OPIC

OFFICE DE LA PROPRIETE

INTELLECTUELLE DU CANADA

CIPO

CANADIAN INTELLECTUAL
ProrERTY OFFICE

(12) (19) (CA) Demande-Application

(72) PRIYADARSHAN, Eswar, US
(72) ANDERSON, Kenneth S., US
(72) AL-SHAMMA, Nabeel A, US
(712) TAFT, Edward A, US

(72) MCQUARRIE, Elizabeth M., US
(72) COHN, Richard J., US

(72) ROWE, Edward R., US

(71) ADOBE SYSTEMS INCORPORATED, US

(2D (A 2,233,023
86) 1996/09/25
87) 1997/04/03

(s1y Int.C1.° GOGF 9/445, GOGF 17/21, GOGF 15/16, GOGF 13/14

(30) 1995/09/25 (08/533,177) US
(30) 1995/09/26 (08/533,875) US
(30) 1995/12/07 (08/569,000) US

54y ACCES OPTIMUM A DES DOCUMENTS ELECTRONIQUES
54y OPTIMUM ACCESS TO ELECTRONIC DOCUMENTS

| — i
1 b .
| 14 | -
11x: g ! 22
1
| 16 :
: § 20|
1 M E !
| mam | (12 ~ N 4
| M | :
: o] P !
' g | micro- | |H \
' > " E ¢
: . PROCESSOR Flo o b
| { 8 A ! 0
! v o
» S 1
;| foM > 331 B ¢:—>6~28
' u :
| KBC [~32 |5 !
| _ B
! | 30
ittt Ittt ' COMPUTER
DEVICE

(57) L invention concerne un procéd¢ et un appareil pour
réaliser un fichier de document électronique optimis¢ a
base de pages (figure 2a) et pour télécharger le fichier
optimisé. Un fichier de document optimisé est généré a
partir d’un document électronique non optimisé (74). Le
contenu des pages est ¢crit de maniére contigué dans le

I*I Industrie Canada Industry Canada

31

(57) A method and apparatus for providing an optimized
page-based electronic document file (figure 2a) and
downloading the optimized file. An optimized document
file is created from a non-optimized electronic document
(74). Page contents are contiguously written in the
optimized file and page offset information (68, fig. 8a)

OFFICE DE LA PROPRIETE
INTELLECTUELLE DU CANADA A

OPIC CIPO

ProrERTY OFFICE

fichier optimis¢ et des informations de décalage des
pages (68, fig. 8a) sont utilisées pour localiser les pages
et les objets individuels du document. Lors du
téléchargement du fichier optimisé depuis un héte, les
informations de décalage des pages sont lues t6t et elle
sont utilisées pour télécharger une page particulicre
demandée par l'utilisateur sans télécharger d’autres
pages du document. Un utilisateur peut télécharger (226)
une premicre partie de la page demandée, pendant que
les parties restantes de la page demandée sont localisées
par un procédé de recherche utilisant le tableau (68, fig.
8a) de décalage des pages. Egalement, tous les objets
pour une page compléte peuvent étre demandés a la fois.
La page demandée peut ainsi étre téléchargée avec
uniquement une connexion vers 1’hdte. Des objets
partagés peuvent éventuellement étre téléchargés entre
des parties de contenus (284) de pages référengant les
objets partagés. Ils peuvent également étre lus dans une
transaction identifiant les plages d’octets dans le
document. La page demandée est affichée chez
I'utilisateur sur un dispositif de visualisation de sortie.

I*I Industrie Canada Industry Canada

CANADIAN INTELLECTUAL

(2D (A 2,233,023
86) 1996/09/25
87) 1997/04/03

used to locate individual pages and objects of the
document. When downloading the optimized file from a
host, the page offset information is read early and is used
to download a specific page requested by the user
without donwloading other pages in the document. A
viewer may download (226) a first portion of the
requested page, while all remaining portions of the
requested page are located by a finder process using the
page offset table (68, fig. 8a). Alternatively, all objects
for a full page may be requested at once. The requested
page can thus be downloaded with only one connection
to the host. Optionally, shared objects can be
downloaded and interleaved between portions of the
page contents (284) that reference the shared objects.
They can also be read in one transaction identifying byte
ranges in the document. Subsequently, the requested
page is displayed to the user on an output display device.

CA 02233023 1998-03-24

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 97/12328
6F 15/16, 17/21, 13/14 Al

Go i ? (43) International Publication Date: 3 April 1997 (03.04.97)

(21) International Application Number: PCT/US96/15725 | (81) Designated States: CA, JP, European patent (AT, BE, CH, DE,

DK, ES, FI, FR, GB, GR, [E, IT, LU, MC, NL, PT, SE).
(22) International Filing Date: 25 September 1996 (25.09.96)

Published
(30) Priority Data: With international search report.
08/533,177 25 September 1995 (25.09.95) US Before the expiration of the time limit for amending the
08/533,875 26 September 1995 (26.09.95) US claims and to be republished in the event of the receipt of
08/569,000 7 December 1995 (07.12.95) us amendments.

(71) Applicant: ADOBE SYSTEMS INCORPORATED [US/US];
345 Park Avenue, San Jose, CA 95110 (US).

(72) Inventors: ROWE, Edward, R.; 701 West 32nd Street #14,
Los Angeles, CA 90007 (US). PRIYADARSHAN, Eswar;
1054 Heatherston Avenue, Sunnyvale, CA 94087 (US).
ANDERSON, Kenneth, S.; 4133 Amaranta, Palo Alto, CA
94306 (US). AL-SHAMMA, Nabelle, A.; 1525 Gretel
Lane, Mountain View, CA 94040 (US). TAFT, Edward,
A.; 1147 Sladky Avenue, Mountain View, CA 94040 (US).
MCQUARRIE, Elizabeth, M.; 15882 Ravine Road, Los
Gatos, CA 95030 (US). COHN, Richard, J.; 575 North
California Avenue, Palo Alto, CA 94301 (US).

(74) Agent: TROESCH, Hans, R.; Fish & Richardson P.C,, Suite
100, 2200 Sand Hill Road, Menlo Park, CA 94025 (US).

(54) Title: OPTIMUM ACCESS TO ELECTRONIC DOCUMENTS

Bu—-—um aneaar pust o€ vt robbe. T

48~ o hw s puge threng At Seveels,____ 46
A
L4 oy e
| CJ prmtoriirpide 4

L= P

wamplons Yot of wpian.

(57) Abstract

A method and apparatus for providing an optimized page-based electronic document file (figure 2a) and downloading the optimized
file. An optimized document file is created from a non-optimized electronic document (74). Page contents are contiguously written in the
optimized file and page offset information (68, fig. 8a) used to locate individual pages and objects of the document. When downloading the
optimized file from a host, the page offset information is read early and is used to download a specific page requested by the user without
donwloading other pages in the document. A viewer may download (226) a first portion of the requested page, while all remaining portions
of the requested page are located by a finder process using the page offset table (68, fig. 8a). Alternatively, all objects for a full page may
be requested at once. The requested page can thus be downloaded with only one connection to the host. Optionally, shared objects can be
downloaded and interleaved between portions of the page contents (284) that reference the shared objects. They can also be read in one
transaction identifying byte ranges in the document. Subsequently, the requested page is displayed to the user on an output display device.

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

O o] 8
BACKGROUND OF THE INVENTION

The present invention relates generally to the
storage and retrieval of data for a computer system, and
more particularly to a method and apparatus for
optimizing page-based data documents for fast retrieval
over networks, and to a method and apparatus for
accessing such optimized documents. The present
invention also relates to methods and apparatus for the
processing and display of electronic documents, and more
particularly to the processing and display of such
documents when retrieved over networks.

It has become increasingly common to create,
transmit, and display documents in electronic form.
Electronic documents have a number of advantages over
paper documents including their ease of transmission,
their compact storage, and their ability to be edited
and/or electronically manipulated. An electronic
document typically has information content (such as text,
graphics, and pictures) and formatting information that
directs how the content is to be displayed. With recent
advances in multimedia technology, documents can now also
include sound, full motion video, and other multimedia
content.

An electronic document is provided by an author,
distributor or publisher (referred to as "publisher"
herein) who often desires that the document be viewed
with the appearance with which it was created. This,
however, creates a problem in that electronic documents
are typically wiﬁely distributed and, therefore, can be
viewed on a great variety of hardware and software
platforms. For example, the video monitors being used to
view the document can vary in size, resolution, etc.
Furthermore, the various software platforms such as DOS,

Microsoft WindowsT™, and Macintosh™ all have their own

CA 02233023 1998-03-24

WO 97/12328 PCT/USS96/15725

10

15

20

25

30

35

-2 -

display idiosyncrasies. Also, each user or "“reader" of
the electronic document will have his or her own personal
viewing preferences, which should be accommodated, if
possible.

A solution to this problem is to provide a
%portable electronic document" that can be viewed and
manipulated on a variety of different platforms and can
be presented in a predetermined format where the
appearance of the document as viewed by a reader is as it
was intended by the publisher. One such predetermined
format is the Portable Document Format™ (PDF™) developed
by Adobe Systems, Inc. of Mountain View, California. An
example of page-based software for creating, reading, and
displaying PDF documents is the Acrobat™
of Adobe Systems, Inc. The Adobe Acrobat software is
based on Adobe’' s PostScript® technology, which describes

software, also

formatted pages of a document in a device-independent
fashion. An Acrobat program on one platform can create,
display, edit, print, annotate, etc. a PDF document
produced by another Acrobat program running on a
different platform, regardless of the type of computer
platform used. A document in a certain format or
language can be translated into a PDF document using
Acrobat. A PDF document can be quickly displayed on any
computer platform having the appearance intended by the
publisher, allowing the publisher to control the final
appearance of the document.

One relatively new application for portable
electronic documents is the retrieval of such documents
from the "Internet", the globally-accessible network of
computers that collectively provides a large amount and
variety of information for users. From services of the
Internet such as the World Wide Web, users may retrieve
or "download" data from Internet network sites and
display the data that includes information presented as

-~

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

-3 -

text in various fonts, graphics, images, and the like
having an appearance intended by the publisher. A file
format such as PDF that allows any platform to view a
document having an appearance as intended by a publisher
is thus of great value when downloading files from such
widely-accessible and platform—-independent network
sources such as the Internet.

One problem with previous page-based data
downloading processes is that all of the data of a
document is typically downloaded before any portion of
the document is displayed to the user. Thus, the user
must wait for an entire document to download before
seeing a page or other portion of the document on the
display screen. This can be inconvenient when the user
wishes to use only a portion of the document, i.e., view
only specific pages or a specific number of contiguous
pages of a document. Some searching processes allow a
word to be searched in a document and will download only
the portion of the document that includes the searched
word. However, this portion of the document is an
isolated, separate portion that has no connection with
the rest of the document. If the user wishes to view the
next page after the downloaded portion, he or she must
inconveniently either download the entire document or
specify a search term on the next page of the document.

Acrobat and similar programs for displaying
portable electronic documents such as PDF documents are
often page-based, which means that the program typically
organizes and displays a desired page of the document at
a time. Typically, the entire document was downloaded at
once, then desired pages displayed. However, Acrobat is
conducive to downloading a page of a document at a time
from a document file, while still allowing a user to
select other pages of the document conveniently.

However, for such page-based formats, the document data

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

-4 -

usually is not stored contiguously in a page order within
a file, data structure, or other collection of document
data ("document file" as referred to herein). For
example, a document file in the PDF format may store a
page having objects such as a page contents object
(including text, graphics shapes, display instructions,
etc.) and image objects. However, the objects may be
stored in the document in a scattered or disjointed
manner. For example, portions of the page contents
object can be scattered in different places in a document
file, and shared objects such as fonts can be stored
anywhere in the file. Shared objects such as fonts can
also be stored in files distinct from the document file,
and even on a separate computer, or be made available
through a resource service such as a font server. Since
the output display device displays the page contents and
-shared objects based upon pointers to related objects,
objects do not have to be stored segquentially or
contiguously in the document file, and are typically
stored in a disjointed manner.

This disjointed data storage for pages can lead to
problems when attempting to download a specific page of a
document desired by the user. One major problem is time
delays caused by making multiple connections (or multiple
request-response transactions) when downloading data.

For example, a viewing program for displaying page-based
data at a client computer begins downloading a PDF (or
similar format) file from a remote host computer. The
viewing program makes one connection to (or initiates one
transaction with) the host and downloads data from the
first portion of the page, then must make another
connection to (or transactions with) the host to retrieve
the next, disjointed portion of the page. This has the
effect of slowing down the downloading of the page, since
each connection (and each transaction) has a time delay

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

-5 -

and overhead associated with it. The user regquesting the
page thus may'have to wait several seconds before the
viewer receives all of the data for the page and displays
the page. This problem is compounded when fonts or other
such referenced objects are included on the page, since
yet another connection must be made to (or transaction
made with) the host to retrieve these objects before the
page can be displayed.

_ The time delays for downloading a page can become
even lengthier when a randomly-accessed page is desired
to be viewed by the user. 1In PDF files, objects are
provided in a "page tree" which the viewer consults to
determine where in the document file the root of a
randomly-accessed page is positioned. The page tree is a
data structure in which every node must be visited in
order to determine all the children objects in the tree.
SThus, many page nodes may need to be visited to determine
where a page root object is located in the document file.
The page tree can thus be quite large, and downloading it
from the document slows the downloading process. In
addition, the page tree is often so large or disjointed
that multiple connections to (or transactions with) the
host are required to download it.

Therefore, there is a need for a method and
apparatus for providing optimized page—-based documents
and downloading desired pages from such documents without
causing an excessive delay before displaying a page, or
portions of a page, to the user.

SUMMARY OF THE INVENTION
The present invention provides a method and
apparatus for optimizing a page-based electronic document
and downloading and displaying desired pages, oOr portions
of a page, from the optimized document without excessive
time delays.

¢

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

- 6 -

A method of the present invention provides aﬁ
optimized document file from a non-optimized electronic
document having one or more pages. Page content
information that describes individual pages of the
document is written in the optimized document file. The
page content information may be written contiguously.
Page offset information used to locate individual pages
of the document may also be provided in the optimized
document file. Objects shared by multiple pages are also
provided for in the optimized document file, contiguously
located after all of the page content information, and
the page offset information includes offsets (locations)
to these shared objects. The page content information
includes text and graphics, and the shared objects can
include font objects and image objects. To provide the
page contents and shared objects contiguously in the
file, an internal list of non-shared objects and shared
objects in the document file is created. A list of pages
that share objects is also created that includes the
shared objects used by each sharing page and, for each
such shared object, a portion of the page contents in
which the shared object is referenced. 1In addition, in
one aspect, first page offset information may be provided
in a range table for a first page of the optimized
document file. Such first page offset information
describes the locations of all portions of the first page
in the document file. The offsets to page content for
this page may be interleaved in the range table with
offsets to shared objects referenced by the page content
for‘the first page.

. Another method of the present invention
efficiently downloads a page-based optimized document
created as described above. The page offset information
is read early during the downloading process. Beginning
and ending offsets of each page of the document can be

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

-7 -

derived from the page offset information. Using the page
offset information, a specific page requested by the user
is downloaded, and any page desired by the user can
readily be downloaded without the necessity of
doﬁnloading other pages in the document. 1In one aspect
of the method, the page offset information may be read
before the downloading of more than one page of the
dodument has been completed. In one aspect, the document
file has a pointer that points to the location of the
page offset information, which pointer is read ahead of,
or during, the reading of the first page of the document.

In another aspect, when a user requests a specific
page of an optimized document, the specific page is
downloaded to a client computer system in only one
connection with a host that stores the optimized document
file. In another aspect, the specific page is downloaded
-in only one transaction with the host. The requested
page, while being downloaded, may be displayed to the
user on an output diéplay device, such as a display
screen, monitor, or printer. The downloading can be
accomplished by a viewer program on the client computer
system. When connecting and downloading, the viewer may
download a first portidn of the requested page, while all
remaining portions of the requested page are located and
requested‘by a finder process on the client computer
using the page offset table. These additional portions
are downloaded during the client computer’s one
connection with the host, thus saving time and overhead
by avoiding multiple transactions or connections. The
additional portions of the specific page may include
shared objects referenced by page contents of the
specific page. Shared objects are downloaded in an
interleaved order between portions of the page contents
that reference the shared objects. In another aspect,
the requested page is downloaded to a client computer

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

- 8 -

system in only one transaction with a host that stores
the optimized document file, the transaction being
constructed by a process using a page offset hint table
and any other hint tables available in the document.

If shared objects are downloaded in an interleaved
order, the interleaving process includes downloading a
first portion of page content from the regquested page,
where the first portion of page content includes a
reference to a shared object. The first portion may
include all contiguous page content of the document until
the (approximate) point of reference to the shared
object. Then, the shared object referenced by the first
portion of the page is downloaded. The shared object is,
for example, a font or similar referenced object that is
needed to display the first portion of page content. a
second portion of page content from the requested page is
then downloaded, where the second portion is contiguous
with the first portion of page content. The locations of
the first and second portions‘of prage content and the
shared objects in the page-based document are derived
using the page offset table. Alternatively, a surrogate,
such as a substitute font, is used to display the first
portion of page content, thereby allowing the process to
defer the downloading of the referenced object and
thereby to download and to display more quickly the
second portion of page content.

Another method of the present invention provides
for the displaying on a display device of a computer an
eléctronic document, such as a portable electronic
document, having text to be displayed on top of a large
object, such as a bitmap image. In general, in one
aspect, the method includes displaying the display of the
large object in favor of displaying the overlying text,
displaying the overlying text on the display device, and
at least as to that portion of the large object that

CA 02233023 1998-03-24

WO 97/12328

5 display device.

10

15

20

25

30

35

-

-9

PCT/US96/15725

appears underneath the overlying text, drawing the
underneath portion into an off-screen buffer, drawing the
overlying text over the object in the off-screen buffer
and copying the off-screen buffer to be displayed on the

In another aspect, the acts of

displaying an object and of displaying text include

rendering a bitmap of at least one bit per pixel into a

display buffer of random access memory. In another

aspect, the display buffer and the off-screen buffer have

the same pixel depths and color definitions. In another

aspect, the invention provides for creating a blocking

mask corresponding to the displayed appearance of the
text and then displaying the portion of the object that

is specified to appear as if drawn underneath the text
under control of the blocking mask so that displaying the

object does not overwrite the displayed text.

Another method of the present invention is

implemented in a viewing program to display to a user an

electronic document, such as a portable electronic

document, that contains an interactive element responsive

to user input. In one aspect,

the method includes

changing the appearance of the cursor of the viewing

program’ s graphical user interface to indicate when it is

located in a position where the interactive element will

be displayed, and making the interactive element

responsive to input from the user without waiting for the

interactive element to be displayed. In another aspect,

the interactive element is a hypertext link. In another

aspect, the interactive element is an annotation in a PDF

format electronic document.

Another method of the present invention provides

for displaying on a computer display device an electronic

document, such as a portable electronic document, that

has text in a desired font, without waiting for the

desired font to be available.

In one aspect, the method

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

includes initially drawing on the display device at least
a part of the text in a substitute font different from
the desired font, obtaining the desired font for use on
the computer with the display device, and redrawing with
the desired font the area of display in which the
substitute font had been used initially. In another
aspect, the method includes reading font description
metrics for the desired font and using them to create a
substitute font. In another aspect, the method also
includes adopting a font from available font resources as
the substitute font. In another aspect, the desired font
is a font included as an embedded font in the document.
In another aspect, the desired font is obtained from a
font server.

An apparatus of the present invention provides for
efficiently downloading a page-based document stored on a
‘host, as described above. The apparatus includes a
digital processor, a memory device, and a display screen.
Furthermore, a mechanism for displaying the page-based
document on the display screen is included which connects
with the host to download the page offset information
and/or to download a specific page of the document
requested by the user without downloading other pages in
the document. A downloaded page can be displayed on the
display screen. A finder uses the page offset
information to provide a location of the specific page in
the document to the displaying mechanism so that the
specific page can be downloaded. The finder can request
additional portions of the specific page during one
connection, and can interleave the downloading of
portions of page contents and shared objects. In another
aspect, the finder can request all portions of the
specific page during one transaction, the transaction
being constructed by a process using a page offset hint
table and any other hint tables available in the

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

document.

In general, in one aspect, the invention provides
a method for reading a user-requested page of an
electronic document that contains page content elements
and a set of hint tables, where one of the set of the
hint tables (a page offset hint table) provides page
offset information for pages of the document. The method
includes reading the page offset hint table early during
reading of the document, and using the page offset hint
table to locate the contents of the user-requested page.
In this way, the user-requested page can readily be read
without the necessity of reading other pages in the
document. In another aspect, the page offset information
is read before the reading of more than one page of the
document has been completed, and the beginning and ending
offsets of each page of the document can be derived from
the page offset information. In another aspect, the page
offset information is read before the reading of a second
page of thée document is begun. In another aspect, the
set of hint tables includes a shared object hint table
that is read before the reading of a second page of the
document is begun. In another aspect, the set of hint
tables includes a bookmark hint table that is read before
the reading of a second page of the document is begun.
In another aspect, the set of hint tables includes an
article thread hint table that is read before the reading
of a second page of the document is begun. In another
aspect,ithe set of hint tables includes a thumbnail hint
table that is read before the reading of a second page of
the document is begun. In another aspect, the document
is read from a host computer by a viewer program running
on a user computer and the invention includes displaying
the specific page requested by the user on a display
device éoupled to the user computer. In another aspect,
each category of objects associated with the document as

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

a whole has a corresponding hint table. In another
aspect, the user-requested page is downloaded in one
transaction with the host computer. In another aspect,
the entire document is requested in an initial
transaction with the host computer, and the reading of
the document from the host computer is not interrupted
until the user requests a specific page of the document.
In another aspect, shared objects are cached after they
are read. '

In general, in one aspect, the invention provides
a method for providing an optimized electronic document
having two or more pages. The method includes providing
document information in the optimized electronic document
including page content information specifying the
appearance of each page of the document, providing the
page content information specifying any aspect of the
appearance of a designated first page of the document at
the beginning of the optimized electronic document
without regard to the nature or amount of the page
content information for the designated first page, and
providing a page offset hint table in the optimized
electronic document having information sufficient to
locate respective page content information for each of
substantially all the pages of the document. In another
aspect, the method includes providing page content
information including text, at least one graphic, at
least one image, and at least one font. In another
aspect, the method includes providing a set of hint
tables at the beginning of the optimized electronic
document; In another aspect, the method includes
providing a set of hint tables in the optimized
electronic document before page content information other
than the page content information specifying any aspect
of the appearance of the designated first page of the
document.

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

In general, in one aspect, the invention provides
a method for reading an electronic document containing a
set of objects, each object'belonging to one of a set of
classes, the document also containing a hint table for
each class in the set of classes, each hint table
containing information identifying the locations of
objects in the corresponding class. The method includes
reading the hint tables early dufing the reading process,
using a hint table to identify the locations in the
document of objects of the corresponding class, and using
the identified locations to create a transaction to read
all or a specified subset of the objects of the
corresponding class. In this way, any aspect of the
document related to a class of information desired by the
user can be read without the necessity of reading objects
relating to other aspects of the document. 'In another
aspect, the set of classes includes a class for page
objects. In another aspect, the set of classes includes
a class for thumbnail objects. In another aspect, the
set of classes includes a class for article objects. 1In
another aspect, the set of classes includes a class for
bookmark objects. In another aspect, the set of classes
includes a class defined by an application plug-in having
a corresponding hint table.

An advantage of the present invention is that
downloading can be limited to only specific, desired
pages of a document located on a remote host, resulting
in a faster display time for those pages since the entire
document need not be downloaded. In addition, a
page~based electronic document file is optimized to
include contiguously-stored page contents and a page
offset table. The speed of downloading individual pages
from the optimized file is increased by determining page
locations in the optimized file from the page offset
table. All page contents and shared objects for a page

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

can be downloaded at one connection to the host, thus
avoiding the time delays of multiple connections.

Another advantage of this invention is that
portions of page contents can be downloaded in an
interleaved order with shared objects such as fonts
needed to display those portions of page contents. This
allows a downloaded portion of the page to be displayed
more quickly without having to wait for referenced shared
objects to be downloaded.

Another advantage of this invention is that
undesirable delays in the displaying of text are reduced
and that useful aspects of a desired page are more
quickly made available to the user.

These and other advantages of the present
invention will become apparent to those skilled in the
art upon a reading of the following specification of the
invention and a study of the several figures of the

drawing.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated
in, and constitute a part of, the specification,
schematically illustrate specific embodiments of the
invention and, together with the general description
given above and the detailed description of the
embodiments given below, serve to explain the principles
of the invention.

Figure 1 is a block diagram of a computer systenm
for providing an optimized document and/or downloading
data from an optimized file in accordance with the
present invention.

Figure 2a is a diagrammatic illustration of a
display screen of a viewer displaying a page from a
portable electronic document and a bookmark view.

Figure 2b is a diagrammatic illustration of the

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

display screen of the viewer displaying a page from a
portable electronic document and a *"thumbnails" window.

Figure 3a is a diagrammatic illustration of an
example of a non-optimized document file.

Figure 3b is a diagrammatic illustration of an
optimized document file of the present invention.

Figure 4 is a flow diagram illustrating the
process of the present invention for creating an
optimized document file from an electronic document.

Figure 5 is a flow diagram illustrating a step of
Figure 4 in which an internal list of objects and lists
of shared objects are created.

Figure 5a is a diagrammatic illustration of a
shared object list created in the process of Figure 5.

Figure 6 is a flow diagram illustrating a step of
Figure 5 in which shared objects are processed.

- Figure 6a is a ‘diagrammatic illustration of a
sharing pages list created in the process of Figure 6.

Figure 7 is a flow diagram illustrating a step of
Figure 5 in which the sharing pages list in completed and
shared objects are incorporated into the internal list.

Figure 8 is a flow diagram illustrating a step of
Figure 4 in which a page offset table of the present
invention is placed in the optimized file.

Figure 8a is a diagrammatic illustration of a page
offset table created in the process of Figure 8.

Figure 9 is a flow diagram illustrating a step of
Figure 4 in which a range table is written into the
optimized file.

Figure 9a is a diagrammatic illustration of the
range table created in the process of Figure 9.

Figure 10 is a flow diagram iliustrating a process
of the present invention for .downloading pages from an
optimized document file. '

10

15

20

25

30

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

Figure 11 is a flow diagram illustrating a step of
Figure 10 in which a finder retrieves the page offset
table from the document and determines page information.

Figure 1lla is a diagrammatic illustration of page
information tables developed in the process of Figure 11.

Figure 12 is a flow diagram illustrating a step of
Figure 10 in which the finder requests any additional
ranges of page data for a requested page during a
viewer’s connection with a host.

Figure 13a is a flow diagram illustrating an
optional process of the present invention in a step of
Figure 10 in which text is progressively rendered using
different fonts.

Figure 13b is a flow diagram illustrating an
optional process of the present invention in a step of
Figure 10 in which an active element of a document is
enabled early.

Figure 13c is a flow diagram illustrating an
optional process of the present invention in a step of
Figure 10 in which text is displayed before an underlying
object is displayed.

Figure 14 is a block diagram illustrating a
linearized document file of the present invention.

Figure 15a is a diagrammatical illustration of a
page offset hint table.

Figure 15b is a diagrammatical illustration of a
shared object hint table.

Figure 15c¢c is a diagrammatical illustration of a
thumbnail hint table.

Figure 15d is a diagrammatical illustration of a

generic object hint table.

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

- 17 -

DETAILED DESCRIPTION

The present invention is well-suited for
downloading pages of data of a portable electronic
document from a host computer, and for their optimum,
incremental display. More particularly, a portable
electronic document in Portable Document Format (PDF) and
like formats can be optimized by the present invention.
The present invention is suitable for organizing and
downloading page-based files such that the time for
downloading and displayihg pages of the file is
minimized. '

In Figure 1, a computer system 10 for downloading
a portable electronic document can include a digital
computer 11, a display screen 22, a printer 24, a floppy
disk drive 26, a hard disk drive 28, a network interface
30, and a keyboard 34. Other types of peripherals can
also be included, such as a CD-~-ROM drive, input tablet or
other interface devices, etc. Digital computer 11
typically includes a microprocessor 12, a memory bus 14,
random access memory (RAM)-16, read only memory (ROM) 18,
a peripheral bus 20, and a keyboard controller 32.
Digital computer 11 can be a personal computer (such as
an IBM-PC AT-compatible or Macintosh personal computer),
a workstation (such as a SUN or Hewlett-Packard
workstation), etc.

Microprocessor 12 is a general purpose digital
processor which controls the operation of computer system
10. Microprocessor 12 can be .a single—-chip processor or
can be implemented with multiple components. Using
instructions retrieved from memory, microprocessor 12
controls the reception and manipulation of input data and
the output and display of data on output devices. In the
described embodiment, a function of microprocessor 12 is
to read and process data from pages of an electronic
document.

10

15

20

25

30

35

¢

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 18 -

Memory bus 14 is used by microprocessor 12 to
access RAM 16 and ROM 18. RAM 16 is used by
microprocessor 12 as a general storage area and as
scratch-pad memory, and can also be used to store
downloaded data that is being displayed (or not being
displayed). ROM 18 can be used to store instructions
followed by microprocessor 12 and other permanent data.

Peripheral bus 20 is used to access the input,
ocoutput, and storage devices used by digital computer 11.
In the described embodiment, these devices include
display screen 22, printer device 24, floppy disk drive
26, hard disk drive 28, and network interface 30.
Keyboard controller 32 is used to receive input from
keyboard 34 and send decoded symbols for each pressed key
to microprocessor 12 over bus 33.

Display screen 22 is an output device that
displays images of data provided by microprocessor 12 via
peripheral bus 20 or provided by other components in the
computer system. In the described embodiment, display
screen 22 is a raster device which displays images on a
screen corresponding to bits of a bitmap in rows and
columns of pixel, as is well known to those skilled in
the art. That is, a bitmap can be input to the display
screen 22 and the bits of the bitmap can be displayed as
pixels. An input bitmap can be directly displayed on the
display screen, or components of computer system 10 can
first render codes or other image descriptions from a
pPage description file into bitmaps and send those bitmaps
to be displayed on display screen 24, as is also well
known. Raster display screens such as CRT'’s, LCD
displays, etc. are suitable for the present invention.

Printer device 24 provides an image of a bitmap on
a sheet of paper or a similar surface. Printer 24 can be
a laser printer, which, like display screen 22, is a
raster device that displays pixels derived from bitmaps.

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

Printer device 24 can print images derived from data such
as found in a portable electronic document. Other output
devices can be used as printer device 24, such as a
plotter, typesetter, etc. Computer system 10 can display
images on a display output device, such as display screen
22 or printer 24, using data from memory, a storage
device, or from another source or host over a network
connected by network interface 30.

Floppy disk drive 26 and hard disk drive 28 can be
used to store data such as a document that has been
downloaded or created in the optimized format of the
present invention. Floppy disk drive 26 facilitates
transporting such data to.other computer systems, and
hard disk drive 28 permits fast access to large amounts
of stored data. Other mass storage units such as
nonvolatile memory (e.g., flash memory), PC-data cards,
or the like, can also be used to store data used by
computer system 10. Herein, a "computer (or machine)
readable storage medium" can refer to both memory such as
RAM 16 and ROM 18 as well as disk drives 26 and 28 or any
other type of device for storing data.

Network interface 30 is used to send and receive
data over a network connected to one or more other
computer systems, such as computer device 31. An
interface card, modem, or similar device and appropriate
software implemented by microprocessor 12 can be used to
connect computer system 10 to an existing network and
transfer data according to standard protocols. In the
present invention, network interface 30 can be used to
retrieve or "download" portable electronic documents from
a host computer system over a network, or send ("upload")
the documents to a host or client computer system. The
network can be implemented using a variety of hardware
and software, as is well known to those skilled in the
art.

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

Keyboard 34 is used by a user to inpu; commands
and other instructions to computer system 10. Images
displayed on display screen 22 or accessible to computer
system 10 can be edited, searched, or otherwise
manipulated by the user by inputting instructions on
keyboard 34. Other types of user input devices can also
be used in conjunction with the present invention. For
example, pointing devices such as a computer mouse, a
track ball, a stylus, and/or a tablet can be used to
manipulate a pointer, such as a cursor, on a screen of a
general-purpose computer.

Computer system 10 can also be used as a host or
source computer for creating and/or providing the
optimized documents of the present invention to "client"
(receiving) computer systemé that download the documents.
Alternatively, the host computer can be a file server or
other type of mass storage apparatus.

Figure 2a is a diagrammatic illustration of a
display screen 22 showing displayed visual
representations from a portable electronic document. The
present invention is primarily directed to creating and
downloading pages of portable electronic documents. 2a
"portable electronic document" is a collection of data
which includes objects which have been stored in a
portable electronic document language. The document is
organized and stored in a "document file", which can be a
storage unit such as a file, data strﬁcture, or the like.
Portable electronic documents can be stored in a variety
of different languages and formats. Herein, the portable
electronic document is described with reference to the
Portable Document Format (PDF) by Adobe Systems, Inc. of
Mountain View, California, or similar types of formats.
PDF is a "page-based"™ format, in that a document includes
a number of pages and is typically presented to a user on
a page-by-page basis, i.e., the user typically views one

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

page (or a portion of a page) at a time on a display
screen. Other page-based document formats with similar
document structures can also be adapted for use with the
present invention.

Portable electronic document languages, such as
PDF, typically store data as objects. An "object", as
used herein, is a logical software unit comprising data
and processes which give it capabilities and attributes.
For example, an object can be gueried as to its type and
can return such data as the number of words that it
contains, its location in coordinates (e.g., location of
the object’s bounding box (BBOX)), etc. Objects can
contain or refer to other objects of the same or of a
different type. Objects can also be used to project
images on a screen according to their object type. There
are many well-known texts which describe object oriented
prograﬁming. Examples of object types used in typical
PDF files include page objects, page contents objects
(including text characters, words, etc. and/or graphical
objects such as polygon shapes, commands, etc.), image
objects (e.g., bitmaps), font objects, and user-specific
objects. Some objects can include direct references to
other objects, and/or information used to display the
object. In a PDF document, for example, a page object
can reference a page contents object that includes
commands and text characters, where the text characters
are provided as character codes representing the identity
of the text characters. The page contents object can
include the location to display the text, such as
coordinates used to display a bounding box around the
text, and other information, such as the size and
orientations of the characters. The page contents object
can also refer to "shared objects", such as fonts
(described below). Portable electronic documents, as
defined herein, differ from normal ASCII text files,

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

since ASCII text documents or files include only ASCII
codes of characters and no other display information.
Herein, objects may be "on" the page described by a page
object, which is equivalent to an object being "referred
to" by the page object.

In Figure 2a, display screen 22 shows a displayed
page representation 40 derived from data received from a
portable electronic document. Page representation 40 is
displayed on the screen in a view window 39 by a viewer
program from objects stored in the portable electronic
document, and are typically derived from rendered bitmaps
as is well known to those skilled in the art. A viewer
application program ("viewer") running on computer system
10 can typically display an entire page, or a portion of
a page, of a portable electfonic document. The data for
the page is requested by the viewer and received from a
storage device or other computer. The data for page 40
may be downloaded from a host computer and displayed.
The viewer may also offer features such as menu headings
41, selection buttons 43, and a table of contents or
"bookmark" view 45. These features allow a user to
manipulate the received data and view the page data
according to user preferences. For example, menu
headings allow a user to view, copy, load, save, search,
or similarly manipulate the downloaded page. Selection
buttons 43 similarly allow a user to view or manipulate
the document in different ways by zooming, selecting the
next page of the portable electronic document, etc.
Bookmark 45 allows a user to select and display a
particular portion of the document that the user (or a
different user) has specifically marked and labeled with
text (or, alternatively, graphics). For example,
different chapter headings can be displayed as labels in
bookmark 45 so that when the user selects a chapter, the
first page of that chapter is displayed in view window

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 23 -

39. A suitable viewer application program for use with
the present invention is Acrobat™ Reader or Acrobat™
Exchange, available from Adobe Systems, which can read,
write, or manipulate page data stored in PDF format from
a document file and display the data in a page-based
format. Other viewers and file formats can be used in
other embodiments.

Page representation 40 can include several
different types of visual representations, including text
42, graphics 44, images, and links 46. Text 42 is
derived from character codes and font objects stored in
the document file. Text 42 can be rendered into a bitmap
for display on screen 22, as is well known to those
skilled in the art. Graphics 44 can also be rendered
from coded shape primitives, such as lines and
rectangles, and displayed. Images (not shown) are
typically bitmap images, such as a scanned or digitized
picture, and can be displayed on screen 22 by methods
well known to those skilled in the art. Links 46 portray
a topic or idea that can be accessed by the user and, for
example, can enclose special text, graphics, or images to
distinguish them from normal objects. Links 46 may be
selected by the user to display a different portion of
the portable electrohic document that is related to the
topic or idea portrayed by the link. Also, links 46 can
be linked to other electronic documents that include the
topic represented by the link to provide access to those
other documents. For example, on many existing network
services, links to many different documents available on
the network are included in electronic documents. Page
representation 40 can also be displayed on a sheet of
paper output by printer 24. The computer determines the
font, size, color, or other appropriate information for
each object to be displayed by examining the associated
font objects, color maps, size, and other information in

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

the PDF document.

Figure 2b shows a diagrammatic illustration of a
display screen similar to the screen shown in Figure 2a.
In Figure 2b, the bookmark view 45 has been replaced, due
to a preference of the user, by a Ythumbnails" window 48.
Thumbnails window 48 displays page icons 50 (or
“thumbnails"), each of which represents a separate page
in the viewed portable electronic document. Icons 50
allow random access to any of the pages of the document,
i.e., a user may select an icon 50 to display the
corresponding page 40 in view window 39. The
currently-displayed page may have a highlighted label,
such as icon 51.

Figure 3a is a diagrammatic illustration of a
non—-optimized document file 54. In the described
embodiment, a document file having data stored in the PDF
language is referenced as the main example. In other
embodiments, the document file can have a different
page-based format. A portable electronic document is
typically stored as a non-optimized document file 54 as
shown in Figure 3a when written to a file or memory using
normal processes of the prior art. A non-optimized
document file includes page contents data 56 that is
usually stored in a disjointed manner within the file 54.
The page contents data includes data for text 42 and
graphics 44 for a single page. In addition, the page
contents data also includes other related data not shared
by other pages, such as referenced (unshared) fonts,
images, procsets, etc. For example, a particular page P
has text/graphics page contents 56a placed at the
beginning of the file 54, unshared image page contents
56b placed at a later position in the file discontinuous
from contents 56a, a resource dictionary contents 56c
discontinuous from contents 56b, and unshared font object
contents 56d placed near. the end of the file. All of

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

these contents need to be read by the viewer to display
the entire page P. Other pages of the document have page
contents data 56 stored in file 54 in a similarly
disjointed manner.

In addition, document file 54 may include a cross
reference table 58, which provides a table of each object
in the document file 54 indexed to the location (offset)
in the file where the object is located. The Portable
Document Format Reference Manual, Adobe Systems
Incorpofated, Addison-Wesley Publishing Company, New
York, 1993, describes the cross reference table, pages
tree, and other features of the PDF file format, and is
hereby incorporated by reference herein. The cross
reference table 58 can be placed anywhere in the file,
e.g., at the end of the file; or, parts of the cross
reference table can be located in different portions of
the file. Finally; the non-optimized document file 54
typically includes shared objects 60 and special objects
61 (deécribed below), which are typically located
throughout file 54 in a disjointed manner. Shared
cbjects may be referenced by multiple page contents
objects in the file, and can include font objects, color
maps (or "color spaces"), and other objects which are
necessarily referenced to influence the appearance of an
object when displayed. Shared objects may also include
any objects appearing on multiple pages and user-defined
shared objects. The "shared objects" referred to herein
may not be actually be shared in a particular instance;
these objécts, however, can be potentially shared. For
example, a font might only be used by one page and may
not be shared by other pages in a particular document,
but it can potentially be shared by other pages. As is
well known in the art, a PDF file typically relates
objects in a "page tree" structure, where an object may
refer to a child or descendant object. For example, a

10

i5

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 26 -

page object may refer to page contents 56 (child)
objects, while the page contents objects further refer to
(child) shared objects 60.

In a process of displaying a page of document file
54, the document file 54 may be located on a separate
host computer. When a user requests that the viewer
shown in Figures 2a and 2b display a particular page P of
the document file on display screen 22, the viewer first
establishes a connection to the host computer to access
the desired document file. If the page contents are
organized as shown in Figure 3a, the viewer first
downloads a designated amount of page contents 56a.

After several possible connections to download contents
56a, another connection must typically be made by the
viewer to access contents 56b, and so on. In addition,
if a page P’s contents reference an object such as a
font, that font may have to be downloaded before the page
contents which require that font can be displayed. This
all contributes to a long delay for the user before any
portion of a page is displayed by the viewer.

Figure 3b is a diagrammatic illustration of an
optimized document file 62 of the present invention. The
data is file 62 has been organized to minimize the amount
of time to download a page from a host computer and
display the page by the viewer as shown in Figures 2a and
2b. Document file 62 includes a range table 66 stored at
the beginning of the file, and a first page portion 64 of
the cross reference table also stored near the beginning
of the file. The page contents 56 are grouped and stored
contiguously, so that a contiguous amount of the first
page’s contents 56 is stored, followed by a contiguous
amount of page 2’s contents 56, and so on until the end
of page N’s contiguous contents 56, where N is the last
pPage number in the document. All shared objects 60 may
be stored after the page contents data. Special objects

10

15

20

25

30

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 27 -

61 that are not required for displaying a page may be
stored after shared objects 60. In the described
embodiment, special objects include page icon (thumbnail)
objects, bookmark objects, page tree objects, and. the
like. The cross reference table 58 hay be stored after
the special objects, and a page offset table 68 of the
present invention may be stored at the end of the file.
The page offset table provides the locations of pages in
the document file 62 and shared object information to the
viewer, as described subsequently. In alternate
embodiments, the page offset table can be stored in other
areas of the file. One such alternative embodiment is
illustrated in, and discussed in reference to, Figure 14.
The function of the organization of data as shown in
Figure 3b is described subsequently. An application
program such as the viewer shown in Figures 2a and 2b may
include an option to save a viewed document (or a
document on a specified storage device) as an optimized
document file as shown in Figure 3b. If it does, the
user could select whether to save a document in optimized
or non-optimized format.

In alternate embodiments, the document data can be
written in different locations of optimized document file
62. For example, the range table 66, cross reference
table 58 or 64, or page offset table 64 can be placed at
particular locations in the file 62, and the viewer can
read those specific locations when particular data needs
to be downloaded.

CR G _AN OPTIM D DOCUMENT FIL
Figure 4 is a flow diagram illustrating a process
70 of the present invention for creating an optimized
document file 62 of the present invention from a
non-optimized document. The "non-optimized document

file" can be stored as a file on a storage device, or can
r

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

be partially or wholly stored in memory (such as RAM 16)
of a computer system 10, such as during a viewing process
as shown in Figures 2a and 2b. The non-optimized
document, in the described embodiment, is in "normal" PDF
format. The process 70 can be initiated by a user who
wishes to save the non-optimized document as an optimized
document file of the present invention. For example, a
non-optimized document can be loaded into the RAM of a
computer system and then saved to hard disk or other
computer-readable storage medium as optimized document
file 62. For example, PDFWriter or Acrobat Distiller
from Adobe Systems are used to write PDF files from
application programs, and can be used to implement the
process 70. The saved optimized file 62 can, for
example, be made available on a host computer or server
("host" or "host computer") to client computer systems
that may request the document for downloading. The
process of the present invention for downloading
optimized document file 62 is described in greater detail
with respect to Figure 10.

The process begins at 72. In step 74, an internal
list of objects and lists of shared objects are created
from the non-optimized document file. These lists help
the process to organize the objects of the document for
grouping the objects in the more optimized configuration
of the present invention. The lists of shared objects
are used to place shared objects in the document after
the page contents objects. Step 74 is described in
greater detail with respect to Figure 5. In next step
76, the document information, including page content
information 56, shared objects 60, and special objects 61
are written to the optimized document file according to
the internal list organized in step 74. The process
essentially retrieves each successive object name or "ID"
in the internal list and writes the object to the

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 29 -

optimized file in the same order. This has the effect of
organizing the page contents 56, shared objects 60, and
special objects 61 for all the pages of the document as
shown in Figure 3b. In addition, space may be allocated
at the beginning of the optimized file to store the cross
reference table portion 64 and range table 66, which are
described below. Also, information for the cross
reference table 58 describing the locations of objects in
the file is stored in memory as the objects are written
in this step. '

In an alternate embodiment, the page contents and
shared objects can be stored in optimized document file
62 in an interleaved order, where portions of page
contents are followed by shared objects referenced by
those portions. In one embodiment, the data is read or
downloaded in an interleaved order, but is not stored in
the interleaved order. Interleaving is described in
greater detail with referénce to Figures 9 and 12. 1In an
alternative embodiment, only the first page’s contents
are physically stored in an interleaved order in the
optimized file so that range table 66 need not be
downloaded, which may save a connection to (or a
transaction with) the host computer and reduce initial
downloading time of the file.

In next step 78, the cross reference table 58 (or
equivalent structure using other file formats) is written
to the file, and in one embodiment, to the end of the
file after the special objects 61, as shown in Figure 3b.
The cross reference table 58 is a listing of objects in
the document and the offsets (e.g., in bytes) from the
beginning of the file for the start of each objéct, and
allows random. access to the objects in the document (the
cross reference table, however, does not provide the
types of objects or pages where objects are located). A
"trailer" for a PDF file can also be written is this

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 30 -

step. The information for the cross reference table is
determined as each object is written to the optimized
file in'step 76, as explained above. The formation of
cross reference tables.in PDF files are well known to
those skilled in the art.

In step 80, the page one portion 64 of cross
reference table 58 is written to the optimized document
file 62, and in one embodiment it is written near the
beginning of the file (leaving room to store range table
66). This portion 64 of the cross reference table 58
refers to objects on the first page of the electronic
document and is placed near the beginning of the file so
that page one information can be retrieved as soon as
possible in a downloading process. The contents of the
first page can thus be displayed immediately upon
receiving those contents when downloading document file
62 (as in Fig. 10).

In step 82, the page offset table 68 of the
Present invention is created and placed in the optimized
file. In one embodiment, it is placed near the end of
the optimized file 62 after the cross reference table 58.
The information in the page offset table allows any page
of the electronic document to be guickly accessed and
downloaded. The page offset table may be included in the
optimized file 62 so that a separate offset table file
does not have to be downloaded, processed, updated, or
associated with a page contents file. However, in
alternative embodiments, the page offset table and,
optionally, other index tables may be stored in one or
multiple secondary files, residing optionally on separate
host computers. In one embodiment, .a pointer to the
prage offset table is included in the range table 66
(described below) near the beginning of the file 62, so
that the page offset table can be accessed after the
first page one information has been downloaded in a

10

15

20

25

30

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

downloading process. Since the page offset table is not
needed to display page one of the document, it is not
placed at the beginning of the file. Alternatively, the
page offset table can be provided at other places in the
optimized file 62, including at the beginning. The page
offset table is described in greater detail with respect
to Figure 8.

In step 84, the range table 66 (and, optionally, a
header) is written at the very beginning of the optimized
file 62. The range table provides the offsets and.
lengths for the page contents and shared objects of the
first page of the document, and thus functions somewhat
like the page offset table 68. The process of writing
the range table is described in greater detail with
respect to Figure 9. Other necessary information can
also be written in this step; for example, PDF files
store a pointer to the contents of the document file at
the end of the file after the "trailer." The process 70
is then complete at 86.

Figure 5 is a flow diagram illustrating step 74 of
Figure 4, in which an internal list of objects and lists
of shared objects are created from the non-optimized
portable electronic document. The process begins at 88.
In step 89, any inheritance data from parent objects are
copied into children objects down the page tree, as
appropriate. This step is implemented if, as in PDF
files, some children objects do not include certain
needed data and instead refer to and "inherit" this
needed data from a parent object, e.g., display commands,
orientation commands, etc. Since the present invention
recorders object data and may not be able to reference a
parent object easily, any inheritance data from parent
objects is copied into children objects that need such
data in step 89.

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

In step 91, the page tree objects are added to a
separate page tree internal list, except for page.tree
objects for the first page. Only the first page’s page
tree objects need to be initially downloaded in a
downloading process, so the other page tree objects can
be organized in a separated list in step 91 and, later,
written near the end of the file (described below). 1In
step 92, a variable P is initialized to 1 and checked if
it is less than or equal to the number of pages in the
document. If so, in step 94, the page object for page P
is retrieved from the non-optimized document file (or
non-optimized document stored in memory) and is written
to an internal list. A page object, as typically defined
in a PDF file or similar format, is an object that refers
to other objects which are included and displayed
collectively on the page. Thus, by retrieving the page
object for page P, the process also indirectly retrieves
references (pointers) to page P’s page contents object
and any other referenced objects. Step 94 finds the page
object for page P in the non-optimized file by use of the
cross reference table from the non-optimized file (which
can be utilized by the viewer). The page P object
identification (ID) is written to an internal list,
stored in RAM 16 or other storage. In PDF and other
types of files, an object typically includes an object
ID, which is a number or other identifier that uniquely
identifies the object within the document file. A number
identifier for the page P object is written to the
internal list in this described embodiment.

In step 96, if page icons 50 ("thumbnails") are
implemented in the viewer embodiment as shown in Figure
2b, the page icon object for the current page P is
typically added to a separate page icon list if the
initial displayed view does not include page icons. In
viewers such as Acrobat, however, the user can save a

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

file designating the document to be displayed with a page
icon view as shown in Figure 2b when initially downloaded
and displayed. If the current non-optimized document has
been so designated, the page icon objects are needed to
display the first page. Therefore, in one embodiment,
step 96 can be skipped and the page icon objects can be
added to the internal list after all first page objects
have been added (i.e., a negative determination of step
108 for the first page (e.g., P = 1)). Alternatively, a
page icon for a specific page can be stored after its
page contents. Other special objects which are not
necessary for displaying the document can also be added
to specialized internal lists in step 96 so that these
objects can be written to the end of the document file.
Herein, "special objects" refer to page icon objects,
bookmark objects, page tree objects, and any similar
types of objects that are usually not necessary to
display a page and can be provided near the end of the
optimized document file.

In next step 98, the next object "on" page P is
retrieved in a designated order, i.e., the next object
referred to by the page P object in the designated order
of objects. The "designated order" of objects is the
order of objects in which the provider of the optimized
file (or the implementor of process 74) desires to be
downloaded and displayed when'accessing a page from the
file. Thus, when downloading the optimized file 62,
certain types of objects can be displayed first while
other types of objects are still being downloaded. For
example, it is typically desirable to display the text
(i.e., page contents object) on a page before the images
on the page when the page is downloaded, since the user
who is downloading the page can read the text while- the
images are still being downloaded. From the text
content, the user can quickly determine if it is worth

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 34 -

his or her time to wait for an image to be downloaded and
be displayed, or if that page download should be
interrupted and a new page downloaded.

In one embodiment, the designated order of objects
is links, non-image "resource objects" (i.e., non-image
objects in a resource dictionary), page contents objects,
image objects, bookmark objects, user-defined objects,
and other objects. This order allows links to be
downloaded and active first. Since links are typically
implemerited as rectangular (or other shaped) "bounding
boxes" which enclose text, graphics, images, or other
objects, the links are advantageously first in the
designated order so that when an enclosed object of a
link is later displayed, the 1link will already be
receptive to user inputs. Other types of objects that
may be added to a document by a viewer are ordered with
links in the designated order. ‘Non-image "“resource
objects"™ are ordered next, which include shared objects
such as font objects, color map objects, and the like.
Font objects provide the data to determine how text will
appear, and color map objects map colors to different
display output devices, as is well known to those skilled
in the art. The font and color map objects are needed to
display text and graphics, and thus should be downloaded
close in time to the page contents objects which refer to
them. In PDF files, these types of objects are typically
located in a "resource dictionary" which is located in
the page contents object 56 of a document file (or as a
separate object) and is used for aecoding page contents
to map objects with object references. Image objects can
also be referenced in the resource dictionary in typical
PDF files; however, they are ordered later in the
designated order. The page contents objects (text and
graphics) '‘are ordered next in the designated order, which
allows a user to quickly download and view.the -

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

text/graphics and determine the subject content of the
page. The image objects are ordered next, near the end
of the designated order, since they are usually the
largest size objects and require the greatest downloading
time. Objects referenced by a bookmark object, as shown
in Figure 2a, are next in the order. These objects
should be downloaded so that they can be acceésed'by the
bookmark, and are a special case, as explained below.
User-defined objects and any other types of objects are
ordered last. '

Other designated orders of objects can be
implemented in other embodiments. For example, links can
be downloaded after text and graphics objects.
Alternatively, the user who is creating the optimized
file 62 can be offered an option of inputting a desired
designated order of objects.

- The next object in the designated order of objects
is thus retrieved in step 98. That is, if this is the
first time step 98 is implemented, a link object is
retrieved. Once all the 1ink objects have been retrieved
and added to lists in step 102 of the current process, an
object next in the designated order (e.g., resource
objects) is then retrieved in step 98, and so on.

In step 100, the process determines if the
retrieved object has already been examined for a
different page or if the retrieved object is a forced
shared object. If the retrieved object has already been
examined for different page, then this object is
designated a shared object, i.e., the object was referred
to by an earlier examined page/page contents object or
the current page/page contents object and was already
retrieved and processed. Any object can potentially be a
shared object; for example, a page contents object or an
image object in the document file can be referred to by
two or more different pages. The process can check if an

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 36 -

object is shared by examining the internal list that has

been created so far in the current process. If an object
ID is found that is identical to the current object’s ID,
then the object is considered to be a shared object.

Also, in one embodiment, in step 100, if the
retrieved object is a forced shared object, then the
object is automatically forced (designated) to be a
shared object, regardless of whether the object is
actually referenced by multiple pages or not. Herein,
"forced" shared objects include such resource objects as
font objects and color map objects, but do not include
resource objects such as image objects or procset
objects. Font and color map objects are forced to be
shared objects because they are required in the decoding
of page contents and may, in particular embodiments, be
advantageously interleaved in the downloading process,
described below. "Procsets" are used for printing
purposes, as is well known to those skilled in the art,
and are need not be automatically forced to be shared
objects (images and procsets can be shared objects if
they are referenced by multiple pages).

In addition, the user can provide his or her own
non-standard shared objects that can be referenced on
multiple pages. For example, a user could provide a
dictionary table object in the document that is
referenced by multiple pages. Such user—defined shared
objects are not necessarily referred to by and are not
required to display page contents such as text, and are
therefore referred to herein as "non-contents shared
objects."

If the retrieved object is not a shared object,
then step 102 is performed, in which the object ID of the
retrieved object is added to the end of the internal
list. The internal list thus has an order of objects
including a page object followed by all the objects (in

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 37 -

the designated order) referenced by that page.

In step 103, special objects are processed if
predeternined conditions are met. For example, in the
described embodiment, bookmark 45 objects are a special
type of object that are processed in step 103 if the
current page is the first page (P = 1), and if image
objects on the current page have all been processed
(i.e., bookmark objects are after image objects in the
designated order). If these conditions are met, then the
process also checks if the bookmark view 45 is to be
displayed when the document is initially opened, i.e. if
the bookmark view of Figure 2a is the default initial
view. If so, the ID’s of a predetermined number of
bookmark objects (e.g., 60) are added to the internal
list. This number is the number of bookmark objects that
would be initially shown in the bookmark view 45 as shown
in Figure 2a. The remainder of bookmark objects are then
added to a separate bookmark internal list, similar to
the separate page icon list described above. If the
bookmark view of Figure 2a is not the default initial
view, then all of the bookmark objects are added to the
separate bookmark list in step 103. This step allows
objects displayed in the bookmark view to be grouped with
the first page’s contents data so the bookmark objects
can be downloaded and displayed quickly with first page
data in a downloading process (if the initial document
display includes the bookmark view). The process then
continues to step 108, detailed below.

If the retrieved object is a shared object in step
100, then step 104 is implemented, in which the shared
object is processed and a sharing pages list is created.
This step is described in greater detail with respect to
Figure 6. In next step 106, the object ID of the shared
object is added to the shared object list, which is
similar to the internal list except that it includes only

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 38 -

shared object ID’s of objects that have been examined by
process 74.

Figure 5a is a diagrammatic illustration of shared
object list 148 as processed in step 106 of Figure 5.

The shared object list 148 includes a node 150 for each
shared object found in the process of Figure 5. Each
node 150 includes an object . ID field 152 for storing an
object’s object ID, and a contents flag field 154 for
storing a contents flag, as detailed subsequently.

After step 102 or step 106, step 108 is
implemented, where the process checks if there are any
additional objects on page P that have not been examined.
If so, the process returns to step 98 to retrieve the
next object in the designated order of objects. If there
are no.additional objects, step 110 is implemented, in
which the number of objects on page P is stored in
memory. This number can be determined by counting all
the newly-added object ID’s in the internal list. The
process then returns to step 92 to increment the variable
P and again check if P is less than or equal to the
number of pages in the document.

Once all of the pages of the non-optimized
document have been processed by the aforementioned steps,
the process continues to step 112, in which a sharing
pages list is completed and all sharing objects and other
objects are incorporated into the internal list. The
sharing pages list is created in the processing of shared
objects of step 104. After the shared and other objects
have been incorporated into the internal list, then the
internal list is ready to be used to write all of the
objects in the optimized order in step 76 of Figure 4.
Step 112 is described in greater detail with respect to
Figure 7. The process is then complete at 114.

Figure 6 is a flow diagram illustrating step 104
of Figure 5, wherein the retrieved shared object is

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

processed. The process 104 begins at 116, and, in step
118, the process checks if the retrieved object is the
first shared object on page P. This is determined by
checking if page P is already in. the sharing pages list.
If page P is already in the sharing pages list, then a
shared object was already.found to be referenced by page
P, andAstep 122 is implemented. If page P is not in the
sharing pages list, then, in step 120, page P is added to
the sharing pages list. '

Figure 6a is a diagrammatic illustration of a
sharing pages list 136 of the described embodiment. This
list is created and referred to during the process 104 of
Figure 6. As described, the list is provided as a linked
list, the implementation of which is well known to those
skilled in the art. Other implementations of the list
can also be provided. A page is represented by a page
node 138, where each page node is linked to another page
node, in sorted numeric order of the pages, for example.
If a page node exists in list 136, then that page
includes shared objects, as determined by sfeps 118 and
120 of Figure 6. .

Referring back to Figure 6, if the object is not
the first shared object referenced by page P, or after
step 120, then step 122 is implemented. 1In step 122, the
process checks if the retrieved object is in the object
list of page P. As shown in Figure 6a, an object list
140 is referenced by a page node 138 if that page-
references shared objects. An object list 140 includes a
number of object nodes 142, each of which represents a
shared object referenced by the page of the corfesponding
page node. In step 122, the process checks if the
retrie#ed shared object is élready in the object 1list 140
of page P. If such a condition exists, it indicates that
multiple references to the shared object are present on
page P. Since only the first instance of the shared

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 40 -

object on a page is needed for the present invention,
step 126 is then implemented, as detailed below. If,
however, the retrieved object is not in the object list
140 of page P, then, in step 124, an object node 142 is
added to the object list 140 and a sharing ID is added to
an ID field 144 of the object node (object node 142 also
includes a fraction field 146, detailed below). The
wsharing ID" is an identifier for the object which
uniquely identifies the object in the sharing pages list.
The sharing ID is may be a number, n, that indicates a
shared object is the nth shared object that has been
found in the document. For example, a sharing ID of "o"
indicates that an object is the first shared object found
in the document, a "1" is the second shared object found,
etc. The sharing ID is not the same as the object ID,
since a sequential object ID, m, would indicate that the
object is the mth (shared or non-shared) object in the
document. Object node 142 and the sharing ID would
naturally be added to the object list 140 in a sorted
numerical order according to sharing ID’s.

Step 126 is then implemented, in which the process
checks if the retrieved ocbject is the first shared object
on the original page, i.e., if the original page is
already in the sharing pages list 136. The "original
page" is any other previous page that also references the
shared object. There may not be an original page if, for
example, the retrieved shared object is a forced shared
object (e.g., a font). The process determines the
original page by, for example, checking a table which
logs each object and the pége that each object is located
on. If the retrieved object is not the first shared
object on the original page, then step 130 is performed,
detailed below. If the retrieved object is the first
shared object on the original page, then in step 128, a
page node 138 corresponding to the original page is added

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

to the sharing pages list. New nodes may be added to
list 136 in a numerical sorted order by page number. For
example, a shared object designated by node 142a is found
on page 9, and is assigned a'sharing ID of "1, Page 1
also includes the same object, so that node 142b is added
to the object list 140 of the page node for page 1. The
process then continues to step 130.

After a negative determination of step 126, or '
after step 128, step 130 is performed, in which the
process checks if the retrieved object is in the object
list(s) 140 of the original pages(s). This step is
substantially similar to step 122, above. If the object
is already in the original page’s list 140, then the
process continues to step 133, described below. If the
object is not in the original page’s list 140, then, in
step 132, an object node and sharing ID for the retrieved
object are added to the object list 140 of the original
page. The process then continues to step 133.

In step 133, the process checks if the retrieved
object is a forced shared object or if the object is not
in the object list of page P. If either condition is
true, step 131 is performed, in which steps 104 and 106
of Figure 5 are recursively performed for all of the
children objects referenced by the retrieved object (if
any), including children objects of other children, etc.
This step forces children objects of parent shared
objects to also be shared. Such children objects can
include, for example, widths of characters for a custom
font, etc. After step 131, or if neither of the
conditions of step 133 are true, then the process is
complete at step 134. .

Steps 118-124 can be implemented as a function
which examines an object passed to the function through a
function call. This same function can then perform steps
126, 128, 130, and 132 by passing the original page to

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

the function through a second call. Figure 7 is a flow
diagram illustrating step 112 of Figure 5, in which the
sharing pages list is completed and shared and other
objects are added to the internal list. The process 112
begins at 156. In step 158, the next page node 138 in
the sharing pages list 136 is retrieved. If this is the
first time performing step 158, then the first page node
in the list 136 is retrieved. 1In next step 160, the
process determines if there are any more page nodes in
the list 136 to examine, e.g.; if a null or end of list
symbol was retrieved in step 158 to indicate all page
nodes have been examined. If there are no more page
nodes to examine, step 170 is performed, detailed below.
If a new, unexamined page node was retrieved in step 158,
then, in step 162, the names of the resource objects
which are also shared objects for the selected page are
retrieved from the resource dictionary utilizing shared
object list 148 (a resource dictionary is typically
associated with each page object). Only certain types of
resource objects are retrieved which are desired to be
interleaved in the downloading process. In the described
embodiment, these desired resource objects include font
objects, color map objects, and (shared) image objects.
Each resource object typically has a "name", which is an
identifier for the object so that it may be referenced to
the actual object data. For example, font objects can
have a name such as "f1" or "f2" which references a
particular font object for the font of "Helvetica",
"Times", etc.

In next step 164, the process searches for the
retrieved shared resource object names in the page
contents portions of the selécted page. For example, if
page 9 is the selected page, the process accesses the
page contents of page 9 and searches for names (such as
"f1") from the resource dictionary found in step 162. In

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

step 166, for each found resource object, the fraction
number of the page contents that includes the found
resource object is written into the object list, if this
is the first found occurrence of the resource object on
the page. For example, fractions can be designated a
size of eighths, such that a fraction is 1/8 the size of
the page contents, and the fraction number for the first
fraction is 0 (zero), representing 0/8 to 1/8 of the page
contents data of the page. Larger or smaller fractions
can be designated in other embodiments. The fraction
size is used when interleaving and can depend on the
desired amount of page contents data to be downloaded
before the shared objects referred to by that contents
data are downloaded, as explained subsequently. When a
resource object’s name is found in the page contents, the
procesé has found a reference or pointer to the resource
object. For example, text in the page contents may
include an identifier referring to a font object. The
particular fraction of the page contents in which the
resource object was named is then written into the object
1ist 140 of the current page node. This fraction number
is written into fraction field 146 of an object node 142
and is the dividend of the fraction, with the divisor
being a predetermined number, which may be found in the
document file header. For example, for object node 1l42c
of list 136 in Figure 6a, a fraction number (dividend) of
n7u jndicates that this shared object occurred in the 7/8
to 8/8 portion of the page contents data of page 22,
i.e., if the page contents were divided into eighths, the
object would occur in the last eighth, where "8" is the
predetermined divisor. A fraction number is similarly
written for each resource name searched and found on the
page. Also, the fraction numbers written into parent
shared objects are also written into any children objects
of those parent shared objects (children objects are

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

described in step 131 of Figure 6) so those children can
be interleaved with the parent objects. In one
embodiment, image resource objects are automatically
assigned a high fraction number so that images will be
downloaded late in an interleaved downloading process, as
described below. In an embodiment using a method of
progressive rendering of fonts, described in reference to
Figure 13a, font descriptor objects are given correct
fraction numbers, so that they will be downloaded close
to the font reference in the interleaved downloading
process, while font data objects are‘given a high
fraction number, so that they will be downloaded toward
the end of the page.

Also in step 166, the nodes of each object list
140 may be reordered so that the shared objects are
provided in an order from first to last occurrence on the
page. In an embodiment where image objects are ordered
from first to last occurrence separately from other
shared objects on the selected page, these may be added
to the end of the cobject list for the page.

In step 168, the contents flag associated with
each found resource object is set in the shared object
list 148. As shown in Figure Sa, the flag field 154
holds the contents flag for each shared object. This
flag is set to "1" if the shared object was found in step
166. The contents flag indicates which shared objects
should be interleaved with page contents when the
optimized file is downloaded, as explained subsequently.
Shared objects that do not have the contents flag set
will not be interleaved in the downloading process of
Figure 10. (Non-contents objects, such as user-defined
objects, procsets, and resource dictionaries, even .if
shared, do not have the contents flag set.)

After step 168, the process returns to step 158 to
retrieve another page node 138 from sharing pages list

10

15

20

25

30

35

WO 97/12328

CA 02233023 1998-03-24

PCT/US96/15725

136. Once all the page nodes have been examined, the
process continues from steé 160 to step 170, where the
shared object ID’s from the shared object list 148 are
appended to the end of the internal list. In step 171,
the bookmark objects on the bookmark internal list, page
icons on the page icon internal list, page tree objects
on the page tree internal list, and any other required
objects are added to the end of the main internal list.
In next step 172, any duplicate shared object ID’s in the
front portion (i.e., portion before the shared objects
portion) of the internal list are removed from the
internal list. The shared object ID’s in the shared
object list 148 are compared with the object ID’s in the
front portion of the internal 1iét, and any matches from
the internal list are removed. In addition, in step 172,
the total number of objects for a page is decreased by
the amount of matched objects so removed. In step 174,
the shared object ID’s may be reordered, using the
contents flags set in step 168, so that shared objects
referenced by page contents are ordered first. This
order allows the contents shared objects to be grouped
and the page offset table to require less storage space
than if the shared objects were not reordered. The
process is then complete at 176.

Figure 8 is a flow diagram illustrating step 82 of
Figure 4, in which the page offset table of the present
invention is developed and stored in the optimized
document file. The process of Figure 8 generates one
example of a page offset table, which can have other
formats and forms in alternate embodiments. The process
begins at 180, and, in step 182, the process determines
the length of each page, in bytes or similar measures of
content. This can be determined by examining the number
of objects on a page and determining the byte offset
amount between the first object on the page and the first

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

object of the next page. In step 184, housekeeping
information is written into the page offset table 68. An
example of a page offset table 68 as referred to by
process 82 is shown in Figure 8a. The housekeeping
information can include the number of pages in the
electronic document, the leaét number of objects on a
single page, the location of the cross reference table
(e.g., the offset in bytes from the beginning of the
file), and the number of shared objects in the document.
This housekeeping information is used to create page
information to help download portions of the document, as
detailed in the downloading process of Figure 10.

If there are shared objects in the file, then
shared object housekeeping information is written to the
page offset table in step 184. The shared object
housekeeping information includes the number of
non-contents shared objects in the document, the least
size of a shared object, and the size of the dividend for
the fraction size (e.g., 3 bits).

In step 188, the number of objects on each page as
determined in step 110 of Figure 5 and step 170 of Figure
7 and the page length information as determined in step
180 are compressed and written to the page offset table,
shown as information 189 in Figure 8a. In step 190, for
each shared object in the document, the length of the
shared object (e.g., in bytes, determined by offset
comparison) and the signature for the shared object (if
applicable) are stored in the page offset table. A
signature is an identifier that allows caching of shared
objects to be used safely in the downloading process.
Signatures are used to avoid mistaking resources (such as
fonts) that may be different but nevertheless may go by
the same name. A signature may be calculated from the
resource itself by any method with a sufficiently high
likelihood of giving different values for different

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 47 -

resources. Thus, a shared object can be stored in a disk
cache after it is first downloaded for use whenever that
shared object is accessed or referenced by page contents
in the same or even in a different document file.

Next, in step 192, for each page P of the
document, additional information is determined and
collected for compression for page P, including a shared
object flag, the number of shared objects on page P,
sharing ID’s, approximate page contents fraction
information, and the divisor value used for the fraction
size. The shared object flag indicates that a page P
references shared objects. Shared object ID’s are stored
for the shared objects being used by that page. The
approximate contents fraction information is estimated
from the sizes of page contents objects as a fraction of
page length; e.g., this approximate fraction can be
designated as "1/8". The divisor value is, for example,
wgn jif the fraction size is determined to be eighths.
After the information in step 192 has been determined for
each page of the document, the process continues to step
194, where the information for all the pages may be
compressed by well-known techniques and written to the
page offset table in the optimized document file 62. The
process is then complete at 196.

The page offset table 68 is intentionally made
small and compact in size, where data is compressed when
possible. Since the page offset table is additional data
that is not normally downloaded in non-optimized
documents, it is desirable that the additional data be a
small as possible so that the user does not have to wait
any extra length of time. 1In additioﬁ, since the page
offset table is compact, it is less "noticeable® (through
time delays) in a downloading process than other much
larger structures, such as the "“"page tree" normally
included in a PDF document.

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

In alternate embodiments, the page offset table
can include different or additional data, or the data can
be stored in different formats. For example, the sharing
pages list 136, internal list, and other lists generated
can be stored directly (and inefficiently) in the page
offset table in some embodiments.

Figure 9 is a flow diagram illustrating step 84 of
Figure 4, in which a range table 66 for page one of the
electronic document is written at the beginning of the
optimized document file. The range table provides
information so that the page one data of the electronic
document may be located in the optimized file and gquickly
downloaded and displayed. It is assumed that page one is
the "first page", i.e., desired to be displayed first, as
a default, when beginning to download a page-based
electronic document. In other embodiments, a different
page can be the default first page that is displayed.

The process begins at 200. In step 202,
housekeeping information is written to the range table.
This housekeeping information is similar to the
housekeeping information described with reference to the
page offset table above. Figure 9a shows a diagrammatic
illustration of a range table of the present invention.
The housekeeping information includes the number of
ranges of data that are downloaded for the first page.
These ranges can include interleaved portions of page
content and shared objects (described below). The shared
pages list 136 can be referenced to determine how shared
objects are to be interleaved with page content by
examining the fraction numbers in the object nodes 142
and appropriately interleaving the shared objects with
the page content. Alternatively, no interleaving is
applied, and the first range is an entire page contents
object 56, while any additional ranges are shared objects
referenced by the page contents. A version number for

10

15

20

25

30

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

the range table/page offset table in the current file may
also be stored as housekeeping information. Also, a
signature flag for each range can indicate if the range
(object) has a signature; the signatures can also be
listed in the range table. Signatures can be used for
caching shared objects, as described above.

In step 204, a pointer to the page offset table 68
is written into the range table. This pointer allows the
page offset table to be located in the optimized file and
downloaded after the range table and first page have been
downloaded. In next step 206, the process checks if the
total first page size is less than a predetermined
minimum size. If the page is less than the minimum size,
then no interleaving of page contents and shared objects
is desired, since the page contents are so small that no
advantage in downloading speed may be gained by the
interleaving; in fact, the downloading speed may be
slower when the page is below the minimum size and
interleaving is provided, creating a longer wait for the
user to view the page on the display screen.

Interleaving of page contents and shared objects is
described in greater detail with respect to Figure 12.
For example, a minimum size of 4 kilobytes can be
specified.

If the page is more than the minimum size, then,
in step 208, the offsets and lengths of the page content
are written into the range table interleaved with the
offsets and lengths of the shared objects. That is, if a
fraction of the page contents includes a reference to a
shared object, the referred shared object is ordered
after that fraction of the page contents in the range
table. The interleaved ranges determined in the
housekeeping information in step 202 can be used. The
process is then complete at 210.

10

15

20

25

30

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 50 -

If the page is less than the minimum size in step
206 (or if no interleaving is desired for a different
reason), then, in step 212, the offset and length for the
entire page contents are written to the range table, so
that one offset and one range describe the page contents.
In step 214, the offsets and lengths for the shared
objects, and, in one embodiment, the offsets/lengths for
the cross reference table entries needed for those shared
objects, are written to the range table. They can be
written, for example, in the order they have been stored
in the object list 140. The process is then complete at
210.)

Alternatively, other conditions can also be
checked to adjust the arrangement of page content and
shared object offsets in the range table. For example,
if the page contents object is less than 3 kilobytes in
size, then shared objects offsets can be placed after the
page contents data with no interleaving.

OWNLO NG OPTIMIZED DOC B

Figure 10 is a flow diagram illustrating a process
220 of downloading an optimized page-based document of
the present invention from a host computer to a client
computer system 10. It is assumed the user wishes to
view the document in a viewer that can display a page or
a portion of a page of the document. The “finder"
described in the current process can be implemented
within the viewer, or as a separate procedure or program
instructions running simultaneously with the viewer on
computer system 10.

The process begins at 222. In step 224, the
process checks if the user has requested to view a
document that is located, appropriate to the present
invention, on a host (source) server or computer. If no
request for a document is made, the process waits for.

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

such a request (the computer system 10 or viewer can be
performing other tasks for the user in the meantime, such
as viewing local documents). When the user requests to
view a downloaded document, the viewer connects to the
host computer in step 226 to download the header and the
range table 66 for the optimized document file. The
header includes information designating the file in a
specific format, e.g., PDF, and the presence of the range
table may be used to indicate the file is an optimized
file. The header and range table may be located at the
beginning of the file so that they may be downloaded
first. Other needed information is also downloaded at
this time; for example, PDF viewers may require a pointer
to the contents of the file that is located at the end of
the file. In the alternate embodiment in which the first
page’s contents are stored in an interleaved order in the
optimized file, the range table need not be downloaded,
and step 226 can be omitted.

In step 227, the process checks if the first page
of the documents has been reguested to be viewed by the
user in step 224. In one embodiment of the invention,
when a user first requests to view a document, the first
page will be automatically downloaded and displayed as a
default. The user then requests a desired page after the
first page has been downloaded, as detailed below.
However, in other viewer embodiments, a user may be able
to initially request to view a particular page of a new
document before any part of the document is downloaded.
In such an alternative embodiment, step 231 is
implemented, described subsequently. If the first page
is always initially displayed, or the user requests the
first page, step 228 is implemented.

In step 228, the first page data and page offset
table are downloaded from the source file by the viewer

in another connection (or another transaction) using the

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 52 -

range table, and the first page is displayed. This first
page data includes page contents and shared objects of
the first page. The portion of the cross reference table
for the first page is also downloaded at this time. The
shared objects and page contents of the first page may
have already been interleaved using offsets in the range
table, as described with reference to Figure 9. Thus, in
one embodiment, a portion of the page contents are
downloaded, followed by any shared objects referenced by
that portion (and cross~-reference data for those shared
objects), which allows that portion to be immediately
displayed to the user. The user thus experiences very
little waiting time to view at least some of the contents
of first page. The page offset table 68 may be
downloaded during this connection (of transaction) using
the pointer in the range table 66 after the first page is
downloaded. Thus, the page offset table may be
downloaded early in the downloading process, immediately
after (or, alternatively, before) the downloading of the
first page, for example, so that other pages in the
document can be randomly accessed and viewed. In some
embodiments, the viewer may be selected not to display
the first page when downloading a document.

In next step 230, the page offset table is
examined to determine page information. The finder may
be made responsible for examining and processing the page
offset table, in which case the finder determines page
information using information in the page offset table.
The process of determining this page information is
described in greater detail with reference to Figure 11.
The process then continues to step 234.

In step 234, the process checks if the user
requests to view a particular page of a document in the
viewer. The user can request a page of the current
document that was partially downloaded in steps 226, 228

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

and 230 (or step 226, 231 and 232) or a different
document (described below). For example, to request a
page of the current document, the user can select a page
jcon 51 as shown in Figure 2b to display a different page
of the current document. Or, the user can select a link
to a different page in the current document or select a
bookmark object listed in the bookmark view 45 as shown
in Figure 2a. If no request to display a different page
of a document is made, then the process continues to wait
for such a request at step 234 (other viewer or computer
functions can be performed during step 234). If a
request of the current document is made, the process
continues to step 236, described below.

In step 234, the user may aléo be able to reguest
a page of a different document that has not yet been
downloaded. For example, a link or other control in the
viewer may be selected to provide access to a different
document file available on the same or different host
computer system. If the user requests a page of a
different document in step 234, then the process returns
to step 226 to download initial portions of the different
document.

Step 231 is implemented after step 227 if a
particular embodiment of process 220 allows a user to
select a particular page of a new document to download
and view, where no portion of that document has been
previously downloaded. The header and range table of the
document were downloaded in step 226. In step 231, the
viewer connects to the host computer (if a new connection
is needed) and downloads the page offset table from the
optimized document file. The page offset table is needed
to determine the location of the requested page in the
document file. In step 232, page information is
determined for the document, similar to step 230
described above (and described with reference to Figure

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 54 -

11). The process then continues to step 236, as
described below.

In step 236, the viewer requests a page offset
from the finder so that the viewer can download the
appropriate data. In step 238, the finder consults a
page start offset table of the page information, which
was created in step 230 or step 232 (as shown in Figure
11), to determine the first offset for the page requested
by the user. Alternativély, the viewer can request a
specific object rather than a page, and the finder can
consult the table of first objects on a page (also
created in step 230 or 232) to determine at which offset
the object is located in the document file. The found
first offset for the page is returned to the viewer in
this step.

In step 240, the finder determines any additional
ranges of data that are required to completely download
and display the requested page, such as additional'page
contents and any shared objects for the page contents.
The finder determines these additional ranges from the
page information generated in step 230 or 232. If
additional ranges of data are needed (as is typically the
case), the page information indicates where the
appropriate ranges are located in the optimized document
file. In step 242, the viewer connects to the host
computer (if a new connection is needed) to download the
data of the requested page located at the first offset
returned by the finder. In one embodiment, the viewer
downloads a predetermined amount of data, such as one
kilobyte (1K), at one conhection.

In step 244, the finder requests any additional
ranges of data for the requested page during the viewer
connection. The finder may interleave particular shared
objects in portions of the page content data in this
request to provide a faster display of the page data for

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

the user. Step 244 is described in greater detail with
respect to Figure 12. 1In addition, and optionally, the
finder may delay requesting certain large objects such as
fonts and images, as is described in greater detail with
respect to Figures 13a, 13b, and 13c.

In step 246, the downlocading of the additional
ranges requested by the finder continues as a
“"background” process while the viewer processes the data
already received. Once enough data is received by the
viewer to display at least some page data, that data is
displayed. The additional offset ranges may be stored in
a local buffer before being.requested by the viewer, such
as in RAM and/or on disk. When the viewer requests data
after the first block, it receives the data from the
local cache rather than from the source file.

Other objects in the document file can be
downloaded at later times when appropriate. For example,
special objects such as page icons or bookmark objects
can be downloaded if the user changes to an appropriate
view in the viewer, scrolls to see more bookmark objects
in a bookmark view, etc. Page tree objects can be
downloaded if the viewer wishes to access such objects.

.In step 247, the process places the requested page
in a page cache implemented, for example, in local memory
such as RAM 16 or on a hard disk or other storage device.
This allows a previously-downloaded page to be quickly
retrieved and displayed from the cache if. the user should
desire to view that page at a later time. Also in step
247, the process can place any appropriate shared objects
that have been downloaded (along with their signatures,
if any) into a "shared object cache" implemented, for
example, in local memory such as RAM 16 or hard disk.
These cached shared objects can be used when downloading
and displaying page content of other documents as well
other pages of the current document that reference these

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

shared objects. The downloading of redundant copies of
the cached shared objects from a document file thus can
be avoided to speed up the downloading process. In one
embodiment, the shared objects can be stored in the cache
over multiple downloads or even when computer system 10
is powered down (using battery backed RAM or other
nonvolatile storage devices). The process is then
complete at 248.

The downloading process of the present invention
allows a particular page desired by the user to be
downloaded without downloading other pages in the
document. This allows a speedier download since only the
data for the page is downloaded, not the entire document
file. In addition, new desired, randomly-accessible
pages of the document can be readily downloaded using the
page offset table, giving the user the illusion that the
entire document is easily available and accessible
through simple commands sdch as “"display next page" or
“"display page number X."

In prior art processes, when additional data for
the page beyond the first 1K portion (or whatever sized
portion is being used) is to be downloaded, an additional
connection must be made for each additional 1K portion,
which can cause delays in displaying the page data.
Connecting to a host computer over a network can be a
lengthy process, since the host must be located over the
network and appropriate handshaking signals must
typically be sent and received, and the host
computer/server may be busy. In the present invention,
however, the finder requests the additional ranges during
the same connection that -the viewer is requesting the
first range, downloads the additional ranges as a
background process, and stores the additional ranges in a
local buffer. These additional ranges can be provided
directly from the buffer to the viewer when the viewer

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

requests additional 1K ranges. Thus, no additional
connections to the host are required at a later time to
download more data for the page. By avoiding multiple
connections to the host in the present invention, the
page data is downloaded and displayed much more quickly
for the user. As an analogy, this one connection
downloading process can be compared with going to a
grocery store to buy grocery items, and buying all of the
needed items on one trip rather than having to take
multiple trips to buy items that were not bought on the
first trip. The multiple trips are much more inefficient
in the time involved than the single trip. In an
alternative embodiment, described in reference to Figure
14, multiple ranges of data may be requested by the
finder in one transaction for the page, avoiding the
overhead of multiple transactions.

- Figure 11 is a flow diagram illustrating step 230
of Figure 10, where the finder generates page information
from the page offset table. The page information is to
be used by the finder to request additional ranges of
page data when the viewer is downloading page data. The
process begins at 250, and, in step 252, a page start-
offset table is generated from data in the page offset
table. The page start offset table includes the starting
offset, e.g., in bytes, for'the page contents of each
page in the electronic document. More specifically,
information in the page offset table such as the number
of pages in the document, number of objects on a page,
length of a page, etc., are used to create the page start
offset table. Referring to Figuré l1ia, a page start
offset table 264 is shown, where each entry 266 is the
starting offset for each page’s contents. The length of
a page’s contents (and shared objects) can be determined
by taking the difference between the page’s starting
offset and the next page’s starting offset, since all of

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 58 -

the contents of the page were arranged contiguously in
the optimized file creation process of Figure 4.

In next step 254, a table that includes the object
ID of the first object on each page is generated from the
information in the page offset table. This table is
generated from the number of objects on each page in the
page offset table. This information can be decompressed
from the page offset table using the size in bits to
represent the number of objects on a page-- fourth entry
in page offset table-- as is well known to those skilled
in the art. Other information in the page offset table
can be decompressed similarly. As shown in Figure 11a,
the table 268 of the first object on each page includes
an entry 270 for each page, where the object ID of the
first object on the page is stored. The entries -270 of
table 268 correspond to the order and number of starting
offset entries 266 in table 264, so that a page can be
indexed similarly in either table 264 or 268. Table 268
can be used to reference objects if the viewer asks for a
page’s starting offset based on an object ID rather than
a page number. The page number for an object can be
found in table 268, and the starting offset of the page
then can be referenced in table 264.

In step 256, a shared object offset table is
generated from the page offset table. The shared object
offset table includes a starting offset, e.g., in bytes,
for each shared object in the document. The shared
object offsets may be stored in this table in the order
of shared objects as stored in the document file. As
shown in Figure 11la, shared object offset table 272
includes entries 274 for storing the shared object
starting offsets in the document file. The shared object
offset table can be generated from the information in the
page offset table, such as the lengths of shared objects,
number of shared objects, least size of a shared object,

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 59 -

and the location where the shared objects start (which
can be calculated from the last page offset (from table
270) + last page length in the page offset table).

In next step 258, the sharing pages list 136 is
generated from the page offset table information. This
list 136 is stored in memory, such as RAM 16, of the
client computer system 10, and includes substantially the
same nodes as shown in Figure 6a. From list 136, the
finder can determine which pages refer to which shared
objects, the fraction of the page content in which the
shared objects are referenced, and the sharing ID’s of
the shared objects so that the starting offsets for the
shared objects can be referenced in shared objectioffset
table 272. The list 136 can be generated from the shared
object flag, fractions, and sharing ID’s in the page
offset table. The process is then complete as indicated
at 260. In other embodiments, page information can be
organized in different ways, or can be directly used from
a page offset table.

Figure 12 is a flow diagram illustrating step 244
of Figure 10, in which the finder requests any additional
ranges of page data for the requested page during the
viewer’s connection with the host computer. The process
begins at 280. 1In step 282, the finder requests cross
reference table data for the page contents object from
the document file at the host computer for the requested
page. The cross reference data allows the viewer to
determine the offsets for objects other than the first
object on the requested page. In next step 284, the
process checks if interleaving should be performed on the
downloaded page data. Interleaving, as described above,
is the insertion of certain shared objects after portions
(or “fractions") of page contents data that refers to
those shared objects. This speeds up the display of
portions of a page, since the shared objects required for

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 60 -

displaying a portion of page contents are downloaded
right after that portion is downloaded. Alternatively,
as described in greater detail with respect to Figures
i3a, 13b, and 13c, the requesting of certain large
objects} such as embedded fonts and images, may be
delayed until after requests for other, smaller page
contents data have been made.

If no interleaving of page data is desired, the
process continues to step 300, described below. If
interleaving of the page data is desired, the process
continues to step 286, where the finder checks if there
are more shared objects referenced by any remaining
fractions of the page contents object in the document
file by checking sharing pages list 136. If so, then
process cdntinues to step 288, where the next shared
object is examined from the appropriate object list 140
in the sharing pages list 136. If a cache is
implemented, step 290 is performed, in which the process
checks if the examined shared object is in the cache.

For example, if signatures are used, the finder can
compare the signatures of objects in the cache with the
signature of the examined shared object. If the examined
shared object is already in the cache, then this object
need not be downloaded during the current process. Thus,
the process returns to steps 286 and 288 to examine the
next shared object in object 1list 140.

If the examined shared object is not in the cache,
step 292 is performed, where the finder requests a range
of page contents data from the start of the femaining
portion of page contents to the end of the fraction of
page contents that references the examined shared object.
The process determines that fraction by examining the
fraction field 146 of the examined shared object in the
object list 140 (which is the dividend of the fraction).
The divisor of the fraction is known from the page offset

10

15

20

25

30

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

table 68. An actual fraction size of page contents (in
bytes) can be calculated by deriving an approximate page
contents size from the page length and approximate page
contents fraction (in the page offset table), and
dividing the approximate page contents size by the
divisor. For example, if a fraction divisor of 8 is
used, the next eighth of the page contents is requested
by the finder in step 292 if the examined shared object
is referenced by this eighth. If the examined shared
object is referenced by the sixth eighth of page
contents, then all the page contents data (in the page
contents object) up to and including the sixth eighth is
requested by the finder. Thus, any fractions of page
contents that do not reference a shared object in the
object list are combined until a shared object is found
in the object 1list, at which time the request for the
entire range of combined fractions is sent to the host
computer.

The shared objects in an object list 140 are
provided (in the process of Figure 5) such that no shared
object in the object list is duplicated due to being
referenced multiple times on a single page. Thus, a
shared object is only downloaded once for a page.

In an alternative embodiment, step 290 can be
omitted and only the next fraction of page contents can
be requested in step 292 regardless of whether that next
fraction references a shared object in the object list
140. If that next requested fraction does not include a
reference to a "new" shared object (i.e., a shared object
that has not been previously downloaded), then step 294
(detailed below) can be skipped. In effect, this allows
step 292 to be consecutively implemented multiple times
until a new shared object is found and step 294 is

implemented.

10

15

20

25

30

35

WO 97/12328

CA 02233023 1998-03-24

PCT/US96/15725

In next step 294, the finder requests ranges of
the document file from the host computer for any
non-cached shared objects referenced by the range of page
contents data requested in step 292 (the finder also
requests appropriate cross reference table information
for those shared objects). The finder requests the range
of data for the shared object examined in step 290, and
also requests ranges for any additional shared objects
that are referenced by the requested page contents and
which are not in the shared object cache (the finder can
compare objects in the cache for each such additional
shared object). The finder can determine which shared
objects were referenced in which fraction by examining
the shared pages list 136, and the offsets for the shared
objects are known from the shared object offset table
272. For example, in the described embodiment, the
finder can examine the fraction field 146 of nodes in
object list 140 and request ranges for all shared objects
having the same fraction number as the examined shared
object. The finder also requests any cross reference
table information from the cross reference table 58 that
references these shared objects. The process then
returns to step 286. ‘

It should be noted that, with shared image objects
Placed at the end of each object list 140 in the sharing
pPages list 136 and forced to be in the last fraction of
Page contents, the image objects are forced to be
downloaded after all page contents and other interleaved
shared objects. Alternative embodiments for the display
of image objects are described in greater detail with
respect to Figure 13c.

If no more shared objects are referenced by
remaining fractions of the page contents object in step
286, then the process continues to step 296, where the
finder requests a range including all of the remaining

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

page contents data (if any unrequested page contents
still remain in the document file). In next step 298,
the finder then requests any non-contents shared objects
for the page and the appropriate cross-reference table
information for those shared objects. As explained
above, non-contents shared objects can include objects
such as user-specified objects, resource objects which
are not forced to be shared (such as procsets), etc., and
which are shared. These non-contents shared objects can
be found in the object list 140 of the sharing pages list
136. The process is then complete as indicated at 302.

Under some conditions, interleaving may not be
desirable. For example, when the page contents are very
small, such as under 4 kilobytes, interleaving may
provide no significant display speed increase, as
described above with reference to Figure 9. If no
interleaving is desired, then the process continues from
step 284 to step 300, wherein the finder requests the
rest of the contiguous page contents data without
interleaving, and also requests the other objects stored
after the page contents object that are needed for the
display of the page contents object. The "other objects"
include shared objects, any appropfiate special objects,
and any additional cross reference information needed for
the objects. For example, the shared objects can be
requested in the order they are referenced on the page.
In alternative embodiments, the shared objects can be
requested first, followed by the page contents. The
process is then complete at 302.

Turning to Figure 13a, a viewer program may
optionally employ a method for progressive rendering of
fonts to display text using a substitute font when the
desired font (for example, an embedded font specified in
an electronic document) is not immediately available.

The method for progressive rendering of fonts could be

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

invoked, for example, in connection with steps 242, 244,
and 246, illustrated in Figure 10. Use of this method is
advantageous, for example, in connection with embedded
fonts in electronic documents downloaded over a network.
An embedded font need not be in the same file as the main
part of the document, however; a_document may refer to
embedded fonts indirectly so that they can be obtained
from another file or from a shared font resource or
server. When a font reference is encountered, step 400,
the software must determine whether the desired font is
already available to it, step 402. This would be the
case, for example, if the font had already been stored in
a cache (for example, in step 247, illustrated in Figure
10) or stored on a local data store, such as a hard disc
drive 28 (illustrated in Figure 1). If the font is
available, step 404, naturally the software would use it.
- on the other hand, step 406, if the desired font
is not available, the software obtains a substitute font.
A substitute font is appropriate to the extent it has and
metrics that are close to those of the desired font, so
that the text drawn using the substitute font will appear
in substantially the same place and form as text drawn
using the desired font, which is done in steps 420
through 428. In one embodiment, a substitute font is
created based on a complete set of font metrics that are
specific to the desired font. In PDF format documents,
for example, a font descriptor object provides metrics
includiﬁg dimensional information such as ascent,
descent, boundary block, height of capital letters,
italics angle, and width of vertical stems, and also
including other descriptive information such as whether
this is a serif or sans serifvfont, whether it is a fixed
width font, whether it is an all caps font, and whether
it is mixed height all caps font. A second PDF object,
the width array object, completes the description of font

10

15

20

25

30

35

’

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

metrics: it provides width information for each letter in
the font. Using such metrics contained in the document,
or metrics obtained from a database or a data file on
computer system 10 or on a server on a network, or, in
the absence of better information, default metrics, an
appropriate substitute font may be created by using a
font manager software module, such as the Font Chameleon
product available from Ares Software Corporation of
Foster City, California, or the Infinifont product
available from ElseWare Corporation of Seattle,
Washington. The Acrobat reader product uses the Adobe
Multiple Master font technology to create substitute
fonts. Alternatively, the available font metrics, if
any, for the desired font may be used to adopt a font
from among the font resources. available on, or readily
available to, computer system 10. When a substitute font
has been obtained, whether by creation or adoption, it is
used, step 408, to render the corresponding text; and the
software continues processing the document, step 410.

For situations in which the desired font has
characters that are not generally available in fonts --
such as a ligature fi character, for example —-- or the
desired font is a set of graphics -- such as chess pieces
or icons, for example -- the substitute font may have
place-~holding symbols, or even consist entirely of just
one place-holding symbol (such as an empty box), that is,
or are, displayed in accordance with the available font
metrics.

When the desired font becomes available, step 420,
because it has been downloaded as embedded font in the
electronic document, for example, the affected portions
of the display are redrawn, steps 422 through 428. (If
more than one desired font had been replaced by a
substitute font, all of the desired fonts could be
processed together in these steps.) First, the bounding

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 66 -

rectangle or rectangles of any text rendered using the
substitute font are determined, step 422. These
rectangles surround the areas used drawing with the
substitute font and the areas to be used drawing with the
desired font. Next, step 424, an off-screen bitmap
buffer is created with the boundaries corresponding to
the intersection of the bounding rectangle or rectangles,
limited to the visible portion of the page. The off-
screen buffer is created to have the same pixel depth and
color characteristics as the display. Then, in step 42s,
the available parts of the page that intersect with the
off-screen bitmap buffer are redrawn into that buffer
using the desired font or fonts, which are now available.
(Some parts of the page, such as a large image, for
example, may not be available, and the process should
proceed without them, as will be described in reference
to Figure 13c.) When the off-screen bitmap buffer is
complete, it is drawn onto the display, step 428. If the
display is generated, as is conventional, from a display
buffer, this is done by copying the off-screen bitmap
buffer into the corresponding area of the display buffer.
In an alternative embodiment, the unit of display is some
multiple (or fraction) of a page, and the processing of
embedded fonts is delayed until the entire unit of
display has been drawn, allowing the user (reader) of an
electronic document to see text and graphics on all of
the visible region as soon as possible. In a further
alternative embodiment, drawing into an off-screen bitmap
buffer is delayed until all desired fonts are available,
which can reduce the time spent rendering off screen. In
a further alternative embodiment, multiple small
rectangles are joined to form one or more larger
rectangles when creating off-screen bitmap buffers, which
also can simplify the processing of the off-screen bitmap
buffer. In a further alternative embodiment, the method

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

is applied only to some of the universe of possible
desired fonts, so that foreign language fonts, for
example, are excluded. The Acrobat reader product, for
example, does not apply progressive rendering if the
desired font has characters not found in the Adobe
standard character set; nor does it apply progressive
rendering in the absence of font-specific font metrics.
It should be noted that to take maximum advantage
of the methods for progressive rendering of fonts, one
should control the location of embedded fonts in the
process of reading or downloading a document, so that
embedded fonts that are subject to substitution are read
or downloaded after the main text and graphics. However,
if extraction of embedded fonts is time consuming, it may
be advantageous to use the method even if the embedded
fonts are located before, or are intermingled with, the
text and the graphics. It is also advantageous, in
connection with this method, to be able to download
embedded fonts with a backgroﬁnd process while
maintaining a user interface during the initial display
of the document. Finally, it will be understood that if
detailed and complete font metrics are available, the
desired font can be emulated very closely by the
substitute font and the layout of text on the display can
be preserved and user distraction can be minimized when
the display is updated. User distraction is minimized
because the update of the display will be a ripple of
subtle character shape changes rather than more
significant changes to the flow of text in the document.
If the descriptive information is less complete or
specific, or if default font metrics have to be used,
more significant reformatting of the document will occur,
including, possibly, significant reposition of the text
in the final display. Further information on techniques
of font substitution may be found in commonly-assigned

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

United states Patent No. 5,185,818 to Warnock for Method
of Substituting Fonts and Displaying Characters, the
disclosure of which is incorporated herein by this
reference.

5 Turning to Figure 13b, another aspect of
optimizing user interaction with electronic documents in
on-line environments is to ensure that interactive
document elements, such as hypertext links, are active in
the usef interface as soon as possible. The term

10 *annotation” will be used herein in the sense it has in
the context of PDF documents: .the term *annotation”
includes interactive elements that are associated with a
page but not properly part of the printed page itself,
such as hypertext links, icons selectable to invoke a

15 multimedia presentation, and so on, which respond to
user input from devices such as a keyboard and mouse.
-Making annotations responsive to user input before they
are rendered is useful to users that frequently visit the
same document on-line. Such a user may know that a

20 particular region of the display has an annotation and
choose to click there before any graphics for the
annotation are drawn. Thus, in an optional method for
early activation of active elements, when an active
element to be displayed is encountered while processing

25 the document for display, step 440, the software first
(or in the foreground) identifies the selectable boundary
of the active element, step 442; instructs the cursor
display process to change the appearance of the cursor
appropriately when the cursor is displayed within the

30 selection boundary, step 444; and enables response to
selection activity by the user, such as clicking or entry
of keyboard commands, step 446. Second (or in a
background process or otherwise in the normal course of
displaying the document), the display associated with the

35 active element is rendered, step 448.

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

Turning to Figure 13c, a viewer program may
optionally employ a method for deferring (delaying the
downloading and/or display of) large objects. This
method provides useful optimization of the display of

5 electronic documents, particularly in on-line
environments, by displaying information and text,
graphics, annotations, and other gqguickly-displayed
elements before large and/or complex objects, such as
bitmap images, are downloaded and rendered. Electronic

10 documents in formats such as PDF are capable of
representing complex relationships between text,
graphics, images, and annotations.. Page contents can be
overlapping and can be specified in the electronic
document to have a specific display order. 1In the method

15 for deferring large objects, if the electronic document
specifies that a segment of text, for example, should
.appear on top of an image, for example, the text will be
drawn first, allowing the using to be interacting with
the portions of the electronic document as soon as they

20 become available. Thus, when a large object is
encountered, step 460, the rendering of the object is
deferred, step 462, and the guickly-displayed elements,
such as text and graphics, are drawn as soon as they
become available, step 464. In electronic document

25 formats, such as PDF, that precisely describe the exact
location of every object on a page, the delayed rendering
of some objects does not cause other objects to shift
their locations, minimizing user disturbance as page
elements are progressively displayed.

30 Where text that has already been drawn is
specified as appearing on top of an image that has not
yet been drawn, to continue the example, an off-screen
buffer is created, step 466, into which are rendered the
deferred object and all other drawing elements in their

35 proper order, to the extent they appear within the

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

boundaries of the off-screen buffer, step 468, but
without -waiting for any objects. (such as images yet to be
downloaded) that are not then available. The boundary
rectangle of the off-screen bitmap buffer corresponds to
5 the boundary of the large object, limited to the visible
portion of the page. The off-screen bitmap buffer is
created to have the same pixel depth and color
characteristics as the display. When the off-screen
buffer is completed, it is drawn onto the display, step
10 470. In an alternative embodiment, for a page oriented
viewer, if more than one page is visible at once, the
rendering of large objects is deferred until all wvisible
pages have been drawn, to allow the reader of the
document to see the quickly-displayed content on all of
15 the visible pages as soon as possible. In a further
alternative embodiment, parts of an image are rendered
-into the image’ s off-screen buffer as soon as the parts
become available, and then displaYed, rather than waiting
for the entire image to be downloaded. This may readily
20 be done, for example, in image object formats that
organize image information in bands. 1In a further
alternative embodiment, the processing of several large
objects is combined in an off-screen buffer defined by
the union of their boundaries, which can reduce the time

25 spent in rendering off screen.

IMIZED DOCUMENT YouT
Turning to Figure 14, a linearized document layout
is a refinement of the optimal format that has already
been described. The linearized layout (or format) allows
30 a view to achieve efficient incremental access in an
environment having the characteristics of a low speed
connection to a World Wide Web site. Among the
advantages of the linearized format are that, when an
electronic document is opened, display of a first page

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

¥

- 71 -

occurs quickly. The first page to be viewed can be an
arbitrary page of the document; it is not necessarily
page zero, although would often be the most common
choice. Other advantages are shared with other
alternative embodiments of the optimized electronic
document format, which have already been described,
including the gquick display of pages after they are
requested, the incremental display of page contents
(particularly for pages delivered over a slow channel)
with the most useful data being displayed first, and the
enablement of user interaction, such as following a
hypertext link, before an entire page has been received
and displayed. The optimized formats, including the
linear format, achieve these advantages for electronic
documents of arbitrary size, with the total number of
pages in the document having little or no effect on user-
perceived performance in viewing any particular page.
The World Wide Web environment has characteristics
that affect the performance of clients reading, and
servers providing, electronic documents. The access
protocol (HTTP) is a transaction consisting of a request
and a response. After a transaction has completed,
obtaining more data requires a new request-response
transaction, and the connection between client (viewer)
and server does not ordinarily persist beyond the end of
a transaction, although some implementations may attempt
to cache an open connection in order to expedite
subsequent transactions with the same server. Round-trip
delay can be significanti a transaction can take up to
several seconds, independent of the amount of data
requested. BAnd finally, the data rate may be limited: a
typical bottleneck is a 14.4 kilobaud or 28.8 kilobaud
modem link between the client and an Internet service
provider. Other wide—area network architectures
generally share these characteristics. Even CD-ROMs

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

share some of these characteristics, since they have
relatively slow seek times and limited data rates
compared with magnetic media.

In a soon-to-be-supported extension to the HTTP
protoceol, a client can request retrieval of portions of a
document by specifying one or more offset-length byte
ranges as part of the transaction request (that is, as
part of the URL). Each range can be relative to either
the beginning or the end of the file. The client can
specify any number of ranges in the request, and the
response will consist of multiple blocks, each properly
tagged. In some environments, including some World Wide
Web environments, the client can initiate multiple
concurrent transactions in an attempt to obtain'multiple
responses in parallel. This is commonly done, for
instance, to retrieve in-line images referenced from a
HTML document. However, because multiple concurrent
transactions appear to be less than optimal for PDF
format documents in some important environments, the
linearized format is designed so that good performance is
achieved under the constraint that only one transaction
is active at a time. For that reason, the linearized
format provides the client sufficient information to
determine the byte range for every object reguired to
display a given page so that the client can specify the
appropriate byte ranges in a single reguest.

Turning now to its implementation in a PDF format
document, the linearized layout begins with a
conventional PDF header 480 and trailer 504. The header
is followed by an object 482 containing linearization
parameters, which include the format version identifier;
the length of the entire file; an offset-length pointer
to the primary hint table stream object 486 (described
below); an optional offset-length pointer to an optional
overflow hint table stream object 500, if any; an object

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

¥

- 73 -

number of the first page’' s page object; and, optionally,
the page number of the first page to be displayed, which
by default is page zero.

The first page cross-reference table 484 is a
cross-reference table (such as was described in reference
to tables 58 in Figures 3a and 3b) for all the first
page’' s objects and all document-level objects appearing
before the first page. This is a cross-reference table
for all of the objects needed to display the first page
of the document, including the parent page object for the
first page, which has no attributes inherited from any
other page’ s page object. The objects tabulated in table
484 include all objects that the parent page object
refers to, to any arbitrary depth, if they affect the
display of the page. It also contains entries for the
dictionary of hint tables at the beginning of the primary
hint table stream object 486. The first page cross-
reference table 484 is a valid cross-reference table
according to the PDF specification, although its position
in the document file is unconventional. Its trailer
portion gives the offset to the main cross-reference
table 502 near the end of the file, as well as any cross-
reference table attributes required to display the
document.

The primary hint table stream object 486 may
either precede or follow the first page objects 492. 1In
an alternative embodiment, the data contents of the
primary hint table stream object 486 are stored in one or
multiple secondary files, residing optionally on separate
host computers. A stream object is a type of object
defined by the PDF format: it is a sequence of binary
bits that may have compression associated with it. Each
hint table consists of a portion of the stream object
486, beginning at the position in the stream indicated by
the dictionary. It is expected that each table will

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

35

encode the required information as compactly as possible,
because tables in the document need not be designed for
random access, and that the client will read and decode
the tables once and retain the information as long as the
document remains open. The hint table stream object 486
includes a dictionary showing the positions of the hint
tables in the object. These positions are relative to
the beginning of the stream data.

A hint table encodes the position of a group or
class of objects in the document file. The
representation is either explicit, an offset from the
beginning of the file, or implicit, from the cumulative
lengths of preceding objects. 1In either case, the
resulting positions are interpreted as if the hint table
stream object itself were not present. This is so
because the length of a hint table stream object is in
general not known until after it has been generated and
information in the hint table should not depend on
knowing that length in advance. If an overflow hint
table stream object 500 exists, obtaining it requires
issuing an additional transaction. However, providing
for an overflow object allows a linearizer program to
write a linearized file with space reserved for the
primary hint table stream object 486 of an estimated
size, and then to go back to fill in the hint tables. If
the estimate is too small, the linearizer program can
append an overflow ocbject containing the remaining hint
table data, which allows writing the file in one pass,
which may be advantageous in some circumstances. If
there is an optional overflow hint table stream object,
the contents of the two stream objects are to be
concatenated and treated as if they were a single
unbroken stream object.

Hint tables are not used in processing the objects
of the first page, so their position relative to the

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10

15

20

25

30

first page is a matter of choice. If the hint tables
come before the first page objects, the client can abort
the initial transaction quickly in the event that the
document’ s selection of the first page to be displayed is
not the same as the client’ s selection. On the other
hand, if the hint tables follow the first page objects,
displaying the document's selection of the first page is
accomplish more quickly, while opening an arbitrary page
is delayed by the time required to receive the document’s
first page. When an electronic document file is
linearized, the linearization process may accept, as a
user option, a decision whether to favor opening at a
first page or opening at an arbitrary page.

Turning to Figures 15a and 15b, the hint tables of
object 486 include a page offset hint table 488 and a
shared object table 490, which two tables perform the
.same function as range table 64, shown in, and described
in the context of, Figure 3b. The page offset table 488
gives, for each page, the information required to locate
that page. Additionally, for each page except the first,
it enumerates all shared objects that the page
references, directly or indirectly. The shared object
table 490 gives the information required to locate shared
objects. In the linearized format, shared objects can be
physically located in either of two places. Objects that
are referenced from the first page are co-located with
the first page objects. All other shared objects are
located in the shared objects section 498. A single
entry in the shared object table 490 can describe the
group of adjacent objects, if only the first object in
the group is referenced from outside the group. The page
of fset table 488 refers to an entry in the shared object
table 490 by a simple index that is its sequential
position in the table.

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 76 -

Other hint tables provide information for document
elements that relate to the document as a whole. For
example, the bookmark hint table allows the client to
find bookmarks; and the thread hint table allows the

5 client to find all the beads in thread of beads that
defines an article. As in a newspaper, where an-article
may extend across several pages, and “article” here is a
list of *beads”, where each bead is a rectangle on a
particular page, in which rectangle a portion of the

10 article’s text or illustrations may be found. With the
thread hint table, the client (viewer) may request all of
the objects required to display the entire article in one
transaction.

Thus, hint tables provide indexing information

15 that enables the client to construct a single request for
all the objects required to display any page of the
-document or to retrieve certain other information
efficiently. Hint tables may also contain information to
optimize access to application-specific information by

20 plug-ins.

Hint tables are not 1ogica11y part of the
information content of the document; they can be derived
from the document. When the document is regenerated, the
hint table stream objects 486 and 500 would not be part

25 of the document unless they were specially generated.

Any action that changes the document -- for instance
appending an incremental update -- may invalidate some or
all of the hint tables. The resulting document file
would still be valid as a PDF file, but not necessarily

30 as a linearized file.

Turning to Figure 15a, a few of the elements of
page offset hint table 488 still need to be described.
The “number of objects in page” is a value, which when
added to the " least number of objects in a page”, given

35 in the header, give the actual number of objects in the

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

page. The first object of the first page has an object
number given in the linearization parameters object 482.
The first object of the second page has an object number
of 1. Object numbers for subsequent pages can be
determined by accumulated the number of objects in all
previous pages.

The *“page length in bytes” is a value which, when
added to the *“least length 6; page in bytes” , given in
the header, gives the total length of the page in bytes.
The location of the first object of the first page can be
determined from the cross-reference table entry for that
object. The location of subsequent pages can be
determined by accumulating the length of all previous
pages. The “number of bytes from start of page to start
of contents stream” is a value which, when added to the
“« jeast start of contents offset”, given in the header,
gives the offset and bytes of the content stream object
relative to the beginning of the page. The “length of
contents in bytes” is a value which, when added to the
* jeast contents length”, given in the header, is the
length of the contents stream object in bytes, including
object overhead.

The page offset hint table 488 includes, for each
shared object referenced from each page, a “shared object
identifier® and “fraction giving position in contents of
first reference”. The former is an index into shared
object hint table 490. The latter indicates where in the
page’ s contents data the-shared object is first
referenced. As has been described, this is interpreted
as the numerator of a fraction, whose denominator is
specified in the page offset hint table header. The
numerator can take on additional values, nominally
indicating fractions past the end of the contents data,
to indicate that the shared object is not referenced from

the contents, but is needed by annotations or other

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 78 -

objects that are drawn after the contents. Different
values may be used to designate when the shared object is
needed with respect to the types of non-shared objects
that are at the end of the page.

Shared object hint table 490 is illustrated in
Figure 15b. The page offset hint table 488 refers to an
entry in the shared object hint table 490 by a simple
index that is the entry’' s sequence in the table.
Following the header information, which is self-
explanatory, there are two sequences of shared object
group entries: the ones for objects 492 located in the
first page are followed by the ones for objects located
in the shared objects section 498. The entries have the
same format in both cases. For convenience of
representation, the first page (492 objects) may be
treated as if it consisted entirely of shared objects.
That is, the first entry of the shared objects table
refers to the beginning of the first page and has an
object count and length that span all of the initial non-
shared objects. The next entry refers to a group of
shared objects in the first page objects 492. Subsequent
entries span additional groups of either shared or non-
shared objects consecutively, until all shared objects in
the first page have been enumerated.

In the information that appears for each shared
object group, the “number of objects in group” is a value
that is one less than the actual number of objects in the
group. The object number first object of the first page
is given in the linearization parameters object 482 at
the beginning of the document. Object numbers for
subsequent entries can be determined by accumulating the
number of objects in all previous entries, until all
shared objects in the first page have been enumerated.
Following that, the first object in the shared objects
section 498 has a number that can be obtained from the

10

15

20

25

30

35

WO 97/12328

CA 02233023 1998-03-24

PCT/US96/15725

shared object table header, “object number of first
objects, in shared objects section”. The “total length
of objects in bytes” is a value which, when added to the
“ Jeast length of a shared object group in bytes”, given
in the header, gives the total length of the object group
in bytes. The location of the first object of the first
page is given in the page offset table header
information. The locations of subsequent object groups
can be determined by accumulating the lengths of all
previous object groups until all shared objects in the
first page have been enumerated. Following that, the
location of the first object in the shared objects
section 498 can be obtained from the header. The

“ signature present flag” indicates the presence or
absence of a signature. The ‘optionai signature” when
present is, in one embodiment, a 16-byte MD5 hash
dintended to identify uniquely the resource that the group
of objects represents. This enables the client to
substitute a locally cached copy of the resource instead
of reading it from the document.

Turning to Figure 15c¢, each entry in the thumbnail
hints table 506 describes the thumbnail for a single
page. The pages are considered in page number order,
starting at page zero even if page zero is not the first
page to be displayed. Thumbnails may exist for some but
not all pages. The header for this table is self-
explanatory. In the entries, the “count of preceding
pages lacking thumbnails” indicates how many pages
without thumbnails lie between the previous entry’ s page
in this one. If all pages have thumbnails, the value of
this field is always zero and the value of “bits needed
to represent count of thumbnail-less pages” in the header
can be zero. The *“length of thumbnail object in bytes”
is a value which, when added to the “least length of
thumbnail object in bytes”, given in the header, gives a

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

total length of the thumbnail object. The “for each
shared object: shared object identifier" is an index into
the shared object hint table 490.

Turning to Figure 15d, a format for generic hint
tables 508 is illustrated. Certain categories of objects
are associated with the document as a whole rather than
with individual pages. It is sometimes useful to provide
hints for accessing such objects efficiently. For each
category of hints that is supported with a hint table,
there is an entry in the hint table stream object 486
giving the starting position of the corresponding hint
table within the stream. The illustrated format of
generic hint table 508 provides a generic representation
for such hints. This representation is useful for
standard categories of objects, such as outlines,
threads, and named destinations. It may also be useful
for application-specific objects accessed by plug-ins.
The generic hint table 508 describes one or more groups
of objects that are located together in the document.

For each group, the hints contain sufficient information
to enable the client (document reader process) to
construct a request for all objects in the group,
including any shared objects that the objects in the
group may reference. When there is single group, the
hint table refers to all the objects in the category,
which are to be accessed at the same time. When there
are multiple groups, each group'is identified by a simple
index that is its sequential position in the table,
counting from zero. What the object groupings signify
depends on the object category.

The header information for a generic hint table
508 is self-explanatory. In entries for each object
group, the “total length of objects in bytes” is a value
which, when added to the “least length of an object group
in bytes”, given in the header, gives the total length of

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

the object group. The “for each shared object referenced
from group: shared object identifier®” is an index into
the shared object hint table 490. The number of bits
needed to represent this identifier is given in the
header of the page offset hint table 488.

In the first page object section 492 are all the
objects, including shared objects, required to display
the first page of the document. The following ordering
of objects is useful for providing early user interaction
an incremental display of first page data as it arrives.
First, annotation objects to a depth sufficient to allow
the annotations to be activated; information required to
draw the annotations can be deferred, since annotations
are always drawn on top of (hence after) other contents.

After first page object section 492 are sections
containing, in sequence, the non-shared objects 494 for
the next page through the non-shared objects 496 for the
last page. For each page other than the first page to be
displayed, the objects required to display the page are
grouped together, except for resources and other objects
that are shared with other pages. Shared objects are
located in the shared objects section 498. The starting
file offset and length of any page can be determined from
the hint tables. The order of objects in non-first
pages, like the order in the first page, should
facilitate early user interaction and incremental display
of page data as it arrives. Generally, in the linearized
format, there will be little benefit from interleaving
contents with resources because most resources other than
images -- in fonts in particular -- are shared among all
of the pages and therefore reside in the shared objects
section 498. Image objects are usually not shared, but
they should appear after other page objects because the
rendering of images can be deferred, as has been
described in reference to Figure 13c.

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

The shared objects section 498 contains objects
that are referenced from more than one page and that are
not referenced (directly or indirectly) from the first
page. The shared object table 490 contains an index of
these objects. The order of the objects in the shared
object section 498 is essentially arbitrary. However, it
is desirable that where a resource consists of a
multiple-level structure, all components of the structure
are grouped together. Thus, if only the top-level object
is referenced from outside the group, the group can be
described by a single entry in the shared object table
490, minimizing the size of that table.

The main cross-reference table 502 is the cross-
reference table for all objects in the file other than
those listed in the first page cross-reference table 484.

An electronic document may also have other objects
{(not shown) that are part of the document but are not
required for displaying pages. Such objects should be
divided into functional categories, and objects within
each category grouped together, so that each may have a
corresponding hint table to provide the information
required for efficient access by a client. The
linearized format allows for additional hint tables for
application-specific data accessed by plug-ins. Such
additional hint tables may have a generic format or the
format of the hint table can be private to the
application.

From the foregoing, it will be understood that the
linearized format allows for the efficient retrieval and
display of electronic documents. Thus, when a document
is initially accessed, the client can issue a request to
retrieve the entire file starting at the beginning. The
data for the first page to be display will thus quickly
appear and be available. Like the objects for the first
rage, the primary hint table stream object will also be

10

15

20

25

30

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

retrieved and part of the initial sequential read of the
file. It is expected that the client will interpret and
retain all of the information in hint tables. When the
hint tables and first page objects have been read, the
client may decide to continue reading the remainder of
the document sequentially, or the client may decide to
abort the initial transaction and access subsequent pages
using separate transactions requesting byte ranges. As
soon as the hint tables have been received, the client
has sufficient information to request retrieval of any
page of the document, given its page number.

The ordering of objects and pages and the use of
hint tables in the linearized format allows for
progressive update of the display and early opportunities
for user interaction when data arrives slowly. To this
end, the client (viewer) should recognize whether objects
referenced on a page have arrived and, where possible,
adapt the order in which it acts on objects to the
object’ s nature and availability. One such order of
action is the following, the elements of which have been
described in reference to Figures 13a, 13b, and 13c:
first, activate annotations without drawing them; then
draw contents but defer unavailable images and use
substitute fonts for unavailable fonts; then draw
annotations; then draw images together with anything that
overlaps them; and then re-draw text using desired fonts,
together with anything that overlaps the text. As has
been described, the late drawing of images and the re-
drawing of text may be done using an off-screen buffer;
however, these may also be drawn directly into the buffer
from which the display is generated.

EXAMPLE OF DOWNLOADING A REQUESTED PAGE
In an example of the processes of Figures 10 and
12, the first page of an electronic document is

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

downloaded from an optimized document file of the present
invention and displayed in steps 224, 226, 228, and 230
of Figure 10. The user then requests to display page 9
in the viewer at step 234 of Figure 10. In this example,
the data needed to display page 9‘occurs in the byte
ranges of 25000-29000, 112000~113000, and 200000-202000
in the optimized document file, where the first range is
the page contents data, and the second two ranges are
shared objects referred to by the page contents. The
finder finds the cross reference table and offset 25000
for page 9 in step 238 and provides the offset to the
viewer. The finder determines the additional ranges at
step 240. At step 242, the viewer connects to the source
computer and downloads a predetermined amount of data,
such as 1K. The finder, meanwhile, has determined that
the page contents actually continues to byte 29000. If
no interleaving is desired, the finder additionally
requests byte range 26000-29000 to be downloaded in step
300 of Figure 12. Also, the finder has determined by
examining sharing pages list 136 that page 9 has two
shared objects with sharing ID’s of 1 and 2. The finder
thus consults the shared object offset table 272 and
requests the corresponding shared object byte ranges
112000-113000 and 200000-202000 to be downlocaded at the
same connection in step 300 of Figure 12. Alternatively,
as described in reference to the linearized optimized
format illustrated in Figure 14, all of the byte ranges
may be requested in one transaction, so that steps 238,
240, 242, 244, and 246 of Figure 10 operate as one step.
If interleaving is implemented, then in step 288
of Figure 12, the finder examines the next shared object
in the object list, which has a sharing ID of 1 and a
fraction number of 1. In step 292, the finder requests
page contents from the beginning of the page to first
fraction. Thus, assuming the fraction is 0/8, each

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

fraction is 4000 / 8 = 500 bytes. Since the first
fraction references the examined shared object, the
finder requests a range of 25000-25500. In step 294,
the finder then requests ranges for any shared objects in
the first fraction; there is only one in the object list.
The finder thus requests the range of 112000-113000 for
this shared object as determined from the shared object
offset table 272. Since the 5th eighth of the page
contents includes a reference to the only other shared
object on the page (sharing ID of 2), the process returns
to step 286 after step 294. In the next iteration, the
finder examines the next shared object in the object
list, which has a sharing ID of 2 and is in fraction
number 5. The next four eighths of page contents are
thus retrieved in step 292, up to and including the 5th
eighth that includes the examined shared object (or,
alternatively, step 292 can be implemented multiple (5)
times by requesting one fraction each time through the
loop, and skipping step 294 until the shared object
reference is found). Thus, a range of page contents from
bytes 25501-27500 of the document file is requested (four
fractions = 2000 bytes). Then, in step 294, the shared
object referenced by the 5th fraction at range
200000-202000 (and its cross reference information) is
requested. Since no further shared objects are
referenced in the page conténts, the finder requests the
remaining portion of page contents in step 296, which has
a byte range of 27501-29000 (and its cross reference
information). All these byte requests are performed
during a single connection to the host computer.
Alternatively, as described in reference to the
linearized optimized format illustrated in Figure 14, all
of the byte ranges may be requested in one transaction.

Thus, the process of the present invention allows
data for an entire requested page to be read from a

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

source computer with only one connection to (or,
alternatively, one transaction with) the source, after
the first page or the initial set of tables has been
downloaded. The page data can thus be downloaded and
displayed more quickly, with less waiting time for the
user. In the interleaving process, shared objects can be
downloaded right after portions of page content that
reference those shared objects. This allows portions of
a page to be displayed to the user immediately, without
having to wait for the shared objects to be downloaded.
While this invention has been described in terms
of several particular embodiments, it is contemplated
that alterations, modifications and permutations thereof
will become apparent to those skilled in the art upon a
reading of the specification and study of the drawings.
For example, the present invention is described as being
used for portable electronic documents, such as PDF
documents. However, other files or collections of data
which, for example, include disjointed objects/data,
and/or shared objects/data are well suited to be
optimized and downloaded by the present invention. In
addition, the shared object interleaving of the described
invention is not necessary to provide an optimized file
for faster downloading. Also, many of the steps or
processes described in the described embodiments are
specific to a described embodiment, and can be changed or
omitted in other embodiments. For example, the use of
the finder and viewer in the downloading process of
Figure 10 can be changed to suit a particular embodiment.
Furthermore, certain terminology has been used for the
purposes of descriptive élarity, and not to limit the
present invention. For example, it is not intended that
the term “table” be read narrowly to include only data
structures having a conventional tabular structure;
rather, the term should encompass all forms of data

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 87 -

structure or structures that carry the required
information. It is therefore intended that the following
appended claims include all such alterations,
modifications and permutations as fall within the true
spirit and scope of the present invention.

What is claimed is:

10

15

20

25

30

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

_ss -
1. A method for reading a specific page of an electronic
document, the method comprising:
reading page offset information early during
reading of the document; and
using the page offset information to locate the
contents of the specific page, whereby the
specific page is read without the necessity
of reading other pages in the document.
2. The method of claim 1 where
the reading of the document comprises downloading
the electronic document across a computer
network; and
the page offset information comprises a page
offset hint table
3. fThe method of claim 1 further comprising:
reading a shared object hint table before reading
- a second page of the document.
4. The method of claim 1 further comprising:
reading a bookmark hint table before reading of a
second page of the document.
5. The method of claim 1 further comprising:
reading an article thread hint table before
reading of a second page of the document; and
reading a thumbnail hint table before the reading
of a second page of the document.
6. The method of claim 1 wherein each category of
objects associated with the document as a whole has a
corresponding hint table.
7. The method of claim 2 wherein the page offset
information is read before the downloading of more than
one page of the document has been completed.
8. The method of claim 2 further comprising a step of
displaying the specific page requested by the user on an
output display device.

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

- 89 -

9. The method of claim 8 wherein a portion of the
specific page is downloaded by a viewer and all remaining
portions of the specific page are determined by a finder
process using the page offset table and downloaded during
one connection with the host computer.
10. The method of claim 2 wherein the specific page
includes page contents and shared objects, where the
shared objects are downloaded interleaved between
portions of the page contents.
11. A method for providing an optimized document file,
the optimized document file including a plurality of
pages, the method comprising the steps of:
providing document information in the optimized
document file, said document information
including page content information that
describes individual pages of the optimized
- document file, wherein said page content
information for said individual pages is
provided contiguously in the optimized
document file; and
providing a page offset table in the optimized
document file, the page offset table
including page offset information to be used
to locate the document information for
individual pages of the document file.
12. The method of claim 11 further comprising the step
of providing first page offset information for a first
page of the optimized document file, the first page
offset information describing the locations of all
portions of the first page in the optimized document
file, the first page offset information being provided
separate from said page offset information.
13. The method of claim 12 further comprising providing
special objects not needed for the display of the first
page of the document after the shared objects in the

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

optimized document file.
14. Apparatus comprising a computer-readable storage
medium tangibly embodying program instructions comprising
instructions forming a display process to:
display on the display screen a page-based
document stored on a host computer,
connect with the host to download page offset
information located at a predetermined
location in the page-based document;
download a specific page of the page-based
document requested by a user without the
necessity of downloading other pages in the
document; and
display the downloaded page on the display screen.
15. The apparatus of claim 14 wherein the storage
medium further comprises instructions to:
- download a first portion of page content on a page
of the page-based document, the portion of
page content including a reference to a
shared object;
download the shared object referenced by the first
portion of the page; and
download a second portion of page content of the
page of the page-based document.
16. The apparatus of claim 15 wherein the shared object
is downloaded from the page-based document.
17. The apparatus of claim 15 wherein the instructions
further comprise instructions to:
derive the locations of the first portion of page
content, the second portion of page content,
and the shared object in the page-based
document utilizing a page offset table
downloaded from the page—-based document.
18. The apparatus of claim 15 wherein the instructions
further comprise instructions to:

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

display the first portion and the second portion
of page content on an output display device,
wherein use of the shared object is needed to
display the first portion of page content.

19. The apparatus of claim 15 wherein the page content

includes text to be displayed, and the shared object is a

font object needed to display the text.

20. The apparatus of claim 14 wherein the

computer-readable storage medium is a program instruction

store, the apparatus further comprising:
a digital processor coupled to the program
instruction store;
a display screen coupled to the digital processor;
and
instructions stored in the program store forming a
finder process, comprising instructions to:

- use the page offset information to provide a
location of the specific page in the
document to the display process so that
the display process can download the
specific page.

21. The apparatus of claim 20 wherein when the display

process is downloading a portion of a specific page

during a connection with the host, the finder process
additionally requests additional portions. of the specific
page, and the additional portions of the page are
downloaded to the display process to be displayed.

22. The apparatus of claim 20 wherein the page offset

information is read before the downloading of more than

one page of the document has been completed.

23. The apparatus of claim 20 wherein the finder can

derive the beginning offsets of each page of the document

from the page offset information.

24. The apparatus of claim 21 wherein the display

process is coupled to a viewa; process in the program

10

15

20

25

30

35

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

memory comprising instructions to select and display
pages of the page-based document on the display screen.
25. A method for displaying on a display device of a
computer an electronic document having an object and text
specified as having to be displayed as if drawn on top of
the object, the method comprising:
deferring displaying the object in favor of
displaying the text;
displaying the text;
then displaying the portion of the object that is
specified to appear as if drawn underneath
the text; and
then displaying the text again, whereby the text
is displayed as if drawn on top of the
object.
26. The method of claim 25, further comprising:
- drawing the portion of the object that is
specified to appear as if drawn underneath
the text (the underneath portion) into a
buffer the contents of which are not
displayed (the off-screen buffer);
drawing the text into the off-screen buffer after
the underneath portion has been drawn into
the off-screen buffer; and then
displaying the contents of the off-screen buffer,
whereby the text is displayed as if drawn on
top of the object.
27. The method of claim 26 wherein
the object is a large object or a bitmap image;
the text includes all of the text specified in the
document to appear displayed on top of the
large object; and
the underneath portion that is drawn into the off-
screen buffer is substantially the entire
object.

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

28. The method of claim 26 further comprising:
downloading the document to the computer from an
other computer across a network; and
performing the step of displaying the text without
5 waiting for that part of the document
containing the object to be downloaded.
29. The method of claim 26 further comprising:
displaying a cursor that moves with a mouse or
pointing device;
10 changing the appearance of the cursor to indicate
when it is located where an annotation in a
PDF format electronic document will be
displayed; and
making the annotation in a PDF format electronic
15 document responsive to input from the user
without waiting for the annotation to be
- displayed.
30. A method for displaying on a display device coupled
to a computer an electronic document having text

20 specified as having to be drawn using a font that is not
on the computer (the desired font), the method
comprising:

initially displaying the text using a substitute
font different from the desired font;

25 obtaining the desired font on the computer; and

then

redisplaying using the desired font that area in
which the substitute font was used in the
step of initially displaying the text.

30 31. The method of claim 30, wherein the document or the
computer has font description metrics for the desired
font, the method further comprising:

using the font description metrics for the desired
font to create the substitute font.

+

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

32. The method of claim 30, further comprising:
adopting a font from a font resource on a local
data store as the substitute font.

02233023 1998-03-24

CA

PCT/US96/15725

WO 97/12328

ﬁmN

ve

H31NdWOI

A0IA3d

cc

|

-OHOINW

HOSS300Hd

am>Ow

Z2W=00oC >

81

9l

Wvd

- - — e . v e om o e e a m mm w — e e mm e e e e W e am b= e e e =

Yo
W

SUBSTITUTE SHEET (RULE 26)

02233023 1998-03-24

CA

PCT/US96/15725

WO 97/12328

2/24

vy 2niy,

R

< wetcrore @l

» 0%t b

A

e

ado)

PINUIICD AR JO 1D 1%U 2410103 01 boung moue AY) XA

-soudon Jo 151) dwpduron

v aptaud apmd Stp) 0] SERINOOY] SHIPIIROCG amupIOYNS
I PR MO S 0 YIRUINOG P 0 3| 3{1 0 sjdreuiagim) AX W
Noox P Ag pay e axdor ays 01 03 01 Jwrey WewReoq A AAL)

Ipind siy) Jo UARDS

Fuado a4 o) WA 01 78q 001 A)) UL VONNY 2% 18] A AMD

apind o)

j038vd b ag1 0103 01 24 P01 VL vonng e AN U1 A1)

U0 EO0|

01424 1004 01 WA 01 Jeq (008 U1 U1 BO1ING I2g 00 Y11

@V WRWRNP BqaINY Y3nosy) a%d 01 M01| VO

BOHEULIOJUL AIOW 10] TEATTOOP TjanoT|) allismoig] 25 puexa
104 2pmd s jo wd RipOUE 01, paRulL, 8 PYI 31 SHEDPUI
@i pautjsapu(y ‘paroiput ool 3y o3 03 01 1% pauifsepua Yo

__]

~eev
rdaes] O
peu aen (]

o rmg(Jo

o

Ph b

\ apind s y3nong ardiaey 01 HMpacoxd sAN IS

(A% —_
oy

apinb aujjuo sjy} asn 0} MOH

voipez g

b I dian

-y

s
L

e

WU e W] ()
ssummmsruuey ()
FPULD 3 ALK D A
sueun g husay (]
treunsep Qeabumiy b ()
tusen g hames) ()
codod Sumiiy (]

sobed bummy ()
wetrédundien (j
winbumna ()

amunep {0 HrXIpU IS (]
A bupny 4]

o huen c

cymemss huxn)

i
A

- rwa

.. powueson r)u SReun 0 Buanteg ()

i Jarem 300 ¥ Poas Ubieven kA bureniag (]

& 90y eIy PUB SHUNI (] RSV At Q

x| s st eyt 104 We0eN 041 (]

susde werzhupuissin ()

iy $uen ()
canun g yinon) finreg ()
s 9l 30 aipdon (]

Ut e el §G Buman (]
Apndet weunsep fumes ()

wempd vnes ()
srmmpd ety ()
semnpd own (]
texnnpd aend
o buney) (j o

RGN I0) N8IV LR LRde 1A (]

W3PS W e 0K (]

wamepame| ()

ASBM U I Pty 94§)
spegmessy (]

nprer) Moy (]

sbuw > peecy]

oy Y PIY (] &

a1 e (]

oppd e 00 $1AN (]

MO MU o RESIY 280DV (]

sotg ey (] g

TR RB PIS o]

mopm HoD] Mem () .m:..... 1

14

\h.?

gp 2"

| SUBSTITUTE SHEET (RULE 28)

02233023 1998-03-24

CA

PCT/US96/15725

WO 97/12328

3/24

gz 2mbif;

< 4

—
wig 'R a BN0% b

2

‘awdoy
PANUNLOI AR Jo uduDS AU 3410108 0) VoG AOLR A XH1D) L

“s1doy jo 151 IRidwod
e aptaasd 3pm3 S) 10§ SYRWIN0G Y], DYPRUINOO] IV IPIOGRS LT
IPIY PR MOY S 0) HRWNOOQ € JO Y] 241 01 3] JurL A1 3§01 NEW H..H.u.m s

¥k} BY1 Aq pax e 0o ay 03 03 01 e JrewRooq Y NH|) feivrege

aping sif) Jo UADS
Surado 21 01 WA 03 1 001 Y U1 vOUNG AT 19L] W1 ANYD M

pind
10 230 1dn 2410108 01 :q 1001 9Y) U1 VONNG dde] ION) XD

TVOIRI0}
snoraaid 1104 01 WINEY 0) Jeq J00) Y1 11 VONNG R g 0N I XD

‘suRwnoop Lqoly Ydnonyg aded 03 moy uo
UOIPIOJU! A0Us 10§ STUSWMB0P (anaA[) silissng s Idwers
10,4 3pma sty) Jo ued PYOR 01, pIRUIL, S BYI K SARIPUY p—
1) paupti() pawaiput 51do 941 0103 0) a1 pautpapun 1) |

2pind sy y3nongr ae 81 01 HMPecoxd s I8
wv_zm aujjuo sjy) asn o) MOH

[Ny a

1))

0§

SUBSTITUTE SHEET (RULE 26)

WO 97/12328

CA 02233023 1998-03-24

a/24

PCT/US96/15725

/54

_~ PAGE P CONTENTS

N

— 56a

NN SPECIAL OBJECT |

~61

7 %
/ PAGE P CONTENTS
Z g

~ 56b

7/, PAGE P CONTENTS

NN

~56¢C

SN

SHARED OBJECT

ﬁgure 3a

160

e s VA
//// PAGE P CONTENTS

k\

~ 56d

N

SHARED OBJECT X\~ 60

T

\\\\\\\

™t

N\CROSS REFERENCE TABLE \>y— 58

RN RANGE TABLE \\\?

\64

PAGE 1 PORTION OF

//CROSS REFERENCE TABLE

\-66

T

PAGE 1 CONTENT%
// TSI

~ 56

\EA\G}Q\OET}GN
NN

L 56

///////

/ PAGE N CONTEN%
PPN IPIIPY

Figure 3b

56

SN

N\ ALL SHARED OBJECTSN\}~ 60

/ 7 /S 27 77 72777
/ SPECIAL OBJECTS

S /61

LAV A

LE/4~ 58

N

~68

SUBSTITUTE SHEET (RULE

26)

WO 97/12328

CA 02233023 1998-03-24

PCT/US96/15725

5/24
72
G

MAKE INTERNAL LIST
OF ALL OBJECTS AND
LISTS OF SHARED 74
OBJECTS FROM
NON-OPTIMIZED FILE

y

WRITE DOCUMENT

DATA TO OPTIMIZED 76

FILE ACCORDING TO 1T—
INTERNAL LIST

y

WRITE CROSS g
REFERENCE TABLE AT 7
END OF OPTIMIZED FILE

y

WRITE FIRST PAGE PORTION

OF CROSS REFERENCE _{-80

TABLE NEAR BEGINNING OF
OPTIMIZED FILE

y

DEVELOP PAGE OFFSET
TABLE AND PLACE IN 82
OPTIMIZED FIiLE T

.

WRITE RANGE TABLE
FOR FIRST PAGE AT
BEGINNINGOF). 84
OPTIMZED FILE

y . .

ﬁ;qure 4

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725
6/24
-
\ 4
COPY INHERITANCE DATA | _ gg
74 DOWN PAGE TREE 1
A
v_
ADD PAGE TREE OBJECTS | 97
TO PAGE TREE LIST 112
v (92)
. = COMPLETE SHARING
=1 pcepagesin | NO PAGES LIST AND
PP+ DOCUMENT? INCORPORATE SHARED
M P=P+1] AND OTHER OBJECTS IN
INTERNAL LIST
STORE v YES
NUMBER OF RETRIEVE PAGE
OBJECTS ON OBJECT FOR PAGE P AND y
PAGE P WRITE ID TO INTERNAL LISTH 94 <DONEj1 14
_ T (Y
110 WRITE PAGE ICONS TO
PAGE ICON LIST, IF L. 96
APPLICABLE . 5

GET NEXT OBJECT ON
PAGE P IN DESIGNATED } gg
ORDER OF OBJECTS 7

100

OBJECT ALREADY
EEN EXAMINED OR IS OBJEC
A FORCED SHARED
OBJECT?

ADD OBJECT ID TO
INTERNAL LIST 4~ 102

v

OBJECTS, IF APPLICABLE

108
ANY

OTHER OBJECTS ON
PAGE P?

YES

SUBSTITUTE SHEET (RULE 26)

YES

PROCESS SPECIAL . 103

104

PROCESS
SHARED OBJECT

(106

4
ADD OBJECT ID TO
SHARED OBJECT
LIST

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725
7/24
150
¥
0BJ FLAG OBJ FLAG OBJ FLAG OBJ FLAG
152«~——53‘ 1 ~1132] 0 = 245 1 = 270 1 F— eee
— ~N AN
((
15oj 154 152 154 150f .
P Figure 5a
148
6
13\ '(142 ~142b
PAGE 1D FRAC ID FRAC
— =
144 146 140
A 4
PAGE 144 [ID FRAC_/146 .
138~ 5 ~ 0|3 ﬁgure 64
l 142 } \ 140
PAGE ID FRAC ID FRAC
] 1 |1 pb—>| 2|5
138~ 9 2 N -
196 140
144 t142a
Y
PAGE ID FRAC ID__FRAC
138 — 10 ~ 0 | 4 - 2 | 7
[\ 4 < 140
l 142 142c

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328

8/24

116

PCT/US96/15725

104

~ ,‘Fz;gure 6

118 120
IS YES /[
OBJECT THE FIRST ADD P TO SHARING
SHARED OBJECT ON PAGES LIST
PAGE P?
124
L
s o ADD OBJECT NODE
N AND SHARING ID
DBJECT IN OBJECT LIS TO OBJECT LIST OF
OF PAGE P? PAGE P

126

1S
OBJECT THE
FIRST SHARED OBJECT
ON ORIGINAL
PAGE?

128

J

YES | ADD ORIGINAL PAGE

| NUMBER TO SHARING
PAGES LIST

LIST OF ORIGINAL

ADD OBJECT NODE
AND SHARING ID 4~ 132

TO OBJECT LIST OF
ORIGINAL PAGE

133

FORCED SHARED
OBJECT OR IS OBJECT

RECURSIVELY

YES PERFORM STEPS 104
AND 106 (FIG. 5) ON

ALL CHILDREN OoF 4131

OBJECT

SUBSTITUTE SHEET (RULE 26)

WO 97/12328

CA 02233023 1998-03-24

SELECT NEXT
PAGE IN SHARING
PAGES LIST

RETRIEVE NAMES OF DESIRED
RESOURCE OBJECTS FROM
RESOURCE DICTIONARY OF

SELECTED PAGE

I

SEARCH FOR RETRIEVED
NAMES OF RESOURCE

Ve o

CONTENTS OF
SELECTED PAGE

:

PCT/US96/15725

112

Figure 7

170
s

ADD SHARED OBJECT
ID'S TO END OF
INTERNAL LIST

l (171
ADD TABLE OF
CONTENTS, PAGE ICON,
AND PAGE TREE
OBJECT ID'S TO END OF
INTERNAL LIST

i (172

OBJECTS IN PAGE 164

REMOVE SHARED OBJECT
ID'S FROM INTERNAL LIST
AND SUBTRACT
APPROPRIATE NUMBER OF
OBJECTS FOR PAGES
HAVING SHARED OBJECTS

FOR EACH FOUND RESOURCE
OBJECT, WRITE FRACTION
NUMBER OF PAGE CONTENTS
THAT INCLUDES THE FOUND
RESOURCE OBJECT INTO
OBJECT LIST, IF THIS IS THE
FIRST OCCURRENCE OF FOUND

RESOURCE OBJECT ON PAGE\

l {166

SET CONTENTS FLAG
ASSOCIATED WITH
EACH FOUND

SHARED OBJECT LIST

RESOURCE OBJECT IN }~168

:

REORDER SHARED
OBJECT ID'S SO THAT
SHARED OBJECTS
REFERENCED BY PAGE
CONTENTS ARE
ORDERED FIRST

174

176

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

10/24
180

DETERMINE
LENGTHOF L 182
EACH PAGE

A

WRITE
HOUSEKEEPING A~ 184
PAGE INFORMATION

, Tzéqure S

WRITE HOUSEKEEPING

INFORMATION FOR

SHARED OBJECT IF A4— 186
APPLICABLE

y

COMPRESS AND WRITE
NUMBER OF OBJECTS FOR

EACH PAGE AND PAGE _k- 188

LENGTH INFORMATION

y

FOR EACH SHARED

OBJECT, DETERMINE - 190

SHARED OBJECT LENGTHS
AND SIGNATURES

4

FOR EACH PAGE, DETERMINE SHARED | 192
FLAG, NUMBER OF SHARED OBJECTS,
SHARING ID'S, APPROXIMATE CONTENTS
SIZE, AND DIVIDENDS FOR PAGE P

COMPRESS .

INFORMATION AND -1~ 7194

WRITE TO PAGE OFFSET
TABLE IN FILE

DONE

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

11/24

/68

PAGE OFFSET TABLE

HOUSEKEEPING INFORMATION

NUMBER OF PAGES IN DOCUMENT
LEAST NUMBER OF OBJECTS ON A PAGE
LOCATION OF CROSS REFERENCE TABLE
SIZE (IN BITS) TO REPRESENT # OBJECTS ON PAGE
LEAST SIZE OF A PAGE IN DOCUMENT
SIZE (IN BITS) TO REPRESENT LARGEST PAGE LENGTH
NUMBER OF SHARED OBJECTS IN DOCUMENT
NUMBER OF NON-CONTENTS SHARED OBJECTS
LEAST SIZE OF A SHARED OBJECT
FRACTION SIZE
SIZE (IN BITS) OF DIVIDEND FOR FRACTION

FOR EACH PAGE

NUMBER OF OBJECTS ON PAGE

LENGTH (SIZE) OF PAGE

LENGTHS OF SHARED OBJECTS ON PAGE
- SIGNATURES FOR SHARED OBJECT
SHARED OBJECT FLAG

SHARING ID'S
APPROX. PAGE CONTENTS FRACTION
FRACTIONS
RANGE TABLE 466
HOUSEKEEPING INFORMATION
NUMBER OF RANGES
VERSION

SIZE (IN BITS) FOR EACH LENGTH
SIZE (IN BITS) FOR EACH OFFSET

POINTER TO PAGE OFFSET TABLE

OFFSETS
LENGTHS
SIGNATURE FLAGS
SIGNATURES J

f]-'l;qure 9a

SUBSTITUTE SHEET (RULE 26)

WO 97/12328

CA 02233023 1998-03-24

12/24

200

WRITE

HOUSEKEEPING 202

PAGE INFORMATION

Y

WRITE POINTER TO

PAGE OFFSET TABLE | -204

206

TOTAL
PAGE SIZE LESSTHAN
MINIMUM?

YES

WRITE OFFSETS AND

LENGTHS INTERLEAVING

PAGE CONTENT AND

SHARED OBJECTS

A 208

PCT/US96/15725

Figure 9

212
(

WRITE OFFSETS AND
LENGTHS FOR
CONTIGUOUS PAGE
CONTENT

214
§

WRITE OFFSETS AND
LENGTHS FOR
SHARED OBJECTS

Coone

210

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328

USER
REQUESTS

VIEWER CONNECTS TO HOST TO
DOWNLOAD HEADER AND RANGE
TABLE OF OPTIMIZED DOCUMENT

OWNLOAD
FIRST PAGE?

YES f228

CONNECT AND DOWNLOAD
FIRST PAGE DATA AND PAGE
OFFSET TABLE FROM FILE
USING RANGE TABLE AND
DISPLAY PAGE DATA

v

FINDER DETERMINES
PAGE INFORMATION 230

NO

QUESTS A PARTIC- YES

PCT/US96/15725

220

231

CONNECT AND.

DOWNLOAD PAGE
OFFSET TABLE

y

FINDER DETERMINES |, 232
PAGE INFORMATION

v

VIEWER REQUESTS

PAGE OFFSET FROM
FINDER

v
FINDER CONSULTS PAGE
INFORMATION TO DET-
ERMINE FIRST OFFSET FOR
REQUESTED PAGE AND RET-
URNS FIRST OFFSET TO 4238
VIEWER

v

FINDER DETERMINES
ADDITIONAL RANGES FOR . 240
REQUESTED PAGE

v

4-236

ULAR PAGE OF

ROCUMENT? 234

Figure 10

247

VIEWER CONNECTS TO
HOST TO DOWNLOAD | 540
DATA OF REQUESTED

PAGE AT OFFSET

v 244

ADDITIONAL RANGES OF PAGE

DURING VIEWER CONNECTION

FINDER REQUESTS ANY

DATA FOR REQUESTED PAGE

v

, {
248 PLACE

REQUESTED PAGE
AND APPROPRIATE
SHARED OBJECTS

IN CACHES

r—

DOWNLOADING OF , 246
ADDITIONAL OFFSET

RANGES CONTINUES
WHILE VIEWER DISPLAYS

FIRST OFFSET RANGE

SUBSTITUTE SHEET (RULE 26)

WO 97/12328

CA 02233023 1998-03-24

14/24

250

PCT/US96/15725

230

GENERATE PAGE
START OFFSET
TABLE FROM PAGE
OFFSET TABLE

252

Tz;qure 11

:

GENERATE TABLE OF
FIRST OBJECTS ON

EACH PAGE FROM

PAGE OFFSET TABLE

| 254

.

GENERATE SHARED
OBJECT OFFSET

TABLE FROM PAGE J}~ 256

OFFSET TABLE

:

GENERATE SHARING
PAGES LIST FROM
PAGE OFFSET TABLE

|-258

260

(Coone

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

15/24
264 268
\ TABLE OF FIRST ~
PAGE START OBJECT ID ON
OFFSET TABLE EACH PAGE
151 1
L 4 270
266‘<:: 223 63 \:77
- 4622 75
8190 83
9621 92
12810 101
SHARED OBJECT
OFFSET TABLE
100000 272
111700 s
274 — 1
T~— 112000
200001
489900
495000

,‘Fl;qure 11a

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03

WO 97/12328

16/24

280

y

FINDER REQUESTS
CROSS REFERENCE | 282
TABLE DATA T
284
NO

INTERLEAVING?

-24

PCT/US96/15725

244
e

300
§

FINDER REQUESTS
PAGE CONTENTS
OBJECT AND OTHER

MORE NO

SHARED OBJECTS

EXAMINE NEXT
SHARED OBJECT

YES
OBJECT IN
CACHE?

FINDER REQUESTS PAGE
CONTENTS DATA UP TO NEXT
FRACTION OF PAGE CONTENTS
HAVING SHARED OBJECT

]

OBJECTS NEEDED FOR
DISPLAY OF PAGE

296
<
FINDER ’/
REQUESTS REST
OF PAGE
CONTENTS DATA
(IF ANY)

298

y

(
FINDER
REQUESTS ANY
NON-CONTENTS
SHARED OBJECTS
FOR PAGE

DONE

302

~ 292

féqure 12

y

FINDER REQUESTS
NON-CACHED SHARED
OBJECTS REFERENCED BY
REQUESTED PAGE
CONTENTS DATA

1294

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328

17/24

QSEW /3a

WHEN A FONT
REFERENCE IS
ENCOUNTERED
400

DESIRED

FONT
AVAILABLE?
402
" YES
NO
| !
USE GET
DESIRED SUBSTITUTE
FONT FONT
404 406
USE
SUBSTITUTE
FONT
408

CONTINUE
PROCESSING
410

PCT/US96/15725

WHEN DESIRED
FONT
BECOMES
AVAILABLE
420

!

DETERMINE BOUNDING
RECTANGLE(S) OF TEXT
RENDERED IN SUBSTITUTE
FONT

422

|

CREATE OFF-SCREEN BUFFER
FOR VISIBLE PART OF BOUNDING
RECTANGLES

424

\

REDRAW EVERYTHING INTO

THE OFF-SCREEN BUFFER

USING THE DESIRED FONT
426

A

DRAW THE OFF-SCREEN
BUFFER ONTO THE
DISPLAY

428

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328

18/24

WHEN AN
ACTIVE
ELEMENT IS
ENCOUNTERED
440

FIRST SECOND

IDENTIFY THE
ACTIVE BOUNDARY
OF THE ELEMENT

442

l ENABLE CURSOR

~i [§ Vgl ot

UMANGE

444

ENABLE THE
ACTIVITY IN THE

PCT/US96/15725

&W 734

RENDER THE

ELEMENT
448

BOUNDARY
446

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328

19/24

WHEN AN
OBJECT IS
ENCOUNTERED
460

DEFER RENDERING THE
OBJECT

462

DRAW THE TEXT AND/OR
GRAPHICS
464

CREATE AN OFF-SCREEN BUFFER
BOUNDED BY THE VISIBLE PORTION OF
THE OBJECT

466

REDRAW INTO THE OFF-
SCREEN BUFFER
468

DRAW THE OFF-SCREEN BUFFER
ONTO THE DISPLAY
470

SUBSTITUTE SHEET (RULE 26)

PCT/US96/15725

ngzié;zz7qz 73¢c

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

20/24

Sigere 14

HEADER 480
LINEARIZATION PARAMETERS 482
FIRST PAGE CROSS-REFERENCE TABLE 484
PRIMARY HINT TABLE STREAM 486
PAGE OFFSET HINT TABLE 488
SHARED OBJECT HINT TABLE 490
FIRST PAGE OBJECTS 492
(INCLUDING SHARED OBJECTS)
NEXT PAGE OBJECTS 494
LAST PAGE OBJECTS | 496
SHARED OBJECTS 498
(OPTIONAL) OVERFLOW HINT 500
TABLE STREAM
MAIN CROSS-REFERENCE TABLE 202
TRAILER 504

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

21/24

Sgare 15a

PAGE OFFSET HINT TABLE

HEADER INFORMATION

LEAST NUMBER OF OBJECTS IN A PAGE

BITS NEEDED TO REPRESENT NUMBER OF OBJECTS IN PAGE
LEAST LENGTH OF PAGE IN BYTES

BITS NEEDS TO REPRESENT PAGE LENGTH

LEAST START OF CONTENTS OFFSET

. BITS NEEDED TO REPRESENT START OF CONTENTS OFFSET
LEAST CONTENTS LENGTH

BITS NEEDED TO REPRESENT CONTENTS LENGTH

BITS NEEDED TO REPRESENT NUMBER OF SHARED OBJECT REFERENCES
BITS NEEDED TO IDENTIFY SHARED OBJECT

BITS NEEDED TO REPRESENT FRACTION

DENOMINATOR USED TO DIVIDE PAGE CONTENTS INTO FRACTIONS

EOR EACH PAGE

NUMBER OF OBJECTS IN PAGE
PAGE LENGTH IN BYTES
NUMBER OF BYTES FROM START OF PAGE TO START OF CONTENTS
STREAM
LENGTH OF CONTENTS IN BYTES
NUMBER OF SHARED OBJECTS REFERENCED FROM PAGE
FOR EACH SHARED OBJECT REFERENCED FROM PAGE:
SHARED OBJECT IDENTIFIER
FRACTION GIVING POSITION IN CONTENTS OF FIRST REFERENCE

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

22/24

ng&da/zwce 754

SHARED OBJECT HINT TABLE

HEADER INFORMATION

OBJECT NUMBER OF FIRST OBJECT IN SHARED OBJECTS SECTION

LOCATION OF FIRST OBJECT IN SHARED OBJECTS SECTION

NUMBER OF SHARED OBJECT ENTRIES FOR FIRST PAGE

NUMBER OF SHARED OBJECT ENTRIES FOR SHARED OBJECTS SECTION

BITS NEEDED TO REPRESENT NUMBER OF OBJECTS IN A SHARED
OBJECT GROUP

LEAST LENGTH OF A SHARED OBJECT GROUP IN BYTES

BITS NEEDED TO REPRESENT LENGTH OF A SHARED OBJECT GROUP

EOR EACH SHARED OBJECT GROUP

NUMBER OF OBJECTS IN GROUP
TOTAL LENGTH OF OBJECTS IN GROUP
SIGNATURE PRESENT FLAG

OPTIONAL SIGNATURE

~

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

23/24

9 ﬁw /5¢

THUMBNAIL HINT TABLE

HEADER INFORMATION

OBJECT NUMBER OF FIRST OBJECT IN THUMBNAILS SECTION

LOCATION OF FIRST OBJECT IN THUMBNAILS SECTION

NUMBER OF ENTRIES IN THUMBNAIL TABLE

BITS NEEDED TO REPRESENT COUNT OF THUMBNAIL-LESS PAGES

LEAST LENGTH OF A THUMBNAIL OBJECT IN BYTES

BITS NEEDED TO REPRESENT LENGTH OF A THUMBNAIL

BITS NEEDED TO REPRESENT NUMBER OF SHARED OBJECT REFERENCES

FOR EACH ENTRY

COUNT OF PRECEDING PAGES LACKING THUMBNAILS

LENGTH OF THUMBNAIL OBJECT IN BYTES

NUMBER OF SHARED OBJECTS REFERENCED FROM THUMBNAIL
FOR EACH SHARED OBJECT: SHARED OBJECT IDENTIFIER

D

SUBSTITUTE SHEET (RULE 26)

CA 02233023 1998-03-24

WO 97/12328 PCT/US96/15725

24/24

Lgada/wce 75d

GENERIC HINT TABLE

HEADER INFORMATION

OBJECT NUMBER OF FIRST OBJECT

LOCATION OF FIRST OBJECT

NUMBER OF OBJECT GROUPS

BITS NEEDED TO REPRESENT NUMBER OF OBJECTS IN A GROUP

LEAST LENGTH OF AN OBJECT GROUP IN BYTES

BITS NEEDED TO REPRESENT LENGTH OF AN OBJECT GROUP

BITS NEEDED TO REPRESENT NUMBER OF SHARED OBJECT REFERENCES

EOR EACH OBJECT GROUP

NUMBER OF OBJECTS IN GROUP
TOTAL LENGTH OF OBJECTS IN BYTES
NUMBER OF SHARED OBJECT REFERENCES

FOR EACH SHARED OBJECT REFERENCED FROM GROUP: SHARED OBJECT
IDENTIFIER

SUBSTITUTE SHEET (RULE 26)

~22

24
COMPUTER
DEVICE

31

O WX o T WOm - maw —

m [

™

! i
' i
' T
' 1
;]
! v
! H
' 1
, i
! H
“ Y w—u __
: o !
1 w H
1 O '
: w28 2 :
! Lo "M X :
. =0)
" o 3 "
1 [« % :
X Yy “
' 1
! 1
: iy Y “
i ,\._ SwIox> amow J i
| Py :
. 1
: 1
] ‘ |
! 1
“ I . 2 !
]

' < S |
: 2 o 1
%

H :
! 1
: 1
H 1

	Page 1 - COVER_PAGE
	Page 2 - COVER_PAGE
	Page 3 - ABSTRACT
	Page 4 - DESCRIPTION
	Page 5 - DESCRIPTION
	Page 6 - DESCRIPTION
	Page 7 - DESCRIPTION
	Page 8 - DESCRIPTION
	Page 9 - DESCRIPTION
	Page 10 - DESCRIPTION
	Page 11 - DESCRIPTION
	Page 12 - DESCRIPTION
	Page 13 - DESCRIPTION
	Page 14 - DESCRIPTION
	Page 15 - DESCRIPTION
	Page 16 - DESCRIPTION
	Page 17 - DESCRIPTION
	Page 18 - DESCRIPTION
	Page 19 - DESCRIPTION
	Page 20 - DESCRIPTION
	Page 21 - DESCRIPTION
	Page 22 - DESCRIPTION
	Page 23 - DESCRIPTION
	Page 24 - DESCRIPTION
	Page 25 - DESCRIPTION
	Page 26 - DESCRIPTION
	Page 27 - DESCRIPTION
	Page 28 - DESCRIPTION
	Page 29 - DESCRIPTION
	Page 30 - DESCRIPTION
	Page 31 - DESCRIPTION
	Page 32 - DESCRIPTION
	Page 33 - DESCRIPTION
	Page 34 - DESCRIPTION
	Page 35 - DESCRIPTION
	Page 36 - DESCRIPTION
	Page 37 - DESCRIPTION
	Page 38 - DESCRIPTION
	Page 39 - DESCRIPTION
	Page 40 - DESCRIPTION
	Page 41 - DESCRIPTION
	Page 42 - DESCRIPTION
	Page 43 - DESCRIPTION
	Page 44 - DESCRIPTION
	Page 45 - DESCRIPTION
	Page 46 - DESCRIPTION
	Page 47 - DESCRIPTION
	Page 48 - DESCRIPTION
	Page 49 - DESCRIPTION
	Page 50 - DESCRIPTION
	Page 51 - DESCRIPTION
	Page 52 - DESCRIPTION
	Page 53 - DESCRIPTION
	Page 54 - DESCRIPTION
	Page 55 - DESCRIPTION
	Page 56 - DESCRIPTION
	Page 57 - DESCRIPTION
	Page 58 - DESCRIPTION
	Page 59 - DESCRIPTION
	Page 60 - DESCRIPTION
	Page 61 - DESCRIPTION
	Page 62 - DESCRIPTION
	Page 63 - DESCRIPTION
	Page 64 - DESCRIPTION
	Page 65 - DESCRIPTION
	Page 66 - DESCRIPTION
	Page 67 - DESCRIPTION
	Page 68 - DESCRIPTION
	Page 69 - DESCRIPTION
	Page 70 - DESCRIPTION
	Page 71 - DESCRIPTION
	Page 72 - DESCRIPTION
	Page 73 - DESCRIPTION
	Page 74 - DESCRIPTION
	Page 75 - DESCRIPTION
	Page 76 - DESCRIPTION
	Page 77 - DESCRIPTION
	Page 78 - DESCRIPTION
	Page 79 - DESCRIPTION
	Page 80 - DESCRIPTION
	Page 81 - DESCRIPTION
	Page 82 - DESCRIPTION
	Page 83 - DESCRIPTION
	Page 84 - DESCRIPTION
	Page 85 - DESCRIPTION
	Page 86 - DESCRIPTION
	Page 87 - DESCRIPTION
	Page 88 - DESCRIPTION
	Page 89 - DESCRIPTION
	Page 90 - DESCRIPTION
	Page 91 - CLAIMS
	Page 92 - CLAIMS
	Page 93 - CLAIMS
	Page 94 - CLAIMS
	Page 95 - CLAIMS
	Page 96 - CLAIMS
	Page 97 - CLAIMS
	Page 98 - DRAWINGS
	Page 99 - DRAWINGS
	Page 100 - DRAWINGS
	Page 101 - DRAWINGS
	Page 102 - DRAWINGS
	Page 103 - DRAWINGS
	Page 104 - DRAWINGS
	Page 105 - DRAWINGS
	Page 106 - DRAWINGS
	Page 107 - DRAWINGS
	Page 108 - DRAWINGS
	Page 109 - DRAWINGS
	Page 110 - DRAWINGS
	Page 111 - DRAWINGS
	Page 112 - DRAWINGS
	Page 113 - DRAWINGS
	Page 114 - DRAWINGS
	Page 115 - DRAWINGS
	Page 116 - DRAWINGS
	Page 117 - DRAWINGS
	Page 118 - DRAWINGS
	Page 119 - DRAWINGS
	Page 120 - DRAWINGS
	Page 121 - DRAWINGS
	Page 122 - REPRESENTATIVE_DRAWING

