77104638 A2 I 10 0 00O O A

=

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
20 September 2007 (20.09.2007)

(10) International Publication Number

WO 2007/104638 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/EP2007/051810

(22) International Filing Date:
26 February 2007 (26.02.2007)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/377,505 16 March 2006 (16.03.2006) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; Po Box 41, Portsmouth Hampshire
PO6 3AU (GB).

(72) Inventor; and
(75) Inventor/Applicant (for US only): JOHNS, Charles, Ray
[US/US]; 10703 Cassia Drive, Austin, Texas 78759 (US).

(74) Agent: WALDNER, Philip; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2IN (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS,
LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY,
MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS,
RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

[Continued on next page]

(54) Title:

METHOD, SYSTEM, APPARATUS, AND ARTICLE OF MANUFACTURE FOR PERFORMING CACHELINE

POLLING UTILIZING A STORE AND RESERVE INSTRUCTION CROSS REFERENCE TO RELATED APPLICATIONS

101

ook) 1028
@ CELL — CELL OBJECT crir) (cer) (cer)
(PROURAM*DATA) / — lo8A
((:En) (crrr)(CFIT) /
- CILL B
VISUALIZER ‘ —
CLIENT —\/ F\/
NETWORK
104
1068 —
(qiu) (crrL (CELL \\CE
‘ VISUALIZIR ,
CLIENT
N
m
\| (crir) (crr)
(D 1088
CELL CELL
DTV

(57) Abstract: A method, system, apparatus, and article of manufacture for performing cacheline polling utilizing a store and
& reserve instruction are disclosed. In accordance with one embodiment of the present invention, a first process initially requests
& an action to be performed by a second process. A reservation is set at a cacheable memory location via a store operation. The
first process reads the cacheable memory location via a load operation to determine whether or not the requested action has been
completed by the second process. The load operation of the first process is stalled until the reservation on the cacheable memory
location is lost. After the requested action has been completed, the reservation in the cacheable memory location is reset by the

second process.

WO 2007/104638 A2 | 0A0 00 0 00000 0 OO 0 O

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

METHOD, SYSTEM, APPARATUS, AND ARTICLE OF MANUFACTURE FOR
PERFORMING CACHELINE POLLING UTILIZING A STORE AND RESERVE
INSTRUCTION CROSS REFERENCE TO RELATED APPLICATIONS

BACKGROUND

Technical Field

Embodiments of the present invention relate generally to data processing
system operation and more particularly to a method, system, apparatus, and
article of manufacture for performing cacheline polling utilizing a store

and reserve instruction.

Description of the Related Art

At the advent of modern computing, information handling (e.g., computer)
systems comprised a limited number of components including a single
processor, system memory, and a small number of input/output (I/0) devices
such as display devices, keyboards, and, in conjunction with the creation
of graphical user interfaces, cursor control devices (e.g., mice,
trackballs, or the like). As information handling systems have developed
however, the number of system components which interface with each other
via communication and competition for shared system resources has
increased dramatically. Modern, conventional information handling systems
may therefore include a wide variety of system components (e.g., multiple
processors using SMP, ASMP, NUMA, or similar configurations, co-
processors, direct memory access controllers, and I/0 devices each of

which may include additional processors, registers, and memory) .

In order to coordinate the activity of system components in modern
information handling systems, a number of techniques have been
implemented. Interrupts, coupled with interrupt service routines or
handlers may be utilized by information handling system components to
communicate and/or to indicate the occurrence of an event. Similarly,
memory-mapped I/0 and port or “port-mapped” I/0 may be utilized to provide
communication between system components (e.g., processors and I/0

devices) .

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

The coordination of activity among elements of an information handling
system is of particular importance in the transfer of data between
elements for the purposes of performing input/output (I/0) operations.

For example, after an information handling system processor has deposited
data in a buffer intended for handling by an I/0 device or another
processor in a multiprocessor system, the data providing processor will
typically notify the I/0 device or data-receiving processor that the
transfer of data to the buffer is complete. In a conventional information
handling system, such notification is typically performed by writing a
specific data value into a memory mapped input/output (MMIO) register
within the I/0 device or data-receiving processor. After a write
operation to an associated MMIO register has been detected, the I/0 device
or data-receiving processor may retrieve data from the buffer via a direct

memory access (DMA).

In some conventional information handling systems the completion of DMA
retrieval of data can be detected via MMIO register polling or via
interrupts. Neither MMIO register polling nor interrupts is an efficient
mechanism for detecting the completion of the DMA however because
interrupt overhead is typically too great for relatively small buffers and
MMIO register polling inefficiently utilizes bus bandwidth which could

otherwise be used for DMA transfers, increasing overall system throughput.

In another conventional technique for detecting the completion of a DMA
known as “cacheline polling” a predetermined “busy” indicator data wvalue
is written into a cacheable memory location, typically known as a buffer
flag or semaphore, prior to notifying an I/0 device (e.g., via MMIO) of a
buffer's availability. The processor then polls the buffer flag for a
predetermined “not busy” indicator data value to detect the completion of
a corresponding DMA. Since the data is already modified in the
processor's cache, cacheline polling does not generate any additional bus
activity. After the completion of (DMA) data retrieval from the buffer,
the I/0 device or receiving processor writes a “not busy” completion data
value to the buffer flag. The new buffer flag value can then be accessed
by the data-providing processor via a normal cache coherency protocol
during which the “busy”-indicating buffer flag data in cache memory is

invalidated or replaced by a new completion value.

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

From a system standpoint, cacheline polling is an efficient polling
mechanism. However, in order to implement cacheline polling the data-
providing processor executes a set of “polling” instructions repeatedly
until the DMA transfer is complete and the buffer flag value is updated,
thus wasting valuable system resources (e.g., processor cycles, bus
cycles, electrical power, instruction or thread dispatch slots, or the

like).

SUMMARY

A method, system, apparatus, and article of manufacture for performing
cacheline polling utilizing a store and reserve instruction are provided
herein. 1In accordance with one embodiment of the present invention, a
first process initially requests an action to be performed by a second
process. A reservation is set at a cacheable memory location via a store
operation. The first process reads the cacheable memory location via a
load operation to determine whether or not the requested action has been
completed by the second process. The load operation of the first process
is stalled until the reservation on the cacheable memory location is lost.
After the requested action has been completed, the reservation in the

cacheable memory location is reset by the second process.

The foregoing is a summary and thus contains, by necessity,
simplifications, generalizations and omissions of detail; consequently,
those skilled in the art will appreciate that the summary is illustrative
only and is not intended to be in any way limiting. As will also be
apparent to one of skill in the art, the operations disclosed herein may
be implemented in a number of ways including implementation in hardware,
software, or a combination thereof, and such changes and modifications may
be made without departing from this invention and its broader aspects.
Other aspects, inventive features, and advantages of the present
invention, as defined solely by the claims, will become apparent in the

non-limiting detailed description set forth below.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its numerous features
and advantages made apparent to those skilled in the art by referencing

the accompanying drawings in which:

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

Fig. 1 illustrates a communications network including an information

handling system according to an embodiment of the present invention;

Fig. 2 illustrates a high-level block diagram of an information handling

system according to an embodiment of the present invention;

Fig. 3 illustrates a block diagram representation of a selected portion of
an information handling system capable of performing cacheline polling
utilizing a store and reserve instruction according to an embodiment of

the present invention;

Fig. 4 illustrates a state diagram of a state machine for managing a
reservation for a store and reserve instruction according to an embodiment

of the present invention; and
Fig. 5 illustrates a flow diagram of process to perform cacheline polling
utilizing a store and reserve instruction according to an embodiment of

the present invention.

The use of the same or similar reference symbols within the accompanying

drawings is intended to indicate similar or identical items.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

The following sets forth a detailed description of at least the best
contemplated mode for carrying out the one or more systems, devices and/or
processes described herein. The description is intended to be

illustrative and should not be taken to be limiting.

In the following detailed description, numerous specific details such as
specific method orders, structures, elements, and connections have been
set forth. It is to be understood however that these and other specific
details need not be utilized to practice embodiments of the present
invention. In other circumstances, well-known structures, elements, or
connections have been omitted, or have not been described in particular
detail in order to avoid unnecessarily obscuring this description.

r”

References within the specification to “one embodiment,” “an embodiment,”

or “embodiments” are intended to indicate that a particular feature,

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

structure, or characteristic described in connection with the embodiment
is included in at least one embodiment of the present invention. The
appearance of such phrases in various places within the specification are
not necessarily all referring to the same embodiment, nor are separate or
alternative embodiments mutually exclusive of other embodiments.
Moreover, various features are described which may be exhibited by some
embodiments and not by others. Similarly, various requirements are
described which may be requirements for some embodiments but not other

embodiments.

Embodiments of the present invention provide a store and reserve
instruction which may be utilized for performing cacheline polling
embodied within a method, information handling system, and machine-
readable medium article of manufacture as described herein. Fig. 1
illustrates a communications network including an information handling
system according to an embodiment of the present invention. In one or
more embodiments of the present invention, a conventional load (LD)
instruction executed subsequent to a store and reserve (STAR) instruction
as described will complete execution and return data after a previously-
set load reservation, which sets the load reservation, has been “lost” or
reset and will otherwise typically stall. In one embodiment, a STAR
instruction may be utilized within a single cacheline polling routine loop

to correctly manage reservations.

As illustrated in Figure 1, system 101 includes a network 104 to which a
plurality of information handling systems (e.g., computers and computing
devices) are coupled. In various embodiments of the present invention,
network 104 may comprise a LAN, a global network, such as the Internet, or
any other communications network. In the embodiment of Fig. 1,
information handling systems coupled to network 104 include client
computers 106, server computers 108, personal digital assistants (PDAs)
110, digital television (DTV) 112 and may further comprise other wired or
wireless computers and computing devices not shown. In the illustrated
embodiment, the processing elements employed by the member information
handling systems of network 104 are constructed from a common computing
module. These processing elements also preferably all have the same
instruction set architecture (ISA) and perform processing in accordance

with a common processor instruction set.

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

In the embodiment of Fig. 1, the number of computing modules included
within any particular processing element depends upon the processing power
required by the information handling to be performed by that processing
element. For example, since servers 108 of system 101 perform more
processing of data and applications than clients 106, servers 108 contain
more computing modules than clients 106. PDAs 110, on the other hand,
perform a relatively smaller amount of processing. In the illustrated
embodiment, each computing module contains a processing controller and a
plurality of identical processing units for performing parallel processing

of the data and applications transmitted over network 104.

This homogeneous configuration for system 101 facilitates adaptability,
processing speed and processing efficiency. Because each member of system
101 performs processing using one or more (or some fraction) of the same
computing module, the particular computer or computing device performing
the actual processing of data and applications is less relevant than in
conventional systems. The processing of a particular application and
data, moreover, can be shared among the network's members. By uniquely
identifying the cells comprising the data and applications processed by
system 101 throughout the system, the processing results can be
transmitted to the computer or computing device requesting the processing
irrespective of where this processing occurred. Because the modules
performing this processing have a common structure and employ a common
ISA, the computational burdens of an added layer of software to achieve
compatibility among the processing elements is avoided. This architecture
and programming model facilitates the processing speed necessary to

execute, e.g., real-time, multimedia applications.

To take further advantage of the processing speeds and efficiencies
facilitated by system 101, the data and applications processed by this
system are packaged into uniquely identified, uniformly formatted software
cells 102. Each software cell 102 contains, or can contain, both
applications and data. Each software cell 102 also contains an ID to
globally identify the cell throughout network 104 and system 101. This
uniformity of structure for the software cells, and the software cells'
unique identification throughout the network, facilitates the processing
of applications and data on any computer or computing device of network
104. For example, a client 106 may formulate a software cell 102 but,

because of the limited processing capabilities of client 106, transmit

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

this software cell to a server 108 for processing. Software cells can
migrate, therefore, throughout network 104 for processing on the basis of

the availability of processing resources on the network.

The homogeneous structure of processing elements and software cells of
system 101 also avoids many of the problems of today's heterogeneous
networks. For example, inefficient programming models which seek to
permit processing of applications on any ISA using any instruction set,
e.g., virtual machines such as the Java virtual machine, are avoided.
System 101, therefore, can implement broadband processing far more

effectively and efficiently than conventional networks.

Fig. 2 illustrates a high-level block diagram of an information handling
system according to an embodiment of the present invention. While a
particular number and arrangement of elements have been illustrated with
respect to the information handling system of Fig. 2, it should be
appreciated that embodiments of the present invention are not limited to
data processing systems having any particular number, type, or arrangement
of components and so many encompass a wide variety of data processing
system types, architectures, and form factors (e.g., network elements or

nodes, personal computers, workstations, servers, or the like).

The depicted information handling system of Fig. 2 is one example of a
Cell Broadband Engine (CBE) architecture in which exemplary aspects of the
present invention may be implemented. As shown in Figure 2, CBE 200
includes a power processor element (PPE) 210 and multiple synergistic
processor elements (SPEs) 220-234 communicatively coupled together and
with additional system elements described further herein via a high
bandwidth internal element interconnect bus (EIB) 286. CBE 200 of the
illustrated embodiment further includes one or more external buses or
devices 290 coupled to EIB 286 via a bus interface controller (BIC) 287
and a shared memory 289 coupled to EIB 286 via a memory interface

controller (MIC) 288 as shown.

CBE 200 may be a system-on-a-chip such that each of the elements depicted
in Figure 2 may be provided on a single microprocessor chip. Moreover, in
one embodiment CBE 200 is provided as a heterogeneous processing
environment in which each of SPEs 220-234 may receive different

instructions from each of the other $SPEs in the system. Moreover, the

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

instruction set for each of the SPEs is different from that of PPE 210,
e.g., PPE 210 may execute Reduced Instruction Set Computer (RISC) based

instructions while SPEs 220-234 execute vectorized instructions.

In the illustrated embodiment of Fig. 2, SPEs 220-234 are coupled to each
other and to PPE 210 wvia EIB 286. Additionally, SPEs 220-234 are each
coupled to MIC 288 and BIC 287 via EIB 286. MIC 288 provides a
communication interface to shared memory 289. Shared memory 289 may
comprise any of a number of system memory-type storage elements such as
random access memory (RAM), read-only memory (ROM), flash memory, or the
like. BIC 287 provides a communication interface between CBE 200 and
other external buses and devices 290. Exemplary external devices may
include traditional I/0 devices such as keyboards, displays, printers,
cursor control devices (e.g., trackballs, mice, tablets, etc.), speakers,
and microphones; storage devices such as fixed or “hard” magnetic media
storage devices, optical storage devices (e.g., CD or DVD ROMs), solid
state storage devices (e.g., USB, Secure Digital $D™, CompactFlash™, MMC,
or the like), removable magnetic medium storage devices such as floppy
disks and tape, or other storage devices or mediums; and wired or wireless
communication devices or media (e.g., communication networks accessed via

modem or direct network interface).

In one embodiment of the present invention, PPE 210 is a dual threaded
processing element. The combination of this dual threaded PPE 210 and the
eight SPEs 220-134 makes the CBE 200 capable of handling 10 simultaneous
threads and over 228 outstanding memory requests. In a common operational
environment, PPE 210 acts as a controller for the eight SPEs 220-234 which
handle most of the computational workload. PPE 210 may be used to execute
one or more conventional operating systems while SPEs 220-234 perform

vectorized floating point code execution, for example.

In one embodiment, PPE 210 comprises a power processor unit (PPU) or core
and associated level 1 (L1l) and level 2 (L2) caches (not shown) and each
of SPEs 220-234 comprise a synergistic processing unit (SPU), memory flow
control units, local memory or store, and a bus interface unit comprising
a combination direct memory access (DMA) controller, memory management
unit (MMU), and bus interface unit (not shown). In one exemplary

embodiment, the described local memory or store comprises a 256 KB

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

instruction and data memory which is visible to PPE 210 and can be

addressed directly by software.

PPE 210 may load SPEs 220-134 with small programs or threads, chaining the
SPEs together to handle each step in a complex operation. For example, a
set-top box incorporating CBE 200 may load programs for reading a DVD,
video and audio decoding, and display, and the data would be passed off
from SPE to SPE until it finally ended up on the output display. At 4GHz,
each SPE 220-234 gives a theoretical 32 GFLOPS of performance with PPE 210
having a similar level of performance. In operation, PPE 210 may also
execute instructions and handle or process data retrieved from shared
memory 289 into its local registers or caches via MIC 288. Similarly, an
external device 290 may access shared memory 289, for example via BIC 287

and one or more DMA controllers within SPEs 220-234.

Fig. 3 illustrates a block diagram representation of a selected portion of
an information handling system capable of performing cacheline polling
utilizing a store and reserve instruction according to an embodiment of
the present invention. Within the present description, similar references
numerals have been utilized to denote corresponding system elements
between the information handling systems of Figs. 2 and 3. For example,
PPE 310 of the illustrated embodiment of Fig. 3 corresponds to PPE 210 of
Fig. 2. Information handling system 300 of Fig. 3 includes a PPE 310
which, via EIB 386, is coupled to shared memory 389 and an external device

390 utilizing MIC 388 and BIC 387, respectively.

In the illustrated embodiment of Fig. 3, shared memory 389 includes a
cacheable memory location 336¢ including data which specifies a buffer flag
data value as shown. PPE 310 includes a power processor unit (PPU) 316
hierarchically coupled to an Ll cache 312 and L2 cache 314 as shown. In
the embodiment of Fig. 3, PPU 316 includes a number of functional units
and data storage elements. More specifically, PPU 316 comprises a
load/store unit 318 utilized to execute memory accessing instructions
(e.g., loads from memory and stores to memory) and a condition register
320 which stores data in the form of bits or flags indicating the current
state of PPU 316, reflecting the result of certain data processing or
information handling operations (e.g., data overflow or underflow,

positive or negative result, or the like).

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

10

Each of L1 cache 312 and L2 cache 314 include a cache management unit
(CMU) (e.g., CMU 322 of Ll cache 312 and CMU 328 of L2 cache 314) as well
as a storage element (e.g., storage element 324 of L1 cache 312 and
storage element 332 of L2 cache 314). CMUs 322 and 328 are each used to
control the storage of data and/or instructions within a corresponding one
of storage elements 324 and 332, implementing, for example, cacheline
replacement algorithms, updating cacheline state or status metadata, or
the like. Storage elements 324 and 332 in turn are utilized to store
lines or blocks of data comprising application data and/or instructions as
well as accompanying metadata (e.g., cache tags, status bits, or the
like). While CMUs 322 and 328 has been depicted as integral units or
modules of their respective caches, in alternative embodiments of the
present invention CMUs 322 and/or 328 or the functionality thereof may be
provided in other configurations (e.g., within a single one of L1 cache
312 and L2 cache 314, within PPU 316, as a separate unit or module, or a

combination thereof).

According to one embodiment of the present invention, PPU 316 may be
utilized to perform cacheline polling via the execution of a store and
reserve (STAR) instruction as will now be described. In operation,
load/store unit 318 of PPU 316 may be initially used to execute a STAR
instruction to cause data specifying a “busy” buffer flag indicator data
value (e.g., 0xBB) to be stored within cacheable memory location 336 of
shared memory 389 as indicated by dashed line 338. 1In the illustrated
embodiment, the described STAR instruction is utilized to signal an
associated external device 390 (e.g., a graphics device) that data to be
retrieved by the device has been stored within an associated buffer (e.qg.,
a dedicated portion of shared memory 389 or other memory within or
external to, information handling system 300. In other embodiments of the
present invention, additional operations (e.g., exception or interrupt
generation, signaling, MMIO write operations, or the like) may be utilized
to notify external device 390 that data has been written to the buffer
flag stored within cacheable memory location 336 and that the retrieval of

data from the described buffer may commence.

Once PPU 316 performs the described STAR, cacheline polling may continue
to be performed utilizing PPE 310 in which a LDRL instruction may be
executed to cause data stored within cacheable memory location 336 of

shared memory 389 to be stored within a register (e.g., a general purpose

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

11

register) within PPU 316 (not shown). As described further herein, the
STAR instruction causes a reservation to be set by storing a specific data
value within a reservation register 330 within L2 cache 314. 1In one
embodiment a reservation is set by storing a logical ‘1’ within a
reservation bit of reservation register 330 and a memory address of a
corresponding region of memory {(e.g., a specific memory location or region
associated with cacheable memory location 336 of shared memory 389) with
which the reservation is associated. 1In the described embodiment, the
setting and resetting of a reservation within reservation register 330
causes a corresponding reservation status bit to be set or reset within
condition register 320. Although reservation register 330 has been
illustrated as within CMU 328 of L2 cache 314, in alternative embodiments
of the present invention such a reservation register or data may be stored
elsewhere within information handling system 300 (e.g., within L1 cache

312, PU 316, a separate bus/EIB interface unit, or the like).

After the reservation has been set, the described LDRL instruction is
stalled (e.g., temporarily suspended from execution or
issuance/completion) until the reservation is cleared or “reset” following
the occurrence of one or more of a number of information handling system
events as will be described more fully herein and as indicated by a
corresponding reservation status bit within condition register 320. 1In
one embodiment, a reservation may be reset by CMU 328 of L2 cache 314
using a cache “snoop” operation following the detection of an attempt,
request, or performance of a write (e.g., by external device 390) to
cacheable memory location 336 as indicated by dashed line 340. Once
external device 390 has modified the buffer flag data stored within
cacheable memory location 336, causing the reservation to be reset and
consequently “lost” the previously-stalled LDRL instruction may be
resumed, resulting in the hierarchical storage of the buffer flag’s data
value within storage elements 324 and 332 of L1 cache 312 and L2 cache
314, respectively, and eventually within the designated register within

PPU 316.

As will be described more fully herein, once the LDRL operation
successfully completes, the retrieved buffer flag data value may be
compared to known “busy” and/or “not busy” buffer flag indicator data
values. The described comparison may be utilized to determine whether

external device 390’s retrieval (e.g., via DMA transfer) of data

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

12

previously stored within an associated buffer has completed such that, for
example, the associated buffer may be reused for additional data transfer

to external device 390.

Fig. 4 illustrates a state diagram of a state machine for managing a
reservation for a store and reserve instruction according to an embodiment
of the present invention. The illustrated “state machine” therefore
represents operations to be performed by, or functionality incorporated
into, one or more elements of an information handling system (e.qg.,
information handling system 300 of Fig. 3). In one embodiment, such
functionality is incorporated into a processing element or unit such as
PPU 316 of Fig. 3, in other embodiments, such functionality maybe embodied
within a standalone or additional system element capable of monitoring and
controlling the operations of an associated information handling system.
In one embodiment of the invention, the functionality represented by the
state diagram of Fig. 4 is instantiated for each hardware thread initiated

or supported.

As shown, state machine 400 includes five separate states, namely, state
S0, state 51, state S2, state S3 and state S4. In one embodiment, a STAR
instruction is utilized to set a buffer flag “busy” indicator data value,
to initialize the state of buffer data to be accessed, and to set a load

reservation as described herein.

In an initial state S0, state machine 400 records the address of the
cacheline for buffer flag after the receipt of a load instruction, and
enters state S1. The described load targets the address corresponding to
a cacheline storing a buffer flag. Multiple load reservations can exist

concurrently.

In a cache state check state $S1, the state of the cache memory is checked.
If the cacheline storing a buffer flag is invalid, state machine 400
enters state $4. If the cacheline storing a buffer flag is modified or

shared, state machine 400 enters state S2.

In a walt on reservation to be lost state S2, state machine 400 remains
idle while the load reservation exist for the load operation. After the

load reservation has been lost, state machine 400 enters state S4.

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

13

A cache memory has a mechanism to detect if another processor is accessing
one of its cachelines. This mechanism is commonly referred to as a snoop
machine. A similar process can be used by state machine 400 to determine
if a cacheline is being modified by another processor or device. In
addition, state machine 400 watches for store instructions to the buffer
flag by another thread on the same processor or other processors sharing

the cache memory.

If the only exit from state S2 was due to the cacheline storing a buffer
flag being modified, the processor could potentially deadlock (i.e., never
make any progress). In one or more alternative embodiments of the present
invention, other exit conditions are added to cause state machine 400 to
enter state S4 even if the load reservation has not been lost in order to
avoid a potential deadlock condition. For example, an interrupt may be
utilized to initiate or cause a transition from state S2 to state S4. If
an interrupt is directed towards a stalled processor or processor thread
in the described embodiment, state machine 400 will exit to state S4 to
allow the interrupt to be processed. If the interrupt is not processed,

the processor or other device may never update the buffer flag.

In another exemplary embodiment, a timeout may be utilized to cause a
transition from state S2 to state S4. To avoid waiting an unacceptably
long period of time for a transition to occur between state S2 and state
S4, software may be utilized to trigger a timeout for the cacheline
polling period. With the timeout option, state machine 400 will exit to
state $4 after a specified amount of time. In alternative embodiments of
the present invention, a timeout value can be set prior to or as a

parameter of the load when reservation lost instruction.

In the illustrated state diagram of Fig. 4, a wait on reservation to be
lost (buffer flag not in processor's cache) state $3 may be entered if a
cacheline storing a buffer flag is castout due to other load instructions
or store instructions requiring the same cacheline. State S$3 is
substantially similar to the previously-described state S2 with the
exception that the buffer flag is not stored in the processor's cache
memory. The same exit conditions exist for state S3 as they are for state
S2 however, the cacheline storing a buffer flag is marked as being no
longer valid (i.e., modified or shared) in the processor's cache in state

S3. In one embodiment, where cacheline castout operations may cause a

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

14

reservation to be reset, State $3 may be eliminated. In another
embodiment, a transition from state S3 back to state S2 may occur 1if the

cache memory preloads data from the system bus (e.g., cache injection).

In a data forward state 54, the state of the cacheline storing a buffer
flag i1s examined to determine if the buffer flag-storing cacheline
contains valid data (i.e., shared, modified, etc.). If so, the data is
forwarded to the processor and state machine 400 reenters state S0. This
is the case when the buffer flag data has not been modified by a processor
or device because the loss of the load reservation is caused by another
event (e.g., an interrupt or timeout). In this case, the buffer flag
comprises data specifying a “busy” indicator data value and a compare
instruction will then be executed. If an interrupt is pending, the
interrupt will be processed next. When the interrupt returns, a branch
will be taken if the data returned was the “busy” indicator data value.

If the branch is taken, then the load reservation initiating the cacheline

polling routine will start the load reservation process again.

If the cacheline storing a buffer flag contains invalid data, a "load
miss" is generated and buffer flag data is requested from shared memory
via the bus. When the buffer flag data is returned, the data is forwarded
to the processor, and the state of the cache memory is updated. State
machine 400 then enters state S5S0. This process is the same as a normal
load operation that misses in a cache memory. In this case, the data has
been modified by the device to comprise a “not busy” indicator data value

(e.g., 0xBC or any value not equal to O0xBB).

Thereafter, a compare instruction is performed. If the data returned does
not specify the “busy” indicator data value, a branch will not be taken
and the cacheline polling routine exits, indicating that an external

device has completed the retrieval of data from the associated buffer.

There are several conditions which may cause a reservation to be lost
including the invalidation of a cacheline containing data referenced by
the address of the load when reservation lost instruction, the
modification of the data associated with the address of the load when
reservation lost instruction by the same processor or another processor
sharing the same cache memory, the presentation of an interrupt to a

stalled thread previously executing a load when reservation lost

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

15

instruction, conventional cacheline replacement/ejection/castout caused by
a memory operation of the same processor or another processor sharing the
cache where the S3 state previously-described, or the occurrence of one or

more other exit conditions (e.g., timeouts for the load instruction).

In the described embodiments, the invalidation of a cacheline can be
caused by a device or other processor reading the cacheline with the
intention to modify (RWITM) the data stored therein, or by a device or

other processor writing the cacheline (write with flush).

While the buffer flag or semaphore has been described herein as stored
within a cacheable memory location, in alternative embodiments the memory
location need not be cacheable. More specifically, methods or processes
of the present invention may be applied to a buffer flag located in a non-
cacheable memory location as long as the processor has a means to snoop
for a device updating the buffer flag-containing memory address. Locating
the buffer flag within a non-cacheable memory location is made apparent by
the existence of state S3. In state $3, the buffer flag is not wvalid in
the processor's cache, which is the same state that would exist for a non-

cacheable flag.

Fig. 5 illustrates a flow diagram of process to perform cacheline polling
utilizing a store and reserve instruction according to an embodiment of
the present invention. For purposes of illustration, the depicted process
embodiment will be described with respect to system elements of
information handling system 300 of Fig. 3. Initially in the illustrated
process embodiment of Fig. 5, load/store unit 318 of PPU 316 fills a
buffer within shared memory 389 with data (e.g., data to be handled or
processed by external device 390) (process block 502). In an alternative
embodiment of the present invention, the transfer of data to the described
buffer may be performed utilizing a DMA controller or engine provided
within one or more of SPEs 220-234. Thereafter, load/store unit 318
executes a store and reserve instruction (process block 503). In the
illustrated process embodiment, execution of the described STAR
instruction stores data indicating or specifying a “busy” indicator data
value within cacheable memory location 336 of shared memory 389 (process
block 504) and “sets” a reservation utilizing reservation register 330

(process block 506).

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

16

Thereafter, external (e.g., I/0) device 390 may be notified (e.g., by
writing to a MMIO register, generating an exception, interrupt, trap, or
the like) that the associated data buffer is ready to be accessed (not
show) . Alternatively, such a notification may be made merely by the
storage of a buffer “busy” indicator data value within cacheable memory
location 336 as previously described. Load/store unit 318 then makes a
determination whether the reservation has been reset (process block 508)
(e.g., by checking one or more bits of flags within condition register
320). While a continuous loop has been utilized to depict the
determination of when a reservation is reset, it should be appreciated
that no actual instructions are executed by either the processor (in a
singly-threaded uni or multi-processor system) or an associated thread (in
a multi-threaded processor system), thus saving valuable processing and
electrical power otherwise wasted utilizing conventional cacheline polling
techniques. Once the reservation is reset (e.g., via the storage of a
“not busy” indicator data value within the buffer flag of cacheable memory
location 336 by external device 390), the buffer flag data stored within
cacheable memory location 336 is loaded by load/store unit 318 into a

register of PPU 316 (process block 510).

Thereafter, a fixed-point execution unit (not shown) of PPU 316 compares
the contents of the register of a PPU 316¢ to which the buffer flag data of
cacheable memory location 336 has been loaded to a specified “busy”
indicator data value (process block 512). A branch unit (not shown) of
PPU 316¢ then utilizes the comparison result, determining whether the
register contents matched “busy” indicator data value (process block 514).
Thereafter, the depicted process embodiment is either restarted completely
(process block 502) in response to a determination that the register
contents do not match the known “busy” indicator data value or reentered
(process block 503) at the point at which the STAR instruction was

executed and the reservation set.

Although the operations depicted in Fig. 5 have been described with
respect to specific system elements, the actual elements utilized to
perform such operations is immaterial to process embodiments of the
present invention. Moreover, in alternative embodiments, such operations
may be performed by any information handling system elements. Similarly,
while the flow diagram depicted in Fig. 5 indicates a particular order of

operation and a specific granularity of process operations, in alternative

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

17

embodiments the illustrated order may be varied (e.g., process operations
may be performed in another order or performed substantially in parallel)
and one or more of the process operations may be coalesced or fragmented.
Similarly, addition process operations may be added where necessary in

alternative embodiments of the present invention.

Embodiments of the present invention may include software, information
processing hardware, and various processing operations further described
herein. The features and process operations of various invention
embodiments may be embodied in executable instructions embodied within a
machine-readable medium such as shared memory 289, a storage device, a
communication device or medium, or the like. A machine-readable medium
may include any mechanism that provides (i.e., stores and/or transmits)

data in a form readable by a machine (e.g., CBE 200).

For example, a machine-readable medium includes but is not limited to:
random access memory (RAM); read only memory (ROM); magnetic storage
media; optical storage media; flash memory devices; electrical, optical,
and/or acoustical propagated signals (e.g., carrier waves, infrared
signals, digital signals, etc.); or the like. The described executable
instructions can be used to cause a general or special purpose pProcessor
such as PPU 316, programmed with the instructions, to perform operations,
methods or processes of the present invention. Alternatively, the
features or operations of the present invention may be performed by
specific hardware components that contain hard-wired logic for performing
such operations, or by any combination of programmed data processing

components and custom hardware components.

While the present invention has been described in the context of fully
functional data processing system those skilled in the art will appreciate
that the present invention is capable of being distributed as a program
product in a variety of forms and applies equally regardless of the
particular type of signal bearing media used to carry out the
distribution. Examples of such signal bearing media include recordable
media such as floppy disks and CD-ROM, transmission type media such as
digital and analog communications links, as well as media storage and
distribution systems developed in the future. Embodiments of the present
invention may similarly be implemented utilizing software modules used to

perform certain operations or tasks. The described software modules may

10

15

WO 2007/104638 PCT/EP2007/051810

18

include script, batch, or other executable files and may be stored on a
machine-readable or computer-readable medium. Thus, the modules may be
stored within a computer system memory to configure a data processing or
computer system to perform one or more functions of a software module.
Other new and various types of machine or computer-readable storage media

may be used to store the modules discussed herein.

While particular embodiments of the present invention have been shown and
described, it will be obvious to those skilled in the art that, based upon
the teachings herein, changes and modifications may be made without
departing from this invention and its broader aspects. Consequently, the
appended claims are to encompass within their scope all such changes and
modifications as are within the true spirit and scope of this invention
and embodiments of the invention are intended to be limited only by the
scope of the appended claims, giving full cognizance to equivalents in all

respects.

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

19

CLAIMS

1. A method for performing cacheline polling in a data processing
system having a plurality of processes, said method comprising:

requesting an action by a first process to be performed by a second
process, and setting a reservation on a memory location via a store
operation;

reading a memory location by said first process via a load operation
to determine whether or not said requested action has been completed by
said second process;

stalling said load operation until said reservation on said memory
location is lost; and
resetting said reservation in said memory location by said second process

after said requested action has been completed.

2. The method of Claim 1, wherein said setting further includes setting

a Buffer Busy indicator on said cacheable memory location.

3. The method of Claim 1 or 2, wherein said stalling further includes
preventing said load operation in a cacheline polling loop from execution

until said reservation has been reset.

4, The method of Claim 1, 2 or 3, wherein said load operation is a
conditional load operation and optionally

said memory location is a cacheable memory location.

5. An apparatus for performing cacheline polling in a data processing
system having a first device and a second device, said apparatus
comprising:

means for requesting an action by a first device to be performed by
a second device, and setting a reservation on a memory location via a
store operation;

means for reading a memory location by said first device via a load
operation to determine whether or not said requested action has been
completed by said second device;

means for stalling said load operation until said reservation on
said memory location is lost; and

means for resetting said reservation in said memory location by said

second device after said requested action has been completed.

10

15

20

25

30

35

WO 2007/104638 PCT/EP2007/051810

20

6. The apparatus of Claim 5, wherein said setting means further
includes means for setting a Buffer Busy indicator on said memory

location.

7. The apparatus of Claim 5 or 6, wherein said stalling means further
includes means for preventing said load operation in a cacheline polling

loop from execution until said reservation has been reset.

8. The apparatus of Claim 5, 6 or 7, wherein said load operation is a
conditional load operation and optionally said memory location is a

cacheable memory location.

9. A machine-readable medium having a plurality of instructions
executable by a machine embodied therein, wherein said plurality of
instructions when executed cause said machine to perform a method of
performing cacheline polling in a data processing system having a
plurality of processes, said method comprising:

requesting an action by a first process to be performed by a second
process, and setting a reservation on a memory location via a store
operation;

reading a memory location by said first process via a load operation
to determine whether or not said requested action has been completed by
said second process;

stalling said load operation until said reservation on said memory
location is lost; and

resetting said reservation in said memory location by said second

process after said requested action has been completed.

10. An information handling system comprising:

a memory comprising a cacheable memory location; and

a processing element coupled to said memory, said processing element
comprising

a register to store data specifying a reservation on said cacheable
memory location; and

a load/store unit comprising

first load/store logic to store a buffer flag data value within said
cacheable memory location,

second load/store logic to store data within said register

indicating said reservation on said cacheable memory location is set in

WO 2007/104638 PCT/EP2007/051810
21

response to a storage of said buffer flag data value within said cacheable
memory location, and

third load/store logic to stall execution of a load operation
targeting said cacheable memory location based upon a state of said data

specifying a reservation on said cacheable memory location.

PCT/EP2007/051810

WO 2007/104638

1/5

HIAYTHS

8ol \\

O _mmw m_ F_Uu q_mmw
(1) (7)) (7m0)
O F_Uu mh F_UV O F_nw
mh hmuv mh F—UU mh pmuv

q0I1I

IAFHS

V80T l\

OE@ O Euu O E@
(1) (1m0) (1m0)
Q EHU O Euv O EUU
O Euu O Euv OE@

qcol

ALd

[D4

THD)

TIHO TIID

— CII

¥01
TIOMIEN

(V1VQ + WV E90Ud)
1040 TIED -

INHIID

Y4ZITYNSIA

(1) (Tm0) (TE0)
(r0) (Tm0) (1)

INAIID

Y4ZTTVSIA

() () (79)
() (0 (1)

— 4901

—— V901

PCT/EP2007/051810

WO 2007/104638

2/5

00¢ ll\

06C

68¢C

SHOIAHU/SASNG AJOWHAN ¢ O
TVYNYIAIXA dLIVHS
A i
J
Y v
/8¢ 88¢ Oz
o1d DIN add
\ \
\
|4 Y Y y
08¢
q14
A JY I A] Fy i A
\J A Y L A L \d Y
¥eT %4 0¢C 8TC 9TC [add fdde (\id4
HdS - HdS ddS qdsS HdS ddS qdS HdS
J

PCT/EP2007/051810

WO 2007/104638

3/5

00¢ \\

¢ DI

\m YAISIONY v i mm OV ¥a1I0d W/
= NOILIONOD /(I ST43
ote — | B ﬁ QWD V/ X
(1LINQ FY018/AvOoT) - 1443
v 4 _—
e Ndd 453
4 — TC¢
/ L ov149334ng
8T¢ yeg ——] <)
76E —
NOILYAYASTY)
o1e ogg — | AND — ¢
add
8z¢
_ \ 4
08¢
q1d
\ Y ,)
v [v v
78¢€ 38¢
o1 123 |\ DI
'})
Y — _ - , Y \
(ovIIaIdINg <~
06¢ 68¢
AOIAId TYNYd1XH KXIOWHN ATIVHS
) . -

~— 9¢t

PCT/EP2007/051810

WO 2007/104638

4/5

SISIXH

NOLLYAESTY
-1

- I

VIVAONINIAY
1001SYD

{HIHIAON
HO A4IVHS ANI'T

ATTVANI INI'T

¥ "DId

PCT/EP2007/051810

WO 2007/104638

5/5

ON

SHA

HOTVA JOLVYDIANI
ASNE OL SINAINOD
YHISIOTE HIVINOD

A

H4ISIOHd
OLNI SV14 §944Nd AvOl

1489

— (IS

(ITHSHE NOLLVAYISHY

o1s

ON 805
NOILVANESTY 14S
5 90S
> TMOILVDIANI ASNg HI1IM
NOLLYDOT AMOWANW
OV YIIING TUOIS | — #0S
i €S
- IOIATA
| onNoAWEMNg T N

}

¢ OId

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings

