
(19) United States
US 2014O189358A1

(12) Patent Application Publication (10) Pub. No.: US 2014/0189358 A1
Grimen et al. (43) Pub. Date: Jul. 3, 2014

(54) MULTIMEDIA DATA PROTECTION (52) U.S. Cl.
CPC H04L 63/061 (2013.01)

(71) Applicant: Conax AS, Oslo (NO) USPC .. T13/171.

(72) Inventors: Gisle Grimen, Trondheim (NO); (57) ABSTRACT Christian Mönch, Trondheim (NO)
(21) Appl. No.: 14/109,888

(22) Filed: Dec. 17, 2013

Related U.S. Application Data
(62) Division of application No. 11/995,677, filed on Aug.

7, 2008, now Pat. No. 8,627,081, filed as application
No. PCT/GB2006/002619 on Jul 14, 2006.

(30) Foreign Application Priority Data

Jul. 14, 2005 (GB) O514492.8
Publication Classification

(51) Int. Cl.
H04L 29/06 (2006.01)

A method of transmitting a media work Such as a movie to a
client is disclosed. The method includes (a) encrypting the
work using a sequence of different keys corresponding to
respective temporally spaced segments of the document, (b)
transmitting Software code containing an algorithm from a
security server to the client, the algorithm having a result that
is a function of the State of the client, (c) executing the code at
the client and returning the result to the security server, (d)
determining whether the result is indicative of an unmodified
client. The method further includes (e)transmitting a segment
from a server to the client, (f) securely streaming a key cor
responding to the transmitted segment from a secure remote
server to the client, (g) decrypting the segment using the
obtained media key, (h) if step (d) indicates a modified client,
preventing further keys from being transmitted, otherwise
repeating steps (e) to (g) and repeating steps (b) to (d).

Server Algorithm

Send new
mobile guard

incorrect

Expired

Receive key
request

Send key

Repeat in times
for n keys

Check mobile
guard lifetime

Patent Application Publication Jul. 3, 2014 Sheet 1 of 3 US 2014/O189358A1

Startup phase
as rease as seen rear - - - - - -s - - - - say a - as we asses in a rare - - - - - - - as as as sases

w

Trusted
environment

3. Streaming phase

License

4.
6 5

F.G. 1

as ess won as a r a Ad w w is was 80 AA was 8 to

Trusted environment ---13

19
Key exchange

ile quard -8 Mobile g

10

Patent Application Publication Jul. 3, 2014 Sheet 2 of 3 US 2014/0189358A1

Checksum
Secret

Checksum Algorithm

KnOWn Checksum
Calculation

C input Modification

21

Randomly Changed
Part S.

Thread 1: Verification Thread 2: Presentation

Receive mobile
guard

Receive
Segment

Verify client
program

Key Queue
Securely R> Decrypt receive keys segment

Present
Segment

Expiration of
mobile guard

FIG. 4

Patent Application Publication Jul. 3, 2014 Sheet 3 of 3 US 2014/O189358A1

Server Algorithm

Receive key
request

Send key

Repeat n times
for n keys

Expired Check mobile
guard lifetime

Send new
mobile guard

Correct

incorrect

FIG. 5

US 2014/O 189358 A1

MULTIMEDIA DATA PROTECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation of U.S. applica
tion Ser. No. 11/995,677, filed Aug. 7, 2008, entitled “Mul
timedia Data Protection', which is a national phase entry of
PCT/GB2006/002619, filed Jul. 14, 2006, designating the
United States of America and published in the English lan
guage, which claims priority to Application No. GB 0514492.
8, filed Jul. 14, 2005. The disclosures of the above-referenced
applications are hereby expressly incorporated by reference
in their entireties.

BACKGROUND

0002 1. Field
0003. The present invention relates to the secure distribu
tion of multi-media works that have a temporal dimension
Such as movies, TV shows, audio documents, etc. In particu
lar, it relates to a system for securely delivering Such works to
a user in a manner that prevents the user from obtaining an
unauthorized copy of the work. Aspects of the invention also
have applications in other server-client situations such as
on-line banking, gaming, etc.
0004 2. Description of the Related Technology
0005 Illicit copying of artistic works is a perennial prob
lem. In the early days of the movie industry, whilst it was
possible for unauthorized copies of films to be made, it was
expensive to do so and not practicable except for persons with
access to specialist equipment. With the advent of home video
recorders a new market for movies and other recorded pro
grammes became available to producers whilst simulta
neously it became possible for those recordings to be illicitly
copied and distributed.
0006 Today the DVD format, which provides higher qual

ity playback and a more convenient and compact data carrier,
is rapidly Supplanting the video. In addition, with the advent
of affordable broadband Internet connections, there is now an
emerging market for downloading or streaming movies and
other media from remote servers onto home computers.
0007 Where a media work is downloaded, a copy of it is
stored on the hard drive of the computer and it can normally
be viewed repeatedly by the user, analogously to watching a
Video recording. Streaming content, whether live or recorded,
is watched as it is transmitted to the computer (as with a
conventional TV programme) in almost real-time (there is a
short delay due to the need to provide some buffering). It is
well known for radio and some TV stations to offer their
content in this manner.
0008 Whilst these improvements in technology have
allowed the development of a promising new market for
media companies, there is also a corresponding problem in
preventing the production and distribution of unauthorized
copies of the works. It now is commonplace for even low-cost
home computers to have the capability to record content onto
DVDs.
0009 Techniques have therefore been developed with the
aim of preventing Such copying. In a conventional approach,
the media supplier, who is referred to here as a “content
provider, owns encoded media works, for example movies,
which will be referred to generically as “media works’’. These
are to be distributed and presented to a user's client program/
viewer in a way that does not allow the user to create a copy

Jul. 3, 2014

of the encoded media work. The delivery can be carried out by
either streaming over a network or by delivering a physical
medium, for example a DVD, to the client.
0010 Where the work is transported over a network it is
usually secured by cryptographic means to protect the work
from being intercepted and copied by a third party. We refer to
these cryptographic means as “transport encryption'. (En
cryption, which is a security measure, is to be distinguished
from encoding, whereby the work is converted and usually
compressed into a form that can readily and efficiently be
transmitted.) Encryption techniques are sufficiently well
developed and secure that the communication over computer
networks can be secured in an appropriate way.
0011. Before the media work is delivered to the client, the
content owner protects the encoded media document using
cryptographic means. Within a secure “provider environ
ment’, an encryption tool is used to encrypt the work with a
“media key” to create an encrypted encoded media work, the
“encrypted work”.
0012. The intention is that the client can then only use the
work if he has the media key that allows him to decrypt it. This
can be embedded in the client program/viewer/player and/or
the media, for example in DVD-players and DVDs. (The
client program/viewer/player may be a free-standing device
or a viewer Software program on a computer.)
0013 Another option, which is illustrated schematically
in FIG. 1, is for the media key to be retrieved from a license
server 1 on demand. This allows for streaming of the media
work. To support this model, the encryption tool 2 wraps the
media key, together with additional information, in a license
3 and sends this to the license server 1. The client then
receives an encrypted, encoded media stream 4 from the
streaming server 5 that has to be decrypted in a viewer 6
before it can be presented to the client. In order to watch the
encrypted movie 7, the viewer requests a license containing
the media key from the license server (see "Start-up Phase' in
FIG. 1).
0014. Once the viewer has received the license 3 (and
therefore the media key), it connects to the streaming server 5
from which it receives an encrypted encoded media stream 4.
The viewer uses the media key to decrypt the encrypted
encoded media stream and present it to the client (see
“Streaming phase' in FIG. 1).
0015. A major problem in the scenario described above is
that the viewer is executed on a host that is controlled by the
client. Thus, the viewer is not executed in the trusted envi
ronment 8 (where the movie 9 was originally encrypted).
There is, therefore, a risk that the client could modify the
viewer. Even though the viewer will usually only decrypt and
decode part of the media stream, during the whole presenta
tion process every part of the encoded media stream will at
Some point be present in the viewer memory-image. Another
risk is that, since the memory image of the viewer has to
contain the key, the user could extract the media key, in which
case he would be able to create a copy of the unencrypted
encoded media.

0016. The problem of modification exists for purely soft
ware-based viewers as well as for hardware-based viewers,
for example, designated DVD players. Though it is more
difficult to modify a hardware-based viewer than to modify a
software-based viewer, it is not impossible. Thus there exists
a need for a system that addresses these drawbacks.

US 2014/O 189358 A1

SUMMARY

0017 General requirements for any effective protection
mechanisms include the following: It should be resource
intensive to break so that the cost of breaking is at least of the
same magnitude as the value of the work. Any successful
attack should not be generalizable so that it can be applied
elsewhere. It should preferably also facilitate detection. The
various aspects of the invention described below address
these requirements individually and the preferred forms of the
invention provide a system that satisfies them all.
0018. In the following discussion, a media work is a work
that has a temporal aspect, i.e., it contains a number of pre
sentational steps that have to be performed in an appropriate
order. The steps are normally computationally independent of
each other and can be processed independently. In most cases,
the complete presentation takes a significant amount of time:
many minutes or some hours in the case of a movie.
0019. According to one aspect of the invention there is
provided a method of transmitting a media work to a client
comprising the steps of

0020 (a) encrypting the work using a sequence of dif
ferent keys corresponding to respective temporally
spaced segments of the work,

0021 (b) securely transmitting a first key from a secure
server to the client and transmitting the corresponding
segment from a server to the client,

0022 (c) in the client, using the first key to decrypt the
corresponding segment,

0023 (d) in the viewer, presenting the decrypted por
tion,

0024 (e) repeating steps (b) to (d) in respect of further
segments and keys.

0025. The invention may be applied to any kind of media
work (as defined above) that has a temporal aspect, and is
particularly useful for distributing movies, for example
streaming them over the Internet.
0026. By dividing the document into a sequence of seg
ments, it becomes impracticable to copy more than a small
part because each key can decrypt only one segment, i.e., the
keys are functionally independent. Thus, only one segment of
the movie at a time can be copied. Furthermore, there should
not be a master key that can unlock other keys, i.e., the keys
should preferably be structurally independent. Preferably,
thousands of different keys are used for a typical length of
film Such that each corresponds to a segment of a pre-deter
mined length, e.g., of only a few seconds, say less than two or
three seconds, and most preferably a second or less. Most
kinds of media works only have significant value if they are
substantially complete. For example, a movie with only the
last few minutes missing will usually be of little value. Thus,
someone seeking to illicitly copy a movie will have to decrypt
each of the segments.
0027. In order to maintain a continuous flow of data
decryption, in Some embodiments the client may ask for the
current key and the next key(s) and cache a small number of
keys (e.g., 2, 3, 4 or So) in memory.
0028 Normally, the secure server is remote from the
viewer, and is referred to herein as a security server.
0029. The movie is generally encrypted in a trusted envi
ronment. Preferably, the keys generated during encryption
are supplied to the security server, which is within the trusted
provider environment. However, although the keys are then
transmitted from the security server to the viewer, the movie
or other work may be transmitted from elsewhere. For

Jul. 3, 2014

example, it may be streamed from a separate server that is
outside the trusted environment. Therefore, in one preferred
embodiment, once the movie has been encrypted in the
trusted provider environment, it is then Supplied to a non
secure streaming server.
0030 Thus, in this arrangement, the client, which may be
a software viewer program running on a remote computer
(e.g., a user's PC) communicates with a security server to
receive the keys (referred to as media keys) and with a sepa
rate streaming server.
0031. The media keys are preferably transmitted to the
client following a request from the client, and this is prefer
ably done using a key exchange protocol that makes use of a
random data generator and the public key of the security
server, which is known to the viewer.
0032. In one implementation, when it is necessary to
obtain the next media key, the client generates random data
and encrypts it with the public key of the security server. The
encrypted data may then be included in a request for the next
media key, preferably with data identifying the client, which
is sent to the security server. When it receives the request, the
security server checks whether that client is entitled to receive
the media work, decrypts and extracts the random data and
performs a function using it and the requested key, to encrypt
the key using the random data. In one embodiment, they may
be XOR'ed. The result is then sent back to the client. When
the client receives the result, it can then extract the requested
key from the result by carrying out a corresponding function,
for example by XORing it with the same random data that was
provided in the original request for the key. In this way the
encrypted, encoded media stream can be decrypted without
any secret keys hidden in the source code of the viewer.
0033 Preferably, the public key is included in the check
sum calculation in order to prevent a “man in the middle’
attack in which the public key is exchanged.
0034. In a preferred form of the protocol, steps are also
taken to ensure that the client checked by the mobile guard is
the same one as the one generating the random data. This may
be done by extending the input to the checksum to include the
random data used to request the media key. Thus, the input to
the checksum may include code from the client, the public
key of the security server and the random data sent with the
key request.
0035. As external entropy sources can be monitored, the
entropy source used for generating the random numbers may
be that generated by the executing environment itself in the
form of how tasks are scheduled and interrupted. Thus, the
random generation process may consist of creating several
threads that work on different computational tasks that can be
input into a secure hash algorithm along with data from the
current state of the viewer and the executing mobile guard.
0036. The need for a continuing sequence of keys to be
received by the client can be used to enforce user co-opera
tion. Thus, if a certain step required by the provider is not
carried out by the client, the Supply of keys can be ceased. As
will be discussed further below, this step may be an integrity
check of the client, and preferably, the request for a new key
is only responded to when a so-called “mobile guard’ indi
cates that the viewer is unmodified.

0037. Where the mobile guard is employed, it is possible
for it to generate the random number used in the preferred key
exchange protocol described above, rather than the actual
client viewer/player program.

US 2014/O 189358 A1

0038. It will be appreciated that this enforcement of co
operation is possible because the content provider controls
the media work and because of the work's temporal nature,
the work can be Supplied in Small parts with the user being
required to co-operate in order to receive Subsequent parts.
This is in contrast to conventional systems where a license
unlocks the whole document, effectively neutralising the
temporal property.
0039. In an alternative embodiment of the invention the
trusted environment is extended so that the streaming server is
included within it. When this is done it is possible to have the
streaming server generate media keys and encrypt the media
stream on the fly. This ensures that each media stream is
encrypted with a unique set of media keys. That means that a
leaked media key cannot be used to decrypt a different copy of
the same movie. To facilitate distribution of the media keys
the streaming server sends them to the security server, which
will distribute them to the viewer as described above. The
downside is that another entity needs to be trusted and that the
encryption on the fly is computationally expensive. Thus,
there is a trade off here between very high security on the one
side and complexity of the trusted environment and compu
tational costs on the other side.
0040. The invention is not limited to arrangements where
the document is streamed from a remote server. Because it is
encrypted, the document can be distributed in any convenient
manner. Thus, the encrypted document may be provided to
the client from a local server or on a physical medium (e.g., a
DVD). The document may then be transmitted from the local
server or physical medium to the viewer and decrypted in the
same manner as previously discussed.
0041 Although this arrangement provides a significant
improvement over the prior art system, there still remains the
risk that the viewer could be tampered with so that the
decrypted work (movie etc.) could be recorded and copied.
Thus, preferably, the invention further comprises means for
checking the integrity of the viewer to ensure that it has not
been tampered with. This may be done by programming it to
send a signal Such as a checksum to the security server at
regular intervals, and/or when a key is requested. Such a
signal would be designed to depend on the state of the viewer
so that any modification to the viewer would change the
signal.
0042. However, there is a risk that such a measure could be
overcome by programming the modified viewer to send the
“correct” signal regardless of its true state. Preferably, there
fore, the method further requires that the security server inter
rogate the viewer using a number of different tests, which
vary with time. In a particularly preferred form, the tests
comprise the use of randomly generated algorithms which
will only return the correct result if the viewer is unmodified.
Furthermore, failure to respond oran undue delay in respond
ing can be taken as an indication of viewer modification.
0043. Thus, preferably the security server is arranged to
cease the supply of keys in the event that viewer modification
is detected and/or if such a viewer integrity check is not
Successful.
0044) The most preferred arrangement is for the algo
rithms to be transmitted by the security server to the client in
the form of software code (e.g., machine code). The software
code may be termed a “mobile guard', and is described fur
ther herein.
0045. Such a system of integrity checking is considered to
be an inventive concept in its own right and therefore, viewed

Jul. 3, 2014

from a further aspect, there is provided a method of transmit
ting data to a client comprising the steps of

0046 (a) transmitting the data to the client,
0047 (b) transmitting software code containing an
algorithm from a security server to the client, the algo
rithm having a result that is a function of the state of the
client,

0.048 (c) executing the code at the client,
0049 (d) returning the result to the security server, and
0050 (e) determining whether the result is indicative of
an unmodified viewer.

0051. The data may be a media work that is streamed to the
client, for example over the Internet, or it can be supplied
from a local server, DVD or other media as discussed above.
However, as will be discussed more fully below, it may be any
kind of data that can be transmitted between server and client.
The client may be a program running on a computer or a
hardware device such as a TV set-top box. The algorithm
referred to in step (b) may be transmitted before any part of
the document has been transmitted, or the whole or part of the
work may be transmitted before the algorithm. Preferably, the
document is not viewed until after step (d) has been carried
Out.

0.052 Depending on the outcome in step (d), appropriate
action can be taken. Where the work is being streamed, if the
viewer is found to be unmodified, the transmission of the
work and of any keys required to decrypt it would normally be
allowed to continue. However, there may be a further step of
(e) ceasing the transmission of the work and/or of keys nec
essary to decrypt it in the event that the result is not indicative
of an unmodified client. Preferably, if no result is returned
from the mobile guard, this is also deemed to indicate that the
client has been modified.
0053 Where the work is being transmitted from a local
source such as a local server, DVD, etc. the action may be to
cease the transmission of the keys needed to decrypt the
document.
0054 Alternatively, other action may be taken if it is found
that the client has been modified. For example, the transmis
sion could be allowed to continue and evidence gathered to
identify the user. This may be appropriate if it is desired to
take legalorinvestigative action, e.g., to detect criminal activ
ity or to prevent future illicit copying of documents.
0055 As noted above, the action taken in response to the
identification of a modified client may be to cease transmis
sion of decryption keys. It will therefore be appreciated that
the method may further comprise dividing the work into a
plurality oftemporally spaced segments, which are encrypted
using different keys. These keys may be distributed to the
client sequentially, and preferably as discussed above. Thus,
if their distribution is ceased, the remaining part of the work
cannot be decrypted.
0056. The method is preferably carried out using ran
domly generated Secret algorithms in the Software code (as
mentioned above). These so-called enforcement algorithms
generate a result that is dependent on the state of the client
(e.g., of a viewer program), but the correct result is not guess
able by the user because of the random aspect. Preferably,
they contain a checksum calculation into which the viewer
program’s code is input. Although the algorithm as a whole is
secret, the checksum calculation may be a known one such as
the Message Digest Algorithm 5 (MD5) (RFC1321 www.
faqs.org/rfcs/rfc 1321.html), which may be used in combina
tion with randomized input modification.

US 2014/O 189358 A1

0057. Input modification refers to the random creation of a
modifier that permutates the data that will be input into the
checksum. In one implementation, when the software code
(referred to here as a “mobile guard') is generated, a random
sequence is determined. When the algorithm is executed, the
input code from the viewer is divided into n blocks of the
same size. These are then shuffled into the above-mentioned
random sequence and the result is then input into the check
Sum algorithm. Although in this arrangement the checksum
algorithm itself is public, its result is a function of the order in
which the n blocks are input to it. This order is known to the
security server and so the security server can determine
whether the result returned to it indicates an intact viewer.

0058 An alternative approach to creating an input-filtered
checksum is to decompose a known checksum algorithm and
reassemble itina way that reads the input in a given sequence.
0059. Instead of using input filtering, it is possible togen
erate a checksum function from Scratch. Thus the input can be
split into?words (32 bits) and a function f is created that
reads/words from the input and m words from a variable area
that outputs a word. The function may comprise a random
number of assignments that are performed one after another
and the checksum may be the summodulo 2 of all the results
of the application off.
0060 Composing functions has the advantage that almost

all code of the checksum algorithm is randomly created,
leading to more structural diversity in the code. Since the
building blocks are quite small, it allows for easier interleav
ing with other algorithms.
0061 The software code also preferably contains addi
tional algorithms, which may be secret or non-secret. They
are preferably functionally and/or spatially entangled with
the secret algorithm. In this way the client’s computer/viewer
can be forced to carry out the additional algorithms because if
it does not the secret one will not be implemented. The addi
tional algorithms may be used, for example, to check the
integrity of viewer hardware.
0062. As the mobile guard is present in the same environ
ment as the viewer, it is potentially vulnerable to attacks. A
user might try to modify it in order to circumvent the protec
tion methods it implements. Automated attacks on it can be
prevented by ensuring that the mobile guards are partly ran
domly created, as discussed above. In addition, obfuscation
transformations may be applied to the mobile guards. The
mobile guard may hide the checksum in an opaque data
structure that is interleaved with the checksum in a way that is
specific to the mobile guard. Variables may be located ran
domly in the mobile guard's memory and, in addition, the
mobile guards instructions may be split into blocks, which
are also located randomly in memory. This preferably
includes the entry point into the mobile guard. Indeed, the
entry point for one mobile guard can be provided by the
previous one.
0063. If these steps are carried out, a human attack then
becomes necessary to overcome the obfuscation before any
automated attack can commence. Such an approach inevita
bly takes a significant amount of time and so provided the
“trust interval' between successive mobile guards is suffi
ciently short, it will not be effective. In other words, because
the mobile guards are replaced frequently, there is insufficient
time for this to be worthwhile. Thus, the obfuscation process
protects the mobile guard from tampering in the time interval
before it is replaced by another mobile guard.

Jul. 3, 2014

0064. There is a risk of an observer spying on memory
locations in a computer where the decrypted movie data is
stored. If a known memory location is used then the data
could be copied. Therefore, it is undesirable for it to be
practicable to locate code by identifying a certain memory
location (location-based identification) and preferably, once
locations have been used, they should not be re-used. Also,
pattern-based identification—where code may be sought by
looking for sequences like MPEG headers—should prefer
ably be prevented too.
0065. The viewer is, therefore, preferably protected by the
mobile guard against its state being determined by spying. To
do this the mobile guard will preferably further comprise one
or more protection algorithms to protect against Such attacks.
This it may perform obfuscation tasks on the client (e.g., on a
viewer program), referred to hereinbelow as “runtime viewer
obfuscation', i.e., obfuscation is carried out on the viewer as
it runs. This changes the memory image of the running
viewer.
0066. This runtime viewer obfuscation is considered a
further inventive concept, and thus from another aspect, the
invention provides a method of obfuscating an executing
viewer, comprising randomising the memory image of the
executing viewer.
0067. Runtime obfuscation may comprise one or more of
the following techniques.
0068 Code relocation comprises moving code blocks
around in memory. As the program executes, the mobile
guard will move the code to other parts of memory, which will
then later be executed. This algorithm is preferably tightly
interleaved with the checksum calculation.
0069 Preferably, code relocation is implemented by (1)
identifying all the basic building blocks in the program and
partitioning it into Small relocatable segments; (2) during
execution of the mobile guard these segments may be rear
ranged in memory to random locations; and (3) modifying all
jump instructions to correspond to the new code locations. As
a result, an attacker will be confronted by a memory image
that changes during the execution of the mobile guard. Since
the location of the segments is determined by the mobile
guard provided by the security server, it is unpredictable to
the attacker who cannot then rely on the assumption that
certain memory locations contain certain data.
0070 Data relocation comprises moving the data and
changing the instructions that access it. Again, the new loca
tions can be determined randomly.
0071 Data hiding addresses the problem of location and
pattern-based identification. One approach is to apply a two
way function to alter the appearance of the data—effectively
to mask it. Preferably, a simple one-time pad approach is
used. It may comprise a newly created modulo function that
creates an index into an array of random data. The random
data may be used to alter the sensitive data by applying the
XOR operator between the random and sensitive parts. Pref
erably it is applied between these and part of the address of the
sensitive data.
0072. One approach is to scramble (mask) and unscramble
the data so that sensitive data is stored in scrambled form,
unscrambled when needed, and then re-scrambled or deleted.
However, this does leave a short window when the data is
unscrambled.
0073 However, it is possible to take advantage of stream
processing to delay the unscrambling until the data is in the
processor's registry.

US 2014/O 189358 A1

0074 Thus, the actual content decoder may be modified to
perform the last decryption operation, as it needs new data.
This means that there will not be any decrypted data present
in main memory at all. It may be provided using the following
steps:

0075 a) The Mobile guard modifies the decoder to per
form the last decryption step as needed;

0076 b) The next encrypted segment is obtained:
0077 c) Media key for the encrypted segment is
obtained;

0078 d) The decryption stream is generated and placed
in random places in memory according to how the
decoder was modified;

(0079 e) The decoder will then read a byte or a word at
a time and decrypt them as needed.

0080 Code diversification comprises operations per
formed by the mobile guard on the client program during
execution. The operations performed change the code Such
that it consists of different instructions without changing its
semantics. This is to prevent pattern-based identification. One
or more of the following steps may be carried out:
0081 Context-independent instructions may be inserted.
These are instructions whose input context may be shared
with contexts in the program but whose output context is
different from any input context in the program. Since they
cannot alter any input context of the program, it does not
matter what they process.
0082 Context dependent instructions may be replaced by
instructions that perform the same function. It will be appre
ciated that this is more difficult to achieve, but it is also more
effective because they cannot be identified by data-flow
analysis.
0083. Functional independent changes that can be made
include changing the order of execution of instructions,
inserting instructions with or without temporary variables,
re-ordering instructions in memory and making control flow
changes.
0084 Functional dependent changes require care in order

to keep the function and side effects intact. They include
replacing instructions with functional equivalents, introduc
ing identity functions, introducing operators so that literal
values are replaced by instructions that initialise the value
arbitrarily and performan operation that corrects the value to
match the original literal. Also, variables can be introduced so
that copies to a destination are replaced by copies of a newly
created variable.

0085. In an embodiment in which a hardware-based
viewer solution is employed, for example a TV set-top box,
the distributor of the viewer controls not only the viewer
software, but also the viewer environment, i.e., the hardware
and operating system. Therefore, a hardware based viewer
can generally be checked by a mobile guard in a much more
complete manner than a purely software based solution. In
this embodiment, the checksum algorithm in the mobile
guard is not restricted to checking the viewer Software but can
also check different aspects of the operating system and the
hardware.

I0086 Thus, the system can be used in two ways in con
nection with hardware-based viewers. Firstly, it can be used
to replace Solutions that are based on expensive tamper-proof
hardware. Secondly, it can provide additional Security mea
Sures that come into play in the event that the tamper-proof
hardware should be compromised.

Jul. 3, 2014

I0087. It will be seen that the invention preferably relates to
the combination of individually encrypted segments of the
document and the use of the “mobile guard’ concept. Thus,
viewed from a still further aspect, the invention provides a
method of transmitting a media work to a client comprising
the steps of:

0088 (a) encrypting the work using a sequence of dif
ferent keys corresponding to respective temporally
spaced segments of the work,

0089 (b) transmitting software code containing an
algorithm from a security server to the client, the algo
rithm having a result that is a function of the state of the
client,

0090 (c) executing the code at the client and returning
the result to the security server,

0.091 (d) determining whether the result is indicative of
an unmodified viewer,

0092 (e) transmitting a segment from a server to the
viewer,

0.093 (f) in the event that the result is indicative of an
unmodified viewer, Securely streaming a key corre
sponding to the transmitted segment from a secure
remote server to the viewer,

0094 (g) decrypting the segment using the key.
0095. It will be appreciated that although the steps may be
executed in the order in which they are given above, at least
some of the steps may be executed in a different order, or
concurrently. For example, step (e) may be carried out con
currently with steps (b), (c), (d) or (f), such that the segments
are transported before, with or after the keys. However the
keys must be available before the segment is decrypted.
0096. In one embodiment, the method comprises a further
step (h) wherein steps (b) to (g) are repeated.
0097 However, generally, the transmitted software code
has a certain lifetime or trust interval, for example less
than 30 seconds. On the other hand, segments are generally
transmitted more frequently than the lifetime of the software
code, for example one per second. As such, new software
code does not need to be transmitted each time a segment is
transmitted, but will generally only need to be transmitted
once the lifetime of the present software code has expired.
Thus, steps (e) to (g) will generally be repeated until new
software code is required, when step (b) will be repeated. In
this way one piece of Software code (mobile guard) protects
the delivery of many keys.
0098. Although the execution of the code and determina
tion of whether the result is indicative of an unmodified
viewer (steps c and d) can be done more than once for each
piece of Software code, generally, it will only be necessary to
do it once during the lifetime of the software code. As such,
steps (c) and (d) will generally only be repeated after step (b)
has been repeated.
(0099 Viewed from a still further aspect, the invention
provides a method of transmitting a media work to a client
comprising the steps of

0.100 (a) encrypting the work using a sequence of dif
ferent keys corresponding to respective temporally
spaced segments of the work,

0101 (b) transmitting software code containing an
algorithm from a security server to the client, the algo
rithm having a result that is a function of the state of the
client,

0102 (c) executing the code at the client and returning
the result to the security server,

US 2014/O 189358 A1

0103 (d) determining whether the result is indicative of
an unmodified viewer, and further comprising the steps
of:

0104 (e) transmitting a segment from a server to the
viewer,

0105 (f) securely streaming a key corresponding to the
transmitted segment from a secure remote server to the
viewer,

0106 (g) decrypting the segment using the obtained
media key,

0107 (h) if step (d) indicates a modified viewer, pre
venting further keys from being transmitted, otherwise
repeating steps (e) to (g).

0108 Preferably, the method further comprises the step (i)
of repeating steps (b) to (d).
0109. It will be appreciated that although the steps may be
executed in the order in which they are given above, at least
some of the steps may be executed in a different order, or
concurrently. In fact, Some steps may be carried out more
times than others.
0110 Steps (b) to (d) can be carried out independently of
steps (e) to (h), and are preferably carried out concurrently
therewith. As mentioned previously, the Software code gen
erally has a lifetime that will encompass the sending of many
segments and keys. As such, the repetition of steps (b) to (d)
(mentioned in step (i)) will generally be carried out less
frequently than the repetition of steps (e) to (g) (mentioned in
step (h)). Preferably, step (i) is only carried out if the lifetime
of the software code has expired.
0111. The invention also extends to apparatus configured
to operate as discussed above, including a client configured to
receive Such streamed media and also the server arrangement,
both in combination and separately. Thus, from a still further
aspect it may provide a system for delivering a media work to
a client comprising:

0112 (a) means for transmitting the work to the client,
0113 (b) means for transmitting software code contain
ing an algorithm from a security server to the client, the
algorithm having a result that is a function of the state of
the client, and

0114 (c) means associated with the security server for
receiving the result and determining whether the result is
indicative of an unmodified client.

0115. Another aspect provides a client, e.g., a viewer for
playing a work Such as a movie, the client being arranged to:
receive the work and to receive Software code containing an
algorithm from a remote source; to execute the algorithm on
the client; and to return a result of the algorithm to the remote
Source, thereby demonstrating the integrity of the client to the
remote source and enabling the playing of the document.
0116. The client preferably enables the playing of the
work by decrypting it, or decrypting a segment of it using a
key supplied to it by the remote source. Preferably the client
is configured to request a sequence of keys and uses the keys
in sequence to decrypt consecutive sections of the work,
which are then played as a continuous presentation. Prefer
ably, as discussed above, the provision of keys is dependent
on the client demonstrating its integrity to the Source.
0117 The invention also extends to a combination of a
system for delivering works as described above, in combina
tion with a client, whereby documents are delivered to the
client and can only be played if the viewer demonstrates its
integrity to the source.

Jul. 3, 2014

0118. It will be seen that, in contrast to prior art software
Solutions, the present invention does not rely on secrets that
are contained in the data that is made available to the user,
whether in the program code or in the media documents. It
allows the early detection of copy attempts and allows the
content provider to initiate counter-measures before a Sub
stantial part of the media document can be copied.
0119. It has also been recognized that the concept of
checking system integrity using a mobile guard has other
applications beyond the transmission of documents (as
defined) to a client. It can be used generally to verify the
integrity and authenticity of code that is run in uncontrolled
environments that perform calculations on input data. It can
be used to prevent a party from changing the way that data is
processed without this being detected. Thus, the discussion
above in relation to a media viewer can be applied to any
client program. Applications include games, banking, audio,
etc.

I0120 Thus, viewed from a still further aspect, the inven
tion comprises transmitting software code (Such as a mobile
guard) from a secure source to a client computer running a
client program, the Software code comprising an algorithm
having a result that is dependent on the state of the client
program, executing the Software code and returning the result
to the source, whereby the Source can determine the integrity
of the client program. The invention also extends to apparatus
arranged to operate in accordance with Such a method.
I0121 This aspect of the invention may employ any or all
of the preferred features discussed above, in particular con
cerning the mobile guard. References above to media works
apply likewise to temporal payload data sent between server
and client. Thus, the service provider can enforce the coop
eration of the user's client in the same manner and can with
hold further payload data if either cooperation ceases or tam
pering is detected.
0.122 Thus, it will be appreciated that any client that is in
communication with a server can have its integrity checked
on an on-going basis. The invention therefore allows a client
that operates in an uncontrolled environment to be trusted. If
it transpires that the integrity of a client has been compro
mised then action can be taken. For example, communication
with the client could be terminated, the provision of decryp
tion keys Suspended (as with the media streaming applica
tions discussed above) and/or steps taken to gather evidence
(e.g., in the case of Suspected fraudulent attacks on banking
systems).
(0123. The invention is useful in the context of distributed
calculations where, although confidentiality and dishonesty
are not usually issues, the correct execution of Software is.
Thus, the mobile guard may be used to protect against inten
tional or unintentional modification of the client—both its
Software and, if required, hardware. Thus, the instance that
launches the distributed computing job can use mobile guards
to check the correct operation of the clients at remote nodes
that carry out calculations.
0.124. In the context of on-line gaming, modification of
client programs can enable cheating which, if uncontrolled
could cause customer dissatisfaction and lead to loss of rev
enue. The data concerned is not confidential and there is little
point in recording it (as with a media work), so it is normally
sufficient to verify only the integrity of the client software.
Where the game operated on a client-server basis, mobile
guards can be applied as discussed previously. If the user does

US 2014/O 189358 A1

not allow cooperation with the mobile guard then he can be
refused updates on the global game-state.
0.125. In the case of home banking, mobile guards can be
used to make Sure that third parties do not access confidential
data. While a normal user will not normally be interested in
modifying his client program, he may be the victim of a
man-in-the-middle attack. The banking server could there
fore use a mobile guard to Verify the integrity and authenticity
of the home banking client and it may also contain the public
key of the banking server. This public key is used to encrypt
all data that is passed from the home banking client to the
banking server and since the integrity of the mobile guard is
guaranteed, the user can be sure that his data is kept confi
dential.

BRIEF DESCRIPTION OF THE DRAWINGS

0126 Certain embodiments of the invention will now be
described, by way of example only, with reference to the
accompanying drawings:
0127 FIG. 1 is a schematic drawing of a prior art media
streaming system as described above;
0128 FIG.2 is a schematic overview of a first embodiment
of the invention;
0129 FIG. 3 is a schematic diagram showing the compo
nents of a randomly generated checksum algorithm as used in
the embodiment;
0130 FIG. 4 is a flow chart showing the operation of the
embodiment; and
0131 FIG. 5 is a flow chart of the server algorithm
employed in the embodiment.

DETAILED DESCRIPTION OF CERTAIN
INVENTIVE EMBODIMENTS

0.132. As may be seen from FIG. 2, a client is provided
with a viewer 10 which can be used to view media (e.g., a
movie) that is streamed from a streaming server 11 or alter
natively from a local storage media, e.g., CD12. Each of these
components of the system is outside the trusted environment
13. Within the trusted environment is the unencrypted movie
14, a protection tool 15 to generate a protected movie 16 and
a security server 17.
0133. As in the prior art system illustrated in FIG. 1, the
content owner protects the encoded media document, before
it is delivered to the client. However, instead of using a single
media key, protection tool 15 encrypts the movie with a very
large number (thousands) of media keys 20. This process
yields an encrypted, encoded media, the protected movie 16.
0134. The media keys 20 are distributed so that they are
spread out in time; during presentation of a media resource,
they are securely streamed to the client one at a time at
intervals on request as will be described below. The media
itself is streamed separately. Each key comprises only a few
bytes (about sixteen) so the resources needed to stream the
keys create a very low overhead.
0135 Each key can be used to decrypt only about a second,
or at most a few seconds, of the movie so that obtaining only
a single key is of little value.
0136. In the first embodiment of the invention, the pro
tected movie is delivered to the client inform of a data stream
via path A, streaming server 11 and media stream 18. In
further embodiments, tangible media, e.g., a CD or DVD 12
are used.

Jul. 3, 2014

0.137 The viewer 10 is executed on the client’s host and is
arranged to receive the protected movie 16 from the stream
ing server 11 via media stream 18 (or from the CD/DVD in
other embodiments).During the presentation process, the
viewer 10 communicates with a security server 17 to down
load the necessary media keys 20 to decrypt the protected
movie 16.
0.138. In addition, the viewer 10 also downloads pieces of
code called mobile guards 19 at regular intervals of about 30
seconds. These each have embedded within them secret infor
mation in the form of an algorithm that is created in the
security server 17. The execution of these algorithms is nec
essary to make use of the streamed data18. When each mobile
guard 19 is transferred into the viewer it performs calcula
tions determined by the secret algorithm and returns the result
to the security server. The mobile guard is structured in such
a way that the result of the calculation is only correct if the
viewer has not been tampered with. The result of the secret
algorithm contains a checksum that proves the integrity of the
viewer to the security server.
0.139. The mobile guard can also have other additional
algorithms functionally and spatially entangled with the
secret algorithm. In this way the client’s computer/viewer can
be forced to carry out the additional algorithms because if it
does not the secret one will not be implemented. In this way,
the viewer may be fully checked.
0140. If the result returned to the security server 17 by the
mobile guard does not match the expected result, the security
server stops the distribution of the media keys 20 to the
viewer. The same happens if the viewer 10 refuses a mobile
guard or if the correct result does not arrive within a certain
time. The key exchange protocol will be explained in more
detail later.
0.141. The secret algorithms are based on checksum cal
culations that have a high probability of detecting changes in
the checked data (i.e., the viewer code). As may be seen from
FIG.3, a randomly generated checksum algorithm 21 (for use
in a mobile guard) uses a checksum calculation divided into
two steps: input modification 22, which is randomized, and a
known checksum calculation 23 which is performed on the
modified input. These steps together make the randomized
and secret checksum algorithm.
0142. Input modification refers to the random creation of a
modifier that permutates the data that will be input into check
sum calculation 23. When a mobile guard is generated by the
security server, a random sequence is determined. When the
checksum algorithm 21 is executed by the viewer, the input
Program Code from the viewer is divided into n blocks of the
same size. These are then shuffled into the above-mentioned
random sequence in the Input Modification stage 22. The
result of this is then input into the Checksum Calculation
stage 23. This uses the known Message Digest Algorithm
(MD5). The checksum calculation is then carried out and its
result returned to the security server.
0143. It will be appreciated that although the checksum
algorithm itself is public, its result is a function of the order in
which the n blocks are input to it. This order is known to the
security server and so the security server can determine
whether the result returned to it indicates an intact viewer.
0144. The mobile guard needs to be protected against tam
pering and against the spying out of its inner workings. The
first aspect of the protection of the mobile guard is to ran
domly create new versions each time a viewer needs to be
checked. Secondly the lifetime of the mobile guard in the

US 2014/O 189358 A1

viewer environment when it is being used is short (less than
thirty seconds). Although human (i.e., intelligent, as opposed
to automated) attacks on the mobile guard are theoretically
possible, they would take a significant amount of time. By
having an expiration time of Some seconds for each mobile
guard, human-assisted attacks therefore become virtually
impossible because the mobile guard is redundant long before
any attack can be completed.
0145 The mobile guard is obfuscated, as previously dis
cussed, to defend against an automated attack.
0146 The mobile guard randomises the memory image of
the running viewer, referred to herein as runtime viewer
obfuscation. Code and data areas of the viewer are swapped
and the stack is scrambled. This is discussed more fully
below.
0147 The effect of runtime viewer obfuscation is to make
sure that only intellectual attacks can be performed on the
runtime image of the viewer because it randomises and
thereby hides the memory locations of the decrypted,
encoded stream.
0148. In order to randomize the location of memory
accesses, the mobile guard modifies the structure of the
viewer code and the data area. The code and data area are split
into logical segments. Care is taken that segment borders are
not located inside opcodes.
0149. After a newly downloaded mobile guard receives
control and before starting with the decryption of the stream,
the mobile guard relocates the segments to new positions.
This process includes the modification of code segments—
similar to relocation performed by dynamic linkers—to make
sure that:

0150 1.Jump- and Branch-instructions are transferring
control to the relocated positions.

0151. 2. Read- and Write-instruction are accessing the
data at the relocated positions.

0152. After relocating the segments, the mobile guard per
forms its operation until it is replaced by the next mobile
guard.
0153. The mobile guard needs to know the entry points of
certain functions in the viewer. The new positions of the
segments are known by the security server and provided to the
mobile guard. In this way there is no need to transfer infor
mation between two mobile guards on the client side.
0154 With regard to stack scrambling, the stack contains
the return addresses to prior function calls. This can be used to
either spy out control flow or to alter the control flow of the
viewer by changing a return address on the stack. In Such an
attack, when the program is about to jump back to the calling
function, it could instead be transferring control to possible
hostile code.
0155 To protect the stack against such an attack, a method

is used that gradually scrambles the Stack as new return
addresses are added to it. The checked code will, after a
function call, transfer control to a scramble function in the
mobile guard, which scrambles the new return address on the
stack before returning control back to the calling function. To
unscramble the stack a corresponding unscramble function in
the mobile guard is called before using any return address.
0156 The implementation of the scramble function takes
advantage of the fact that mobile guards are created as needed
in order to check the viewer. This enables a unique scramble
and unscramble function to be created in each mobile guard.
The scramble function basically consists of a set of random
data created by the security server and contained in the mobile

Jul. 3, 2014

guard that is XORed with the return addresses on the stack of
the viewer. To select which part of the random data to use, a
simple mathematical function is applied to compute an index
into the set of random data.
(O157. The viewer is therefore protected by the mobile
guard against its state (including the position of the control
flow and variable content) being determined by spying (as
discussed previously).
0158. The media keys are transmitted at a rate of approxi
mately one per second to the viewer. This is done using a key
exchange protocol that makes use of a random data generator
and the public key of the security server, which is known to
the viewer. When it is necessary to obtain the next media key
the viewer 10 generates sixteen bytes of random data and
encrypts them with the public key of the security server 17.
The encrypted data is then included in a request for the key,
which is sent to the security server.
0159. The security server examines the request and only
approves it if the mobile guard indicates that everything is
correct in the viewer. If the mobile guard indicates that every
thing is fine, the security server extracts the random data,
XOR's it with the requested key and sends the result back to
the viewer.
(0160. When the viewer receives the result, it extracts the
requested key from the result by XORing it with the same
random data that was provided in the original request for the
key.
0.161 This protocol provides a way to decrypt the
encrypted, encoded media stream, without any secret keys
hidden in the source code of the viewer. The lifetime of a key
is a only few seconds, which prevents the secure streaming
process from constituting a single point of failure in the event
of the extraction of one or a few secret keys.
0162. It will be appreciated that there are effectively two
separate threads that are carried out by the client and these are
summarised in the flow chart of FIG. 4.
(0163 The first thread is verification. The client receives a
mobile guard, which then verifies the client program. Once
Verification has been confirmed, a number n of keys can be
received during the following trust interval until the mobile
guard expires. The thread must then be repeated with a new
mobile guard.
0164 Running in parallel to this is the presentation thread.
For each key, a segment of the media stream is received
decrypted and presented.
0.165 FIG. 5 summarises the operation of the server. On
receiving a key request, it sends a key to the clientif, and only
if, the mobile guard is still alive (i.e., if it is still within the trust
interval of that mobile guard). If the mobile guard has
expired, a new mobile guard is sent to the client and this is
used to verify the client. If the result is incorrect, the client is
deemed to have been tampered with and key transmission is
then stopped. If the result is satisfactory, then a new trust
interval commences and during it the keys are sent to the
client.

1. A method of transmitting a media work to a client com
prising:

(a) encrypting the work using a sequence of different keys
corresponding to respective temporally spaced seg
ments of the work;

(b) securely transmitting a first key from a secure server to
the client and transmitting the corresponding segment
from a server to the client;

US 2014/O 189358 A1

(c) in the client, using the first key to decrypt the corre
sponding segment, (d) in the client, presenting the
decrypted portion; and

(e) repeating steps (b) to (d) in respect of further segments
and keys,

wherein the keys are transmitted using a key exchange
protocol that makes use of a random data generator and
the public key of the secure server, the public key being
known to the client.

2. The method as claimed in claim 1, wherein the client
encrypts random data generated by the random data generator
with the public key of the secure server to create encrypted
data, and requests a key from the secure server, the encrypted
data being sent to the secure server with the request for the
key.

3. The method as claimed in claim 2, wherein the secure
server decrypts and extracts the random data, and uses the
random data to encrypt the requested key.

4. The method as claimed in claim 3, wherein the secure
server performs a function using the random data in order to
encrypt the key.

5. The method as claimed in claim 4, wherein the key and
the random data are XOR'd.

6. The method as claimed in claim 2, wherein the encrypted
requested key is sent to the client and the client extracts the
requested key using the random data previously generated.

7. The method as claimed in claim 2, wherein the client
comprises the random data generator.

8. The method as claimed in claim 2, wherein sixteen bytes
of random data are used in each key request.

9. The method as claimed in claim 1, wherein the keys are
delivered cryptographically independently of each other Such
that no key can be used to decrypt more than one segment.

10. The method as claimed in claim 1, wherein keys are
only supplied following a check that the client is entitled to
receive the document.

11. The method as claimed in claim 1, wherein each key
corresponds to a segment of a pre-determined length.

12. The method as claimed in claim 1, wherein the secure
server is remote from the client.

13. The method as claimed in claim 1, wherein the server
and the secure server are different servers.

14. The method as claimed in claim 1, wherein the server
and the secure server are the same server.

15. The method as claimed in claim 1, wherein each key
must be requested individually by the client.

16. The method as claimed in claim 1, further comprising
checking the integrity of the client to ensure that the client has
not been tampered with.

17. The method as claimed in claim 16, wherein the secure
server is arranged to cease the Supply of keys in the event that
either client modification is detected or if the client integrity
check is not successful.

18. The method as claimed in claim 16, wherein the integ
rity of the client is checked by Software code containing an
algorithm which is transmitted from a security server to the
client.

19. The method as claimed in claim 18, wherein each key
is transmitted only during a trust interval of the transmitted
software code that has successfully verified the integrity of
the client.

Jul. 3, 2014

20. The method as claimed in claim 16, wherein checking
the integrity of the client comprises the use of randomly
generated algorithms which will only return the correct result
if the client is unmodified.

21. The method as claimed in claim 1, further comprising
transmitting Software code containing an algorithm from a
security server to the client, the algorithm having a result that
is a function of the state of the client, executing the code at the
client, and determining whether the result is indicative of an
unmodified client.

22. The method as claimed in claim 21, wherein the secure
server and the security server are the same server.

23. The method as claimed in claim 21, wherein the result
is returned to the security server.

24. The method as claimed in claim 21, wherein keys are
only transmitted if the result is indicative of an unmodified
client.

25. The method as claimed in claim 21, wherein the code
contains a checksum calculation into which program code of
the client and/or memory image of the client is input.

26. The method as claimed in claim 1, wherein the media
work is streamed to the client from a remote server.

27. An apparatus configured to operate according to the
method of claim 1.

28. A system for transmitting a media work to a client, the
system comprising:

i) a protection tool arranged to encrypt the work using a
sequence of different keys corresponding to respective
temporally spaced segments of the work;

ii) a secure server arranged to a) transmit a first key to the
client;

iii) a server arranged to b) transmit a first segment corre
sponding to the first key to the client; and

iv) a client arranged to c) receive the first key and the first
segment, decrypt the first segment using the first key,
and present the decrypted portion;

wherein the secure server, server and client are arranged to
carry out steps a), b) and c) for further segments and
keys, and

wherein the secure server is arranged to transmit the keys
using a key exchange protocol that makes use of a ran
dom data generator and the public key of the secure
server, the public key being known to the client.

29. A system for transmitting a media work to a client, the
system comprising:

i) a secure server arranged to a) transmit a first key to the
client, the first key being one of a sequence of different
keys with which temporally spaced segments of the
work are encrypted; and

ii) a server arranged to b) transmit a first segment corre
sponding to the first key to the client;

wherein the secure server and server are arranged to carry
out steps a) and b) for further segments and keys, and

wherein the secure server is arranged to transmit the keys
using a key exchange protocol that makes use of a ran
dom data generator and the public key of the secure
server, the public key being known to the client.

k k k k k

