woO 2009/059100 A 1 |00 00 OO0 0 T 0 R 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
7 May 2009 (07.05.2009)

lﬂfb A0 0RO

(10) International Publication Number

WO 2009/059100 A1l

(51) International Patent Classification:
GOGF 9/32 (2006.01) GOGF 9/38 (2006.01)

(21) International Application Number:
PCT/US2008/081947

(22) International Filing Date: 31 October 2008 (31.10.2008)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

11/934,264 2 November 2007 (02.11.2007) US

(71) Applicant (for all designated States except US): QUAL-
COMM Incorporated [US/US]; Attn: International IP
Administration, 5775 Morehouse Drive, San Diego, Cal-
ifornia 92121 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MORROW,
Michael William [US/US]; 5775 Morehouse Drive, San
Diego, California 92121 (US). DIEFFENDERFER,

James Norris [US/US]; 5775 Morehouse Drive, San
Diego, California 92121 (US).

Agent: CICCOZZI, John L.; 5775 Morehouse Drive, San
Diego, California 92121 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,

[Continued on next page]

(54) Title: A METHOD AND A SYSTEM FOR ACCELERATING PROCEDURE RETURN SEQUENCES

600

e

602

—>| PROCESS INSTRUCTION IN LINE BUITER |

/604

S
INSTR POP
W/O PC IN REG
LIST?

ANY INSTR
REMAINING FOR,
BUFFER?

BRANCH TO
REG IN REG

DOES
INST OVERWRITE
REG IN LIST?

REMAINING FOR
BUFFER?

FIG. 6

(57) Abstract: A method for retrieving a return address from a
link stack when returning from a procedure in a pipeline processor
is disclosed. The method identifies a retrieve instruction operable
to retrieve a return address from a software stack. The method
further identifies a branch instruction operable to branch to the
return address. The method retrieves the return address from the
link stack, in response to both the instruction and the branch in-
struction being identified and fetches instructions using the return
address.

WO 2009/059100 A1 |00 00 R0 1000 00O 0

NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BE, BJ, CF, CG, — asto the applicant’s entitlement to claim the priority of the
CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). earlier application (Rule 4.17(iii))

Declarations under Rule 4.17:
— as to applicant’s entitlement to apply for and be granted a Published:
patent (Rule 4.17(ii)) — with international search report

WO 2009/059100 PCT/US2008/081947

A METHOD AND A SYSTEM FOR ACCELERATING
PROCEDURE RETURN SEQUENCES

BACKGROUND
FIELD OF INVENTION

[0001] The present invention relates generally to computer systems, and more
particularly to a method and a system for accelerating return sequences by identifying

pop-branch instruction sequences within a processor.

RELEVANT BACKGROUND

[0002] Most programs executed by a processor include subroutines or procedures.
Procedures are modules of code that are accessed by a procedure calling sequence.
Once the procedure is finished, instruction execution is returned to the caller by the

execution of a procedure return sequence.

[0003] Within some processor architectures, procedure call and return sequences may be
compiled into a sequence of instructions. For example, a procedure calling sequence
may consist of a PUSH instruction followed by a branch and link instruction. The PUSH
instruction (or instructions) may save parameters used by instructions within the
procedure onto the software stack. After the PUSH instruction, the processor may
execute a branch and link instruction. The branch and link instruction causes instruction
fetching and execution to begin at the starting address of the procedure and saves the
address of the next sequential instruction following the branch and link instruction,
known as the return or link address, in a link register. The link register may be a special
purpose register or one of the general purpose registers (GPRs) used by the processor.
Within the procedure, the link register contents are typically pushed onto the software
stack so that its value is not overwritten if another procedure is called before returning to

the original caller.

WO 2009/059100 PCT/US2008/081947

[0004] After the procedure finishes its function, the processor executes a procedure
return sequence to resume instruction execution at the link address (the next sequential
instruction address following the procedure calling instruction). Because the return
address is often saved on the software stack, the procedure return sequence must first
retrieve the return address from the software stack to use that address to determine the

next group of instructions to be fetched.

[0005] A procedure return sequence may consist of one or more instructions. In some
processor architectures a procedure return sequence may be a single instruction such as a
POP or load instruction that can read the next return address from software stack and
update the program counter (PC). Alternatively, the processor may use a POP or load
instruction to read the link address from the software stack into an intermediate register,
such as a GPR, before moving that value to the program counter to complete the
procedure return sequence. In another illustrative example, the processor may determine
that a return from a procedure may be an instruction moving the value saved in a link
register (LR) into the PC. When the processor encounters any of these procedure return
sequences after a procedure call, the processor jumps back to the next sequential
instruction following the procedure calling instruction using the return address value

retrieved from the software stack.

[0006] Additional logic may be added to the processor’s hardware to improve the
efficiency of instruction processing. For example, a link stack may be added to a
processor’s fetch logic to speed up instruction fetching. Those skilled in the art
appreciate that a link stack may contain return addresses that may also exist on the
software stack. However, the link stack operates independently from the software stack.
Hardware logic associated with the link stack identifies procedure calls and returns. As
procedure call instructions are identified prior to execution, the associated return address
is loaded on to the link stack. Conversely, when procedure returns are identified, the
associated return address is retrieved from the link stack and used to resume instruction
fetching. Instead of waiting for instructions to execute and retrieving return addresses
from the software stack, the processor may fetch instructions speculatively using

addresses stored in the link stack.

WO 2009/059100 PCT/US2008/081947

[0007]

[0008]

[0009]

[0010]

As processors evolve, the procedure return sequence continues to change. In
some processor architectures the procedure return may be comprised of multiple
instructions. If the hardware logic supporting the link stack does not recognize these
instructions as a procedure return sequence, return addresses may not retrieved from the
link stack and as a result, the link stack may become out of sync with the instruction
sequence. When the link stack becomes out of sync, the link stack may provide

erroncous return address information which may cause multiple address mispredictions.

SUMMARY

Accordingly, there exists a need in the industry to have processor circuitry that
recognizes certain instruction sequences, more specifically a POP (or load) and branch
instruction sequence, as a procedure return sequence. The present disclosure recognizes
this need and discloses a processor having circuitry which identifies instructions
corresponding to a procedure return early in the instruction pipeline. After identifying
the procedure return, the processor fetches the next group of instructions by using the
next return address from the link stack. By recognizing the POP and branch instruction
sequence as a program return, the processor may continue fetching instructions based on

the correct address retrieved from the link stack.

A method for retrieving a return address from a link stack when returning from a
procedure in a pipeline processor is disclosed. The method identifies a retrieve
instruction that operates to retrieve a return address from the link stack. The method
identifies a branch instruction that operates to branch to the return address. The method
retrieves the return address from the link stack in response to both the instruction and the
branch instruction being identified. The method fetches a subsequent instruction using

the return address.

A pipeline processor is disclosed. The pipeline processor has a line buffer. The
line buffer is coupled to an instruction cache. The processor also has fetch logic circuitry
which is coupled to the instruction cache. The fetch logic circuitry has a link stack

storing predictive return addresses, wherein instructions are loaded from the line buffer

WO 2009/059100 PCT/US2008/081947

into the instruction cache. The fetch logic circuitry retrieves instructions from the
instruction cache. The pipeline processor also has pre-decode logic circuitry which
communicates with the line buffer, wherein the pre-decode logic circuitry has detection
logic circuitry for identifying a procedure return sequence. The procedure return
sequence is identified as a retrieve instruction that operates to retrieve a return address
from a software stack, and a branch instruction which branches to the retrieved return
address. The pipeline processor retrieves the predicted return address from the link stack

in response to the identification of the procedure return sequence.

[0011] A pipeline processor is disclosed. The pipeline processor has fetch logic
circuitry. The fetch logic circuitry has a link stack which stores predicted return
addresses. The fetch logic circuitry fetches instructions from an instruction cache. The
pipeline processor also has decode logic circuitry, the decode logic circuitry is coupled to
the fetch logic circuitry wherein the fetched instructions are decoded by the decode logic
circuitry. The decode logic circuitry further has detection logic circuitry, wherein the
detection logic circuitry identifies a procedure return sequence. The procedure return
sequence is a retrieve instruction retrieving an address from a software stack and a
branch instruction that operates to branch to the retrieved address. The pipeline
processor retrieves the predicted return address from the link stack in response to the
identification of the procedure return sequence. The pipeline processor retrieves the
predicted return address from the link stack in response to the identification of the

procedure return.

[0012] A more complete understanding of the present invention, as well as further
features and advantages of the invention, will be apparent from the following detailed

description and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS

[0013] Figure 1 shows a high level logic hardware block diagram of a processor using an

embodiment of the present invention.

WO 2009/059100 PCT/US2008/081947

[0014] Figure 2 shows an exemplary group of instructions executed by the processor of
Figure 1.
[0015] Figure 3 displays a more detailed block diagram of the upper and lower pipelines

of the CPU of Figure 1 incorporating a detection logic circuit in accordance with one

embodiment of the present invention.
[0016] Figure 4 shows a more detailed view of fetch logic circuitry of Figure 3.

[0017] Figure 5 shows an alternative embodiment of the upper and lower pipelines

utilizing the detection logic circuitry.

[0018] Figure 6 shows a flow chart illustrating an instruction process flow performed by
the processor of Figure 1 recognizing a program return and using a link stack to fetch

instructions.

[0019] Figure 7 shows a flow chart illustrating an alternate instruction process flow

performed by the processor using the upper pipeline of Figure 4.
DETAILED DESCRIPTION

[0020] The detailed description set forth below in connection with the appended
drawings is intended as a description of various embodiments of the present invention
and is not intended to represent the only embodiments in which the present invention
may be practiced. The detailed description includes specific details for the purpose of
providing a thorough understanding of the present invention. However, it will be
apparent to those skilled in the art that the present invention may be practiced without
these specific details. In some instances, well-known structures and components are
shown in block diagram form in order to avoid obscuring the concepts of the present
invention. Acronyms and other descriptive terminology may be used merely for

convenience and clarity and are not intended to limit the scope of the invention.

[0021] Figure 1 shows a high level view of a superscalar processor 100 utilizing one

embodiment of the present invention as hereinafter described. The processor 100 has a

WO 2009/059100 PCT/US2008/081947

central processing unit (CPU) 102 that is coupled via control signals 104 to an
instruction cache 106. The instruction cache 106 is also coupled to line buffer 107 and
by a general purpose bus 110 to a memory 108. The CPU 102 controls the loading of
instructions from memory 108 into the instruction cache 106 via the line buffer 107. The
CPU 102 has an upper pipeline 150 coupled to lower pipelines 160 and 165. Within
lower pipelines 160 and 165 are execution stages 220 and 225. Within the execution
stage 220 are execution units (EU) 130A and within the execution stage 225 are EUs
130B.

[0022] As those skilled in the art appreciate, the instruction cache 106 may be a
specialized memory designed to bridge the speed gap between the memory 108 and the
processor 100. Instructions fetched from memory 108 are placed in the faster instruction
cache 106 which is able to be read at processor clock speeds. If an instruction does not
exist in the instruction cache 106, the processor 100 retrieves the instruction from the
memory 108. As the instruction is retrieved from the memory 108 it is first loaded into

the line buffers 107 and is eventually written into the instruction cache 106.

[0023] After the instruction cache 106 is loaded with instructions, the CPU 102 accesses
them via the control signals 104. Instructions are loaded from the instruction cache 106
into the upper pipeline 150. The instructions are processed in the upper pipeline 150 and
are then sent to the lower pipelines 160 or 165 for further processing. As is described in
connection with the discussions of Figures 3-5, the processor may have logic circuitry
designed to detect specific instruction sequences. These specific instruction sequences
may correspond to a procedure return. After procedure return instruction sequences have
been identified, the processor 100 may perform functions based on those instructions in

accordance with multiple embodiments of the present invention.

[0024] Some exemplary processing functions performed on the instructions in the upper
pipeline 150 may include fetching the instruction, aligning the instruction, decoding the
instruction, issuing the instruction to the lower pipelines 160 or 165 and the like. Within
the lower pipelines 160 and 165 instructions may be executed by execution units 130A

and 130B with the results being recorded.

WO 2009/059100 PCT/US2008/081947

[0025] An illustrative group of instructions 200 having a procedure return using the POP
and branch instruction sequence is illustrated in Figure 2. The instruction 260, the
operation of the instruction 270 and the module 280 executing the instruction are
displayed. For clarity purposes, any instructions that would push parameters on the
software stack for use by the procedures themselves are omitted from this the group of
instructions 200. Also omitted are any instructions that would make up the actual
function that the procedure performs. The instructions depicted in Figure 2 are those that
call a procedure, save the return address in the link register (GPR R4 in this example),
store the return address onto the software stack, retricve the return address from the
software stack, and continue processing instructions located at the return address. The
group of instructions 200 are displayed in Figure 2 in program order as they would be in
a trace of instruction execution. Those skilled in the art appreciate that the traced
instructions are a subset of the actual code that the processor may have fetched and are
shown as they are to be executed. The group of instructions 200 consists of three nested

procedures.

[0026] Within the group of instructions 200 are three procedure calls and their associated
returns. The first procedure call is instruction A, which calls procedure PROCI.
Instruction B is a preparatory instruction within procedure PROCI, saving the current
return address on to the software stack. Instruction C is the second procedure call
instruction, calling procedure PROC2. Instruction D is another preparatory instruction
within procedure PROC2, saving the return address associated with PROC2 on to the
software stack. The last procedure call instruction is instruction E, which calls procedure

PROC3.

[0027] Corresponding to the procedure call instructions are the procedure return
instructions. The first procedure return instruction is instruction F. In previous
processor architectures, instruction F is recognized as a procedure return instruction. The
next two instructions, instructions G and H combined represent another procedure return.
Commonly, in previous processor architectures, the instruction combination of a POP
and branch instruction may not be properly identified as a procedure return for use by the

hardware link stack. As a result in these previous processors, the next return address on

WO 2009/059100 PCT/US2008/081947

the link stack may not be retrieved when instructions G and H are identified. A
processor using one embodiment may alleviate this possible link stack corruption. In
one embodiment, after instruction H is identified as a procedure return instruction, the
processor 100 may retrieve the next address from the link stack and use the retrieved
address to continue fetching instructions. In this example, the next address on the link
stack points back to procedure PROC1, and more specifically, it points to the next
sequential instruction following instruction C (instruction I). Instruction H may also be

referred to as an implicit branch instruction.

[0028] The next two instructions, instructions I and J are also interpreted as a procedure
return sequence. When instruction J is identified by the processor 100 as a procedure
return instruction, the next address on the link stack is retrieved and used to continue
instruction fetching. Instruction J is an explicit branch instruction. In this example, the
next address off the link stack points returns the program execution back to the main
program. In previous processor architectures, the combination of instructions I and J
may not have been properly identified as a procedure return sequence for use by the
hardware link stack. As is described in greater detail in the discussion of Figures 3-7,
various embodiments of the present invention identify the combination of a POP and

branch instruction as a procedure return sequence.

[0029] Figure 3 displays a more detailed block diagram of the CPU 102 utilizing an
embodiment of the present invention. Within the CPU 102 the upper pipeline 150 has a
fetch stage 203 containing fetch logic circuitry 202 which is coupled to the instruction
cache 106 by control signals 104. Also in the CPU 102 is a pre-decode logic circuitry
201 having detection logic circuitry 250. The pre-decode logic circuitry 201 is coupled
to the line buffer 107 which is coupled to the instruction cache 106. The fetch stage 203
is coupled to a decode stage 205 which in turn is coupled to an issue stage 207. Coupled
to the decode stage 205 is decode logic circuitry (not shown for ease of illustration)
which decodes specific information about the instruction. Within the issue stage 207
may be several instruction queues (not shown for ease of illustration) which hold the

instructions prior to the instructions issuing to the lower pipelines 160 and 165.

WO 2009/059100 PCT/US2008/081947

[0030] As those skilled in the art may appreciate, a pipeline stage may have a register or
group of registers designed to hold an instruction. When an instruction enters a
particular stage, the processor 100 loads the instruction into the register or group of
registers linked to that stage. When an instruction is held in the register or group of
registers within each stage, logic circuits may perform certain operations, depending on
the instruction. After the logic circuits have performed the intended operation, the
instruction is then passed on to the next sequential stage. In addition, while instructions
are in the upper pipeline 150, they are “processed” by the various logic circuits.
Processing the instructions may include fetching the instructions, decoding the

instructions, aligning the instructions, issuing the instructions and the like.

[0031] Instructions enter the upper pipeline 150 and move from the fetch stage 203
through the issue stage 207. Instructions are fetched during the fetch stage 203 by the
fetch logic circuitry 202. After the instructions are fetched, they are decoded during the
decode stage 205 by the decode logic circuitry. After the decode stage 205, the
instructions are processed in the issue stage 207. After the instructions leave the issue
stage 207 the instructions are executed in either the lower pipeline 160 or the lower
pipeline 165. As discussed previously, within the lower pipeline 160 is the execution
stage 220 and the EUs 130A. Within the lower pipeline 165 is the execution stage 225,
and EUs 130B. The lower pipelines 160 and 165 access the register files 230 or 235

respectively.

[0032] The pre-decode logic circuitry 201 may be used by the processor 100 to partially
decode and identify information about an instruction prior to the instruction being saved
in the instruction cache 106. The pre-decoded information may be saved along with the
instruction when the instruction is stored in the instruction cache 106. Within the pre-
decode logic circuitry 201, the detection logic circuitry 250 may identify
interdependencies between instructions. For example, the detection logic circuitry 250
may be designed to identify when a POP instruction and a branch instruction utilize the
same register. As is explained in the discussions of Figure 4, after the detection logic

circuitry 250 identifies an instruction sequence consisting of a POP and branch

WO 2009/059100 PCT/US2008/081947

instruction as a return from a procedure call, the fetch logic circuitry 202 interprets this

information when the branch instruction is fetched from the instruction cache 106.

[0033] Associating pre-decoded information with an instruction may be accomplished by
setting a bit in a particular location within the information field associated with the
instruction, when the instruction is loaded into the instruction cache 106. Saving the pre-
decoded information in the instruction cache 106 may also be referred to as flagging the
instruction. For example, after determining an instruction is a procedure return
instruction, a bit may be set in one location in the instruction header identifying that the
instruction is a procedure return instruction. Alternatively, the processor 100 may
encode the pre-decoded information into the instruction header for the identified
instruction or instructions. In this manner, the processor 100 may use multiple bits to
encode different information for different instructions based on selected or
predetermined criteria. The pre-decoded information may be retrieved as the instruction
is being fetched from the instruction cache 106. The processor 100 may then perform

certain functions based on the identified information.

[0034] Figure 4 displays fetch logic circuitry 202 according to one embodiment of the
present invention. The fetch logic circuitry 202 includes an address selector logic
circuitry 320 which controls an address selection mux 302. The address selector logic
circuitry 320 includes return selector logic circuitry 350. Coupled to the input of address
selection mux 302 is a link stack output 316 which comes from a link stack 304. Link
stack logic circuitry 310 communicates with the address selector logic circuitry 320 and
controls both the input and the output of the link stack 304. The link stack 304 receives

return addresses from an address bus when procedure calls are identified.

[0035] Within the link stack 304, predictive return addresses may be saved. The link
stack 304 may be a last in first out (LIFO) portion of memory storing instruction
addresses which correspond to return addresses associated with procedure returns. The
link stack 304 operates independently from the software stack. When an instruction is
identified as the procedure return instruction early in the instruction pipeline, the

processor 100 may proactively fetch instructions using return addresses stored on the

10

WO 2009/059100 PCT/US2008/081947

link stack instead of waiting for the procedure return to execute in the lower pipe line

160 or 165.

[0036] As displayed in Figure 4, the address selection mux 302 may receive the next
sequential program addresses. The next sequential program address may be the current
program counter incremented by 8 address locations (PC + 8). In this embodiment,
instructions are fetched from the instruction cache 106 two instructions at a time where
cach instruction is four bytes long. In other processor embodiments, the next sequential
program address may be the program counter incremented by different amounts. As
mentioned previously, the address selection mux 302 may also receive predictive address
information from the link stack 304. When the processor 100 determines that a
procedure return has occurred, the next address in the link stack 304 is retrieved and used

as a starting location to fetch the next group of instructions.

[0037] The address selection mux 302 may receive address information from other
sources. For example, the branch target address cache (BTAC) may provide addresses
used to fetch instructions. Alternatively, an interrupt address may be used to fetch

instructions. For ease of illustration these other sources of addresses are not shown.

[0038] The address selector logic circuitry 320 determines which of its inputs will be
passed through the address selection mux 302 and used to fetch the next group of
instructions. If the address selector logic circuitry 320 determines that the next group of
addresses to be fetched are the next sequential addresses (PC +8), the PC + 8 input is
selected. Alternatively, if the return selector logic circuitry 350 within the address
selector logic circuitry 320 determines that the link stack 304 contains the next fetch
address, the link stack output 316 is selected.

[0039] In order to utilize the link stack 304, the processor 100 needs to determine when a
procedure call and corresponding return are identified during the instruction processing
sequence within the upper pipeline 150. Since the link stack 304 is used to predictively
fetch instructions, the processor 100 does not wait for instructions to execute before
fetching subsequent instructions. Instead, after the processor 100 has identified as a

procedure call instruction in the upper pipeline 150, the processor 100 loads the return

11

WO 2009/059100 PCT/US2008/081947

[0040]

[0041]

[0042]

address associated with the procedure call onto the link stack 304 via the address bus.

Then the processor 100 fetches the instructions of the procedure.

At the end of the procedure, the processor 100 encounters a procedure return
sequence. As a result of the procedure return sequence, the processor will “pop” the link
stack 304 to retrieve the corresponding return address and branch to that return address
to resume instruction fetching. The processor 100 identifies a procedure return
instruction and retrieves the next return address off the link stack. A procedure return
instruction may be a POP instruction or a load instruction that reads the software stack
and writes the PC. If the return selector logic circuitry 350 identifies that a particular
POP instruction is a procedure return then, the return selector logic circuitry 350 then
causes the address selector logic circuitry 320 to cause the link stack output 316 to be
directed through the address selection mux 302. The return address taken from the link

stack 304 is then used to fetch the next set of instructions.

As described previously, procedure return sequences may consist of one or more
instructions. For example, in some ARM implementations, a branch instruction to the
value stored in the link register (R,4) may be interpreted as a procedure return.
Alternatively, a move instruction moving the value of the link register (R;4) into the
program counter (R;s) may also be interpreted as a procedure return. It is important that
the processor 100 accurately identify procedure returns. If the processor 100 does not
accurately identify procedure returns, the link stack 304 will become out of sync with
respect to the procedure return instructions. If the link stack 304 becomes out of sync,
the processor 100 may have to go into a branch correction sequence and execution

performance may be impacted.

As processor instructions sets have evolved, alternative instruction sequences
may be identified as procedure return sequences. In one exemplary embodiment, a POP
or load instruction (that does not update the PC) popping a return address to a particular
register followed by a branch instruction to the value stored in the particular register may
be interpreted as a procedure return sequence. The branch instruction may or may not be

the next sequential instruction following the POP instruction.

12

WO 2009/059100 PCT/US2008/081947

[0043] In order to facilitate the identification of a procedure return sequence consisting
of a POP and branch instruction, information relating to both instructions is gathered.
The POP instruction of a procedure return may involve one or more registers. When a
POP instruction is identified, the POP instruction’s register list may be saved and
compared with the register targets of any subsequent instruction. The saving and
comparing of the register list may also be referred to as maintaining that the POP
instruction has been identified. If a non-branching instruction utilizes a register
identified in the register list associated with the POP instruction before a branch to that
register is encountered, that register is discounted from the saved register list. If a branch
instruction that does not use a register in the saved register list is encountered before a
branch instruction that does use a register in the saved register list, the search for a POP-
branch return sequence for the previous POP is terminated. When a branch instruction
using a register in the register list is encountered, the processor 100 may then determine
that a procedure return is being processed. As a result, the address at the top of the link

stack 304 may then be retrieved and used to fetch the next group of instructions.

[0044] As described previously, the pre-decode logic circuitry 201 (Figure 3) may have
identified a POP and branch instruction sequence that utilize the same register and as a
result the branch instruction is identified as a procedure return instruction. The processor
100 may have saved this information into the instruction header when the branch
instruction was stored into the instruction cache 106. When the fetch logic circuitry 202
retrieves the saved pre-decoded information with the branch instruction, the processor
100 uses the return selector logic circuitry 350 to identify that the branch instruction is a
procedure return. After the return selector logic circuitry 350 has determined that the
branch instruction is a procedure return, the return selector logic circuitry 350 causes the
address selection logic circuitry 320 to direct the link stack output 316 through the
address selection mux 302. The return selector logic circuitry 350 also communicates
with the link stack logic circuitry 310 causing the next value in the link stack to be

returned. As a result, the link stack address is used to fetch the next set of instructions.

[0045] Figure 5 displays a CPU 102 with an upper pipeline 151 in accordance with an

alternative embodiment having decode logic circuitry capable of detecting a procedure

13

WO 2009/059100 PCT/US2008/081947

return consisting of the POP/branch instruction sequence. More specifically, the CPU
102 contains decode logic circuitry 406 having detection logic circuitry 450. As
instructions are decoded by the decode logic circuitry 406, information relating to the
instructions are identified. The detection logic circuitry 450 may monitor the decoded
instruction to determine when a procedure return is identified. As previously discussed,
a procedure return sequence may consist of one or more instructions. The detection logic
circuitry 450 may determine that a procedure return sequence occurs when a POP

instruction and subsequent branch instruction are decoded.

[0046] When the detection logic circuitry 450 determines that a procedure return has
been identified, the detection logic circuitry 450 communicates this information to the
return selector logic circuitry 350, which in turn communicates this information to the
link stack logic circuitry 310 (Figure 4). The return selector logic circuitry 350 then
causes the address selector logic circuitry 320 to direct the link stack output 316 through
the address selection mux 302. The return address taken from the link stack 304 is then

used to fetch the next set of instructions.

[0047] The inventive concepts associated with the embodiments may be further
explained by referring back to group of instructions 200 in Figure 2. Instruction A is the
call of procedure PROCI1. When instruction A branches to PROCI, the processor 100
stores the next sequential address into the link register (Ry4). The next sequential address
is the return address associated with returning back to the Main program. When
instruction A is identified as a procedure call, the link stack logic circuitry 310 causes the
return address associated with instruction A to be loaded on to the link stack 304. As
displayed in Figure 2 instruction A is part of the main program. Instruction A branches

to PROCI and the next processed instruction is instruction B.

[0048] Instruction B is the first instruction within PROCI1 and is a preparatory
instruction for the call of procedure PROC2. Instruction B saves the current return
address by pushing the value of R4 on to the software stack. Next, instruction C is
processed. Instruction C is a call of procedure PROC2. When instruction C is identified

as a procedure call the link stack logic circuitry 310 saves the return address associated

14

WO 2009/059100 PCT/US2008/081947

with instruction C on to the link stack 304. Instruction C branches to the procedure

PROC?2 and the next instruction processed is instruction D.

[0049] Instruction D is the first instruction within procedure PROC2 and saves the
current return address by pushing the value of R4 on to the software stack. Instruction D
is another preparatory instruction, getting ready for the next procedure call instruction
(instruction E). When instruction E is identified as a procedure call, the link stack logic
circuitry 310 causes the return address associated with instruction E to be loaded on to
the link stack 304. Instruction E is the second instruction within procedure PROC2 and
calls procedure PROC3. Instruction E branches to the address associated with
instruction F, the first instruction within the procedure PROC3. Instruction F is the only
instruction within procedure PROC3 and is a return. Specifically, instruction F branches
to the value currently in the link register (R;4). Commonly, in existing processor
architectures, instruction F is recognized as an instruction return. When instruction F is
processed, the detection logic circuitry 450 determines that instruction F is a procedure
return and causes the next return address on the link stack 304 to be retrieved. The

processor uses the return address to return to procedure PROC2.

[0050] Within procedure PROC2, the next instruction to be processed is instruction G
which “pops” the current value off of the software stack and saves it into register Ry,
For ease of illustration, instruction G “pops” a single register. However, in an alternative
embodiment, the POP instruction may return multiple values for multiple registers. In
this alternative embodiment, the processor 100 may keep a list of the “popped” registers
in order to compare the register list with a subsequent branch instruction using one of
those registers in the register list as a branch target address. In one embodiment, the

detection logic circuitry 450 may store the list of “popped” registers.

[0051] Instruction H branches to the retrieved address that is now in Ry,. Even though
instruction H is not an explicit branch instruction (BX), it is an equivalent branch
instruction. As those skilled in the art appreciate a MOV, PC, Ry may also be
interpreted as an implicit branch instruction. As is explained in the instruction flow

charts 600 and 700 of Figures 6 and 7, the detection logic circuitry 250, 450 determines

15

WO 2009/059100 PCT/US2008/081947

that the POP instruction (instruction G) along with the branch instruction to the “popped”
register (R, of instruction H) constitutes a procedure return sequence. As a result, the
processor 100 uses the link stack 304 to provide the next fetch address and the

instruction fetching returns to procedure PROCI.

[0052] After processing instruction H, the instruction fetching returns back to procedure
PROCT1 and identifies instruction I. Instruction I pops the next value off the software
stack into R,. Still within procedure PROCI, Instruction J branches to the address stored
in R,. Similar to instruction H, instruction J branches to an address stored in a
previously “popped” register. As a result, the detection logic circuitry 250, 450
determines that instruction J is a procedure return instruction and the next value from the
link stack 304 is used to fetch the next group of instructions. In this example, after
instruction J is processed, instruction K is fetched. Instruction K may be any instruction

within the main program as displayed in Figure 3.

[0053] In one embodiment, the processor 100 uses the detection logic circuitry 250 to
identify that instruction F and sequence of instructions G and H, and I and J are to be
interpreted as procedure returns. As a result, when the set of instructions 200 are
encountered in the line buffer 107 by the detection logic circuitry 250, instruction F, H,
and J are pre-decoded as being a procedure return instructions with the pre-decoded
information being saved in the instruction cache 106. Thus when instructions F, H, and J
are fetched from the instruction cache 106 by the fetch logic circuitry 202, the return
selection logic circuitry 350 causes return addresses to be retrieved from the link 304

which is used to fetch the next group of instructions.

[0054] In an alternative embodiment, the detection logic circuitry 450 may also be
designed to identify that instruction F and the sequence of instructions G and H, and I
and J are to be interpreted as a procedure returns. In this case, when the group of
instructions 200 are decoded in the decode stage 205, the detection logic circuitry 450
identifies that instructions F, H, and J are procedure return instructions and

communicates this to the return selector logic circuitry 350. The return selector logic

16

WO 2009/059100 PCT/US2008/081947

[0055]

[0056]

[0057]

circuitry 350 then causes the next return address within the link stack 304 to be used to

determine the next fetch address.

Figure 6 displays an instruction flow 600 illustrating the steps performed by the
processor 100 having the detection logic circuitry 250 within the CPU 102 of Figure 3.
For ease of illustration, the flow chart 600 assumes that the line buffer 107 within the
CPU 102 is only a single instruction wide and the instructions are returned in sequence
from the start of the cache line address. Those skilled in the art appreciate that some
processors may have line buffers capable of processing multiple instructions out of
sequential order. The inventive concepts as described herein may be applied to either

type of processor.

The instruction flow 600 begins at start block 602. From block 602, the
instruction flow proceeds to block 604 where the first instruction in the line buffer 107 is
processed by the detection logic circuitry 250. The instruction flow 600 then proceeds to
decision block 606. In decision block 606, the detection logic circuitry 250 determines if
the instruction is a known procedure return. As discussed previously, a known procedure
return may be any of the previously identified procedure returns with the exception of a
POP/branch sequence. If at decision block 606 the detection logic circuitry 250
determines that the instruction is a previously known procedure return, the instruction
flow 600 proceeds to block 626 where the instruction is identified or flagged as a
procedure return. If at decision block 606 the detection logic circuitry 250 determines
that the instruction is not a previously known procedure return, the instruction flow

proceeds to decision block 610.

At decision block 610, the detection logic circuitry 250 determines if the
instruction is a POP instruction that does not have the program counter (PC) in the
popped register list. If the instruction is not a POP instruction without the PC in the
register list, the instruction flow 600 proceeds to decision block 628. Otherwise if the
instruction is a POP instruction that does not contain the PC in the register list, the

instruction flow 600 proceeds to block 612. At block 612, the detection logic circuitry

17

WO 2009/059100 PCT/US2008/081947

250 saves the register list of the POP instruction for use in analyzing any subsequent

instructions in the line buffer 107.

[0058] From block 612 the instruction flow proceeds to block 614. At block 614, the
detection logic circuitry 250 retrieves the next instruction from the line buffer 107. The
process flow continues from block 614 to decision block 616. At decision block 616, the
detection logic circuitry 250 determines if the next instruction in the line buffer 107 is a
branch instruction to any of the registers saved in the register list. If the instruction is a
branch to a register in the register list, the instruction flow proceeds to block 626 where
the instruction is flagged as a procedure return instruction. If at decision block 616 the
detection logic circuitry 250 determines that the instruction is not a branch instruction to

a register in the saved register list, the instruction flow 600 continues to decision block
617.

[0059] At decision block 617, the detection logic circuitry 250 determines if the
instruction is a branch instruction. If the instruction is a branch instruction, the
instruction flow proceeds to decision block 628. If at decision block 617 the detection
logic circuitry 250 determines that the instruction is not a branch instruction, the
instruction flow proceeds to decision block 618. At decision block 618, the detection
logic circuitry 250 determines if the instruction overwrites any of the registers in the
saved register list. If the instruction overwrites any of the registers in the saved register
list, the instruction flow 600 continues to block 620 where the overwritten register is
removed from the saved register list. From block 620, the instruction flow 600 continues

to decision block 622.

[0060] If at decision block 618, the detection logic circuitry 250 determines that the
instruction did not overwrite any registers in the saved register list, the instruction flow
600 proceeds to decision block 622. At decision block 622 the detection logic circuitry
250 determines if there are any instructions remaining for the line buffer 107. If there
are no instructions remaining for the line buffer, the instruction flow 600 ends at block
624. If there are instructions remaining in the line buffer 107, the instruction flow 600

proceeds back to block 614 where the next instruction in the line buffer 107 is processed.

18

WO 2009/059100 PCT/US2008/081947

[0061] At block 626, the detection logic circuitry tags the instruction as a return
instruction. As mentioned previously, tagging the return instruction allows the fetch
logic circuitry 202 to identify the return instruction when it is fetched from the
instruction cache 106. From block 626, the instruction flow 600 proceeds to decision
block 628. At decision block 628, the detection logic circuitry 250 determines if there
are any instructions remaining to be processed in the line buffer 107. If there are no
instructions remaining to be processed in the line buffer 107, the instruction flow 600
ends at block 624. If there are additional instructions remaining to be processed, the
instruction flow 600 proceeds to block 604 where the next instruction is processed by the

detection logic circuitry 250.

[0062] Figure 7 displays an instruction flow 700 illustrating the steps performed by the
CPU 102 having the detection logic circuitry 450 in the decode logic circuitry 406 within
coupled to the upper pipeline 151 of Figure 4. For ease of illustration, the processing of
instructions outlined in the instruction flow 700 assumes that the decode logic circuitry
406 processes a single instruction per processor cycle. Those skilled in the art appreciate
that some processors may have decode logic circuitry capable of processing multiple
instructions per processor cycle. The inventive concepts as described herein may be

applied to either type of processor.

[0063] The instruction flow 700 begins at start block 702. From block 702, the
instruction flow proceeds to block 704 where the instruction is processed in the decode
stage 205 by the decode logic circuitry 406. From block 704, the instruction flow
continues to decision block 706. At decision block 706, the detection logic circuitry 450
determines if the instruction is a procedure return. In this example, the detection logic
circuitry 450 determines that the instruction is a procedure return if it is any of the
previously known procedure returns other than the POP/branch sequence. If the
detection logic circuitry 450 determines that the instruction is a procedure return, the
instruction flow 700 continues to block 708. If the detection logic circuitry 450
determines that the instruction is not a procedure return, the instruction flow continues to

decision block 710.

19

WO 2009/059100 PCT/US2008/081947

[0064] At decision block 710, the detection logic circuitry 450 determines if the
instruction is a POP instruction not having the program counter (PC) in the register list.
If the instruction is not a POP instruction without the PC in its register list, the process
flow returns back to block 704. If at decision block 710 the detection logic circuitry 450
determines that the decoded instruction is a POP instruction that does not contain the PC
in its register list, the instruction flow 700 continues to block 712. Since the processor
100 may be able to pop multiple registers from the software stack, at block 712 the
detection logic circuitry 450 saves the popped register list. From block 712, the
instruction flow 700 proceeds to block 714.

[0065] At block 714, the processor 100 loads the next instruction into the decode stage
205, and the decode logic circuitry 406 processes the instruction. After the instruction is
loaded at block 714, the instruction flow 700 proceeds to decision block 716. At
decision block 716, the detection logic circuitry 450 determines if the instruction is a
branch to a register in the saved register list. If the detection logic circuitry 450
determines that the instruction is a branch to a register in the saved register list, the
process flow continues to block 708. If the detection logic circuitry 450 determines that
the instruction was not a branch instruction to a register in the saved register list, the

instruction flow 700 proceeds to decision block 718.

[0066] At decision block 718, the detection logic circuitry 450 determines if the
instruction is a branch instruction. If the instruction is a branch instruction, the
instruction flow returns back to block 704 where the next instruction is loaded into the
decode stage 205. If the instruction is not a branch instruction at decision block 718, the
instruction flow 700 proceeds to decision block 720. At decision block 720, the
detection logic circuitry 450 determines if the instruction overwrites a register in the

saved register list.

[0067] If the instruction does not overwrite a register in the saved register list, the
instruction flow 700 returns to block 714 where the next instruction is loaded into the
decode stage 205 and is processed by the decode logic circuitry 406. If the instruction

overwrites a register in the saved register list at decision block 720, the instruction flow

20

WO 2009/059100 PCT/US2008/081947

700 continues to block 722 where the overwritten register is removed from the saved
register list. From block 722 the instruction flow 700 returns to block 714 where the
next instruction is loaded into the decode stage 205 and is processed by the decode logic

circuitry 406.

[0068] The various illustrative logical blocks, modules, circuits, elements, and/or
components described in connection with the embodiments disclosed herein may be
implemented or performed with a general purpose processor, a digital signal processor
(DSP), an application specific integrated circuit (ASIC), a field programmable gate array
(FPGA) or other programmable logic component, discrete gate or transistor logic,
discrete hardware components, or any combination thereof designed to perform the
functions described herein. A general-purpose processor may be a microprocessor, but
in the alternative, the processor may be any conventional processor, controller,
microcontroller, or state machine. A processor may also be implemented as a
combination of computing components, ¢.g., a combination of a DSP and a
microprocessor, a plurality of microprocessors, one or more microprocessors in

conjunction with a DSP core, or any other such configuration.

[0069] Although specific embodiments have been illustrated and described herein, those
of ordinary skill in the art appreciate that any arrangement, which is calculated to achieve
the same purpose, may be substituted for the specific embodiments shown and that the
invention has other applications in other environments. This application is intended to
cover any adaptations or variations of the present invention. The following claims are in
no way intended to limit the scope of the invention to the specific embodiments

described herein.

21

WO 2009/059100 PCT/US2008/081947

What is claimed is:
1. A method for retrieving a return address from a link stack when returning from a
procedure in a pipeline processor comprising;:

identifying a retrieve instruction operable to retrieve a return address from a
software stack;

identifying a branch instruction, operable to branch to the return address;

retrieving the return address from the link stack, in response to both the instruction
and the branch instruction being identified; and

fetching a subsequent instruction using the return address.

2. The method of claim 1 wherein the retrieve instruction is a POP instruction.
3. The method of claim 1 wherein the retrieve instruction is a load instruction.
4. The method of claim 1 wherein the branch instruction is a BX instruction.

5. The method of claim 1 wherein the branch instruction is a MOV instruction.
6. The method of claim 1 wherein the identifying the retrieve instruction further

comprises identifying a register which contains the return address.

7. The method of claim 1 wherein identifying the retrieve instruction further
comprises maintaining a register list wherein the register list has a plurality of registers

wherein at least one register in the plurality of registers contains the return address.
8. The method of claim 7, wherein maintaining the register list comprises removing
registers from the register list if any of the plurality of registers is overwritten by a

subsequent instruction.

9. The method of claim 1 wherein identifying the branch instruction is preformed by

detection logic circuitry.

22

WO 2009/059100 PCT/US2008/081947

10. The method of claim 9 wherein the detection logic circuitry is contained with pre-

decode logic circuitry.

11. The method of claim 9 wherein the detection logic circuitry is contained with

decode logic circuitry

12. The method of claim 1 wherein identifying the branch instruction further

comprises flagging the branch instruction in an instruction cache.

13. A pipeline processor comprising:

a line buffer, the line buffer coupled to an instruction cache,

fetch logic circuitry coupled to the instruction cache, the fetch logic circuitry
having a link stack storing predictive return addresses, wherein instructions are loaded
from the line buffer into the instruction cache, the fetch logic circuitry retrieving
instructions from the instruction cache,

pre-decode logic circuitry communicating with the line buffer wherein the pre-
decode logic circuitry further comprises detection logic circuitry for identifying a
procedure return sequence, the procedure return sequence comprising a retrieve instruction
operable to retrieve a return address from a software stack, and a branch instruction
branching to the retrieved return address, the pipeline processor retrieving the predicted
return address from the link stack in response to the identification of the procedure return

sequence.
14. The pipeline processor of claim 13 wherein the detection logic circuitry flags the
branch instruction of the procedure return sequence when the branch instruction is loaded

from the line buffer into the instruction cache.

15. The pipeline processor of claim 14 wherein the fetch logic circuitry identifies the

procedure return sequence from the flagged information.

23

WO 2009/059100 PCT/US2008/081947

16. The pipeline processor of claim 15 wherein return selector logic circuitry within

the fetch logic circuitry identifies the return sequence from the flagged information.

17. The pipeline processor of claim 13 wherein the retrieve instruction is a POP

instruction.

18. The pipeline processor of claim 13 wherein the retrieve instruction is a load

instruction.

19. The pipeline processor of claim 13 wherein the branch instruction is a BX

instruction.

20. A pipeline processor comprising:

fetch logic circuitry having a link stack storing predicted return addresses, the fetch
logic circuitry fetching instructions from an instruction cache,

decode logic circuitry, the decode logic circuitry coupled to the fetch logic
circuitry wherein the fetched instructions are decoded by the decode logic circuitry, the
decode logic circuitry further comprising detection logic circuitry, wherein the detection
logic circuitry identifies a procedure return sequence comprising a retrieve instruction
operable to retrieve an address from a software stack and a branch instruction operable to
branch to the retrieved address, the pipeline processor retrieving the predicted return
address from the link stack in response to the identification of the procedure return

sequence.

21. The pipeline processor of claim 20 wherein the fetch logic circuitry fetches

instructions using the retrieved address.

22. The pipeline processor of claim 20 wherein the retrieve instruction is a POP

instruction.

23. The pipeline processor of claim 20 wherein the retrieve instruction is a load

instruction.

24

WO 2009/059100 PCT/US2008/081947

24. The pipeline processor of claim 20 wherein the branch instruction branches to an

address identified by the retrieve instruction.

25. The pipeline processor of claim 20 wherein the branch instruction is a MOV

instruction.

25

PCT/US2008/081947

WO 2009/059100

1/7

Ndo

$91 ~ 091 ~N
ng ng
aocr”’ Vo~
ANITAdId | | aNTT1adId
¥amo1 | | wamot
q A
ANITAdId
¥addn
o1~

14!

['DIH
ol
HHOVO AAAINg ¢ m H
NOLLONWISNI N1 ANt AHOWEN
901~ Lo1” 301~

AN

00T

WO 2009/059100

2/7

260 270

PCT/US2008/081947

200

ra

280

I I I
INSTRUCTION: OPERATION: MODULE:
A: BL PROC]1 MAIN
PROCI: B: PUSH Ry, PROCI
C: BL PROC2 PROC]1
PROC2: D: PUSH R4 PROC2
E: BL PROC3 PROC2
PROC3: F: BX R4 PROC3
G: POP R, PROC2
H: MOV PC,R;, PROC2
I: POP R, PROC]1
J: BX R, PROC]1
K: ANY MAIN

FIG. 2

WO 2009/059100 PCT/US2008/081947

3/7 102

va

107
DETECTION
LOGIC - . LINE
PREDECODE 250 BUFFER
LOGIC 1
150
T L=~
203 |
| 7
| | FETCHSTAGE | | v 106
l 202 | INSTRUCTION
' 1 g CACHE
| 1104
| I
| I
|
| | DECODE STAGE :
| I
|
| | TISSUE STAGE :
| I
_ L7
160~ l l 165
(LOWER PIPELINE) (REGISTERY " (LOWER PIPELINE)
220 < FILE 225
EXECUTION 235 EXECUTION
STAGE YREGISTER) STAGE
130A N L 130B
_ J _ J

FIG. 3

WO 2009/059100

202

PCT/US2008/081947

4/7

~—=316

320
RETURN
SELECTOR LOGIC
ADDRESS \350
SELECTOR LOGIC
A
PC + 8
—M
U |_ADDRESS
+ [SELECTION
-
302 v
/" LINK STACK
_ LOGIC
\ 310
1 . ADDRESS
BUS
2
3
L~304
n-1
LINK
STACK

FIG. 4

WO 2009/059100

5/7

PCT/US2008/081947

102

/7 AN
| 203 |
| L |

| FETCH STAGE | f106
| 202 |

INSTRUCTION

% | CACHE
104
l |
DETECTION 205 :
LOGIC 450 DECODE STAGE |
DECODE | |
LOGIC | l 207 |
: ISSUE STAGE :
| |
N Y
160~ l l 165
(LOWER PIPELINE) (REGISTERY 230 ("1 OWER PIPELINE)
220 [pE 225
EXECUTION s EXECUTION
STAGE VR STAGE
REGISTER
130A 130B
FILE >
____/
_ J _ _J

FIG. 5

WO 2009/059100 PCT/US2008/081947

6/7
600

602
#

/604
—»| PROCESS INSTRUCTION IN LINE BUFFER

606

IS THE
INSTRUCTION A
RETURN?

YES
/626

TAG
INSTRUCTION

610

IS
INSTR POP
W/O PC IN REG
LIST?

YES
f612

SAVE POP
REGISTER LIST

l 614

PROCESS NEXT e
INSTRUCTION

IS
BRANCH TO
REG IN REG
LIST?

/620

REMOVE REG | YES
FROM LIST

DOES
INST OVERWRITE
REG IN LIST?

624

ANY INSTR
REMAINING FOR

WO 2009/059100

PCT/US2008/081947

77

702
START
704

®

» PROCESS INSTRUCTION

> IN DCD STAGE

708 ~N

RETREIVE AND
USE LINK
STACK ADDR

INSTRUCTION A
RETURN?

710

IS
INSTR POP
W/O PC IN REG
LIST?

YES

/712

SAVE POP
REGISTER LIST

l 714
PROCESS NEXT

INSTRUCTION

INST OVERWRITE
REG IN LIST?

YES /722

REMOVE REG

FIG. 7

FROM LIST

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2008/081947

CLASSIFICATION OF SUBJECT MATTER

A.
INV. GO6F9/32 G06F9/38

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X S. B. FURBER: "VLSI RISC Architecture and 1—7,9—12

Organization, pp 231-233" A
1989, MARCEL DEKKER, INC. , NY, USA ,

. XP002507906
Y the whole document 13-25
Y US 6 898 698 Bl (SUNAYAMA RYUICHI‘[JP] ET 13-25

AL) 24 May 2005 (2005-05-24)

column 5, 1ine 35 -~ column 7, line 31
column 9, 1ine 11 - Tine 40

column 10, line 38 ~ line 44

column 13, 1ine 52 - column 14, Tline 56
A WO 00/04444 A (ADVANCED MICRO DEVICES INC 1-25
[US1) 27 Jdanuary 2000 (2000-01-27)
page 6, line 24 - line 30

page 11, Tine 37 - page 12, line 17
page 13, Tine 33 - page 14, 1ine 14

page 15, Tine 5 - Tine 17

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international
filing date

L document which may throw doubts on priority claim(s) or
which Is cited to establish the publication date of another
citation or other special reason (as specified)

'0O" document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

"T* later document published after the international filiﬁg date
or priority date and not in conflict with the application but
cited t;) understand the principle or theory underlying the
invention

X document of particular relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

'Y* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu—
m?rr]\ts, such combination being obvious to a person skilled
in the art.

& document member of the same patent family

Date of the aclual completion of the international search

12 December 2008

Date of mailing of the intemational search report

30/12/2008

Name and malling address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
_NL - 2280 HV Rijswijk

Tel. (+31-70) 340~-2040,

Fax: (+31-70) 340-3016

Authorized officer

Daskalakis, T

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2008/081947
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 6898698 Bl 24-05-2006 JP 3723019 B2 07-12-2005
JP 2001100993 A 13-04-2001
WO 0004444 A 27-01-2000 DE 69904479 D1 23-01-2003
DE 69904479 T2 30-10-2003
EP 1095330 Al 02-05-2001
JP 3977015 B2 19-09-2007
JP 2002520729 T 09-07-2002
us 6094716 A 25-07-2000
us 6256721 Bl 03-07-2001

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - wo-search-report
	Page 36 - wo-search-report

