
(12) STANDARD PATENT (11) Application No. AU 2016265131 B2
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Method and apparatus for cache tag compression

(51) International Patent Classification(s)
G06F 12/08 (2006.01)

(21) Application No: 2016265131 (22) Date of Filing: 2016.04.08

(87) WIPO No: WO16/186747

(30) Priority Data

(31) Number (32) Date (33) Country
14/716,947 2015.05.20 US

(43) Publication Date: 2016.11.24
(44) Accepted Journal Date: 2020.09.10

(71) Applicant(s)
QualcommIncorporated

(72) Inventor(s)
Pellerin lIl, Henry Arthur;Speier, Thomas Philip;Sartorius, Thomas Andrew;Morrow,
Michael William;Dieffenderfer, James Norris;Dockser, Kenneth Alan;Mcilvaine,
Michael Scott

(74) Agent / Attorney
Madderns Pty Ltd, GPO Box 2752, Adelaide, SA, 5001, AU

(56) Related Art
US 20130007358 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date W O 2016/186747 Al
24 November 2016 (24.11.2016) W I P OI P C T

(51) International Patent Classification: DOCKSER, Kenneth Alan; 5775 Morehouse Drive, San
G06F12/08 (2006.01) Diego, California 92121-1714 (US). MCILVAINE, Mi

(21) International Application Number: chael Scott; 5775 Morehouse Drive, San Diego, California

PCT/US2016/026664 92121-1714 (US).

(22) International Filing Date: (74) Agents: READ, Randol W. et al.; Patterson & Sheridan,

8 April 2016 (08.04.2016) L.L.P., 24 Greenway Plaza, Suite 1600, Houston, Texas
77046-2472 (US).

(25) Filing Language: English (81) Designated States (unless otherwise indicated, for every

(26) Publication Language: English kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

(30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
14/716,947 20 May 2015 (20.05.2015) US DO, DZ, EC, EE, EG, ES, Fl, GB, GD, GE, GH, GM, GT,

(71) Applicant: QUALCOMM INCORPORATED [US/US]; HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,

ATTN: International IP Administration, 5775 Morehouse KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
Drive, San Diego, California 92121-1714 (US). MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,

PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(72) Inventors: PELLERIN, III, Henry Arthur; 5775 More- SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,

house Drive, San Diego, California 92121-1714 (US). TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
SPEIER, Thomas Philip; 5775 Morehouse Drive, San
Diego, California 92121-1714 (US). SARTORIUS, (84) Designated States (unless otherwise indicated, for every

Thomas Andrew; 5775 Morehouse Drive, San Diego, kind of regional protection available): ARIPO (BW, GH,

California 92121-1714 (US). MORROW, Michael Willi- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,

am; 5775 Morehouse Drive, San Diego, California 92121- TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,

1714 (US). DIEFFENDERFER, James Norris; 5775 TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,

Morehouse, San Diego, California 92121-1714 (US). DK, EE, ES, Fl, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,

[Continued on nextpage]

(54) Title: METHOD AND APPARATUS FOR CACHE TAG COMPRESSION

(57) Abstract: A memory structure
300 compresses a portion of a memory tag

using an indexed tag compression struc
ture. A set of higher order bits of the

FIG. 3 memory tag may be stored in the in

204 205 dexed tag compression structure, where
>205 the set of higher order bits are identified

INDEX CACETAGS by an index value. A tag array stores a
set of lower order bits of the memory

207 202 00 01010...1010 Data line 302 tag and the index value identifying the

INDEX entry in the tag compression structure
A_ 11 01100...0100 Data line 302 storing the set of higher order bits of

the memory tag. The memory tag may
00 01...0100 00 10101..1111 Data line 302 comprise at least a portion of a memory

address of a data element stored in a
01 10...0011 10 11100...1000 Data line 302 data array.

10 01..1111 11 01001..1111 Data line 302

11 10...0101

104 301.. 11 10001 ... 0111 Data line 302

1 A

105 106

W O 20 16/18 67 47 A 1|l l l|l|llll ||| | |||||||||||||||||||||||||||| |||||||||||||||||||||||||||||||

SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, - as to the applicant's entitlement to claim the priority of
GW, KM, ML, MR, NE, SN, TD, TG). the earlier application (Rule 4.17(iii))

Declarations under Rule 4.17: Published:
as to applicant's entitlement to apply for and be granted - with international search report (Art. 21(3))
a patent (Rule 4.17(ii))

WO 2016/186747 PCT/US2016/026664

1

METHOD AND APPARATUS FOR CACHE TAG COMPRESSION

BACKGROUND

Claim of Priority under 35 U.S.C. §119

[0001] This application claims priority to U.S. Patent Application Serial No.:

14/716,947, filed May 20, 2015, which is assigned to the assignee hereof and hereby

expressly incorporated by reference herein.

[0002] Aspects disclosed herein relate to the field of computer microprocessors

(also referred to herein as processors). More specifically, aspects disclosed herein relate

to cache tag compression.

[0003] Modem processors conventionally rely on caches to improve processing

performance. Caches work by exploiting temporal and spatial locality in the instruction

streams and data streams of the workload. A portion of the cache is dedicated to storing

cache tag arrays. Cache tags store the address of the actual data fetched from the main

memory. The speed of determining a hit or a miss in the cache is constrained by the

width of the tag array, where larger tag arrays conventionally create more timing

pressure. A wider (or larger) tag has more bits. To determine if there is a hit in the

cache, all bits of the tag must be compared against the probe address. More bits in the

comparison may therefore require more delay to return a result of the comparison.

SUMMARY

[0004] Aspects disclosed herein reduce the area required for tag storage by storing

unique values of higher-order tag bits in a tag compression cache.

[0005] In one aspect, a cache memory comprises a tag compression structure and a

tag array. The tag compression structure stores a plurality of tag compression entries.

Each of the plurality of tag compression entries contains a respective set of higher order

bits of a memory tag and are identified by a respective index value. The tag array stores

a plurality of tag array entries. Each of the plurality of tag array entries contains a

respective set of lower order bits of the memory tag and an index value corresponding to

WO 2016/186747 PCT/US2016/026664

2

one of the index values of the tag compression structure. The first memory tag may

comprise at least a portion of a memory address of a data element stored in a data array.

[0006] In one aspect, a method comprises storing, in a first tag compression entry of

a plurality of tag compression entries in a tag compression structure, a set of higher

order bits of a first memory tag. Each of the plurality of tag compression entries are

identified by a respective index value. The method further comprises storing, in a first

tag array entry of a plurality of tag array entries in a tag array, a set of lower order bits

of the memory tag and an index value for the first tag array entry. The index value of

the first tag array entry corresponds to the first tag compression entry in the tag

compression structure. The first memory tag may comprise at least a portion of a

memory address of a data element stored in a data array.

[0007] In one aspect, a non-transitory computer-readable medium stores instructions

that, when executed by a processor, cause the processor to perform an operation

comprising storing, in a first tag compression entry of a plurality of tag compression

entries in a tag compression structure, a set of higher order bits of a first memory tag.

Each of the plurality of tag compression entries are identified by a respective index

value. The operation further comprises storing, in a first tag array entry of a plurality of

tag array entries in a tag array, a set of lower order bits of the memory tag and an index

value for the first tag array entry. The index value of the first tag array entry

corresponds to the first tag compression entry in the tag compression structure. The

first memory tag may comprise at least a portion of a memory address of a data element

stored in a data array.

[0008] In one aspect, an apparatus comprises means for storing, in a first tag

compression entry of a plurality of tag compression entries, a set of higher order bits of

a first memory tag. Each of the plurality of tag compression entries are identified by a

respective index value. The apparatus further comprises means for storing, in a first tag

array entry of a plurality of tag array entries, a set of lower order bits of the memory tag

and an index value for the first tag array entry. The index value of the first tag array

entry corresponds to the first tag compression entry. The first memory tag may

comprise at least a portion of a memory address of a data element.

WO 2016/186747 PCT/US2016/026664

3

[0009] By storing a portion of a memory tag in a tag compression cache, aspects

disclosed herein reduce the storage of redundant bits in the tag array. Doing so requires

less physical area for memory tags, provides faster comparison results, and requires less

power to perform a comparison.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0010] So that the manner in which the above recited aspects are attained and can be

understood in detail, a more particular description of aspects of the disclosure, briefly

summarized above, may be had by reference to the appended drawings.

[0011] It is to be noted, however, that the appended drawings illustrate only aspects

of this disclosure and are therefore not to be considered limiting of its scope, for the

disclosure may admit to other aspects.

[0012] Figure 1 illustrates a processor which provides cache tag compression,

according to one aspect.

[0013] Figure 2 is a logical view of components of a processor configured to

provide cache tag compression, according to one aspect.

[0014] Figure 3 is a schematic illustrating example values stored in a tag

compression cache, tag array, and data array, according to one aspect.

[0015] Figure 4 is a flow chart illustrating a method to provide cache tag

compression, according to one aspect.

[0016] Figure 5 is a flow chart illustrating a method to establish a new tag

compression cache entry, according to one aspect

[0017] Figure 6 is a block diagram illustrating a computing device integrating a

processor configured to provide cache tag compression, according to one aspect.

DETAILED DESCRIPTION

[0018] Aspects disclosed herein provide techniques to reduce the area for memory

tag storage. For example, caches may be tagged with some set of upper address bits.

WO 2016/186747 PCT/US2016/026664

4

Generally, cache tags require storage for a large number of bits, and modem cache

architectures conventionally require substantially larger tags than previous generations.

For example, consider a hypothetical 4-way 32 kilobyte (KB) instruction cache that has

64 bit lines. The number of lines of such a cache is 215/29, or 512 lines. Each line is

associated with a tag. The number of sets of the cache is equal to 215/26/22, or 128 sets

(with a 7-bit set decode). In at least one aspect, the tag bits do not include the 7-bit set

decode or 6-bit byte-offset, meaning the tag bits start at A[7+6], or A[13], where "A"

indicates address input to the tag search. Therefore, for an example address of 64 bits,

the tag is compared against A[63:13], and the tag storage is 51 bits per line. The total

tag storage for the cache is therefore 51 bits/line * 512 lines, or 26,112 bits, resulting in

a storage overhead of 10% for storing the cache tags.

[0019] Although the tag values are arbitrary and code-dependent, a subset of the bits

of each of the tag values may have little variability, such that the subset of bits has the

same values across multiple cache tags. Aspects disclosed herein exploit this tendency

by eliminating redundant storage of multiple copies of the same value across multiple

cache tags. Specifically, aspects disclosed herein introduce a tag compression cache

that is configured to store unique tag values. Doing so removes a number of bits from

the cache tag. The bits that are removed from the cache tag may be replaced with a

smaller number of bits that point to a tag compression cache entry. The tag

compression cache may hold any set of bits from the cache tag, which include, without

limitation, upper (or higher) address bits, address space identifiers (ASID), security bits,

exception level bits, and the like.

[0020] Since the tag compression cache holds a portion of the original cache tag, an

access must "hit" in the tag compression cache in order to "hit" in the cache. Similarly,

an access that "misses" in the tag compression cache must also "miss" in the cache

itself Evicting a tag compression cache entry requires invalidation of all corresponding

cache lines (namely, those lines having a tag compression cache index value matching

the index of the tag compression cache being evicted). However, invalidating a cache

line does not require any updates to the tag compression cache.

[0021] Aspects disclosed herein access the tag compression cache and the cache in

parallel to determine if an input memory address results in a cache "hit" or "miss."

Specifically, aspects disclosed herein access the tag compression cache using a set of

WO 2016/186747 PCT/US2016/026664

5

higher order bits of the input memory address. If there is a hit in the tag compression

cache (i.e., an entry in the tag compression cache matches the higher order bits of the

input memory address), the tag compression cache is configured to return the index

value of matching entry. In parallel, aspects disclosed herein search the cache using a

set of lower order bits of the input memory address. If there is a hit in the cache (i.e., a

tag entry in the cache tag array matches the lower order bits of the input memory

address), the cache is configured to return the lower order bits and the index value in the

matching entry. Aspects disclosed herein may then compare the index values returned

from the cache and the tag compression cache. If the index values do not match, aspects

disclosed herein return an indication of a cache miss. Aspects disclosed herein may

further compare the lower bits returned from the cache tag entry to the lower bits of the

input memory address. If the lower bits do not match, aspects disclosed herein return an

indication of a cache miss. However, if the index values match and the lower bits

match, aspects disclosed herein return an indication of a cache hit (i.e., the requested

data is present in the cache).

[0022] A cache is used herein as a reference example to facilitate description of

aspects of the disclosure. However, the use of a cache should not be considered limiting

of the disclosure, as the techniques described herein apply to other hardware structures

that have tag fields, such as processor caches, data caches, instruction caches, line fill

buffers, translation lookaside buffers (TLB), and the like. Any reference to a particular

hardware structure should not be considered limiting of the disclosure.

[0023] Figure 1 illustrates a processor 101 that provides cache tag compression,

according to one aspect. As shown, the processor 101 includes an instruction execution

pipeline 112 which executes instructions. The pipeline 112 may be a superscalar

design, with multiple parallel pipelines, each of which includes various non-architected

registers (not pictured), and one or more arithmetic logic units (also not pictured). As

shown, the processor 101 also includes a cache 102 (also referred to as a cache memory

102), which stores lines of data from one or more higher levels of memory 108. The

higher levels of memory 108 may include, without limitation, higher level caches and/or

main (system) memory. In at least one aspect, the cache 102 is a Level 1 (LI) data

cache. Generally, the CPU 101 may include numerous variations, and the CPU 101

WO 2016/186747 PCT/US2016/026664

6

shown in Figure 2 is for illustrative purposes and should not be considered limiting of

the disclosure. For example, the CPU 101 may be a graphics processing unit (GPU).

[0024] As shown, the cache 102 includes cache logic 103, a tag compression cache

104, a tag array 105, and a data array 106. The cache logic 103 generally controls

operation of the cache 102, such as determining whether cache hits or misses occur in a

particular operation. The tag compression cache (TCC) 104 is a hardware structure

configured to hold a set of upper (or higher) order bits of memory tags. For example,

the TCC 104 may hold one or more of the upper address bits of the memory tag, ASID

bits, security bits, exception level bits, and the like. The TCC 104 is generally

configured to store redundant values that would otherwise be redundantly stored in the

tag array 105. The tag array 105 is generally configured to store the addresses of data

stored in the cache 102. More specifically, each entry of the tag array 105 is configured

to store a set of lower order bits of memory tags and an index value which corresponds

to the index value of an entry in the TCC 104. The data aray 106 stores the data of the

cache lines. In at least one aspect, the TCC 104 is implemented as a content addressable

memory (CAM) structure. Similarly, the tag array 105 and data array 106 may be

implemented as a CAM. Furthermore, in at least one aspet, the TCC 104 is a fully

associative, least recently used (LRU) replacement structure. The TCC 104 may have

any number of entries, such as two, four, or eight. Means for storing data in the TCC

104, tag array 105, and data array 106 may include one or more memory cells.

[0025] In operation, the processor 101 may seek to determine whether data located

in one of the higher levels of memory 108 is present within the cache 102. When the

processor 101 provides an input memory address (which may be a virtual address) to the

cache 102, the cache logic 103 may determine whether the data at the input memory

address is in the cache 102. To do so, the cache logic 103 may initiate a CAM search of

the TCC 104 using the higher order bits of the input memory address. If an entry in the

TCC 104 matches higher order bits of the input memory address, the TCC 104 is

configured to return the index value of the matching entry in the TCC 104. The cache

logic 103 may initiate a CAM search of the tag array 105 in parallel with the CAM

search of the TCC 104. The cache logic 103 may search the tag array 105 using the

lower order bits of the input memory address. If the lower order bits of an entry in the

tag array 105 match the lower order bits of the input memory address, the tag array 105

WO 2016/186747 PCT/US2016/026664

7

is configured to return the lower order bits and the index value of the matching entry.

The cache logic 103 may then compare the index value returned by the TCC 104 and

the tag array 105. If the index values do not match, the cache logic 103 may return an

indication of a cache miss. The cache logic 103 may also compare the lower order bits

returned by the tag array 105 to the lower order bits of the input memory address. If the

lower order bits match, and the index values match, the cache logic 103 is configured to

return an indication of a cache hit.

[0026] If the search of the TCC 104 results in a miss, the cache logic 103 may be

configured to create an entry for the input memory address in the TCC 104. If a free (or

otherwise available) entry exists in the TCC 104, the cache logic 103 may store a set of

higher order bits of the input memory address to the free entry. If no entries are

available in the TCC 104, the cache logic 103 may evict an existing entry in the TCC

104, and invalidate any corresponding entries in the tag array 105 (and data array 106)

that specify the index value of the evicted entry. The cache logic 103 may apply any

suitable replacement policy for the TCC 104, such as LRU, or replacing the TCC 104

entry that is associated with the fewest cache lines (which may be determined by a

counter for each entry in the TCC 104). The cache logic 103 may invalidate the entries

in any feasible manner, such as by a flash invalidation or a line by line invalidation. In

addition to adding an entry specifying the higher order bits of the input memory address

to the TCC 104, the cache logic 103 may also create an entry in the tag array 105 that

specifies the lower order bits of the input memory address and an index value of the

TCC 104 entry storing the higher order bits of the input memory address.

[0027] In at least one aspect, the cache logic 103 may probe the TCC 104 every

clock cycle. However, this may draw large amounts of power, and may be in the critical

timing path. The more entries that are built into the TCC 104, the more power and time

may be required to probe the TCC 104. Therefore, in some aspects, the cache logic 103

may include logic that avoids the need to search the TCC 104 in a majority of cycles.

For example, a set of registers may be configured to store the bits returned by a previous

access to the TCC 104 (and whether the corresponding TCC 104 entry remains valid).

Generally, the cache logic 103 may determine whether the input memory address bits

corresponding to those that are held in the TCC 104 are the same as in the previous

access to the TCC 104. The cache logic 103 may then determine whether the associated

WO 2016/186747 PCT/US2016/026664

8

TCC 104 entry has not been invalidated since the last access. If both determinations are

true, the cache logic 103 may determine that the compression cache tag must be in the

TCC 104, and that it is safe to reuse the previous cycle's index, rendering it unnecessary

to search the TCC 104 in the current cycle. If either determination is not true, the cache

logic 103 cannot reuse the TCC 104 index of the previous cycle, the control logic 103

must search the TCC 104. Means for searching the TCC 104, the tag array 105, and the

data array 106 include logic implemented as hardware and/or software. Similarly, the

logic implemented as hardware and/or software may serve as means for reading and/or

writing values, returning indications of hits and/or misses, and returning values from the

TCC 104, the tag array 105, and the data array 106. Example of such means logic

includes memory controllers, cache controllers, and data controllers.

[0028] As previously indicated, the compression scheme depicted in Figure 1 may

be applied to other PC-tagged and/or ASID-tagged microarchitectural structures. For

example, a virtual address may be transformed into the form {tag compression index

value, partial virtual address}, which may be used throughout the block. Doing so

would allow all data-path elements to operate on this shortened form, including a

translation lookaside buffer (TLB), branch predictors, breakpoints, caches, and the like.

If necessary, the transformed address could be converted into the original address

whenever necessary, such as at block boundaries, for cache-content debug facilities, and

the like. Similarly, the tag compression technique may be applied independently to

instruction addresses, load/store addresses, and physically tagged structures.

[0029] In one aspect, the processor 101 is disposed on an integrated circuit

including the instruction execution pipeline 112 and the cache 102. In another aspect,

the cache 102 may be located on a separate integrated circuit from an integrated circuit

including the processor 101.

[0030] Figure 2 is a logical view of a portion of a cache logic 103 of a processor

101 configured to provide cache tag compression, according to one aspect. As shown,

the processor 101 includes the tag compression cache (TCC) 104 and the cache tag

array 105. As previously described, the TCC 104 is an indexed hardware structure

storing a plurality of TCC entries 202. The TCC entries 202 may include a set of higher

order address bits of a memory tag. In at least some aspects, the TCC entries 202 may

further include bits related to ASIDs, security levels, exception levels, and the like. As

WO 2016/186747 PCT/US2016/026664

9

shown, the cache tag array 105 includes a plurality of entries, each of the entries having

a tag compression cache (TCC) index value 204 and a cache tag 205. The TCC index

value 204 may correspond to the index value of an entry 202 in the TCC 104. The

cache tags 205 may include the lower order bits of a memory tag. As shown, the cache

tags 205 store the lower order bits of the memory tag, namely bits 0 through M of an N

bit memory tag. Similarly, the TCC 104 stores the higher order bits of the N-bit

memory tag, namely bits M+1 through N of the memory tag. Therefore, a complete

memory tag (bits 0 through N) may be produced by combining the higher order bits

stored in the TCC 104 (bits M+1 through N) with the lower order bits of the cache tag

205 (bits 0 through M).

[0031] As shown, the processor 101 may request data stored at a memory address

201. The cache logic 103 may be configured to determine whether the data stored at the

memory address 201 is located in the cache 102. In at least one aspect, the memory

address 201 may be a virtual memory address having a length of N bits. To determine

whether the data stored at the memory address 201 is in the cache 102, the cache logic

103 may probe the TCC 104 and the cache tag array 105 in parallel. More specifically,

as shown, the cache logic 103 may perform a CAM search of the cache tag array 105. If

one of the cache tags 205 includes an entry which matches bits 0 through M of the

memory address 201, the cache tag array 105 may return a TCC index value 208 and a

cache tag 209. Furthermore, as shown, a splitter 213 may split the memory address 201,

which provides bits M+1 through N of the memory address 201 to the TCC 104. A

CAM search on the TCC 104 may be performed using the bits M+1 through N of the

memory address 201. If an entry 202 in the TCC 104 includes a value that matches the

value of the bits M+1 through N of the memory address 201, the TCC 104 is configured

to return a TCC entry 206 and a TCC index value 207, where the index value 207

identifies the matching TCC entry 206. The TCC index value 207 may be any number

of bits in length suitable to allow each entry 202 in the TCC 104 to be uniquely

identified by a respective TCC index value 207. Therefore, for example, if the TCC 104

had four hardware entries (e.g, four TCC entries 202), the TCC index value 207

corresponding to each entry may be two bits in length. In such an example, each TCC

index 204 stored in the cache tag array 105 would also be two bits in length. In at least

one aspect, the TCC index values 207 are implicitly identified based on the location (or

address) of a given TCC entry 202.

WO 2016/186747 PCT/US2016/026664

10

[0032] As shown, a comparator 210 compares the TCC index value 207 returned

from the TCC 104 to the TCC index value 208 returned by the cache tag array 105.

Furthermore, a comparator 211 compares the lower order bits 0:M of the memory

address 201 to the lower order bits 0:M stored in a cache tag entry 209 returned from the

cache tag array 105. As shown, the AND logic 212 is configured to perform a logical

AND operation on the outputs of the comparators 210, 211. If both comparators 210,

211 indicate a match, then the output of the AND logic 212 is configured to return an

indication of a cache hit. Stated differently, if the index values compared by the

comparator 210 match, and the lower order bits 0:M compared by the comparator 211

match, then the contents of the requested memory address 201 are stored in the cache

102, and the cache logic 103 may return an indication of a cache hit. However, if the

comparator 210 indicates that the compared index values do not mach, or the

comparator 211 indicates the lower order bits 0:M do not match, the requested data is

not in the cache 102, and the cache logic 103 may return an indication of a cache miss.

Therefore, as shown, the cache logic 103 causes a comparison of bits 0:M and index

values. Doing so allows the cache logic 103 to compare fewer bits than a traditional tag

compare (of bits 0:N), resulting in a faster comparison than the traditional compare.

[0033] In the event of a cache miss, the cache logic 103 may be configured to fetch

the requested data from a higher order memory, and populate the TCC 104 and the

cache tag array 105 as described above. Similarly, if either of the initial CAM searches

of the TCC 104 and the cache tag array 105 miss, the cache logic 103 may be

configured to fetch the requested data from a higher order memory, and populate the

TCC 104 and the cache tag array 105 as described above.

[0034] Figure 3 is a schematic 300 illustrating example values stored in the tag

compression cache (TCC) 104, the cache tag array 105, and the data array 106,

according to one aspect. As shown, each TCC entry 202 in the TCC 104 specifies a

portion of a memory tag and is identified by a respective TCC index value 207. The

respective index values 207 uniquely identify each TCC entry 202. In at least one

aspect, the index value 207 is implicitly provided by the location (or address) of each

entry in the TCC 104. In such aspects, therefore, the index value 207 is not expressly

defined in the TCC 104, and the index values 207 are depicted in Figure 3 to facilitate

explanation of such aspects. The tag portion of each TCC entry 202 may be the higher

WO 2016/186747 PCT/US2016/026664

11

order address bits of a memory tag, and may include additional information, such as

ASID bits, security bits, exception level bits, and the like.

[0035] As shown, the table 301 includes example values of the cache tag array 105

and the data array 106. The data array 106 stores a data line 302 for each entry in the

cache 102. The cache tag array 105, as previously described, includes index values 204

and cache tags 205. The index values 204 in the cache tag array 105 correspond to the

index value 207 corresponding to a given TCC entry 202 in the TCC 104, while each

corresponding cache tag 205 stores the lower order bits of a memory tag. Therefore, as

shown, multiple entries in the table 301 may store the same index values 204.

Advantageously, the TCC 104 stores a single copy of the full bit pattern of higher order

bits of the memory tag, reducing the amount of redundant information stored in the

cache tag array 105 (namely the different index values 204, and not the lengthier higher

order bits of the memory tag). Therefore, a memory tag is stored across the TCC 104

and the cache tag array 105, with the higher order bits stored in the TCC 104, and the

lower order bits stored in the cache tag array 105. Conceptually speaking, the tag

portion of the TCC entry 202 in the TCC 104 may replace the index value 204 of the

cache tag array 105 to produce a complete memory tag. For example, in the first row of

the table 301, the bits "00" of the index 204 would be replaced by the tag bits

"01...0100" of the TCC entry 202 corresponding to the index value 207 of "00" in the

TCC 104.

[0036] In one example aspect, the configuration depicted in Figure 3 may replace a

hypothetical instruction cache with an example organization depicted in Table I:

Table I:

Line size 64 Bytes

Associativity 4-way

Number of sets 128

Total number of lines 512

Nominal capacity 32 KB

Address width 49 bits

WO 2016/186747 PCT/US2016/026664

12

SetIndex Virtual Address (7 bits)

Number of tag bits (per {Virtual Address, ASID} (36 + 16 = 52

line) bits)

Number of tag bits (total) (52 bits per line * 512 lines) = 26,624 bits

[0037] Therefore, as shown in Table 1, the hypothetical instruction cache requires

26,624 bits of storage overhead for tag storage, of the total cache storage of 32KB (or

32,768 Bytes, or 262,144 bits). The instruction cache tag required in this example

configuration would be {PC[48:13], ASID}.

[0038] However, a subset of these bits (such as {PC[48:28], ASID}) tend to show

little variability in real-world workloads. By creating a four-entry TCC 104 for this

example instruction cache, each TCC entry 202 would store the 21 PC[48:28] bits and

the 16 bits of the ASID, for a total of 37 bits. The total amount of storage required for

the TCC 104 would therefore be 4 entries times 37 bits, or 148 bits. The TCC entries

202 may be implicitly indexed by the location (or address) of each respective TCC entry

202 in the TCC 104 (for example, in the four-entry TCC 104, locations 0, 1, 2, and 3

correspond to binary index values of 00, 01, 10, and 11, respectively). Meanwhile, the

indexes 204 of the cache tag array 105 would store the two-bit index values, while the

cache tags 205 would store the tag bits PC[27:13], or 15 bits, for a total of 17 bits.

Across the 512 lines of the instruction cache, the total storage in the cache tag array 105

would be 512 entries, times 17 bits, for a total of 8,704 bits. The total storage required

across the TCC 104 and the cache tag array 105 would be 8,852 bits (148 + 8,704),

which is significantly less than the 26,624 bits required by the instruction cache

described in Table I.

[0039] Figure 4 is a flow chart illustrating a method 400 to provide cache tag

compression, according to one aspect. The method 400 begins at step 410, where the

cache logic 103 may receive a memory address of N bits in length. The memory

address may be received as part of a request to determine whether the data stored at the

memory address is located in the cache 102. The cache logic 103 may then probe the

TCC 104 and the cache tag array 105 in parallel. More specifically, at step 415, the

cache logic 103 may perform a CAM search on the cache tag array 105 using lower M

WO 2016/186747 PCT/US2016/026664

13

bits of the memory address received at step 410. If an entry in the cache tag array 105

stores a value matching the lower M bits of the memory address, there is a hit in the

cache tag array 105, and the method proceeds to step 460. In addition, the cache tag

array 105 may return the lower M bits of the memory address and the index value stored

in the matching entry. If there is no entry in the cache tag array 105 storing a value

matching the lower M bits of the memory address, there is a miss in the cache tag array

105, and the method proceeds to step 480.

[0040] At step 420, the cache logic 103 may probe the TCC 104 using the higher

order bits (M+1 through N) of the requested memory address. If an entry in the TCC

104 stores a value matching the higher order bits of the requested memory address, the

method proceeds to step 460. In the event of a hit in the TCC 104, the TCC 104 may

return the index value of the entry in the TCC 104 that matches the higher order bits of

the memory address. If there is a miss in the TCC 104, the method proceeds to step

430, where the cache logic 103 may determine whether available entries exist in the

TCC 104. If an entry is not available, the method proceeds to step 440, where the cache

logic 103 may evict an entry in the TCC 104 and invalidate any corresponding entries in

the cache tag array 105. The cache logic 103 may use any suitable eviction policy, such

as evicting the least recently used entry, or evicting the entry in the TCC 104 that is

associated with the fewest entries in the cache tag array 105. The cache logic 103 may

invalidate the entries in the cache tag array 105 in any feasible manner, such as by a

flash invalidation or a line by line invalidation. At step 450, described in greater detail

with reference to Figure 5, the cache logic 103 may establish a new entry in the TCC

104. Generally, the cache logic 103 may split the memory address into a lower set of

bits 0:M and a higher set of bits M+1:N. The cache logic 103 may then store the lower

set of bits in the cache tag array 105, and store the higher set of bits in the TCC 104.

[0041] At step 460, the cache logic 103 may compare the index values returned by

the TCC 104 and the cache tag array 105. The cache logic 103 may further compare the

lower order bits returned by the cache tag array 105 to the lower order bits of the

requested memory address. If both comparisons result in a match, the method proceeds

to step 470, where the cache logic may return an indication of a cache hit. If one (or

both) of the comparisons performed at step 460 do not result in a match, the method

proceeds to step 480, where the cache logic 103 returns an indication of a cache miss.

WO 2016/186747 PCT/US2016/026664

14

[0042] Figure 5 is a flow chart illustrating a method 500 corresponding to step 450

to establish a new entry in the tag compression cache 104, according to one aspect. As

shown, the method 500 begins at step 510, where the processor 101 may retrieve the

data associated with the memory address provided at step 410 from a higher level

memory (such as a higher level cache or main memory). At step 520, the cache logic

103 may store the higher order bits (such as bits M+1:N) of the memory address in a

first entry of the TCC 104. At step 530, the cache logic 103 may store the index value

of the first entry of the TCC 104 and the lower order bits (such as bits 0:M) of the

memory address into a first entry of the tag array 105. At step 540, the cache logic 103

may store the data retrieved at step 510 to an entry in the data array 106 corresponding

to the first entry of the tag array 105.

[0043] Figure 6 is a block diagram illustrating a computing device 601 integrating

the processor 101 configured to provide cache tag compression, according to one aspect.

All of the apparatuses and methods depicted in Figures 1-5 may be included in or

performed by the computing device 601. The computing device 601 may also be

connected to other computing devices via a network 630. In general, the network 630

may be a telecommunications network and/or a wide area network (WAN). In a

particular aspect, the network 630 is the Internet. Generally, the computing device 601

may be any device which includes a processor configured to implement cache tag

compression, including, without limitation, a desktop computer, a laptop computer, a

tablet computer, and a smart phone.

[0044] The computing device 601 generally includes the processor 101 connected

via a bus 620 to a memory 608, a network interface device 618, a storage 609, an input

device 622, and an output device 624. The computing device 601 is generally under the

control of an operating system (not shown). Any operating system supporting the

functions disclosed herein may be used. The processor 101 is included to be

representative of a single CPU, multiple CPUs, a single CPU having multiple

processing cores, and the like. The network interface device 618 may be any type of

network communications device allowing the computing device 601 to communicate

with other computing devices via the network 630.

[0045] The storage 609 may be a persistent storage device. Although the storage

609 is shown as a single unit, the storage 609 may be a combination of fixed and/or

WO 2016/186747 PCT/US2016/026664

15

removable storage devices, such as fixed disc drives, solid state drives, SAN storage,

NAS storage, removable memory cards or optical storage. The memory 608 and the

storage 609 may be part of one virtual address space spanning multiple primary and

secondary storage devices.

[0046] The input device 622 may be any device for providing input to the

computing device 601. For example, a keyboard and/or a mouse may be used. The

output device 624 may be any device for providing output to a user of the computing

device 601. For example, the output device 624 may be any conventional display

screen or set of speakers. Although shown separately from the input device 622, the

output device 624 and input device 622 may be combined. For example, a display

screen with an integrated touch-screen may be used.

[0047] Advantageously, aspects disclosed herein reduce the amount of space

required to store memory tag values. By storing redundant values of higher order bits of

a memory tag in a smaller tag compression cache, a smaller tag array structure may be

used to store the lower order bits of the memory tag. Doing so may allow such

structures to be created using a smaller overall silicon die, which lowers manufacturing

costs, reduces leakage current, and improves circuit timing by allowing other hardware

structures to be placed closer together. In addition, or alternatively, the saved space

may be spent on other microarchitectural structures.

[0048] A number of aspects have been described. However, various modifications

to these aspects are possible, and the principles presented herein may be applied to other

aspects as well. The various tasks of such methods may be implemented as sets of

instructions executable by one or more arrays of logic elements, such as

microprocessors, embedded controllers, or IP cores.

[0049] The various operations of methods described above may be performed by

any suitable means capable of performing the operations, such as a processor, firmware,

application specific integrated circuit (ASIC), gate logic/registers, memory controller, or

a cache controller. Generally, any operations illustrated in the Figures may be

performed by corresponding functional means capable of performing the operations.

[0050] The foregoing disclosed devices and functionalities may be designed and

configured into computer files (e.g. RTL, GDSII, GERBER, etc.) stored on computer

WO 2016/186747 PCT/US2016/026664

16

readable media. Some or all such files may be provided to fabrication handlers who

fabricate devices based on such files. Resulting products include semiconductor wafers

that are then cut into semiconductor die and packaged into a semiconductor chip. Some

or all such files may be provided to fabrication handlers who configure fabrication

equipment using the design data to fabricate the devices described herein. Resulting

products formed from the computer files include semiconductor wafers that are then cut

into semiconductor die (e.g., the processor 101) and packaged, and may be further

integrated into products including, but not limited to, mobile phones, smart phones,

laptops, netbooks, tablets, ultrabooks, desktop computers, digital video recorders, set

top boxes and any other devices where integrated circuits are used.

[0051] In one aspect, the computer files form a design structure including the

circuits described above and shown in the Figures in the form of physical design

layouts, schematics, a hardware-description language (e.g., Verilog, VHDL, etc.). For

example, design structure may be a text file or a graphical representation of a circuit as

described above and shown in the Figures. Design process preferably synthesizes (or

translates) the circuits described below into a netlist, where the netlist is, for example, a

list of wires, transistors, logic gates, control circuits, I/O, models, etc. that describes the

connections to other elements and circuits in an integrated circuit design and recorded

on at least one of machine readable medium. For example, the medium may be a

storage medium such as a CD, a compact flash, other flash memory, or a hard-disk

drive. In another aspect, the hardware, circuitry, and method described herein may be

configured into computer files that simulate the function of the circuits described above

and shown in the Figures when executed by a processor. These computer files may be

used in circuitry simulation tools, schematic editors, or other software applications.

[0052] The implementations of aspects disclosed herein may also be tangibly

embodied (for example, in tangible, computer-readable features of one or more

computer-readable storage media as listed herein) as one or more sets of instructions

executable by a machine including an array of logic elements (e.g., a processor,

microprocessor, microcontroller, or other finite state machine). The term "computer

readable medium" may include any medium that can store or transfer information,

including volatile, nonvolatile, removable, and non-removable storage media.

Examples of a computer-readable medium include an electronic circuit, a semiconductor

17

memory device, a ROM, a flash memory, an erasable ROM (EROM), a floppy diskette

or other magnetic storage, a CD-ROM/DVD or other optical storage, a hard disk or any

other medium which can be used to store the desired information, a fiber optic medium,

a radio frequency (RF) link, or any other medium which can be used to carry the desired

information and can be accessed. The computer data signal may include any signal that

can propagate over a transmission medium such as electronic network channels, optical

fibers, air, electromagnetic, RF links, etc. The code segments may be downloaded via

computer networks such as the Internet or an intranet. In any case, the scope of the

present disclosure should not be construed as limited by such aspects.

100531 The previous description of the disclosed aspects is provided to enable a

person skilled in the art to make or use the disclosed aspects. Various modifications to

these aspects will be readily apparent to those skilled in the art, and the principles

defined herein may be applied to other aspects without departing from the scope of the

disclosure. Thus, the present disclosure is not intended to be limited to the aspects

shown herein but is to be accorded the widest scope possible consistent with the

principles and novel features as defined by the following claims.

10054] It will be understood that the term "comprise" and any of its derivatives

(eg comprises, comprising) as used in this specification is to be taken to be inclusive of

features to which it refers, and is not meant to exclude the presence of any additional

features unless otherwise stated or implied.

10055] The reference to any prior art in this specification is not, and should not be

taken as, an acknowledgement or any form of suggestion that such prior art forms part

of the common general knowledge.

18

Claims:

1. A cache memory, comprising: a tag compression structure storing a plurality of tag

compression entries, wherein at least one of the plurality of tag compression entries contains a

unique set of higher order bits shared by at least two memory tags and is identified by a

respective index value; and a tag array storing a plurality of tag array entries, wherein each of

the plurality of tag array entries contains a respective set of lower order bits of one of the

memory tags and an index value, wherein the index value of each tag array entry corresponds

to the index value of the tag compression structure entry containing the higher order bits of

the memory tag of the respective tag array entry, wherein each of the plurality of memory tags

comprises at least a portion of a respective memory address of a data element stored in a data

array.

2. The cache memory of claim 1, further comprising logic configured to return an indication

of a hit in the tag array for an input memory address by: returning the index value

corresponding to a first tag compression entry from the tag compression structure upon

determining that the set of higher order bits of the memory tag in the first tag compression

entry matches a set of higher order bits of the input memory address; returning the index

value and the set of lower order bits of the memory tag stored in a first tag array entry upon

determining that the set of lower order bits of the input memory address matches the set of

lower order bits of the memory tag in the first tag array entry; and determining that the

returned index value of the first tag compression entry matches the returned index value of the

first tag array entry.

3. The cache memory of claim 1 or 2, further comprising logic configured to return an

indication of a miss in the tag array for an input memory address upon determining at least

one of: that a set of higher order bits of the input memory address does not match any of the

sets of higher order bits in the plurality of tag compression entries; that a set of lower order

bits of the input memory address does not match any of the sets of lower order bits stored in

the plurality of tag array entries; and that an index value returned from a tag array entry

storing a set of lower order bits that match the lower order bits of the input memory address

does not match an index value of a tag compression entry storing a set of higher order bits that

match the higher order bits of the input memory address.

19

4. The cache memory of claim 3, further comprising logic configured to, responsive to

returning the indication of the miss in the tag array: retrieve a data stored at a next level of a

memory hierarchy; store the data in a first entry of the data array; store a set of higher order

bits of the input memory address in a second tag compression entry in the tag compression

structure; and store: (i) a set of lower order bits of the input memory address, and (ii) an index

value corresponding to the second tag compression entry in a second tag array entry of the tag

array, wherein the second tag array entry corresponds to the first entry of the data array.

5. The cache memory of any one of claims 1 to 4, wherein the entries in the tag compression

structure are further configured to store one or more of: (i) an address space identifier (ASID)

of a process, (ii) a set of security bits, and (iii) a set of exception level bits.

6. The cache memory of any one of claims I to 5, wherein a first tag array entry and a second

tag array entry each specify an index value corresponding to a first tag compression entry,

wherein a set of lower order bits of the second tag array entry do not match a set of lower

order bits of the first tag array entry.

7. The cache memory of any one of claims 1 to 6, wherein the tag compression structure

comprises a fully associative content addressable memory, wherein the tag array comprises a

part of at least one of: (i) a data cache, (ii) a translation lookaside buffer, (iii) a line fill buffer,

and (iv) an instruction cache.

8. The cache memory of any one of claims I to 7, wherein the cache memory is disposed in an

integrated circuit.

9. A method, comprising: storing, in a first tag compression entry of a plurality of tag

compression entries in a tag compression structure, a set of higher order bits shared by a first

memory tag and a second memory tag, wherein each of the plurality of tag compression

entries is identified by a respective index value; and storing, in a first tag array entry of a

plurality of tag array entries in a tag array, a set of lower order bits of the first memory tag and

an index value for the first tag array entry, wherein the index value of the first tag array entry

corresponds to the index value of the first tag compression entry, wherein the first memory

tag comprises at least a portion of a memory address of a data element stored in a data array,

wherein a second tag array entry of the plurality of tag array entries specifies an index value

20

corresponding to the first tag compression entry and stores a set of lower order bits of the

second memory tag, wherein the set of lower order bits of the second memory tag do not

match the set of lower order bits of the first memory tag.

10. The method of claim 9, further comprising returning an indication of a hit in the tag array

for an input memory address by: returning the index value corresponding to the first tag

compression entry from the tag compression structure upon determining that the set of higher

order bits of the memory tag in the first tag compression entry matches a set of higher order

bits of the input memory address; returning the index value and the set of lower order bits of

the memory tag stored in the first tag array entry upon determining that the set of lower order

bits of the input memory address matches the set of lower order bits of the memory tag in the

first tag array entry; and determining that the returned index value of the first tag compression

entry matches the returned index value of the first tag array entry.

11. The method of claim 9 or 10, wherein each of the plurality of tag compression entries in

the tag compression structure is configured to store a unique set of higher order bits shared by

a respective plurality of memory tags, wherein each of the plurality of tag array entries is

configured to store a set of lower order bits of a respective memory tag and an index value,

wherein the index value of each tag array entry corresponds to the index value of the tag

compression entry containing the higher order bits of the memory tag of the respective tag

array entry, the method further comprising returning an indication of a miss in the tag array

for an input memory address upon determining at least one of: that a set of higher order bits of

the input memory address does not match any of the sets of higher order bits in the plurality

of tag compression entries; that a set of lower order bits of the input memory address does not

match any of the sets of lower order bits stored in the plurality of tag array entries; and that an

index value returned from a tag array entry storing a set of lower order bits that match the

lower order bits of the input memory address does not match an index value of a tag

compression entry storing a set of higher order bits that match the higher order bits of the

input memory address.

12. The method of claim 11, further comprising: responsive to returning the indication of the

miss in the tag array: retrieve a data stored at a next level of a memory hierarchy; store the

data in a first entry of the data array; store a set of higher order bits of the input memory

address in a second tag compression entry in the tag compression structure; and store: (i) a set

21

of lower order bits of the input memory address, and (ii) an index value corresponding to the

second tag compression entry in a second tag array entry of the tag array, wherein the second

tag array entry corresponds to the first entry of the data array.

13. The method of any one of claims 9 to 12, wherein the entries in the tag compression

structure are further configured to store one or more of: (i) an address space identifier (ASID)

of a process, (ii) a set of security bits, and (iii) a set of exception level bits.

14. The method of any one of claims 9 to 13, wherein the tag compression structure comprises

a fully associative content addressable memory, wherein the tag array comprises a part of at

least one of: (i) a data cache, (ii) a translation lookaside buffer, (iii) a line fill buffer, and (iv)

an instruction cache.

15. A non-transitory computer-readable medium storing instructions that, when executed by a

processor, cause the processor to perform the method steps of any one of claims 9 to 14.

	Bibliographic Page
	Abstract
	Description
	Claims
	Drawings

