0O 01/59971 A2

=

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

16 August 2001 (16.08.2001) PCT WO 01/59971 A2
(51) International Patent Classification’: HO04L (72) Inventors; and
(75) Inventors/Applicants (for US only): DULBERG, Adi
(21) International Application Number: PCT/IL01/00142 [IL/IL]; 6 Dvora Hanevia Street, 69350 Tel-Aviv (IL).
. . MANIY, Eldad [IL/IL]; 9B Hagilboa Street, 53322
(22) International Fllmg Date: 14 February 2001 (14022001) Givataim (IL) TOKER, Alex [IL/IL], 4/10 Pumped]ta
- . . Street, 64234 Tel-Aviv (IL). LEVONAI, Gil [IL/IL]; 17
(25) Filing Language: English Shamgar Street, 69935 Tel-Aviv (IL).
(26) Publication Language: English
(74) Agents: FENSTER, Paul et al.; Fenster & Company
(30) Priority Data: Patent Attorneys, LTD., P.O. Box 10256, 49002 Petach
60/182,211 14 February 2000 (14.02.2000) US Tikva (IL).
09/654,925 5 September 2000 (05.09.2000) US .)
60/264,729 30 January 2001 (30.01.2001) Us (81) Designated States (national): AE, AG, AL, AM, AT, AU,
60/264,730 30 January 2001 (30.01.2001) US AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
(63) Related by continuation (CON) or continuation-in-part HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, L.C, LK, LR,
(CIP) to earlier application: LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
Us 09/654,925 (CIP) NO, NZ, PL, PT, RO, RU, SD, SE, 8G, SI, 8K, SL, TJ, TM,
Filed on 5 September 2000 (05.09.2000) TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
(71) Applicant (for all designated States except US): NEXT- (84) Designated States (regional): ARIPO patent (GH, GM,
NINE LTD. [IL/IL]; 6 Hanechoshet Street, 69710 Tel-Aviv KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
(IL). patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
[Continued on next page]
(54) Title: EMBEDDED DEVICE MONITORING AGENT
T T T T T T T T T T T T T =1
| |
li
1
| = |
{ : EMBEDDED 1 L
|| o~ R ouwp | PROGESSOR |/ :l/ 0
l : !
i 20|~ RI_SET E
| . I
| | 20—~ RT_ASSIGN i
i . ya 14 1
: 13 : MEMORY | |
| | API LIBRARY ~—— |
) |
VL2 T ———Jiocong] | ! 8
|] SOFTWARE BUFFER 1 ya
: APPLICATION | — L AREA |
: 13 \ } HOST
AP! UBRARY ||
i] 17 :, 19
| | AGENT
! ! MANAGER
| 18 DATA | IMPORT [H~21
! TRANSFER T PROCEDURE
| AGENT |
| i
e e e e e e e e e e e ot o e = ——————— ——— — —— — -

(57) Abstract: A generic software logging package for using with a user software application. The software logging package in-
cludes at least one function which stores logging data into at least one logging buffer and at least one macro command which expands
into a conditional call to the at least one function, the conditional call including a call statement which transfers to the called function
at least one redundant parameter.

wO 01/59971 A2 I HIID 000 OO

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

Published:

— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

EMBEDDED DEVICE MONITORING AGENT
RELATED APPLICATIONS

This application claims the benefit under 119 (e) of US provisional patent application
60/182,211, filed on February 14, 2000 and US provisional applications numbers 60/264,729
and 60/264,730, filed on January 30, 2001. This application is a continuation-in-part of US
patent application 09/654,925, filed September 5, 2000 and titled "SYSTEM AND METHOD
FOR SUPPORT OF EMBEDDED DEVICES". This application is also related to an
application titled “SUPPORT NETWORK?, filed on even date with the instant application as a
PCT application in the Israel receiving office, and which designates the US. The disclosures of
all of these applications are incorporated herein by reference.

FIELD OF THE INVENTION

The present invention relates to monitoring and debugging agents for embedded
devices.

BACKGROUND OF THE INVENTION

Embedded processors are employed in many different devices, such as cellular phones,
personal organizers, network switches, medical equipment, household appliances (washing
machines, televisions), and automobiles. These devices include hardware which is operated by
software code run on the embedded processor. During the design, manufacture and/or
operation of the devices, it is desired to have the ability to debug and monitor the software
code running on the embedded processor.

Generally, when programmers prepare software code for embedded processors they
include in the software routines which are used to gather data for debugging. In some cases,
various data gathering commands (referred to as hooks) are implanted throughout the software
code. During normal operation of the software, the data gathering commands do nothing
(except determining that there is no need for data gathering). Under an external command of a
maintenance person, however, the data gathering commands are operated and they transmit
data to a remote monitoring station. In some systems, the data gathering commands are
organized in groups for different purposes. For example, different groups of data gathering
commands may be embedded in the software code for use in different failure situations. When
a problem arises, the maintenance person generates an appropriate command which awakens a

specific group of data gathering commands.

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
SUMMARY OF THE INVENTION

An aspect of some embodiments of the present invention relates to generic monitoring
software for use with software of embedded devices. The generic monitoring software may be
used with substantially any user software and is generally independent of the hardware on
which the software is run. The use of a generic monitoring software reduces the time required
for programming of software of embedded devices.

In some embodiments of the invention, the generic monitoring software includes a
callback function which calls a user defined function. Thus, the generic monitoring software
can be used also for activating and/or deactivating user defined functions.

An aspect of some embodiments of the invention relates to a method of coordinating
between logging hooks implanted in a software and an agent monitor that displays data
provided by the hooks.

In some embodiments of the invention, one or more of the implanted hooks include a
function call which has at least one redundant parameter, i.e., not utilized by the called
function. The redundant parameter appears in the compiled software in a manner which is
easily detectable by the agent manager. In some embodiments of the invention, the compiled
software is loaded to the agent monitor, which finds the redundant parameter therein. The
agent monitor determines from the redundant parameter and from information from the
debugging area of the compiled application, information required in order to display logging
data from the hooks and/or other information required in order to interact with the hooks.

Optionally, the redundant parameter comprises a string which, as is known in the art,
appears in a static data area of the compiled software. In some embodiments of the invention,
the redundant parameter identifies the existence of the hook, the location of the hook within
the uncompelled source code, and/or the type of one or more variables to which the hook
relates.

An aspect of some embodiments of the invention relates to hooks of an embedded
software which may be activated from within the software. For example, in case an error
occurs in the embedded device, one or more hooks may be activated by the software in
addition to alerting a maintenance person to the error. Thus, logging information is collected at
critical times, before the maintenance person has an opportunity to activate hooks. Optionally,
the same hooks may be activated both internally from within the software and externally from

an agent monitor.

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

An aspect of some embodiments of the invention relates to a hierarchical method for
activating hooks implanted in an embedded software. In some embodiments of the invention,
each hook belongs to a group and in addition has its own ID. A hook may be activated by
activating its group or by stating that the group is partially activated and activating the specific
hook. Optionally, composite groups are defined which allow activation of a plurality of
aggregated groups with a single command.

An aspect of some embodiments of the invention relates to multiple-stage methods for
activating hooks implanted in an embedded software. The use of multiple-stage activation
methods allows a user to control the activation of hooks and/or the performance of some of
their tasks from a plurality of different points.

In some embodiments of the invention, one or more hooks do not begin to operate until
they are activated both internally and externally. Alternatively or additionally, one or more
hooks must be listed at least a predetermined number of times in activation commands in order
to be activated. Alternatively or additionally, one or more hooks are pre-activated by a
command which states one or more other hooks which are to complete the activation when
they are encountered. Further alternatively or additionally, one or more hooks are activated by
a command which states an activation time at which the hook is activated and/or a deactivation
time at which the hook is deactivated. Further alternatively or additionally, one or more hooks
are activated and/or deactivated responsive to empty space in one or more logging buffers
and/or responsive to an operation state of a communication link to a remote host. For example,
one or more less important hooks may be activated when a logging buffer is relatively empty.
These less important hooks are optionally deactivated when the buffer is relatively full so that
the data they produce does not take up room which could be used by important hooks.

In some embodiments of the invention, functions called by activated hooks perform
their one or more tasks only if one or more conditions are fulfilled. For example, a data
logging function may include one or more conditional tasks which are performed only if a link
to a host is active or inactive, a buffer has empty space, a previous hook instructed that the
conditional task should be performed and/or responsive to any other suitable condition.

An aspect of some embodiments of the invention relates to a logging function library
that includes a regular logging function for use in regular code segments and a fast dump
function for use in critical code segments. The fast dump function uses a private buffer which

does not use semaphores or any other software synchronization mechanism. The regular

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
logging function uses a regular buffer, generally much larger than the private buffer, which is
protected by a software synchronization mechanism. Each time the regular logging function is
called, it empties data from the private buffer of the fast dump function into its regular buffer,
before it stores data in the regular buffer. Thus, the order of the logged data is kept although
different buffers are used by the different functions. In addition, only the private buffer of the
fast dump function is susceptible to the risk of being used concurrently by two different
procedures, while the data in the regular buffer is safe as it is protected by a software
synchronization mechanism.

An aspect of some embodiments of the invention relates to a logging function which
handles data logged responsive to calls from different hooks, differently. In some embodiments
of the invention, the logging function stores data from different sets of hooks in different
buffers. Optionally, data logged responsive to calls from hooks activated from within the user
software are stored in a first buffer and data logged responsive to calls from hooks activated
from a remote host is stored in a second buffer. Alternatively or additionally, the data in the
different buffers is provided to a user, differently. For example, data in a first buffer is
transmitted over a communication link to the host, while data from a second buffer is stored on
a non-volatile storage unit, e.g., a disk.

There is therefore provided in accordance with an embodiment of the invention, a
generic software logging package for using with a user software application, including at least
one function which stores logging data into at least one logging buffer, and at least one macro
command which expands into a conditional call to the at least one function, the conditional
call including a call statement which transfers to the called function at least one redundant
parameter.

Optionally, the software logging package includes a data transfer agent which transfers
data from the at least one logging buffer to a remote host. Possibly, the at least one redundant
parameter includes a string parameter which provides information relating to the macro
command in an ASCI format. Alternatively or additionally, the at least one redundant
parameter includes a parameter which identifies the location of the macro command in the user
software application, a variable whose value is to be logged by the at least one function and/or
the existence of the macro command in the user software application.

There is further provided in accordance with an embodiment of the invention, a method

of preparing a user software application for debugging, including annexing to the user software

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
application at least one function which stores logging data into at least one logging buffer,
inserting at least one hook, which includes a call statement to the at least one function, to the
user software application, compiling the user software application, and determining one or
more parameters of the at least one hook from the compiled user software application.

Optionally, determining the one or more parameters includes determining by a software
which does not have knowledge of the format of the results of the compiling of the user
software application. Optionally, determining the one or more parameters includes determining
a type of a variable whose value is logged by the at least one annexed function.

Possibly, inserting the at least one hook includes inserting a macro. Alternatively or
additionally, inserting the at least one hook includes inserting a hook that includes a string
which includes information on the hook in ASCII format. Optionally, the at least one hook
includes a conditional call to the at least one function, the conditional call includes at least two
sub-conditions which depend on respective separate parameters.

Optionally, the at least one function is called by the at least one hook if one of the sub-
conditions is fulfilled and/or if both the sub-conditions are fulfilled.

There is further provided in accordance with an embodiment of the invention, a method
of preparing a user software application for debugging, including annexing to the user software
application at least one function which performs a debugging task, and inserting at least one
hook, which includes a conditional call statement to the at least one function, to the user
software application, the conditional call includes at least two sub-conditions which depend on
respective different parameters.

Optionally, the at least one function is called by the at least one hook if one of the sub-
conditions is fulfilled and/or if both the sub-conditions are fulfilled. Optionally, the at least one
hook has a unique ID and the at least one of the sub-conditions includes a condition on the
unique ID. Possibly, the at least one hook belongs to a group of hooks having a unique group
ID and at least one of the sub-conditions includes a condition on the group ID.

There is further provided in accordance with an embodiment of the invention, a method
of preparing a user software application for debugging, including annexing to the user software
application at least one function which performs a debugging task, inserting, into the user
software application, at least one hook, which includes a conditional call statement to the at
least one function; and providing a plurality of different functions which actuate the
conditional call to call the at least one debugging function.

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

Optionally, providing the plurality of different functions includes providing a first
function which is called from within the user software application and a second function which
is called from a host in communication with apparatus running the user software application.

There is further provided in accordance with an embodiment of the invention, a method
of preparing a user software application for debugging, including annexing to the user software
application at least one debugging function which performs a debugging task, inserting, into
the user software application, at least one debugging hook that includes a conditional call to
the at least one debugging function, annexing to the user software application at least one
actuation function which changes a value of at least one condition parameter on which the
condition of the at least one debugging hook depends, and inserting, into the user software
application, at least one actuation hook which calls the actuation function.

Optionally, the at least one actuation hook conditionally or unconditionally calls the
actuation function. Optionally, the at least one actuation function receives a condition which
controls the time at which the value of the at least one condition parameter is changed. In some
embodiments of the invention, the at least one debugging function includes one or more
debugging tasks which are performed only in some of the times in which the debugging

function is called. Optionally, the at least one actuation function receives a condition which

controls the operation periods of the one or more debugging tasks. Possibly, the received

condition includes a condition which depends on whether the user software application
encountered one or more hooks inserted into the user software application.

Optionally, the received condition includes a condition which depends on whether the
user software application encountered the one or more specific hooks after the debugging hook
was activated. Optionally, the debugging function includes a logging function.

Optionally, the received condition includes a condition which depends on the contents
of one or more buffers in which the logging function writes data, on whether the one or more
buffers are full and/or on an activation state of a link between a processor running the user
software application and a remote host. Optionally, the method includes changing the value of
the condition parameter by an external user.

Possibly, the debugging function operates differently depending on whether the change
of the value of the condition parameter was caused by the external user or by the actuation
function. Optionally, the different operation includes the identity of one or more buffers to

which the debugging function writes logging data.

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

There is further provided in accordance with an embodiment of the invention, a method
of preparing a user software application for debugging, including annexing, to the user
software application, a first logging function which is adapted to store logging data in a first
buffer, and annexing, to the user software application, a second logging function adapted to
transfer any data in the first buffer to a second buffer and then store logging data in the second
buffer. Optionally, access to the first buffer is not protected by a software synchronization
mechanism. Optionally, the size of the first buffer is not greater than 40 bytes.

There is further provided in accordance with an embodiment of the invention, a method
of preparing a user software application for debugging, including annexing to the user software
application at least one debugging function which performs a debugging task, inserting, into
the user software application, at least one debugging hook that includes a conditional call,
which depends on a debugging condition variable, to the at least one debugging function,
annexing to the user software application at least one callback function which calls a user
defined function, inserting, into the user software application, at least one callback hook that
includes a conditional call, which depends on a callback condition variable, to the at least one
debugging function, and providing at least one routine adapted to change both the callback
condition variable and the debugging condition variable.

Optionally, the at lea;t one routine changes the debugging condition variable and the
callback condition variable substantially concurrently. Alternatively or additionally, the at least
one routine changes at a specific routine call, one of the debugging condition variable and the
callback condition variable. Possibly, the at least one routine changes the debugging condition
variable and the callback condition variable responsive to commands from a remote host.

Optionally, the at least one routine changes the debugging condition variable and the
callback condition variable responsive to commands annexed to the user software application.

There is further provided in accordance with an embodiment of the invention, a method
of changing the value of a portion of a complex variable in a process running on an embedded
device, from a remote host, including providing a new value to which the portion of the
complex variable is to be changed, encapsulating the new value in a data structure of the size
of the complex variable, generating a mask which identifies the areas in the data structure
which include the new value, transmitting the data structure and the generated mask to the
embedded device, and changing the value of the portion of the complex variable responsive to

the data structure and the mask.

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

Optionally, changing the value of the portion of the complex variable includes
performing an AND operation between the mask and the complex variable.

There is further provided in accordance with an embodiment of the invention, a method
of changing, substantially simultaneously, the value of a plurality of variables of a plurality of
different processes executed by a processor, including providing respective values to be
assigned to the plurality of variables, to the processor, calling a value assignment function
from a first one of the processes, stalling the first process until all the other processes call the
assignment function, assigning the transmitted values to their respective variables, and
terminating the stalling of the first process.

Optionally, assigning the value of the variable in the first process is performed before
the first process is stalled and/or after the stalling of the first process is terminated. Possibly,
providing respective values to the processor includes transmitting the values to the processor
from a remote host.

There is further provided in accordance with an embodiment of the invention, a method
of logging data of a software application on an embedded device, including calling a logging
function from one or more first hooks in the software application, storing, by the logging
function, logging data in a first buffer responsive to the call from the one or more first hooks,
calling the same logging function from one or more second hooks in the software application;
and storing logging data, by the same logging function, in a second buffer responsive to the
call from the one or more second hooks.

Optionally, the first and second hooks are activated by different respective software
routines. Possibly, the first hooks are activated responsive to a command annexed to the
software application and the second hooks are activated responsive to commands from a
remote host. Optionally, the method includes providing at least some of the data from the first
and second buffers to a user, using different respective methods. Possibly, the different
methods used to provide data from the respective buffers to the user differ in the link used to
provide the data. Optionally, the data from the first buffer is stored in a non-volatile memory
and the data from the second buffer is provided over a communication link to a remote host. In
some embodiments of the invention the method includes calling a logging function from one
or more third hooks in the software application and storing, by the logging function, logging

data in one or more additional buffers responsive to the call from the one or more third hooks.

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

There is further provided in accordance with an embodiment of the invention, a method
of logging data of a software application on an embedded device, including calling a logging
function from a hook in the software application and storing, by the logging function, identical
copies of logging data in a plurality of buffers responsive to the call from the hook. Optionally,
storing the data includes storing in a plurality of buffers located in a single memory unit.

BRIEF DESCRIPTION OF FIGURES

Exemplary non-limiting embodiments of the invention will be described with reference
to the following description of embodiments in conjunction with the figures. Identical
structures, elements or parts which appear in more than one figure are preferably labeled with a
same or similar number in all the figures in which they appear, in which:

Fig. 1 is a schematic block diagram of an embedded device and a monitoring system
therefore, in accordance with an embodiment of the present invention;

Fig. 2 is an exemplary illustration of a hook of a monitoring system, in accordance with
an embodiment of the present invention;

Fig. 3 is a flowchart of the acts performed in using a software application including
monitoring hooks, in accordance with an embodiment of the present invention;

Fig. 4 is a schematic illustration of the contents of a logging buffer area, in a;ccordance
with an embodiment of the present invention; and

Fig. 5 is a schematic block-diagram illustration exemplary code appearing in a software
application and data flow relating thereto, in accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Fig. 1 is a schematic block diagram of an embedded device 10 and a monitoring host
18 therefore, in accordance with an embodiment of the present invention. Embedded device 10
comprises an embedded processor 11 which runs one or more software applications 12, which
generally utilize a memory 14. Software applications 12 may comprise, for example, an
executable code, a DLL (dynamic link library) or any other program module. Software
application 12 may comprise substantially any type of task, including an operating system
(0S), application modules and communication clients and servers.

In some embodiments of the invention, a generic logging software package which may
operate with substantially any embedded software application 12, is used for performing

debugging, monitoring and/or logging operations. The use of a generic logging software

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
package generally reduces the software development costs of software application 12.
Generally, the logging software package is platform independent, i.e., does not depend on the
hardware of embedded processor 11.

In some embodiments of the invention, the logging software package comprises an
agent application programming interface (API) library 13 which contains generic functions for
performing logging operations as described hereinbelow. The functions in API library 13
generally reference one or more buffers in a logging buffer area 17. In some embodiments of
the invention, each software application 12 on embedded processor 11 includes a separate
copy of API library 13. Alternatively or additionally, one or more of software applications 12
share a single copy of API library 13 or of portions thereof.

The logging software package optionally further comprises a data.transfer agent 16
which exports logging information from logging buffer area 17 to an external host 18 and/or to
other monitoring devices or storage media. In some embodiments of the invention, data
transfer agent 16 is run on embedded processor 11. Alternatively, data transfer agent 16 is run
on a separate processor, optionally a direct memory access (DMA) unit. Optionally, host 18
runs an agent manager 19 which displays logging data from embedded processor 11 and/or
allows a maintenance person to interact with the logging software package. Alternatively,
agent manager 19 runs on embedded processor 11, and data transfer agent 16 performs
processor-internal data transfer tasks.

In installing the generic logging software package, a programmer of software
application 12, plants logging instructions (referred to herein as hooks 20) within software
application 12. Generally, hooks 20 are distributed throughout software application 12 in its
various procedures. Hooks 20 generally access procedures in API library 13, which procedures
perform various logging tasks. In some embodiments of the invention, at least some of hooks
20 are not always active. Thus, a large number of hooks 20 may be distributed throughout
application 12 without a user having to receive data from all of the hooks and being
overwhelmed by the data which all the hooks generate. Instead the user may activate only
some of the hooks, as described hereinbelow.

Fig. 2 is an exemplary illustration of a hook 20, in accordance with an embodiment of
the present invention. Hook 20 is inserted into software application 12 in the form of a short

macro command 50, which has one or more command-specific parameters 52 (the number of

10

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
which generally differs according to the specific hook type), and one or more hook
identification fields 53, which uniquely identify the hook 20 within software application 12.

In the example shown in Fig. 2, hook 20 comprises an RT DUMP command which
dumps the value of a parameter (e.g., X) to logging buffer area 17. The exemplary command
RT _DUMP has a single command-specific parameter 52 which identifies the parameter whose
value is to be dumped. As shown, hook identification fields 53 comprise a GROUP parameter
which identifies a group to which the specific hook 20 belongs, and a hook ID parameter 58
which identifies the specific hook 20 within its group.

During compilation (i.e., pre-processing) of software application 12, macro command
50 is expanded into a IF command 60 which is formed of a condition 54 and a function call 55.
During the running of software application 12, condition 54 checks whether the hook 20 is
active, as described hereinbelow. If the hook 20 is active, function call 55 calls a library
function (in the figure ST MEM_DUMP) which performs the task of hook 20. In some
embodiments of the invention, the parameters of function call 55 include the hook ID
(parameter 58 from identification field 53), the parameters 52 of the specific hook type (using
any suitable method, e.g., passing for each parameter its address 62 and length 64, determined,
for example, using the sizeof function), and a string 40.

In some embodiments of the invention, the transfer of string 40 in function call 55 is
not required for the. operation of the called function. Rather, the contents of string 40 are used
by an external application, e.g., agent manager 19, to identify the hook and/or determine one or
more parameters of the hook, as is now described.

In some embodiments of the invention, string 40 comprises a concatenation of a
plurality of fields delineated by one or more separation characters, e.g., "?".

In some embodiments of the invention, string 40 comprises an ASCII ID string 48
containing the ID of the hook as stated in ID parameter 58. Optionally, ID string 48 appears
twice in string 40, at the beginning and end of the string, allowing simple identification of
string 40 based on the ID strings 48 of the string 40. Alternatively or additionally, string 40
comprises a type field (not shown) which indicates the type of function called by the hook. For
example, the type field may include a single letter, e.g., D for dump, E for event, etc. In
addition, string 40 optionally comprises one or more fields which convey information related
to the hook to agent manager 19. In some embodiments of the invention, string 40 comprises a

string 43 which states the line number of hook 20 in the code of application software 12,

11

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
and/or a module string 44 which states the name of the module or file in which hook 20
resides. Alternatively or additionally, string 40 comprises group fields, e.g., a group name field
46 and a group number field 47, which identifies one or more groups to which hook 20
belongs as stated in parameters 53 of macro command 50. Further alternatively or additionally,
string 40 comprises one or more strings 45 which state the names of the command-specific
parameters 52 referenced by hook 20.

Optionally, string 40 includes beginning and/or ending identification strings (42 and
49, respectively) which are used to identify the beginning and/or end of string 40. For example,
string 42 may be RS which stands for 'start' and ending string 49 may be RE which stands for
'end'. Identification strings 42 and 49 are optionally used together with ID strings 48 in
identifying strings 40. It is noted, however, that other identification strings may be used, for
example strings selected as having low chances of appearing by chance, optionally using
longer strings and/or rarer characters. In some embodiments of the invention, the contents of
string 40 or of one or more sub-strings therein are encrypted, to prevent extracting logging
information by hosts which do not have a decryption key.

In some embodiments of the present invention, the unique IDs 58 are of a sufficient
size to allow assigning a unique ID to each hook 20 in software application 20. Alternatively
or additionally, unique IDs 58 are larger than required to encode the largest number of hooks
20 possibly included in software application 12, for example so as to allow for inclusion of
random-number and/or time dependent redundancy in the IDs 58. In an exemplary
embodiment of the invention, ID 58 is 32 bits in length.

Fig. 3 is a flowchart of the acts performed in using a software application 12, in
accordance with an embodiment of the present invention. In step 100, a software application
12 is provided. Optionally, a programmer or a maintenance person of software application 12
inserts (102) hooks 20 throughout software application 12. In some embodiments of the
invention, the programmer selects the ID parameters 58 of the hooks 20. Alternatively, macro
commands 50 generate the hook IDs automatically. Further alternatively, the programmer
inserts the hooks with a wild card mark which is automatically filled in by a pre-preprocessing
program, for example executed on host 18. The]Ds of the hooks may be filled in randomly or
using consecutive numbers. Alternatively or additionally, the ID of a hook 20 is selected at
least partially as a function of the location of the hook within the code of software application
12, the parameters 52 passed by the hook, the function called by the hook (e.g., using a hash

12

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
function) and/or as a function of other information relating to the hook. Optionally,
information encoded within the hook ID is not included in string 40.

After the hooks 20 are inserted into software application 12, the software is compiled
(104). Optionally, software application 12 is compiled with a copy of API library 13, for
example using an "include" command. As is known in the art, the compiling of software
application 12 places the strings 40 included in the code of the application in a static data area
of the compiled application.

In some embodiments of the invention, the compiled application 12 is reviewed (106)
by an import procedure 21 of agent manager 19. Import procedure 21 finds strings 40 within
the compiled application and uses their contents to create a table which correlates between
hook IDs and information related to the hooks. Optionally, for each hook 20, import procedure
21 determines the location of the hook within the code from strings 43 and 44 (Fig. 2). In
addition, import procedure 21 determines the variable to which the hook relates from string 45.
Optionally, import procedure 21 consults the debugging area of the compiled application to
determine the type and/or structure of the variable to which the hook relates. The use of strings
40 simplifies the access to the debugging area of the compiled application and allows
determining the variable type even when the format of the debugging area of a specific
compiler ‘used, is not known. Alternatively or additionally, string 40 is not used and import
procedure 21 extracts the variable type information directly from the debugging area of the
compiled application based on knowledge of the format of the compiled code which is used.
For example, import procedure 21 may identify the function calls to the functions of library 13.

The compiled application 12 is loaded (108) to embedded processor 11, before, after or
in parallel with the operation of import procedure 21.

During the operation of software application 12, functions of API library 13 dump data
into logging buffer area 17. The data dumped into logging area 17 is optionally accompanied
by the hook ID which caused its dump. The dumped data is generally transferred to agent
manager 19. Agent manager 19 receives the data with the hook ID and, using the respective
information in the table prepared by import procedure 21, displays the data, preferably in a
user friendly manner. For example, the information in the table may indicate the data type of
the dumped data.

Alternatively, to using the table from import procedure 21, the functions in library 13
dump the data with all the information required by agent manager 19 for displaying the data.

13

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

In some embodiments of the invention, during the operation of software application 12,
a maintenance person may use agent manager 19 to activate and/or deactivate hooks 20.
Optionally, agent manager 19 includes a user interface, e.g., a graphic user interface (GUI),
which aids the maintenance person in selecting the hooks 20 to be activated. For example, the
interface of agent manager 19 may display the code of software application 12, allowing the
maintenance person to click on hooks which are to be activated. Alternatively or additionally,
the maintenance person may indicate a predefined group of hooks 20 which are to be activated.
Agent manager 19 optionally consults the table generated by import procedure 21 to determine
which hooks belong to the indicated group. Alternatively, agent manager 19 transmits the
name of the predefined group to agent 16. Optionally, one or more hooks may be included in a
plurality of different predefined groups. Alternatively or additionally, one or more hooks are
not included in any group.

Alternatively or additionally to reviewing the compiled application by import
procedure 21, the tasks of import procedure 21 are performed by an initialization function in
library 13 which is run, for example, at start-up of processor 11. Optionally, the function scans
the compiled application and accordingly determines the variable types of the hooks. The
variable types are then transferred to agent manager 19. Alternatively or additionally, at start-
up and/or upon a request from host 18, the compiled code of software application 12
(optionally without library functions 13) is exported to host 18 for review by import procedure
21. In some embodiments of the invention, the debugging information of the compiled
application is loaded into embedded processor 11 so that it is available for use and/or
transmission to host 18.

In some embodiments of the invention, the interface of agent manager 19 allows the
maintenance person to control the display of the dumped data, for example using different
colors and/or sizes for data of different hooks or groups.

It is noted that in the example of Fig. 2, described above, the host ID parameter 58
identifies the specific hook even without the value of the group parameter. Alternatively, the
same ID may be used in different hook groups to identify different hooks. In this alternative,
the parameters of function call 55 optionally include all the identification parameters 53 from
macro command 50. Further alternatively, hook identification fields may include more or

fewer parameters. Further alternatively or additionally, some hooks may use only a group ID.

14

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

In some embodiments of the invention, instead of using strings 40 to convey
information relating to the hooks to agent manager 19, the information is provided to agent
manager 19 by the pre-preprocessing program.

Fig. 4 is a schematic illustration of the contents of logging buffer area 17 in memory
14, in accordance with an embodiment of the present invention. Logging area 17 optionally
comprises, for each software application 12, a respective registry record 22 which states the
locations of the remaining elements of logging area 17 relating to the software application 12.
The data in registry records 22 is used by agent 16 and/or the functions of library 13 to find the
elements of logging area 17 which they need. Optionally, registration records 22 also list for
each software application 12 the process ID, application name, and/or version of the
application. Optionally, this information is transferred to agent manager 19 for use in
identifying from which application logging data is received.

Optionally, logging area 17 includes for each software application 12 an input deposit
buffer 26 which is used to transfer data from agent manager 19 to the logging software
package. Agent 16 stores the data in deposit buffer 26, and user application 12 retrieves the
data as described hereinbelow.

Alternatively or additionally, one or more of the elements of logging area 17, e.g., one
or more of buffers 28, buffer 26 and/or hook lists 32, are common to a plurality (e.g., all) of
software applications 12. In some embodiments of the invention, a common deposit buffer 26
is used for a plurality of applications 12. Optionally, a user may transmit, from agent manager
19 to agent 16, a plurality of variable values for respective different applications, with an
indication that the update must be performed concurrently. When the variable update API
function (e.g., RTassign) is called from the first application 12, the function does not return
control to the application until the function is called by all the other applications and their
variables are updated. Only after all the variables are updated, the control is passed back to all
of the user software applications 12.

In some embodiments of the invention, logging area 17 includes one or more buffers 28
(marked 28A and 28B) in which logging data from software application 12 is dumped by
hooks 20 (Fig. 1) located therein. For each dump buffer 28, logging area 17 includes a
respective hook list 32 (marked 32A and 32B) which states for each hook 20 whether it is
operative with relation to respective buffers 28. Optionally, hook lists 32 list the hook IDs of

the hooks 20 which are active. In some embodiments of the invention, logging buffer area 17

15

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
includes a master hook list 36 which combines the information in hook lists 32. That is, in
these embodiments, each hook 20 is listed in master hook list 36 as active if it is listed as
active in at least one of hook lists 32.

During execution of software application 12, generally each time a hook 20 is reached,
the if condition 54 (Fig. 2) of the hook 20 references (for example as described below) master
hook list 36 to determine whether to perform the function call 55 of the hook (i.e., the hook is
active). If the hook 20 is not listed as active, the software application 12 continues in its
normal flow. If, however, the hook 20 is listed as active in master hook list 36, the function
call 55 of the hook is performed and control is transferred to the respective function in API
library 13. If the called function relates to dumping data, the function optionally refers to lists
32 to determine in which lists the hook 20 calling the function is active, and accordingly
determines to which one or more buffers 28 the dumped data is to be placed.

In some embodiments of the invention, master hook list 36 is implemented using a bit
array in which each hook 20 (identified by a unique ID) corresponds to a specific location in
the bit array.

Referring back to condition 54 in Fig. 2, condition 54 checks the bit array (named
RT BIT _FIELD MASK) to determine whether the bit corresponding to the current hook is
set. In some embodiments of the invention, RT BIT FIELD MASK is an array of bytes in
which a particular bit is referenced using a BYTE index which points to the specific byte
including the desired bit and using a bit mask BIT which chooses the specific bit within the
referenced byte. In compiling macro command 50 into IF command 60, the hook ID 58 of the
specific hook 20 is translated into a pair of values of BIT and BYTE which uniquely
correspond to the value of the ID 58 of the hook. The size of RT_BIT FIELD MASK is
optionally determined according to the maximal possible number of hooks included in a
software application 12, for example, 8K bits. The use of a bitmask allows relatively fast
determination of whether a hook 29 is operative.

In some embodiments of the invention, the mapping function between IDs 58 and
BYTE, BIT pairs comprises a hashing function. In an exemplary embodiment of the invention,
in which master hook list comprises a bit mask array of 1024 bytes, BYTE =

(D >>3) & ((1 << 10) - 1)) and BIT = 1 << ((ID) & 0x7)) where the << operator indicates
left shift and the >> operator indicates right shift. The term & ((1 << 10) - 1) performs a

16

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
modulo operation with the size of the bit array. Alternatively, any other mapping function, for
example a function performing a simple modulo operation, is used. -

In some embodiments of the invention, the activity of hooks 20 which do not use any
of buffers 28 is indicated only in master hook list 36 and not in hook lists 32.

Alternatively to condition 54 referencing master hook list 36, condition 54 and/or one
or more of the functions in library 13 reference each of hook lists 32 to determine if the hook is
active in one of hook lists 32. Optionally, lists 32 are also implemented using bit arrays.
Alternatively, hook lists 32 are implemented as linked lists with pointers from registry record
22 to the head of each list. Further alternatively or additionally, master hook list 36 is
implemented using a linked list of hook IDs.

In some embodiments of the invention, logging area 17 includes, in addition to master
hook list 36 which relates only to each hook on its own, a master group list 38 which relates to |
groups of hooks together. Optionally, in order to activate a group of hooks 20 together, an ID
of the group is added to master group list 38. In these embodiments, condition 54 optionally
comprises a multiple condition which checks both master hook list 36 and master group list
38. Optionally, the function referenced by the hook is called if the hook is active in either
master hook list 36 or in master group list 38. Alternatively, condition 54 first checks the
group list 38 which has three states, namely all active, partially active and inactive. If the group
of the hook is in the "all active" state, the function is immediately called without checking
master hook list 36. If the group of the hook is in the partially active state, the bit
corresponding to the hook is checked in master hook list 36 and accordingly it is determined
whether to call the function in the hook. If the group list 38 is in the inactive state the flow in
software application state continues without further checks.

In some embodiments of the invention, group list 38 is implemented using a pair of
bitmasks, one bitmask being set if the group is always active and the other bitmask being set if
the group is partially active. Optionally, a predetermined group number designates hooks
which are always active. Alternatively or additionally, a second predetermined group number
designates hooks whose group is always partially active, i.e., an omnibus group. In some
embodiments of the invention, the group of each hook is identified by a 32 bit variable.
Optionally, eight of the bits of the variable (e.g., the least significant bits or the most
significant bits (MSB)) are used to designate the group number, i.e., as an index to the

bitmasks. In some embodiments of the invention, one or more of the other bits of the variable

17

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
are used to designate special groups. For example, the MSB may be set when the group is
always all active.

In some embodiments of the invention, a hook may be included in a plurality of groups.
As long as one of the groups is active, the hook is considered active.

In some embodiments of the invention, instead of master hook list 36 indicating the
combination of the activated hooks in all of hook lists 32, the hooks indicated as active in
master hook list 36 are from one or more specific lists 32 which are selected according to one
or more predetermined parameters. Optionally, each list 32 has an associated priority and the
hooks listed in master hook list 36 are from lists 32 having a highest priority. Alternatively or
additionally, the specific lists 32 which affect the contents of master hook list 36 are selected
responsive to one or more storage and/or transmission related parameters, such as whether a
link to host 18 is operative, the size of buffers 28 and/or the empty space in buffers 28.

In an exemplary embodiment of the invention, memory 14 comprises only a single
buffer 28, but includes two lists 32, a host list (which is changed by commands from host 18)
and a code list (which is changed by commands from within software application 12). The
contents of master hook list 36, and hence which hooks are actually active, follows one of lists
32, depending on whether a connection to host 18 is operable. Thus, the control of the activity
of hooks 20 has additional flexibility. In some exemplary embodiments of the invention, when
host 18 is not connected to the embedded device, data is collected according to internal
settings of the code list. When host 18 connects to the embedded device, data is collected
according to a host list with settings from the host.

API Functions

Referring in more detail to the functions in API library 13, in some embodiments of the
invention, the functions include one or more dump functions which pass values of logged
functions from the running application 12 to one or more of buffers 28. In an exemplary
embodiment of the invention, the dump functions comprise an RTdump function which
exports application data structures, an RTevent function which exports an indication that the
hook was reached with or without a time stamp and an RTstr function which exports user-
defined strings. Optionally, each dump function receives a single parameter 52 which is the
variable whose contents the function dumps into the one or more buffers 28. Alternatively or

additionally, one or more of the dump functions may receive a plurality of variables which it is

18

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
to dump. In this alternative, the function specific parameters 52 may include a parameter which
indicates the number of variables whose values are to be dumped.

Alternatively or additionally, a function in library 13 is used to define groups of
variables. Such groups of variables may be used, for example, in a hook call to RTdump.
During the running of software 12 the variables in the group may be changed from within the
application and/or from agent manager 19.

Alternatively or additionally to the IF condition 54 (Fig. 2) of the RTassign macro
determining if to call the respective API function based on whether the hook 20 is active,
condition 54 determines whether their is data waiting for the function in deposit buffer 26.
Optionally, a deposit bitmask contains a bit, which designates whether data has been received,
for each RTassign hook 20 in software application 12. When agent 16 places data in buffer 26
the respective data to the hook (or hooks which may collect the data) is set and when the data
is collected by the RTassign function, the respective bits are reset.

In some embodiments of the invention, when one of the dump functions (e.g.,
RTdump) is called, the function first determines for which buffers 28, the hook 20 which
called the dump function is active. The variables referenced by the function call are dumped
into each of the buffers 28 for which the calling hook 20 is active. The use of a plurality of
buffers 28 allows, for example, gathering of different data sets, simultaneously. For example, a
first maintenance person may require data relating to a first technical aspect (e.g., electric
aspects), while a second maintenance person may require data related to a second technical
aspect (e.g., mechanical aspects). Alternatively or additionally, one or more of buffers 28
(referred to herein as a host buffer) collects data requested by agent manager 19, while one or
more buffers 28 (referred to herein as a code buffer) collect data under the initiative of one or
more hooks 20 within software application 12.

In some embodiments of the invention, API library 13 comprises a fast dump function
which dumps data very fast. The fast dump function may be used, for example, in interrupt
service routines (ISR) and/or in functions which cannot include semaphores. Optionally, a
special buffer 39 (e.g., a FIFO buffer or any other type of buffer) is defined in logging area 17
for dumping data of the fast dump function. Special buffer 39 is optionally very short, for
example between about 2-10 words of 32 bits. Optionally, each software application 12 has a

separate special buffer 39. Alternatively, a single special buffer 39 services all of software

19

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
applications 12. Optionally, the fast dump function may dump only up to a predetermined
amount of data, possibly less than half or a fourth of the capacity of buffer 39.

In some embodiments of the invention, each time a regular dump function is called, it
checks whether data has been recently entered to special buffer 39. If data was recently entered
to special buffer 39, the dump function copies the data into one or more regular buffers 28 and
erases the indication that data was entered to special buffer 39. In some embodiments of the
invention, the data from special buffer 39 is transferred to one or more predetermined buffers
28. Alternatively, the data in special buffer 39 includes the hook ID of the hook which entered
the data and the regular dump function checks this hook ID against hook lists 32 to determine
to which buffers 28 the data should be copied.

Optionally, library functions 13 also include a value assigning function, (e.g.,
RTassign), which checks in deposit buffer 26 whether a value for a specific parameter 52 of
the function was received. A maintenance person may enter, to agent manager 19, a value to be
assigned to a variable of software application 12. Optionally, import procedure 21 generates a
list of variables for which RTassign hooks were implanted in software application 12 and/or a
list of the hooks and their locations. A maintenance person selects from this list and assigns the
variable a value. Optionally, the maintenance person may indicate one or more specific hooks
which are to assign the value to the variable. The value is then transferred to buffer 26,
together with the name of the variable and/or the hook ID of the hook at which the value is to
be assigned. When RTassign is called, it is called with a parameter which indicates the
variable which is to receive the value. The RTassign searches through buffer 26 for the
variable name and/or the hook ID of the hook calling RTassign and if buffer 26 carries a value
for the variable, the value is assigned to the variable. Otherwise, software application 12
continues with normal operation using the current value of the variable.

In some embodiments of the invention, the RTassign function may be used to change a
portion of a complex data structure variable. Optionally, along with the new value of the
variable, agent manager 19 places, in buffer 26, a bitmask which indicates those areas of the
complex variable which arg to be changed. Using a bitmask allows much faster performance
than accessing by name a specific field of a complex variable. Alternatively or additionally,
RTassign accesses a specific field of the complex variable using standard indexing methods.

In some embodiments of the invention, API library 13 includes control functions which

control the operation of one or more of the other functions in library 13. Optionally, API

20

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
library 13 includes a filter setting function (RTsetFilter) which manipulates one or more of
lists 32 and master list 36. In some embodiments of the invention, the RTsetFilter function
changes one or more predetermined filters 32 which affect one or more respective buffers 28
(e.g., the code buffer) and accordingly also changes master list 36. Alternatively or
additionally, the RTsetFilter function receives, as a parameter, which of lists 32 are to be
changed.

In some embodiments of the invention, at start-up of software application 12, an
initialization function is run, which function defines a plurality of predetermined filter lists.
Alternatively or additionally, the predetermined filter lists are defined as constants or regular
variables which may be changed using standard programming methods. RTsetFilter receives as
a parameter a pointer to one of the predetermined filter lists and this list replaces the current
filter list. Alternatively or additionally, the RTsetFilter function, or any other API library
function, is used to add or remove one or more filters from one or more of the filter lists.
Further alternatively or additionally, other functions are included in API library 13, such as
those described hereinbelow.

In some embodiments of the invention, API library 13 includes a callback function
which is used to call a user written function, by a hook 20. Such user functions may include
SNMP traps, buffer uploading to a server or any other user defined function. In some
embodiments of the invention, the callback function receives as a parameter a pointer to the
user function. The callback function allows use of the hook activation system to activate user
functions.

In some embodiments of the invention, API library 13 includes a multiple call macro
which calls a plurality of API functions responsive to a single condition. Thus, when the hook
is not active, it utilizes time for a single condition and not of a plurality of conditions.

Control of logging from agent manager

In some embodiments of the invention, a user of host 18 may enter to agent manager 19
commands which affect the operation of the logging software package on embedded processor
11. Optionally, as described above, agent manager 19 includes a user interface which allows
the user to select which hooks are to be active. In some embodiments of the invention, agent
manager 19 defines a plurality of predefined sets of hooks from which the user selects a
specific set which defines which hooks are currently active. Alternatively or additionally, the

user may point at a specific hook and activate or deactivate that hook. Optionally, responsive

21

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
to the user changes of active hooks, agent manager 19 transmits to agent 16 a new list of hooks
for one or more of hook lists 32. Alternatively, agent manager 19 transmits to agent 16
commands on how to change one or more of hook lists 32. According to the changes in the one
or more hook lists 32, agent 16 automatically updates master hook list 36. Alteratively, agent
manager 19 transmits to agent 16 commands on how to change master hook list 36 together
with the commands on changing the one or more hook lists 32.

In some embodiments of the invention, activation commands, e.g., user commands
from agent manager 19 and/or RTsetFilter commands, may select when the active hook
changes are to go into effect. Optionally, the activation commands include a parameter ("start
collection™) which indicates when the changes in hook activation take effect. Optionally, the
start collection parameter may indicate that the changes should immediately go into effect, that
the changes should go into effect after a predetermined time, that the changes should go into
effect at a certain time and/or that the changes should go into effect responsive to a software
trigger within software application 12. Optionally, API library 13 includes a specific command
which serves as a sofiware trigger for activation completion of pre-activated hooks.
Alternatively or additionally, substantially any hook in software application 12 may serve as a
software trigger.

In some embodiments of the invention, the user may select when the active hook
changes are to become ineffective. Optionally, the activation commands include a parameter
("end collection™) which indicates when the effect of the changes is to end. Optionally, the end
collection parameter may indicate that the changes should continue to be in effect until a
contradicting command is received from agent manager 19, that the changes should terminate
after a predetermined time, that the changes should terminate at a certain time and/or that the
changes should terminate responsive to a software trigger within software application 12.
Alternatively or additionally, the end collection parameter may receive a "Buffer Full" value
which indicates that the changes should be in effect until the data they collect fills the buffer.
Further alternatively or additionally, the end collection parameter may receive a data amount
value which indicates that the effect of the changes should be terminated when a given amount
of data is collected and/or after a hook is passed a predetermined number of times.

In some embodiments of the invention, one or more of the functions in API library 13
perform one or more of their tasks conditionally, based on one or more conirol states. Thus, an

additional control level is provided, in addition to the control levels included in activating

22

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
hooks 20 which call the functions. For example, a data logging function (e.g., RTdump) may
collect data only if the condition is fulfilled or may place the data in different locations
responsive to different control states.

In some embodiments of the invention, some or all of the hook activation commands
(e.g., RTsetFilter commands and/or commands from agent 19), identify the conditions which
start and/or stop one or more of the tasks of the function referenced by the hook. Optionally,
the conditions for starting and/or stopping the one or more tasks may depend on any of the
values described above for the "start collection and/or "end collection" parameters. In some
embodiments of the invention, the performance of the one or more tasks depends on whether
one or more other hooks 20 were encountered. Optionally, API library 13 includes RTstart and
RTstop functions which start and end, respectively, the operation of the one or more tasks.
Optionally, the RTstart and/or RTstop commands effect all the activated hooks which have
conditional operation. Alternatively or additionally, each RTstart and/or RTstop command
states the IDs of the hooks to which it pertains. Further alternatively or additionally, for each
hook, the activation command states the IDs of hooks which start and/or stop the operation of
the one or more tasks. Optionally, the start operations must occur after the hook is activated.
Alternatively, the start operation may take effect before the hook is activated, such that
immediately when the hook is activated the tasks are operative.

In some embodiments of the invention, the operation condition of the one or more tasks
controls one or more parameters of the function. For example, upon activation of a hook the
data it logs is stored in a first buffer while after one or more conditions are fulfilled the data is
directed to a second buffer.

In some embodiments of the invention, hooks which call control API functions (e.g.,
RTstop, RTsetFilter) are formed of macros which open into unconditional function calls.
Alternatively or additionally, at least some of the hooks which call control API functions are
formed of macros which open into conditional function calls. Optionally, some of the control
API functions are always called unconditionally and others are always called conditionally. In
some embodiments of the invention, one or more of the API functions (control or other) may
be called by two different macros, one which opens into a conditional call and another which
opens into an unconditional call. Alternatively or additionally, a single macro may open into a

conditional or unconditional function call according to a parameter it receives.

23

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

In some embodiments of the invention, API library 13 includes one or more fast control
functions for use in ISRs or in other time critical routines. Optionally, special buffer 39
includes one or more control flags which are set by the fast control functions when a change in
the activation of one or more hooks is requested. When regular API functions (optionally only
some of the functions) are called, they optionally check the flags in special buffer 39 to
determine whether a change in the activation of the hooks was requested by a fast control
function. If a change was requested, the regular API function performs the change before it
performs its own task.

In some embodiments of the invention, API library 13 includes one or more buffer
control commands which allow control of the buffer from within software application 12.
Optionally, similar commands are available to a user of agent manager 19. In some
embodiments of the invention, a RTclearBuffer function clears the contents of a specific buffer
28. Optionally, a RTgetBufferSize function retrieves the size of one or more of buffers 26
and/or 28 and/or a RTgetBufferSpace function returns the remaining room in the buffer and/or
the utilized room in the buffer. The results of a call to the RTgetBufferSize and/or the
RTgetBufferSpace functions may be used in determining the hooks which should be active
and/or to set one or more parameters or modes of agent 16 as described hereinbelow.

In some embodiments of the invention, API library 13 comprises an RTgetBufferData
function which allows software application 12, generally hooks therein, to review the contents
of the buffer. Optionally the contents of the requested buffer are copied to a different area in
memory 14 and the function returns a pointer to the data. Alternatively or additionally, the
function returns a pointer to the buffer and data collection in the buffer is stopped until a
release function is used. Alternatively, data continues to be written to the buffer while it is read
by software application 12.

Referring in more detail to agent 16 (Fig. 1), in some embodiments of the invention,
agent 16 comprises a pair of tasks for communicating with host 18. One task receives data and
commands from host 18 and the other task sends data to host 18. Generally, agent 16 packs the
data from buffer 28 into packets and sends the packets to host 18. In addition, agent 16
receives packets from host 18 performs the commands they include and/or places the data they
include into buffer 26 (Fig. 4). Agent 16 optionally also manages the communication between
host 18 and user application 12. Alternatively or additionally, the communication between the

non-logging regular operation tasks of user application 12 and host 18 are handled separately.

24

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

The communication between agent 16 and host 18 may be over any type of link known
in the art, such as a serial connection via RS-232 communication, a TCP/IP (Transmission
Control Protocol/Internet Protocol) connection over a LAN (local area network) or WAN
(wide area network) interface, a cellular WAP connection and/or a satellite connection.

Optionally, agent 16 runs on the embedded processor 11 as a low priority task, so that
it does not interfere with the running of software applications 12. Alternatively, the data
transmitting task runs at a low priority while the data receiving task runs at a higher priority, to
allow fast performance of user commands from agent manager 19. Alternatively or
additionally, when one or more of buffers 28 (Fig. 4) is nearly full, the priority of agent 16 is
automatically raised in order to increase the rate of export of data from the buffers. For
example, the dump functions may operate in a mode in which dump data is cyclically written
into buffers 28 regardless of whether they are empty or full. When the buffer is nearly full and
there is a danger that data will be lost, the priority of agent 16 is increased. Alternatively or
additionally, the dump functions operate in a state which does not write data to the buffers 28
when they are full. Further alternatively or additionally, the dump functions write data to
buffers 28 even when they are full, but agent 16 keeps track of the amount of data which is lost
due to overwriting and this amount of data is brought to the attention of the user.

In some embodiments of the invention, library 13 includes an RTtaskSetPriority
function which sets the priority level of the tasks of agent 16. Thus, hooks implanted within
software application 12 may change the priority of one or more of the tasks of data transfer
agent 16. Alternatively or additionally, a user of agent manager 19 may change the priority of
one or more tasks of data transfer agent 16. |

In some embodiments of the invention, agent 16 operates in a continuous transfer mode
in which agent 16 continuously passes the data from buffers 28 to host 18. That is, each time
agent 16 wakes up it checks if there is data in one of buffers 28 and passes the data to host 18.
Optionally, data transferred by agent 16 is erased from the buffer 28, for example by moving
the beginning pointer of the buffer. Alternatively or additionally, agent 16 operates in a real-
time mode in which data is sent by agent 16 to host 18 at specific time intervals or when the
buffer is filled above a predefined level or is completely full.

Alternatively or additionally, agent 16 operates in a snapshot mode in which data is
transferred by agent 16 to host 18 only after the collection of a chunk of data is completed. For

example, data is collected between the operation of an RTstart and an RTstop command and

25

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
the RTstop command, in addition to deactivating one or more hooks, initiates the transfer of
the collected data to host 18. In an exemplary embodiment of the invention, data is collected
until a stop command is received from agent manager 19 and then the data is transferred to
host 18. Such a stop command may be activated, for example, by clicking on a stop button in a
display of agent manager 19. -

Further alternatively or additionally, agent 16 operates in an internal storage mode in
which the data from one or more buffers 28 is copied to an internal storage area, optionally in a
non-volatile memory, included in embedded device 10. If a system crash occurs, the logging
data can be retrieved from the internal storage area. Optionally, when agent 16 is restarted after
a system crash of processor 11, the agent checks for data in the internal storage area and if such
data is found it is transmitted to host 18. Alternatively to copying the data to the internal
storage area by agent 16, in the internal storage mode the data is directly written into the
internal storage area by API functions 13.

In some embodiments of the invention, the user of agent manager 19 can set the mode
in which agent 16 operates. Alternatively or additionally, API library 13 includes one or more
functions which set the operation mode of agent 16.

In some embodiments of the invention, agent 16 transfers the data from one or more
buffers 28 simultaneously to a plurality of locations. For example, the data may be stored
internally, transmitted to a local host 18 and transmitted over a satellite link to a remote central
control station. Alternatively or additionally, agent 16 may operate in different transmission
modes with respect to different buffers 28 and the data of different buffers 28 may be
transmitted to different locations.

In some embodiments of the invention, one or more of the lists 32 and/or 36 of active
hooks is changed responsive to a change in the data transfer mode of agent 16 and/or
responsive to the operability of a link to host 18. In an exemplary embodiment of the
invention, a separate set of lists 32 and 36 is prepared for cases in which the connection
between host 18 and agent 16 is inoperable. These special hook links may collect, for example,
only very important data. Alternatively, they may collect much more data. The collected data
may remain in buffers 28 until the connection to host 18 is reestablished or may be stored in an
internal non-volatile memory (e.g., a hard disk, CD, EPROM, etc.).

In some embodiments of the invention, API library 13 includes one or more start-up

functions. In an exemplary embodiment of the invention, the start-up functions include an

26

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
RTinitModule function which creates a registry record 22 for a software application.
Optionally, each software application 12 calls the RTinitModule function when it starts up.

In some embodiments of the invention, the start-up functions include a RTinitAgent
function which performs start-up tasks which are performed once for all software applications
12 running on embedded processor 11. Such start up tasks may include for example loading
and initializing data transfer agent 16 and allocating memory for logging area 17. Optionally, a
predetermined amount of memory is allocated for each of the elements of logging area 17.
Alternatively, the call to the RTinitAgent function may include user selected values for the
various elements of logging area 17. Alternatively or additionally, some or all of the memory
allocation is performed separately for each software application 12, optionally, by the
RTinitModule function.

In some embodiments of the invention, buffers 28 are implemented as cyclic FIFO
(first in, first out) queues. Alternatively or additionally, one or more of buffers 28 are
implemented using other types of data structures, such as linked lists. In some embodiments of
the invention, the boundaries between the buffers 28 of different software applications 12 may
be changed dynamically according to the amount of logging data produced by each of the
applications and/or the importance of the logged data.

Alternatively, to using a single function RTinitAgent to perform all the start-up tasks
which are common to all the software application 12, the tasks are distributed among a
plurality of functions which are called at different stages of the startup of embedded processor
11. In an exemplary embodiment of the invention, a first start-up function (RTinitCollection)
initializes logging area 17 and allows logging of data. A second start-up function
(RTinitCommunication) initializes the communication between embedded processor 11 and
host 18. Thus, logging data may be collected before a communication link is established
between embedded processor 11 and host 18 or any external communication link is
established. This is especially useful when it is required to debug start-up procedures running
on embedded processor 11.

Reference is now made to Fig. 5, which is a schematic block-diagram illustration of
exemplary code appearing in a software application 12 and data flows relating thereto, in
accordance with an embodiment of the present invention. Logging area 17 comprises two hook
lists, a host list 32A and a code list 32B. In addition, logging area 17 comprises two respective
buffers, a host buffer 28A and a code buffer 28B.

27

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

The example of Fig. 5 begins with host filter 32A including the hook IDs 1, 3 and 5.
Code filter 32 begins empty. At some point before the beginning of the example, a value for a
variable Z is received from agent manager 19 by transfer agent 16. Agent 16 placed the value
in deposit buffer 26. When hook 1 RTassign(Z, G, 1) is reached, the RTassign function is
called since hook 1 is active in host list 32A. The RTassign function retrieves the value of Z
from buffer 26 and places the value in variable Z of software application 12. If a value for Z
was not received from agent manager 19, user application 12 continues its execution with the
current value of Z.

When hook 2, RTdump(Z, G, 2), is reached, ID 2 is not active in any of filters 32 and
therefore the RTdump function is not called. When hook 3, RTdump(X, G, 3), is reached,
hook 3 is active in host list 32A and therefore the RTdump function is called. The RTdump
function determines that hook 3 is active only in host list 32A and therefore the value of X is
dumped only into host buffer 28A. hook 4 is an RTsetFilter command which in the example of
Fig. 5 is called unconditionally. In the example, RTsetFilter changes code list 32B by adding
hooks 5 and 6 to the active list. Thus, when hook 5 (RTdump(Y, G, 5)) is reached, hook 5 is
active in both of lists 32A and 32B and therefore the RTdump function puts the value of Y into
both of buffers 28A and 28B. When hook 6 (RTdump(W, G, 6)) is encountered, the dump
function is called and puts the value of W into buffer 28B, as hook 6 is active only in list 32B.

At some point, depending on the data transfer mode of agent 16, agent 16 transmits the
data in buffers 28 to host 18.

An exemplary code fragment showing a possible use of RTstart and RTstop follows.

If (CPUUsagePercent > 80)

RTstart(0)
try{
} catch(){
RTstop(1)
}

If CPU usage is above 80 percent, a possible sign of system instability, data collection
is started. On entering a program-error handling routine, such as a catch, the data collection is

stopped.

28

10

15

WO 01/59971 PCT/IL01/00142

It will be appreciated that the above described methods may be varied in many ways,
including, changing the order of steps and/or performing some steps in parallel. For example, a
compiled software application 12 may be loaded concurrently to host 18 and to embedded
processor 11. It should also be appreciated that the above described description of methods and
apparatus are to be interpreted as including apparatus for carrying out the methods and
methods of using the apparatus. It should be understood that features and/or steps described
with respect to one embodiment may be used with other embodiments and that not all
embodiments of the invention have all of the features and/or steps shown in a particular figure
or described with respect to one of the embodiments. Variations of embodiments described
will occur to persons of the art.

It is noted that some of the above described embodiments may describe a best mode
contemplated by the inventors and therefore may include structure, acts or details of structures
and acts that may not be essential to the invention and which are described as examples.
Structure and acts described herein are replaceable by equivalents which perform the same
function, even if the structure or acts are different, as known in the art. Therefore, the scope of
the invention is limited only by the elements and limitations as used in the claims. When used
in the following claims, the terms "comprise", “include", "have" and their conjugates mean

"including but not limited to".

29

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

CLAIMS

1. A generic software logging package for using with a user software application,
comprising: ‘

at least one function which stores logging data into at least one logging buffer; and

at least one macro command which expands into a conditional call to the at least one
function, the conditional call including a call statement which transfers to the called function at

least one redundant parameter.

2. A software logging package according to claim 1, comprising a data transfer agent

which transfers data from the at least one logging buffer to a remote host.

3. A software logging package according to claim 1, wherein the at least one redundant
parameter comprises a string parameter which provides information relating to the macro

command in an ASCII format.

4. A software logging package according to claim 1, wherein the at least one redundant
parameter comprises a parameter which identifies the location of the macro command in the

user software application.

5. A software logging package according to claim 1, wherein the at least one redundant
parameter comprises a parameter which identifies a variable whose value is to be logged by the

at least one function.

6. A software logging package according to any of the preceding claims, wherein the at
least one redundant parameter comprises a parameter which identifies the existence of the
!

macro command in the user software application.
7. A method of preparing a user software application for debugging, comprising:

annexing to the user software application at least one function which stores logging

data into at least one logging buffer;

30

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
inserting at least one hook, which includes a call statement to the at least one function,
to the user software application;
compiling the user software application; and
determining one or more parameters of the at least one hook from the compiled user

software application.

8. A method according to claim 7, wherein determining the one or more parameters
comprises determining by a software which does not have knowledge of the format of the

results of the compiling of the user software application.

9. A method according to claim 7, wherein determining the one or more parameters
comprises determining a type of a variable whose value is logged by the at least one annexed

function.

10. A method according to claim 7, wherein inserting the at least one hook comprises

inserting a macro.

11. A method according to claim 7, wherein inserting the at least one hook comprises
inserting a hook that includes a string which includes information on the hook in ASCII

format.

12. A method according to any of claims 7-11, wherein the at least one hook comprises a
conditional call to the at least one function, wherein the conditional call comprises at least two

sub-conditions which depend on respective separate parameters.

13. A method according to claim 12, wherein the at least one function is called by the at

least one hook if one of the sub-conditions is fulfilled.

14. A method according to claim 12, wherein the at least one function is called by the at
least one hook only if both the sub-conditions are fulfilled.

15. A method of preparing a user software application for debugging, comprising:

31

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
annexing to the user software application at least one function which performs a
debugging task; and
inserting at least one hook, which includes a conditional call statement to the at least
one function, to the user software application, wherein the conditional call comprises at least

two sub-conditions which depend on respective different parameters.

16. A method according to claim 15, wherein the at least one function is called by the at

least one hook if one of the sub-conditions is fulfilled.

17. A method according to claim 15, wherein the at least one function is called by the at

least one hook only if both the sub-conditions are fulfilled.

18. A method according to any of claims 15-17, wherein the at least one hook has a unique

ID and wherein the at least one of the sub-conditions comprises a condition on the unique ID.

19. A method according to any of claims 15-17, wherein the at least one hook belongs to a
group of hooks having a unique group ID and wherein at least one of the sub-conditions

comprises a condition on the group ID.

20. A method of preparing a user software application for debugging, comprising:

annexing to the user software application at least one function which performs a
debugging task;

inserting, into the user software application, at least one hook, which includes a
conditional call statement to the at least one function; and

providing a plurality of different functions which actuate the conditional call to call the
at least one debugging function.

21. A method according to claim 20, wherein providing the plurality of different functions
comprises providing a first function which is called from within the user software application
and a second function which is called from a host in communication with apparatus running

the user software application.

32

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

22. A method of preparing a user software application for debugging, comprising:

annexing to the user software application at least one debugging function which
performs a debugging task;

inserting, into the user software application, at least one debugging hook that includes a
conditional call to the at least one debugging function;

annexing to the user software application at least one actuation function which changes
a value of at least one condition parameter on which the condition of the at least one
debugging hook depends; and

inserting, into the user software application, at least one actuation hook which calls the

actuation function.

23. A method according to claim 22, wherein the at least one actuation hook conditionally

calls the actuation function.

24. A method according to claim 22, wherein the at least one actuation hook

unconditionally calls the actuation function.

25. A method according to claim 22, wherein the at least one actuation function receives a
condition which controls the time at which the value of the at least one condition parameter is

changed.

26. A method according to claim 22, wherein the at least one debugging function
comprises one or more debugging tasks which are performed only in some of the times in

which the debugging function is called.

27. A method according to claim 26, wherein the at least one actuation function receives a

condition which controls the operation periods of the one or more debugging tasks.
28. A method according to claim 25 or 27, wherein the received condition comprises a

condition which depends on whether the user software application encountered one or more

hooks inserted into the user software application.

33

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
29. A method according to claim 28, wherein the received condition comprises a condition
which depends on whether the user software application encountered the one or more specific

hooks after the debugging hook was activated.

30. A method according to claim 25 or 27, wherein the debugging function comprises a

logging function.

31. A method according to claim 30, wherein the received condition comprises a condition
which depends on the contents of one or more buffers in which the logging function writes

data.

32. A method according to claim 31, wherein the received condition comprises a condition

which depends on whether the one or more buffers are full.

33. A method according to claim 25 or 27, wherein the received condition comprises a
condition which depends on an activation state of a link between a processor running the user

software application and a remote host.

34. A method according to claim 25 or 27, comprising changing the value of the condition

parameter by an external user.

35. A method according to claim 34, wherein the debugging function operates differently
depending on whether the change of the value of the condition parameter was caused by the

external user or by the actuation function.

36. A method according to claim 35, wherein the different operation comprises the identity

of one or more buffers to which the debugging function writes logging data.
37. A method of preparing a user software application for debugging, comprising:

annexing, to the user software application, a first logging function which is adapted to

store logging data in a first buffer; and

34

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
annexing, to the user software application, a second logging function adapted to

transfer any data in the first buffer to a second buffer and then store logging data in the second
buffer.

38. A method according to claim 37, wherein access to the first buffer is not protected by a

software synchronization mechanism.

39. A method according to claim 37 or 38, wherein the size of the first buffer is not greater

than 40 bytes.

40. A method of preparing a user software application for debugging, comprising:

annexing to the user software application at least one debugging function which
performs a debugging task;

inserting, into the user software application, at least one debugging hook that includes a
conditional call, which depends on a debugging condition variable, to the at least one
debugging function;

annexing to the user software application at least one callback function which calls a
user defined function;

inserting, into the user software application, at least one callback hook that includes a
conditional call, which depends on a callback condition variable, to the at least one debugging
function; and

providing at least one routine adapted to change both the callback condition variable

and the debugging condition variable.

41. A method according to claim 40, wherein the at least one routine changes the

debugging condition variable and the callback condition variable substantially concurrently.

42. A method according to claim 40, wherein the at least one routine changes at a specific

routine call, one of the debugging condition variable and the callback condition variable.

35

10

15

20

25

30

WO 01/59971 PCT/IL01/00142
43. A method according to claim 40, wherein the at least one routine changes the
debugging condition variable and the callback condition variable responsive to commands

from a remote host.

44, A method according to any of claims 40-43, wherein the at least one routine changes
the debugging condition variable and the callback condition variable responsive to commands

annexed to the user software application.

45. A method of changing the value of a portion of a complex variable in a process running
on an embedded device, from a remote host, comprising:
providing a new value to which the portion of the complex variable is to be changed,;
encapsulating the new value in a data structure of the size of the complex variable;
generating a mask which identifies the areas in the data structure which include the
new value;
transmitting the data structure and the generated mask to the embedded device; and
changing the value of the portion of the complex variable responsive to the data

structure and the mask.

46. A method according to claim 45, wherein changing the value of the portion of the
complex variable comprises performing an AND operation between the mask and the complex

variable.

47. A method of changing, substantially simultaneously, the value of a plurality of
variables of a plurality of different processes executed by a processor, comprising:
providing respective values to be assigned to the plurality of variables, to the processor;
calling a value assignment function from a first one of the processes;
stalling the first process until all the other processes call the assignment function;
assigning the transmitted values to their respective variables; and

terminating the stalling of the first process.

48. A method according to claim 47, wherein assigning the value of the variable in the first

process is performed before the first process is stalled.

36

10

15

20

25

30

WO 01/59971 PCT/IL01/00142

49. A method according to claim 47, wherein assigning the value of the variable in the first

process is performed after the stalling of the first process is terminated.

50. A method according to claim 47-49, wherein providing respective values to the

processor comprises transmitting the values to the processor from a remote host.

51. A method of logging data of a software application on an embedded device,
comprising:

calling a logging function from one or more first hooks in the software application;

storing, by the logging function, logging data in a first buffer responsive to the call
from the one or more first hooks; h

calling the same logging function from one or more second hooks in the software
application; and

storing logging data, by the same logging function, in a second buffer responsive to the

call from the one or more second hooks.
i

52. A method according to claim 51, wherein the first and second hooks are activated by

different respective software routines.
53. A method according to claim 51, wherein the first hooks are activated responsive to a
command annexed to the software application and the second hooks are activated responsive

to commands from a remote host.

54. A method according to claim 51, comprising providing at least some of the data from

the first and second buffers to a user, using different respective methods.

55. A method according to claim 54, wherein the different methods used to provide data

from the respective buffers to the user differ in the link used to provide the data.

37

10

15

WO 01/59971 PCT/IL01/00142
56. A method according to claim 55, wherein the data from the first buffer is stored in a
non-volatile memory and the data from the second buffer is provided over a communication

link to a remote host.

57. A method according to any of claims 51-56, comprising calling a logging function from
one or more third hooks in the software application and storing, by the logging function,
logging data in one or more additional buffers responsive to the call from the one or more third

hooks.

58. A method of logging data of a software application on an embedded device,
comprising:

calling a logging function from a hook in the software application; and

storing, by the logging function, identical copies of logging data in a plurality of

buffers responsive to the call from the hook.

59. A method according to claim 58, wherein storing the data comprises storing in a

plurality of buffers located in a single memory unit.

38

PCT/IL01/00142

WO 01/59971

—‘N/X

1/5

_ | INFov
ENTIVERTONE] | it S SN | UIISNVAL [~
1 1OdN “ - VIva 91
HIOVNYW |
IN39V |
P _ .
ot N P L
1SOH _ | ¢l
| Y — | NOLLYOTddY
g1 [| ¥3ddng FMLI0S [
| ONIDIOT[~——
| | uvean 1y
L] ANOWaIN .//w_
| °
| p1— :
| NOISSY 1Y ——0¢
_ .
.] °
1Old | 351y ——0¢
| °
/7 h 0z
O ﬁ _ \ mommmoomﬂ_ ﬂ_—ZDﬁ_o ._|N._ N g
| a30a38n3 .

PCT/IL01/00142

WO 01/59971

0
N

¢ Vld

X M

r

6v. 8% Lv 9¥ G¥ V¥ 194 79 ¢9 8%

1))

R e I —

(,634601E LEdNOYDEXLTTINAOWEYITNNNTINMEAILSYE,(X) 4073ZIS “(X)® ‘Al) dANC WIWLS

0¢

09
W ((ug) % [FLAg] YSYW @134~ a1y) 4l

A 7
~—

ONISSI00Nd 7S

mm/
\l al %o.mo X) dWNNQ™LY
0S ¢g

ZS

WO 01/59971

PCT/IL01/00142

100

N

PROVIDE SOFTWARE
APPLICATION

102

]

INSERT HOOKS
INTO SOFTWARE
APPLICATION

\

104

o

COMPILE SOFTWARE
APPLICATION

N

REVIEW COMPILED LOAD COMPILED
APPLICATION BY APPLICATION TO
IMPORT PROCEDURE EMBEDDED PROCESSOR

FI1G.3

WO 01/59971 PCT/IL01/00142

22
/22 °
REGISTRY | [SPECIAL BUFFER _|}~——39
— = MASTER GROUP_LIST |38
— = MASTER HOOK LIST |~ ~-36
° HOOK LIST __32A
o _— HOOK LIST 328
o— =| DEPOSIT BUFFER |~ 26
° >~ DUMP BUFFER [~——28A
o = DUMP BUFFER | ___28B
22

FiG.4

PCT/IL01/00142

WO 01/59971

GOld

(9°9'M) dWNa™ LY

-]

(‘G'9°A) dNNA™LY

(9°G*¥3L473000) ¥AL4~ 1S 1Y

o

9l

| M
L X
NEEEMEREN
a8z
7
4344ng 1150d3a
. 9z
WA
- X
AX—— |] X
34408 ISOH
z g
S
azs NEIRERENR
g
¢
vZe]
- 1S_ISOH

V8¢

(£9°%) dWNA™ 1Y

o
o

(¢'9'Z) dNna— LY

(-]

(1'9Z) NOISSY L

°
(]

(9
(g
(¥

(¢

(C

(1

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

