t t gggaaagaa	t aagact cct	cat gt gt ct g	t gt gt ggt ga	t gt t aagct g	1380
gct t t gcaag	ggat gaat at	gat t ct t gag	agccgagcgg	aggagct t aa	gct t gat t t	1440
ggagt t t gga	ggaat gagt t	gaacgt acag	aaacagaagt	t t ccgt t gag	ct t t aagacg	1500
t t t ggggaag	ct at t cct cc	acagt at gca	at t aaggt cc	t t gat gagt t	gact gat gga	1560
aaagccat aa	t aagt act gg	t gt cgggcaa	cat caaat gt	ggggggcgc	gt t ct acaat	1620
t acaagaacaa	caaggcagt g	gct at cat ca	ggaggcct t g	gagct at ggg	at t t ggact t	1680
cct gct gcga	t t ggagcgt c	t gt t gct aac	cct gat gcga	t agt t gt gga	t at t gacgga	1740
gat ggaagct	t t at aat gaa	t gt gcaagag	ct agccact a	t t cgt gt aga	gaat ct t cca	1800
gt gaaggt ac	t t t at t aaa	caaccagcat	ct t ggcgt gg	t t at gcaat t	ggaagat cgg	1860
t t ct acaaag	ct aaccgagc	t cacacat t t	ct cgggat c	cgct cagga	ggacgagat a	1920
t t cccgaaca	t gt t gct gt t	t gcagcagct	t ggggat t c	cagcggcgg	ggt gacaaag	1980
aaagcagat c	t ccgagaagc	t at t cagaca	at gct ggat a	caccaggacc	t t acct gt t g	2040
gat gt gat t t	gt ccgcacca	agaacat gt g	t t gccgt ga	t cccgagat gg	t ggcact t t c	2100
aacgat gt ca	t aacggaagg	agat ggccgg	at t aaat ac			2139

<210> 54

<211> 552

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthesized

<220>

<223> maize optimized PAT sequence

<400> 54

at gt cccccc	agcgccggcc	cgt cgagat c	cggccggcca	ccgcccgcga	cat ggccgcc	60
gt gt gcgaca	t cgt gaacca	ct acat cgag	acct ccacgg	t gaact t ccg	caccgagccg	120
cagaccccg	aggagt ggt	cgacgacccgt	gagcgcct cc	aggaccgt a	cccggt ggct c	180
gt ggccgagg	t ggagggcgt	ggt ggccggc	at cgcct acg	ccggcccggt g	gaaggcccg	240
aacgct acg	act ggacgt	ggagt ccacc	gt gt acgt	cccacccgca	ccagcgcct c	300
ggcct cggct	ccacccct t a	caccaccc t c	ct caagagca	t ggaggccca	gggct t caag	360
t cct ggt gg	ccgt gat cgg	cct cccgaac	gaccgt ccg	t ggcct cca	cgaggccct c	420
ggct acaccg	cccgccggac	cct ccggcc	gccggct aca	agacggcgg	ct ggcacgac	480
gt cggct t ct	ggcagcgcga	t t cgagct g	ccggcccccc	cggcccccgt	gcccgggt g	540
acgcagat ct	ga					552

<210> 55

<211> 2130

<212> DNA

<213> Zea mays

<220>

<221> CDS

<222> (1)...(2130)

<400> 55

5312WOPCT_SEQ_LI STI NG TXT

at g	gcc	act	gt g	aac	aac	tgg	ctc	gct	t t c	tcc	ctc	tcc	ccg	cag	gag		48
Met	Al a	Thr	Val	Asn	Asn	Trp	Leu	Al a	Phe	Ser	Leu	Ser	Pro	G n	G u		
1			5					10					15				
ct g	ccg	ccc	tcc	cag	acg	acg	gac	tcc	acg	ctc	atc	t cg	gcc	gcc	acc		96
Leu	Pro	Pro	Ser	G n	Thr	Thr	Asp	Ser	Thr	Leu	Ile	Ser	Al a	Al a	Thr		
			20				25					30					
gcc	gac	cat	gtc	tcc	ggc	gat	gtc	tgc	t t c	aac	atc	ccc	caa	gat	tgg		144
Al a	Asp	His	Val	Ser	G y	Asp	Val	Cys	Phe	Asn	Ile	Pro	G n	Asp	Trp		
			35			40					45						
agc	at g	agg	gga	tca	gag	ct t	t cg	g c g	c t c	gt c	g c g	gag	ccg	aag	c t g		192
Ser	Met	Arg	G y	Ser	G u	Leu	Ser	Al a	Leu	Val	Al a	G u	Pro	Lys	Leu		
			50			55					60						
gag	gac	t t c	c t c	ggc	ggc	at c	tcc	t t c	tcc	gag	cag	cat	cac	aag	tcc		240
G u	Asp	Phe	Leu	G y	G y	Ile	Ser	Phe	Ser	G u	G n	His	His	Lys	Ser		
			65			70				75					80		
aac	t g c	aa c	t t g	at a	ccc	agc	act	agc	agc	aca	gt t	t g c	t ac	g c g	agc		288
Asn	Cys	Asn	Leu	Ile	Pro	Ser	Thr	Ser	Ser	Thr	Val	Cys	Tyr	Al a	Ser		
			85						90					95			
t c a	g c t	g c t	agc	acc	ggc	t a c	cat	c a c	c a g	c t g	t a c	c a g	c c c	acc	agc		336
Ser	Al a	Al a	Ser	Thr	G y	Tyr	His	His	G n	Leu	Tyr	G n	Pro	Thr	Ser		
			100					105					110				
t c c	g c g	c t c	c a c	t t c	g c g	g a c	t c c	g t c	at g	g t g	g c c	t c c	t c g	g c c	g g t		384
Ser	Al a	Leu	His	Phe	Al a	Asp	Ser	Val	Met	Val	Al a	Ser	Ser	Al a	G y		
			115			120				125							
g t c	c a c	g a c	g g c	g g t	t c c	at g	c t c	agc	g c g	g c c	g t	a a c	g g t	g t c		432	
Val	His	Asp	G y	G y	Ser	Met	Leu	Ser	Al a	G y	Val						
			130			135				140							
g c t	g g c	g c t	g c c	g c c	g c t	ag t	g c c	a a c	g g c	g c c	t c c	at g	at c		480		
Al a	G y	Al a	Al a	Al a	Ser	Al a	Asn	G y	G y	G y	Leu	Ser	Met	Ile			
			145			150				155				160			
a a g	a a c	t g g	c t g	c g g	agc	caa	c c g	g c g	ccc	at g	c a g	c c g	ag g	g c g	g c g		528
Lys	Asn	Trp	Leu	Arg	Ser	G n	Pro	Al a	Pro	Met	G n	Pro	Arg	Al a	Al a		
			165					170					175				
g c g	g c t	g a g	g g c	g c g	c a g	g g g	c t c	t c t	t t g	t c c	at g	a a c	at g	g c g	g g g		576
Al a	Al a	G u	G y	Al a	G n	G y	Leu	Ser	Leu	Ser	Met	Asn	Met	Al a	G y		
			180					185					190				
ac g	ac c	ca a	g g c	g c t	g c t	g g c	at g	cc a	c t t	c t c	g c t	g g a	g a g	c g c	g c a		624
Thr	Thr	G n	G y	Al a	Al a	G y	Met	Pro	Leu	Al a	Al a	G y	G u	Arg	Al a		
			195				200					205					
c g g	g c g	c c c	g a g	ag t	g t a	t c g	ac g	t c a	g c a	c a g	g g t	g g t	g c c	g t c	g t c		672
Arg	Al a	Pro	G u	Ser	Val	Ser	Thr	Ser	Al a	G n	G y	G y	Al a	Val	Val		
			210			215					220						
g t c	ac g	g c g	c c g	a a g	g a g	g a t	agc	g g y	g g c	agc	g g t	g t t	g c c	g g t	g c t		720
Val	Thr	Al a	Pro	Lys	G u	Asp	Ser	G y	G y	Ser	G y	Val	Al a	G y	Al a		
			225			230				235				240			
c t a	g t a	g c c	g t g	agc	ac g	g a c	ac g	g g t	g g c	agc	g g c	g g c	g c g	t c g	g c t		768
Leu	Val	Al a	Val	Ser	Thr	Asp	Thr	G y	G y	Ser	G y	G y	Al a	Ser	Al a		
			245					250					255				
g a c	a a c	ac g	g c a	agg	a a g	ac g	gt g	g a c	ac g	g g c	g g c	g g c	ac g	ac g	t c g		816
Asp	Asn	Thr	Al a	Arg	Lys	Thr	Val	Asp	Thr	Phe	G y	C a g	C g c	Ac g	T c g		
			260				265					270					

5312WOPCT_SEQ_LI STI NG TXT																			
att	tac	cgt	ggc	gtg	aca	agg	cat	aga	tgg	act	ggg	aga	tat	gag	gca			864	
Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Gl	Ala				
275					280						285								
cat	ctt	tgg	gat	aac	agt	tgc	aga	agg	gaa	gga	caa	act	cgt	aag	ggt			912	
His	Leu	Trp	Asp	Asn	Ser	Cys	Arg	Arg	Glu	Gly	Gln	Thr	Arg	Lys	Gly				
290					295						300								
cgt	caa	gtc	tat	tta	ggt	ggc	tat	gat	aaa	gag	gag	aaa	gct	gct	agg			960	
Arg	Gln	Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	Glu	Glu	Lys	Ala	Ala	Arg				
305					310					315					320				
gct	tat	gat	ctt	gct	ctg	aag	tac	tgg	ggt	gcc	aca	aca	aca	aca	aca			1008	
Ala	Tyr	Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Ala	Thr	Thr	Thr	Thr				
					325				330					335					
aat	ttt	cca	gtg	agt	aac	tac	gaa	aag	gag	ctc	gag	gac	atg	aag	cac			1056	
Asn	Phe	Pro	Val	Ser	Asn	Tyr	Glu	Lys	Glu	Leu	Glu	Asp	Met	Lys	His				
					340				345				350						
atg	aca	agg	cag	gag	ttt	gtt	gca	tct	ctg	aga	agg	aag	agc	agt	ggt			1104	
Met	Thr	Arg	Gln	Glu	Phe	Val	Ala	Ser	Leu	Arg	Arg	Lys	365						
					355				360										
ttc	tcc	aga	ggt	gca	tcc	att	tac	agg	gga	gtg	act	agg	cat	cac	caa			1152	
Phe	Ser	Arg	Gly	Ala	Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	His	Gln				
					370				375				380						
cat	gga	aga	tgg	caa	gca	cg	att	gga	cga	gtt	gca	ggg	aac	aag	gat			1200	
His	Gly	Arg	Trp	Gln	Ala	Arg	Ile	Gly	Arg	Val	Ala	Gly	Asn	Lys	Asp				
					385				390				395		400				
ctt	tac	ttg	ggc	acc	tcc	agc	acc	cag	gag	gag	gca	g	gag	g	g	tac		1248	
Leu	Tyr	Leu	Gly	Thr	Phe	Ser	Thr	Gln	Glu	Glu	Ala	Ala	Ala	Ala	Tyr				
					405				410				415						
gac	atc	gcg	gcg	atc	aag	tcc	cgc	ggc	ctc	aac	gcc	gtc	acc	aac	tcc			1296	
Asp	Ile	Ala	Ala	Ile	Lys	Phe	Arg	Gly	Leu	Asn	Ala	Val	Thr	Asn	Phe				
					420				425				430						
gac	atg	agc	cgc	tac	gac	gtg	aag	agc	atc	ctg	gac	agc	agc	gcc	ctc			1344	
Asp	Met	Ser	Arg	Tyr	Asp	Val	Lys	Ser	Ile	Leu	Asp	Ser	445						
					435				440										
ccc	atc	ggc	agc	gcc	gcc	aag	cgt	ctc	aag	gag	gcc	gag	gcc	gca	gcg			1392	
Pro	Ile	Gly	Ser	Ala	Ala	Lys	Arg	Leu	Lys	Glu	Ala	Gl	Ala	Ala	Ala				
					450				455				460						
tcc	gcg	cag	cac	cac	cac	gcc	ggc	gtg	gtg	agc	tac	gac	gtc	ggc	cgc			1440	
Ser	Ala	Gln	His	His	His	Ala	Gly	Val	Val	Ser	Tyr	Asp	Val	Gly	Arg				
					465				470				475		480				
atc	gcc	tcc	cag	ctc	ggc	gac	ggc	gga	gcc	ctc	Leu	Ala	Ala	Ala	Tyr	Gly		1488	
Ile	Ala	Ser	Gln	Leu	Gly	Asp	Gly	Gly	Ala	Leu	Ala	Ala	Ala	Tyr	495				
					485				490										
gcg	cac	tac	cac	ggc	gcc	gcc	tgg	ccg	acc	atc	gcg	tcc	cag	ccg	ggc			1536	
Ala	His	Tyr	His	Gly	Ala	Ala	Trp	Pro	Thr	Ile	Ala	Phe	Gln	Pro	Gly				
					500				505				510						
gcc	gcc	acc	aca	ggc	ctg	tac	cac	ccg	tc	g	g	ca	cc	atg	cgc			1584	
Ala	Ala	Thr	Thr	Gly	Leu	Tyr	His	Pro	Tyr	Ala	Gln	Gln	Pro	Met	Arg				
					515				520				525						
ggc	ggc	ggg	tgg	tgc	aag	cag	gag	cag	gac	cac	g	gtg	atc	g	cc			1632	
Gly	Gly	Gly	Trp	Cys	Lys	Gly	Gly	Gly	Asp	His	Ala	Val	Ile	Ala	Ala				
					530				535				540						

5312WOPCT_SEQ_LI STI NG TXT

gca	cac	agc	ctg	cag	gac	ctc	cac	cac	t _{tg}	aac	ctg	ggc	g _{cg}	g _{cc}	g _{gc}	g _{cy}	1680
Al a	His	Ser	Leu	Gly	Asp	Leu	His	His	Leu	Asn	Leu	Gly	Al a	Al a	Gly		
545				550					555							560	
gca	cac	gac	ttt	t _{tc}	t _{cg}	g _{ca}	g _{gg}	c _{ag}	c _{ag}	g _{cc}	g _{cc}	g _{cc}	g _{ca}	g _{ct}	g _{cg}	1728	
Al a	His	Asp	Phe	Phe	Ser	Al a	Gly	Gly	Gly	Al a							
			565					570						575			
atg	cac	ggc	ctg	gct	agc	atc	gac	agt	g _{cg}	t _{cg}	c _{tc}	g _{ag}	c _{ac}	agc	acc	1776	
Met	His	Gly	Leu	Al a	Ser	Ile	Asp	Ser	Al a	Ser	Leu	Glu	His	Ser	Thr		
			580				585					590					
ggc	tcc	aac	tcc	gtc	gtc	tac	aac	g _{gc}	g _{gg}	t _{gc}	g _{gc}	g _{at}	agc	aac	g _{gc}	1824	
Gly	Ser	Asn	Ser	Val	Val	Tyr	Asn	Gly	Gly	Val	Gly	Asp	Ser	Asn	Gly		
			595			600					605						
gcc	agc	gcc	gtt	ggc	agc	ggc	ggt	ggc	tac	atg	atg	ccg	atg	agc	gct	1872	
Al a	Ser	Al a	Val	Gly	Ser	Gly	Gly	Gly	Tyr	Met	Met	Pro	Met	Ser	Al a		
			610			615				620							
gcc	gga	gca	acc	act	aca	t _{cg}	g _{ca}	atg	gtg	agc	cac	gag	cag	atg	cat	1920	
Al a	Gly	Al a	Thr	Thr	Thr	Ser	Al a	Met	Val	Ser	His	Glu	Gly	Met	His		
			625			630			635						640		
gca	cgg	gcc	tac	gac	gaa	g _{cc}	aag	c _{ag}	g _{ct}	g _{ct}	c _{ag}	g _{gg}	t _{ac}	gag	1968		
Al a	Arg	Al a	Tyr	Asp	Gly	Al a	Lys	Gly	Al a	Al a	Gly	Met	Gly	Tyr	Gly		
			645					650					655				
agc	tac	ctg	gtg	aac	g _{cg}	g _{ag}	aac	aat	g _{gt}	g _{gc}	g _{ga}	g _{gg}	agg	atg	tct	2016	
Ser	Tyr	Leu	Val	Asn	Al a	Gly	Asn	Asn	Gly	Gly	Gly	Gly	Arg	Met	Ser	Al a	
			660				665						670				
tgg	ggg	acc	gtc	gtc	tct	g _{ca}	g _{cc}	g _{cg}	g _{cg}	g _{ca}	g _{ca}	g _{ca}	g _{ca}	g _{cc}	2064		
Trp	Gly	Thr	Val	Val	Ser	Al a	Ser	Ser	Asn								
			675			680								685			
gac	aac	att	gcc	gcc	gac	gtc	ggc	cat	ggc	ggc	g _{cg}	c _{ag}	ctc	t _{tc}	agt	2112	
Asp	Asn	Ile	Al a	Al a	Asp	Val	Gly	His	Gly	Gly	Al a	Gly	Leu	Phe	Ser		
			690			695											
gtc	tgg	aac	gac	act	t _{aa}											2130	
Val	Trp	Asn	Asp	Thr													
705																	

<210> 56
 <211> 709
 <212> PRT
 <213> Zea mays

<400> 56
 Met Al a Thr Val Asn Asn Trp Leu Al a Phe Ser Leu Ser Pro G n G u
 1 5 10 15
 Leu Pro Pro Ser G n Thr Thr Asp Ser Thr Leu Ile Ser Al a Al a Thr
 20 25 30
 Al a Asp His Val Ser G y Asp Val Oys Phe Asn Ile Pro G n Asp Trp
 35 40 45
 Ser Met Arg G y Ser G u Leu Ser Al a Leu Val Al a G u Pro Lys Leu
 50 55 60
 G u Asp Phe Leu G y G y Ile Ser Phe Ser G u G n His His Lys Ser
 65 70 75 80
 Asn Oys Asn Leu Ile Pro Ser Thr Ser Ser Thr Val Cys Tyr Al a Ser
 85 90 95
 Ser Al a Al a Ser Thr G y Tyr His His G n Leu Tyr G n Pro Thr Ser
 100 105 110
 Ser Al a Leu His Phe Al a Asp Ser Val Met Val Al a Ser Ser Al a G y
 115 120 125
 Val His Asp G y G y Ser Met Leu Ser Al a Al a Al a Al a Asn G y Val

5312WOPCT_SEQ_LI STI NG TXT

Ala	Gly	Ala	Ala	Ala	Ser	Ala	Asn	Gly	Gly	Gly	Ile	Gly	Leu	Ser	Met	Ile	
130		135				140											
145		150				155											160
Lys	Asn	Trp	Leu	Arg	Ser	Gln	Pro	Ala	Pro	Met	Gln	Pro	Arg	Ala	Ala		
						165				170							175
Ala	Ala	Glu	Gly	Ala	Gln	Gly	Leu	Ser	Leu	Ser	Met	Asn	Met	Ala	Gly		
						180			185								190
Thr	Thr	Gln	Gly	Ala	Ala	Gly	Met	Pro	Leu	Leu	Ala	Gly	Glu	Arg	Ala		
						195			200								205
Arg	Ala	Pro	Glu	Ser	Val	Ser	Thr	Ser	Ala	Gln	Gly	Gly	Ala	Val	Val		
						210			215								220
Val	Thr	Ala	Pro	Lys	Glu	Asp	Ser	Gly	Gly	Ser	Gly	Val	Ala	Gly	Ala		
																	240
						225			230								235
Leu	Val	Ala	Val	Ser	Thr	Asp	Thr	Gly	Gly	Ser	Gly	Gly	Ala	Ser	Ala		
																	245
																	250
Asp	Asn	Thr	Ala	Arg	Lys	Thr	Val	Asp	Thr	Phe	Gly	Gln	Arg	Thr	Ser		
																	260
																	265
Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Glu	Ala		
																	275
																	280
His	Leu	Trp	Asp	Asn	Ser	Cys	Arg	Arg	Glu	Gly	Gln	Thr	Arg	Lys	Gly		
																	290
																	295
Arg	Gln	Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	Glu	Glu	Lys	Ala	Ala	Arg		
																	305
																	310
Ala	Tyr	Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Ala	Thr	Thr	Thr	Thr		
																	325
																	330
Asn	Phe	Pro	Val	Ser	Asn	Tyr	Glu	Lys	Glu	Leu	Glu	Asp	Met	Lys	His		
																	340
																	345
Met	Thr	Arg	Gln	Glu	Phe	Val	Ala	Ser	Leu	Arg	Arg	Lys	Ser	Ser	Gly		
																	355
																	360
Phe	Ser	Arg	Gly	Ala	Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	His	Gln		
																	370
																	375
His	Gly	Arg	Trp	Gln	Ala	Arg	Ile	Gly	Arg	Val	Ala	Gly	Asn	Lys	Asp		
																	385
																	390
Leu	Tyr	Leu	Gly	Thr	Phe	Ser	Thr	Gln	Glu	Ala	Ala	Ala	Glu	Ala	Tyr		
																	405
																	410
Asp	Ile	Ala	Ala	Ile	Lys	Phe	Arg	Gly	Leu	Asn	Ala	Val	Thr	Asn	Phe		
																	420
																	425
Asp	Met	Ser	Arg	Tyr	Asp	Val	Lys	Ser	Ile	Leu	Asp	Ser	Ser	Ala	Leu		
																	435
																	440
Pro	Ile	Gly	Ser	Ala	Ala	Lys	Arg	Leu	Lys	Glu	Ala	Glu	Ala	Ala	Ala		
																	450
																	455
Ser	Ala	Gln	His	His	His	Ala	Gly	Val	Val	Ser	Tyr	Asp	Val	Gly	Arg		
																	465
																	470
Ile	Ala	Ser	Gln	Leu	Gly	Asp	Gly	Gly	Ala	Leu	Ala	Ala	Ala	Tyr	Gly		
																	485
																	490
Ala	His	Tyr	His	Gly	Ala	Ala	Trp	Pro	Thr	Ile	Ala	Phe	Gln	Pro	Gly		
																	500
																	505
Ala	Ala	Thr	Thr	Gly	Leu	Tyr	His	Pro	Tyr	Ala	Gln	Gln	Pro	Met	Arg		
																	515
																	520
Gly	Gly	Gly	Trp	Cys	Lys	Gln	Glu	Gln	Asp	His	Ala	Val	Ile	Ala	Ala		
																	530
																	535
Ala	His	Ser	Leu	Gln	Asp	Leu	His	His	Leu	Asn	Leu	Gly	Ala	Ala	Gly		
																	545
																	550
Ala	His	Asp	Phe	Phe	Ser	Ala	Gly	Gln	Gln	Ala	Ala	Ala	Ala	Ala	Ala		
																	565
																	570
Met	His	Gly	Leu	Ala	Ser	Ile	Asp	Ser	Ala	Ser	Leu	Glu	His	Ser	Thr		
																	580
																	585
Gly	Ser	Asn	Ser	Val	Val	Tyr	Asn	Gly	Gly	Val	Gly	Asp	Ser	Asn	Gly		
																	595
																	600
Ala	Ser	Ala	Val	Gly	Ser	Gly	Gly	Gly	Tyr	Met	Met	Pro	Met	Ser	Ala		
																	610
																	615
Ala	Gly	Ala	Thr	Thr	Ser	Ala	Met	Val	Ser	His	Glu	Gln	Met	His			
																	625
																	630
Ala	Arg	Ala	Tyr	Asp	Glu	Ala	Lys	Gln	Ala	Ala	Gln	Met	Gly	Tyr	Glu		
																	645
																	650
Ser	Tyr	Leu	Val	Asn	Ala	Glu	Asn	Asn	Gly	Gly	Gly	Arg	Met	Ser	Ala		
																	660
																	665
Trp	Gly	Thr	Val	Val	Ser	Ala	Ser	Ser	Asn								

5312WOPCT_SEQ_LI STI NG TXT

675	680	685
Asp Asn Ile Ala Ala Asp Val	Gly His Gly Gly	Ala Glu Leu Phe Ser
690	695	700
Val Trp Asn Asp Thr		
705		

<210> 57
<211> 2260
<212> DNA
<213> Zea mays

<400> 57

ct t ccct aac	ct t tgcaact g	t cccaaaat gg	ct t cct gat c	ccct cact t c	ct cgaat caa	60
t ct aagaaga	aact caagcc	gcaaccat t a	ggggcagat t	aat t gct gca	ct t t cagat a	120
at caaccat g	gccact gt ga	acaact ggct	cgct t t ct cc	ct ct ccccgc	aggagct gcc	180
gccct cccag	acgacggact	ccacact cat	ct cggccgcc	accgcccacc	at gt ct ccgg	240
cgat gt ct gc	t t caacat cc	cccaagat tg	gagcat gagg	ggat cagagc	tt t cggcgct	300
cgt cggcgag	ccgaagct gg	aggact t cct	cgccggcat c	t cct t ct ccg	agcagcat ca	360
caaggccaac	t gcaacat ga	t acccagcac	t agcagcaca	gt t t gct acg	cgagct cagg	420
t gct agcacc	ggct accat c	accagct gt a	ccaccagccc	accagct cag	cgct ccact t	480
cgcggact cc	gt aat ggt gg	cct cct cggc	cggt gt ccac	gacggcggt g	ccat gct cag	540
cgcggccgccc	gct aacggt g	t cgct ggcgc	t gccagt gcc	aacggccgccc	gcat cggcgt	600
gt ccat gat t	aagaact ggc	t ggggagcca	accggccccc	at gcagccga	gggt ggcggc	660
ggct gagggc	gcmcaggggc	t ct t t gt c	cat gaacat g	gccccggacga	cccaaggcgc	720
t gct ggcat g	ccact t ct cg	ct ggagagcg	cgccacgggc	cccggagat g	t at cgacgt c	780
agcacagggt	ggagccgt cg	t cgt cacggc	gcccgaaggag	gat agcggt g	gcagcgggt gt	840
t gccggcgt	ct agt agccg	t gggcacgg	cacgggt ggc	agcggccgccc	cgt cggct ga	900
caacacggca	aggaagacgg	t ggacacgt t	cgggcagcgc	acgt cgat t t	accgt ggcgt	960
gacaaggcat	agat ggact g	ggagat at ga	ggcacat ct t	t gggat aaca	gt t gcagaag	1020
ggaaggcaca	act cgt aagg	gt cgt caagt	ct at t t aggt	ggct at gat a	aagaggagaa	1080
agct gct agg	gct t at gat c	t t gct gct ct	gaagt act gg	ggt gccacaa	caacaacaaa	1140
t t t ccagt g	agt aact acg	aaaaggagct	cgaggacat g	aagcacat ga	caaggcagga	1200
gt t t gt agcg	t ct ct gagaa	ggaagagcag	t ggt t t ct cc	agaggt gcat	ccat t t acag	1260
gggagt gact	aggcat cacc	aacat ggaag	at ggcaagca	cgat t ggac	gagt t gcagg	1320
gaacaaggat	ct t t act t gg	gcacct t cag	cacccaggag	gaggcagcgg	aggcgt acga	1380
cat cggcgcg	at caagt t cc	gcccgc t caa	cgccgt cacc	aact t cgaca	t gagccgt a	1440
cgaegt gaag	agcat cct gg	acgcagcgc	cct cccat c	ggcagcgcgc	ccaagcgcct	1500
caaggaggcc	gagggccgcag	cgt cccgcga	gcaccaccc	gccccggcgt gg	t gagct acga	1560
cgt cggccgc	at cgcct cgc	agct cggcga	cgccggagcc	ct ggcggcgg	cgt acggcgc	1620
gcact accac	ggcgcgcct	ggccgaccat	cgccgt t ccag	ccccggccgc	ccagcacagg	1680
cct gt accac	ccgt acgcgc	agcagccaa	gcccggccgc	gggt ggt gca	agcaggagca	1740
ggaccacgcg	gt gat cgcgg	ccgcgcacag	cct gcaggac	ct ccaccacc	t gaacct ggg	1800
cgcggccgc	gcmcacgcact	t t t t ct cggc	agggcagcag	gccgcgcgcgc	ct gcgat gca	1860
cggcct ggg	agcat cgaca	gt gcgt cgct	cgagcacagc	accggct cca	act ccgt cgt	1920
ct acaacggc	ggggt cggcg	acagcaacgg	cgccagcgcc	gt cggcggca	gt ggcgggt gg	1980
ct acat gat g	ccgat gagcg	ct gcccggac	aaccact aca	t cggcaat gg	t gagccacga	2040
gcaggt gcat	gcacgggcct	acgacgaagc	caagcaggct	gct cagat gg	ggt acgagag	2100
ct acct ggt g	aacgcggaga	acaat ggt gg	cggaaggat g	t ct gcat ggg	ggact gt cgt	2160
gt ct gcagcc	gccccggcag	cagcaagcag	caacgacaac	at ggccgcgc	acgt cggcca	2220
t ggcggcgcg	cagct ct t ca	gt gt ct ggaa	cgacact t aa			2260

<210> 58
<211> 2133
<212> DNA
<213> Zea mays

<220>
<221> CDS
<222> (1)...(2133)

<400> 58

at g gcc act	gt g aac	aac tgg	ct c gct	t t c tcc	ct c tcc	ccg cag	gag 48
Met Ala Thr	Val Asn	Asn Trp	Leu Al a	Phe Ser	Leu Ser	Pro Glu	
1	5			10		15	

ct g ccg ccc tcc	cag acg acg	gac tcc	aca ctc	at c tcg	gcc gcc acc 96
Leu Pro Pro Ser	Gl n Thr	Asp Ser	Thr	Leu Ile Ser	Al a Al a Thr

5312WOPCT_SEQ_LI STI NG TXT

20

25

30

gcc	gac	cat	gtc	tcc	ggc	gat	gtc	tgc	tcc	aac	atc	ccc	caa	gat	tgg	144
Ala	Asp	His	Val	Ser	Gly	Asp	Val	Cys	Phe	Asn	Ile	Pro	Gln	Asp	Trp	
35					40					45						
agc	atg	agg	gga	tca	gag	ctt	tcg	gcg	ctc	gtc	gcg	gag	ccg	aag	ctg	192
Ser	Met	Arg	Gly	Ser	Gu	Leu	Ser	Ala	Leu	Val	Ala	Gu	Pro	Lys	Leu	
50					55					60						
gag	gac	ttc	ctc	ggc	gyc	atc	tcc	tcc	tcc	gag	cag	cat	cac	aag	gcc	240
Gu	Asp	Phe	Leu	Gly	Gly	Ile	Ser	Phe	Ser	Gu	Gln	His	His	Lys	Ala	
65				70						75						
aac	tgc	aac	atg	ata	ccc	agc	act	agc	agc	aca	gtt	tgc	tac	gcg	agc	288
Asn	Cys	Asn	Met	Ile	Pro	Ser	Thr	Ser	Ser	Thr	Val	Cys	Tyr	Ala	Ser	
				85					90					95		
tca	ggt	gct	agc	acc	ggc	tac	cat	cac	cag	ctg	tac	cac	cag	ccc	acc	336
Ser	Gly	Ala	Ser	Thr	Gly	Tyr	His	His	Gln	Leu	Tyr	His	Gln	Pro	Thr	
				100					105				110			
agc	tca	gcg	ctc	cac	tcc	gcg	gac	tcc	gt a	atg	gtg	gcc	tcc	tcg	gcc	384
Ser	Ser	Ala	Leu	His	Phe	Ala	Asp	Ser	Val	Met	Val	Ala	Ser	Ser	Ala	
				115				120				125				
ggt	gtc	cac	gac	ggc	ggt	gcc	atg	ctc	agc	gcg	gcc	gcc	gct	aac	ggt	432
Gly	Val	His	Asp	Gly	Gly	Ala	Met	Leu	Ser	Ala	Ala	Ala	Ala	Asn	Gly	
				130				135				140				
gtc	gct	ggc	gct	gcc	agt	gcc	aac	ggc	ggc	gyc	atc	ggg	ctg	tcc	atg	480
Val	Ala	Gly	Ala	Ala	Ser	Ala	Asn	Gly	Gly	Gly	Ile	Gly	Leu	Ser	Met	
				145				150				155			160	
att	aag	aac	tgg	ctg	cg	agc	caa	ccg	g	ccc	atg	cag	ccg	agg	gtg	528
Ile	Lys	Asn	Trp	Leu	Arg	Ser	Gln	Pro	Ala	Pro	Met	Gln	Pro	Arg	Val	
				165					170				175			
gcg	g	gct	gag	ggc	g	g	cag	ggg	ctc	tct	ttg	tcc	atg	aac	atg	576
Ala	Ala	Ala	Ala	Gu	Gly	Ala	Gln	Gly	Leu	Ser	Leu	Ser	Met	Asn	Met	
				180				185					190			
ggg	acg	acc	caa	ggc	gct	gtc	ggc	atg	cca	ctt	ctc	gct	gga	gag	cgc	624
Gly	Thr	Thr	Gln	Gly	Ala	Ala	Gly	Met	Pro	Leu	Leu	Ala	Gly	Gu	Arg	
				195				200				205				
gca	cgg	g	ccc	gag	agt	gt a	tcg	acg	tca	gca	cag	ggt	gga	gcc	gtc	672
Ala	Arg	Ala	Pro	Gu	Ser	Val	Ser	Thr	Ser	Ala	Gln	Gly	Gly	Ala	Val	
				210				215				220				
gtc	gtc	acg	g	ccg	aag	gag	gt	atg	cca	ctt	ctc	gct	gga	gag	g	720
Val	Val	Thr	Ala	Pro	Lys	Gu	Asp	Ser	Gly	Gly	Gly	Agc	Gly	Val	Ala	
				225				230				235			240	
gct	cta	gt a	gcc	gt g	agc	acg	gac	acg	g	g	g	agc	g	gtt	gcc	768
Ala	Leu	Val	Ala	Val	Ser	Thr	Asp	Thr	Gly	Gly	Gly	Ser	Gly	Gly	Ala	
				245					250				255			
gct	gac	aac	acg	gca	agg	aag	acg	gt g	gac	acg	tcc	ggg	cag	cgc	acg	816
Ala	Asp	Asn	Thr	Ala	Arg	Lys	Thr	Val	Asp	Thr	Phe	Gly	Gln	Arg	Thr	
				260				265				270				
tgc	att	tac	cgt	ggc	gt g	aca	agg	gt g	gac	acg	tcc	ggg	aga	tat	gag	864
Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Gly	
				275				280				285				
gca	cat	ctt	tgg	gat	aac	agt	tgc	aga	agg	gaa	ggg	caa	act	cgt	aag	912
Ala	His	Leu	Trp	Asp	Asn	Ser	Oys	Arg	Arg	Arg	Gu	Gly	Gln	Thr	Arg	

5312WOPCT_SEQ_LI STI NG TXT

290	295	300	
ggt gct caa gtc tat tta ggt ggc tat gat aaa gag gag aag gct gct			960
Gly Arg Glu Val Tyr Leu Gly Tyr Asp Lys Glu Glu Lys Ala Ala			
305 310 315 320			
agg gct tat gat ctt gct gct ctg aag tac tgg ggt gcc aca aca aca			1008
Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Ala Thr Thr Thr			
325 330 335			
aca aat ttt cca gtc agt aac tac gaa aag gag ctc gag gac atg aag			1056
Thr Asn Phe Pro Val Ser Asn Tyr Glu Lys Glu Leu Glu Asp Met Lys			
340 345 350			
cac atg aca agg cag gag ttt gta gcg tct ctg aga agg aag agc agt			1104
His Met Thr Arg Glu Phe Val Ala Ser Leu Arg Arg Lys Ser Ser			
355 360 365			
ggt ttc tcc aga ggt gca tcc att tac agg gga gtg act agg cat cac			1152
Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His			
370 375 380			
caa cat gga aga tgg caa gca cgg att gga cga gt t gca ggg aac aag			1200
Gln His Gly Arg Trp Glu Ala Arg Ile Gly Arg Val Ala Gly Asn Lys			
385 390 395 400			
gat ctt tac ttg ggc acc ttc agc acc cag gag gag gca gcg gag gcg			1248
Asp Leu Tyr Leu Gly Thr Phe Ser Thr Glu Glu Ala Ala Glu Ala			
405 410 415			
tac gac atc gcg gcg atc aag ttc cgc ggc ct c aac gcc gt c acc aac			1296
Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn			
420 425 430			
ttc gac atg agc cgc tac gac gtg aag agc atc ctg gac agc agc gcc			1344
Phe Asp Met Ser Arg Tyr Asp Val Lys Ser Ile Leu Asp Ser Ala			
435 440 445			
ctc ccc atc ggc agc gcc gcc aag cgc ct c aag gag gcc gac gac gca			1392
Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Glu Ala Ala			
450 455 460			
gcg tcc gcg cag cac cac cac gac ggc gtg gtg agc tac gac gt c ggc			1440
Ala Ser Ala Glu His His His Ala Gly Val Val Ser Tyr Asp Val Gly			
465 470 475 480			
cgc atc gcc tcg cag ct c ggc gac ggc gga ggc gcc ct g gcg gcg tac			1488
Arg Ile Ala Ser Glu Leu Gly Asp Gly Gly Ala Leu Ala Ala Ala Tyr			
485 490 495			
ggc gcg cac tac cac ggc gcc tgg ccg acc atc gcg ttc cag ccg			1536
Gly Ala His Tyr His Gly Ala Ala Trp Pro Thr Ile Ala Phe Glu Pro			
500 505 510			
ggc gcc gcc agc aca ggc ctg tac cac ccg tac gcg cag cag cca atg			1584
Gly Ala Ala Ala Ser Thr Gly Leu Tyr His Pro Tyr Ala Glu Glu Pro Met			
515 520 525			
cgc ggc ggc ggg tgg tgc aag cag gag cag gac cac gcg gtg atc gcg			1632
Arg Gly Gly Gly Trp Cys Lys Glu Glu Asp His Ala Val Ile Ala			
530 535 540			
gcc gcg cac agc ctg cag gac ct c cac cac ctg aac ctg ggc gcg gcc			1680
Ala Ala His Ser Leu Glu Asp Leu His His Leu Asn Leu Glu Ala Ala			
545 550 555			
ggc gcg cac gac ttt tt c tcg gca ggg cag cag gac gcc gcc gct gcg			1728
Gly Ala His Asp Phe Phe Ser Ala Gly Glu Ala Ala Ala Ala Ala			

5312WOPCT_SEQ_LI STI NG TXT

565

570

575

at g	cac	ggc	ct g	ggt	agc	at c	gac	agt	gcg	t cg	ct c	gag	cac	agc	acc	1776
Met	His	Gly	Leu	Gly	Ser	Ile	Asp	Ser	Ala	Ser	Leu	Glu	His	Ser	Thr	
			580				585				590					
ggc	t cc	aac	t cc	gt c	gt c	t ac	aac	ggc	ggg	gt c	ggc	gac	agc	aac	ggc	1824
Gly	Ser	Asn	Ser	Val	Val	Tyr	Asn	Gly	Gly	Val	Gly	Asp	Ser	Asn	Gly	
			595			600				605						
gcc	agc	gcc	gt c	ggc	ggc	agt	ggc	ggt	ggc	t ac	at g	at g	ccg	at g	agc	1872
Ala	Ser	Ala	Val	Gly	Gly	Ser	Gly	Gly	Gly	Tyr	Met	Met	Pro	Met	Ser	
			610			615				620						
gct	gcc	gga	gca	acc	act	aca	t cg	gca	at g	gt g	agc	cac	gag	cag	gt g	1920
Ala	Ala	Gly	Ala	Thr	Thr	Thr	Ser	Ala	Met	Val	Ser	His	Gl	Gl	Val	
			625			630			635							
cat	gca	cg	gcc	t ac	gac	gaa	gcc	aag	cag	gct	gct	cag	at g	ggg	t ac	1968
His	Ala	Arg	Ala	Tyr	Asp	Gl	Ala	Lys	Gl	Ala	Ala	Ala	Met	Gly	Tyr	
			645						650					655		
gag	agc	t ac	ct g	gt g	aac	g	g	g	a	at	g	g	g	agg	at g	2016
Gl	Ser	Tyr	Leu	Val	Asn	Ala	Gu	Asn	Asn	Gly	Gly	Gly	Arg	Met	t ct	
			660			665								670		
gca	t gg	ggg	act	gt c	gt g	t ct	gca	gcc	g	g	g	g	g	g	agc	2064
Ala	Trp	Gly	Thr	Val	Val	Ser	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ser	
			675			680				685						
aac	gac	aac	at g	gcc	gcc	gac	gt c	ggc	cat	ggc	ggc	g	g	cag	ct c	2112
Asn	Asp	Asn	Met	Ala	Ala	Asp	Val	Gly	His	Gly	Gly	Ala	Gl	Leu	Phe	
			690			695			700							
agt	gt c	t gg	aac	gac	act	taa										2133
Ser	Val	Trp	Asn	Asp	Thr											
			705		710											

<210> 59

<211> 710

<212> PRT

<213> Zea mays

<400> 59

Met	Ala	Thr	Val	Asn	Asn	Trp	Leu	Ala	Phe	Ser	Leu	Ser	Pro	Gl	Gu
1				5					10				15		
Leu	Pro	Pro	Ser	Gn	Thr	Thr	Asp	Ser	Thr	Leu	Ile	Ser	Ala	Ala	Thr
				20				25					30		
Ala	Asp	His	Val	Ser	Gly	Asp	Val	Cys	Phe	Asn	Ile	Pro	Gn	Asp	Trp
				35			40					45			
Ser	Met	Arg	Gly	Ser	Gl	Leu	Ser	Ala	Leu	Val	Ala	Gl	Pro	Lys	Leu
				50			55				60				
Gl	Asp	Phe	Leu	Gly	Gly	Ile	Ser	Phe	Ser	Gl	Gn	His	His	Lys	Ala
				65			70			75				80	
Asn	Cys	Asn	Met	Ile	Pro	Ser	Thr	Ser	Ser	Thr	Val	Cys	Tyr	Ala	Ser
				85			90					95			
Ser	Gly	Ala	Ser	Thr	Gly	Tyr	His	His	Gn	Leu	Tyr	His	Gn	Pro	Thr
				100			105					110			
Ser	Ser	Ala	Leu	His	Phe	Ala	Asp	Ser	Val	Met	Val	Ala	Ser	Ser	Ala
				115			120					125			
Gly	Val	His	Asp	Gly	Gly	Ala	Met	Leu	Ser	Ala	Ala	Ala	Ala	Asn	Gly
				130			135					140			
Val	Ala	Gly	Ala	Ala	Ser	Ala	Asn	Gly	Gly	Gly	Ile	Gly	Leu	Ser	Met
				145			150					155			160
Ile	Lys	Asn	Trp	Leu	Arg	Ser	Gn	Pro	Ala	Pro	Met	Gn	Pro	Arg	Val
				165			170					175			
Ala	Ala	Ala	Gl	Gly	Ala	Gn	Gly	Leu	Ser	Leu	Ser	Met	Asn	Met	Ala

5312WOPCT_SEQ_LI STI NG TXT

G	y	T	h	r	180	G	n	G	y	A	a	A	a	G	y	M	et	P	ro	L	e	u	L	e	A	a	G	y	G	u	A	rg									
					195											200	205																								
A	l	a	A	rg	Al	a	P	ro	G	u	S	er	V	a	S	er	T	hr	S	er	A	l	a	G	n	G	y	G	y	A	l	a	V	a							
					210											215	220																								
V	a	l	V	a	l	h	r	A	l	a	P	ro	L	y	S	u	A	s	S	er	G	y	G	y	S	er	G	y	V	a	A	l	a	G	y						
					225											230	235																								
A	l	a	L	e	u	V	a	A	l	a	V	a	S	er	T	hr	A	s	P	ro	G	y	G	y	S	er	G	y	G	y	A	l	a	S	er						
					245											250	255																								
A	l	a	A	s	p	A	s	n	T	hr	A	l	a	A	rg	L	y	T	hr	V	al	P	he	G	y	G	n	A	rg	T	hr										
					260											265	270																								
S	er	I	l	e	T	y	A	rg	G	y	V	a	l	h	r	A	rg	H	is	A	rg	T	rp	T	hr	G	y	A	rg	T	yr	G	u								
					275											280	285																								
A	l	a	H	is	L	e	u	T	r	A	s	p	A	s	n	S	er	O	y	A	rg	G	u	G	n	T	hr	A	rg	L	y										
					290											295	300																								
G	y	A	rg	G	n	V	a	T	y	L	e	u	G	y	G	y	T	yr	A	s	P	ro	L	y	G	u	G	u	L	y	A	l	a								
					305											310	315																								
A	rg	A	l	a	T	y	A	s	P	ro	L	e	u	A	l	a	A	l	a	L	y	T	rp	G	y	A	l	a	Th	hr	Th	hr									
					325											330	335																								
T	hr	A	s	n	P	he	P	ro	V	a	S	er	A	s	n	T	y	G	u	L	e	u	G	u	A	s	p	M	et	L	y										
					340											345	350																								
H	is	M	et	T	hr	A	rg	G	n	G	u	P	he	V	a	A	l	a	S	er	L	e	u	A	rg	A	rg	L	y	S	er	S	er								
					355											360	365																								
G	y	P	he	S	er	A	rg	G	y	A	l	a	S	er	I	l	e	T	y	A	rg	G	y	V	al	Th	hr	A	rg	H	is	H	is								
					370											375	380																								
G	n	H	is	G	y	A	rg	T	r	G	n	A	l	a	A	rg	I	l	e	G	y	A	rg	V	al	A	l	a	G	y	A	sn	L	y							
					385											390	395																								
A	s	P	le	u	T	y	R	L	G	y	T	hr	P	he	S	er	T	hr	G	n	G	u	G	u	A	l	a	G	u	A	l	a									
					405											410	415																								
T	yr	A	s	p	I	l	e	A	l	a	A	l	a	I	l	e	L	y	P	he	A	rg	G	y	A	sn	A	l	a	V	al	Th	hr	A	sn						
					420											425	430																								
P	he	A	s	p	M	et	S	er	A	rg	T	y	A	s	p	V	al	L	y	S	er	I	l	e	L	y	A	rg	S	er	S	er	A	l	a						
					435											440	445																								
L	e	u	P	ro	I	l	e	G	y	S	er	A	l	a	A	l	a	L	y	S	er	I	l	e	L	y	A	rg	G	u	A	l	a	A	l	a					
					450											455	460																								
A	l	a	S	er	A	l	a	G	n	H	is	H	is	A	l	a	G	y	V	al	Val	S	er	T	yr	A	rg	V	al	G	y										
					465											470	475																								
A	rg	I	l	e	A	l	a	S	er	G	n	L	e	G	y	A	rg	G	y	A	l	a	L	e	A	l	a	A	l	a	T	yr									
					485											490	495																								
G	y	A	l	a	H	is	T	y	H	is	G	y	A	l	a	T	r	P	ro	Th	hr	I	l	e	A	l	a	P	he	G	n	P	ro								
					500											505	510																								
G	y	A	l	a	A	l	a	S	er	T	hr	G	y	L	e	u	T	y	H	is	P	ro	T	hr	A	l	a	G	n	P	ro	M	et								
					515											520	525																								
A	rg	G	y	G	y	G	y	T	r	C	y	L	y	S	er	G	n	G	u	G	n	A	s	p	H	is	A	l	a	V	al	I	l	e	A	l	a				
					530											535	540																								
A	l	a	A	l	a	H	is	S	er	L	e	u	G	n	A	s	p	L	e	u	G	u	G	u	A	l	a	V	al	I	l	e	A	l	a						
					545											550	555																								
G	y	A	l	a	H	is	S	er	P	he	P	he	S	er	A	l	a	G	y	G	n	G	n	A	l	a	A	l	a	A	l	a	A	l	a						
					565											570	575																								
M	et	H	is	G	y	L	e	u	T	y	A	s	p	E	s	R	A	l	a	S	er	L	e	G	u	H	is	S	er	T	hr										
					580											585	590																								
G	y	S	er	A	sn	S	er	V	al	T	hr	P	he	S	er	A	l	a	G	y	G	y	V	al	G	y	A	sn	G	y											
					595											600	605																								
A	l	a	S	er	A	l	a	V	al	G	y	T	hr	P	he	S	er	G	y	G	y	V	al	M	et	P	ro	M	et	S	er										
					610											615	620																								
A	l	a	A	l	a	G	y	A	l	a	T	hr	P	he	S	er	A	l	a	M	et	V	al	S	er	H	is	G	u	G	n	V	al								
					625											630	635																								
H	is	A	l	a	Arg	A	l	a	T	y	A	s	P	he	G	u	A	l	a	L	y	S	er	G	n	A	l	a	G	u	T	yr									
					645											650	655																								
G	u	S	er	T	y	L	e	u	V	al	A	s	A	l	a	G	u	A	l	a	G	u	A	l	a	G	u	T	yr												
					660											665	670																								
A	l	a	T	r	G	y	T	hr	V	al	V	al	S	er	A	l	a	A	l	a	A	l	a	A	l	a	A	l	a	S	er	S	er								
					675											680	685																								
A	sn	A	sn	M	et	A																																			

5312WOPCT_SEQ_LI STI NG TXT

<210> 60
 <211> 3727
 <212> DNA
 <213> Zea mays

<400> 60
 at ggccact g t gaacaact g gct cgct t t c t ccct ct ccc cgaggagct gccgcct cc 60
 cagacgacgg act ccacact cat ct cggcc gccaccggc accat gt ct c cggcgat gt c 120
 t gct t caaca t ccccaaga t t ggaggcat g agggat cag agct tt cggc gct cgt cgcg 180
 gagccgaagc t ggaggact t cct cggcgc at ct cct t ct ccgagcagca t cacaaggcc 240
 aact gcaaca t gat acccag cact agcagc acagt tt gct acgcgagct c aggt gct agc 300
 accggct acc at caccagct gt accaccag cccaccagct cagcgt cca ct t cgggac 360
 t ccgt aat gg t ggcct cct c ggcgggt gt c cacgacggc gt gccat gct cagcgcggcc 420
 gccgct aacg gt gt cgct gg cgct gccagt gccaacggc gccgcat cgg gct gt ccat g 480
 at caagaact ggct gcccgg ccaaccggcg cccat gcagc cgagggccg ggcggct gag 540
 ggcgcgcagg ggct ct ct t gt ccat gaac at ggcgggaa cgacccaaagg cgct gct ggc 600
 at gccact t c t cgct ggaga gcgcgcacgg gcccggaga gt gt at cgac gt cagcacag 660
 ggt ggt gccc t cgt cgt cac ggcggcaag gaggat agcg gt ggcagcgg t gt t gccgg 720
 gct ct agt ag ccgt gagcac ggacacgggt ggcagcggc ggcgt cggc t gacaacacg 780
 gcaaggaaga cggt ggacac gt t cgggac ggcacgt cga t t accgt gg cgt gacaagg 840
 t aagggggt g gat gaat caa gt aat cat ga aat ttt gaaa agccat t ggt aat ccaagga 900
 act gt cat ga t agat t t gat t gcat ct aga cat agt t ccg at cgaat caa at gagt aggc 960
 caaat gt t t ag cct t t gggga t ct cgcgt gat t at t tagagt accat t gt at t gggcat ggt 1020
 t gt ggt at ag t agt agacaa t t aacaaaaa agct accact t t caat t at t t aggcat a 1080
 gat ggact gg ct cgt aagggt at acaaattt gggat aacag t t gcagaagg gaaggacaaa 1140
 t t ct gt aagt t t at t t c accaat gat g t t gt t at t gt t aact gacat t gct t cacac 1200
 t at caat t t t ggat t cggc gaat gat t t g t gggat t gaa at caaat ct t aaat ct acag 1260
 t ct at t t agg t acgcgt t t ct ccaact act t aat gca gt t cgt t t ct ccct at aacc 1320
 at att ct t t t t cat ct caaa t ct cact cga ct ct t t t t t t t at ct t gt a ccat t gat ag 1380
 gt ggct at ga t aaagaggag aaagct gct a aat t t cccag t at gt at t g t agcat ccag t t t act t t a 1440
 ggggt cccac aacaacaaca aat t t cccag t at gt at t g t agcat ccag t t t act t t a 1500
 ct gaagt t ca t at ct cgt t a t ggct at aa aat gt at ca aat gat gt cc at t agct agt 1560
 gat ct ggagt gaagggt t ct a t agt aaagt a aacgct gt gt gcccggat gca gt agcgggag 1620
 gt ct ct ct t c t at t t ct aa gaaaaat gga cat t gct gaa at t gt act t a aagt cgt t t a 1680
 t t t t at t t t t t gt at t t cc aggt gat gaa ct acgaaaag gagct cgagg acat gaagca 1740
 cat gacaagg caggagt t t g t acgcgt ct ct gagaaggat cg gt ct aacagc at t gat t aat 1800
 cagt accacc t ct act gaat aaaat ct gct gct at t t gt t aat t t gagt caggt caac 1860
 t gcat at t t g at t t at t ag accact gt at gat gcat gacat gaaact t aac 1920
 gaggt gcat c t t t acagg ggagt gact a ggt at gaat t cat at gcat a gaaact t aac 1980
 at caacaaaa acacacat ac act t ggggt t g at gt ggcaga t gcat gcat g gat t gaaaat 2040
 gt gt gcat gt t g t t t act t gaact cgat c t ct gt at t t a t aggcat cac caacat ggaa 2100
 gat ggcaagc acggat t gga cgagt t gcag aacaat at g t t t t gcat t g at at agag t accct t gaa t at at aaat t 2160
 gt aagt agca aacaat at g t t t t gcat t acaagcaat t acagt caac t aacacaat c t caacgcaac gagaaagcaa 2220
 caccacat at gt gt t ccagg t gat agt aca cat t t gt aga ccagccgtat ggt t gt t t gt at gcat g 2280
 gt gt t ccagg at gact at t a aaaat gt gac cat cgcatt a aat gt gcat t a agt cat gcaa agt t gcat t g cagt agt aca 2340
 t t gct t agt g cat gct cct c aagt ggct t t t t caacact t aacacaat c t caacgcaac gagaaagcaa 2400
 t gt t gt ct cc cat t caccgg t gcat caggat caaaat agt a ccat gcct ga at aagaaaaa 2460
 caaaacgagc at gcact ggc agcagcagac t aat aaacaa agt t ccagca t t t act aat a 2520
 aact aat t ag gct acagcat cccaaagat t ct t ccaat t a agccacaact gt t cat gcat 2580
 acat gggat gcccaccagg at accat gca t gaccgt gc acgacgaaag cggaaacgct c 2640
 gt t ct cggaa t at t agaact gacgaaggccg agt gcaacct t ct gt cgt gg at gcaggcac 2700
 ccaggaggag gcagcggagg cgt acgacat cggcggcat c aagt t ccgcgcgt ccct aaacgc 2760
 cgt caccaac t t cgcacat ga gcccgt acga cgt gaagagc at cct ggaca gcagcgcct 2820
 ccccat cggc agcgcgcct aagccct caa ggaggccgag gccgcagcgt cccgcgcagca 3000
 ccaccacggc ggcgt ggt ga gt t acgacgt cggccgcatt c gcct cgcgc t cggcgacgg 3060
 cggaggccct g gcccggcgat cccgcgcgc t accacggc gcgcct ggc cgaccat cgc 3120
 gt t ccaggccg ggcgt gcaaggcaggaccaact t accacccg t acgcgcagc agccat gcg 3180
 cggggccggg t ggt gcaaggcaggaccaact t accacccg ccaacgcgt g at cgcggccg cgcacagcct 3240
 gcaggaccc t caccacct ga acct gggcgc gggccgcgc t cgcact t t t t ct cggcagg 3300
 gcagcaggcc gcccgcgt g ccat gcacgg cct gggt agc at cgacagt g cgt cgct cga 3360
 gcacagcacc ggct ccaact ccgt cgt ct a caacggccgg gtcggcaca gcaacggcgc 3420
 cagcggccgt c ggccgcgt g gcggt ggct a cat gat gccg at gagcgt g ccggagcaac 3480
 cact acat cg gcaat ggt ga gccacgagca ggt gcat gca cggcct acg acgaagccaa 3540
 gcaggct gct cagat ggggt acgagacgt a cct ggt gaac gccgagaaca at ggt ggcgg 3600
 aaggat gt ct gcat ggggaa ct gt cgt gt c t gcagccgcg cggcagcagca 3660

5312WOPCT_SEQ_LI STI NG TXT

cgacaacat g gccggcggacg t cggccat gg cggcgcgca g ct ct t cagt g t ct ggaacga 3720
cact t aa 3727

<210> 61
<211> 8
<212> PRT
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> BBM consensus sequence motif 4

<220>
<221> VARI ANT
<222> 3
<223> Xaa=Leu or Val

<220>
<221> VARI ANT
<222> 4
<223> Xaa=Glu or Ala

<220>
<221> VARI ANT
<222> 5
<223> Xaa=Asp or Asn

<400> 61
Pro Lys Xaa Xaa Xaa Phe Leu Gl y
1 5

<210> 62
<211> 13
<212> PRT
<213> Artificial Sequence

<220>
<223> Synt hesi zed

<220>
<223> BBM consensus sequence motif 5

<220>
<221> VARI ANT
<222> 6
<223> Xaa=Ile or Val

<220>
<221> VARI ANT
<222> 9
<223> Xaa=Ala or Leu

<220>
<221> VARI ANT
<222> 11, 12
<223> Xaa=Lys or Arg

<220>
<221> VARI ANT
<222> 13
<223> Xaa=Leu or Arg

<400> 62
Ser Ser Thr Leu Pro Xaa Gl y Gl y Xaa Al a Xaa Xaa Xaa
1 5 10

5312WOPCT_SEQ_LISTING.TXT

<210> 63
<211> 9
<212> PRT
<213> Artificial Sequence

<220>
<223> Synt hesized

<220>
<223> BBM consensus sequence motif 6

<220>
<221> VARI ANT
<222> 4
<223> Xaa=Gly or Ser

<400> 63
Asn Trp Leu Xaa Phe Ser Leu Ser Pro
1 5

<210> 64
<211> 63
<212> PRT
<213> Artificial Sequence

<220>
<223> Synt hesized

<220>
<223> BBM consensus sequence motif 2

<220>
<221> VARI ANT
<222> 2
<223> Xaa=Ile or Met

<220>
<221> VARI ANT
<222> 36
<223> Xaa=Gln or Glu

<220>
<221> VARI ANT
<222> 45
<223> Xaa=Ile or Val

<220>
<221> VARI ANT
<222> 60
<223> Xaa=Asp or Glu

<220>
<221> VARI ANT
<222> 61
<223> Xaa=Met or Ile

<220>
<221> VARI ANT
<222> (62) . . . (62)
<223> Xaa=Ser or Asn

<400> 64
Ser Xaa Tyr Arg Gly Val Thr Arg His His Gln His Gly Arg Trp Gln

<223> Xaa=Thr or His

<220>

<221> VARI ANT

<222> (62) . . . (62)

<223> Xaa=Thr or Ile

<220>

<221> VARI ANT

<222> (66) . . . (66)

<223> Xaa=Ile, Val, or Leu

<400> 65

Ser	Xaa	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Glu
1				5					10				15		
Ala	His	Leu	Trp	Asp	Asn	Ser	Cys	Arg	Xaa	Glu	Gly	Gln	Xaa	Arg	Lys
				20				25				30			
Xaa	Xaa	Xaa	Gly	Gly	Tyr	Asp	Lys	Glu	Xaa	Lys	Ala	Ala	Arg	Ala	Tyr
					35			40			45				
Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Xaa	Xaa	Thr	Xaa	Xaa	Asn	Phe
					50			55			60				
Pro	Xaa	Ser	Asn												
															65

<210> 66

<211> 31

<212> PRT

<213> Artificial Sequence

<220>

<223> Synthesized

<220>

<223> BBM consensus sequence motif 1

<220>

<221> VARI ANT

<222> 10

<223> Xaa=His or Asn

<220>

<221> VARI ANT

<222> 16

<223> Xaa=Phe or Tyr

<220>

<221> VARI ANT

<222> 17

<223> Xaa=Val or Ile

<220>

<221> VARI ANT

<222> 19

<223> Xaa=Ser or His

<400> 66

Tyr	Glu	Lys	Glu	Leu	Glu	Glu	Met	Lys	Xaa	Met	Thr	Arg	Gln	Glu	Xaa
1					5					10				15	
Xaa	Ala	Xaa	Leu	Arg	Arg	Lys	Ser	Ser	Gly	Phe	Ser	Arg	Gly	Ala	
							20						30		

<210> 67

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> BBM consensus sequence motif 7

<220>

<221> VARI ANT

<222> 1

<223> Xaa=Gly or Glu

<220>

<221> VARI ANT

<222> 7

<223> Xaa=Thr or Asn

<400> 67

Xaa Leu Ser Met Ile Lys Xaa Trp Leu Arg
1 5 10

<210> 68

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> BBM consensus sequence motif 10

<220>

<221> VARI ANT

<222> 4

<223> Xaa=Gln or Pro

<400> 68

Trp Cys Lys Xaa Glu Gln Asp
1 5

<210> 69

<211> 8

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> BBM consensus sequence motif 8

<220>

<221> VARI ANT

<222> 2, 4, 5

<223> Xaa=any amino acid

<400> 69

Pro Xaa Phe Xaa Xaa Trp Asn Asp
1 5

<210> 70

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> BBM consensus sequence motif 9

<220>

<221> VARI ANT

<222> 2

<223> Xaa=Ser, Thr, or Ala

<400> 70

Leu Xaa Leu Ser Met

1

5

<210> 71

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> BBM consensus sequence motif 14

<400> 71

Trp Pro Thr Ile Ala Phe Glu

1

5

<210> 72

<211> 11

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> BBM consensus sequence motif 15

<220>

<221> VARI ANT

<222> 2

<223> Xaa=Ser or Thr

<400> 72

Ser Xaa Gly Ser Asn Ser Val Val Tyr Asn Gly

1

5

10

<210> 73

<211> 7

<212> PRT

<213> Artificial Sequence

<220>

<223> Synt hesized

<220>

<223> BBM consensus sequence motif 19

<220>

<221> VARI ANT

5312WOPCT_SEQ_LI STI NG TXT

<222> 4

<223> Xaa=Ser or Asn

<400> 73

G n Asp Tr p Xaa Met Arg Gly
1 5

<210> 74

<211> 1755

<212> DNA

<213> Arabidopsis thaliana

<220>

<221> CDS

<222> (1)...(1755)

<400> 74

at g aac t cg at g aat aac t gg t t a g gc t t c t ct c t ct c ct c t ct c g at
Met Asn Ser Met Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro His Asp
1 5 10 15caa aat cat cac cgt acg gat gtt gac t cc t cc acc acc aga acc gcc
G n Asn His His Arg Thr Asp Val Asp Ser Ser Thr Thr Arg Thr Ala
20 25 30gt a gat gtt gcc gga ggg tac t gt ttt gat ct g gcc gct ccc t cc gat
Val Asp Val Ala Gly Gly Tyr Cys Phe Asp Leu Ala Ala Pro Ser Asp
35 40 45gaa t ct t ct gcc gtt caa aca t ct ttt ctt t ct cct t tc ggt gtc acc
G u Ser Ser Ala Val G n Thr Ser Phe Leu Ser Pro Phe Gly Val Thr
50 55 60ct c gaa gct t tc acc aga gac aat aat agt cac t cc cga gat t gg gac
Leu G u Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp
65 70 75 80at c aat ggt ggt gca t gc aat aca t t a acc aat aac gaa caa aat gga
Ile Asn Gly Gly Ala Cys Asn Thr Leu Thr Asn Asn G u G n Asn Asn Gly
85 90 95cca aag ctt gag aat t tc ctc ggc cgc acc acc acg att tac aat acc
Pro Lys Leu G u Asn Phe Leu G y Arg Thr Thr Ile Tyr Asn Thr
100 105 110aac gag acc gtt gt a gat gga aat ggc gat t gt gga gga gac ggt
Asn G u Thr Val Val Asp Gly Asn G y Asp Cys G y G y Asp G y
115 120 125ggt ggt ggc ggc t ca cta ggc ctt t cg at g at a aaa aca t gg ct g agt
G y G y G y G y Ser Leu G y Leu Ser Met Ile Lys Thr Trp Leu Ser
130 135 140aat cat t cg gtt gct aat gct aat cat caa gac aat ggt aac ggt gca
Asn His Ser Val Ala Asn Ala Asn His G n Asp Asn G y Asn G y Ala
145 150 155 160cga ggc tt g t cc ctc t ct at g aat t ca t ct act agt gat agc aac aac
Arg G y Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Asp Ser Asn Asn
165 170 175t ac aac aac aat gat gat gt c gt c caa gag aag act att gtt gat gt c
Tyr Asn Asn Asn Asn Asp Asp Val Val G n G u Lys Thr Ile Val Asp Val
180 185 190gt a gaa act aca c cg aag aaa act att gag agt t tt gga caa agg acg
Val G u Thr Thr Pro Lys Lys Thr Ile G u Ser Phe G y G n Arg Thr

5312WOPCT_SEQ_LI STI NG TXT

195

200

205

t ct	at a	t ac	c g c	g g t	g t t	a c a	agg	c a t	c g g	t g g	a c a	g g t	a g a	t a c	g a g	672
Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Glu	
210					215					220						210
g c a	c a t	t t a	t g g	g a c	a a t	a g t	t g c	a a a	a g a	g a a	g g c	c a g	a c t	c g c	a a a	720
Al a	His	Leu	Trp	Asp	Asn	Ser	Cys	Lys	Arg	Glu	Gly	Gln	Thr	Arg	Lys	
225					230					235						225
g g a	a g a	c a a	g t t	t a t	c t g	g g a	g g t	t a t	g a c	a a a	g a a	g a a	a a a	g c a	g c t	768
Gly	Arg	Gln	Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	Glu	Glu	Lys	Ala	Ala	
245					250					255						245
a g g	g c t	t a c	g a t	t t a	g c c	g c a	c t a	a a g	t a t	t g g	g g a	c c c	a c c	a c t	a c t	816
Arg	Ala	Tyr	Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Pro	Thr	Thr	Thr	
260					265					270						260
a c t	a a c	t t c	c c c	t t g	a g t	g a a	t a t	g a g	a a a	g a g	g t a	g a a	g a g	a t g	a a g	864
Thr	Asn	Phe	Pro	Leu	Ser	Gly	Tyr	Glu	Lys	Glu	Val	Glu	Glu	Met	Lys	
275					280					285						275
c a c	a t g	a c g	a g g	c a a	g a g	t a t	g t t	g c c	t c t	c t g	c g c	agg	aaa	agt	agt	912
His	Met	Thr	Arg	Gln	Glu	Tyr	Val	Ala	Ser	Leu	Arg	Arg	Lys	Ser	Ser	
290					295					300						290
g g t	t t c	t c t	c g t	g g t	g c a	t c g	a t t	t a t	c g a	g g a	g t a	a c a	agg	cat	c a c	960
Gly	Phe	Ser	Arg	Gly	Ala	Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Gly	
305					310					315						305
c a a	c a t	g g a	a g g	t g g	c a a	g c t	a g g	a t c	g g a	g t c	g c c	g g t	a a c	a a a	1008	
Gln	His	Gly	Arg	Trp	Gln	Ala	Arg	Ile	Gly	Arg	Val	Ala	Gly	Asn	Lys	
325					330					335						325
g a c	c t c	t a c	t t g	g g a	a c t	t t c	g g c	a c a	c a g	g a a	g a g	g c t	g a g	g c t	g o t	1056
Asp	Leu	Tyr	Leu	Gly	Thr	Phe	Gly	Thr	Gly	Glu	Glu	Ala	Ala	Ala	Ala	
340					345					350						340
t a t	g a c	a t t	g c a	g c c	a t t	a a a	t t c	a g a	g g a	t t a	a g c	g c a	g t g	a c t	a a c	1104
Tyr	Asp	Ile	Ala	Ala	Ile	Lys	Phe	Arg	Gly	Leu	Ser	Ala	Val	Thr	Asn	
355					360					365						355
t t c	g a c	a t g	a a c	a g a	t a c	a a t	g t t	a a a	g c a	a t c	c t c	g a g	a g c	c c g	a g t	1152
Phe	Asp	Asp	Met	Asn	Arg	Tyr	Asn	Val	Lys	Ala	Ile	Leu	Glu	Ser	Pro	
370					375					380						370
c t a	c c t	a t t	g g t	a g t	t c t	g c g	a a a	c g t	c t c	a a g	g a c	g t t	a a c	a a t	c c g	1200
Leu	Pro	Ile	Gly	Ser	Ser	Ala	Lys	Arg	Leu	Lys	Asp	Val	Asn	Asn	Pro	
385					390					395						385
g t t	c c a	g c t	a t g	a t g	a t t	a g t	a a t	a a c	g t t	t c a	g a g	g t t	a g t	a a t	a a t	1248
Val	Pro	Ala	Met	Met	Ile	Ser	Asn	Asn	Val	Ser	Glu	Ser	Ala	Asn	Asn	
405					410					415						405
g t t	a g c	g g t	t g g	caa	a a c	a c t	g c g	t t t	c a g	c a t	c a t	c a g	g g a	a t g	g a t	1296
Val	Ser	Gly	Trp	Gln	Asn	Thr	Ala	Phe	Gly	His	His	Gly	Met	Gly	Asp	
420					425					430						420
t t g	a g c	t t a	t t g	c a g	caa	c a g	c a g	g a g	agg	t a c	g t t	g g t	t a t	t a c	a a t	1344
Leu	Ser	Leu	Leu	Gly	Gly	Gly	Gly	Gly	Arg	Tyr	Val	Gly	Tyr	Tyr	Asn	
435					440					445						435
g g a	g g a	a a c	t t g	t c t	a c c	g a g	a g t	a c t	a g g	g t t	t g t	t t c	aaa	caa	g a g	1392
Gly	Gly	Asn	Leu	Ser	Thr	Gly	Ser	Thr	Arg	Val	Cys	Phe	Lys	Gln	Glu	
450					455					460						450
g a g	g a a	c a a	c a a	c a c	t t c	t t g	a g a	a a c	t c g	c c g	a g t	c a c	a t g	a c t	a a t	1440
Glu	Glu	Gln	Gln	His	Phe	Leu	Arg	Asn	Ser	Pro	Ser	His	Met	Thr	Asn	

5312WOPCT_SEQ_LI STI NG TXT

465	470	475	480		
gt t	gat	cat	cat	485	1488
Val	Asp	His	His	Ser	
				Ser	
				Thr	
				Ser	
				Asp	
				Asp	
				Ser	
				Val	
				Thr	
				Val	
				Cys	
				Gly	
				495	
aat	gt t	gt t	agt	t at	1536
Asn	Val	Val	Ser	Tyr	
				Gly	
				Gly	
				Tyr	
				Gly	
				505	
aca	t cg	gt t	aat	t ac	1584
Thr	Ser	Val	Asn	Tyr	
				Asp	
				Pro	
				Phe	
				Thr	
				Ala	
				Gly	
				520	
gca	aga	aat	cat	t at	1632
Ala	Arg	Asn	His	Tyr	
				Tyr	
				Gly	
				Tyr	
				535	
cag	cag	t cg	ccg	gga	1680
Gly	Gly	Ser	Pro	Gly	
				Gly	
				Asp	
				Thr	
				Ala	
				Gly	
				550	
agc	t ct	aac	at g	t ac	1728
Ser	Ser	Asn	Met	Tyr	
				Phe	
				His	
				Gly	
				565	
acg	ttt	t ca	gt t	t gg	1755
Thr	Phe	Ser	Val	Trp	
				Asn	
				Asp	
				Thr	
				580	

<210> 75

<211> 584

<212> PRT

<213> Arabidopsis thaliana

<400> 75

Met	Asn	Ser	Met	Asn	Asn	Trp	Leu	Gly	Phe	Ser	Leu	Ser	Pro	His	Asp
1			5					10					15		
Gly	Asn	His	His	Arg	Thr	Asp	Val	Asp	Ser	Ser	Thr	Thr	Arg	Thr	Ala
							20	25					30		
Val	Asp	Val	Ala	Gly	Gly	Tyr	Cys	Phe	Asp	Leu	Ala	Ala	Pro	Ser	Asp
							35	40					45		
Glu	Ser	Ser	Ala	Val	Gly	Thr	Ser	Phe	Leu	Ser	Pro	Phe	Gly	Val	Thr
							50	55					60		
Leu	Gly	Ala	Phe	Thr	Arg	Asp	Asn	Asn	Ser	His	Ser	Arg	Asp	Trp	Asp
							65	70					80		
Ile	Asn	Gly	Gly	Ala	Cys	Asn	Thr	Leu	Thr	Asn	Asn	Gly	Gly	Asn	Gly
							85	90					95		
Pro	Lys	Leu	Gly	Asn	Phe	Leu	Gly	Arg	Thr	Thr	Thr	Ile	Tyr	Asn	Thr
							100	105					110		
Asn	Gly	Thr	Val	Val	Asp	Gly	Asn	Gly	Asp	Cys	Gly	Gly	Gly	Asp	Gly
							115	120					125		
Gly	Gly	Gly	Ser	Leu	Gly	Leu	Ser	Met	Ile	Lys	Thr	Trp	Leu	Ser	
							130	135					140		
Asn	His	Ser	Val	Ala	Asn	Ala	Asn	His	Gly	Asp	Asn	Gly	Asn	Gly	Ala
							145	150					160		
Arg	Gly	Leu	Ser	Leu	Ser	Met	Asn	Ser	Ser	Thr	Ser	Asp	Ser	Asn	Asn
							165	170					175		
Tyr	Asn	Asn	Asn	Asp	Asp	Val	Val	Gly	Gly	Lys	Thr	Ile	Val	Asp	Val
							180	185					190		
Val	Gly	Thr	Thr	Pro	Lys	Lys	Thr	Ile	Gly	Ser	Phe	Gly	Gly	Arg	Thr
							195	200					205		
Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Gly
							210	215					220		
Ala	His	Leu	Trp	Asp	Asn	Ser	Cys	Lys	Arg	Gly	Gly	Gly	Thr	Arg	Lys
							225	230					235		
Gly	Arg	Gly	Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	Gly	Gly	Lys	Ala	Ala

5312WOPCT_SEQ_LI STI NG TXT

	245	250	255												
Arg	Ala	Tyr	Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Pro	Thr	Thr	Thr
	260				265			265				270			
Thr	Asn	Phe	Pro	Leu	Ser	Glu	Tyr	Glu	Lys	Glu	Val	Glu	Glu	Met	Lys
	275				280			280				285			
His	Met	Thr	Arg	Gln	Glu	Tyr	Val	Ala	Ser	Leu	Arg	Arg	Lys	Ser	Ser
	290			295						300					
Gly	Phe	Ser	Arg	Gly	Ala	Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	His
	305			310					315					320	
Gln	His	Gly	Arg	Trp	Gln	Ala	Arg	Ile	Gly	Arg	Val	Ala	Gly	Asn	Lys
	325				330			330				335			
Asp	Leu	Tyr	Leu	Gly	Thr	Phe	Gly	Thr	Gln	Glu	Glu	Ala	Glu	Ala	
	340				345			345				350			
Tyr	Asp	Ile	Ala	Ala	Ile	Lys	Phe	Arg	Gly	Leu	Ser	Ala	Val	Thr	Asn
	355				360			360				365			
Phe	Asp	Met	Asn	Arg	Tyr	Asn	Val	Lys	Ala	Ile	Leu	Glu	Ser	Pro	Ser
	370				375			375			380				
Leu	Pro	Ile	Gly	Ser	Ser	Ala	Lys	Arg	Leu	Lys	Asp	Val	Asn	Asn	Pro
	385				390			390			395				400
Val	Pro	Ala	Met	Met	Ile	Ser	Asn	Asn	Val	Ser	Glu	Ser	Ala	Asn	Asn
					405				410				415		
Val	Ser	Gly	Trp	Gln	Asn	Thr	Ala	Phe	Gln	His	His	Gln	Gly	Met	Asp
					420			425				430			
Leu	Ser	Leu	Leu	Gln	Gln	Gln	Glu	Arg	Tyr	Val	Gly	Tyr	Tyr	Asn	
					435			440			445				
Gly	Gly	Asn	Leu	Ser	Thr	Glu	Ser	Thr	Arg	Val	Cys	Phe	Lys	Gln	Glu
						455			455		460				
Glu	Glu	Gln	Gln	His	Phe	Leu	Arg	Asn	Ser	Pro	Ser	His	Met	Thr	Asn
					465			470		475				480	
Val	Asp	His	His	Ser	Ser	Thr	Ser	Asp	Asp	Ser	Val	Thr	Val	Cys	Gly
						485			490				495		
Asn	Val	Val	Ser	Tyr	Gly	Gly	Tyr	Gln	Gly	Phe	Ala	Ile	Pro	Val	Gly
						500			505				510		
Thr	Ser	Val	Asn	Tyr	Asp	Pro	Phe	Thr	Ala	Ala	Glu	Ile	Ala	Tyr	Asn
						515			520			525			
Ala	Arg	Asn	His	Tyr	Tyr	Tyr	Ala	Gln	His	Gln	Gln	Gln	Gln	Ile	
						530			535			540			
Gln	Gln	Ser	Pro	Gly	Gly	Asp	Phe	Pro	Val	Ala	Ile	Ser	Asn	Asn	His
						545			550		555				560
Ser	Ser	Asn	Met	Tyr	Phe	His	Gly	Glu	Gly	Gly	Gly	Glu	Gly	Ala	Pro
						565			570				575		
Thr	Phe	Ser	Val	Trp	Asn	Asp	Thr								
					580										

<210> 76
<211> 1740
<212> DNA
<213> Brassica napus

<220>
<221> CDS
<222> (1)...(1740)

<400> 76																
at g	aat	aat	aac	tgg	tta	ggc	ttt	tct	ctc	tct	cct	tat	gaa	caa	aat	48
Met	Asn	Asn	Asn	Trp	Leu	Gly	Phe	Ser	Leu	Ser	Pro	Tyr	Glu	Gln	Asn	
1				5					10				15			
cac	cat	cgt	aag	gac	gtc	tac	tct	tcc	acc	acc	aca	acc	gtc	gt a	gat	96
His	His	Arg	Lys	Asp	Val	Tyr	Ser	Ser	Thr	Thr	Thr	Thr	Val	Val	Asp	
					20			25					30			
gt c	gcc	gga	gag	tac	tgt	tac	gat	ccg	acc	gct	gcc	tcc	gat	gag	tct	144
Val	Ala	Gly	Gu	Tyr	Cys	Tyr	Asp	Pro	Thr	Ala	Ala	Ser	Asp	Glu	Ser	
						35			40			45				
tca	gcc	atc	caa	aca	tcg	ttt	cct	tct	ccc	ttt	ggt	gt c	gt c	gt c	gat	192

5312WOPCT_SEQ.LI STI NG TXT

Ser	Ala	Ile	Gln	Thr	Ser	Phe	Pro	Ser	Pro	Phe	Gly	Val	Val	Val	Asp	
50					55						60					
gct	ttc	acc	aga	gac	aac	aat	agt	cac	tcc	cga	gat	tgg	gac	atc	aat	240
Ala	Phe	Thr	Arg	Asp	Asn	Asn	Ser	His	Ser	Arg	Asp	Trp	Asp	Ile	Asn	
65					70						75					80
ggt	tgt	gca	tgc	aat	aac	atc	cac	aac	gat	gag	caa	gat	gga	cca	aag	288
Gly	Cys	Ala	Cys	Asn	Asn	Ile	His	Asn	Asp	Gl	Gn	Asp	Gly	Pro	Lys	
85										90						95
ctt	gag	aat	ttc	ctt	ggc	cgc	acc	acc	acg	att	ta	acc	acc	acc	gaa	336
Leu	Gl	u	Asn	Phe	Leu	Gly	Arg	Thr	Thr	Ile	Tyr	Asn	Thr	Asn	Gl	u
100								105					110			
aac	gtt	gga	gat	gga	agt	gga	agt	gga	tgt	tat	gga	gga	gga	gac	ggt	384
Asn	Val	Gly	Asp	Gly	Ser	Gly	Ser	Gly	Cys	Tyr	Gly	Gly	Gly	Asp	Gly	
115											125					
ggt	ggt	ggc	tca	cta	gga	ctt	tcg	atg	ata	aag	aca	tgg	ctg	aga	aat	432
Gly	Gly	Gly	Ser	Leu	Gly	Leu	Ser	Met	Ile	Lys	Thr	Trp	Leu	Arg	Asn	
130						135					140					
caa	ccc	gtg	gat	aat	gtt	gat	aat	caa	gaa	aat	ggc	aat	gct	gca	aaa	480
Gn	Pro	Val	Asp	Asn	Val	Asp	Asn	Gn	Gl	Asn	Gly	Ala	Ala	Ala	Lys	
145						150				155						160
ggc	ctg	tcc	ctc	tca	atg	aac	tca	tct	act	tct	tgt	gat	aac	aac	aac	528
Gly	Leu	Ser	Leu	Ser	Met	Asn	Ser	Ser	Thr	Ser	Cys	Asp	Asn	Asn	Asn	
165									170							175
gac	agc	aat	aac	aac	gtt	gtt	gcc	caa	ggg	aag	act	att	gat	gat	agc	576
Asp	Ser	Asn	Asn	Asn	Val	Val	Ala	Gn	Gly	Lys	Thr	Ile	Asp	Asp	Ser	
180								185					190			
gtt	gaa	gct	aca	ccg	aag	aaa	act	att	gag	agt	ttt	gga	cag	agg	acg	624
Val	Gl	u	Ala	Thr	Pro	Lys	Lys	Thr	Ile	Gu	Ser	Phe	Gly	Gn	Arg	Thr
195						200						205				
tct	ata	tac	cgc	ggt	gtt	aca	agg	cat	cgg	tgg	aca	gga	aga	tat	gag	672
Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Gl	u
210						215					220					
gca	cat	tta	tgg	gat	aat	agt	tgt	aaa	aga	gaa	ggc	caa	acg	cgc	aaa	720
Ala	His	Leu	Trp	Asp	Asn	Ser	Cys	Lys	Arg	Gu	Gly	Gn	Thr	Arg	Lys	
225						230				235						240
gga	aga	caa	gtt	tat	tgt	gga	ggt	tat	gac	aaa	gaa	gaa	aaa	gca	gct	768
Gly	Arg	Gn	Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	Gu	Gu	Lys	Ala	Ala	
245									250							255
agg	gct	tat	gat	tta	gcc	gca	ctc	aag	tat	tgg	gga	acc	acc	act	act	816
Arg	Ala	Tyr	Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Thr	Thr	Thr	Thr	
260						265					270					
act	aac	tcc	ccc	atg	agc	gaa	tat	gaa	aaa	gag	gt	gaa	gag	atg	aag	864
Thr	Asn	Phe	Pro	Met	Ser	Gl	Tyr	Gl	Lys	Gl	u	Val	Gu	Met	Lys	
275						280					285					
cac	atg	aca	agg	caa	gag	tat	gtt	gcc	tca	ctg	cgc	agg	aaa	agt	agt	912
His	Met	Thr	Arg	Gn	Gl	Tyr	Val	Ala	Ser	Leu	Arg	Arg	Lys	Ser	Ser	
290						295					300					
ggt	tcc	tct	cgt	ggt	gca	tgc	att	tat	cgt	gga	gt	a	aca	aga	cat	960
Gly	Phe	Ser	Arg	Gly	Ala	Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	His	
305						310				315						320
caa	cat	gga	aga	tgg	caa	gct	agg	ata	gga	aga	gt	c	gcc	ggt	aaa	1008

5312WOPCT SEQ LI STI NG TXT

5312WOPCT_SEQ_LI STI NG TXT

<210> 77
<211> 579
<212> PRT
<213> Brassica napus

<400> 77
Met Asn Asn Asn Trp Leu Gly Phe Ser Leu Ser Pro Tyr Glu Gln Asn
1 5 10 15
His His Arg Lys Asp Val Tyr Ser Ser Thr Thr Thr Thr Val Val Asp
20 25 30
Val Ala Gly Glu Tyr Cys Tyr Asp Pro Thr Ala Ala Ser Asp Glu Ser
35 40 45
Ser Ala Ile Gln Thr Ser Phe Pro Ser Pro Phe Gly Val Val Val Asp
50 55 60
Ala Phe Thr Arg Asp Asn Asn Ser His Ser Arg Asp Trp Asp Ile Asn
65 70 75 80
Gly Cys Ala Cys Asn Asn Ile His Asn Asp Glu Gln Asp Gly Pro Lys
85 90 95
Leu Glu Asn Phe Leu Gly Arg Thr Thr Ile Tyr Asn Thr Asn Glu
100 105 110
Asn Val Gly Asp Gly Ser Gly Ser Gly Cys Tyr Gly Gly Asp Gly
115 120 125
Gly Gly Ser Leu Gly Leu Ser Met Ile Lys Thr Trp Leu Arg Asn
130 135 140
Gln Pro Val Asp Asn Val Asp Asn Gln Glu Asn Gly Asn Ala Ala Lys
145 150 155 160
Gly Leu Ser Leu Ser Met Asn Ser Ser Thr Ser Cys Asp Asn Asn Asn
165 170 175
Asp Ser Asn Asn Asn Val Val Ala Gln Gly Lys Thr Ile Asp Asp Ser
180 185 190
Val Glu Ala Thr Pro Lys Lys Thr Ile Glu Ser Phe Gly Gln Arg Thr
195 200 205
Ser Ile Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu
210 215 220
Ala His Leu Trp Asp Asn Ser Cys Lys Arg Glu Gly Gln Thr Arg Lys
225 230 235 240
Gly Arg Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala
245 250 255
Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr
260 265 270
Thr Asn Phe Pro Met Ser Glu Tyr Glu Lys Glu Val Glu Glu Met Lys
275 280 285
His Met Thr Arg Gln Gln Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser
290 295 300
Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His
305 310 315 320
Gln His Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys
325 330 335
Asp Leu Tyr Leu Gly Thr Phe Gly Thr Gln Glu Glu Ala Ala Glu Ala
340 345 350
Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly Leu Thr Ala Val Thr Asn
355 360 365
Phe Asp Met Asn Arg Tyr Asn Val Lys Ala Ile Leu Glu Ser Pro Ser
370 375 380
Leu Pro Ile Gly Ser Ala Ala Lys Arg Leu Lys Glu Ala Asn Arg Pro
385 390 395 400
Val Pro Ser Met Met Ile Ser Asn Asn Val Ser Glu Ser Glu Asn
405 410 415
Ser Ala Ser Gly Trp Gln Asn Ala Ala Val Gln His His Gln Gly Val
420 425 430
Asp Leu Ser Leu Leu His Gln His Gln Glu Arg Tyr Asn Gly Tyr Tyr
435 440 445
Tyr Asn Gly Gly Asn Leu Ser Ser Glu Ser Ala Arg Ala Cys Phe Lys
450 455 460
Gln Glu Asp Asp Gln His His Phe Leu Ser Asn Thr Gln Ser Leu Met
465 470 475 480
Thr Asn Ile Asp His Gln Ser Ser Val Ser Asp Asp Ser Val Thr Val
485 490 495

<210> 78
<211> 1740
<212> DNA
<213> *Brassica napus*

<220>
<221> CDS
<222> (1) . . . (1740)

<400> 78																			48
at	g	aat	aat	aac	tgg	tta	ggc	ttt	tct	ctc	tct	cct	tat	gaa	caa	aat			
Met	Asn	Asn	Asn	Asn	Trp	Leu	Gly	Phe	Ser	Leu	Ser	Pro	Tyr	Gu	Gln	Asn			
1					5					10					15				
cac	cat	cgt	aag	gac	gtc	tgc	tct	tcc	acc	acc	aca	acc	gtc	gt	a	gat		96	
His	His	Arg	Lys	Asp	Val	Cys	Ser	Ser	Thr	Thr	Thr	Thr	Thr	Ala	Val	Asp			
			20					25						30					
gtc	gcc	gga	gag	tac	tgt	tac	gat	ccg	acc	gct	gcc	tcc	gat	gag	tct			144	
Val	Ala	Gly	Gu	Tyr	Cys	Tyr	Asp	Pro	Thr	Ala	Ala	Ser	Asp	Gu	Ser				
		35				40				45									
tca	gcc	atc	caa	aca	tcc	ttt	cct	tct	ccc	ttt	ggt	gtc	gtc	ctc	gat			192	
Ser	Ala	Ile	Gln	Thr	Ser	Phe	Pro	Ser	Pro	Phe	Gly	Val	Val	Leu	Asp				
		50			55					60									
gct	ttc	acc	aga	gac	aac	aat	agt	cac	tcc	cga	gat	tgg	gac	atc	aat			240	
Ala	Phe	Thr	Arg	Asp	Asn	Asn	Ser	His	Ser	Arg	Asp	Trp	Asp	Ile	Asn				
		65			70				75					80					
ggt	agt	gca	tgt	aat	aac	atc	cac	aat	gat	gag	caa	gat	gga	cca	aaa			288	
Gly	Ser	Ala	Cys	Asn	Asn	Ile	His	Asn	Asp	Gu	Gln	Asp	Gly	Pro	Lys				
			85						90					95					
ctt	gag	aat	ttc	ctt	ggc	cgc	acc	acc	acg	att	tac	aac	acc	aac	gaa			336	
Leu	Gu	Asn	Phe	Leu	Gly	Arg	Thr	Thr	Thr	Ile	Tyr	Asn	Thr	Asn	Asn	Gu			
			100					105					110						
aac	gtt	gga	gat	atc	gat	gga	agt	ggg	tgt	tat	gga	gga	gga	gac	ggt			384	
Asn	Val	Gly	Asp	Ile	Asp	Gly	Ser	Gly	Cys	Tyr	Gly	Gly	Gly	Asp	Gly				
		115			120														
ggt	ggt	ggc	tca	cta	gga	ctt	tcg	atg	ata	aag	aca	tgg	ctg	aga	aat			432	
Gly	Gly	Gly	Ser	Leu	Gly	Leu	Ser	Met	Ile	Lys	Thr	Trp	Leu	Arg	Asn				
		130			135					140									
caa	ccc	gtg	gat	aat	gtt	gat	aat	caa	gaa	aat	ggc	aat	ggt	gca	aaa			480	
Gln	Pro	Val	Asp	Asn	Val	Asp	Asn	Gln	Gu	Asn	Gly	Asn	Gly	Ala	Lys				
					150					155					160				
ggc	ctg	tcc	ctc	tca	atg	aac	tca	tct	act	tct	tgt	gat	aac	aac	aac			528	
Gly	Leu	Ser	Leu	Ser	Met	Asn	Ser	Ser	Thr	Ser	Cys	Asp	Asn	Asn	Asn				
			165						170							175			

5312WOPCT_SEQ_LI STI NG TXT

t ac	agc	agt	aac	aac	ct t	gt t	gcc	caa	ggg	aag	act	att	gat	gat	gat	agc	576
Tyr	Ser	Ser	Asn	Asn	Leu	Val	Ala	Gln	Gly	Lys	Thr	Ile	Asp	Asp	Asp	Ser	
180							185						190				
gt t	gaa	gct	aca	ccg	aag	aaa	act	att	gag	agt	ttt	gga	cag	agg	acg	624	
Val	Gu	Ala	Thr	Pro	Lys	Lys	Thr	Ile	Glu	Ser	Phe	Gly	Gln	Arg	Thr		
195							200				205						
t ct	ata	t ac	cgc	ggt	gt t	aca	agg	cat	cgg	tgg	aca	gga	aga	tat	gag	672	
Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Glu		
210						215				220							
gca	cat	t t a	tgg	gat	aat	agt	t gt	aaa	cga	gaa	ggc	caa	acg	cgc	aaa	720	
Ala	His	Leu	Trp	Asp	Asn	Ser	Cys	Lys	Arg	Gu	Gly	Gln	Thr	Arg	Lys		
225					230				235						240		
gga	aga	caa	gt t	tat	t t g	gga	ggt	tat	gac	aaa	gaa	gaa	aaa	gca	gct	768	
Gly	Arg	Gln	Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	Gl	Gu	Lys	Ala	Ala		
245						250								255			
agg	gct	t at	gat	t t a	gcc	gca	ctc	aag	t at	tgg	gga	acc	acc	act	act	816	
Arg	Ala	Tyr	Asp	Leu	Ala	Ala	Leu	Lys	265	Tyr	Trp	Gly	Thr	Thr	Thr		
260										270							
act	aac	t t c	ccc	at g	agc	gaa	t at	gag	aaa	gag	ata	gaa	gag	at g	aag	864	
Thr	Asn	Phe	Pro	Met	Ser	Glu	Tyr	280		Glu	Lys	Glu	Ile	Glu	Met		
275										285							
cac	at g	aca	agg	caa	gag	t at	gt t	gcc	t ca	ctt	cgc	agg	aaa	agt	agt	912	
His	Met	Thr	Arg	Gln	Gu	Tyr	Val	Ala	Ser	Leu	Arg	Arg	Lys	Ser	Ser		
290					295				300								
ggt	t t c	t ct	cgt	ggt	gca	t cg	att	t at	cgt	gga	gt a	aca	aga	cat	cac	960	
Gly	Phe	Ser	Arg	Gly	Ala	Ser	Ile	Tyr	Arg	315		Thr	Arg	His	His		
305					310									320			
caa	cat	gga	aga	t gg	caa	gct	agg	at a	gga	aga	gt c	gcc	ggt	aac	aaa	1008	
Gn	His	Gly	Arg	Trp	Gn	Ala	Arg	Ile	Gly	Arg	Val	Ala	Gly	Asn	Lys		
325						330								335			
gac	ct c	t ac	t t g	gga	act	t t t	ggc	aca	caa	gaa	gaa	gct	gca	gag	gca	1056	
Asp	Leu	Tyr	Leu	Gly	Thr	Phe	Gly	Thr	Gn	Gu	Gu	Ala	Ala	Gu	Ala		
340						345								350			
t ac	gac	att	gcg	gcc	at c	aaa	t t c	aga	gga	t t a	acc	gca	gt g	act	aac	1104	
Tyr	Asp	Ile	Ala	Ala	Ile	Lys	Phe	Arg	Gly	Leu	Thr	Ala	Val	Thr	Asn		
355						360					365						
t t c	gac	at g	aac	aga	t ac	aac	gt t	aaa	gca	at c	ct c	gaa	agc	cct	agt	1152	
Phe	Asp	Asp	Met	Asn	Arg	Tyr	Asn	Val	Lys	Ala	Ile	Leu	Gu	Ser	Pro		
370						375					380						
ct t	cct	att	ggt	agc	gcc	gca	aaa	cgt	ct c	aag	gag	gct	aac	cgt	ccg	1200	
Leu	Pro	Ile	Gly	Ser	Ala	Ala	Lys	Arg	Leu	395		Ala	Asn	Arg	Pro		
385					390									400			
gt t	cca	agt	at g	at g	at g	at c	agt	aat	aac	gt t	t ca	gag	agt	gag	aat	1248	
Val	Pro	Ser	Met	Met	Met	Ile	Ser	Asn	Asn	Val	Ser	Gl	Ser	Gl	Asn		
405								410					415				
aat	gct	agc	ggt	t gg	caa	aac	gct	gcg	gt t	cag	cat	cat	cag	gga	gt a	1296	
Asn	Ala	Ser	Gly	Trp	Gn	Asn	Ala	Ala	Val	Gn	His	His	Gn	Gly	Val		
420						425							430				
gat	ttg	agc	t t a	t t g	cag	caa	cat	caa	gag	agg	t ac	aat	ggt	t at	t at	1344	
Asp	Leu	Ser	Leu	Leu	Gn	Gn	His	Gn	Gu	Arg	Tyr	Asn	Gly	Tyr	Tyr		
435						440							445				

5312WOPCT_SEQ_LI STI NG TXT

t ac	aat	gga	gga	aac	ttg	tct	tcg	gag	agt	gct	agg	gct	tgt	ttc	aaa		1392
Tyr	Asn	Gly	Gly	Asn	Leu	Ser	Ser	Gl u	Ser	Al a	Arg	Al a	Cys	Phe	Lys		
450					455					460							
caa	gag	gat	gat	caa	cac	cat	t tc	ttg	agc	aac	acg	cag	agc	ctc	atg		1440
Gly	Gl u	Asp	Asp	Gly	His	His	Phe	Leu	Ser	Asn	Thr	Gl n	Ser	Leu	Met		
465					470				475						480		
act	aat	atc	gat	cat	caa	agt	tct	gtt	tca	gat	gat	tcg	gtt	act	gtt		1488
Thr	Asn	Ile	Asp	His	Gly	Ser	Ser	Val	Ser	Asp	Asp	Ser	Val	Thr	Val		
					485				490						495		
t gt	gga	aat	gtt	gtt	ggt	tat	ggt	ggt	tat	caa	gga	ttt	gca	gcc	ccg		1536
Cys	Gly	Asn	Val	Val	Gly	Tyr	Gly	Gly	Tyr	Gl n	Gly	Phe	Al a	Al a	Pro		
					500				505				510				
gtt	aac	tgc	gat	gcc	tac	gct	gct	agt	gag	ttt	gac	tat	aac	gca	aga		1584
Val	Asn	Cys	Asp	Al a	Tyr	Al a	Al a	Ser	Gl u	Phe	Asp	Tyr	Asn	Al a	Arg		
					515				520				525				
aac	cat	tat	tac	ttt	gct	cag	cag	cag	cag	acc	cag	cat	t cg	cca	gga		1632
Asn	His	Tyr	Tyr	Phe	Al a	Gly	Gly	Gly	Gly	Thr	Gl n	His	Ser	Pro	Gly		
					530				535				540				
gga	gat	ttt	ccc	g cg	gca	atg	acg	aat	aat	gtt	ggc	tct	aat	atg	tat		1680
Gly	Asp	Phe	Pro	Al a	Al a	Met	Thr	Asn	Asn	Val	Gly	Ser	Asn	Met	Tyr		
					545				550				555		560		
t ac	cat	ggg	gaa	ggt	ggt	gga	gaa	gtt	gct	cca	aca	ttt	aca	gtt	tgg		1728
Tyr	His	Gly	Gl y	Gly	Gly	Gl y	Gl u	Val	Al a	Pro	Thr	Phe	Thr	Val	Trp		
					565				570					575			
aac	gac	aat	t ag													1740	
Asn	Asp	Asn															

<210> 79
 <211> 579
 <212> PRT
 <213> Brassica napus

<400> 79

Met	Asn	Asn	Asn	Trp	Leu	Gly	Phe	Ser	Leu	Ser	Pro	Tyr	Gl u	Gly	Asn		
1				5					10					15			
His	His	Arg	Lys	Asp	Val	Cys	Ser	Ser	Thr	Thr	Thr	Thr	Al a	Val	Asp		
					20				25					30			
Val	Al a	Gly	Gl u	Tyr	Cys	Tyr	Asp	Pro	Thr	Al a	Al a	Ser	Asp	Gl u	Ser		
					35				40					45			
Ser	Al a	Ile	Gly	Thr	Ser	Phe	Pro	Ser	Pro	Phe	Gly	Val	Val	Leu	Asp		
					50				55					60			
Al a	Phe	Thr	Arg	Asp	Asn	Asn	Ser	His	Ser	Arg	Asp	Trp	Asp	Ile	Asn		
					65				70					75		80	
Gly	Ser	Al a	Cys	Asn	Asn	Ile	His	Asn	Asp	Gl u	Gly	Asp	Gly	Pro	Lys		
					85				90					95			
Leu	Gl u	Asn	Phe	Leu	Gly	Arg	Thr	Thr	Ile	Tyr	Asn	Thr	Asn	Gl u			
					100				105					110			
Asn	Val	Gly	Asp	Ile	Asp	Gly	Ser	Gly	Cys	Tyr	Gly	Gly	Gly	Asp	Gly		
					115				120					125			
Gly	Gly	Gly	Ser	Leu	Gly	Leu	Ser	Met	Ile	Lys	Thr	Trp	Leu	Arg	Asn		
					130				135					140			
Gly	Pro	Val	Asp	Asn	Val	Asp	Asn	Gly	Gu	Asn	Gly	Asn	Gly	Al a	Lys		
					145				150					155		160	
Gly	Leu	Ser	Leu	Ser	Met	Asn	Ser	Ser	Thr	Ser	Cys	Asp	Asn	Asn	Asn		
					165				170					175			
Tyr	Ser	Ser	Asn	Asn	Leu	Val	Al a	Gly	Lys	Thr	Ile	Asp	Asp	Ser			
					180				185					190			
Val	Gl u	Al a	Thr	Pro	Lys	Lys	Thr	Ile	Gl u	Ser	Phe	Gly	Gly	Arg	Thr		

5312WOPCT SEQ LI STI NG TXT

<210> 80
<211> 2070
<212> DNA
<213> Medi cago truncat ul a

<220>
<221> CDS
<222> (1)...(2070)

```

<400> 80
at g gcc t ct at g aac t tg t t a ggt t t c t ct c t a t ct c ca c aa gaa c aa 48
Met Al a Ser Met Asn Leu Leu G y Phe Ser Leu Ser Pro G n G u G n
1 5 10 15

```

cat cca tca aca caa gat caa acg gt g gct tcc cgt ttt ggg ttc aac	96
His Pro Ser Thr Glu Asp Glu Thr Val Ala Ser Arg Phe Glu Phe Asn	
20 25 30	

5312WOPCT_SEQ_LI STI NG TXT

cct aat gaa atc tca ggc tct gat gtt caa gga gat cac tgc tat gat	144
Pro Asn Glu Ile Ser Gly Ser Asp Val Glu Asp His Cys Tyr Asp	
35 40 45	
ctc tct tct cac aca act cct cat cat tca ctc aac ctt tct cat cct	192
Leu Ser Ser His Thr Thr Pro His His Ser Leu Asn Leu Ser His Pro	
50 55 60	
ttt tcc att tat gaa gct ttc cac aca aat aac aac att cac acc act	240
Phe Ser Ile Tyr Glu Ala Phe His Thr Asn Asn Asn Ile His Thr Thr	
65 70 75 80	
caa gat tgg aag gag aac tac aac aac caa aac cta cta ttg gga aca	288
Gl n Asp Trp Lys Glu Asn Tyr Asn Asn Gl n Asn Leu Leu Leu Gl y Thr	
85 90 95	
tca tgc atg aac caa aat gtg aac aac aac aac caa caa gca caa cca	336
Ser Cys Met Asn Gl n Asn Val Asn Asn Asn Asn Gl n Gl n Ala Gl n Pro	
100 105 110	
aag cta gaa aac ttc ctc ggt gga cac tct ttc acc gac cat caa gaa	384
Lys Leu Glu Asn Phe Leu Gl y Gl y His Ser Phe Thr Asp His Gl n Gl u	
115 120 125	
tac ggt ggt agc aac tca tac tct tca tta cac ctc cca cct cat cag	432
Tyr Gl y Gl y Ser Asn Ser Tyr Ser Leu His Leu Pro Pro His Gl n	
130 135 140	
ccg gaa gca tcc tgt ggc ggt ggt gat ggt agt aca agt aac aat aac	480
Pro Gl u Ala Ser Cys Gl y Gl y Asp Gl y Ser Thr Ser Asn Asn Asn	
145 150 155 160	
tca ata ggt tta tct atg ata aaa aca tgg ctc aga aac caa cca cca	528
Ser Ile Gl y Leu Ser Met Ile Lys Thr Trp Leu Arg Asn Gl n Pro Pro	
165 170 175	
cca cca gaa aac aac aac aat aac aac aat gaa agt ggt gca cgt gt g	576
Pro Pro Gl u Asn Asn Asn Asn Asn Asn Asn Gl u Ser Gl y Al a Arg Val	
180 185 190	
cag aca cta tca ctt tct atg agt act ggc tca cag tca agt tca tct	624
Gl n Thr Leu Ser Leu Ser Met Ser Thr Gl y Ser Gl n Ser Ser Ser	
195 200 205	
gt g cct ctt ctc aat gca aat gt g at g agt ggt gag att tcc tca tcg	672
Val Pro Leu Leu Asn Al a Asn Val Met Ser Gl y Gl u Ile Ser Ser Ser	
210 215 220	
gaa aac aaa caa cca ccc aca act gca gt t gt a ctt gat agc aac caa	720
Gl u Asn Lys Gl n Pro Pro Thr Thr Al a Val Val Leu Asp Ser Asn Gl n	
225 230 235 240	
aca agt gtc gtt gaa agt gct gt g cct aga aaa tcc gt t gat aca ttt	768
Thr Ser Val Val Gl u Ser Al a Val Pro Arg Lys Ser Val Asp Thr Phe	
245 250 255	
gga caa aga act tcc att tac cgt ggt gt a aca agg cat aga tgg aga	816
Gl y Gl n Arg Thr Ser Ile Tyr Arg Gl y Val Thr Arg His Arg Trp Thr	
260 265 270	
ggg aga tat gaa gct cac ctt tgg gat aat agt ttt aga aga gag ggg	864
Gl y Arg Tyr Gl u Al a His Leu Trp Asp Asn Ser Cys Arg Arg Gl u Gl y	
275 280 285	
cag act cgc aaa gga agg caa gtt tac ttg gga ggt tat gac aaa gaa	912
Gl n Thr Arg Lys Gl y Arg Gl n Val Tyr Leu Gl y Gl y Tyr Asp Lys Gl u	
290 295 300	

5312WOPCT_SEQ_LI STI NG TXT

gaa	aaa	gca	gct	aga	gcc	tat	gat	ttg	gca	gca	ct a	aaa	tat	tgg	gga	960
Gl u	Lys	Al a	Al a	Arg	Al a	Tyr	Asp	Leu	Al a	Al a	Leu	Lys	Tyr	Trp	G y	
305			310						315						320	
aca	act	act	aca	aca	aat	ttt	cca	att	agc	cat	tat	gaa	aaa	gaa	gt g	1008
Thr	Thr	Thr	Thr	Thr	Asn	Phe	Pro	Ile	Ser	His	Tyr	Gl u	Lys	Gl u	Val	
				325					330			335				
gaa	gaa	at g	aag	cat	at g	aca	agg	caa	gag	t ac	gt t	gcg	t ca	ttg	aga	1056
Gl u	Gl u	Met	Lys	His	Met	Thr	Arg	G n	Gl u	Tyr	Val	Al a	Ser	Leu	Arg	
			340				345					350				
agg	aaa	agt	agt	ggt	ttt	tca	cga	ggt	gca	tcc	att	tac	cga	gga	gt a	1104
Arg	Lys	Ser	Ser	G y	Phe	Ser	Arg	G y	Al a	Ser	Ile	Tyr	Arg	G y	Val	
			355			360					365					
aca	aga	cat	cat	caa	cat	ggt	aga	tgg	caa	gct	agg	att	gga	aga	gt t	1152
Thr	Arg	His	His	G n	His	G y	Arg	Trp	G n	Al a	Arg	Ile	G y	Arg	Val	
			370			375				380						
gca	ggc	aac	aaa	gat	ctc	tac	cta	gga	act	t t c	agc	act	caa	gaa	gag	1200
Al a	G y	Asn	Lys	Asp	Leu	Tyr	Leu	G y	Thr	Phe	Ser	Thr	G n	Gl u	Gl u	
			385			390			395				400			
gca	gca	gag	gca	tat	gat	gt g	gca	gca	at a	aaa	t t c	aga	gga	ct g	agt	1248
Al a	Al a	Gl u	Al a	Tyr	Asp	Val	Al a	Al a	Ile	Lys	Phe	Arg	G y	Leu	Ser	
				405			410					415				
gca	gt t	aca	aac	ttt	gac	at g	agc	aga	tat	gat	gt c	aaa	acc	at a	ct t	1296
Al a	Val	Thr	Asn	Phe	Asp	Met	Ser	Arg	Tyr	Asp	Val	Lys	Thr	Ile	Leu	
			420				425				430					
gag	agc	agc	aca	tta	cca	att	ggt	ggt	gct	gca	aag	cgt	tta	aaa	gac	1344
Gl u	Ser	Ser	Thr	Leu	Pro	Ile	G y	G y	Al a	Al a	Al a	Arg	Leu	Lys	Asp	
			435			440						445				
at g	gag	caa	gt t	gaa	ttg	aat	cat	gt g	aat	gt t	gat	at t	agc	cat	aga	1392
Met	Gl u	G n	Val	Gl u	Leu	Asn	His	Val	Asn	Val	Asp	Ile	Ser	His	Arg	
			450			455				460						
act	gaa	caa	gat	cat	agc	at c	at c	aac	aac	act	tcc	cat	tta	aca	gaa	1440
Thr	Gl u	G n	Asp	His	Ser	Ile	Ile	Asn	Asn	Thr	Ser	His	Leu	Thr	G u	
			465			470				475						
caa	gcc	at c	tat	gca	gca	aca	aat	gca	t ct	aat	tgg	cat	gca	ct t	tca	1488
G n	Al a	Ile	Tyr	Al a	Al a	Thr	Asn	Al a	Ser	Asn	Trp	His	Al a	Leu	Ser	
			485					490					495			
t t c	caa	cat	caa	caa	cca	cat	cat	t ac	aat	gcc	aac	aac	at g	cag	1536	
Phe	Gl n	His	G n	G n	Pro	His	His	His	Asn	Al a	Asn	Asn	Met	G n		
			500				505					510				
t t a	cag	aat	tat	cct	tat	gga	act	caa	act	caa	aag	ct t	tgg	tgc	aaa	1584
Leu	Gl n	Asn	Tyr	Pro	Tyr	G y	Thr	G n	Thr	G n	Lys	Leu	Trp	Cys	Lys	
			515			520				525						
caa	gaa	caa	gat	tct	gat	gat	cat	agt	act	tat	act	act	gct	act	gat	1632
G n	Gl u	G n	Asp	Ser	Asp	Asp	His	Ser	Thr	Thr	Thr	Al a	Thr	Asp		
			530			535				540						
att	cat	caa	cta	cag	t t a	ggg	aat	aat	aat	aac	aat	act	cac	aat	t t c	1680
Ile	His	G n	Leu	G n	Leu	G y	Asn	Asn	Asn	Asn	Asn	Thr	His	Asn	Phe	
			545			550				555				560		
t t t	ggt	t t a	caa	aat	at c	at g	agt	at g	gat	t ct	gct	t cc	at g	gat	aat	1728
Phe	G y	Leu	Gl n	Asn	Ile	Met	Ser	Met	Asp	Ser	Al a	Ser	Met	Asp	Asn	
				565				570					575			

5312WOPCT_SEQ_LI STI NG TXT

agt	t ct	gga	t ct	aat	t ct	gt t	gt t	t at	ggt	ggt	gga	gat	cat	ggt	ggt	1776
Ser	Ser	G y	Ser	Asn	Ser	Val	Val	Tyr	G y	G y	G y	Asp	His	G y	G y	
		580						585					590			
t at	gga	gga	aat	ggt	gga	t at	at g	att	cca	at g	gct	att	gca	aat	gat	1824
Tyr	G y	G y	Asn	G y	G y	Tyr	Met	Ile	Pro	Met	Ala	Ile	Ala	Asn	Asp	
		595					600				605					
ggt	aac	caa	aat	cca	aga	agc	aac	aac	aat	ttt	ggt	gag	agt	gag	att	1872
G y	Asn	G n	Asn	Pro	Arg	Ser	Asn	Asn	Asn	Phe	G y	Gl u	Ser	Gl u	Ile	
		610				615				620						
aaa	gga	ttt	ggt	t at	gaa	aat	gt t	ttt	ggg	act	act	act	gat	cct	t at	1920
Lys	G y	Phe	G y	Tyr	Gu	Asn	Val	Phe	G y	Thr	Thr	Thr	Asp	Pro	Tyr	
		625			630				635						640	
cat	gca	cag	gca	gca	agg	aac	ttg	t ac	t at	cag	cca	caa	caa	tta	tct	1968
His	Al a	G n	Al a	Al a	Arg	Asn	Leu	Tyr	Tyr	Gl n	Pro	Gl n	Gl n	Leu	Ser	
						645			650				655			
gt t	gat	caa	gga	t ca	aat	t gg	gt t	cca	act	gct	att	cca	aca	ctt	gct	2016
Val	Asp	G n	G y	Ser	Asn	Trp	Val	Pro	Thr	Al a	Ile	Pro	Thr	Leu	Al a	
			660				665						670			
cca	agg	act	acc	aat	gt c	t ct	cta	t gt	cct	cct	t tc	act	t tg	t tg	cat	2064
Pro	Arg	Thr	Thr	Asn	Val	Ser	Leu	Oys	Pro	Pro	Phe	Thr	Leu	Leu	His	
			675			680			685							
gaa	tag															2070
	Gl u															

<210> 81
<211> 689
<212> PRT
<213> Medi cago truncat ul a

<400> 81																
Met	Al a	Ser	Met	Asn	Leu	Leu	G y	Phe	Ser	Leu	Ser	Pro	G n	Gl u	G n	
1			5						10					15		
His	Pro	Ser	Thr	G n	Asp	G n	Thr	Val	Al a	Ser	Arg	Phe	G y	Phe	Asn	
				20				25					30			
Pro	Asn	Gl u	Ile	Ser	G y	Ser	Asp	Val	Gl n	G y	Asp	His	Cys	Tyr	Asp	
				35			40				45					
Leu	Ser	Ser	His	Thr	Thr	Pro	His	His	Ser	Leu	Asn	Leu	Ser	His	Pro	
				50			55				60					
Phe	Ser	Ile	Tyr	Gl u	Al a	Phe	His	Thr	Asn	Asn	Ile	His	Thr	Thr		
				65			70			75			80			
G n	Asp	Trp	Lys	Gl u	Asn	Tyr	Asn	Asn	Gl n	Asn	Leu	Leu	Leu	G y	Thr	
				85				90					95			
Ser	Cys	Met	Asn	G n	Asn	Val	Asn	Asn	Asn	Gl n	Gl n	Al a	G n	Pro		
				100			105					110				
Lys	Leu	Gl u	Asn	Phe	Leu	G y	G y	His	Ser	Phe	Thr	Asp	His	G n	Gl u	
				115			120				125					
Tyr	G y	G y	Ser	Asn	Ser	Tyr	Ser	Ser	Leu	His	Leu	Pro	Pro	His	G n	
				130			135				140					
Pro	Gl u	Al a	Ser	Cys	G y	G y	Asp	G y	Ser	Thr	Ser	Asn	Asn	Asn		
				145			150			155				160		
Ser	Ile	G y	Leu	Ser	Met	Ile	Lys	Thr	Trp	Leu	Arg	Asn	Gl n	Pro	Pro	
				165				170				175				
Pro	Pro	Gl u	Asn	Asn	Asn	Asn	Asn	Asn	Gl u	Ser	G y	Al a	Arg	Val		
				180			185				190					
G n	Thr	Leu	Ser	Leu	Ser	Met	Ser	Thr	G y	Ser	G n	Ser	Ser	Ser	Ser	
				195			200				205					
Val	Pro	Leu	Leu	Asn	Al a	Asn	Val	Met	Ser	G y	Gl u	Ile	Ser	Ser	Ser	
				210			215				220					

5312WOPCT_SEQ.LI STI NG TXT

G u Asn Lys G n Pro Pro Thr Thr Al a Val Val Leu Asp Ser Asn G n
 225 230 235 240
 Thr Ser Val Val G u Ser Al a Val Pro Arg Lys Ser Val Asp Thr Phe
 245 250 255
 G y G n Arg Thr Ser Ile Tyr Arg G y Val Thr Arg His Arg Tr p Thr
 260 265 270
 G y Arg Tyr G u Al a His Leu Tr p Asp Asn Ser Cys Arg Arg G u G y
 275 280 285
 G n Thr Arg Lys G y Arg G n Val Tyr Leu G y G y Tyr Asp Lys G u
 290 295 300
 G u Lys Al a Al a Arg Al a Tyr Asp Leu Al a Al a Leu Lys Tyr Tr p G y
 305 310 315 320
 Thr Thr Thr Thr Asn Phe Pro Ile Ser His Tyr G u Lys G u Val
 325 330 335
 G u G u Met Lys His Met Thr Arg G n G u Tyr Val Al a Ser Leu Arg
 340 345 350
 Arg Lys Ser Ser G y Phe Ser Arg G y Al a Ser Ile Tyr Arg G y Val
 355 360 365
 Thr Arg His His G n His G y Arg Tr p G n Al a Arg Ile G y Arg Val
 370 375 380
 Al a G y Asn Lys Asp Leu Tyr Leu G y Thr Phe Ser Thr G n G u G u
 385 390 395 400
 Al a Al a G u Al a Tyr Asp Val Al a Al a Ile Lys Phe Arg G y Leu Ser
 405 410 415
 Al a Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Thr Ile Leu
 420 425 430
 G u Ser Ser Thr Leu Pro Ile G y G y Al a Al a Lys Arg Leu Lys Asp
 435 440 445
 Met G u G n Val G u Leu Asn His Val Asn Val Asp Ile Ser His Arg
 450 455 460
 Thr G u G n Asp His Ser Ile Ile Asn Asn Thr Ser His Leu Thr G u
 465 470 475 480
 G n Al a Ile Tyr Al a Al a Thr Asn Al a Ser Asn Tr p His Al a Leu Ser
 485 490 495
 Phe G n His G n G n Pro His His His Tyr Asn Al a Asn Asn Met G n
 500 505 510
 Leu G n Asn Tyr Pro Tyr G y Thr G n Thr G n Lys Leu Tr p Cys Lys
 515 520 525
 G n G u G n Asp Ser Asp Asp His Ser Thr Tyr Thr Thr Al a Thr Asp
 530 535 540
 Ile His G n Leu G n Leu G y Asn Asn Asn Asn Asn Thr His Asn Phe
 545 550 555 560
 Phe G y Leu G n Asn Ile Met Ser Met Asp Ser Al a Ser Met Asp Asn
 565 570 575
 Ser Ser G y Ser Asn Ser Val Val Tyr G y G y Asp His G y G y
 580 585 590
 Tyr G y G y Asn G y G y Tyr Met Ile Pro Met Al a Ile Al a Asn Asp
 595 600 605
 G y Asn G n Asn Pro Arg Ser Asn Asn Asn Phe G y G u Ser G u Ile
 610 615 620
 Lys G y Phe G y Tyr G u Asn Val Phe G y Thr Thr Thr Asp Pro Tyr
 625 630 635 640
 His Al a G n Al a Al a Arg Asn Leu Tyr Tyr G n Pro G n G n Leu Ser
 645 650 655
 Val Asp G n G y Ser Asn Tr p Val Pro Thr Al a Ile Pro Thr Leu Al a
 660 665 670
 Pro Arg Thr Thr Asn Val Ser Leu Cys Pro Pro Phe Thr Leu Leu His
 675 680 685
 G u

<210> 82
 <211> 2133
 <212> DNA
 <213> Glycine max

<220>

5312WOPCT SEQ LI STI NG TXT

<221> CDS
<222> (1) . . . (2133)

5312WOPCT_SEQ_LI STI NG TXT

aga aag tcc att gac act ttt	gga cag aga act tct	atc tac cgt ggt	816
Arg Lys Ser Ile Asp Thr Phe	Gly Gln Arg Thr Ser	Ile Tyr Arg Gly	
260	265	270	
gt a aca agg cat agg tgg acg	ggg agg tat gag gct cac	ctg tgg gat	864
Val Thr Arg His Arg Trp Thr	Gly Arg Tyr Glu Ala	His Leu Trp Asp	
275	280	285	
aat agt t gt aga aga gag gga	caa act cgc aaa gga	agg caa gtt tac	912
Asn Ser Cys Arg Arg Glu Gly	Gln Thr Arg Lys	Gly Arg Gln Val	
290	295	300	
t t g gga ggt t at gac aaa	gaa gaa aag gca gct	aga gcc tac gat ttg	960
Leu Gly Gly Tyr Asp Lys Glu	Gu Gu Lys Ala Al a	Arg Ala Tyr Asp Leu	
305	310	315	
gca gca cta aaa tac tgg gga	aca act acg aca aat	ttt cca att	1008
Al a Al a Leu Lys Tyr Trp	Gly Thr Thr Thr Asn	Phe Pro Ile	
325	330	335	
agc cac t at gag aaa gag ttg	gaa gaa atg aag cac	atg act agg caa	1056
Ser His Tyr Gu Lys Glu Leu	Gu Glu Met Lys His	Met Thr Arg Gln	
340	345	350	
gag t ac gt t gcg tca ttg	aga agg aag agt ggt	ttt tct cgc ggg	1104
Gu Tyr Val Ala Ser Leu Arg	Arg Arg Lys Ser	Gly Phe Ser Arg Gly	
355	360	365	
gca t cc att t at cga ggt	gt g acg aga cac cat	caa cat gga aga tgg	1152
Al a Ser Ile Tyr Arg Gly Val	Val Thr Arg His	Gln His Gly Arg Trp	
370	375	380	
caa gcg agg att gga aga gt t	gct ggc aac aag gat	ctc tac ttg gga	1200
Gln Al a Arg Ile Gly Arg Val	Al a Gly Asn Lys	Leu Tyr Leu Gly	
385	390	395	
act t tc agc acc caa gag	gag gca gaa gca t at	gat gta gca gca	1248
Thr Phe Ser Thr Gln Glu	Gl u Al a Al a Gl u	Al a Tyr Asp Val Al a Al a	
405	410	415	
atc aaa t tc aga gga cta	agt gct gt t aca aac	t tt gac atg agc aga	1296
Ile Lys Phe Arg Gly Leu Ser	Al a Val Thr Asn Phe	Asp Asp Met Ser Arg	
420	425	430	
t at gac gt g aaa agc at a	ctt gag agc acc act	ttg cca att ggt ggt	1344
Tyr Asp Val Lys Ser Ile Leu	Gl u Ser Thr Leu Pro	Ile Gly Gly	
435	440	445	
gct gca aag cgt ttg aag gat	atg gag cag gt g	gaa ctg agg gt g gag	1392
Al a Al a Lys Arg Leu Lys	Met Glu Gln Val	Gl u Leu Arg Val Gln	
450	455	460	
aat gt t cat aga gca gat	caa gaa gat cat	agt agc atc atg aac	1440
Asn Val His Arg Al a Asp	Gln Glu Asp His	Ile Met Asn Ser	
465	470	475	
cac t ta act caa gga atc	att aac aac tat gca	gca gca gga gca	1488
His Leu Thr Gln Gly Ile Ile	Asn Asn Tyr Al a	Al a Gln Gly Thr	
485	490	495	
gcg act cat cat aac tgg cac	aat gct ctt gca ttc	cac caa cct	1536
Al a Thr His His Asn Trp	Asn Asn Al a Leu	Al a Phe His Gln Pro	
500	505	510	
caa cct tgc acc acc at a	cac tac cct tat gga	caa aga att aat	1584
Gln Pro Cys Thr Thr Ile His	Tyr Pro Tyr Glu Gln	Arg Ile Asn Trp	
515	520	525	

5312WOPCT_SEQ_LI STI NG TXT

tgc aag caa gaa caa gac aac tct gat gcc tct cac tct ttg tct tat	1632
Cys Lys Gln Glu Gln Asp Asn Ser Asp Ala Ser His Ser Leu Ser Tyr	
530 535 540 545 550 555 560	
tca gat att cat caa cta cag cta ggg aac aat ggc aca cac aac ttc	1680
Ser Asp Ile His Gln Leu Gln Leu Gly Asn Asn Gly Thr His Asn Phe	
565 570 575	
ttt cac aca aat tca ggg ttg cac cct atg tta agc atg gat tct gct	1728
Phe His Thr Asn Ser Gly Leu His Pro Met Leu Ser Met Asp Ser Ala	
580 585 590	
tcc att gac aat agc tct tca tct aac tct gtt gtt tat gat ggt tat	1776
Ser Ile Asp Asn Ser Ser Ser Asn Ser Val Val Tyr Asp Gly Tyr	
595	
gga ggt ggt ggg ggc tat aat gtg att cct atg ggg act act act act	1824
Gly Gly Gly Gly Tyr Asn Val Ile Pro Met Gly Thr Thr Thr Thr	
600 605	
gtt gtt gca aat gat ggt gat caa aat cca aga agc aat cat ggt ttt	1872
Val Val Ala Asn Asp Gly Asp Gln Asn Pro Arg Ser Asn His Gly Phe	
610 615 620	
ggt gat aat gag ata aag gca ctt ggt tat gaa agt gtg tat ggt tct	1920
Gly Asp Asn Glu Ile Lys Ala Leu Gly Tyr Gln Ser Val Tyr Gly Ser	
625 630 635 640	
aca act gat cct tat cat gca cat gca agg aac ttg tat tat ctt act	1968
Thr Thr Asp Pro Tyr His Ala His Ala Arg Asn Leu Tyr Tyr Leu Thr	
645 650 655	
caa cag caa cca tct tct gtt gat gca gtg aag gct agt gca tat gat	2016
Gln Gln Gln Pro Ser Ser Val Asp Ala Val Lys Ala Ser Ala Tyr Asp	
660 665 670	
caa gga tct gca tgc aat act tgg gtt cca act gct att cca act cat	2064
Gln Gly Ser Ala Cys Asn Thr Trp Val Pro Thr Ala Ile Pro Thr His	
675 680 685	
gca cca agg tct agt act agt atg gct ctc tgc cat ggt gct acg ccc	2112
Ala Pro Arg Ser Ser Thr Ser 695 Met Ala Leu Cys His Gly Ala Thr Pro	
700	
tcc tct tta ttg cat gaa tag	2133
Phe Ser Leu Leu His Glu	
705 710	

<210> 83
<211> 710
<212> PRT
<213> Glycine max

<400> 83
Met Gly Ser Met Asn Leu Leu Gly Phe Ser Leu Ser Pro Gln Glu His
1 5 10 15
Pro Ser Ser Gln Asp His Ser Gln Thr Ala Pro Ser Arg Phe Cys Phe
20 25 30
Asn Pro Asp Gly Ile Ser Ser Thr Asp Val Ala Gly Asp Cys Phe Asp
35 40 45
Leu Thr Ser Asp Ser Thr Pro His Leu Leu Asn Leu Pro Ser Tyr Gly
50 55 60
Ile Tyr Glu Ala Phe His Arg Ser Asn Asn Ile His Thr Thr Gln Asp
65 70 75 80
Trp Lys Glu Asn Tyr Asn Ser Gln Asn Leu Leu Leu Gly Thr Ser Cys
85 90 95
Ser Asn Gln Asn Met Asn His Asn His Gln Gln Gln Gln Gln Gln

5312WOPCT_SEQ_LI STI NG TXT

Pro	Lys	Leu	100	G u	Asn	Phe	Leu	G y	G y	His	Ser	Phe	G y	G u	His	G u
			115					120				125				
G n	Pro	Tyr		G y	G y	Asn	Ser	Al a	Ser	Thr	G u	Tyr	Met	Phe	Pro	Al a
			130					135				140				
G n	Pro	Val	Leu	Al a	G y	G y	G y	G y	G y	Ser	Asn	Ser	Ser	Ser	Asn	
					150					155						160
Thr	Ser	Asn	Ser	Ser	Ile	G y	Leu	Ser	Met	Ile	Lys	Thr	Trp	Leu		
					165				170				175			
Arg	Asn	G n	Pro	Pro	His	Ser	G lu	Asn	Asn	Asn	Asn	Asn	Asn	Asn	G u	
					180			185					190			
Ser	G y	G y	Asn	Ser	Arg	Ser	Ser	Val	G n	G n	Thr	Leu	Ser	Leu	Ser	
			195					200				205				
Met	Ser	Thr	G y	Ser	G n	Ser	Ser	Thr	Ser	Leu	Pro	Leu	Leu	Thr	Al a	
			210					215				220				
Ser	Val	Asp	Asn	G y	G u	Ser	Ser	Ser	Asp	Asn	Lys	G n	Pro	His	Thr	
			225					230				235				240
Thr	Al a	Al a	Leu	Asp	Thr	Thr	G n	Thr	G y	Al a	Ile	G u	Thr	Al a	Pro	
			245					250				255				
Arg	Lys	Ser	Ile	Asp	Thr	Phe	G y	G n	Arg	Thr	Ser	Ile	Tyr	Arg	G y	
			260					265					270			
Val	Thr	Arg	His	Arg	Trp	Thr	G y	Arg	Tyr	G u	Al a	His	Leu	Trp	Asp	
			275					280					285			
Asn	Ser	Cys	Arg	Arg	G u	G y	G n	Thr	Arg	Lys	G y	Arg	G n	Val	Tyr	
			290					295				300				
Leu	G y	G y	Tyr	Asp	Lys	G u	G u	Lys	Al a	Al a	Arg	Al a	Tyr	Asp	Leu	
			305					310				315				320
Al a	Al a	Leu	Lys	Tyr	Trp	G y	Thr	Thr	Thr	Thr	Asn	Phe	Pro	Ile		
			325					330					335			
Ser	His	Tyr	G u	Lys	G u	Leu	G u	G u	Met	Lys	His	Met	Thr	Arg	G n	
			340					345					350			
G u	Tyr	Val	Al a	Ser	Leu	Arg	Arg	Lys	Ser	Ser	G y	Phe	Ser	Arg	G y	
			355					360				365				
Al a	Ser	Ile	Tyr	Arg	G y	Val	Thr	Arg	His	His	G n	His	G y	Arg	Trp	
			370					375				380				
G n	Al a	Arg	Ile	G y	Arg	Val	Al a	G y	Asn	Lys	Asp	Leu	Tyr	Leu	G y	
			385					390				395				400
Thr	Phe	Ser	Thr	G n	G u	G u	Al a	Al a	G u	Al a	Tyr	Asp	Val	Al a	Al a	
			405					410					415			
Ile	Lys	Phe	Arg	G y	Leu	Ser	Al a	Val	Thr	Asn	Phe	Asp	Met	Ser	Arg	
			420					425					430			
Tyr	Asp	Val	Lys	Ser	Ile	Leu	G u	Ser	Thr	Thr	Leu	Pro	Ile	G y	G y	
			435					440				445				
Al a	Al a	Lys	Arg	Leu	Lys	Asp	Met	G lu	G n	Val	G lu	Leu	Arg	Val	G u	
			450					455				460				
Asn	Val	His	Arg	Al a	Asp	G n	G u	Asp	His	Ser	Ser	Ile	Met	Asn	Ser	
			465					470				475				480
His	Leu	Thr	G n	G y	Ile	Ile	Asn	Asn	Tyr	Al a	Al a	G y	G y	Thr	Thr	
			485					490						495		
Al a	Thr	His	His	His	Asn	Trp	His	Asn	Al a	Leu	Al a	Phe	His	G n	Pro	
			500					505					510			
G n	Pro	Cys	Thr	Thr	Ile	His	Tyr	Pro	Tyr	G y	G n	Arg	Ile	Asn	Trp	
			515					520					525			
Cys	Lys	G n	G u	G n	Asp	Asn	Ser	Asp	Al a	Ser	His	Ser	Leu	Ser	Tyr	
			530					535				540				
Ser	Asp	Ile	His	G n	Leu	G n	Leu	G y	Asn	Asn	G y	Thr	His	Asn	Phe	
			545					550				555				560
Phe	His	Thr	Asn	Ser	G y	Leu	His	Pro	Met	Leu	Ser	Met	Asp	Ser	Al a	
			565					570					575			
Ser	Ile	Asp	Asn	Ser	Ser	Ser	Ser	Asn	Ser	Val	Val	Val	Tyr	Asp	G y	Tyr
			580					585					590			595
G y	G y	G y	G y	Tyr	Asn	Val	Ile	Pro	Met	G y	Thr	Thr	Thr	Thr	Thr	
			595					600					605			
Val	Val	Al a	Asn	Asp	G y	Asp	G n	Asn	Pro	Arg	Ser	Asn	His	G y	Phe	
			610					615				620				
G y	Asp	Asn	G u	Ile	Lys	Al a	Leu	G y	Tyr	G u	Ser	Val	Tyr	G y	Ser	
			625					630				635				640
Thr	Thr	Asp	Pro	Tyr	His	Al a	His	Al a	Arg	Asn	Leu	Tyr	Tyr	Tyr	Leu	Thr

5312WOPCT_SEQ_LI_STI NG TXT

G	n	G	n	G	n	645	Pro	Ser	Ser	Val	Asp	Al	a	650	Val	Lys	Al	a	Ser	Al	a	Tyr	Asp
G	n	G	y	Ser	Al	a	660	Cys	Asn	Thr	Trp	Val	665	Pro	Thr	Al	a	Ile	Pro	Thr	His		
Al	a	675	Pro	Arg	Ser	Ser	680	Ser	Thr	Ser	Al	a	685	Leu	Cys	His	G	y	Al	a	Thr	Pro	
Phe	Ser	705	Leu	Leu	His	G	700	705	710	710													

<210> 84

<211> 1932

<212> DNA

<213> Vitis vinifera

<220>

<221> CDS

<222> (1)...(1932)

<400> 84

at	g	g	c	t	t	c	c	a	t	g	a	a	c	t	g	t	t	g	t	c	c	c	g	a	a	48
Met	Al	a	Ser	Met	Asn	Asn	Trp	Leu	Gly	Phe	Ser	Leu	Ser	Pro	Arg	G	u									
1				5						10				15												

c	t	t	c	c	c	a	g	c	t	g	a	a	t	c	c	t	c	t	g	a	g	a	t	t	96
Leu	Pro	Pro	G	n	Pro	G	u	Asn	His	Ser	G	n	Asn	Ser	Val	Ser	Arg	Leu							
20					25										30										

g	g	t	t	c	a	a	c	t	c	g	a	a	t	c	g	t	g	t	c	g	g	a	g	t	144
G	y	Phe	Asn	Ser	Asp	G	u	Ile	Ser	G	y	Thr	Asp	Val	Ser	G	y	G	u	Qys					
35					40										45										

t	t	t	g	a	t	c	c	t	c	g	t	c	g	t	c	c	t	c	c	c	c	c	c	192	
Phe	Asp	Leu	Thr	Ser	Asp	Ser	55	Thr	Al	a	Pro	Ser	Leu	Asn	Leu	Pro									
50													60												

c	c	t	t	g	g	g	a	t	a	t	t	g	c	c	t	c	c	c	c	c	c	c	c	240
Pro	Phe	G	y	Ile	Leu	G	u	Al	a	Phe	Asn	Arg	75	Asn	Asn	G	n	Pro	G	n	Asp			
65					70										80									

a	c	t	a	c	a	aa	cc	cc	t	c	t	c	g	t	c	t	c	t	g	g	g	g	288	
Thr	Asn	Tyr	Lys	Thr	Thr	85	Ser	90	Leu	Ser	Met	Leu	Met	Leu	Met	G	y	95	Ser					

t	c	a	t	g	g	g	t	c	g	a	a	c	t	g	a	aa	c	t	t	g	a	a	336	
Ser	Oys	Ser	Ser	His	His	Asn	Leu	G	u	Asn	G	n	G	u	Pro	Lys	Leu	G	u					
100								105								110								

a	a	t	t	c	g	g	t	t	c	g	t	c	g	t	c	g	aa	tt	ca	aa	tt	ca	aa	384
Asn	Phe	Leu	G	y	Cys	Arg	Ser	120	Phe	Al	a	Asp	His	G	u	G	n	Lys	Leu	G	n			
115																								

g	g	t	a	c	t	at	t	c	c	t	t	g	g	t	c	t	g	g	tt	ct	g	cg	432	
G	y	Tyr	Tyr	Ile	Ser	Ile	G	y	Leu	Ser	Met	Ile	Lys	Th	Trp	Leu	Arg							
130					135									140										

a	a	c	a	c	t	g	g	c	c	t	c	g	t	c	g	aa	tt	ca	aa	tt	ca	aa	480	
Asn	G	n	Pro	Al	a	Pro	Thr	His	G	n	Asp	Asn	Asn	Lys	Ser	Thr	Asp	Thr	Asp	Thr	Asp	Thr		
145					150							155												

g	g	c	c	t	g	t	g	g	g	c	c	t	g	t	c	cc	aa	t	g	c	c	aa	528	
G	y	Pro	Val	G	y	G	y	Al	a	Al	a	Al	a	G	y	Asn	Al	a	G	n	Thr			
165															170									

t	t	a	c	t	g	g	t	t	c	c	g	t	c	g	t	g	tt	cc	aa	t	g	a	aa	576
Leu	Ser	Leu	Ser	Met	Ser	Thr	G	y	Ser	His	G	n	Thr	G	y	Al	a	Ile	G	u				
180					185										190									

5312WOPCT_SEQ_LI STI NG TXT

acg	gt g	cca	agg	aag	t cc	att	gat	aca	t t	gga	cag	agg	aca	t cc	at a	624
Thr	Val	Pro	Arg	Lys	Ser	Ile	Asp	Thr	Phe	Gly	Gln	Arg	Thr	Ser	Ile	
195					200					205						
t ac	cgt	ggt	gt a	aca	agg	cat	aga	t gg	acg	ggt	aga	t at	gag	gct	cat	672
Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Gu	Ala	His	
210					215					220						
ct a	t gg	gac	aac	agt	t gc	aga	aga	gaa	gga	caa	act	cga	aag	gga	agg	720
Leu	Trp	Asp	Asn	Ser	Cys	Arg	Arg	Glu	Gly	Gln	Thr	Arg	Lys	Gly	Arg	
225					230				235					240		
caa	gt t	t at	t t a	ggt	ggt	t at	gac	aaa	gaa	gaa	aag	gca	gct	agg	gct	768
Gln	Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	Gu	Gu	Lys	Ala	Ala	Arg	Ala	
				245					250				255			
t ac	gat	t t a	gca	gca	ct g	aag	t at	t gg	ggt	acc	acc	acc	aca	aca	aat	816
Tyr	Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Thr	Thr	Thr	Thr	Thr	Asn	
				260				265					270			
t tc	cct	att	agc	aac	t at	gaa	aaa	gag	at a	gag	gag	at g	aag	cac	at g	864
Phe	Pro	Ile	Ser	Asn	Tyr	Gu	Lys	Gu	Ile	Gu	Gu	Met	Lys	His	Met	
				275			280					285				
aca	agg	cag	gag	t ac	gt a	gca	t ct	ct g	cga	agg	aag	agt	agc	ggg	t t t	912
Thr	Arg	Gln	Gu	Tyr	Val	Ala	Ser	Leu	Arg	Arg	Lys	Ser	Ser	Gly	Phe	
				290			295			300						
t ct	cgt	gga	gca	t cc	at a	t at	aga	gga	gt g	acc	aga	cac	cat	cag	cat	960
Ser	Arg	Gly	Ala	Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	His	Gln	His	
				305		310			315					320		
ggg	aga	t gg	cag	gca	agg	att	gga	aga	gt c	gca	ggc	aac	aaa	gat	ct t	1008
Gly	Arg	Trp	Gn	Ala	Arg	Ile	Gly	Arg	Val	Ala	Gly	Asn	Lys	Asp	Leu	
				325				330					335			
t ac	tt g	gga	act	t tc	agc	acc	caa	gag	gaa	gca	gca	gag	gcc	t at	gac	1056
Tyr	Leu	Gly	Thr	Phe	Ser	Thr	Gln	Gu	Gu	Ala	Ala	Gl	Ala	Tyr	Asp	
				340			345					350				
at t	gct	gcc	att	aag	t t	cga	gga	t t g	aat	gcg	gt g	acc	aac	t t t	gat	1104
Ile	Ala	Ala	Ile	Lys	Phe	Arg	Gly	Leu	Asn	Ala	Val	Thr	Asn	Phe	Asp	
				355			360			365						
at g	agt	aga	t at	gat	gt t	aat	agc	att	cta	gag	agc	agt	acc	tt g	ccg	1152
Met	Ser	Arg	Tyr	Asp	Val	Asn	Ser	Ile	Leu	Glu	Ser	Ser	Thr	Leu	Pro	
				370		375				380						
at t	ggt	gga	gct	gca	aag	cgg	t t g	aaa	gat	gct	gag	cag	gct	gaa	at g	1200
Ile	Gly	Gly	Ala	Ala	Lys	Arg	Leu	Lys	Asp	Ala	Gu	Gln	Ala	Gu	Met	
				385		390			395					400		
act	at a	gat	gga	cag	agg	aca	gac	gat	gag	at g	agc	t ca	cag	ct g	act	1248
Thr	Ile	Asp	Gly	Gln	Arg	Thr	Asp	Asp	Gu	Met	Ser	Ser	Gln	Leu	Thr	
				405				410					415			
gat	gga	at c	aac	aac	t at	gga	gca	cac	cac	cat	ggc	t gg	cct	act	gt t	1296
Asp	Gly	Ile	Asn	Asn	Tyr	Gly	Ala	His	His	His	Gly	Trp	Pro	Thr	Val	
				420			425					430				
gca	t tc	caa	caa	gct	cag	cca	t t t	agc	at g	cac	t ac	cct	t at	ggc	cat	1344
Ala	Phe	Gln	Gln	Ala	Gln	Pro	Phe	Ser	Met	His	Tyr	Pro	Tyr	Gly	His	
				435		440				445						
cag	cag	agg	gct	gt t	t gg	t gt	aag	caa	gag	caa	gac	cct	gat	ggc	aca	1392
Gln	Gln	Arg	Ala	Val	Trp	Oys	Lys	Gly	Gu	Gn	Asp	Pro	Asp	Gly	Thr	
				450		455				460						

5312WOPCT_SEQ_LI STI NG TXT

cac aac ttt caa gat ctt cac caa ct a caa tt g gga aac act cac aac	1440
His Asn Phe Glu Asp Leu His Glu Leu Glu Leu Gly Asn Thr His Asn	
465 470 475 480	
tcc ttc cag cct aat gtt ctg cac aac ctc atg agc atg gac tct tct	1488
Phe Phe Glu Pro Asn Val Leu His Asn Leu Met Ser Met Asp Ser Ser	
485 490 495	
tca atg gac cat tca ggc tcc aat tca gtc atc tat agc ggt ggt	1536
Ser Met Asp His Ser Ser Gly Ser Asn Ser Val Ile Tyr Ser Gly Gly	
500 505 510	
gga gcc gct gat ggc gct gca act ggc ggc agt ggc agt ggg agc	1584
Gly Ala Ala Asp Gly Ser Ala Ala Thr Gly Gly Ser Gly Ser Gly	
515 520 525	
tcc caa ggg gta ggt tat ggg aac aac att ggc ttt gtg atg ccc att	1632
Phe Glu Gly Val Gly Tyr Glu Asn Asn Ile Gly Phe Val Met Pro Ile	
530 535 540	
agc acc gtc atc gct cat gaa ggc ggc cat ggc cag gga aat ggt ggc	1680
Ser Thr Val Ile Ala His Glu Gly Gly His Glu Glu Gly Asn Gly	
545 550 555 560	
ttt gga gat agc gaa gtg aag gcg att ggt tac gac aac att gtt gga	1728
Phe Glu Asp Ser Glu Val Lys Ala Ile Glu Tyr Asp Asn Met Phe Glu	
565 570 575	
tcc aca gat cct tac cat gct agg agc ttg tac tat ctt tca cag caa	1776
Ser Thr Asp Pro Tyr His Ala Arg Ser Leu Tyr Tyr Leu Ser Glu Glu	
580 585 590	
tca tct gca ggc atg gtg aag ggc agt agt gca tat gat cag ggg tca	1824
Ser Ser Ala Glu Met Val Lys Glu Ser Ser Ala Tyr Asp Glu Glu Ser	
595 600 605	
ggg tgg aac aac tgg gtt cca act gca gt t cca acc ct a gct cca agg	1872
Gly Cys Asn Asn Trp Val Pro Thr Ala Val Pro Thr Leu Ala Pro Arg	
610 615 620	
act aac agc ttg gca gta tgc cat gga aca cct aca ttc aca gt a tgg	1920
Thr Asn Ser Leu Ala Val Cys His Glu Thr Pro Thr Phe Thr Val Trp	
625 630 635 640	
aat gat aca taa	1932
Asn Asp Thr	

<211> 85
<211> 643
<212> PRT
<213> Vitis vinifera

<400> 85
Met Ala Ser Met Asn Asn Trp Leu Glu Phe Ser Leu Ser Pro Arg Glu
1 5 10 15
Leu Pro Pro Glu Pro Glu Asn His Ser Glu Asn Ser Val Ser Arg Leu
20 25 30
Gly Phe Asn Ser Asp Glu Ile Ser Glu Thr Asp Val Ser Glu Glu Cys
35 40 45
Phe Asp Leu Thr Ser Asp Ser Thr Ala Pro Ser Leu Asn Leu Pro Pro
50 55 60
Pro Phe Glu Ile Leu Glu Ala Phe Asn Arg Asn Asn Glu Pro Glu Asp
65 70 75 80
Thr Asn Tyr Lys Thr Thr Ser Glu Leu Ser Met Leu Met Glu Ser
85 90 95

5312WOPCT_SEQ.LI STI NG TXT

Ser Cys Ser Ser His His Asn Leu Glu Asn Gln Glu Pro Lys Leu Glu
 100 105 110
 Asn Phe Leu Gly Cys Arg Ser Phe Ala Asp His Glu Gln Lys Leu Gln
 115 120 125
 Gly Tyr Tyr Ile Ser Ile Gly Leu Ser Met Ile Lys Thr Trp Leu Arg
 130 135 140
 Asn Gln Pro Ala Pro Thr His Gln Asp Asn Asn Lys Ser Thr Asp Thr
 145 150 155 160
 Gly Pro Val Gly Gly Ala Ala Ala Gly Asn Leu Pro Asn Ala Gln Thr
 165 170 175
 Leu Ser Leu Ser Met Ser Thr Gly Ser His Gln Thr Gly Ala Ile Glu
 180 185 190
 Thr Val Pro Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile
 195 200 205
 Tyr Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His
 210 215 220
 Leu Trp Asp Asn Ser Cys Arg Arg Glu Gln Thr Arg Lys Gly Arg
 225 230 235 240
 Gln Val Tyr Leu Gly Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala
 245 250 255
 Tyr Asp Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Asn
 260 265 270
 Phe Pro Ile Ser Asn Tyr Glu Lys Glu Ile Glu Glu Met Lys His Met
 275 280 285
 Thr Arg Gln Glu Tyr Val Ala Ser Leu Arg Arg Lys Ser Ser Gly Phe
 290 295 300
 Ser Arg Gly Ala Ser Ile Tyr Arg Gly Val Thr Arg His His Gln His
 305 310 315 320
 Gly Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu
 325 330 335
 Tyr Leu Gly Thr Phe Ser Thr Gln Glu Glu Ala Ala Glu Ala Tyr Asp
 340 345 350
 Ile Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp
 355 360 365
 Met Ser Arg Tyr Asp Val Asn Ser Ile Leu Glu Ser Ser Thr Leu Pro
 370 375 380
 Ile Gly Gly Ala Ala Lys Arg Leu Lys Asp Ala Glu Gln Ala Glu Met
 385 390 395 400
 Thr Ile Asp Gly Gln Arg Thr Asp Asp Glu Met Ser Ser Gln Leu Thr
 405 410 415
 Asp Gly Ile Asn Asn Tyr Gly Ala His His Gly Trp Pro Thr Val
 420 425 430
 Ala Phe Gln Gln Ala Gln Pro Phe Ser Met His Tyr Pro Tyr Gly His
 435 440 445
 Gln Gln Arg Ala Val Trp Cys Lys Gln Glu Gln Asp Pro Asp Gly Thr
 450 455 460
 His Asn Phe Gln Asp Leu His Gln Leu Gln Leu Gly Asn Thr His Asn
 465 470 475 480
 Phe Phe Gln Pro Asn Val Leu His Asn Leu Met Ser Met Asp Ser Ser
 485 490 495
 Ser Met Asp His Ser Ser Gly Ser Asn Ser Val Ile Tyr Ser Gly Gly
 500 505 510
 Gly Ala Ala Asp Gly Ser Ala Ala Thr Gly Gly Ser Gly Ser Gly Ser
 515 520 525
 Phe Gln Gly Val Gly Tyr Gly Asn Asn Ile Gly Phe Val Met Pro Ile
 530 535 540
 Ser Thr Val Ile Ala His Glu Gly Gly His Gly Gln Gly Asn Gly Gly
 545 550 555 560
 Phe Gly Asp Ser Glu Val Lys Ala Ile Gly Tyr Asp Asn Met Phe Gly
 565 570 575
 Ser Thr Asp Pro Tyr His Ala Arg Ser Leu Tyr Tyr Leu Ser Gln Gln
 580 585 590
 Ser Ser Ala Gly Met Val Lys Gly Ser Ser Ala Tyr Asp Gln Gly Ser
 595 600 605
 Gly Cys Asn Asn Trp Val Pro Thr Ala Val Pro Thr Leu Ala Pro Arg
 610 615 620
 Thr Asn Ser Leu Ala Val Cys His Gly Thr Pro Thr Phe Thr Val Trp
 625 630 635 640

5312WOPCT SEQ LI STI NG TXT

Asn Asp Thr

<210> 86
<211> 2088
<212> DNA
<213> Qryza sativa

<220>
<221> CDS
<222> (1) . . . (2088)

5312WOPCT_SEQ_LI STI NG TXT

210	215	220	
acg acg gcg acg at g gct ggt ggt cgc aag gag at t aac gag gaa ggc			720
Thr Thr Al a Thr Met Al a G y G y Arg Lys Gu Ile Asn Gu Gu G y			
225	230	235	240
acg ggc agc gcc ggc gcc gt g gt t gcc gt c ggc t cg gag t ca ggc ggc			768
Ser G y Ser Al a G y Al a Val Val Al a Val G y Ser Gu Ser G y G y			
245	250	255	
acg ggc gcc gt g gt g gag gcc ggc gcg gcg gcg gcg agg aag			816
Ser G y Al a Val Val Gu Al a G y Al a Al a Al a Al a Arg Lys			
260	265	270	
tcc gtc gac acg ttc ggc cag aga aca tcg at c tac cgc ggc gt g aca			864
Ser Val Asp Thr Phe G y G n Arg Thr Ser Ile Tyr Arg G y Val Thr			
275	280	285	
agg cat aga tgg aca ggg agg tat gag gct cat ct t tgg gac aac agc			912
Arg His Arg Trp Thr G y Arg Tyr Gu Al a His Leu Trp Asp Asn Ser			
290	295	300	
tgc aga aga gag ggc caa act cgc aag ggt cgt caa gt c tat ct a ggt			960
Cys Arg Arg G u G y G n Thr Arg Lys G y Arg G n Val Tyr Leu G y			
305	310	315	320
ggt tat gac aaa gag gaa aaa gct gct aga gct tat gat tt g gct gct			1008
G y Tyr Asp Lys G u G u Lys Al a Al a Arg Al a Tyr Asp Leu Al a			
325	330	335	
ctc aaa tac tgg ggc ccg acg acg acg aca aat ttt ccg gt a aat aac			1056
Leu Lys Tyr Trp G y Pro Thr Thr Thr Asn Phe Pro Val Asn Asn			
340	345	350	
tat gaa aag gag ctg gag gag atg aag cac atg aca agg cag gag tt c			1104
Tyr G u Lys G u Leu G u G u Met Lys His Met Thr Arg G n G u Phe			
355	360	365	
gt a gcc tct ttg aga agg aag agc agt ggt tt c tcc aga ggt gca tcc			1152
Val Al a Ser Leu Arg Arg Lys Ser Ser G y Phe Ser Arg G y Al a Ser			
370	375	380	
at t tac cgt gga gt a act agg cat cac cag cat ggg aga ttg caa gca			1200
Ile Tyr Arg G y Val Thr Arg His His G n His G y Arg Trp G n Al a			
385	390	395	400
agg ata gga aga gtt gca ggg aac aag gac ctc tac ttg ggc acc tt c			1248
Arg Ile G y Arg Val Al a G y Asn Lys Asp Leu Tyr Leu G y Thr Phe			
405	410	415	
acg acg cag gag gag gcg acg gcg t ac gac at c gcg gcg at c aag			1296
Ser Thr G n G u G u Al a Al a G u Al a Tyr Asp Ile Al a Al a Ile Lys			
420	425	430	
ttc cgg ggg ctc aac gcc gt c acc aac tt c gac at g agc cgc t ac gac			1344
Phe Arg G y Leu Asn Al a Val Thr Asn Phe Asp Met Ser Arg Tyr Asp			
435	440	445	
gt c aag agc atc ctc gac agc gct gcc ctc ccc gt c ggc acc gcc gcc			1392
Val Lys Ser Ile Leu Asp Ser Al a Al a Leu Pro Val G y Thr Al a Al a			
450	455	460	
aag cgc ctc aag gac gcc gag gcc gcc gcc t ac gac gt c ggc cgc			1440
Lys Arg Leu Lys Asp Al a G u Al a Al a Al a Tyr Asp Val G y Arg			
465	470	475	480
at c gcc tcg cac ctc ggc ggc gac ggc gcc t ac gac gt c ggc cgc			1488
Ile Al a Ser His Leu G y G y Asp G y Al a Tyr Al a Al a His Tyr G y			

5312WOPCT_SEQ_LI STI NG TXT

485

490

495

cac	cac	cac	cac	t cg	g cc	g cc	g cc	t gg	c cg	acc	a t c	g cg	t t c	c ag		1536
Hi s	Hi s	Hi s	Hi s	Ser	Al a	Al a	Al a	Tr p	Pro	Thr	I I e	Al a	Phe	G n		
				500				505				510				
g cg	g cg	g cg	g cg	c cg	c cg	c cg	c ac	g cc	g cc	g gg	c t t	t ac	c ac	c cg	t ac	1584
Al a	Pro	Pro	Pro	Hi s	Al a	Al a	G y	Leu	Tyr	Hi s	Pro	Tyr				
				515				520			525					
g cg	c ag	c cg	c t g	c gt	g gg	t gg	t g c	a ag	c ag	c ag	c ag	g ac	c ac	g cc	g t g	1632
Al a	G n	Pro	Leu	Arg	G y	Tr p	Cys	Lys	G n	G u	G n	Asp	Hi s	Al a	Val	
	530				535				540							
a t c	g cg	g cg	g cg	c ac	a g c	c t g	c ag	g at	c t c	c ac	c t c	a a c	c t c	g gc		1680
I I e	Al a	Al a	Al a	Al a	Hi s	Ser	Leu	G n	Asp	Leu	Hi s	Hi s	Leu	Asn	Leu	
	545				550				555							
g cc	g cc	g cc	g cc	g cg	c at	g ac	t t c	t t c	t cg	c ag	g cg	a t g	c ag	c ag	c ag	1728
Al a	Hi s	Asp	Phe	Phe	Ser	G n	Al a	Met	G n	G n	G n					
					565				570			575				
c ac	g gc	c t c	g gc	a g c	a t c	g ac	a a c	g cg	t cg	c t c	g ag	c ac	a g c	g cc		1776
Hi s	G y	Leu	G y	Ser	I I e	Asp	Asn	Al a	Ser	Leu	G u	Hi s	Ser	Thr	G y	
	580				585							590				
t cc	a a c	t cc	g t c	g t c	t ac	a a c	g gc	g ac	a a t	g gc	g gc	G y	g g c	g g c	g g c	1824
Ser	Asn	Ser	Val	Val	Tyr	Asn	G y	Asp	Asn	G y	G y	605				
	595				600											
t ac	a t c	a t g	g cg	c cg	a t g	a g c	g cc	g t g	t cg	g cc	a c g	g cc	a c c	g cg	g t g	1872
Tyr	I I e	Met	Al a	Pro	Met	Ser	Al a	Val	Ser	Al a	Thr	Al a	Thr	Al a	Val	
	610				615					620						
g cg	a g c	a g c	c ac	g at	c ac	g g c	g g c	g ac	g g c	g gg	a a g	c ag	g t g	c ag	a t g	1920
Al a	Ser	Ser	Hi s	Asp	Hi s	G y	G y	Asp	G y	G y	Lys	G n	Val	G n	Met	
	625				630				635						640	
g gg	t ac	g ac	a g c	t ac	c t c	g t c	g g c	g c a	g ac	g cc	t ac	g gc	g gc	g gc	g gc	1968
G y	Tyr	Asp	Ser	Tyr	Leu	Val	G y	Al a	Asp	Al a	Tyr	G y	G y	G y	G y	
					645				650			655				
g cc	g gg	agg	a t g	c ca	t cc	t gg	g cg	a t g	a c g	c cg	g cg	t c g	g cg	c cg	g cc	2016
Al a	G y	Arg	Met	Pro	Ser	Tr p	Al a	Met	Thr	Pro	Al a	Ser	Al a	Pro	Al a	
			660					665				670				
g cc	a c g	a g c	a g c	a g c	g ac	a t g	acc	g g a	g t c	t g c	cat	g g c	g c a	c a g	c t c	2064
Al a	Thr	Ser	Ser	Ser	Asp	Met	Thr	G y	Val	Cys	Hi s	G y	Al a	G n	Leu	
	675				680							685				
t t c	a g c	g t c	t gg	a a c	g ac	a c a	t a a									2088
Phe	Ser	Val	Tr p	Asn	Asp	Thr										
	690				695											

<210> 87

<211> 2088

<212> DNA

<213> Oryza sativa

<220>

<221> CDS

<222> (1)...(2088)

<400> 87

at g g cc a c t a t g a a c a a c t gg c t c g cc t t c t cg c t c t cg c cg c a g g ac

1

5

10

15

48

5312WOPCT_SEQ_LI STI NG TXT

caa	ctc	cca	ccg	tcg	cag	acc	aat	agc	act	ctc	atc	tcc	gct	gct	gca	96
Gn	Leu	Pro	Pro	Ser	Gn	Thr	Asn	Ser	Thr	Leu	Ile	Ser	Ala	Ala	Ala	
20							25						30			
acc	acc	aca	acc	gca	ggc	gat	tgc	tca	acg	ggc	gac	gtc	tgc	tcc	aac	144
Thr	Thr	Thr	Thr	Ala	Gly	Asp	Ser	Ser	Thr	Gly	Asp	Val	Cys	Phe	Asn	
35							40					45				
atc	cct	caa	gac	tgg	tcc	atg	cgc	gga	agc	gag	ctt	agc	gct	ctc	gtc	192
Ile	Pro	Gn	Asp	Trp	Ser	Met	Arg	Gly	Ser	Glu	Leu	Ser	Ala	Leu	Val	
50						55					60					
gcg	gag	ccc	aag	ttg	gag	gat	ttc	ttg	gga	ggc	atc	tcc	ttc	tcc	gag	240
Ala	Gu	Pro	Lys	Leu	Gu	Asp	Phe	Leu	Gly	Gly	Ile	Ser	Phe	Ser	Gu	
65					70					75					80	
caa	cag	cat	cat	cac	ggc	gga	aag	ggc	ggt	gtt	atc	cca	agc	tct	gct	288
Gn	Gn	His	His	His	Gly	Gly	Lys	Gly	Gly	Val	Ile	Pro	Ser	Ser	Ala	
85							90						95			
gcc	gca	tgc	tat	gca	agc	tcc	ggc	tcc	agc	gtg	ggc	tac	ctc	tac	cct	336
Ala	Ala	Cys	Tyr	Ala	Ser	Ser	Gly	Ser	Ser	Val	Gly	Tyr	Leu	Tyr	Pro	
100							105					110				
ccg	cct	tca	tcc	tgc	tca	ctt	cag	ttt	gca	gac	agc	gtg	atg	gtc	gca	384
Pro	Pro	Ser	Ser	Ser	Ser	Leu	Gn	Phe	Ala	Asp	Ser	Val	Met	Val	Ala	
115						120					125					
acc	tca	tct	cca	gtg	gtt	gcg	ca	gat	ggc	gtg	agc	ggt	ggc	ggt	atg	432
Thr	Ser	Ser	Pro	Val	Val	Ala	His	Asp	Gly	Val	Ser	140	Gly	Gly	Met	
130						135										
gtc	tca	gca	gca	gca	gct	gca	gca	gct	tgc	ggt	aat	ggc	ggg	att	ggc	480
Val	Ser	Ala	Ser	Gly	Asn	Gly	Gly	Ile	Gly							
145					150					155					160	
ctc	tcc	atg	atc	aag	aac	tgg	ctc	agg	agc	caa	ccg	gct	ccg	caa	cct	528
Leu	Ser	Met	Ile	Lys	Asn	Trp	Leu	Arg	Ser	Gn	Pro	Ala	Pro	Gn	Pro	
165							170						175			
gcg	caa	gca	ctc	agc	ctg	tgc	atg	aac	atg	gct	ggt	act	act	acc	gct	576
Ala	Gn	Ala	Leu	Ser	Leu	Ser	Met	Asn	Met	Ala	Gly	Thr	Thr	Thr	Ala	
180							185					190				
caa	ggt	gga	ggc	gca	atg	gca	ctt	ctc	gca	ggc	gct	ggc	gaa	aga	gga	624
Gn	Gly	Gly	Gly	Ala	Ala	Met	Ala	Leu	Ala	Gly	Ala	Gly	Gly	Arg	Gly	
195						200						205				
agg	acc	aca	cca	gca	tcc	gag	agc	ctc	tct	act	tcc	gcg	cac	gga	gcc	672
Arg	Thr	Thr	Pro	Ala	Ser	Glu	Ser	Leu	Ser	Thr	Ser	Ala	His	Gly	Ala	
210						215					220					
acc	acg	gct	aca	atg	gct	Ala	Gly	Gly	Arg	aaa	gag	atc	aac	gag	gga	720
Thr	Thr	Ala	Thr	Met	Ala	Gly	Gly	Gly	Lys	235	Glu	Ile	Asn	Glu	Gly	
225															240	
tct	gga	tcc	gct	ggt	gcc	gtg	gtt	gca	gtt	ggc	tca	gaa	tca	ggt	gga	768
Ser	Gly	Ser	Ala	Gly	Ala	Val	Val	Ala	Val	Gly	Ser	Glu	Ser	Gly	Gly	
245													255			
tcc	ggc	gct	gtt	gtt	gaa	gct	ggt	gcc	gct	gca	gca	gca	gca	gtt	gga	816
Ser	Gly	Ala	Val	Val	Gly	Ala	Gly	Ala	Ala	Ala	Ala	Ala	Ala	Arg	Lys	
260						265							270			
agc	gtt	gat	act	tcc	ggc	caa	aga	acg	agc	atc	tac	aga	gga	gtt	act	864
Ser	Val	Asp	Thr	Phe	Gly	Gn	Arg	Thr	Ser	Ile	Tyr	Arg	Gly	Val	Thr	
275						280						285				

5312WOPCT_SEQ_LI STI NG TXT

cg	c	ca	c	gc	t	gg	ac	g	gc	ag	t	ac	g	ag	ca	c	ac	t	tg	t	gg	g	ac	a	ac	ag	912
Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Gl	Ala	Ala	His	Leu	Trp	Asp	Asn	Asn	Ser										
290					295						300																
t	gt	c	gc	c	gc	g	ag	g	gc	ca	aa	act	ag	a	ag	g	ga	ag	g	ag	g	at	c	t	a	g	960
Cys	Arg	Arg	Gu	Gly	Gly	Gu	Gu	Thi	Arg	Lys	Gly	Arg	Tyr	Leu	Leu	Leu	Gly										
305					310						315																
g	ga	t	at	g	ac	aa	g	ag	g	gu	gu	gu	1008														
Gly	Tyr	Asp	Lys	Ala	Ala																						
325										330																	
t	tg	a	ag	t	ac	t	gg	g	gt	cc	a	ca	ac	gg	cc	cc	cc	gt	g	tt	cc	gt	g	tt	cc	gt	1056
Leu	Lys	Tyr	Trp	Gly	Pro	Thr	Thr	Thr	Thr	Thr	340	345	345	345	345	345	345	345	345	345	345	345	345	345	345		
355																											
t	ac	g	ag	g	ag	c	t	g	g	at	g	a	ag	c	ac	at	g	ac	cg	ca	g	ag	g	at	tc	1104	
Tyr	Gu	Lys	Gu	Leu	Gu	Gu	Gu	Gu	Gu	Met	360	360	360	360	360	360	360	360	360	360	360	360	360	360	360		
370																											
g	tc	g	ct	c	tc	ag	cg	ca	ag	t	ca	t	ct	gt	tt	c	tcc	aga	ag	gt	g	gt	g	cg	tc	1152	
Val	Ala	Ser	Leu	Arg	Arg	Arg	Lys	Ser	Ser	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375	375		
385																											
at	c	t	at	ag	g	ga	gt	t	ac	cc	c	ac	c	c	c	c	c	gg	ag	gg	tg	c	ag	g	ca	1200	
Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	His	His	390	390	390	390	390	390	390	390	390	390	390	390	390	390	390	390		
395																											
ag	a	t	c	gg	ag	gt	c	cc	g	aa	ca	ac	a	ag	g	tt	g	ga	gg	ac	cc	tt	c	1248			
Arg	Ile	Gly	Arg	Val	Ala	Gly	Ala	Asn	Lys	405	405	405	405	405	405	405	405	405	405	405	405	405	405	405	405		
410																											
t	cg	ac	c	ag	g	ag	g	ca	g	ca	g	cc	g	ca	g	at	t	g	cg	ca	g	cg	at	c	a	1296	
Ser	Thr	Gly	Gu	Gu	Ala	Ala	Ala	Ala	Ala	420	420	425	425	425	425	425	425	425	425	425	425	425	425	425	425		
430																											
t	tc	c	gc	gg	ct	c	aa	t	g	cc	ac	tt	c	tc	ca	cg	at	g	tc	ca	cg	t	at	g	at	1344	
Phe	Arg	Gly	Leu	Asn	Ala	Val	Thr	Asn	Asn	435	435	440	440	440	440	440	440	440	440	440	440	440	440	440	440		
445																											
gt	c	a	ag	tc	tt	ct	g	at	g	ct	g	cc	t	tg	g	gg	ac	g	ct	g	cc	t	at	g	at	1392	
Val	Lys	Ser	Ile	Leu	Asp	Ser	Ala	Ala	Ala	450	450	455	455	455	455	455	455	455	455	455	455	455	455	455	455		
460																											
aaa	c	gc	c	tc	a	ag	g	ac	g	ca	g	ca	g	ct	g	cc	t	ac	g	at	gt	t	gg	cc	1440		
Lys	Arg	Leu	Lys	Asp	Ala	Gly	Ala	Ala	Ala	465	470	470	470	470	470	470	470	470	470	470	470	470	470	470	470		
475																											
at	t	g	cc	t	ca	ca	ct	c	gt	g	ga	gt	g	ga	gt	g	tt	ca	gt	g	at	gt	t	gg	cc	1488	
Ile	Ala	Ser	His	Leu	Gly	Gly	Asp	Gly	Ala	485	485	490	490	490	490	490	490	490	490	490	490	490	490	490	490		
495																											
cat	cat	cac	cac	t	ct	c	tc	g	ca	g	ca	g	ct	g	ca	g	t	gg	cc	ca	t	tc	ca	ca	ca	1536	
His	His	His	His	Ser	Ala	Ala	Ala	Ala	Ala	500	500	505	505	505	505	505	505	505	505	505	505	505	505	505	505		
510																											
g	cg	g	ca	g	cc	g	ct	c	cc	g	ca	g	ct	t	ca	g	cc	tg	ca	cc	t	cc	ca	ca	ca	1584	
Ala	Ala	Ala	Ala	Pro	Pro	Pro	Pro	His	Ala	515	515	520	520	520	520	520	520	520	520	520	520	520	520	520	520		
525																											
g	cg	ca	aa	c	ct	c	tc	c	cg	gg	t	gg	t	gt	t	aa	ag	ca	aa	g	at	ca	tc	at	gt	gg	1632
Ala	Gly	Pro	Leu	Arg	Gly	Trp	Oys	Lys	Gly	530	535	535	535	535	535	535	535	535	535	535	535	535	535	535	535		
540																											
at	t	g	cg	g	ct	c	tc	c	cg	gg	t	tg	t	gt	t	aa	g	ca	aa	g	at	ca	tc	at	gt	gg	1680
Ile	Ala	Ala	Ala	Ala	His	Ser	Leu	Gly	Asp	Leu	545	550	555	555	555	555	555	555	555	555	555	555	555	555	555		
560																											

5312WOPCT_SEQ_LI STI NG TXT

gcc gca gca gct gcc cat gac ttc ttc tca caa gcc atg cag cag cag	1728
Al a Al a Al a Al a Al a His Asp Phe Phe Ser G n Al a Met G n G n G n	
565 570 575	
cat ggc ctg ggc agc ata gac aat gcg tct ctg gag cac tcc acc gga	1776
His G y Leu G y Ser Ile Asp Asn Al a Ser Leu G u His Ser Thr G y	
580 585 590	
t cg aac t cg gt g gt g t ac aat gga gac aac ggc gga gga ggt gga ggt	1824
Ser Asn Ser Val Val Tyr Asn G y Asp Asn G y G y G y G y G y G y	
595 600 605	
t ac atc atg gca cct atg tca gcg gt c tct gct acc gct acg gcg gt g	1872
Tyr Ile Met Al a Pro Met Ser Al a Val Ser Al a Thr Al a Thr Al a Val	
610 615 620	
gcc tca tcc cac gac cac ggt gga gac ggc ggc aag cag gt c caa atg	1920
Al a Ser Ser His Asp His G y G y Asp G y Lys G n Val G n Met	
625 630 635 640	
ggc tac gac tcc tac ctt gt g gga gct gac gct tac ggc gga gga gga	1968
G y Tyr Asp Ser Tyr Leu Val G y Al a Asp Al a Tyr G y G y G y G y	
645 650 655	
gct ggt cgc atg cct agc tgg gcc atg acg cct gct tct gct cct gcg	2016
Al a G y Arg Met Pro Ser Trp Al a Met Thr Pro Al a Ser Al a Pro Al a	
660 665 670 675	
gct acg agc tcg tcg gat atg aca gga gt g t gt cat ggc gcc caa ct g	2064
Al a Thr Ser Ser Asp Met Thr G y Val Cys His G y Al a G n Leu	
675 680 685	
t tc t cg gt g t gg aat gat aca tag	2088
Phe Ser Val Trp Asn Asp Thr	
690 695	

<210> 88

<211> 4325

<212> DNA

<213> Oryza sativa

<400> 88

at gcat at ct at ct t at at a aat at ct acc agt gat act g tt gct t agt g ct ccaaacct	60
ct ct t gacct ct t ct t ct t c tt ct cag t a gct t agt t a agt t cccct aacct t gagc	120
t caccacaac aat ggcgact t gat ct aaca gagct t aacc aagt agcaaa t cat acat at	180
aaccat agct t aat t cccat t gaat ct t gt ct t gt t cag t gt gaat cat c aaccat ggcc	240
accat gaaca act ggct ggc ct t ct ccct c t ccccgagg at cagct ccc gccgt ct cag	300
accaact cca ct ct cat ct c cgcggccggc accaccacca cgcggccggca ct cct ccacc	360
ggcgacgt ct gct t caacat ccccaaggt aat t aagct c accaat cgat gcat gcat t c	420
at gagct aga t at agct agt gtt ggt t ggg at t t gaagag acat gcat gt tt gat t gat t	480
gat t t gat gt gcat gat t gga gcat gagggg at cggagat c t cggcgt c t cggcggagcc	540
gaagct ggag gact t cct cg gcgcat ct c ct t ct cggag cagcagcat c at cacggcgg	600
caagggcggc gt gat cccga gcaggcggcgc cgct t gct ac gcgagct ccg gcagcagcgt	660
cggtt acct g t accct cct c caagct cat c ct cgct ccag t t cggcggact ccgt cat ggt	720
ggccacct cc t cggccgt cg t cggccacacg cggcgt cagc gggggccgca t ggt gagcgc	780
cgccggccgc gcgccggccca gt ggcaacagg cggcat t ggc ct gt ccat ga t caagaact g	840
gct ccggagc cagccggcgc cgcaggccgt g t ct ct gt cca t gaacat ggc	900
ggggacgacg acggcgcagg gcggccggcgc cat ggcgt c ct cggccggcg cagggagcgc	960
aggccggacg acgcccgcgt cagagagct gt ccacgt cg ggcacggag cgacgacggc	1020
gacgat ggct ggt ggt cgca aggagat t aa cggagaaggc acggcaggcg cggccggccgt	1080
ggt t gccgt c ggct cggagt caggcggcag cggccgt g gt ggaggccg ggcggccgc	1140
ggcggccggcg aggaagt ccg t cggacacgt t cggccagaga acat cgat ct accgcggcgt	1200
gacaaggt at t t aggt gca at t aat t aat cat ct at ct a t at t t gct c aaaaaagt t c	1260
at ct act agc t agct t agca caaat cat ca t cag t gt aat cat at at at t ct t gat gat	1320
t t aact gt gt t gcat gaat t cat cct at t t gat gt t gt gat t ggat c ccatt t ct a	1380
ggat agct at at aggt gat a gat t gat cat t agat t t gt a ggat t at ca t t at gt cat t	1440

5312WOPCT_SEQ_LI STI NG TXT

at t at gt ggg	acat gat t gt	t gt gat t aac	aaagt t gt aa	t at ct t t t gg	t t t ggt t at a	1500
ggcat agat g	gacagggagg	t at gaggt c	at ct t t ggg a	caacagct gc	agaagagagg	1560
gccaact cg	caagggt cgt	caaggt agg c	t aact a g t gc	catt t aaat c	gat t aat t gt	1620
t t t t t at gc	t ccaat ggc g	at t gat act g	at ct t gtt c	t t t t ct aat	gat cat t tc g	1680
ggat cgaat g	at ct t cct ct	gt t t gat cga	act t ggct t	t gaat ct aca	gt ct at ct ag	1740
gt gat gaga	t t cct t gaac	ct agat gt t c	t gt t t gcgat	gcat gt at at	at t cgg t aga	1800
t t gaat t at t	t gct gat ct t	t gct t t ct t g	aagt t t aat g	at ct t at aaa	t t gt aat gct	1860
gat aggt ggt	t at gacaaag	aggaaaaaaggc	t gct agagct	t at gat t gg	ct gct ct caa	1920
at act ggggc	ccgacgacga	cgacaaat tt	t ccgg t gt gt	t t at aat t aa	t at acagat t	1980
gt gt cacat t	gt t at t t ct	cact ct t t t a	t t t gat act g	at ct a g t g t a	at gat gat t a	2040
ct aaaaact gt	act t aaaggc	aat ggt t t ct	gt at t t t ca	ggt aaat aac	t at gaaaagg	2100
agct ggagga	gat gaaggac	at gacaaggc	aggagt t cgt	agcgt ct t t g	agaagg t gg	2160
t ct ct acaat	caagat cc	at act at act	aat t aat t t c	ct t t t agat t	t at agt aat t	2220
t at ct at cgc	at t gaagt t a	at t aat t at c	t gat gct t ac	t gat act aac	aaat act gt t	2280
cct t at at gt	gcaggaagag	cagt ggt t t c	t ccagaggt g	cat ccatt t a	ccgt ggagt a	2340
act aggt aca	t at at at at g	cat cat t gt a	caatt aat t t	t t t aat t t t	t t t aggt aa	2400
aaaat gaaga	ct gt gat at a	gat ccatt aa	t t t gat ct t g	t gt act t gt a	aat at aggca	2460
t caccagcat	gggagat ggc	aaggcaaggat	aggaagagt t	gcaggaaaca	aggacct ct a	2520
ct t gggcacc	t t cagt aagt	acaaat at t c	at at t t at ac	t gaaaacca	t at aaaaat cca	2580
t at t aat aag	t at gt cct t t	ct cat t gagt	at acaaaat a	t cat at t t t c	t t ggcaagt a	2640
caatt t at t c	at t caggca	aaat agt agt	agt aagaaag	agggt gact	ct t caaagaa	2700
cacagagct t	act t aaggct	gt aact aat t	aat t aact a	aaaat gt gat	ct gcaagt ca	2760
t gt caagt t g	cat t acacca	ct aat at at a	t act ct gt gc	at gct t gcat	gct ct cct ca	2820
t gt ggct agc	t acct t t t ca	aacct t ccat	gt ct ggt gct	act cct gt ct	ccat t cacca	2880
ct gcacct gg	t caagat cct	cact aat t aa	gaaacaat aa	t gcat t at t t	gcagt aat a	2940
at t t aact ag	t gt t aat cac	at t ct t t gca	acacaact a	at caccat t	aagct agct a	3000
gct agccaaa	at gat aat ct	t gct t gcat g	cgct aat ggt	gt gt gat g	at ggt ggt gt	3060
cacgcat gca	ggcacgcagg	aggaggcggc	ggaggcgt ac	gacat cgcgg	cgat caagt t	3120
ccgggggct c	aacgccc t ca	ccaaact t cga	cat gagccgc	t acgacgt ca	agagcat cct	3180
cgacagcgt	gccc t cccc	t cggcaccgc	cgcccaagcgc	ct caaggacg	ccgaggccgc	3240
cgccgcct ac	gacgt cggcc	gcat cgcct c	gcacct cggc	ggcacgcgc	cct acgcccgc	3300
gcat t acggc	caccaccacc	act cggccgc	cgccgcct gg	ccgaccat cg	cgt t ccaggc	3360
ggcggggcgc	ccggccgcgc	acggccgcgg	gct t t accac	ccgt acgcgc	agccgcgt gcg	3420
t ggg t ggt gc	aaggcaggagc	aggaccacgc	cgt gat cgcg	ggggcgcaca	gcct gcagga	3480
t ct ccaccac	ct caacct cg	gcccgcgc	cgccgcgc	gact t ct t ct	cgcaggcgt	3540
gcagcagcag	acggccct cg	gcagcat cga	caacgcgt cg	ct cgagcaca	gcaccggcgc	3600
caact ccgt c	gt ct acaacg	g c g a c a a t g g	ccgcggaggc	ggggcgt aca	t cat ggcgcc	3660
gat gagcgc	gt gt cggcc	cggcc accgc	ggt ggcgac	agccacgat c	acggcggcga	3720
cggggggaa	cagg t gca g a	t ggggt acga	cagct acct c	gt gggcgcag	acgcct acgg	3780
cggggggcgc	gccggggagg	t gccat cct g	ggcgat gacg	ccggcgt cgg	ccggggccgc	3840
cacgagcagc	agcgacat ga	ccggagt ct g	ccat ggcga	cagct ct t ca	gcgt ct ggaa	3900
cgacacat aa	aaaaaaaaact	aggt t agcca	gct t aat t ag	cagggt aaac	cact gacaca	3960
at t aagccat	act t aaaaat t a	gggt t cat ga	gat gaccat t	aaggcagg t a	t t at cat t aa	4020
t gat gt t t aa	t t t ct caatt	agt act t agc	t caaaaaggag	gggat t t ct t	ct gaaggat g	4080
gt gat ggct t	gt gaaat t ga	acct ggt gt t	ct t gccat ga	t t t t t t t c	acaagct gcc	4140
at t t t ggggt	t cagg t t cag	aaggat cct g	at t at t at a	accagccat a	t at at at aga	4200
agggt agaaa	t ggaggt at c	ct gct t gt aa	at t gggcaa	t ggt agct ag	agt t gat gca	4260
at gaccat gc	t t cat gt gat	gagaact aat	t gt ct t cct c	t gat caaat t	aaggcaggaag	4320
at t aa						4325

<210> 89

<211> 695

<212> PRT

<213> Oryza sativa

<400> 89

Met	Ala	Thr	Met	Asn	Asn	Trp	Leu	Ala	Phe	Ser	Leu	Ser	Pro	Gln	Asp
1			5				10		10				15		
Gln	Leu	Pro	Pro	Ser	Gln	Thr	Asn	Ser	Thr	Leu	Ile	Ser	Ala	Ala	Ala
			20				25					30			
Thr	Thr	Thr	Ala	Gly	Asp	Ser	Ser	Thr	Gly	Asp	Val	Oys	Phe	Asn	
			35			40			45						
Ile	Pro	Gln	Asp	Trp	Ser	Met	Arg	Gly	Ser	Glu	Leu	Ser	Ala	Leu	Val
		50			55					60					
Ala	Gu	Pro	Lys	Leu	Gu	Asp	Phe	Leu	Gly	Gly	Ile	Ser	Phe	Ser	Gu
	65				70				75					80	
Gln	Gln	His	His	His	Gly	Gly	Lys	Gly	Gly	Val	Ile	Pro	Ser	Ser	Ala
					85				90					95	

5312WOPCT_SEQ.LI STI NG TXT

Ala Ala Cys Tyr Ala Ser Ser Gly Ser Ser Val Gly Tyr Leu Tyr Pro
 100 105 110
 Pro Pro Ser Ser Ser Leu Gln Phe Ala Asp Ser Val Met Val Ala
 115 120 125
 Thr Ser Ser Pro Val Val Ala His Asp Gly Val Ser Gly Gly Gly Met
 130 135 140 145 150 155 160
 Val Ser Ala Ala Ala Ala Ala Ala Ser Gly Asn Gly Gly Ile Gly
 165 170 175 180 185 190 195
 Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gln Pro Ala Pro Gln Pro
 200 205 210 215 220 225 230 235 240
 Ala Gln Ala Leu Ser Leu Ser Met Asn Met Ala Gly Thr Thr Ala
 245 250 255 260 265 270 275 280 285
 Gln Gly Gly Ala Met Ala Leu Leu Ala Gly Ala Gly Glu Arg Gly
 290 295 300 305 310 315 320 325 330 335
 Arg Thr Thr Pro Ala Ser Glu Ser Leu Ser Thr Ser Ala His Gly Ala
 340 345 350 355 360 365 370 375 380 385
 Thr Thr Ala Thr Met Ala Gly Gly Arg Lys Glu Ile Asn Glu Glu Gly
 390 395 400 405 410 415 420 425 430 435
 Ser Val Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr Arg Gly Val Thr
 440 445 450 455 460 465 470 475 480 485
 Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser
 490 495 500 505 510 515 520 525 530 535
 Cys Arg Arg Glu Gly Gln Thr Arg Lys Gly Arg Gln Val Tyr Leu Gly
 540 545 550 555 560 565 570 575 580 585
 Gly Tyr Asp Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala
 590 595 600 605 610 615 620 625 630 635
 Leu Lys Tyr Trp Gly Pro Thr Thr Thr Asn Phe Pro Val Asn Asn
 640

5312WOPCT_SEQ.LI STI NG TXT
 G y Tyr Asp Ser Tyr Leu Val G y Al a Asp Al a Tyr G y G y G y
 645 650 655
 Al a G y Arg Met Pro Ser Trp Al a Met Thr Pro Al a Ser Al a Pro Al a
 660 665 670
 Al a Thr Ser Ser Ser Asp Met Thr G y Val Cys His G y Al a G n Leu
 675 680 685
 Phe Ser Val Trp Asn Asp Thr
 690 695

<210> 90
 <211> 1680
 <212> DNA
 <213> Oryza sativa

<220>
 <221> CDS
 <222> (1)...(1680)

<400> 90	48
at g gcc tcc atc acc aac tgg ctc ggc ttc tcc tcc tcc tcc tcc tcc tcc	
Met Al a Ser Ile Thr Asn Trp Leu G y Phe Ser Ser Ser Ser Phe Ser	
1 5 10 15	
ggc gcc ggc gcc gac ccc gt c ct g ccc cac ccg ccg ct g caa gag tgg	96
G y Al a G y Al a Asp Pro Val Leu Pro His Pro Pro Leu G n G u Trp	
20 25 30	
ggg agc gct t at gag ggc ggc ggc acg gt g gcg gcc gcc ggc ggg gag	144
G y Ser Al a Tyr Gl u G y G y G y Thr Val Al a Al a Al a G y G y G u	
35 40 45	
gag acg gcg gcg ccg aag ct g gag gac ttc ct c ggc at g cag gt g cag	192
Gl u Thr Al a Al a Pro Lys Leu Gl u Asp Phe Leu G y Met G n Val G n	
50 55 60	
cag gag acg gcc gcc gcg gca gcg ggg cac ggc cgt gga ggc agc tcg	240
Gl n Gl u Thr Al a Al a Al a Al a Al a G y His G y Arg G y G y Ser Ser	
65 70 75 80	
t cg gt c gt t ggg ct g tcc at g at c aag aac t gg ct a cgc agc cag ccg	288
Ser Val Val Gl y Leu Ser Met Ile Lys Asn Trp Leu Arg Ser G n Pro	
85 90 95	
ccg ccc gcg gt g gt t ggg gga gaa gac gct at g at g gcg ct c gcg gt g	336
Pro Pro Al a Val Val Gl y Gl y Gl u Asp Al a Met Al a Leu Al a Val	
100 105 110	
t cg acg t cg gcg t cg ccg ccg gt g gac gcg acg gt g ccg gcc t gc att	384
Ser Thr Ser Al a Ser Pro Pro Val Asp Gl a Asp Al a Thr Val Pro Al a Cys Ile	
115 120 125	
t cg ccg gat ggg at g ggg t cg aag gcg gcc gac ggc ggc ggc gca	432
Ser Pro Asp Gl y Met Gl y Ser 135 Lys Al a Al a Asp Gl y Gl y Al a Al a	
130 140	
gag gcg gcg gcg gcg gcg gcg gac gac gac ggc ggc ggc gca at g aag gcg	480
Gl u Al a Al a Al a Al a Al a Al a G n Arg G n Arg Met Lys Al a Al a Met Asp	
145 150 155 160	
acg t tc ggg cag cgg acg t cc at c t ac cgg ggt gt c acc aag cac agg	528
Thr Phe Gl y Gl n Arg Thr Ser Ile Tyr Arg Gl y Val Thr Lys His Arg	
165 170 175	
t gg aca gga agg tat gaa gcc cat ctt t gg gat aac agc t gc aga aga	576
Trp Thr Gl y Arg Tyr Gl u Al a His Leu Trp Asp Asn Ser Gys Arg Arg	
180 185 190	

5312WOPCT_SEQ_LI STI NG TXT																						
gaa	ggt	cag	act	cgc	aaa	gac	aga	caa	gt	a	t	at	ct	t	gga	gga	t	at	gat	624		
Gl	u	G	y	G	n	Th	Arg	Lys	G	y	Arg	G	n	Val	Tyr	Leu	G	y	G	y	Tyr	Asp
195							200							205								
aag	gaa	gaa	aaa	gct	gct	agg	gct	t	at	gat	tt	g	ct	gct	gcc	ct	t	aaa	tac	672		
Lys	Gu	Gu	Lys	Ala	Ala	Arg	Ala	Tyr	Asp	Leu	Ala	Ala	Leu	Lys	Tyr							
210				215				220														
tgg	ggc	act	aca	acg	acg	aat	ttt	ccg	gt	a	agc	aa	c	ttc	gaa	aaa			720			
Trp	G	y	Thr	Thr	Thr	Asn	Phe	Pro	Val	Ser	Ser	Asn	Tyr	Gu		Lys						
225				230				235							240							
gag	ttg	gat	gaa	atg	aag	cac	atg	aat	agg	cag	gaa	ttt	gtt	gca	tcc			768				
Gl	u	Leu	Asp	Gu	Met	Lys	His	Met	Asn	Arg	Gu	Phe	Val	Ala	Ser							
245								250						255								
ctt	aga	aga	aaa	agc	agt	gga	ttt	tca	cgt	ggt	gct	tcc	at	a	tat	cgt		816				
Leu	Arg	Arg	Lys	Ser	Ser	Gy	Phe	Ser	Arg	Gy	Ala	Ser	Ile	Tyr	Arg							
260							265						270									
gg	gtt	aca	aga	cac	cat	cag	cat	gga	agg	tgg	caa	gca	agg	at	a	gga		864				
Gy	Val	Thr	Arg	His	His	Gn	His	Gy	Arg	Trp	Gn	Ala	Arg	Ile	Gy							
275						280					285											
cgg	gtg	gca	gga	aac	aag	gat	ctg	tat	ttg	ggc	aca	ttt	ggc	acc	caa			912				
Arg	Val	Ala	Gy	Asn	Lys	Asp	Leu	Tyr	Leu	Gy	Thr	Phe	Gy	Thr	Gn							
290				295						300												
gag	gaa	gct	gca	gag	gca	tat	gat	atc	gct	gca	atc	aaa	ttc	cgt	ggt			960				
Gl	u	Gu	Ala	Ala	Gu	Ala	Tyr	Asp	Ile	Ala	Ala	Ile	Lys	Phe	Arg	Gy						
305				310					315						320							
ctc	aat	gct	gtg	aca	aac	ttt	gac	atg	agc	cgg	tac	gat	gtc	aag	agc			1008				
Leu	Asn	Ala	Val	Thr	Asn	Phe	Asp	Met	Ser	Arg	Tyr	Asp	Val	Lys	Ser							
325								330					335									
atc	att	gaa	agc	agc	aat	ctc	cca	att	ggt	act	gga	acc	acc	cgg	cga			1056				
Ile	Ile	Gl	u	Ser	Ser	Asn	Leu	Pro	Ile	Gy	Thr	Gy	Thr	Arg	Arg							
340							345						350									
ttg	aag	gac	tcc	tct	gat	cac	act	gat	aat	gtc	atg	gac	atc	aat	gtc			1104				
Leu	Lys	Asp	Ser	Ser	Asp	His	Thr	Asp	Asn	Val	Met	Asp	Ile	Asn	Val							
355						360					365											
aat	acc	gaa	ccc	aat	aat	gtg	gt	a	tca	tcc	cac	t	tc	acc	aat	ggg	gt	t	1152			
Asn	Thr	Gl	u	Pro	Asn	Asn	Val	Val	Ser	Ser	His	Phe	Thr	Asn	Gy	Val						
370						375					380											
ggc	aac	tat	ggt	tcg	cag	cat	tat	ggt	tac	aat	gga	tgg	t	cg	cca	att		1200				
Gy	Asn	Tyr	Gy	Ser	Gn	His	Tyr	Gy	Tyr	Asn	Gy	Trp	Ser	Pro	Pro	Ile						
385				390					395						400							
agc	atg	cag	ccg	atc	ccc	tcg	cag	tac	gcc	aac	ggc	cag	ccc	agg	gca			1248				
Ser	Met	Gn	Pro	Ile	Pro	Ser	Gn	Tyr	Ala	Asn	Gy	Gn	Pro	Arg	Ala							
405								410					415									
tgg	ttg	aaa	caa	gag	cag	gac	agc	tct	gtg	gtt	aca	g	cg	cag	g	aa	c	1296				
Trp	Leu	Lys	Gn	Gu	Gn	Asp	Ser	Ser	Val	Val	Thr	Ala	Ala	Gn	Asn							
420						425							430									
ctg	cac	aat	cta	cat	cat	ttt	agt	tcc	ttg	ggc	tac	acc	cac	aa	t	tc		1344				
Leu	His	Asn	Leu	His	His	Phe	Ser	Ser	Leu	Gy	Tyr	Thr	His	Asn	Phe							
435						440					445											
tcc	cag	caa	tct	gat	gtt	cca	gac	gtc	aca	ggt	t	tc	gtt	gat	g	cg	cct	1392				
Phe	Gn	Gn	Ser	Asp	Val	Pro	Asp	Val	Thr	Gy	Phe	Val	Asp	Ala	Pro							
450						455					460											

5312WOPCT_SEQ_LI STI NG TXT

tcg	agg	tcc	agt	gac	tca	ta	c	tcc	ttc	agg	ta	c	aat	gga	aca	aat	g	gc		1440			
Ser	Arg	Ser	Ser	Asp	Ser	Tyr	Ser	Phe	Arg	Tyr	Asn	Gly	Thr	Asn	Gly								
465				470					475								480						
t	tt	cat	ggt	ctc	ccg	ggt	gga	at	c	agc	t	at	gct	at	g	ccg	gt	t	g	1488			
Phe	His	Gly	Leu	Pro	Gly	Gly	Ile	Ser	Tyr	Ala	Met	Pro	Val	Ala	Thr								
			485						490								495						
g	cg	gt	g	gac	caa	ggt	cag	g	gc	at	c	cat	g	gc	t	at	g	ga	gat	gt	1536		
Ala	Val	Asp	Gly	Gly	Gly	Gly	Ile	His	Gly	Tyr	Gly	Tyr	Gly	Gl	u	Asp	Gly	Val	Gly	Val			
			500						505									510					
g	ca	gg	c	at	t	gac	acc	ac	a	ca	at	g	ac	ct	g	t	at	g	gc	tg	1584		
Ala	Gly	Ile	Asp	Thr	Thr	His	Asp	Leu	Tyr	Gly	Ser	Arg	Asn	Asn	Val	Val	Tyr	Tyr					
			515						520														
t	ac	ct	t	cc	gag	ggt	t	cg	ct	t	ct	cc	gat	gt	c	gaa	aaa	gaa	g	gc	gac	1632	
Tyr	Leu	Ser	Gl	u	Gly	Ser	Leu	Leu	Ala	Asp	Asp	Val	Gl	u	Lys	Gl	u	Gly	Asp				
			530						535								540						
t	at	gg	c	aa	t	ct	gt	g	gg	gg	gc	aac	agc	t	gg	gt	t	tg	cc	aca	cc	ta	1680
Tyr	Gly	Gly	Ser	Val	Gly	Gly	Asn	Ser	Trp	Val	Val	Leu	Pro	Thr	Pro								
			545						550								555						

<210> 91
 <211> 559
 <212> PRT
 <213> *Oryza sativa*

<400> 91
 Met Ala Ser Ile Thr Asn Trp Leu Gly Phe Ser Ser Ser Ser Phe Ser
 1 5 10 15
 Gly Ala Gly Ala Asp Pro Val Leu Pro His Pro Pro Leu Glu Trp
 20 25 30
 Gly Ser Ala Tyr Glu Gly Gly Thr Val Ala Ala Ala Gly Gly Glu
 35 40 45
 Glu Thr Ala Ala Pro Lys Leu Glu Asp Phe Leu Gly Met Glu Val Glu
 50 55 60
 Glu Glu Thr Ala Ala Ala Ala Ala Gly His Gly Arg Gly Gly Ser Ser
 65 70 75 80
 Ser Val Val Gly Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Glu Pro
 85 90 95
 Pro Pro Ala Val Val Gly Gly Glu Asp Ala Met Met Ala Leu Ala Val
 100 105 110
 Ser Thr Ser Ala Ser Pro Pro Val Asp Ala Thr Val Pro Ala Cys Ile
 115 120 125
 Ser Pro Asp Gly Met Gly Ser Lys Ala Ala Asp Gly Gly Gly Ala Ala
 130 135 140
 Glu Ala Ala Ala Ala Ala Ala Glu Arg Met Lys Ala Ala Met Asp
 145 150 155 160
 Thr Phe Gly Glu Arg Thr Ser Ile Tyr Arg Gly Val Thr Lys His Arg
 165 170 175
 Trp Thr Gly Arg Tyr Glu Ala His Leu Trp Asp Asn Ser Cys Arg Arg
 180 185 190
 Glu Gly Glu Thr Arg Lys Gly Arg Glu Val Tyr Leu Gly Gly Tyr Asp
 195 200 205
 Lys Glu Glu Lys Ala Ala Arg Ala Tyr Asp Leu Ala Ala Leu Lys Tyr
 210 215 220
 Trp Glu Thr Thr Thr Asn Phe Pro Val Ser Asn Tyr Glu Lys
 225 230 235 240
 Glu Leu Asp Glu Met Lys His Met Asn Arg Glu Glu Phe Val Ala Ser
 245 250 255
 Leu Arg Arg Lys Ser Ser Gly Phe Ser Arg Gly Ala Ser Ile Tyr Arg
 260 265 270
 Gly Val Thr Arg His His Glu His Gly Arg Trp Glu Ala Arg Ile Gly
 275 280 285

5312WOPCT_SEQ.LI STI NG.TXT

Arg Val Ala Gly Asn Lys Asp 290 295 Leu Tyr Leu Gly Thr Phe Gly Thr Gln
 Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala Ala Ile Lys Phe Arg Gly 300 305 310 315 320
 Leu Asn Ala Val Thr Asn Phe Asp Met Ser Arg Tyr Asp Val Lys Ser 325 330 335 340 345 350
 Ile Ile Glu Ser Ser Asn Leu Pro Ile Gly Thr Gly Thr Thr Arg Arg 355 360 365 370 375 380
 Leu Lys Asp Ser Ser Asp His Thr Asp Asn Val Met Asp Ile Asn Val 385 390 395 400
 Asn Thr Glu Pro Asn Asn Val Val Ser Ser His Phe Thr Asn Gly Val 405 410 415 420 425 430
 Gly Asn Tyr Gly Ser Gln His Tyr Gly Tyr Asn Gly Trp Ser Pro Ile 435 440 445 450 455 460
 Ser Met Gln Pro Ile Pro Ser Gln Tyr Ala Asn Gly Gln Pro Arg Ala 470 475 480 485 490 495
 Trp Leu Lys Gln Glu Gln Asp Ser Ser Val Val Thr Ala Ala Gln Asn 500 505 510 515 520 525
 Leu His Asn Leu His His Phe Ser Ser Leu Gly Tyr Thr His Asn Phe 530 535 540 545 550 555

<210> 92
 <211> 2112
 <212> DNA
 <213> Oryza sativa

<220>
 <221> CDS
 <222> (1)...(2112)

<400> 92
 at g gct tct gca aac aac tgg ctg ggc ttc tcg ctc tcc ggc caa gag 48
 Met Ala Ser Ala Asn Asn Trp Leu Gly Phe Ser Leu Ser Gln Gln Glu
 1 5 10 15

aat ccg cag cct cac cag gat agc tcg cct ccg gca gcc atc gac gt c 96
 Asn Pro Gln Pro His Gln Asp Ser Ser Pro Pro Ala Ala Ile Asp Val

20 25 30

tcc ggc gcc ggc gac ttc tat ggc ctg ccg acg tcg cag ccg acg gcg 144
 Ser Gln Ala Gly Asp Phe Tyr Gly Leu Pro Thr Ser Gln Pro Thr Ala

35 40 45

gcc gac gcg cac ctc ggc gt g gcg ggg cat cat cac aac gcc tcg tat 192
 Ala Asp Ala His Leu Gly Val Ala Gly His His Asn Ala Ser Tyr

50 55 60

ggc atc atg gag gcc ttc aat agg gga gct caa gag gca caa gat tgg 240
 Gly Ile Met Gu Ala Phe Asn Arg Gly Ala Gln Gu Ala Gln Asp Trp

65 70 75 80

aac atg agg ggg ctg gac tac aac ggc ggc gcc tcg gag ctg tcg atg 288
 Asn Met Arg Gly Leu Asp Tyr Asn Gly Gly Ala Ser Glu Leu Ser Met

5312WOPCT_SEQ_LI STI NG TXT

85

90

95

ctc	gtc	ggc	tcc	agc	ggc	ggc	aag	agg	gcf	gcf	gcf	gtg	gag	gag	acc	336
Leu	Val	Gly	Ser	Ser	Gly	Gly	Lys	Arg	Ala	Ala	Ala	Val	Glu	Glu	Thr	
100							105					110				
gag	ccg	aag	ctg	gag	gac	tcc	ctc	ggc	ggc	aac	tcc	tcc	gtc	tcc	gag	384
Glu	Pro	Lys	Leu	Glu	Asp	Phe	Leu	Gly	Gly	Asn	Ser	Phe	Val	Ser	Glu	
115						120					125					
caa	gat	cat	cac	gcf	gcf	ggg	ggc	tcc	ctc	tcc	tcc	ggc	gtc	ccg	atg	432
Gln	Asp	His	His	Ala	Ala	Gly	Gly	Phe	Leu	Phe	Ser	Gly	Val	Pro	Met	
130				135						140						
gcc	agc	agc	acc	aac	agc	aac	agc	ggg	agc	aac	act	atg	gag	ctc	tcc	480
Ala	Ser	Ser	Thr	Asn	Ser	Asn	Ser	Gly	Ser	Asn	Thr	Met	Glu	Leu	Ser	
145				150						155			160			
atg	atc	aag	acc	tgg	ctc	cg	aac	aac	ggc	cag	gtg	ccc	gcc	ggc	cac	528
Met	Ile	Lys	Thr	Trp	Leu	Arg	Asn	Asn	Gly	Gln	Val	Pro	Ala	Gly	His	
				165					170				175			
cag	ccg	cag	cag	cag	cag	ccg	gcf	gcc	gcf	gcc	gcc	gcc	gcf	cag	cag	576
Gln	Pro	Gln	Gln	Gln	Gln	Pro	Ala	Gln	Gln							
				180				185					190			
cag	gcf	cac	gag	gcf	gcf	gag	atg	agc	acc	gac	gcf	agc	gcf	agc	agc	624
Gln	Ala	His	Glu	Ala	Ala	Glu	Met	Ser	Thr	Asp	Ala	Ser	Ala	Ser	Ser	
		195				200					205					
tcc	ggg	tgc	tcc	tcc	gac	gcf	atg	ggg	agg	agt	aac	aac	ggc	ggc	gcf	672
Phe	Gly	Cys	Ser	Ser	Asp	Ala	Met	Gly	Arg	Ser	Asn	Asn	Gly	Gly	Ala	
		210			215					220						
gtc	tcc	gcf	gcf	gcf	ggc	ggg	acg	agc	tcc	cag	agc	ctg	gcf	ctc	tcc	720
Val	Ser	Ala	Ala	Ala	Gly	Gly	Thr	Ser	Ser	235	agc	Leu	Ala	Leu	Ser	
					230									240		
atg	agc	acg	ggc	tcc	cac	tcc	cac	ctg	cct	atc	gtc	gtc	gcc	ggc	ggc	768
Met	Ser	Thr	Gly	Ser	His	Ser	His	Leu	Pro	Ile	Val	Val	Ala	Gly	Gly	
			245						250				255			
ggg	aac	gcc	agc	ggc	gga	gcf	gcc	gag	agc	aca	tcc	tcc	gag	aac	aag	816
Gly	Asn	Ala	Ser	Gly	Gly	Ala	Ala	Glu	Ser	Thr	Ser	Ser	Glu	Asn	Lys	
			260					265					270			
cgf	gcc	agc	ggc	gcc	atg	gat	tcc	ccg	ggc	ggt	ggc	gcf	atg	gag	gcc	864
Arg	Ala	Ser	Gly	Ala	Met	Asp	Ser	Pro	Gly	Gly	Gly	Ala	Ile	Glu	Ala	
			275			280						285				
gtg	ccg	agg	aag	tcc	atc	gac	acg	tcc	ggf	caa	agg	acc	tcc	atg	tat	912
Val	Pro	Arg	Lys	Ser	Ile	Asp	Thr	Phe	Gly	Gln	Arg	Thr	Ser	Ile	Tyr	
			290			295				300						
cga	ggt	gt a	aca	agg	cat	aga	tgg	aca	ggg	cga	tat	gag	gtc	cat	ctc	960
Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Glu	Ala	His	Leu	
					310				315					320		
tgg	gat	aat	agc	tgt	aga	aga	gaa	ggg	cag	agt	cgc	aag	ggt	agg	caa	1008
Trp	Asp	Asn	Ser	Cys	Arg	Arg	Glu	Gly	Gly	Ser	Arg	Lys	Gly	Arg	Gly	
				325				330					335			
gtt	tat	ctt	ggt	ggc	tat	gac	aag	gag	gat	aaa	gca	gcf	aga	gct	tat	1056
Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	Glu	Asp	Lys	Ala	Ala	Arg	Ala	Tyr	
				340				345					350			
gat	ttg	gca	gct	ctg	aag	tat	tgg	ggc	aca	aca	aca	aca	aca	aat	tcc	1104
Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Thr	Thr	Thr	Thr	Thr	Asn	Phe	

5312WOPCT_SEQ_LI STI NG TXT

355	360	365	
cca at a agt aac tat gaa aaa gag ct a gat gaa at g aaa cat at g acc			1152
Pro Ile Ser Asn Tyr Glu Lys Glu Leu Asp Glu Met Lys His Met Thr			
370 375 380 385 390 395 400			
agg cag gag tat att gca tac cta aga agg aat agc agt gga ttt tct			1200
Arg Gln Glu Tyr Ile Ala Tyr Leu Arg Arg Asn Ser Ser Gly Phe Ser			
405 410 415 420 425 430 435			
cgt ggt gca tcg aaa tat cgt ggt gt a acc agg cac cat cag cat ggg			1248
Arg Gly Ala Ser Lys Tyr Arg Gly Val Thr Arg His His Gln His Gly			
420 425 430 435 440 445 450			
aga tgg caa gca agg at a ggg agg gtt gca gga aac aag gac ctc tac			1296
Arg Trp Gln Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr			
420 425 430 435 440 445 450			
tta ggc acc ttc agc acc gag gag gag gca gca gac tac gac at c			1344
Leu Gly Thr Phe Ser Thr Glu Glu Ala Ala Glu Ala Tyr Asp Ile			
435 440 445 450 455 460 465			
gcg gcg at c aag ttc cgg ggg ctc aac gcc gtc acc aac ttt gac at g			1392
Ala Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met			
450 455 460 465 470 475 480			
agc cgc tac gac gtc aag agc at c ct g gag agc agc acg ct g ccg gt g			1440
Ser Arg Tyr Asp Val Lys Ser Ile Leu Glu Ser Thr Leu Pro Val			
465 470 475 480 485 490 495			
ggc ggc gcg gcg agg cgg ct g aag gag gcg gcg gac cac gcg gag gcg			1488
Gly Gly Ala Ala Arg Arg Leu Lys Glu Ala Ala Asp His Ala Glu Ala			
485 490 495 500 505 510 515			
gcc ggc gcc acc at c tgg cgc gcc gac at g gac ggc gcc ggc gtc			1536
Ala Gly Ala Thr Ile Trp Arg Ala Asp Met Asp Gly Ala Gly Val			
500 505 510 515 520 525 530			
at c tcc ggc ct g gcc gac gtc ggg at g ggc gcc t ac gcc gcc t cg t ac			1584
Ile Ser Gly Leu Ala Asp Val Gly Met Gly Ala Tyr Ala Ala Ser Tyr			
515 520 525 530 535 540 545			
cac cac cac cac cac cac ggc tgg ccg acc at c gcg ttc cag cag ccg			1632
His His His His His His Gly Trp Pro Thr Ile Ala Phe Gln Gln Pro			
530 535 540 545 550 555 560			
ccg ccg ct c gcc gt g cac tac ccg tac ggc cag gcg ccg gcg ccg			1680
Pro Pro Leu Ala Val His Tyr Pro Tyr Gly Gln Ala Pro Ala Ala Pro			
545 550 555 560 565 570 575			
t cg cgc ggg tgg tgc aag ccc gag cag gac gcc gcc gt c gct gcc gcc			1728
Ser Arg Gly Trp Oys Lys Pro Glu Gln Asp Ala Ala Val Ala Ala Ala			
565 570 575 580 585 590 595			
g cg c ac aac ttc ttc cag gcg t cg t cg agc t cg acg gt c t ac aac ggc			1776
Ala His Ser Leu Gln Asp Leu Gln Gln Leu His Leu Gly Ser Ala Ala			
580 585 590 595 600 605 610			
gcc cac aac ttc ttc cag gcg t cg t cg agc t cg acg gt c t ac aac ggc			1824
Ala His Asn Phe Phe Glu Ala Ser Ser Thr Val Tyr Asn Gly			
595 600 605 610 615 620 625			
ggc ggc ggc ggg tac cag ggc ct c ggt ggc aac gcc ttc ttg at g ccg			1872
Gly Gly Gly Gly Tyr Glu Glu Leu Gly Asn Ala Phe Leu Met Pro			
610 615 620 625 630 635 640			
g cg a gc acc gtc gt g gcc a gc gac c ag c ag c ag c ag c acc a ac			1920
Ala Ser Thr Val Val Ala Asp Glu Gly His Ser Ser Thr Ala Thr Asn			
640 645 650 655 660 665 670			

5312WOPCT_SEQ_LI STI NG TXT

625	630	635	640	
cat gga aac acc tgc agc tac ggc aac gag gag cag ggg aag ctc atc				1968
His Glu Asn Thr Cys Ser Tyr Glu Asn Glu Glu Glu Lys Leu Ile				
645	650	655		
ggg tac gac gcc atg gcg atg gcg agc ggc gcc gcc ggc ggc ggg tac				2016
Gly Tyr Asp Ala Met Ala Met Ala Ser Gly Ala Ala Gly Gly Tyr				
660	665	670		
cag ctg tcg cag ggc tcg gcg tcg acg gtg agc atc gcg agg gcg aac				2064
Gln Leu Ser Gln Gly Ser Ala Ser Thr Val Ser Ile Ala Arg Ala Asn				
675	680	685		
ggc tac tcg gcc aac tgg agc tcg cct ttc aat ggc gcc atg gga tga				2112
Gly Tyr Ser Ala Asn Trp Ser Ser Pro Phe Asn Gly Ala Met Gly				
690	695	700		

<210> 93
<211> 703
<212> PRT
<213> *Oryza sativa*

<400> 93

Met Ala Ser Ala Asn Asn Trp Leu Gly Phe Ser Leu Ser Gly Gln Glu				
1 5 10 15				
Asn Pro Gln Pro His Gln Asp Ser Ser Pro Pro Ala Ala Ile Asp Val				
20 25 30				
Ser Gly Ala Gly Asp Phe Tyr Gly Leu Pro Thr Ser Gln Pro Thr Ala				
35 40 45				
Ala Asp Ala His Leu Gly Val Ala Gly His His His Asn Ala Ser Tyr				
50 55 60				
Gly Ile Met Glu Ala Phe Asn Arg Gly Ala Gln Glu Ala Gln Asp Trp				
65 70 75 80				
Asn Met Arg Gly Leu Asp Tyr Asn Gly Gly Ala Ser Glu Leu Ser Met				
85 90 95				
Leu Val Gly Ser Ser Gly Gly Lys Arg Ala Ala Ala Val Glu Glu Thr				
100 105 110 115				
Glu Pro Lys Leu Glu Asp Phe Leu Gly Gly Asn Ser Phe Val Ser Glu				
120 125				
Gln Asp His His Ala Ala Gly Gly Phe Leu Phe Ser Gly Val Pro Met				
130 135 140 145				
Ala Ser Ser Thr Asn Ser Asn Ser Gly Ser Asn Thr Met Glu Leu Ser				
150 155 160				
Met Ile Lys Thr Trp Leu Arg Asn Asn Gly Gln Val Pro Ala Gly His				
165 170 175				
Gln Pro Gln Gln Gln Pro Ala Ala Ala Ala Ala Ala Gln Gln				
180 185 190 195				
Gln Ala His Glu Ala Ala Glu Met Ser Thr Asp Ala Ser Ala Ser Ser				
200 205				
Phe Gly Cys Ser Ser Asp Ala Met Gly Arg Ser Asn Asn Gly Gly Ala				
210 215 220 225				
Val Ser Ala Ala Ala Gly Gly Thr Ser Ser Gln Ser Leu Ala Leu Ser				
230 235 240				
Met Ser Thr Gly Ser His Ser His Leu Pro Ile Val Val Ala Gly Gly				
245 250 255				
Gly Asn Ala Ser Gly Gly Ala Ala Glu Ser Thr Ser Ser Glu Asn Lys				
260 265 270 275				
Arg Ala Ser Gly Ala Met Asp Ser Pro Gly Gly Gly Ala Ile Glu Ala				
280 285				
Val Pro Arg Lys Ser Ile Asp Thr Phe Gly Gln Arg Thr Ser Ile Tyr				
290 295 300				
Arg Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu				
310 315 320				
Trp Asp Asn Ser Cys Arg Arg Glu Gly Gln Ser Arg Lys Gly Arg Gln				
325 330 335				

5312WOPCT_SEQ.LI STI NG TXT

Val Tyr Leu G y G y Tyr Asp Lys G u Asp Lys Al a Al a Arg Al a Tyr
 340 345 350
 Asp Leu Al a Al a Leu Lys Tyr Trp G y Thr Thr Thr Thr Asn Phe
 355 360 365
 Pro Ile Ser Asn Tyr G u Lys G u Leu Asp G u Met Lys His Met Thr
 370 375 380 385
 Arg G n G l u Tyr Ile Al a Tyr Leu Arg Arg Asn Ser Ser G y Phe Ser
 390 395 400
 Arg G y Al a Ser Lys Tyr Arg G y Val Thr Arg His His G n His G y
 405 410 415
 Arg Trp G n Al a Arg Ile G y Arg Val Al a G y Asn Lys Asp Leu Tyr
 420 425 430
 Leu G y Thr Phe Ser Thr G u G u Al a Al a G u Al a Tyr Asp Ile
 435 440 445
 Al a Al a Ile Lys Phe Arg G y Leu Asn Al a Val Thr Asn Phe Asp Met
 450 455 460
 Ser Arg Tyr Asp Val Lys Ser Ile Leu G u Ser Ser Thr Leu Pro Val
 465 470 475 480
 G y G y Al a Al a Arg Arg Leu Lys G u Al a Al a Asp His Al a G u Al a
 485 490 495
 Al a G y Al a Thr Ile Trp Arg Al a Al a Asp Met Asp G y Al a G y Val
 500 505 510
 Ile Ser G y Leu Al a Asp Val G y Met G y Al a Tyr Al a Al a Ser Tyr
 515 520 525
 His His His His His G y Trp Pro Thr Ile Al a Phe G n G n Pro
 530 535 540
 Pro Pro Leu Al a Val His Tyr Pro Tyr G y G n Al a Pro Al a Al a Pro
 545 550 555 560
 Ser Arg G y Trp Cys Lys Pro G u G n Asp Al a Al a Val Al a Al a Al a
 565 570 575
 Al a His Ser Leu G n Asp Leu G n G n Leu His Leu G y Ser Al a Al a
 580 585 590
 Al a His Asn Phe Phe G n Al a Ser Ser Ser Thr Val Tyr Asn G y
 595 600 605
 G y G y G y Tyr G n G y Leu G y G y Asn Al a Phe Leu Met Pro
 610 615 620
 Al a Ser Thr Val Val Al a Asp G n G y His Ser Ser Thr Al a Thr Asn
 625 630 635 640
 His G y Asn Thr Cys Ser Tyr G y Asn G u G u G n G y Lys Leu Ile
 645 650 655
 G y Tyr Asp Al a Met Al a Met Al a Ser G y Al a Al a G y G y Tyr
 660 665 670
 G n Leu Ser G n G y Ser Al a Ser Thr Val Ser Ile Al a Arg Al a Asn
 675 680 685
 G y Tyr Ser Al a Asn Trp Ser Ser Pro Phe Asn G y Al a Met G y
 690 695 700

<210> 94

<211> 1977

<212> DNA

<213> Oryza sativa

<220>

<221> CDS

<222> (1)...(1977)

<400> 94

at g	gct	t ct	gca	gat	aac	t gg	c t a	g g c	t t c	t c g	c t c	t c c	g g c	caa	g g c	48
Met	Al a	Ser	Al a	Asp	Asn	Trp	Leu	G y	Phe	Ser	Leu	Ser	G y	G n	G y	
1			5					10					15			

aac	cc a	c a g	c a t	c a c	c a g	a a c	g g c	t c g	c c g	t c t	g c c	g c c	g g c	g a c	g c c	96
Asn	Pro	G n	His	His	G n	Asn	G y	Ser	Pro	Ser	Al a	Al a	G y	Asp	Al a	
		20			25								30			

g c c	a t c	g a c	a t c	t c c	g g c	t c a	g g c	g a c	t t c	t a t	g g t	c t g	c c a	a c g	c c g	144
Al a	Ile	Asp	Ile	Ser	G y	Ser	G y	Asp	Phe	Tyr	G y	Leu	Pro	Thr	Pro	

5312WOPCT_SEQ_LI STI NG TXT

35

40

45

gac	gca	cac	cac	atc	ggc	atg	gcg	ggc	gaa	gac	gcg	ccc	tat	ggc	gtc	192	
Asp	Ala	His	His	Ile	Gly	Met	Ala	Gly	Gl	Asp	Ala	Pro	Tyr	Gly	Val		
50					55				60								
atg	gat	gct	ttc	aac	aga	ggc	acc	cat	gaa	acc	caa	gat	tgg	gcg	atg	240	
Met	Asp	Ala	Phe	Asn	Arg	Gly	Thr	His	Gu	Thr	Gln	Asp	Trp	Ala	Met		
65					70				75								
agg	ggt	tgt	gac	tac	ggc	ggc	ggc	tcc	tcc	gac	ctc	tgc	atg	ctc	gtc	288	
Arg	Gly	Leu	Asp	Tyr	Gly	Gly	Gly	Ser	Ser	Asp	Leu	Ser	Met	Leu	Val		
				85				90					95				
ggc	tgc	agc	ggc	ggc	ggg	agg	agg	acg	gtg	gcc	ggc	gac	ggc	gtc	ggc	336	
Gly	Ser	Ser	Gly	Gly	Gly	Arg	Arg	Thr	Val	Ala	Gly	Asp	Gly	Val	Gly		
			100					105				110					
gag	gcg	ccg	aag	ctg	gag	aac	ttc	ctc	gac	ggc	aac	tca	ttc	tcc	gac	384	
Gl	u	Ala	Pro	Lys	Leu	Gu	Asn	Phe	Leu	Asp	Gly	Asn	Ser	Phe	Ser	Asp	
			115			120					125						
gtg	cac	ggc	caa	gcc	gcc	ggc	ggg	tac	ctc	tac	tcc	gga	agc	gct	gtc	432	
Val	His	Gly	Gly	Ala	Ala	Gly	Gly	Tyr	Leu	Tyr	Ser	Gly	Ser	Ala	Val		
			130			135				140							
ggc	ggc	gcc	ggt	ggt	tac	agt	aac	ggc	gga	tgc	ggc	ggc	gga	acc	ata	480	
Gly	Gly	Ala	Gly	Gly	Tyr	Ser	Asn	Gly	Gly	Cys	Gly	Gly	Gly	Thr	Ile		
			145			150			155					160			
gag	ctg	tcc	atg	atc	aag	acg	tgg	ctc	cgg	agc	aac	cag	tgc	cag	cag	528	
Gl	u	Leu	Ser	Met	Ile	Lys	Thr	Trp	Leu	Arg	Ser	Asn	Gln	Ser	Gln		
				165					170				175				
cag	cca	tgc	ccg	ccg	cag	cac	gct	gat	cag	ggc	atg	agc	acc	gac	gcc	576	
Gn	Pro	Ser	Pro	Pro	Gn	His	Ala	Asp	180	Gn	Gly	Met	Ser	Thr	Asp	Ala	
							185					190					
agc	gcg	agc	agc	tac	gcg	tgc	tcc	gac	gtg	ctg	gtg	ggg	agc	tgc	ggc	624	
Ser	Ala	Ser	Ser	Tyr	Ala	Cys	Ser	Asp	200	Val	Leu	Val	205				
			195														
ggc	ggc	ggc	ggc	ggg	ggc	acg	ggc	agc	tgc	cat	ggg	cag	ggc	ctg	ggc	672	
Gly	Gly	Gly	Ala	Gly	Gly	Thr	Ala	Ser	Ser	His	Gly	Gly	Gly	Leu	Ala		
			210			215				220							
ctg	tgc	atg	agc	acg	ggg	tgc	gtg	gcc	gcc	gca	ggg	ggg	ggc	ggc	ggc	720	
Leu	Ser	Met	Ser	Thr	Gly	Ser	Val	Ala	Ala	Ala	Gly	Gly	Gly	Gly	Ala		
				225		230			235					240			
gtc	gtc	gcg	gcc	gag	agc	tgc	tgc	tgc	gag	aac	aag	cgg	gtg	gat	tgc	768	
Val	Val	Ala	Ala	Gly	Ser	Ser	Ser	Ser	Gu	Asn	Lys	Arg	Val	Asp	Ser		
				245					250				255				
ccg	ggc	ggc	gcc	gtg	gac	ggc	gcc	gtc	ccg	agg	aaa	tcc	atc	gac	acc	816	
Pro	Gly	Gly	Ala	Val	Asp	Gly	Ala	Val	Pro	Arg	Lys	Ser	Ile	Asp	Thr		
			260			265						270					
tgc	ggg	caa	agg	acg	tct	ata	tac	cga	ggt	gtt	aca	agg	cat	aga	tgg	864	
Phe	Gly	Gly	Arg	Arg	Thr	Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Trp		
			275			280				285							
aca	gga	aga	tat	gaa	gct	cat	ctg	tgg	gat	aat	agc	tgt	agg	aga	gaa	912	
Thr	Gly	Arg	Tyr	Gu	Ala	His	Leu	Trp	Asp	Asn	Ser	Cys	Arg	Arg	Gly		
			290			295				300							
ggc	caa	agt	cgc	aag	ggg	aga	cag	gtt	tat	tgt	ggc	ggt	tat	gac	aaa	960	
Gly	Gly	Ser	Arg	Lys	Gly	Arg	Gly	Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys		

5312WOPCT SEQ LI STI NG TXT

305	310	315	320	
gaa gat aag gcg gct 325	cg gct t at gat 325	tt g gca gct ct a 330	aaa t ac t gg 335	1008
Gu Asp Lys Al a 325	Al a Arg Al a 325	Tyr Asp Leu Al a 330	Lys Leu Lys Tyr 335	Trp
ggc acg acc aca 340	aca aca aat ttc 340	cca atg agt aat 345	gaa aag gag 350	1056
Gl y Thr Thr Thr 340	Thr Thr Asn Phe 340	Pro Met Ser Asn 345	Gl u Lys Lys Gl u 350	
ct a gag gaa 355	at g aaa cac 355	at g acc agg 360	ttt gaa gca cat 365	1104
Leu Gl u Gl u 355	Met Lys His Met 355	Met Thr Arg Gl n 360	Tyr Ile Al a His 365	Leu
aga agg aat 370	agc agt gga 375	ttt tct cgt 375	ttt ccc aaa 380	1152
Arg Arg Asn 370	Ser Ser Gl y 375	Phe Ser Arg Gl y 375	Tyr Arg Gl y 380	
gt t act agg 385	cat cat cag 390	cat ggg aga 390	tgg cag gca 395	1200
Val Thr Arg 385	His His Gl n 390	His Gl y Arg 390	Trp Gl n Al a 395	Arg
gt t gca ggc 405	aac aag gat 405	atc t ac 405	ttt acc ttc 410	1248
Val Al a Gl y 405	Asn Lys Asp 405	Ile Tyr Leu 405	Phe Ser Thr 410	Gl u Gl u 415
gag gcc gcc 420	gag gcg tac 425	gac atc gcc 425	atc aag ttc 430	1296
Gu Al a Al a 420	Al a Gl u Al a 420	Tyr Asp Ile 425	Lys Phe Arg 430	Gl y Leu
aat gcc gt c 435	acc aac ttc 435	gac atg agc 440	gtc gac aag 445	1344
Asn Al a Val 435	Thr Asn Phe Asp 435	Met Asp Ser 440	Asp Val Lys 445	
ct g gac agc 450	agc agc acg 455	ctg ccg gt c 455	ggc ggc ggc 460	1392
Leu Asp Ser 450	Ser Ser Thr 455	Leu Pro Val 455	Gl y Al a Al a 460	Arg Arg Leu Lys
gag gcg gag 465	gt c gcc al a 470	gtc gcc gac 470	ggc gcy ggc 475	1440
Gl u Al a Gl u 465	Val Al a Al a 470	Al a Gl a Al a 470	Gl y Gl y Gl y 475	Val Val Val 475
cac ctg gcc gac 485	gac ggc ggt 485	gtg ggt ggg 490	tac tac tac 490	1488
His Leu Al a Asp 485	Asp Gl y Gl y 485	Val Gl y Gl y 490	Tyr Tyr Tyr 490	Cys Gl y 495
acc atc gcg ttc 500	ggc ggc ggc 500	ggc cag cag 505	cag cag cag 510	1536
Thr Ile Al a Phe 500	Gl y Gl y Gl y 500	Gl y Gl y Gl y 505	Pro Pro Pro 510	Al a Gl a Gl u
cac tac ccg tcg 515	tac ggc cag 520	ttc ggc agc 520	ttc aag cag 525	1584
His Tyr Pro Ser 515	Asp Gl y Gl n 515	Al a Gl n Al a 520	Pro Gl y Trp 525	Gl u Gl n
gac gcg gt g 530	atc gcg gcc 535	ttc gac gac 540	ttc cag cag 540	1632
Asp Al a Val 530	Ile Gl a Al a 535	Al a Gl y His 535	Al a Gl n His 540	Gl u Leu
cac ct c ggg agc 545	ggc ggc gcc 550	ttc acc ctc 555	ttc aac ttc 555	1680
His Leu Gl y Ser 545	Gl y Gl y Al a 550	Al a Al a Al a 555	Al a Phe Phe 555	Gl n Gl n 560
ccg gcg tca agc 565	tcg gcc gt c 565	ttc t ac ggc 570	ttc aac ggc 570	1728
Pro Al a Ser Ser 565	Ser Al a Val 565	Tyr Asn Gl y 570	Al a Gl y Gl y 570	Gl y Gl y 575
aac gcg ttc atg 570	atg ccg atg 570	ttc ggc aac 570	ttc ggc aac 570	Gl y Gl y 575
Asn Al a Phe Met 570	Met Pro Met 570	Al a Gl y Asn 570	Al a Gl y Asn 570	Gl y Gl y 575
aac gcg ttc atg 575	atg ccg atg 575	ttc ggc aac 575	ttc ggc aac 575	Gl y Gl y 575
Asn Al a Phe Met 575	Met Pro Met 575	Al a Gl y Asn 575	Al a Gl y Asn 575	Gl y Gl y 575

5312WOPCT_SEQ_LI STI NG TXT

580

585

590

ggc	ggg	cag	agc	agc	gcc	t ac	ggc	ggt	ggc	gac	gag	agc	ggg	agg	ct c	1824
G y	G y	G n	Ser	Ser	Al a	Tyr	G y	G y	G y	Asp	Glu	Ser	G y	Arg	Leu	
595							600					605				
gt c	gt g	ggg	t ac	gac	ggc	gt c	gt c	gac	ccg	t ac	gcg	gcc	at g	aga	agc	1872
Val	Val	G y	Tyr	Asp	G y	Val	Val	Asp	Pro	Tyr	Al a	Al a	Met	Arg	Ser	
610						615					620					
gcg	t ac	gag	ctc	t cg	cag	ggc	t cg	gt g	agc	gt c	gcg	1920				
Al a	Tyr	G u	Leu	Ser	G n	G y	Ser	Ser	Ser	Ser	Ser	Val	Ser	Val	Al a	
625					630				635						640	
aag	gcg	gcg	aac	ggg	t ac	ccg	gac	aac	t gg	agc	t cg	ccg	t tc	aac	ggc	1968
Lys	Al a	Al a	Asn	G y	Tyr	Pro	Asp	Asn	Trp	Ser	Ser	Pro	Phe	Asn	G y	
				645					650					655		
at g	gga	t ga														1977
Met	G y															

<210> 95
<211> 658
<212> PRT
<213> Oryza sativa

<400> 95																
Met	Al a	Ser	Al a	Asp	Asn	Trp	Leu	G y	Phe	Ser	Leu	Ser	G y	G n	G y	
1				5					10					15		
Asn	Pro	G n	His	His	G n	Asn	G y	Ser	Pro	Ser	Al a	Al a	G y	Asp	Al a	
				20				25					30			
Al a	Ile	Asp	Ile	Ser	G y	Ser	G y	Asp	Phe	Tyr	G y	Leu	Pro	Thr	Pro	
							40				45					
Asp	Al a	His	His	Ile	G y	Met	Al a	G y	G u	Asp	Al a	Pro	Tyr	G y	Val	
					55				60							
Met	Asp	Al a	Phe	Asn	Arg	G y	Thr	His	G u	Thr	G n	Asp	Trp	Al a	Met	
					70				75					80		
Arg	G y	Leu	Asp	Tyr	G y	G y	G y	Ser	Ser	Asp	Leu	Ser	Met	Leu	Val	
					85				90					95		
G y	Ser	Ser	G y	G y	G y	Arg	Arg	Thr	Val	Al a	G y	Asp	G y	Val	G y	
					100				105					110		
Gl u	Al a	Pro	Lys	Leu	G u	Asn	Phe	Leu	Asp	G y	Asn	Ser	Phe	Ser	Asp	
					115			120				125				
Val	His	G y	G n	Al a	Al a	G y	G y	Tyr	Leu	Tyr	Ser	G y	Ser	Al a	Val	
					130			135				140				
G y	G y	Al a	G y	G y	Tyr	Ser	Asn	G y	G y	Cys	G y	G y	G y	Thr	Ile	
					145			150			155				160	
Gl u	Leu	Ser	Met	Ile	Lys	Thr	Trp	Leu	Arg	Ser	Asn	G n	Ser	G n	G n	
					165			170						175		
G n	Pro	Ser	Pro	Pro	G n	His	Al a	Asp	G n	G y	Met	Ser	Thr	Asp	Al a	
					180			185					190			
Ser	Al a	Ser	Ser	Tyr	Al a	Cys	Ser	Asp	Val	Leu	Val	G y	Ser	Cys	G y	
					195			200				205				
G y	G y	G y	Al a	G y	G y	Thr	Al a	Ser	Ser	His	G y	G n	G y	Leu	Al a	
					210			215				220				
Leu	Ser	Met	Ser	Thr	G y	Ser	Val	Al a	Al a	Al a	G y	G y	G y	Al a		
					225			230			235				240	
Val	Val	Al a	Al a	Gl u	Ser	Ser	Ser	Gl u	Asn	Lys	Arg	Val	Asp	Ser		
					245			250			255					
Pro	G y	G y	Al a	Val	Asp	G y	Al a	Val	Pro	Arg	Lys	Ser	Ile	Asp	Thr	
				260				265					270			
Phe	G y	G n	Arg	Thr	Ser	Ile	Tyr	Arg	G y	Val	Thr	Arg	His	Arg	Trp	
				275			280					285				
Thr	G y	Arg	Tyr	Gl u	Al a	His	Leu	Trp	Asp	Asn	Ser	Cys	Arg	Arg	Gl u	
				290			295				300					
G y	G n	Ser	Arg	Lys	G y	Arg	G n	Val	Tyr	Leu	G y	G y	Tyr	Asp	Lys	

5312WOPCT_SEQ.LI STI NG.TXT

305	Gl u	Asp	Lys	Al a	Al a	310	Arg	Al a	Tyr	Asp	Leu	Al a	Al a	Leu	Lys	Tyr	Tr p	320
						325				330					335			
	Gly	Thr	Thr	Thr	Thr		Asn	Phe	Pro	Met	Ser	Asn	Tyr	Gl u	Lys	Gl u		
						340			345				350					
	Leu	Gl u	Gl u	Met	Lys	His	Met	Thr	Arg	Gl n	Gl u	Tyr	Ile	Al a	His	Leu		
						355			360			365						
	Arg	Arg	Asn	Ser	Ser	Gly	Phe	Ser	Arg	Gly	Al a	Ser	Lys	Tyr	Arg	Gly		
						370			375			380						
	Val	Thr	Arg	His	His	Gl n	His	Gly	Arg	Tr p	Gl n	Al a	Arg	Ile	Gly	Arg		
						385			390			395			400			
	Val	Al a	Gl y	Asn	Lys	Asp	Ile	Tyr	Leu	Gly	Thr	Phe	Ser	Thr	Gl u	Gl u		
						405			410			415						
	Gl u	Al a	Al a	Gl u	Al a	Tyr	Asp	Ile	Al a	Al a	Ile	Lys	Phe	Arg	Gly	Leu		
						420			425			430						
	Asn	Al a	Val	Thr	Asn	Phe	Asp	Met	Ser	Arg	Tyr	Asp	Val	Lys	Ser	Ile		
						435			440			445						
	Leu	Asp	Ser	Ser	Thr	Leu	Pro	Val	Gly	Gly	Al a	Al a	Arg	Arg	Leu	Lys		
						450			455			460						
	Gl u	Al a	Gl u	Val	Al a	Al a	Al a	Al a	Gly	Gly	Gl y	Gl y	Val	Ile	Val	Ser		
						465			470			475			480			
	His	Leu	Al a	Asp	Gly	Gly	Val	Gly	Gly	Tyr	Tyr	Tyr	Gl y	Cys	Gly	Pro		
						485			490			495						
	Thr	Ile	Al a	Phe	Gly	Gly	Gly	Gly	Gl n	Gl n	Pro	Al a	Pro	Leu	Al a	Val		
						500			505			510						
	His	Tyr	Pro	Ser	Tyr	Gly	Gl n	Al a	Ser	Gly	Tr p	Oys	Lys	Pro	Gl u	Gl n		
						515			520			525						
	Asp	Al a	Val	Ile	Al a	Al a	Gly	His	Oys	Al a	Thr	Asp	Leu	Gl n	His	Leu		
						530			535			540						
	His	Leu	Gly	Ser	Gly	Gly	Al a	Al a	Al a	Al a	Thr	His	Asn	Phe	Phe	Gl n	Gl n	
						545			550			555			560			
	Pro	Al a	Ser	Ser	Ser	Al a	Val	Tyr	Gly	Asn	Gly	Gly	Gly	Gly	Gly	Gly		
						565			570			575						
	Asn	Al a	Phe	Met	Met	Pro	Met	Gly	Al a	Val	Val	Al a	Al a	Al a	Asp	His		
						580			585			590						
	Gl y	Gl y	Gl n	Ser	Ser	Al a	Tyr	Gly	Gly	Gly	Asp	Gl u	Ser	Gl y	Arg	Leu		
						595			600			605						
	Val	Val	Gly	Tyr	Asp	Gly	Val	Val	Asp	Pro	Tyr	Al a	Al a	Met	Arg	Ser		
						610			615			620						
	Al a	Tyr	Gl u	Leu	Ser	Gl n	Gl y	Ser	Ser	Ser	Ser	Val	Ser	Val	Al a			
						625			630			635			640			
	Lys	Al a	Al a	Asn	Gly	Tyr	Pro	Asp	Asn	Tr p	Ser	Ser	Pro	Phe	Asn	Gly		
						645			650			655						
	Met	Gl y																

<210> 96
<211> 2112
<212> DNA
<213> Sorghum bi col or

<220>
<221> CDS
<222> (1)...(2112)

<400> 96	at g	gct	act	gt g	aac	aac	tgg	ctc	gct	t t c	tcc	ctc	tcc	ccg	cag	gag	48
	Met	Al a	Thr	Val	Asn	Asn	Tr p	Leu	Al a	Phe	Ser	Leu	Ser	Pro	Gl n	Gl u	
	1			5					10					15			
	ct g	ccg	ccc	acc	cag	acg	gac	tcc	acc	ctc	at c	tct	gcc	gcc	acc	acc	96
	Leu	Pro	Pro	Thr	Gl n	Thr	Asp	Ser	Thr	Leu	Ile	Ser	Al a	Al a	Thr	Thr	
	20				25									30			
	gac	gat	gt c	tcc	ggc	gat	gt c	tgc	t t c	aac	at c	ccc	caa	gat	tgg	agc	144
	Asp	Asp	Val	Ser	Gl y	Asp	Val	Cys	Phe	Asn	Ile	Pro	Gl n	Asp	Tr p	Ser	
	35					40							45				

5312WOPCT_SEQ_LI STI NG TXT

at g	agg	gga	t cc	gag	ct t	t cg	g c g	c t c	g t c	g c c	g a g	c c g	a a g	c t g	g a g	192	
Met	Arg	Gly	Ser	Gl u	Leu	Ser	Al a	Leu	Val	Al a	Gl u	Pro	Lys	Leu	Gl u		
50				55						60							
gac	t tc	c t c	g g c	g g a	a t c	t cc	t tc	t cc	g a g	c a g	c a c	c a c	a a g	g c c	a a c	240	
Asp	Phe	Leu	Gly	Gly	Ile	Ser	Phe	Ser	Gl u	Gl n	His	His	Lys	Al a	Asn		
65				70					75						80		
t g c	a a c	a t g	a t c	c c c	a g c	a c t	a g c	a g c	a c a	g c t	t a c	g c g	a g c	t c g	288		
Cys	Asn	Met	Ile	Pro	Ser	Thr	Ser	Ser	Thr	Al a	Cys	Tyr	Al a	Ser	Ser		
				85					90				95				
g g t	g c t	a c c	g c c	g g c	t a c	c a t	c a c	c a g	c a g	t a c	c a c	c a g	c c c	a c c	a g c	336	
Gly	Al a	Thr	Al a	Gly	Tyr	His	His	Gl n	Leu	Tyr	His	Gl n	Pro	Thr	Ser		
				100				105				110					
t c c	g c g	c t c	c a c	t t c	g c t	a g c	t c c	g t c	a t g	g t g	g c c	t c c	t c g	g c c	g g c	384	
Ser	Al a	Leu	His	Phe	Al a	Asp	Ser	Val	Met	Val	Al a	Ser	Ser	Al a	Gly		
				115			120			125							
g g c	g t c	c a c	g a c	g g a	g g t	g c c	a t g	c t c	a g c	g c g	a g c	g c t	a a t	g g t	432		
Gly	Val	His	Asp	Gly	Gly	Al a	Al a	Met	Leu	Ser	Al a	Al a	Al a	Asn	Gly		
				130			135			140							
a g c	g c t	g g c	g c t	g g c	g c t	g c c	a g t	g c c	a a t	g g c	a g c	g c t	a t c	g g g	480		
Ser	Al a	Gly	Al a	Gly	Al a	Al a	Ser	Al a	Asn	Gly	Ser	Gly	Ser	Ile	Gly		
				145			150			155				160			
c t g	t c c	a t g	a t c	a a g	a a c	t g g	c t g	c g g	a g c	c a a	c c a	c g t	c c c	a t g	c a g	528	
Leu	Ser	Met	Ile	Lys	Asn	Trp	Leu	Arg	Ser	Gl n	Pro	Al a	Pro	Met	Gl n		
				165				170					175				
c c g	a g g	g t g	g c g	g c g	g c t	g a g	a g c	g t g	c a g	g g g	c t c	t c t	t t g	t c c	a t g	576	
Pro	Arg	Val	Al a	Al a	Al a	Al a	Gl u	Ser	Val	Gl n	Leu	Leu	Leu	Met			
				180			185			190							
a a c	a t g	g c g	g g g	g c g	a c g	c a a	g g c	g c c	g c t	g c g	a t g	c c a	c t t	c t t	g c t	624	
Asn	Met	Al a	Gly	Al a	Thr	Gl n	Gly	Al a	Al a	Al a	Al a	Met	Pro	Leu	Leu	Al a	
				195			200			205							
g g a	g a g	c g c	g g c	c g g	g c g	c c c	g a g	g a t	g t c	t c g	a c g	t c g	g c a	c a g	g g t	672	
Gly	Gl u	Arg	Gly	Arg	Al a	Pro	Gl u	Ser	Val	Ser	Thr	Ser	Al a	Gl n	Gly		
				210			215			220							
g g a	g c c	g t c	g t c	a c g	g c t	c c a	a a g	g a g	g a t	g g t	g g c	g c g	g g t	g t t	720		
Gly	Al a	Val	Val	Thr	Al a	Pro	Lys	Gl u	Asp	Ser	235	Gl y	Gl y	Agc	Val		
				225									240				
g c c	g c c	a c c	g g c	g c c	c t a	g t a	g c c	g t g	a g c	a c g	a c g	g g t	g g c	agc	768		
Al a	Al a	Thr	Gly	Al a	Leu	Val	Al a	Val	Ser	Thr	Asp	Thr	Gly	Gly	Ser		
				245			250			255							
g g c	g c g	t c g	g c t	g a c	a a c	a c g	g c a	a g g	a a g	t g g	g a c	a c g	t t c	t c g	g g g	816	
Gly	Al a	Ser	Al a	Asp	Asn	Thr	Al a	Arg	Lys	Thr	Val	Asp	Thr	Phe	Gly		
				260			265			270							
c a g	c g c	a c g	t c g	a t t	t a c	c g t	g g c	g t g	a c a	g g g	a g g	t g g	a c t	t g g	g g g	864	
Gly	Arg	Thr	Thr	Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	
				275			280			285							
a g a	t a t	g a a	g c a	c a t	c t g	t g g	g a c	a a c	a g t	t g c	a g a	a g g	a a g	g g a	c a a	912	
Arg	Tyr	Gl u	Al a	His	Leu	Trp	Asp	Asn	Ser	Cys	Arg	Arg	Arg	Trp	Arg		
				290			295			300							
a c t	c g c	a a g	g g t	c g t	c a a	g t c	t a t	t t a	g g t	g g c	t a t	g a t	a a a	g a g	g a g	960	
Thr	Arg	Lys	Gly	Arg	Gly	Arg	Gly	Val	Tyr	Leu	Gly	315	Tyr	Asp	Lys		
				305									320				

5312WOPCT_SEQ_LI STI NG TXT

aaa	gct	gct	agg	gct	tat	gat	ctg	gct	ctt	aag	tac	tgg	ggt	ccc	1008	
Lys	Ala	Ala	Arg	Ala	Tyr	Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	Gly	Pro	
				325				330				335				
acg	aca	aca	aca	aat	ttt	cca	gtg	aat	aac	tac	gaa	aag	gag	ctg	gag	1056
Thr	Thr	Thr	Thr	Asn	Phe	Pro	Val	Asn	Asn	Tyr	Gl	Lys	Gl	Leu	Gl	
				340			345				350					
gat	atg	aag	cac	atg	aca	agg	cag	gag	ttt	gt a	gcg	tct	ctg	aga	agg	1104
Asp	Met	Lys	His	Met	Thr	Arg	Gln	Gl	Phe	Val	Ala	Ser	Leu	Arg	Arg	
				355			360				365					
aag	agc	agt	ggt	tcc	tcc	aga	ggt	gca	tcc	att	tac	agg	gga	gtg	act	1152
Lys	Ser	Ser	Gly	Phe	Ser	Arg	Gly	Ala	Ser	Ile	Tyr	Arg	Gly	Val	Thr	
				370		375				380						
agg	cat	cac	cag	cat	gga	aga	tgg	caa	gca	cgg	att	gga	cga	gtt	gca	1200
Arg	His	His	Gln	His	Gly	Arg	Trp	Gln	Ala	Arg	Ile	Gly	Arg	Val	Ala	
				385		390				395				400		
ggg	aac	aag	gat	ctc	tac	ttg	ggc	acc	tcc	agc	acg	cag	gag	gag	gca	1248
Gly	Asn	Lys	Asp	Leu	Tyr	Leu	Gly	Thr	Phe	Ser	Thr	Gln	Gl	Gl	Ala	
				405			410						415			
gcg	gag	gca	tac	gac	att	gcg	gcg	atc	aag	tcc	cgc	ggc	ctc	aac	gcc	1296
Ala	Gl	Ala	Tyr	Asp	Ile	Ala	Ala	Ile	Lys	Phe	Arg	Gly	Leu	Asn	Ala	
				420			425					430				
gtc	aca	aac	tcc	gac	atg	agc	cgc	tac	gac	gtc	aag	agc	atc	ctg	gac	1344
Val	Thr	Asn	Phe	Asp	Met	Ser	Arg	Tyr	Asp	Val	Lys	Ser	Ile	Leu	Asp	
				435			440				445					
agc	agt	gcg	ctc	ccc	atc	gyc	agc	gcc	gcc	aag	cgt	ctc	aag	gag	gcc	1392
Ser	Ser	Ala	Leu	Pro	Ile	Gly	Ser	Ala	Ala	Lys	Arg	Leu	Lys	Gl	Ala	
				450		455				460						
gag	gcc	gcc	gcy	tcc	gca	cag	cac	cat	gcc	gyc	gtg	gtg	gtg	agc	tac	1440
Gl	Ala	Ala	Ala	Ser	Ala	Gln	His	Ala	Gly	Val	Val	Val	Val	Ser	Tyr	
				465		470				475					480	
gtc	ggc	cgc	ata	gcc	tca	cag	ctc	ggc	gac	ggc	ggc	ggc	ctg	gcy	gcy	1488
Val	Gly	Arg	Ile	Ala	Ser	Gln	Leu	Gly	Asp	Gly	Gly	Gly	Ala	Leu	Ala	
				485			490						495			
gcg	tac	ggc	gcy	cac	tac	cat	ggc	gcc	tgg	ccg	acc	atc	gcy	tcc	cag	1536
Ala	Tyr	Gly	Ala	His	Tyr	His	Gly	Ala	Trp	Pro	Thr	Ile	Ala	Phe	Gln	
				500			505					510				
ccg	agc	gcy	gcc	acg	ggc	ctg	tac	cac	ccg	tac	gcy	cag	ccg	atg	cgc	1584
Pro	Ser	Ala	Ala	Ala	Thr	Gly	Leu	Tyr	His	Pro	Tyr	Ala	Gln	Pro	Arg	
				515			520					525				
ggg	tgg	tgc	aag	cag	gag	cag	gac	cac	gcy	gtg	atc	gcy	gcc	gcy	cac	1632
Gl	Trp	Cys	Lys	Gln	Gl	Gu	Gl	Asp	His	Ala	Val	Ile	Ala	Ala	Ala	
				530			535				540					
agc	ctg	cag	gag	ctc	cac	cac	ctg	aac	ctg	ggt	gct	gcc	gcc	gcy	gcy	1680
Ser	Leu	Gln	Gl	Leu	His	His	Leu	Asn	Leu	Gly	Ala	Ala	Ala	Gly	Ala	
				545		550				555				560		
cac	gac	tcc	tcc	tgc	gcy	ggg	cag	cag	gcy	gcy	atg	cac	gcy	ctg	ggt	1728
His	Asp	Phe	Phe	Ser	Ala	Gly	Gln	Gln	Ala	Ala	Met	His	Gly	Leu	Gly	
				565				570				575				
agc	atg	gac	aat	gca	tca	ctc	gag	cac	agc	acc	gcy	tcc	aac	tcc	gtc	1776
Ser	Met	Asp	Asn	Ala	Ser	Leu	Gl	His	Ser	Thr	Gly	Ser	Asn	Ser	Val	
				580			585					590				

5312WOPCT_SEQ_LI STI NG TXT

gt g t ac aac ggt gtt ggt gat agc aac ggc agc acc gt c gt c ggc agt	1824
Val Tyr Asn Gl y Val Gl y Asp Ser Asn Gl y Ser Thr Val Val Gl y Ser	
595 600 605	
ggt ggc t ac at g at g cct at g agc gct gcc acg gcg acg gct acc acg	1872
Gl y Gl y Tyr Met Met Pro Met Ser Ala Ala Thr Ala Thr Ala Thr Thr	
610 615 620	
gca at g gt g agc cac gag cag gt g cat gca cgg gca cag ggt gat cac	1920
Al a Met Val Ser His Gl u Gl n Val His Al a Arg Al a Gl n Gl y Asp His	
625 630 635 640	
cac gac gaa gcc aag cag gct gct cag at g ggg t ac gag agc t ac ct g	1968
His Asp Gl u Ala Lys Gl n Ala Ala Gl n Met Gl y Tyr Gl u Ser Tyr Leu	
645 650 655	
gt g aac gca gag aac t at ggc ggc ggg agg at g t ct gcg gcc t gg gcg	2016
Val Asn Al a Gl u Asn Tyr Gl y Gl y Arg Met Ser Al a Al a Trp Al a	
660 665 670	
act gt c t ca gcg cca ccg gcg gca agc agc aac gat aac at g gcg gac	2064
Thr Val Ser Al a Pro Pro Al a Al a Ser Ser Asn Asp Asn Asn Met Al a Asp	
675 680 685	
gt c ggc cat ggc ggc gca cag ctc tt c agt gt c t gg aac gat act t aa	2112
Val Gl y His Gl y Gl y Ala Gl n Leu Phe Ser Val Trp Asn Asp Thr	
690 695 700	

<210> 97

<211> 703

<212> PRT

<213> Sorghum bi col or

<400> 97

Met Al a Thr Val Asn Asn Trp Leu Al a Phe Ser Leu Ser Pro Gl n Gl u	
1 5 10 15	
Leu Pro Pro Thr Gl n Thr Asp Ser Thr Leu Ile Ser Al a Al a Thr Thr	
20 25 30	
Asp Asp Val Ser Gl y Asp Val Cys Phe Asn Ile Pro Gl n Asp Trp Ser	
35 40 45	
Met Arg Gl y Ser Gl u Leu Ser Al a Leu Val Al a Gl u Pro Lys Leu Gl u	
50 55 60	
Asp Phe Leu Gl y Gl y Ile Ser Phe Ser Gl u Gl n His His Lys Al a Asn	
65 70 75 80	
Cys Asn Met Ile Pro Ser Thr Ser Ser Thr Al a Cys Tyr Al a Ser Ser	
85 90 95	
Gl y Al a Thr Al a Gl y Tyr His His Gl n Leu Tyr His Gl n Pro Thr Ser	
100 105 110	
Ser Al a Leu His Phe Al a Asp Ser Val Met Val Al a Ser Ser Al a Gl y	
115 120 125	
Gl y Val His Asp Gl y Gl y Al a Met Leu Ser Al a Al a Ser Al a Asn Gl y	
130 135 140	
Ser Al a Gl y Al a Gl y Al a Al a Ser Al a Asn Gl y Ser Gl y Ser Ile Gl y	
145 150 155 160	
Leu Ser Met Ile Lys Asn Trp Leu Arg Ser Gl n Pro Al a Pro Met Gl n	
165 170 175	
Pro Arg Val Al a Al a Al a Gl u Ser Val Gl n Gl y Leu Ser Leu Ser Met	
180 185 190	
Asn Met Al a Gl y Al a Thr Gl n Gl y Al a Al a Gl y Met Pro Leu Leu Al a	
195 200 205	
Gl y Gl u Arg Gl y Arg Al a Pro Gl u Ser Val Ser Thr Ser Al a Gl n Gl y	
210 215 220	
Gl y Al a Val Val Thr Al a Pro Lys Gl u Asp Ser Gl y Gl y Ser Gl y Val	
225 230 235 240	
Al a Al a Thr Gl y Al a Leu Val Al a Val Ser Thr Asp Thr Gl y Gl y Ser	

5312WOPCT_SEQ_LI STI NG TXT

	245	250	255												
G y	Al a	Ser	Al a	Asp	Asn	Thr	Al a	Arg	Lys	Thr	Val	Asp	Thr	Phe	G y
260							265						270		
G n	Arg	Thr	Ser	Ile	Tyr	Arg	G y	Val	Thr	Arg	His	Arg	Trp	Thr	G y
275							280						285		
Arg	Tyr	G u	Al a	His	Leu	Trp	Asp	Asn	Ser	Cys	Arg	Arg	G u	G y	G n
290						295				300					
Thr	Arg	Lys	G y	Arg	G n	Val	Tyr	Leu	G y	G y	Tyr	Asp	Lys	G u	G u
305					310				315					320	
Lys	Al a	Al a	Arg	Al a	Tyr	Asp	Leu	Al a	Al a	Leu	Lys	Tyr	Trp	G y	Pro
					325				330					335	
Thr	Thr	Thr	Thr	Asn	Phe	Pro	Val	Asn	Asn	Tyr	G u	Lys	G u	Leu	G u
					340				345					350	
Asp	Met	Lys	His	Met	Thr	Arg	G n	G u	Phe	Val	Al a	Ser	Leu	Arg	Arg
					355			360				365			
Lys	Ser	Ser	G y	Phe	Ser	Arg	G y	Al a	Ser	Ile	Tyr	Arg	G y	Val	Thr
					370			375			380				
Arg	His	His	G n	His	G y	Arg	Trp	G n	Al a	Arg	Ile	G y	Arg	Val	Al a
					385			390			395				400
G y	Asn	Lys	Asp	Leu	Tyr	Leu	G y	Thr	Phe	Ser	Thr	G n	G u	G u	Al a
					405				410					415	
Al a	G u	Al a	Tyr	Asp	Ile	Al a	Al a	Ile	Lys	Phe	Arg	G y	Leu	Asn	Al a
					420				425					430	
Val	Thr	Asn	Phe	Asp	Met	Ser	Arg	Tyr	Asp	Val	Lys	Ser	Ile	Leu	Asp
					435			440				445			
Ser	Ser	Al a	Leu	Pro	Ile	G y	Ser	Al a	Al a	Lys	Arg	Leu	Lys	G u	Al a
					450			455			460				
G u	Al a	Al a	Al a	Ser	Al a	G n	His	His	Al a	G y	Val	Val	Ser	Tyr	Asp
					465			470			475				480
Val	G y	Arg	Ile	Al a	Ser	G n	Leu	G y	Asp	G y	G y	Al a	Leu	Al a	Al a
					485				490					495	
Al a	Tyr	G y	Al a	His	Tyr	His	G y	Al a	Trp	Pro	Thr	Ile	Al a	Phe	G n
					500				505					510	
Pro	Ser	Al a	Al a	Thr	G y	Leu	Tyr	His	Pro	Tyr	Al a	G n	Pro	Met	Arg
					515			520				525			
G y	Trp	Cys	Lys	G n	G u	G n	Asp	His	Al a	Val	Ile	Al a	Al a	Al a	His
					530			535			540				
Ser	Leu	G n	G u	Leu	His	His	Leu	Asn	Leu	G y	Al a	Al a	Al a	G y	Al a
					545			550			555				560
His	Asp	Phe	Phe	Ser	Al a	G y	G n	G n	Al a	Al a	Met	His	G y	Leu	G y
					565				570					575	
Ser	Met	Asp	Asn	Al a	Ser	Leu	G u	His	Ser	Thr	G y	Ser	Asn	Ser	Val
					580			585					590		
Val	Tyr	Asn	G y	Val	G y	Asp	Ser	Asn	G y	Ser	Thr	Val	Val	G y	Ser
					595			600			605				
G y	G y	Tyr	Met	Met	Pro	Met	Ser	Al a	Al a	Thr	Al a	Thr	Al a	Thr	Thr
					610			615			620				
Al a	Met	Val	Ser	His	G u	G n	Val	His	Al a	Arg	Al a	G n	G y	Asp	His
					625			630			635				640
His	Asp	Glu	Al a	Lys	G n	Al a	Al a	G n	Met	G y	Tyr	G u	Ser	Tyr	Leu
					645				650					655	
Val	Asn	Al a	Glu	Asn	Tyr	G y	G y	G y	Arg	Met	Ser	Al a	Al a	Trp	Al a
					660			665			670				
Thr	Val	Ser	Al a	Pro	Pro	Al a	Al a	Ser	Ser	Asn	Asp	Asn	Met	Al a	Asp
					675			680			685				
Val	G y	His	G y	G y	Al a	G n	Leu	Phe	Ser	Val	Trp	Asn	Asp	Thr	
					690			695			700				

<210> 98
 <211> 3766
 <212> DNA
 <213> Sorghum bicolor

<400> 98
 at ggctactgtgaacaactg gctcgcttcc tccctctccc cgcaggagct gcccgcacc 60
 cagacggact ccaccctcat ctctgccccc accaccgacg atgtctccgg cgtgtctgc 120
 ttcaacatcc cccaaatgtat gcatctatcg atcgatatgt acgtacagtgccatata 180

5312WOPCT_SEQ_LI_STI NG TXT

t at at at at c	t gcagt tt gt	ggt acgaat a	ct gat t gaag	ct agcat gaa	at gt cgt tt g	240
t t ct t t caga	t t ggagcat g	aggggat ccg	agct tt cggc	gct cgt cgcc	gagccgaagc	300
t ggaggact t	cct cggccga	at ct cct t ct	ccgagcagca	ccacaaggcc	aact gcaaca	360
t gat cccag	cact agcagc	acagct t gct	acgcgagct c	gggt gct acc	gccggct acc	420
at caccagct	gt accaccag	cccaccagct	ccgcgtt cca	ct t cgct gac	t ccgt cat gg	480
t ggcct cct c	ggccggccgc	gt ccacgacg	gaggt gccat	gct cagcgcg	gccagcgt a	540
at ggt agcgc	t ggcgt ggc	gct gccagt g	ccaat ggcag	cgccagcat c	gggct gt cca	600
t gat caagaa	ct ggct gccc	agccaaccag	ct cccat gca	gcccgggt g	gcccgggt g	660
agagcgt gca	ggggct ct ct	tt gt ccat ga	acat ggggg	ggcgcacgcaa	ggcgcgt g	720
gcat gccat	t ct t gct gga	gagcgcggcc	gggcgcggca	gagt gt ct cg	acgt cggcac	780
agggt ggagc	cgt cgt cacg	gct ccaaagg	aggat agcgg	t ggcgcgggt	gt t gcccca	840
ccggccccc	agt agccgt g	agcacggaca	cggggt ggcag	cgccgcgt cg	gct gacaaca	900
cggcaaggaa	gacgggt ggac	acgt t cgggc	acgcacgt c	gat t accgt	ggcgt gacaa	960
ggt aat aagg	gt cccgt at t	acaat gaat c	gt cact t cgt	cagagaact a	aact agcaca	1020
aat cagcaat	gaat caagt a	at at cat gaa	at t t agaaaa	gccgt t agca	at gcaaggag	1080
ct at cat t at	agat t t gat t	gcat ct agac	agt t ct gaat	t aaat gagt a	ggcaat gt g	1140
t agcct t t ga	t gat ct cgct	gat t at t agg	agt gccat t t	gt at t ggct a	t gat t gt ggt	1200
at at acagca	gt agacaat t	aacaaaaggc	t accact t t c	gaat t at t t t	aggcat agat	1260
ggact gggag	at at gaagca	cat ct gt ggg	acaacagt t g	cagaagggaa	ggacaaact c	1320
gcaagggt cg	t caaggt acc	aat at aat gc	aat acaccgt	at t aaat at	at at gct t t t	1380
ct gt aat t aa	gt t t at act t	t cacaact	gacat t act t	cgcat t at ca	t t t t ggat t	1440
gt cgt cgt ca	t gat t ggcgg	gat t gaaat g	aact at t gaa	t ct acagt ct	at t t aggt aa	1500
gcat t t cac	t t ggtt at t a	at t t gggacc	aact act t aa	t ccagt t t gt	t t t t cccct a	1560
t aaccat t at	t t t t cat ct	gt gt t ct caa	ct ct t act t t	t ccat ct t gt	t ccact gat a	1620
ggt ggct at g	at aaagagga	gaaagct gct	agggct t at g	at ct ggct gc	t ctt aagt ac	1680
t ggggt ccca	cgacaacaaac	aaat t t t cca	gt at gt at at	gt agaat gca	gt t t t act t c	1740
act gaagat c	at acct t t gc	t at gt ct caa	at gccgt t ca	t t agt t agt g	gat ct gaagt	1800
gaagggt t ct g	t aat t t t gt	t aact at gt a	cat t gct gga	at t gt act t a	aagt cat t t g	1860
t t t t t gt at a	t ct aggt gaa	t aact acgaa	aaggagct gg	aggat at gaa	gcacat gaca	1920
aggcaggagt	t t gt agcgt c	t ct gagaagg	t cggcgt cgaac	agcat t gat t	aat caat gcc	1980
aact ct at t g	aat aaacat c	t act ct gt t a	at t gt t aaag	t t t gagagaa	agat ct gcat	2040
gt t agat ct t	aat agaccac	t gt at at gaa	t gcaggaaga	gcagt ggt t t	ct ccagaggt	2100
gcat ccatt t	acaggggagt	gact aggt at	gaat t cat at	aat ggcgt ca	acaaacacac	2160
at acact t t g	at t gaggagg	cgaat gcacg	cat ggat t ga	at gt gaat gg	t gt t t act t	2220
gaact at gt a	at t at aggca	t caccagcat	ggaagat ggc	aagcacggat	t ggacgagt t	2280
gcagggaaaca	aggat ct ct a	ct t gggcacc	t t cagt aagt	at cagagat g	t t t ct cat t	2340
gt at at agag	gagt act t ct	at at gt at at	at acatt cag	t t at t cacca	cacaaaagca	2400
aat t gcaat c	aact aat aac	aat ct caacg	caat gagaag	caagt gt t ac	agct gat agt	2460
acacat t t gt	agacct t ct g	cat at ggat g	t t at at ga	t gact at t aa	aat gt gacc	2520
at t gcat caa	gt cat gcaaa	gt t gcat t gc	agt agt acat	acat t act t a	gt gcat gtc c	2580
ct caagt ggc	t t t t caaac	ct gat cccat	gt ct ggcgt	at t gt t gt ct	cccat t cacc	2640
cgt gcat cag	gt caaaat ag	t act at gcct	caat aagaaa	cat gagca	t gcact ggca	2700
gcagcagact	aat caagt t c	t at cat t t ac	t aat aaact a	at t aggct ac	agcat cccaaa	2760
agat t ct acc	cat t aaggca	caact gt t ca	t gcat gcat t	cat aaaccag	gat accacca	2820
t gcat gcgt g	caccgt gt t c	gt gct t ggaa	t at t gagct g	agccgaggt gc	accct t gcgt	2880
ggat gcaggc	acgcaggagg	aggcagcggaa	ggcat acgac	at t gcccga	t caagt t ccg	2940
cggcct caac	gccgt cccaa	act t cgacat	gagccgt ac	gacgt caaga	gcat cct gga	3000
cagcagt gcg	ct ccccat cg	gcagcgcgc	caagcgt ct c	aaggaggccg	aggccgcgc	3060
gt cccgacag	caccat gccg	gcgt ggt gag	ct acgacgt c	ggccgcgt ag	cct cacagct	3120
cggcgcacgc	ggcccccgg	cgccggcgt a	cgccgcgcac	t accat ggcg	cct gcccac	3180
cat cgcgt t c	cagccgagcg	cgcccacggg	cct gt accac	ccgt acgcgc	agccgat gcg	3240
cgggt ggt gc	aagcaggaggc	aggaccacgc	ggt gat cgcg	ggccgcgcaca	gcct gcagga	3300
gct ccacac	ct gaaccct gg	gt gct gccgc	cgccgcgcac	gact t ct t ct	cggcggggca	3360
gcaggcggcg	at gcacggcc	t gggt agcat	ggacaat gca	t cact cgagc	acagcaccgg	3420
ct ccaact cc	gt cgt t aca	acggt gt t gg	t gat agcaac	ggcagcaccg	t cgt cggcag	3480
t ggt ggct ac	at gat gct a	t gagcgt gc	cacggcgcacg	gct accacgg	caat ggt gag	3540
ccacgagcag	gt gcat gcac	gggcacaggg	t gat caccac	gacgaagccaa	agcaggct gc	3600
t cagat gggg	t acgagagct	acct ggt gaa	cgcagagaac	t at ggccgcg	ggaggat gt c	3660
t gggcct gg	gcgact gt ct	cagcgcacc	ggcggcaagc	agcaacgat a	acat ggcgga	3720
cgt cggccat	ggcggcgcac	agct ct t cag	t gt ct gaaac	gat act		3766

<210> 99

<211> 2082

<212> DNA

<213> Sorghum bi col or

<220>

<221> CDS

5312WOPCT_SEQ_LI STI NG TXT

<222> (1)...(2082)

<400> 99
 at g gct tcg acg aac aac cac tgg ctg ggt ttc tcg ctc tcg ggc cag 48
 Met Ala Ser Thr Asn Asn His Trp Leu Gly Phe Ser Leu Ser Gly Gln
 1 5 10 15
 gat aac ccg cag cct aat cat cag gac agc tcg cct gcc gcc ggc 96
 Asp Asn Pro Glu Pro Asn His Glu Asp Ser Ser Pro Ala Ala Ala Glu
 20 25 30
 at c gac at c tcc ggc gcc agc gac ttc tat ggc ttg ccc acg cag cag 144
 Ile Asp Ile Ser Gly Ala Ser Asp Phe Tyr Gly Leu Pro Thr Gln Gln
 35 40 45
 ggc tcc gac ggg aat ctc ggc gtg ccg ggc ctg cgg gac gat cac gct 192
 Gly Ser Asp Gly Asn Leu Gly Val Pro Gly Leu Arg Asp Asp His Ala
 50 55 60
 tct tat ggc atc atg gag gcc ttc aac agg gtt cct caa gaa acc caa 240
 Ser Tyr Gly Ile Met Glu Ala Phe Asn Arg Val Pro Gln Glu Thr Gln
 65 70 75 80
 gat tgg aac atg agg gga ttg gac tac aac ggc ggt ggc tcg gaa ct c 288
 Asp Trp Asn Met Arg Gly Leu Asp Tyr Asn Gly Gly Ser Glu Leu
 85 90 95
 tcg atg ctt gtg ggg tcc agc ggc ggc ggg ggc ggc ggc aag agg 336
 Ser Met Leu Val Gly Ser Ser Gly Gly Gly Gly Gly Gly Lys Arg
 100 105 110
 gcc gtg gaa gac agc gag ccc aag ctc gaa gat ttc ct c ggc ggc aac 384
 Ala Val Glu Asp Ser Glu Pro Lys 120 Leu Glu Asp Phe Leu Glu Glu Asn
 115 125
 tcg ttc gtc tcc gag cat gat cag tcc ggc ggt tac ctg ttc tct gga 432
 Ser Phe Val Ser Glu His Asp Asp Gln Ser Gly Gly Tyr Leu Phe Ser Gln
 130 135 140 145
 gt c ccg atg gcc agc agc acc aac agc aac agc ggg agc aac acc atg 480
 Val Pro Met Ala Ser Ser Thr Asn Ser Asn Ser Ser Asn Asn Asn Thr Met
 150 155 160
 gag ctc tcc atg atc aag acc tgg ctc cgg aac aac cag gt g ccc cag 528
 Glu Leu Ser Met Ile Lys Thr Trp Leu Arg Asn Asn Gln Val Pro Gln
 165 170 175
 ccg cag ccg cca gca gct ccg cat cag gcg ccg cag act gag gag atg 576
 Pro Gln Pro Pro Ala Ala Pro His Gln Ala Pro Gln Thr Glu Glu Met
 180 185 190
 agc acc gac gcc aac gcc agc gcc agc agc ttt ggc tgc tcg gat tcg 624
 Ser Thr Asp Ala Asn Ala Ser Ala Ser Ser Phe Gly Cys Ser Asp Ser
 195 200 205
 at g ggg agg aac ggc acg gtg gcg gct gct ggg agc tcc cag agc ctg 672
 Met Gly Arg Asn Gly Thr Val Ala Ala Ala Gly Ser Ser Gln Ser Leu
 210 215 220 225
 gcg ctc tcg atg agc acg ggc tcg cac ctg ccg atg gt t gt g gcc ggc 720
 Ala Leu Ser Met Ser Thr Gly Ser His Leu Pro Met Val Val Ala Gly
 225 230 235 240
 ggc ggc gcc agc gga gcg gcc tcg gag agc acg tca tcg gag aac aag 768
 Gly Gly Ala Ser Gly Ala Ala Ser Glu Ser Thr Ser Ser Glu Asn Lys
 245 250 255
 cga gcg agc ggc gcc atg gat tcg ccc ggc agc gcg gt a gaa gcc gt c 816

5312WOPCT_SEQ.LI STI NG TXT

Arg	Ala	Ser	Gly	Ala	Met	Asp	Ser	Pro	Gly	Ser	Ala	Val	Gl u	Ala	Val		
260							265						270				
ccg	agg	aag	tcc	atc	gac	acg	t t c	ggg	caa	agg	acc	tct	at a	tat	cga	864	
Pro	Arg	Lys	Ser	Ile	Asp	Thr	Phe	Gly	Gln	Arg	Thr	Ser	Ile	Tyr	Arg		
275							280					285					
ggt	gt a	aca	aga	cat	aga	tgg	aca	ggg	cga	tat	gag	gct	cat	ct a	tgg	912	
Gly	Val	Thr	Arg	His	Arg	Trp	Thr	Gly	Arg	Tyr	Gl u	Ala	His	Leu	Trp		
290						295					300						
gat	aat	agt	tgt	aga	aga	gaa	ggg	cag	agt	cgc	aag	ggt	agg	caa	gt t	960	
Asp	Asn	Ser	Cys	Arg	Arg	Gu	Gly	Gln	Ser	Arg	Lys	Gly	Arg	Gln	Val		
305						310				315					320		
tac	ctt	ggt	ggc	tat	gac	aag	gaa	gac	aag	gca	gca	agg	gct	tat	gat	1008	
Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	Gl u	Asp	Lys	Al a	Al a	Arg	Al a	Tyr	Asp		
325						330							335				
t t g	gca	gct	ctc	aag	tat	tgg	ggc	act	act	aca	aca	aca	aat	t t c	cct	1056	
Leu	Al a	Al a	Leu	Lys	Tyr	Trp	Gly	Thr	Thr	Thr	Thr	Thr	Asn	Phe	Pro		
340						345							350				
at a	agc	aac	tat	gaa	aag	gag	ct a	gag	gaa	at g	aaa	cat	at g	act	agg	1104	
Ile	Ser	Asn	Tyr	Gl u	Lys	Gl u	Leu	Gl u	Gl u	Met	Lys	His	Met	Thr	Arg		
355						360					365						
cag	gag	tat	att	gca	tac	ct a	aga	aga	aat	agc	agt	gga	t t t	tct	cgt	1152	
Gln	Gl u	Tyr	Ile	Al a	Tyr	Leu	Arg	Arg	Asn	Ser	Ser	Gly	Phe	Ser	Arg		
370						375				380							
ggc	gca	tca	aaa	tat	cgt	gga	gt a	act	aga	cat	cat	cag	cat	ggg	aga	1200	
Gly	Al a	Ser	Lys	Tyr	Arg	Gly	Val	Thr	Arg	His	His	Gln	His	Gly	Arg		
385						390				395					400		
t gg	caa	gca	agg	at a	ggg	aga	gt t	gca	gga	aac	aag	gat	ct c	tac	t t g	1248	
Trp	Gly	Al a	Al a	Arg	Ile	Gly	Arg	Val	Al a	Gly	Asn	Lys	Asp	Leu	Tyr	Leu	
405						410							415				
ggc	aca	t t c	agc	acc	gag	gag	gag	g c g	g c g	gag	g c c	t ac	gac	at c	g c c	1296	
Gly	Thr	Phe	Ser	Thr	Gl u	Gl u	Gl u	Al a	Al a	Gl u	Al a	Tyr	Asp	Ile	Al a		
420						425							430				
g c g	at c	aag	t t c	c g c	g g t	c t g	a a c	g c c	g c g	acc	a a c	t t c	g a c	at g	agc	1344	
Al a	Ile	Lys	Phe	Arg	Gly	Leu	Asn	Al a	Val	Thr	Asn	Phe	Asp	Met	Ser		
435						440						445					
cgc	t ac	gac	gt c	aag	agc	at c	c t c	gag	agc	agc	acg	c t g	cct	gt c	ggc	1392	
Arg	Tyr	Asp	Val	Lys	Ser	Ile	Leu	Gly	Ser	Ser	Thr	Leu	Pro	Val	Gly		
450						455					460						
ggc	g c g	g c c	agg	c g c	c t c	a a g	g a t	g c c	g t g	g a c	c a c	g t g	g a g	g c c	g g c	1440	
Gly	Al a	Al a	Arg	Arg	Leu	Lys	Asp	Al a	Val	Asp	His	Val	Gl u	Al a	Gly		
465						470				475					480		
g c c	acc	at c	t gg	c g c	g c c	g a c	at g	g a c	g g c	g g c	gt g	at c	t c c	c a g	c t c	1488	
Al a	Thr	Ile	Trp	Arg	Al a	Asp	Met	Asp	Gl y	Gl y	Val	Ile	Ser	Gl n	Leu		
485						490							495				
g c c	g a a	g c c	g g g	at g	g g c	g g c	t a c	g c c	t c g	t a c	g g g	c a c	c a c	g c c	t g g	1536	
Al a	Gl u	Al a	Gl y	Met	Gl y	Gl y	Tyr	Al a	Ser	Tyr	Gl y	His	His	Al a	Trp		
500						505							510				
ccg	acc	at c	g c g	t t c	c a g	c a g	c c g	t c g	c c g	c t c	t c c	t c c	g t c	c a c	t a c	c c g	1584
Pro	Thr	Ile	Al a	Phe	Gl n	Gl n	Pro	Ser	Pro	Leu	Ser	Val	His	Tyr	Pro		
515						520						525					
tac	ggg	cag	ccg	ccg	tcc	cgc	ggg	tgg	tgc	aag	ccc	gag	cag	gac	g c g	1632	

5312WOPCT_SEQ.LI STI NG TXT

Tyr	G	y	G	n	Pro	Pro	Ser	Arg	G	y	Trp	Cys	Lys	Pro	Gl	u	G	n	Asp	Al	a			
530				535					540															
gcc	gt	c	gc	cc	gc	cc	gc	cac	agc	ct	g	cag	gac	ct	c	cag	cag	ct	g	cac	1680			
Al	a	Val	Al	a	Al	a	Al	a	His	Ser	Leu	G	n	Asp	Leu	G	n	G	n	Leu	His			
545				550							555										560			
ct	c	gg	c	ag	gc	g	ca	cac	aa	t	t	c	ca	g	cg	t	cg	t	cg	gca	1728			
Leu	G	y	Ser	Al	a	Al	a	Al	His	Asn	Phe	Phe	G	n	Al	a	Ser	Ser	Ser	Al	a			
				565							570													
gt	c	t	ac	aa	ag	g	gc	gg	g	g	g	g	ct	g	gg	t	ac	c	ac	gg	1776			
Val	Tyr	Asn	Ser	G	y	G	y	G	y	G	y	Al	a	Ser	G	y	Tyr	Hi	s	G	n			
				580							585							590						
ct	c	gg	g	gc	gg	c	ag	ag	t	cc	t	tc	ct	at	g	cc	t	cg	ag	act	gt	g	1824	
Leu	G	y	G	y	G	y	Ser	Ser	Ser	Phe	Leu	Met	Pro	Ser	Ser	Ser	Ser	Ser	Thr	Val	Val	Val		
				595						600								605						
gc	g	gg	g	cc	g	ac	c	ag	gg	c	ac	ag	ag	ac	gg	cc	a	ac	c	ag	gg	1872		
Al	a	G	y	Al	a	Asp	G	n	G	y	Hi	s	Ser	Ser	Ser	G	Al	a	Asn	G	n	G	Ser	
				610						615							620							
ac	g	t	gc	ag	c	t	ac	gg	g	ac	g	at	c	cc	tg	gg	a	ct	c	at	c	gg	t	1920
Thr	Cys	Ser	Tyr	G	y	G	y	Asp	Asp	His	G	n	Gl	u	635	G	y	Lys	Leu	Ile	G	y	Tyr	
																			640					
g	a	c	g	cc	at	g	gt	g	cg	g	cc	t	cc	g	gg	g	cc	cc	t	ac	g	cc	1968	
Asp	Al	a	Met	Val	Al	a	Al	a	Thr	Al	a	Al	a	G	y	Al	a	Asp	Pro	Tyr	Al	a	Al	a
				645						650							655							
gc	g	gg	g	cc	at	g	gt	g	cg	t	tc	t	cg	t	cg	t	cg	t	cc	tg	ac	gt	g	2016
Al	a	Arg	Ser	G	y	Tyr	G	n	Phe	Ser	Ser	665	G	n	G	y	Ser	G	y	Ser	670	Thr	Val	
				660																				
ag	c	at	c	g	cg	ag	g	gg	t	ac	t	ct	a	ac	t	gg	ag	c	cc	t	ct	c	ct	2064
Ser	Ile	Al	a	Arg	Al	a	Asn	G	y	Tyr	Ser	Asn	Asn	Trp	Ser	685	G	y	Pro	Tyr	Al	a	Pro	Phe
				675						680														
aa	g	gc	g	gc	at	g	gg	t	ga														2082	
Asn	G	y	G	y	Met	G	y																	
				690																				

<210> 100

<211> 693

<212> PRT

<213> Sorghum bi col or

<400> 100

Met	Al	a	Ser	Thr	Asn	Asn	His	Trp	Leu	G	y	Phe	Ser	Leu	Ser	G	y	G	n			
1					5				10							15						
Asp	Asn	Pro	G	n	Pro	Asn	His	G	n	Asp	Ser	Ser	Pro	Al	a	Al	a	Al	a	G	y	
					20				25							30						
Ile	Asp	Ile	Ser	G	y	Al	a	Ser	Asp	Phe	Tyr	G	y	Leu	Pro	Thr	G	n	G	n		
					35				40							45						
G	y	Ser	Asp	G	y	Asn	Leu	G	y	Val	Pro	G	y	Leu	Arg	Asp	Asp	His	Al	a		
					50				55							60						
Ser	Tyr	G	y	Ile	Met	G	u	Al	a	Phe	Asn	Arg	Val	Pro	G	n	Gl	u	Thr	G	n	
					65				70							75			80			
Asp	Trp	Asn	Met	Arg	G	y	Leu	Asp	Tyr	Asn	G	y	G	y	Ser	G	u	Leu				
					85				90							95						
Ser	Met	Leu	Val	G	y	Ser	Ser	G	y	G	y	G	y	G	y	G	y	Lys	Arg			
				100				105								110						
Al	a	Val	G	u	Asp	Ser	G	u	Pro	Lys	Leu	G	u	Asp	Phe	Leu	G	y	G	y	Asn	
				115				120								125						
Ser	Phe	Val	Ser	G	u	His	Asp	G	n	Ser	G	y	G	y	Tyr	Leu	Phe	Ser	G	y		
				130				135								140						

5312WOPCT_SEQ.LI STI NG TXT

Val Pro Met Ala Ser Ser Thr Asn Ser Asn Ser Gly Ser Asn Thr Met
 145 150 155 160
 Glu Leu Ser Met Ile Lys Thr Trp Leu Arg Asn Asn Glu Val Pro Glu
 165 170 175
 Pro Glu Pro Pro Ala Ala Pro His Glu Ala Pro Glu Thr Glu Glu Met
 180 185 190
 Ser Thr Asp Ala Asn Ala Ser Ala Ser Ser Phe Gly Cys Ser Asp Ser
 195 200 205
 Met Gly Arg Asn Gly Thr Val Ala Ala Ala Gly Ser Ser Glu Ser Leu
 210 215 220
 Ala Leu Ser Met Ser Thr Gly Ser His Leu Pro Met Val Val Ala Gly
 225 230 235 240
 Gly Gly Ala Ser Gly Ala Ala Ser Glu Ser Thr Ser Ser Glu Asn Lys
 245 250 255
 Arg Ala Ser Gly Ala Met Asp Ser Pro Gly Ser Ala Val Glu Ala Val
 260 265 270
 Pro Arg Lys Ser Ile Asp Thr Phe Gly Glu Arg Thr Ser Ile Tyr Arg
 275 280 285
 Gly Val Thr Arg His Arg Trp Thr Gly Arg Tyr Glu Ala His Leu Trp
 290 295 300
 Asp Asn Ser Cys Arg Arg Glu Gly Glu Ser Arg Lys Gly Arg Glu Val
 305 310 315 320
 Tyr Leu Gly Gly Tyr Asp Lys Glu Asp Lys Ala Ala Arg Ala Tyr Asp
 325 330 335
 Leu Ala Ala Leu Lys Tyr Trp Gly Thr Thr Thr Thr Asn Phe Pro
 340 345 350
 Ile Ser Asn Tyr Glu Lys Glu Leu Glu Glu Met Lys His Met Thr Arg
 355 360 365
 Glu Glu Tyr Ile Ala Tyr Leu Arg Arg Asn Ser Ser Gly Phe Ser Arg
 370 375 380
 Gly Ala Ser Lys Tyr Arg Gly Val Thr Arg His His Glu His Gly Arg
 385 390 395 400
 Trp Glu Ala Arg Ile Gly Arg Val Ala Gly Asn Lys Asp Leu Tyr Leu
 405 410 415
 Gly Thr Phe Ser Thr Glu Glu Glu Ala Ala Glu Ala Tyr Asp Ile Ala
 420 425 430
 Ala Ile Lys Phe Arg Gly Leu Asn Ala Val Thr Asn Phe Asp Met Ser
 435 440 445
 Arg Tyr Asp Val Lys Ser Ile Leu Glu Ser Ser Thr Leu Pro Val Gly
 450 455 460
 Gly Ala Ala Arg Arg Leu Lys Asp Ala Val Asp His Val Glu Ala Gly
 465 470 475 480
 Ala Thr Ile Trp Arg Ala Asp Met Asp Gly Gly Val Ile Ser Glu Leu
 485 490 495
 Ala Glu Ala Gly Met Gly Tyr Ala Ser Tyr Gly His His Ala Trp
 500 505 510
 Pro Thr Ile Ala Phe Glu Glu Pro Ser Pro Leu Ser Val His Tyr Pro
 515 520 525
 Tyr Gly Glu Pro Pro Ser Arg Gly Trp Cys Lys Pro Glu Glu Asp Ala
 530 535 540
 Ala Val Ala Ala Ala Ala His Ser Leu Glu Asp Leu Glu Glu Leu His
 545 550 555 560
 Leu Gly Ser Ala Ala His Asn Phe Phe Glu Ala Ser Ser Ser Ser Ala
 565 570 575
 Val Tyr Asn Ser Gly Gly Gly Ala Ser Gly Gly Tyr His Glu Gly
 580 585 590
 Leu Gly Gly Ser Ser Ser Phe Leu Met Pro Ser Ser Thr Val Val
 595 600 605
 Ala Gly Ala Asp Glu Gly His Ser Ser Ser Thr Ala Asn Glu Gly Ser
 610 615 620
 Thr Cys Ser Tyr Gly Asp Asp His Glu Gly Lys Leu Ile Gly Tyr
 625 630 635 640
 Asp Ala Met Val Ala Ala Thr Ala Ala Gly Gly Asp Pro Tyr Ala Ala
 645 650 655
 Ala Arg Ser Gly Tyr Glu Phe Ser Ser Glu Gly Ser Gly Ser Thr Val
 660 665 670
 Ser Ile Ala Arg Ala Asn Gly Tyr Ser Asn Asn Trp Ser Ser Pro Phe
 675 680 685

5312WOPCT_SEQ_LI STI NG TXT

Asn G y G y Met G y
690

<210> 101
<211> 2040
<212> DNA
<213> Zea mays

<220>
<221> CDS
<222> (1) . . . (2040)

<400> 101	48
at g gct tca gcg aac aac tgg ctg ggc ttc tcg ctc tcg ggc cag gat	
Met Al a Ser Al a Asn Asn Trp Leu G y Phe Ser Leu Ser G y G n Asp	
1 5 10 15	
aac ccg cag cct aac cag gat agc tcg cct gcc gcc ggt at c gac at c	96
Asn Pro G n Pro Asn G n Asp Ser Ser Pro Al a Al a G y Ile Asp Ile	
20 25 30	
tcc ggc gcc agc gac ttc tat ggc ctg ccc acg cag cag ggc tcc gac	144
Ser G y Al a Ser Asp Phe Tyr G y Leu Pro Thr G n G n G y Ser Asp	
35 40 45	
ggg cat ct c ggc gt g ccg ggc ct g cgg gac gat cac gct tct t at ggt	192
G y His Leu G y Val Pro G y Leu Arg Asp Asp His Al a Ser Tyr G y	
50 55 60	
at c at g gag gcc t ac aac agg gt t cct caa gaa acc caa gat t gg aac	240
Ile Met G u Al a Tyr Asn Arg Val Pro G n G u Thr G n Asp Trp Asn	
65 70 75 80	
at g agg ggc tt g gac t ac aac ggc ggt ggc tcg gag ct c tcg at g ct t	288
Met Arg G y Leu Asp Tyr Asn G y G y Ser G u Leu Ser Met 95 Leu	
85 90	
gt g ggg t cc agc ggc ggc ggc ggg aac ggc aag agg gcc gt g gaa	336
Val G y Ser Ser G y G y G y G y Asn G y Lys Arg Al a Val G u	
100 105 110	
gac agc gag ccc aag ct c gaa gat tt c ct c ggc ggc aac tcg tt c gt c	384
Asp Ser G u Pro Lys Leu G u Asp Phe Leu G y G y Asn Ser Phe Val	
115 120 125	
tcc gat caa gat cag tcc ggc ggt t ac ct g tt c tct gga gt c ccg at a	432
Ser Asp G n Asp G n Ser G y G y Tyr Leu Phe Ser G y Val Pro Ile	
130 135 140	
gcc agc agc gcc aat agc aac agc ggg agc aac acc at g gag ct c tcc	480
Al a Ser Ser Al a Asn Ser Asn Ser G y Ser Asn Thr Met G u Leu Ser	
145 150 155 160	
at g at c aag acc tt g ct a cgg aac aac cag gt g gcc cag ccc cag ccg	528
Met Ile Lys Thr Trp Leu Arg Asn Asn G n Val Al a G n Pro G n Pro	
165 170 175	
cca gct cca cat cag ccg cag cct gag gaa at g agc acc gac gcc agc	576
Pro Al a Pro His G n Pro G n Pro G u G u Met Ser Thr Asp Al a Ser	
180 185 190	
ggc agc agc tt t gga t gc t cg gat t cg at g gga agg aac agc at g gt g	624
G y Ser Ser Phe G y Cys Ser Asp Ser Met G y Arg Asn Ser Met Val	
195 200 205	
gcg gct ggt ggg agc tcg cag agc ct g gcg ct c tcg at g agc acg ggc	672
Al a Al a G y G y Ser Ser G n Ser Leu Al a Leu Ser Met Ser Thr G y	

5312WOPCT_SEQ_LI STI NG TXT
 210 215 220

tcg	cac	ctg	ccc	atg	gtt	gtg	ccc	agc	ggc	gcc	gcc	agc	gga	gcg	gcc	720
Ser	His	Leu	Pro	Met	Val	Val	Pro	Ser	Gly	Ala	Ala	Ser	Gly	Ala	Ala	
225					230				235						240	
tcg	gag	agc	aca	tcg	tcg	gag	aac	aag	cga	gcg	agc	ggt	gcc	atg	gat	768
Ser	Gly	Ser	Thr	Ser	Ser	Gly	Asn	Lys	Arg	Ala	Ser	Gly	Ala	Met	Asp	
					245				250					255		
tcg	ccc	ggc	agc	gcg	gt a	gaa	gcc	gt a	ccg	agg	aag	tcc	atc	gac	acg	816
Ser	Pro	Gly	Ser	Ala	Val	Gly	Ala	Val	Pro	Arg	Lys	Ser	Ile	Asp	Thr	
				260				265					270			
tcc	ggg	caa	agg	acc	tct	ata	tat	cga	ggt	gt a	aca	agg	cat	aga	tgg	864
Phe	Gly	Gln	Arg	Thr	Ser	Ile	Tyr	Arg	Gly	Val	Thr	Arg	His	Arg	Trp	
				275			280				285					
aca	ggg	cgg	tat	gag	gct	cat	ct a	tgg	gat	aat	agt	tgt	aga	agg	gaa	912
Thr	Gly	Arg	Tyr	Gly	Ala	His	Leu	Trp	Asp	Asn	Ser	Cys	Arg	Arg	Gly	
				290			295			300						
ggg	cag	agt	cgc	aag	ggt	agg	caa	gtt	tac	ctt	ggt	ggc	tat	gac	aag	960
Gly	Gln	Ser	Arg	Lys	Gly	Arg	Gly	Val	Tyr	Leu	Gly	Gly	Tyr	Asp	Lys	
				305			310			315				320		
gag	gac	aag	gca	gca	agg	gct	tat	gat	t t g	gca	gct	ctc	aag	tat	tgg	1008
Gly	Asp	Lys	Ala	Ala	Arg	Ala	Tyr	Asp	Leu	Ala	Ala	Leu	Lys	Tyr	Trp	
				325				330					335			
ggc	act	acg	aca	aca	aca	aat	t t c	cct	at a	agc	aac	tac	gaa	aag	gag	1056
Gly	Thr	Thr	Thr	Thr	Thr	Asn	Phe	Pro	Ile	Ser	Asn	Tyr	Gly	Lys	Gly	
				340			345					350				
cta	gaa	gaa	atg	aaa	cat	atg	act	aga	cag	gag	tac	att	gca	tac	cta	1104
Leu	Gly	Gly	Met	Lys	His	Met	Thr	Arg	Gly	Ala	Tyr	Ile	Ala	Tyr	Leu	
				355			360				365					
aga	aga	aat	agc	agt	gga	ttt	tct	cgt	ggg	gcy	gca	tca	aag	tat	cgt	1152
Arg	Arg	Asn	Ser	Ser	Gly	Phe	Ser	Arg	Gly	Ala	Ser	Lys	Tyr	Arg	Gly	
				370			375				380					
gt a	act	aga	cat	cat	cag	cat	ggg	aga	tgg	caa	gca	agg	ata	ggg	aga	1200
Val	Thr	Arg	His	His	Gly	Gly	Arg	Trp	Gly	Ala	Ala	Ile	Gly	Arg		
				385			390			395				400		
gt t	gca	gga	aac	aag	gat	ctc	tac	ttg	ggc	aca	t t c	agc	acc	gag	gag	1248
Val	Ala	Gly	Asn	Lys	Asp	Leu	Tyr	Leu	Gly	Thr	Phe	Ser	Thr	Gly	Gly	
				405				410					415			
gag	gcg	gca	gag	gcc	tac	gac	atc	gcc	gcy	atc	aag	t t c	cgc	ggt	ctc	1296
Gly	Ala	Ala	Gly	Ala	Tyr	Asp	Ile	Ala	Ala	Ala	Ile	Lys	Phe	Arg	Gly	
				420			425					430				
aac	gcc	gtc	acc	aac	t t c	gac	atg	agc	cgc	tac	gac	gtg	aag	agc	atc	1344
Asn	Ala	Val	Thr	Asn	Phe	Asp	Met	Ser	Arg	Tyr	Asp	Val	Lys	Ser	Ile	
				435			440				445					
ctc	gag	agc	agc	aca	ctg	cct	gtc	ggc	ggt	gcy	gca	agg	cgc	ctc	aag	1392
Leu	Gly	Ser	Ser	Thr	Leu	Pro	Val	Gly	Gly	Ala	Ala	Arg	Arg	Leu	Lys	
				450			455			460						
gac	gcc	gtg	gac	cac	gtg	gag	gcc	ggc	gcc	acc	atc	tgg	cgc	gcc	gac	1440
Asp	Ala	Val	Asp	His	Val	Gly	Ala	Gly	Ala	Thr	Ile	Trp	Arg	Ala	Asp	
				465			470			475				480		
atg	gac	ggc	gcc	gtg	atc	tcc	cag	ctg	gcc	gaa	gcc	ggg	atg	gyc	ggc	1488
Met	Asp	Gly	Ala	Val	Ile	Ser	Gly	Leu	Ala	Gly	Ala	Gly	Met	Gly	Gly	

5312WOPCT_SEQ_LI_STI NG TXT

485

490

495

t ac	g cc	t cg	t ac	g gc	c ac	c ac	g gc	t gg	c cg	acc	a t c	g cg	t t c	c ag	c ag	1536
Tyr	Al a	Ser	Tyr	G y	H i s	H i s	G y	T r p	P ro	Thr	I I e	Al a	Phe	G n	G n	
500				505							510					
ccg	t cg	ccg	c t c	t cc	g t c	c ac	t ac	ccg	t ac	g gc	c ag	ccg	t cc	c gc	g gg	1584
P ro	Ser	Pro	Leu	Ser	V al	H i s	T yr	P ro	T yr	G y	G n	P ro	Ser	Arg	G y	
515				520							525					
t gg	t g c	aaa	c c c	g a g	c a g	g a c	g c g	g c c	g c c	g c c	g c g	g c g	c a c	a g c	c t g	1632
T r p	O ys	Lys	P ro	G u	G n	A s p	A l a	A l a	A l a	A l a	A l a	A l a	H i s	Ser	Leu	
530				535							540					
c a g	g a c	c t c	c a g	c a g	c t g	c a c	c t c	g g c	a g c	g c g	g c c	c a c	a a c	t t c	t t c	1680
G n	A s p	L e u	G n	G n	L e u	H i s	L e u	G y	Ser	A l a	A l a	H i s	A s n	Phe	Phe	
545				550							555					
c a g	g c g	t cg	t cg	a g c	t c c	a c a	g t c	t a c	a a c	g g c	g g c	g c c	g g c	g c c	a g t	1728
G n	A l a	Ser	Ser	Ser	Ser	Thr	Val	T yr	A s n	G y	G y	A l a	G y	A l a	Ser	
565										570						
g g t	g g g	t a c	c a g	g g c	c t c	g g t	g g t	g g c	a g c	t c t	t t c	c t c	a t g	c c g	t c g	1776
G y	G y	T yr	G n	G y	L e u	G y	G y	G y	Ser	Ser	Phe	L e u	M e t	P ro	Ser	
580													590			
a g c	a c t	g t c	g t g	g c g	g c g	g c g	g a c	g a c	g g g	c a c	a g c	a g c	a c g	g c c	a a c	1824
Ser	Thr	Val	Val	A l a	A l a	A l a	A s p	G n	G y	H i s	Ser	Ser	Thr	A l a	A s n	
595								600					605			
c a g	g g g	a g c	a c g	t g c	a g c	t a c	g g g	g a c	g a c	c a c	c a g	g a g	g g g	a a g	c t c	1872
G n	G y	Ser	Thr	C y s	Ser	T yr	G y	A s p	A s p	H i s	G n	G u	G y	L y s	L e u	
610											620					
a t c	g g t	t a c	g a c	g c c	g c c	g c c	a t g	g t g	g c g	a c c	g c a	g c t	g g t	g g a	g a c	1920
I I e	G y	T yr	A s p	A l a	A l a	A l a	M e t	V al	A l a	Thr	A l a	A l a	G y	G y	A s p	
625								630					635			640
t a c	g c t	g c g	g c g	a g g	a a c	g g g	t a c	c a g	t t c	t c g	c a g	g g c	t c g	g g a	t c c	1968
T yr	A l a	A l a	A l a	A l a	A r g	A s n	G y	T yr	G n	Phe	Ser	G n	G y	Ser	G y	
645										650						
a c g	g t g	a g c	a t c	g c g	g c g	g c g	a a c	g g g	t a c	g c t	a a c	a a c	t g g	a g c	t c t	2016
Thr	Val	Ser	I I e	A l a	A r g	A l a	A s n	G y	T yr	A l a	A s n	A s n	T r p	Ser	Ser	
660								665					670			
c c t	t t c	a a c	a a c	g g c	a t g	g g g	t g a									2040
P ro	Phe	A s n	A s n	G y	M e t	G y										
675																

<210> 102

<211> 679

<212> PRT

<213> Zea mays

<400> 102

M e t	A l a	Ser	A l a	A s n	A s n	T r p	L e u	G y	Phe	Ser	L e u	Ser	G y	G n	A s p
1				5					10				15		
A s n	P ro	G n	P ro	A s n	G n	A s p	Ser	Ser	P ro	A l a	A l a	G y	I I e	A s p	I I e
													20		
Ser	G y	A l a	Ser	A s p	Phe	T yr	G y	L e u	P ro	Thr	G n	G n	G y	Ser	A s p
													35		
G y	H i s	L e u	G y	V al	P ro	G y	L e u	A r g	A s p	A s p	H i s	A l a	Ser	T yr	G y
													50		
I I e	M e t	G l u	A l a	T yr	A s n	A r g	V al	P ro	G n	G u	Thr	G n	A s p	T r p	A s n
													65		
M e t	A r g	G y	L e u	A s p	T yr	A s n	G y	G y	Ser	G l u	L e u	Ser	M e t	L e u	
													70		

5312WOPCT_SEQ_LI STI NG TXT

Val	G y	Ser	Ser	G y	G y	G y	G y	85	90	95
100				105						
Asp	Ser	Glu	Pro	Lys	Leu	Glu	Asp	Phe	Leu	G y
115				120						125
Ser	Asp	G n	Asp	G n	Ser	G y	G y	Tyr	Leu	Phe
130				135						140
Al a	Ser	Ser	Al a	Asn	Ser	Asn	Ser	G y	Ser	Asn
145				150						155
Met	Ile	Lys	Thr	Trp	Leu	Arg	Asn	G n	Val	Al a
165				170						175
Pro	Al a	Pro	His	G n	Pro	G n	Pro	G u	Met	Ser
180				185						190
G y	Ser	Ser	Phe	G y	Cys	Ser	Asp	Ser	Met	G y
195				200						205
Al a	Al a	G y	G y	Ser	Ser	G n	Ser	Leu	Al a	Leu
210				215						220
Ser	His	Leu	Pro	Met	Val	Val	Pro	Ser	G y	Al a
225				230						240
Ser	G u	Ser	Thr	Ser	Ser	G u	Asn	Lys	Arg	Al a
245				250						255
Ser	Pro	G y	Ser	Al a	Val	G u	Al a	Val	Pro	Arg
260				265						270
Phe	G y	G n	Arg	Thr	Ser	Ile	Tyr	Arg	G y	Val
275				280						285
Thr	G y	Arg	Tyr	G u	Al a	His	Leu	Trp	Arg	His
290				295						295
G y	G n	Ser	Arg	Lys	G y	Arg	G n	Val	Tyr	Asp
305				310						320
G u	Asp	Lys	Al a	Al a	Arg	Al a	Tyr	Asp	Leu	Al a
325				330						335
G y	Thr	Thr	Thr	Thr	Asn	Phe	Pro	Ile	Ser	G u
340				345						350
Leu	G u	G u	Met	Lys	His	Met	Thr	Arg	G n	G u
355				360						365
Arg	Arg	Asn	Ser	Ser	G y	Phe	Ser	Arg	G y	Al a
370				375						380
Val	Thr	Arg	His	His	G n	His	G y	Arg	Trp	G n
385				390						395
Val	Al a	G y	Asn	Lys	Asp	Leu	Tyr	Leu	G y	Arg
405				410						415
G u	Al a	Al a	G u	Al a	Tyr	Asp	Ile	Al a	Al a	Ile
420				425						430
Asn	Al a	Val	Thr	Asn	Phe	Asp	Met	Ser	Arg	Tyr
435				440						445
Leu	G u	Ser	Ser	Thr	Leu	Pro	Val	G y	G y	Al a
450				455						460
Asp	Al a	Val	Asp	His	Val	G u	Al a	G y	Al a	Asp
465				470						480
Met	Asp	G y	Al a	Val	Ile	Ser	G n	Leu	Al a	G y
485				490						495
Tyr	Al a	Ser	Tyr	G y	His	His	G y	Trp	Pro	Thr
500				505						510
Pro	Ser	Pro	Leu	Ser	Val	His	Tyr	Pro	Tyr	G y
515				520						525
Trp	Cys	Lys	Pro	G u	G n	Asp	Al a	Al a	Al a	Al a
530				535						540
G n	Asp	Leu	G n	G n	Leu	His	Leu	G y	Ser	Al a
545				550						555
G n	Al a	Ser	Ser	Ser	Ser	Thr	Val	Tyr	Asn	Phe
565				570						560
G y	G y	Tyr	G n	G y	Leu	G y	G y	Ser	Ser	Pro
580				585						590
Ser	Thr	Val	Val	Al a	Al a	Al a	Asp	G n	G y	Asp
595				600						605
G n	G y	Ser	Thr	Cys	Ser	Tyr	G y	Asp	Asp	His
610				615						620
Ile	G y	Tyr	Asp	Al a	Al a	Met	Val	Al a	Thr	Al a

5312WOPCT_SEQ_LI STI NG TXT

625	Tyr	Al a	Al a	Al a	Arg	Asn	G y	Tyr	G n	Phe	Ser	G n	G y	Ser	G y	Ser
630																
635																
640																
645	Thr	Val	Ser	Ile	Al a	Arg	Al a	Asn	G y	Tyr	Al a	Asn	Asn	Trp	Ser	Ser
650																
655																
660	Pro	Phe	Asn	Asn	G y	Met	G y									
665																
670																
675																

<210> 103

<211> 975

<212> DNA

<213> Zea mays

<220>

<221> CDS

<222> (1) . . . (975)

<400> 103

at g	gag	acg	cca	cag	cag	caa	tcc	gcc	48							
Met	G u	Thr	Pro	G n	G n	G n	Ser	Al a								
1				5				10							15	

cac	ggg	cag	gac	gac	ggc	ggg	t cg	ccg	ccg	at g	t cg	ccg	gcc	t cc	gcc	96
His	G y	G n	Asp	Asp	G y	G y	Ser	Pro	Pro	Met	Ser	Pro	Al a	Ser	Al a	
			20				25						30			

g cg	g cg	g cg	g cg	c t g	g cg	a ac	g cg	c gg	t gg	a ac	c cg	a cc	a ag	g ag	c ag	144
Al a	Al a	Al a	Al a	Leu	Al a	Asn	Al a	Arg	Trp	Asn	Pro	Thr	Lys	Gl u	G n	
				35			40					45				

gt g	g cc	gt g	c t g	g ag	g gg	c t g	t ac	g ag	c ac	g cg	t g	c g c	a cc	c c c	a g c	192
Val	Al a	Val	Leu	G u	G y	Leu	Tyr	Gl u	His	G y	Leu	Arg	Thr	Pro	Ser	
				50			55				60					

g cg	g ag	c ag	a t a	c ag	c ag	a t c	a c g	g gc	a gg	c t g	c gg	g ag	c ac	g gc	g cc	240
Al a	G u	G n	Ile	G n	G n	Ile	Thr	G y	Arg	Leu	Arg	Gl u	His	G y	Al a	
			65				70			75			80			

a t c	g ag	g g c	a a g	a a c	g t c	t t c	t a c	t g g	t t c	c a g	a a c	c a c	a a g	g c c	c g c	288
Ile	G u	G y	Lys	Asn	Val	Phe	Tyr	Trp	Phe	G n	Asn	His	Lys	Al a	Arg	
				85				90					95			

c a g	c g c	c a g	a g g	c a g	a a g	c a g	c a g	g a c	a g c	t t c	g c c	a g c	a g g	c t c	336	
G n	Arg	G n	Arg	G n	Lys	G n	Asp	Ser	Phe	Al a	Tyr	Phe	Ser	Arg	Leu	
				100			105					110				

c t c	c g c	c g g	c c c	c c g	c c g	c t g	c c c	g t g	c t c	t c c	a t g	c c c	c c c	g c g	c c a	384
Leu	Arg	Arg	Pro	Pro	Pro	Leu	Pro	Val	Leu	Ser	Met	Pro	Pro	Al a	Pro	
				115			120				125					

c c g	t a c	c a t	c a c	g c c	c g c	g t c	c c g	g c g	c c g	c c g	a t a	c c g	a t g	c c g	432	
Pro	Tyr	His	His	Al a	Arg	Val	Pro	Al a	Pro	Pro	Al a	Ile	Pro	Met	Pro	
				130			135				140					

at g	g c g	c c g	c c g	c c g	c c c	g c t	g c a	t g c	a a c	g a c	a a c	g g c	g g c	c g t	480	
Met	Al a	Pro	Pro	Pro	Pro	Al a	Al a	Oys	Asn	Asp	Asn	G y	G y	Al a	Arg	
								150				155		160		

g t g	a t c	t a c	agg	a a c	c c a	t t c	t a c	g t g	g c t	g c g	c a g	c a g	c a g	c c c	c c t	528
Val	Ile	Tyr	Arg	Asn	Pro	Phe	Tyr	Val	Al a	Al a	Pro	G n	Al a	Pro	Pro	
								165				170		175		

g c a	a a t	g c c	g c c	t a c	t a c	t a c	c c a	c a g	c c a	c a g	c a g	c a g	c a g	c a g	576
Al a	Asn	Al a	Al a	Tyr	Tyr	Tyr	Pro	G n	Pro	G n	G n	G n	G n	G n	
							180				185		190		

c a g	g t g	a c a	g t c	a t g	t a c	c a g	t a c	c c g	a g a	a t g	g a g	g t a	g c c	g g c	c a g	624
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-----

5312WOPCT_SEQ.LI STI NG TXT

G n	Val	Thr	Val	Met	Tyr	G n	Tyr	Pro	Arg	Met	G lu	Val	Al a	G y	G n	
195					200					205						
gac	aag	at g	at g	acc	agg	gcc	g c g	g c g	c a c	c a g	c a g	c a g	c a c	a a c		672
Asp	Lys	Met	Met	Thr	Arg	Al a	Al a	Al a	His	G n	G n	G n	His	Asn		
210				215					220							
g g c	g c c	g g g	c a a	c a a	c c g	g g a	c g c	g c c	g g c	c a c	c c c	a g c	c g c	g a g	a c g	720
G y	A l a	G y	G n	G n	Pro	G y	Arg	Al a	G y	His	Pro	Ser	Arg	G u	Thr	
225				230					235							
c t c	c a g	c t g	t t c	c c g	c t c	c a g	c c c	a c c	t t c	g t g	c t g	c g g	c a c	g a c	a a g	768
Leu	G n	Leu	Phe	Pro	Leu	G n	Pro	Thr	Phe	Val	Leu	Arg	His	Asp	Lys	
245								250								
g g g	c g c	g c c	g c c	a a c	g g c	a g t	a a t	a a c	g a c	t c c	c t g	a c g	t c g	a c g	t c g	816
G y	Arg	Al a	Al a	Al a	G y	Ser	Asn	Asn	Asp	Ser	Leu	Thr	Ser	Thr	Ser	
260					265								270			
a c g	g c g	a c t	g c g	a c a	g c g	a c a	g c g	a c a	g c g	t c c	g c t	t c c	g c t	t c c	a t c	864
Thr	Al a	Ser	Al a	Ser	Al a	Ser	I l e									
275					280					285						
t c c	g a g	g a c	t c g	g a t	g g c	c t g	g a g	a g c	g g c	a g c	t c c	g g c	a a g	g g c	g t c	912
Ser	G u	Asp	Ser	Asp	G y	Leu	G u	Ser	G y	Ser	Ser	G y	Lys	G y	Val	
290					295					300						
g a g	g a g	g c g	c c c	g c g	c t g	c c g	t t c	t a t	g a c	t t c	t t c	g g g	c t c	c a g	t c c	960
G u	G u	Al a	Pro	Al a	Leu	Pro	Phe	Tyr	Asp	Phe	Phe	G y	Leu	G n	Ser	
305					310				315					320		
t c c	g g a	g g c	c g c	t g a												975
Ser	G y	G y	Arg													

<210> 104

<211> 324

<212> PRT

<213> Zea mays

<400> 104

Met	G lu	Thr	Pro	G n	G n	G n	Ser	Al a	Al a	Al a	Al a	Al a				
1				5				10						15		
His	G y	G n	Asp	Asp	G y	G y	Ser	Pro	Pro	Met	Ser	Pro	Al a	Ser	Al a	
								20		25				30		
Al a	Al a	Al a	Al a	Al a	Leu	Al a	Asn	Al a	Arg	Trp	Asn	Pro	Thr	Lys	G u	G n
								35		40				45		
Val	Al a	Val	Leu	G u	G y	Leu	Tyr	G u	His	G y	Leu	Arg	Thr	Pro	Ser	
								50		55				60		
Al a	G u	G n	I l e	G n	G n	I l e	Thr	G y	Arg	Leu	Arg	G lu	His	G y	Al a	
								65		70				80		
I l e	G u	G y	Lys	Asn	Val	Phe	Tyr	Trp	Phe	G n	Asn	His	Lys	Al a	Arg	
								85		90				95		
G n	Arg	G n	Arg	G n	Lys	G n	Asp	Ser	Phe	Al a	Tyr	Phe	Ser	Arg	Leu	
								100		105				110		
Leu	Arg	Arg	Pro	Pro	Pro	Leu	Pro	Val	Leu	Ser	Met	Pro	Pro	Al a	Pro	
								115		120				125		
Pro	Tyr	His	His	Al a	Arg	Val	Pro	Al a	Pro	Pro	Al a	I l e	Pro	Met	Pro	
								130		135				140		
Met	Al a	Pro	Pro	Pro	Pro	Al a	Al a	Cys	Asn	Asp	Asn	G y	G y	Al a	Arg	
								145		150				155		
Val	I l e	Tyr	Arg	Asn	Pro	Phe	Tyr	Val	Al a	Al a	Pro	G n	Al a	Pro	Pro	
								165		170				175		
Al a	Asn	Al a	Al a	Tyr	Tyr	Tyr	Pro	G n	Pro	G n	G n	G n	G n	G n	G n	
								180		185				190		
G n	Val	Thr	Val	Met	Tyr	G n	Tyr	Pro	Arg	Met	G lu	Val	Al a	G y	G n	
								195		200				205		

5312WOPCT_SEQ.LI STI NG TXT

Asp	Lys	Met	Met	Thr	Arg	Ala	Ala	Ala	His	Gln	Gln	Gln	Gln	His	Asn
210					215					220					
Gly	Ala	Gly	Gln	Gln	Pro	Gly	Arg	Ala	Gly	His	Pro	Ser	Arg	Glu	Thr
225					230					235					240
Leu	Gln	Leu	Phe	Pro	Leu	Gln	Pro	Thr	Phe	Val	Leu	Arg	His	Asp	Lys
										250					255
Gly	Arg	Ala	Ala	Asn	Gly	Ser	Asn	Asn	Asp	Ser	Leu	Thr	Ser	Thr	Ser
260					265						270				
Thr	Ala	Ser	Ala	Ser	Ile										
275					280					285					
Ser	Glu	Asp	Ser	Asp	Gly	Leu	Glu	Ser	Gly	Ser	Ser	Gly	Lys	Gly	Val
290					295					300					
Glu	Glu	Ala	Pro	Ala	Leu	Pro	Phe	Tyr	Asp	Phe	Phe	Gly	Leu	Gln	Ser
305					310					315					320
Ser	Gly	Gly	Arg												

<210> 105

<211> 909

<212> DNA

<213> Zea mays

<220>

<221> CDS

<222> (1) . . . (909)

<400> 105

at	g	gcg	gcc	aat	gcg	ggc	gyc	ggt	gga	gcg	gga	gga	gyc	agc	gyc	agc	48
Met	Ala	Ala	Ala	Asn	Ala	Gly	Gly	Gly	Gly	Ala	Gly	Gly	Gly	Ser	Gly	Ser	
1				5					10					15			

gyc	agc	gt	g	gct	gcg	ccg	gcy	gt	g	tcg	cgc	ccc	agc	gyc	tcg	cg	tgg	96
Gly	Ser	Val	Ala	Ala	Pro	Ala	Val	Oys	Arg	Arg	Pro	Ser	Gly	Ser	Arg	Arg	Trp	
			20					25					30					

acg	ccg	acg	ccg	gag	cag	atc	agg	atg	ctg	aag	gag	ctc	ta	ta	gyc	144
Thr	Pro	Thr	Pro	Gly	Gly	Ile	Arg	Met	Leu	Lys	Gly	Leu	Tyr	Tyr	Gly	
			35			40						45				

tgc	gyc	atc	cgg	tcg	ccc	agc	tcg	gag	cag	atc	cag	cgc	atc	acc	gcc	192
Oys	Gly	Ile	Arg	Ser	Pro	Ser	Ser	Gly	Gly	Ile	Gly	Arg	Ile	Thr	Ala	
		50			55					60						

at	g	ctg	cgg	cag	cac	gyc	aag	atc	gag	gyc	aag	aac	gtc	ttc	ta	tgg	240
Met	Leu	Arg	Gly	Gly	His	Gly	Lys	Ile	Gly	Gly	Lys	Asn	Val	Phe	Tyr	Trp	
65					70					75			80				

ttc	cag	aac	cac	aag	gcc	cgc	gag	cgc	cag	aag	cgc	cgc	ctc	acc	agc	288
Phe	Gly	Asn	His	Lys	Ala	Arg	Gly	Arg	Gly	Lys	Arg	Arg	Leu	Thr	Ser	
			85						90			95				

ctc	gac	gtc	acc	gt	g	ccc	gcc	gyc	gyc	gac	gcc	acc	acc	acc	agc	336
Leu	Asp	Val	Asn	Val	Pro	Ala	Ala	Gly	Ala	Ala	Asp	Ala	Thr	Thr	Ser	
			100			105						110				

caa	ctc	gyc	gtc	ctc	tcg	ctg	tcg	tcg	ccg	ccg	cct	tca	gyc	gyc	gyc	384
Gly	Leu	Gly	Val	Leu	Ser	Leu	Ser	Ser	Pro	Pro	Pro	Ser	Gly	Ala	Ala	
			115			120						125				

cct	ccc	tcg	ccc	acc	ctc	gyc	ttc	ta	gcc	gcc	gyc	aat	gyc	gyc	gyc	432
Pro	Pro	Ser	Pro	Thr	Leu	Gly	Phe	Tyr	Ala	Ala	Gly	Asn	Gly	Gly	Gly	
130					135					140						

tcg	gct	gt	g	ctg	ctg	gac	acg	agt	tcc	gac	tgg	gyc	agc	agc	gyc	gct	480
Ser	Ala	Val	Leu	Leu	Asp	Thr	Ser	Ser	Asp	Trp	Gly	Ser	Ser	Gly	Ala		
145					150					155				160			

5312WOPCT_SEQ_LI STI NG TXT

gcc atg gcc acc gag aca tgc ttc ctg cag gac tac atg ggc gtg acg	528
Ala Met Ala Thr Gu Thr Oys Phe Leu Glu Asp Tyr Met Gly Val Thr	
165 170 175	
gac acg ggc agc tcg tcg cag tgg cca cgc ttc tcg tcg tcg gac acg	576
Asp Thr Gly Ser Ser Glu Trp Pro Arg Phe Ser Ser Asp Thr	
180 185 190	
at a atg gcg gcg gcc gcg gcg cgg gcg gcg acg acg cgg gcg ccc gag	624
Ile Met Ala Ala Ala Ala Arg Ala Ala Thr Thr Arg Ala Pro Glu	
195 200 205	
acg ctc cct ctc ttc ccg acc tgc ggc gac gac ggc ggc agc ggt agc	672
Thr Leu Pro Leu Phe Pro Thr Oys Gly Asp Asp Gly Gly Ser Gly Ser	
210 215 220	
agc agc tac ttg ccg ttc tgg ggt gcc gcg tcc aca act gcc ggc gcc	720
Ser Ser Tyr Leu Pro Phe Trp Glu Ala Ala Ser Thr Thr Ala Gly Ala	
225 230 235 240	
act tct tcc gtt gcg atc cag cag caa cac cag ctg cag gag cag tac	768
Thr Ser Ser Val Ala Ile Glu Glu Glu His Glu Leu Glu Glu Glu Tyr	
245 250 255	
agc ttt tac agc aac agc aac agc acc cag ctg gcc ggc acc ggc aac	816
Ser Phe Tyr Ser Asn Ser Asn Ser Thr Glu Leu Ala Gly Thr Gly Asn	
260 265 270	
caa gac gta tcg gca aca gca gca gca gcc gcc ctg gag ctg agc	864
Glu Asp Val Ser Ala Thr Ala Ala Ala Ala Ala Leu Glu Leu Ser	
275 280 285	
ctc agc tca tgg tgc tcc cct tac cct gct gca ggg agt atg tga	909
Leu Ser Ser Trp Oys Ser Pro Tyr Pro Ala Ala Glu Ser Met	
290 295 300	

<210> 106

<211> 302

<212> PRT

<213> Zea mays

<400> 106

Met Ala Ala Asn Ala Gly Gly Gly Ala Gly Gly Ser Gly Ser	
1 5 10 15	
Gly Ser Val Ala Ala Pro Ala Val Oys Arg Pro Ser Gly Ser Arg Trp	
20 25 30	
Thr Pro Thr Pro Glu Glu Ile Arg Met Leu Lys Glu Leu Tyr Tyr Gly	
35 40 45	
Cys Gly Ile Arg Ser Pro Ser Ser Glu Glu Ile Glu Arg Ile Thr Ala	
50 55 60	
Met Leu Arg Glu His Gly Lys Ile Glu Gly Lys Asn Val Phe Tyr Trp	
65 70 75 80	
Phe Glu Asn His Lys Ala Arg Glu Arg Glu Lys Arg Arg Leu Thr Ser	
85 90 95	
Leu Asp Val Asn Val Pro Ala Ala Gly Ala Ala Asp Ala Thr Thr Ser	
100 105 110	
Glu Leu Gly Val Leu Ser Leu Ser Ser Pro Pro Pro Ser Gly Ala Ala	
115 120 125	
Pro Pro Ser Pro Thr Leu Gly Phe Tyr Ala Ala Gly Asn Gly Gly	
130 135 140	
Ser Ala Val Leu Leu Asp Thr Ser Ser Asp Trp Gly Ser Ser Gly Ala	
145 150 155 160	
Ala Met Ala Thr Glu Thr Oys Phe Leu Glu Asp Tyr Met Gly Val Thr	
165 170 175	
Asp Thr Gly Ser Ser Ser Glu Trp Pro Arg Phe Ser Ser Ser Asp Thr	
180 185 190	

5312WOPCT_SEQ.LI STI NG TXT

Ile	Met	Ala	Ala	Ala	Ala	Ala	Arg	Ala	Ala	Thr	Thr	Arg	Ala	Pro	Gu
							195					205			
Thr	Leu	Pro	Leu	Phe	Pro	Thr	Cys	Gly	Asp	Asp	Gly	Gly	Ser	Gly	Ser
							200				220				
Ser	Ser	Tyr	Leu	Pro	Phe	Trp	Gly	Ala	Ala	Ser	Thr	Thr	Ala	Gly	Ala
							210				235			240	
Thr	Ser	Ser	Val	Ala	Ile	Gln	Gln	Gln	His	Gln	Leu	Gln	Gu	Gln	Tyr
							215				250			255	
Ser	Phe	Tyr	Ser	Asn	Ser	Asn	Ser	Thr	Gln	Leu	Ala	Gly	Thr	Gly	Asn
							225				265			270	
Gln	Asp	Val	Ser	Ala	Thr	Ala	Ala	Ala	Ala	Ala	Leu	Gu	Leu	Ser	
							225				280			285	
Leu	Ser	Ser	Trp	Oys	Ser	Pro	Tyr	Pro	Ala	Ala	Gly	Ser	Met		
							290				300				

<210> 107

<211> 978

<212> DNA

<213> Zea mays

<220>

<221> CDS

<222> (1)...(978)

<400> 107

at	g	g	c	g	g	c	c	a	a	g	g	g	g	g	g	48
Met	Ala	Ala	Ala	Asn	Ala	Gly	Gly	Gly	Gly	Ala	Gly	Gly	Gly	Ser	Gly	Ser
						5				10					15	

g	g	c	a	g	t	g	g	c	c	g	t	g	c	g	t	96
Gly	Ser	Val	Ala	Ala	Pro	Ala	Val	Cys	Arg	Pro	Ser	Gly	Ser	Arg	Trp	
							20		25			30				

ac	g	c	g	c	g	g	a	g	a	t	g	a	g	t	c	144
Thr	Pro	Thr	Pro	Gu	Gln	Ile	Arg	Met	Leu	Lys	Gu	Leu	Tyr	Tyr	Gly	
							35		40			45				

t	g	g	c	a	t	c	c	a	g	c	t	c	t	a	c	192
Cys	Gly	Ile	Arg	Ser	Pro	Ser	Ser	Gly	Gly	Ile	Gly	Arg	Ile	Thr	Ala	
							50		55		60					

at	g	c	t	g	c	g	c	a	a	g	g	a	g	t	c	240
Met	Leu	Arg	Gly	His	Gly	Lys	Ile	Gu	Gly	Lys	Asn	Val	Phe	Tyr	Trp	
							65		70		75		80			

t	t	c	a	a	c	c	a	g	g	c	c	c	t	c	288	
Phe	Gly	Asn	His	Lys	Ala	Arg	Gu	Arg	Gly	Lys	Arg	Arg	Leu	Thr	Ser	
							85		90			95				

c	t	c	g	a	t	c	c	g	g	g	g	g	g	g	336	
Leu	Asp	Val	Asn	Val	Pro	Ala	Ala	Gly	Ala	Gly	Ala	Asp	Ala	Thr	Ser	
							100		105			110				

c	a	c	t	c	t	c	t	c	t	c	t	c	t	c	384		
Gly	Leu	Gly	Val	Leu	Ser	Leu	Ser	Leu	Ser	Pro	Pro	Ser	Gly	Ala	Ala	Pro	
							115		120		125						

c	c	t	c	g	c	t	c	t	a	g	g	g	g	t	432	
Pro	Ser	Pro	Thr	Leu	Gly	Phe	Tyr	Ala	Ala	Gly	Asn	Gly	Gly	Gly	Ser	
							130		135		140					

g	c	t	g	c	t	g	g	c	a	g	g	g	c	t	480	
Ala	Gly	Leu	Leu	Asp	Thr	Ser	Ser	Asp	Tyr	Ala	Gly	Ser	Gly	Ala	Ala	
							145		150		155		160			

at	g	g	c	c	a	g	g	a	t	g	g	g	t	c	528	
Met	Ala	Thr	Gly	Thr	Oys	Phe	Leu	Gly	Asp	Tyr	Met	Gly	Val	Thr	Asp	

5312WOPCT_SEQ_LI STI NG TXT

165

170

175

acg	ggc	agc	t cg	t cg	c ag	t gg	cc a	t gc	t tc	t cg	t cg	t cg	g ac	acg	at a	576
Thr	Gly	Ser	Ser	Ser	Gln	Trp	Pro	Cys	Phe	Ser	Ser	Ser	Asp	Thr	Ile	
					180			185					190			
at g	g cg	g cg	g cg	g cg	g cc	g cg	g cg	c gg	g t g	g cg	acg	acg	c gg	g cg	ccc	624
Met	Ala	Arg	Val	Ala	Thr	Thr	Arg	Ala	Pro							
					195			200			205					
gag	aca	c t c	c c t	c t c	t t c	c c g	a c c	t g c	g g c	g a c	g a c	g a c	g a c	g a c	g a c	672
Glu	Thr	Leu	Pro	Leu	Phe	Pro	Thr	Cys	Gly	Asp	Asp	Asp	Asp	Asp	Asp	
					210			215			220					
agc	c a g	c c c	c c g	c c g	c g g	c c g	c g g	c a c	g c a	g t c	cc a	g t c	c c g	g c a	g g c	720
Ser	Gln	Pro	Pro	Pro	Arg	Pro	Arg	His	Ala	Val	Pro	Val	Pro	Ala	Gly	
					225			230		235					240	
gag	acc	a t c	c g c	g g c	g g c	g g c	g g c	a g c	a g c	a g c	a g c	t a c	t t g	c c g	t t c	768
Glu	Thr	Ile	Arg	Gly	Gly	Gly	Gly	Ser	Ser	Ser	Ser	Tyr	Leu	Pro	Phe	
				245				250				255				
t gg	g g t	g c c	g g t	g c c	g c g	t c c	a c a	a c t	g c c	g g c	g c c	a c t	t c t	t c c	g t t	816
Trp	Gly	Ala	Gly	Ala	Ala	Ser	Thr	Thr	Ala	Gly	Ala	Thr	Ser	Ser	Val	
				260			265				270					
g c g	a t c	c a g	c a g	c a a	c a c	c a g	c t g	c a g	g a g	c a g	t a c	a g c	t t t	t a c	a g c	864
Ala	Ile	Gln	Gln	Gln	His	Gln	Leu	Gln	Gly	Gln	Tyr	Ser	Phe	Tyr	Ser	
				275			280			285						
a a c	a g c	a c c	c a g	c t g	g c c	g g c	a c c	g g c	a g c	c a a	g a c	g t a	t c g	g c t	t c a	912
Asn	Ser	Thr	Gln	Leu	Ala	Gly	Thr	Gly	Ser	Gln	Asp	Val	Ser	Ala	Ser	
				290			295			300						
g c g	g c c	g c c	c t g	g a g	c t g	a g c	c t c	a g c	t c a	t c a	t g g	t g c	t c c	t a c	c c t	960
Ala	Ala	Ala	Leu	Gly	Leu	Ser	Leu	Ser	Ser	Trp	Cys	Ser	Pro	Tyr	Pro	
				305			310			315			320			
g c t	g c a	g g g	a g c	a t g	t g a											978
Ala	Ala	Gly	Ser	Met												
				325												

<210> 108

<211> 325

<212> PRT

<213> Zea mays

<400> 108

Met	Ala	Ala	Asn	Ala	Gly	Gly	Gly	Ala	Gly	Gly	Gly	Ser	Gly	Ser	
1				5				10				15			
Gly	Ser	Val	Ala	Ala	Pro	Ala	Val	Cys	Arg	Pro	Ser	Gly	Ser	Arg	Trp
							20	25				30			
Thr	Pro	Thr	Pro	Glu	Gln	Ile	Arg	Met	Leu	Lys	Glu	Leu	Tyr	Tyr	Gly
							35	40			45				
Qys	Gly	Ile	Arg	Ser	Pro	Ser	Ser	Glu	Gln	Ile	Gln	Arg	Ile	Thr	Ala
							50	55			60				
Met	Leu	Arg	Gln	His	Gly	Lys	Ile	Glu	Gly	Lys	Asn	Val	Phe	Tyr	Trp
65					70			75				80			
Phe	Gln	Asn	His	Lys	Ala	Arg	Glu	Arg	Gln	Lys	Arg	Arg	Leu	Thr	Ser
							85	90			95				
Leu	Asp	Val	Asn	Val	Pro	Ala	Ala	Gly	Ala	Ala	Asp	Ala	Thr	Thr	Ser
							100	105			110				
Gln	Leu	Gly	Val	Leu	Ser	Leu	Ser	Ser	Pro	Pro	Ser	Gly	Ala	Ala	Pro
							115	120			125				
Pro	Ser	Pro	Thr	Leu	Gly	Phe	Tyr	Ala	Ala	Gly	Asn	Gly	Gly	Gly	Ser
130					135					140					
Ala	Gly	Leu	Leu	Asp	Thr	Ser	Ser	Asp	Trp	Gly	Ser	Ser	Gly	Ala	Ala

5312WOPCT_SEQ.LI STI NG TXT

145	Met	Ala	Thr	Gl u	Thr	150	Cys	Phe	Leu	Gl n	Asp	Tyr	Met	Gly	Val	Thr	Asp
						165				170						175	
	Thr	Gly	Ser	Ser	Ser	180	Gl n	Trp	Pro	Cys	Phe	Ser	Ser	Ser	Asp	Thr	Ile
						185				190						190	
	Met	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Arg	Val	Ala	Thr	Thr	Arg	Ala	Pro	
						195			200				205				
	Gl u	Thr	Leu	Pro	Leu	Phe	Pro	Thr	Cys	Gly	Asp	Asp	Asp	Asp	Asp	Asp	Asp
						210			215				220				
	Ser	Gl n	Pro	Pro	Pro	Arg	Pro	Arg	His	Ala	Val	Pro	Val	Pro	Ala	Gly	
						225			230				235				240
	Gl u	Thr	Ile	Arg	Gly	Gly	Gly	Ser	Ser	Ser	Ser	Tyr	Leu	Pro	Phe		
						245			250				255				
	Trp	Gly	Ala	Gly	Ala	Ala	Ser	Thr	Thr	Ala	Gly	Ala	Thr	Ser	Ser	Val	
						260			265				270				
	Ala	Ile	Gl n	Gl n	Gl n	His	Gl n	Leu	Gl n	Gl u	Gl n	Tyr	Ser	Phe	Tyr	Ser	
						275			280				285				
	Asn	Ser	Thr	Gl n	Leu	Ala	Gly	Thr	Gly	Ser	Gl n	Asp	Val	Ser	Ala	Ser	
						290			295				300				
	Ala	Ala	Ala	Leu	Gl u	Leu	Ser	Leu	Ser	Ser	Trp	Cys	Ser	Pro	Tyr	Pro	
						305			310				315				
	Ala	Ala	Gly	Ser	Met												
						325											

<210> 109

<211> 663

<212> DNA

<213> Zea mays

<220>

<221> CDS

<222> (1)...(663)

<400> 109

at g	gag	g c g	c t g	a g c	g g g	c g g	g t a	g g c	g t c	a a g	t g c	g g g	c g g	t g g	a a c	48
Met	Gl u	Al a	Leu	Ser	G y	Arg	Val	Gly	Val	Lys	Cys	G y	Arg	Trp	Asn	
1			5						10					15		

c c t	a c g	g c g	g a g	c a g	g t g	a a g	g t c	c t g	a c g	g a g	c t c	t t c	c g c	g c g	g g g	96
Pro	Thr	Al a	Gl u	G n	Val	Lys	Val	Leu	Thr	G u	Leu	Phe	Arg	Al a	G y	
			20					25					30			

c t g	c g g	a c g	c c c	a g c	a c g	g a g	c a g	a t c	c a g	c g c	a t c	t c c	a c c	c a c	c t c	144
Leu	Arg	Thr	Pro	Ser	Thr	Glu	G n	Ile	G n	Arg	Ile	Ser	Thr	His	Leu	
			35			40					45					

a g c	g c c	t t c	g g c	a a g	g t g	g a g	g t c	a g c	a a g	t t c	t a c	t g g	t t c	c a g	192	
Ser	Al a	Phe	G y	Lys	Val	Gl u	Ser	Lys	Asn	Val	Phe	Tyr	Trp	Phe	G n	
			50			55				60						

a a c	c a c	a a g	g c c	c g c	g a g	c c g	c a c	c a c	a a g	a a g	c g c	c g c	c g c	g g c	g g c	240
Asn	Hi s	Lys	Al a	Arg	Gl u	Arg	Hi s	Hi s	Hi s	Lys	Arg	Arg	Arg	Arg	G y	
			65			70			75					80		

g c g	t c g	t c g	t c c	t c c	c c c	g a c	a g c	g g c	a g c	g g c	a g g	g g a	a g c	a a c	a a c	288
Al a	Ser	Ser	Ser	Ser	Pro	Asp	Ser	Gly	Ser	Gly	Arg	Gly	Ser	Asn	Asn	
					85			90					95			

g a g	g a a	g a c	g g c	c g t	g g t	g c c	g c c	t c g	c a g	t c g	c a c	g a c	g c c	g c c	g c c	336
Gl u	Gl u	Asp	G y	Arg	G y	Al a	Al a	Ser	Gl n	Ser	Hi s	Asp	Al a	Asp	Al a	
				100				105				110				

g a c	g c c	g a c	c t c	g t g	c t g	c a a	c c g	c c a	g a g	a g c	a a g	c g g	g a g	g c c	g c c	384
Asp	Al a	Asp	Leu	Val	Leu	G n	Pro	Pro	Gl u	Ser	Lys	Arg	Gl u	Al a	Arg	
			115			120					125					

a g c	t a t	g g c	c a c	c a t	c a c	c g g	c t c	g t g	a c a	t g c	t a c	g t c	g a g	g a c	g t g	432
-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-----

5312WOPCT_SEQ.LI STI NG TXT

Ser	Tyr	Gly	His	His	His	Arg	Leu	Val	Thr	Cys	Tyr	Val	Arg	Asp	Val	
130					135						140					
gt g	gag	cag	cag	cag	gag	gcf	t cg	ccg	t cg	t gg	gag	cgg	ccg	acg	agg	gag
Val	Gu	Gu	Gu	Gu	Ala	Ser	Pro	Ser	Trp	Gu	Arg	Pro	Thr	Arg	Gu	480
145					150				155						160	
gt g	gag	acg	ct a	gag	ct c	t tc	ccc	ct c	aag	t cg	t ac	ggc	gac	ct c	gag	528
Val	Gu	Thr	Leu	Gu	Leu	Phe	Pro	Leu	Lys	Ser	Tyr	Gly	Asp	Leu	Gu	
					165				170					175		
gcf	gcf	gag	aag	gt c	cgg	t cg	t ac	gt c	aga	gga	at c	gcc	gcc	acc	agc	576
Ala	Ala	Gu	Lys	Val	Arg	Ser	Tyr	Val	Arg	Gly	Ile	Ala	Ala	Thr	Ser	
				180				185				190				
gag	cag	t gc	agg	gag	tt g	t cc	t tc	t tc	gac	gt c	t cc	gcc	gga	cgg	gat	624
Gu	Gu	Cys	Arg	Gu	Leu	Ser	Phe	Phe	Asp	Val	Ser	Ala	Gly	Arg	Asp	
				195			200				205					
ccg	ccg	ct c	gag	ct c	agg	ct c	t gc	agc	t tc	ggt	ccc	t ag			663	
Pro	Pro	Leu	Gu	Leu	Arg	Leu	Cys	Ser	Phe	Gly	Pro					
				210			215				220					

<210> 110

<211> 220

<212> PRT

<213> Zea mays

<400> 110

Met	Gu	Ala	Leu	Ser	Gly	Arg	Val	Gly	Val	Lys	Cys	Gly	Arg	Trp	Asn
1					5				10					15	
Pro	Thr	Ala	Gu	Gn	Val	Lys	Val	Leu	Thr	Gu	Leu	Phe	Arg	Ala	Gly
					20				25					30	
Leu	Arg	Thr	Pro	Ser	Thr	Gu	Gn	Ile	Gn	Arg	Ile	Ser	Thr	His	Leu
					35				40					45	
Ser	Ala	Phe	Gly	Lys	Val	Gu	Ser	Lys	Asn	Val	Phe	Tyr	Trp	Phe	Gn
					50				55					60	
Asn	His	Lys	Ala	Arg	Gu	Arg	His	His	His	Lys	Lys	Arg	Arg	Arg	Gly
					65				70					80	
Ala	Ser	Ser	Ser	Pro	Asp	Ser	Gly	Ser	Gly	Arg	Gly	Ser	Asn	Asn	
					85				90					95	
Gu	Gu	Asp	Gly	Arg	Gly	Ala	Ala	Ser	Gn	Ser	His	Asp	Ala	Asp	Ala
					100				105					110	
Asp	Ala	Asp	Leu	Val	Leu	Gn	Pro	Pro	Gu	Ser	Lys	Arg	Gu	Ala	Arg
					115				120					125	
Ser	Tyr	Gly	His	His	His	Arg	Leu	Val	Thr	Cys	Tyr	Val	Arg	Asp	Val
					130				135					140	
Val	Gu	Gn	Gn	Gu	Ala	Ser	Pro	Ser	Trp	Gu	Arg	Pro	Thr	Arg	Gu
					145				150					160	
Val	Gu	Thr	Leu	Gu	Leu	Phe	Pro	Leu	Lys	Ser	Tyr	Gly	Asp	Leu	Gu
					165				170					175	
Ala	Ala	Gu	Lys	Val	Arg	Ser	Tyr	Val	Arg	Gly	Ile	Ala	Ala	Thr	Ser
					180				185					190	
Gu	Gn	Cys	Arg	Gu	Leu	Ser	Phe	Phe	Asp	Val	Ser	Ala	Gly	Arg	Asp
					195				200					205	
Pro	Pro	Leu	Gu	Leu	Arg	Leu	Cys	Ser	Phe	Gly	Pro				
					210			215			220				

<210> 111

<211> 896

<212> DNA

<213> Zea mays

<400> 111

gt	gcagcgt	g	acccgggt	cgt	gcccct	ct	ct	agagat	aat	g	agcat	t	gcat	gt	ct	aagt	ta	60				
t	aaaaaaat	ta	ccacat	at	tt	tt	tt	gt	cac	act	t	tt	ga	agt	gcagt	tt	at	ct	at	ct	tt	120

5312WOPCT_SEQ_LI STI NG TXT

at acat at at	t t aaact t t a	ct ct acgaat	aat at aat ct	at agt act ac	aat aat at ca	180
gt gt t t aga	gaat cat at a	aat gaacagt	t agacat ggt	ct aaaggaca	at t gagt att	240
t t gacaacag	gact ct acag	t t t at ct t	t t agt gt gca	t gt gt t ct cc	t t t t t t t g	300
caa at agct t	cacct at at a	at act t cat c	cat t t t at a	gt acat ccat	t t agggt t t a	360
gggt t aat gg	t t t at aga	ct aat t t t	t agt acat ct	at t t at t ct	at t t t agcct	420
ct aaat t aag	aaaact aaaa	ct ct at t t a	gt t t t t at	t t aat aat t t	agat at aaaa	480
t aagaat aaaa	t aaagt gact	aaaaat t aaa	caa at accct	t t aagaaat t	aaaaaaact a	540
agaaaacat t	t t t ct t gt t	cgagt agat a	at gccagct	gt t aaacgcc	gt cgacgagt	600
ct aacggaca	ccaaccagcg	aaccagcagc	gt cgcgt cgg	gccaaggcga	gcagacggca	660
cggcat ct ct	gt cgct gcct	ct gacccct	ct cgagat t	ccgct ccacc	gt t ggact t g	720
ct ccgcgt t c	ggcat ccaga	aat t gct gg	cggagcggca	gacgt gagcc	ggcacggcag	780
gcccgc t cct	cct cct ct ca	cgccaccggc	agct acggg	gat t cct t t c	ccaccgct cc	840
t t cgc t t cc	c t cct cgcc	cgcgt aat a	aat agacacc	ccct ccacac	cct ct t	896

<210> 112

<211> 82

<212> DNA

<213> Zea mays

<400> 112

t ccccaacct	cgt gt t gt t c	ggagcgcaca	cacacacaac	cagat ct ccc	ccaaat ccac	60
ccgt cggcac	c t cgc t t c a	ag				82

<210> 113

<211> 1013

<212> DNA

<213> Zea mays

<400> 113

gt acggcgct	cgt cct cccc	ccccccct c	t ct acct t ct	ct agat cggc	gt t ccggcc	60
at gcat ggt t	agggcccggt	agt t ct act t	ct gt t cat gt	t t gt gt t a	t ccgt gt t t g	120
t gt t agat cc	gt gct gct ag	cgt t cgt aca	cggat ggcac	ct gt acgt ca	gacacgt t ct	180
gat t gct aac	t t gccagt gt	t t c t c t t gg	ggaat cct gg	gat ggct ct a	gccgt t ccgc	240
agacgggat c	gat t t cat ga	t t t t t t t gt	t t cgt t gcat	agggt t t ggt	t t gccct t t t	300
cct t t at t c	aat at at gcc	gt gcact t gt	t t gt cggt c	at ct t t t cat	gct t t t t t t	360
gt ct t ggt t g	t gat gat gt g	gt ct ggt t gg	gcccgt cgt t c	t agat cggag	t agaat t ct g	420
t t t caaact a	cct ggt ggt	t t at t aat t t	t ggat ct gt a	t gt gt gt gcc	at acat at t c	480
at agt t acga	at t gaagat g	at ggat ggaa	at at cgt ct	aggat aggt a	t acat gt t ga	540
t gcccgt t t t	act gat gcat	at acagagat	gct t t t gt t	cgt t gggt t g	t gat gat gt g	600
gt gt ggt t gg	gcccgt cgt t c	at t cgt t ct a	gat cggat a	gaat act gt t	t ccaaact acc	660
t ggt gt at t t	at t aat t t t g	gaact gt at g	t gt gt gt cat	acat ct t cat	agt t acgagt	720
t t aagat gga	t gggaaat at c	gat ct aggat	aggat at acat	gt t gat gt gg	gt t t act ga	780
t gcat at aca	t gat ggcat a	t gcagcat ct	at t cat at gc	t ct aacct t g	agt acct at c	840
t at t at aat a	aacaagt at g	t t t at aatt	at t t gat ct	t gat at act t	ggat gat ggc	900
at at gcagca	gct at at gt g	gat t t t t a	gccct gcct t	cat acgct at	t t at t gct t	960
ggt act gt t t	c t t t gt cga	t gct caccct	gt t gt t t ggt	gt t act t ct g	cag	1013

<210> 114

<211> 11

<212> DNA

<213> Triticum monococcum

<400> 114

cct cgt t t t g

11

<210> 115

<211> 1036

<212> DNA

<213> Triticum monococcum

<400> 115

at t t gcct ga	t gagacgct t	gacaacagt g	t at t gat gga	t gt ct ggt cg	gt at acacgc	60
acagcacagt	acccct act c	ct aggact gg	cgagt at ct t	t cat t cat t c	cagaaat acg	120
cgggt cggcc	aaaagt agaa	aaat acact g	cgcccact ca	at ccacgt ag	cgcact gcac	180
t gcacagcaa	cgct t cat gt	caaaagt cga	gct caagcat	gacgcgcgt g	gacgcggcgc	240
gaat gacccg	ggccgcacga	cgcgagt gcc	cgccgcgccc	gcccgcct gc	cccgcagccg	300
acct ct ccca	aacgggacaa	gcgagacggc	ccaaaacgag	caaggaaagc	agcct cct ac	360
t gt ggcagcc	cgc ccccaacg	accgt cat ct	cacct t ccat	t ccatt t t cc	ct ggacggac	420

5312WOPCT_SEQ_LI STI NG TXT

cagaccgt c	cgagccgccc	t gacct agcc	agccagcat t	t cct ct t cg	t ccccccggc	480
ccgt gacca a	aaaagcaaaa	aaggaaaaaag	ggaaaaat gct	aaaggaaaaaa	act ccgt ct	540
t t ccct t ct t	ct aggcct ag	ggt acagt ag	aat at t at aa	aaggaaaaat	t ct gct cgt t	600
t t t gct ct g	t ggt gt gt	t t gt ggcgag	agaaaaat gat	t t ggggaaag	caaaat cggg	660
agat t cgcac	gt acgtat cgt	t cgacacgt c	gacgcccggc	ggggccgt gg	t ggggcat cg	720
t gt ggct gca	ggaccgcggg	gccccgcggg	gcggggccggg	ccaat gggt g	ct cgacagcg	780
gct at gct cc	agaccagccc	ggt at t gcat	accgcgt cg	gggccagat c	cct tt aaaaaa	840
ccccct ccccc	cct gccgaa	ccct cgt t t t	ggcct ggca	t cct ccct ct	cct ccct ct	900
c t t ccacct c	acccaaccac	ct gat agcca	t ggct cccgc	gcct cgcct c	cgcct gcgcc	960
agt cggagt a	gccgt cgccgg	t ct gcgggt g	t t ggagggta	ggggcgt agg	gt t ggcccg	1020
t t ct cgagcg	gagat g					1036