wO 2008/013656 A2 |10 00 0 O O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
31 January 2008 (31.01.2008)

(10) International Publication Number

WO 2008/013656 A2

(51) International Patent Classification: Not classified

(21) International Application Number:
PCT/US2007/015304
(22) International Filing Date: 28 June 2007 (28.06.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:

60/819,507 7 July 2006 (07.07.2006) US
11/557,028 6 November 2006 (06.11.2006) US
11/557,010 6 November 2006 (06.11.2006) US

(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 601 Mccarthy Boule-
vard, Milpitas, CA 95035 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HOLTZMAN,
Michael [IL/US]; 7602 Barnhart Place, Cupertino, CA
95014 (US). BARZILAI Ron [IL/L]; 67 Meron Street,
25147 Kfar-vradim (IL). SELA, Rotem [IL/IL]; Katif
17, 6164 Maalot (IL). COULOMB, Fabrice, Jongand
[FR/US]; 855 Buckland Avenue, San Carlos, CA 94070
(US).

(74) Agent: HETZ, Joseph, F.; Brinks Hofer Gilson & Lione,
P.O. Box 10087, Chicago, IL 60610 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

(34)

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: CONTENT CONTROL SYSTEM AND METHOD USING CERTIFICATE CHAINS

r-—-—--——--—-—_---- -— ——-———-— —-———~m—— — - - —_—_— 1
| {
1
: cPU CPU RAMS |
i f |
| 12/ 124/ {
I |
: Peripheral Access Module :
I) |
I]
: HIM 1 FiM :
i ’ I
g |
; Registers ' Registers I | BMU to CPUI Registers |
| - 1
|
: N 3 - i t -3 i
| e Cpocrgne |asf FT i |
I FIFO !
{ \s0 FIFO |
! ARB 36 !
M| HostBus Flash V| | |
] i \IF Sequencer |
P, Tl
1
: 6 II\ 2% | BRAM 28 /H 18 :
| HostiF 4,) 387/ Flashl/F i
i |
2683 ‘ 10 288—’:/ !
I
10 Host Devics 2 20 | Flash Memory :
| J

(57) Abstract: Continuous strings of certificates in a certificate chain received by a memory device sequentially in the same order
that the strings are verified. Each string except for the last may be overwritten by the next one in the sequence.

WO 2008/013656 PCT/US2007/015304

- CONTENT CONTROL SYSTEM AND METHOD USING
CERTIFICATE CHAINS '
CROSS-REFERENCE TO RELATED APPLICATIONS.
[0001] This application claims the benefit of U.S. Provisional Appllcatnon No. US
'60/819,507 filed July 7, 2006.

' [0002] This application is related to U.S. Application No. 11/313,870, filed December 20, |
2005; which application claims the benefit of U.S. Provisional Application No. 60/638,804,
filed December 21, 2004. This application is further related to U.S. Patent Application No.
11/314,411, filed December 20, 2005; this application is further related to U.S. Patent
Application No. 11/314,410, filed December 20, 2005; this applic'ation is further related to

_U.S. Patent Appiication No. 11/313,536, filed December 20, 2005; this application is further
related to U.S. Patent Application Nd. 11/313,538, filed December 20, 2005; this application
is further related to U.S. Patent Applicatien No. 11/314,055, filed December 20, 2005; this

_application is fl_ir,ther related to U.S. Patent Application No. 11/314,052, filed December 20,
2005; this application ie further related to U.S. Péfem Application No.li/314,053, filed
December 20, 2005. v

[0003] The present apphcatlon is related to U.S. Application No. 11/557,028 of Holtzman et
al., entitled “Content Control Method Using Cemﬁcate Chains,” filed on November 6, 2006,
U.S. Application No. 11/557,010 of Holtzman et al., entitled “Content Control System Using
Certificate Chains,” filed on November 6, 2006, U.S. Appiicgtion No. 11/557,006 of
Holtzman et al., entitled “Content Control Method Using Certificate Revocation Lists,’; filed
on November 6, 2006, U.S. Application No. 11/557,026 of Holtzman et al., entitled “Content
Control System Using Certificate Revocation Lists,” filed on November 6, 2006, U.S.
Application No. 11/557,049.of Holfzrhan et al., entitled “Content Control Method Using
Versatile Contro]. Structure,” filed on November 6, 2006, U.S. Application No. 11/557,056 of
Holtzman et al, entitled “Content Control System Using Versatile Control Structure,” filed on
November 6, 2006, U.S. Applicaﬁon No. 11/557,052 of Holtzman et al., entitled “Method
for Controlling Information Supplied Fro.m Memory Device,” filed on November 6, 2006,
U.S. Application No. 11/557,051 of Holtzman et al., entitled' “System for Controlling
Information Supplied From Memory Device,” filed on November 6, 2006, U.S. Applicatioh
No. 11/557,041 of Holtzman et al., entitled “Control Method Using Identity Objects,” filed

-10f88-

WO 2008/013656 PCT/US2007/015304

. on November 6, 2006, and U.S. Application No. 11/557,039 of Holtzman et al., entitled
“Control System Using Identity Objects,” filed on November 6, 2006.

[0004] The applications listed above are incorporated herein in their entirety by reference as

if fully set forth herein.
BACKGROUND

[0005] This invention relates in general to memory systems, and in particular to. a memory

system with versatile content control features.

[0006] Storage devices such as flash memory cards have become the storage ﬁxedium of
choice for storing digital content such as phbtographs. Flash memory cards may also be used
to distribute other types of media content. Moreover, an increasing variety of host devices
such as computers, digital cameras, cellular telephones, persongl digital assistants (PDAs)
and media players such as MP3 players now have the capability of rendering the media
content stored in flash memory cards. There is thus great potential for flash memory cards, as
well as other types of mobile storage devices, to become a widely used vehicle for

distributing digital content.

[0007) One of the key concerns to owners and distributors of digital content is that only
authorized parties should be allowed to access the content, after the content has been
distributed, either through downloads from networks such as the Internet, or through the
distribution of content on storage devices. One of the ways to avoid una'uthorizcd‘access is to
use a system for establishing the identity of the party before content access is granted to the
party. Systems such as the public key infrastructure (PKI) have been developed for this
purpose. In a PKI system, a trusted authority known as a certificate authority (CA) issues
certificates for proving the identity of persons and organizations. Parties sucbh as
organizations and persons who wish to establish proof of identity may register with the
certificate authdrity with adequate evidence for proving their identity. After the identity of
the party has been proven to the CA, the CA will issue a certificate to such party. The
cértiﬁcate typically includes the name of the CA that issued the certificate, the name of the
party to whom the certificate is issued, a public key of the party, and the public key of the
party signed (typically by encrypting a digest of the public key) by a private key of the CA.

-20f 88 -

WO 2008/013656 PCT/US2007/015304

[0008] The private key and the public key of the CA are related so that any data encrypted
using the public key may be decrypted by means of the private key, and vice versa. The
private key and the public key thus form a key pair. An explanation of the private and public
key pair for cryptography is provided by in “PKCS#1 v2.1:RSA Cryptography Standard,”
dated June 14', 2002, from RSA Security Inc. The public key of the CA is made. publicly
available. Therefore, when one party wishes to verify whethef the certificate presented by
another pé.rty is genuine, the verifying party may simply use the public key of the CA to
~decrypt the encrypted digest of the publie key in the certiﬁcate using a decryption algorithm. |
The decryption algorithm is typically also identified in the certificate. If the deerypted digest
of the public key in the certificate matches the digest of the unencrypted public key in the
certificate, this proves that the pliblic key ih the certificate has not been tampered with and is

genuine, based on trust in the CA and authenticity of the public key of the CA.

[0009] To verify the identity of a party, the verifyi.ng party typically will send a challenge
(e.g- random humber) and ask that the other party send his or her certificate as well as a
response to the challengc (i.e. the random number encrypted with the private key of the other
party). When the response and certificate are received, the verifying party first verifies
whether the public key in the certificate is genuine by the process above. If the public key is
verified to be genuine, the Qerifying party can then decrypt the response using the public key
in the certificate, and compare the result to the random number sent originally. 1f they match,
this means the other party does have the correct private key, and for that reason has prc;ven
his or her identity. If the public key in the certificate is not genuine, or if the decrypted
response fails to match -tﬁe challenge, authentication fails. Thus, a party wishing to prove his -

or her identity will need to possess both the certificate and the associated private key.

[0010] By means of the above.r'nech'anism, two parties who otherwise may not trust each
other may establish trust by verifying the public key of the other party in the other party’s
certificate ﬁsing the process descn'bed above. Recommendation X.509 from the Intemetional
Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T) is a
standard that specifies certificate frameworks. More detailed information concerning

certificates and their use can be found in this standard.

[0011] For convenience in administration, and in large organizations, it may be appropriate
for a higher level CA, known as the root CA, to delegate the responsibility for issuing

certificates to several lower level CAs. In a two level hierarchy, for example, the root CA at

-30f 88 -

WO 2008/013656 PCT/US2007/015304

the top level issues certificates to the lower level CAs to certify that the public keys of these
low level aulhorities are genuine. These lower level authorities, in turn, issue certificates to
parties through the registration process described above. The verifying process starts _from
the top of the certificate chain. The verifying party will first use the public key of the root
CA (known to be genuine) to first verify the genuineness of the public key of the lower level
- CA. Once the.génuineness of the public key of the lower level CA has been verified, then the
genuineness of the public key of the pafty to whom the lower level issued a certificate-can be.
verified using the verified public key of the lower level CA. The certificates issued by the
root CA and by the lower level CA then form a chain of two certificates of the party whose

identity is being verified.

{0012] Certificate hic_rarch‘iés may of course include more than.two levels, wheré each CA
except for the root CA at a lower level derives its authoﬁty from a highef level CA, and has a
certificate containing its public key issued by the higher level CA. Therefore, in order to
verify the genuineness of another party’s public key, it may be necessary to trace the path or
" chain of certificates to the root CA. In other words, in order to establish one’s identity, the
party ‘whosé identity needs to be proven may need to produée the entire chain of certificates,

all the way from its own certificate to the root CA certificate.

[0013] As noted abdve, the root certificate and all certificates issued to CAs, such as -
certiﬁcates issued to the lower level CAs in a certificate hiérarchy described above, are made
_publicly available. At present, the presentation of certificates for proving identity have taken
" two formS. In a ﬁrsf form, the party wishing to be authenticated presents merely its own
certificate issued by a CA, which certificate ‘is the last one in the certificate chain. If the
verifying party does not havé the public key.' of the CA that issued the certificate, it is up to '
- such party to obtain the public key of the CA to perform the verification. In the event that the
public key of a still higher authority is necessary to verify the publié key of a lower level CA, .
the verifying party will need to trace the path to the certificate and public key of the higher
level CA, using the names of the issuers in the certificates. This process continues until the
verifying party reaches the CA whose public key is known to be genuine without further

verification.

[0014] In a second form of certificate authentication, while all of the certificates »in the chain
may be presented by the party wishing to be authenticated, the certificates are not needed to

be presented in any particular order. If along with the certificates, the party wishing to be

-4 of 88 -

WO 2008/013656 PCT/US2007/015304

authenticated also presents information on the proper order of the certificates in the chain that
is sent to the verifying party, this information may appear late in the message so that the
verifying party may not know the proper sequence of the certificates until the entire chain of

certificates has been received.

{0015] The first form of certificate exchange and verification assumes that the verifying party
is able to access the missing certificates. While it is possible for devices such as computers
-énd‘ cellular telephones to access hetworks such as the Internet in order to obtain the missing
certificates, storage devices such as flash memory cards haile not been used to do so on their

owIn.

[0016] In the second form of certificate éxchangc and verification, all of the certificates are
presented in the message sent to the verifying device, making it unnecessary for the verifying -
device to obtain the certificates. However, the certificates may not be sent in any particular
order and information concerning the sequence of certificates in the chain may appear
anywhere in the message, such as at the end of the message. This means that before any
particular certificate m the chain can be analyzed for verification, the éntire group of
certificates needs to be received and stored before verification can begin. While this may not
be a problem for host devices Such as computers, PDAs and cellular telephones, this may
present a problem for storage devices. Storage devices may have embedded memory
‘capacities and processing power that are too limited for storing and efficiently analyzing.long

strings of certificates.

- [0017] Due to the various issues ‘and problems described above, none of the systems
currently in use in storage and host devices is entirely satisfactory. It is therefore desirable to

provide improved systems with better characteristics.

SUMMARY
[0018] A certificate chain includes a plurality of continuous strings of certificates. Each
string includes at least one certificate. When these strings aré received at the verifying entity,
the entity verifies these strings in a sequence. If the strings of certificates are received in the
same sequence as they are verified, then the above-described difficulties will be avoided. If
the certificate strings are received in this manner, and if the comp]etc chain of certificates is
received, storage devices may be readily used to verify the genuineness of these certificates

in the chain.

-50f88-

WO 2008/013656 PCT/US2007/015304

[0019] Since continuous strings of the certificates in the certificate chain are received
sequentially in the same order as they are verified, this means that after an individual string of
certificates has been received and verified, there is no further need for the information in this
string of certificates. According to another embodiment, at least one string of certificates that
s received_ and stored in the memory device may be overwritten by. a subsequent string in the
sequence. In this manner, the amount of storage space that needs to be reserved for storing

the certificates in the chain for verification can be much reduced.

[0020] All patents, patent applications, articles, books, specifications, standards, other
_ publications; documents and things referenced herein are hereby incorporated herein by this
reference in their entirety for all purposes. To the extent of any inconsistency or-conflict in -
the definition or use of a term between any of the incorporated publications, documents or |
things and the text of the present document, ihe definition or use of the term in the present

document shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS
[0021] Fig. 1 is a block diagram of a memory system in communication with the host device -

useful for illustrating this invention.

[0022) Fig. 2 is a schematic view of different partitions of a memory and of unencrypted and
encrypted files stored 'in different partitions where access to certain partitions and the
encrypted files is controlled by access policies and authentication procedures useful for

illustrating different embodiments of the invention.

'[0023] Fig. 3 is a schematic view of a memory iliustrating the different partitions in the

‘memory.

[0024] Fig. 4 is a schematic view of file location tables for the different partitions of the
memory shown in Fig. 3 where some of the files in the partitions are encrypted useful for

illustrating different embodiments of the invention.

[0025]) Fig. S is a.schematic view of access control records in an access controlled record
group and the associated key references useful for illustrating different embodiments of the

invention.

-6 of 88 -

WO 2008/013656 PCT/US2007/015304

[0026] Fig. 6 is a schematic view of tree structures formed by access controlled records
groups and access controlled records useful for illustrating different embodiments of the

invention.

[0027] Fig. 7 is a schematic diagram of a tree illustrating three hierarchical trees of access

controlled record groups to illustrate a process of formation of the trees.

[0028] Fig. 8A and 8B are flow charts illustrating the processes carried out by a host device
and a memory device such as a memory card for creating and using a system access control

record.

[0029] Fig. 9 is a flow chart illustrating a process using a system access control record to

create an access controlled record group useful for illustrating different embodiments .
[0030] Fig. 10 is a flow chart illustrating a process for creating an access control record.

[0031] Fig. 11 is a schematic view of_.two access control record groups useful for illustrating

a particular application of the hierarchical tree.
[0032] Fig. 12 is a flow chart illustrating a process for delegation of specific rights.

[0033] Fig. 13 is a schematic view of an access controlled record group and an access control

record to illustrate the process of delegation of Fig. 12.

[0034] Fig. 14 is a flowchart illustrating the process for creating a key for the purpose of

encryption and/or decryption.

[0035] Fig. 15 is a flow chart illustrating a process for removing access rights and/or

permission for data access according to an accessed controlled record.

[0036] Fig. 16 is a flow chart illustrating a process for requesting access when access rights

and/or permission to access has been deleted or has expired.

[0037] Figs. 17A and 17B are schematic views illustrating an organization of a rule structure
for authentication and policies for granting access to cryptographic keys useful for illustrating

different embodiments of the invention.

[0038] Fig. 18 is a block diagram of a database structure illustrating an altermative method for

controlling access to protected information according to policies.

-7 of 88 -

WO 2008/013656 PCT/US2007/015304

[0039] Fig. 19 is a flow chart illustrating an authentication processes using passwords.
[0040] Fig. 20 is a diagram illustrating a number of host certificate chains.
[0041] Fig. 21 is a diagram illustrating a number of device certificate chains.

[0042] Figs. 22 and 23 are protocol diagrams illustrating processes for one way and mutual

authentication schemes.

[0043] Fig. 24 is a diagram of a certificate chain useful for illustrating one embodiment of the

invention.

[0044] Fig. 25 is a table illustrating the information in a control sector that precedes the
certificate buffer that is sent by the host for sending the last certificate to a memory device,
showing an indication that the certificate is the last certificate in the certificate chain to

1llustrate another embodiment of the invention.

[0045] Figs. 26 and 27 are flow charts illustrating card and host processes respectively for -

authentication schemes where a memory card is authenticating a host device.

[0046] Figs. 28 and 29 are flow charts illustrating‘ card and host processes respectively for

authentication schemes where host device is authenticating a memory card.

[0047] Figs. 30 and 31 are flow charts illustrating processes carried out by a host device and
a memory device respectively where a certificate revocation list stored in the memory device

is retrieved by the host device to illustrate one more embodiment of the invention.

[0048] Fig. 32 is a diagram of a certificate revocation list showing the fields in the list to

illustrate yet another embodiment of the invention.

[0049] Figs. 33 and 34 are flow charts illustrating card and host processes respectively for

verifying certificates using certificate revocation lists.

[0050]} Fag. 35 is a flow chart illustrating card processes for the card sighing data sent to the

host and for decrypting data from the host.

[0051] Fig. 36 is a flow chart illustrating host processes where the card signs data sent to the

host.

-8 of 88 -

WO 2008/013656 PCT/US2007/015304

[0052] Fig. 37 is a flow chart illustrating host processes where the host sends encrypted data

to the memory card.

[0053] Figs. 38 and 39 are flovr charts illustrating processes respectively for the general

information and discreet information queries.

[0054] Fig. 40A is a functional block diagram of the system architecture in a memory device
_(soch as a flash memory card) connected to a host device to illustrate an embodiment of the

invention.

[0055] Fig. 4QB is a functional block diagram of the internal software modules of the SSM
_core of Fig. 40A. ' '

[0056] Fig. 41 is-a block diagram of a system for generating a one time password.

[0057] Fig. 42 is a functional block diagram illustrating one time password (OTP) seed

provisioning and OTP generation.

[0058] Fig. 43 is a protocol diagram illustratlng a sced provisioning phase.

- [0059] Fig. 44 is a protocol diagram illustrating a one time password generation phase.
[0060] Fig. 45 is a functional block diagram illustrating a DRM system.

{0061] Fig. 46 is a protocol diagram illustratiﬁg a process for license proQisioning and

content download where the key is provided in the license object.
[0062] Fig. 47 is a protocol diagram illustrating a process for playback ooeration.

[0063] Fig. 48 is a protocol’diagram illustrating a process for license provisioning and

content download where the key is not provided in the license object.

[0064] The figures illustrate fcatures in various embodiments of aspects of the invention. For
simplicity in description, identical components are labeled by the same numerals in this

application.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

-9 0of 88 -

WO 2008/013656 PCT/US2007/015304

[0065]. An example memory system in which the various aspects of the present invention
may be implemented is illustrated by the block diagram of Fig. 1. As shown in Fig. 1, the
memory system 10 includes a central processing unit (CPU) 12, a buffer management unit
(BMU) 14, a host interface module (HIM) 16 and a flash interface module (FIM) 18, a flash
rriemory 20 and a peripheral ac‘ccss module (PAM) 22. Memory system 10 communicates
with a host device 24 through a host interface bus 26 and port 26a. The flash memory 20
which may be of the NAND type, provides data storage for the host device 24, which may be
a digital vcamera,.a personal computer, a personal digital assistant (PDA), a digital'med.ia
player such as a MP-3 player, a cellular telephone, a séf top box or other digital device or
appliance. The software code for CPU 12 may also be stored in flash memory 20. FIM 18
connects to the flash memory 20 through a flash interface bus 28 and port 28a. HIM 16 is
suitable for connectio_n' to a host device. The peripheral access module 22 selects the
éppropriate controller modﬁle such as FIM, HIM and BMU for communication with the CPU
12. In one embodiment, all of the components of system 10 within the dotted line box may'
be enclosed iﬁ a single unit such as in memory card or stick 10 and preferably encapsulated.
The memory system 10 is removably connected.to host device 24, so that the content in

system 10 can be accessed by each of many different host devices.

[0066] In the description below, memory system 10 is also referred fo as memory device 10,
or simply as memory device or device. While the invention is illustrated herein by reference
to flash memories, the invention may also be applicable to other types of memories, such as
- magnetic disks, optical CDs, as well as all other types of rewriteable non-volatile memory

- systems.

[0067] The buffer management unit 14 includes a host direct r__némory access (HDMA) 32, a
flash direct memory access (FDMA) 34, an arbiter 36, a buffer random access memory
(BRAM) 38 and a cryptb-engine 40. The arbiter 36 is a shared bus arbiter so that only one
master or initiator (Which can be HDMA 32, FDMA 34 or CPU 12) can be active at any time
and the slave or target is BRAM 38. The arbiter is responsible for channeling the appropriate
initiator request to the BRAM 38. The HDMA 32 and FDMA 34 are responsible for data
transported between the HIM 16, FIM 18 and BRAM 38 or the CPU random access memory
(CPU RAM)12a. The operation of the HDMA 32 and of the FDMA 34 are conventional and
need not be described in detail herein. The BRAM 38 is used to store data passed between
the host device 24 and flash memory 20. The HDMA 32 and FDMA 34 are responsiblc for

-10 of 88 -

WO 2008/013656 PCT/US2007/015304

transferring the data between HIM 16/FIM 18 and BRAM 38 or the CPU RAM 12a and for

indicating sector completion.

[0068] In one embodiment, memory sys_tem‘IO generates the key value(s) that are used for
encryption and/or decryption, Where this value(s) is preferably substantially not accessible to
extemai devices such as host device 24. Alternatively, the key value may also be generated
- outside of the system 10, such as by a license server, and seht to system 10. Irrespective of
how the key value is generated, oncebthe kéy value is stored in system 10, only authenticated
entitiés will be able to access the key value. However, encryption and decryptioh is typically
done file by file, since the host device reads and writes data to memory system 10 in the form |
of files. Like many other types of storage devices, memory device 10 does not manage files.-
While memory 20 does Storc a file allocation table (FAT) where thé ldgical addresses of the
files are identified, the FAT is typically accessed and managed by the host device 24 and not
by the controller 12. Therefore, in order to encrypt data in a particular file, the controller 12
has to fely on the host devi_ce to send the logical addresses of the data in the file in memory
20, so that the data of the particular file can be found and enc,ry'pted and/or decrypted by

system 10 using the key value(s) available only to system 10.

[0069] To provide a handle for both the host device 24 and memory system 10 to refer to the
same key(s) for cryptographically proceséing data in files, the host device provides a
reference for each of the key values generated by or sent to system 10, where such reference
may simply be a key ID. Thus, the host 24 associatés each file that is cryptographicai'ly
processéd by system 10 with a key ID, and the system 10 associates each key value that is
used to crypfographically prOceSs data with a key ID provided by the host. Thus, when,the
host requests that data be cryptographically processed, it will send the request along with a
key ID along with the logical addresses of data to be fetched from or stored in memory 20 to-
system 10. System 10 generates or receives a key value an.d associates the key ID provided
by the host 24 with such value, and performs the cryptographic processing. In this manner,
no i:hange needs to be maac in the manner memory system 10 operates while aliowing it to
completely control the cryptographic processing using the key(s), including exclusive access
to the key value(s). In other words, once the key value is stored in or generated by system 10,
the system continues to allow the host 24 to manage the files by having exclusive control of
FAT,.while it maintains exclusive control for the managerhent of the key value(s) used for

cryptographic processing. The host device 24 has no part in the management of the key

- 11 of 88 -

WO 2008/013656 PCT/US2007/015304

value(s) used for cryptographic processing of data, after the key value(s) are stored in

" memory system 10.

[0070] The key ID provided by the host 24 and the key value sent to or generated by the
memory system form two attributes of a quantity referred to below as the “content encryption
key” or CEK in one of the embodiments. While the host 24 may associate each key ID with
one or more files, host 24 may also associate each key ID with unorganized data or data

organized in any manner, and not limited to data organized into complete files.

[0071] In order for a user or application to gain access to protected content or area in system
10, it will need to be authenticated using a credential which is pre-registered with system 10.
A credential is tied to the access rights granted to the particular user or application with such
credential. In the pre-registration process, system 10 stores a record of the identity and
credential of the user or application, and the access rights associated with such identity and
credential determined by the user or application and provided through the host 24. After the
pre-registration has been completed, when the user or applieation requests to write data to
memory 20, it will need to provide through the host device its identityand credential, a key
ID for encrypting the data, and the logical addresses where the encrypted data is to be stored.
System 10 generates or receives a key value and associates this Qa]ue with the key ID
provided by the host device, and stores in its record or table for this user or application the .
A key ID for the key value used to encrypt the data to be written. It then encrypts the data and
stores the encrypted data at the addresses designated by the host as well as the key value it

generated or received.

[0072] When a user or application requests to read encrypted data from memory 20, it will
need to provide its identity and cre(iential, the key ID for the key previously used to encrypt
the requested data, and the logical addresses where the encrypted data is stored. System 10
will then match the user or application identity and credential provided by the host to those
stored in its record. If they match, system 10 will then fetch from its merhory the key value
associated with the key ID provided by the user or application, decrypt the data stored at the
addresses designated by the host device using the key value and send the decrypted data to

the user or application.

[0073] By separatmg the authentication credentials from the management of keys used for

cryptographic processing, it is then possible to share nghts to access data wnthout sharing

-120f 88 -

WO 2008/013656 PCT/US2007/015304

credentials. Thus, a group of users or applications with different credentials can have access
to the same keys for accessing the same data, while users outside this group have no access.
While all useré or'applications within a group may have access to the same data, they may
still have different rights. Thus, some may have read only access, while others may have
‘write access onl'y; while still others may have both. Since system 10 maintains a record of
the users or application identities and credentials, the key IDs they have access to, and the
- associated access rights to each of the key IDs, it is possible for system 10 to add or delete
key IDs and alter access rights associated with such key IDs for particular users or
applications, to delegate access_ rights from one user or application to another, or even to
delete or add records or tables for users or applications, alt as controlled by a properly
authenticated host device.. The record stored may specify that a secure channel is needed for
accessing certain keys. Authenticatiori may be done using symmetric 6r_ asyfnmetric

algorithms as well as passwords.

[0074] Especially important is the portability of the secured content in the memory System
10. In the embodiments where access to the key value is controlled by the memory system,
when the memory system or a storage device incorporating the system is transferred from one
external system to another, security of the content stored therein is maintained. Whether the
key is generated by the memo}y system or originates from outside the memory ‘s‘ystem,
external systems are not -able tb access such content in system 10 unless they have been '
authenticated in a manner ‘corﬁpletcly controlled by the memory system. Even after being so
authenticated, access is totally controlled by the memory system, and external systems can
access only in a manner controlled according to preset records in the memory system. If a

request does not comply with such records, the request will be denied.

[0075] To provide greater flexibility in protecting contént, it is envisioned that certain areas
of the memory referred to below as partitions can be accessed only by p'roperl.y authenticated
users or applications. When combined with the above described features of key-based data
encryption, system 10 provides greater data protection capability. As shown in Fig. 2, the
flash memory 20 may have its storage capacity divided into a number of partitions: a user
area or partition and custom partitions. The user area or partition PO is accessible to all users
and applications without authentication. While all bit values of data stored in the user area
can be read or written to by any application or user, if the data read is encryptéd, the user or

application without authority to decrypt would not be able to access the information

-130f 88 -

WO 2008/013656 PCT/US2007/015304

represented by the bit values stored in a user area. This is illustrated, for example, by files
102 and 104 stored in user area PO. Also stored in the user area are unencrypted files such as
106 which can_be read and understood by all applications and users. Thus, syinbolica]ly, the
files that are encrypted are shown with locks associated with them such as for files 102 and

104.

[0076] While an encrypted file in a user area PO cannot be understood .by unauthorized
applications or users, such vapplications or users may still be able to delete or corrupt the file,
which may be undesirable for some applications. For this purpose, memory .20.also includes
protected custom panitions such as partitions P1 and P2 which cannot be accessed without
prior authentication. The authentication process permitted in the embodiments in this

application is explained below.

[0077] As also illustrated in Fig. 2, a variety of users or applications may access the files in
memory 20. Thﬁs users 1 and 2, and applications 1-4 (running on devices) are shown in Fig.
2. Before these entities are allowéd_ to access protected content in memory 20, they are first
authenticated by an authentication process in a manner explained below. In this prbcess, the
entity tﬁat i1s requesting access needs to be identified at the host side for role based access
control. Thus, the entity requesting access first identifies itself by supplying information
such as “I am application 2 and I wish to read file 1.” Controller 12 then matches the
identity, éuthentication information and request against the record stored in memory 20 or
controller 12. If all requirements are -met, access is then granted to such entity. As
illustrated in Fig. 2, user 1 is allowed to read ‘fr.om and write to file 101 in partition P1, but
can only read files 102 and 104 in addition to user 1 having unrestricted rights to read from -
and write to files 106 in PO. User 2, on the other hand, is not allowed access to file 101 and
104 but has read and write access to file 102. As indicated in Fig. 2, users 1 and 2 have the
- same login algorithm (AES) while applications 1 and 3 have different login algorithms (e.g.
RSA and 001001) which are also different from those 6f users 1 and 2. |

[0078] The Secure Storage Application (SSA) is a security application of the memory system
10, and illustrates an embodiment of the invention, which can be used to implement many of
the above-identified features. SSA may be embodied as software or computer code with
database stored in the memory 20 or a non-volatile memory (not shown) in CPU 12, and is
read into RAM 12a and executed by CPU 12. The acronyms used in reference to.the SSA are

set forth in the table below:

- 14 of 88 -

WO 2008/013656 PCT/US2007/015304

Definitions, Acronyms & Abbreviations

ACR Access Control Records

AGP ACR Group

CBC Chain Block Cipher

CEK ' Content Encryption Key

‘ECB Electronic Codebook

ACAM ACR Attributes Management

PCR Permissions Control Record

SSA Secure Storage Application

Entity Any thing that has real and individual existence (host side) that logs in the SSA
and thus utilizes its funcuonahties

SSA System Description : o
[0079] Data security, integrity and access control are the major roles of the SSA. Thc data

are files that would otherwise be stored plainly on a mass-storage device of some kind. The
SSA system sits atop of the storage system and adds the security layer for the stored host

files, and provides security functions through security data structures described below.

[0080] The main task of the SSA is to manageb the different rights associated with the stored
(and securcd) content in the memory. The memory application needs to manage multiple
users and content rights to multiple. stored content. Host applications from their side, see
drives and partitions that are visible to such applications, and file allocation tables. (FATs)

that manage and portray the locations of the stored files on the storage device.

[0081} In this case the storage device uses NAND ﬂash chip divided to partitions, although
other mobile storage devices may also be used and are within the scope of this invention.
These partitions are continuous threads of logical addresses, where a start and an end address
define their boundaries. Restrictions may therefore be imposed on access to hidden partitions,
if desired, by means of software (such as software stored in memory 20) that associates such
restrictions with the addresses within such boundaries. Partitions are fully recognizable to the
.S'SA by their logical address boundaries that are managed by it. The SSA system uses
partitions to physically secure data from unauthorized host applications. To the host, the
partitions are a mechanism of defining proprietary spaces in which to store data files. These
partitions can either be public, where anyone with access to the storage device can see and be
aware of the partition’s presence on the device, or private or hidden, where only the selected

host applications have access to and are aware of their presence in the storage device.

-150f 88 -

WO 2008/013656 PCT/US2007/015304

[0082] Fig. 3 is a schematic view of a memory illustrating the partitions of the memory: PO,
Pl; P2 and P3 (obviously fewer or more partitions than four may be employed), where PO is a

public partition which can be accessed by any entity without authentication.

[0083] A private partition (such as P1, P2 or P3) hides the access to. the files within it. By
preventing the host from accessing the partition, the flash device (e.g. flash card) delivers
protection of thé data files inside the partition. This kind of protection, however, engulfs all
of the ﬁléé residing in the hidden ‘partition by imposing restrictions on access to data stored at
the logical addresses within the partition. In other words, the restrictions are associated with
a range of logical addresses. All of the users/hosts that have access to that partition will have
unlimited access to all of the files inside. To isolate different files from one another — or
groups of files — the SSA system provides another level of security and integrity per file - or
groups of files _ using keys and key references or Key IDs. A key reference or key ID of a
particular key value used for encrypting data at different memory addresses can be
analogized to a container or domain that contains the encrypted data. For this reason, in Fig.
" 4, the key references or key IDs (e.g. “key 1” and “key 2”) are shown graphically as areas .

surrounding the files encrypted using the key values associated with the key IDs.

[0084]_In reference to Fig. 4, for example, File A is accessible to all entities without any
authentication, since it is shown as not enclosed by any key ID. Even though File B in the
public partition can be read or overwritten by all entities, it contains data encrypted with a
key with ID “key 17, so that the information contained in File B is not accessible to an entity
unless such entity has access to such key. In this manner using key values and key references
or Key IDs provide logical protection only, as opposed to the type of protection provided by
the partition described above. Hence, any host that can access a partition (public or private)
is capable of reading or writing the data in the entire partition, including the encrypted data.
However, since the data is encryptéd,-ur_\authorized users can only corrupt it. They preferably
cannot alter the data without detection. By restricting the access to the encryption and/or
décryption keys, this feature can allow only the authorized entities to use the data. Files B

" and C are also encrypted using a key with key ID “key 2” in PO.

[0085] Data confidentiality and integrity can be provided through symmetric encryption
methods that use Content Encryption Keys (CEK), one per CEK. In the SSA embodiment,

the key values in CEKs are generated or received by the flash device (e.g. flash card), used

- 16 of 88 -

WO 2008/013656 PCT/US2007/015304

internally only, and kept as secrets from the outside’ world. The data that is encrypted or

ciphered may also be either hashed or the cipher is chain blocked to ensure data integrity.

[0086] Not all the data in the partition is encrypted by different keys and associated with
different key IDs. Certain logical addresses either in public or user files or in the operating
system area (i.e. FAT) may not be associated with any key or key reference, and thus are

available to any entity that can access the partition itself.

[0087] An entity that calls for the ability t_b create keys and partitions as well as writing and
reading data _frorh them or using the keys, needs to login to the SSA system through an
" Access Control Record (ACR). The privileges of an ACR in the SSA system are called
Actions. Every ACR may have Permissions to perform Actions of the ‘followin.g three
'catégories: Creating -partitions and keys/key IDs accessing partitions and keys and

creating/updating other ACRs.

[0088] ACRs are organized in groups called ACR Groups or AGPs. Once an ACR has
- successfully authenticated, the SSA syétem opens a Session through which any of the ACR’s
‘actions can be executed. ACRs and AGPs are security data structures used to control access

to the partitions and keys accordih'g to policies.

User Partition(s)

[0089] Tl?e SSA system manages one or more public partitions, also referred to as the user
partition(s). This partition exists on the storage device and is a partition or partitions that can
be accessed through the standard read write commands of the storage device. Getting
inforrﬁatioh regarding the size of the partition(s) as well. as its existence on the device

preferably cannot be hidden from the host system.

{0090] The SSA system enables accessing this partition(s) either through the standard read
write commands or the SSA commands. Therefore, accessing the partition preferably cannot
be restricted to specific ACRs. The SSA system, however, can enable the host devices to
restrict the access to the user partition. Read and write accesses can be enabled/disabled
individually. All four combinations (e.g. write only, read only (write protect), read and write

and no access) are allowed.

-17 of 88 -

WO 2008/013656 PCT/US2007/015304

[0091] The SSA system enables ACRs to associate key IDs with files within the user
partition and encrypt individual files using keys associated with such key IDs. Accessing
. encrypted files within the user partitions as well as setting the access rights to the partitions
will be done uvsing the SSA command set. The above features also apply to data not

organized into files.

SSA partitions

- [0092] These are hidden (from unauthenticated parties) partition$ that can be accessed only
through the SSA commands. The SSA system will preferably not allow the host device to
access an SSA partition, other than through a session (described below) established by
logging onto an ACR. Similarly, prefcrvablyr the SSA will not provide information regarding
the existence, size and access permission of an SSA partition, unless this request is coming

through an established session.

I0093] Access rights to partitions are derived from the ACR permissions. Once an ACR is
logged into the SSA system, it can share the panition with other ACRs (described below).
. When a partition is created, the hosf provides ;i reference name or ID (e.g. PO-P3 in Figs. 3
and 4) for the partition. This reference is used in further read and write commands to the

~ partition.

Partitioning of the storage device

[0094] All available storage capacity of the device is preferably allocated to the user partition
and ihe currently configured SSA partitions. Therefore, any repartition operation may involve
reconfiguration of the existing partitions. The net change to the device capacity (sum of sizes
of all partitions) will be zero. The IDs of the partitions in the device memory space are

defined by the host system.

[0095] The host system can either repartition one of the exnslmg partitions mto two smaller
ones or, merge two cxnstlng partitions (which may or may not be adjacent) into one:. The data
in the divided or merged partitions can be either erased or left untouched, at the host’s

discretion.

[0096] Since repartitioning of the storage device may cause loss of data (either because it was
erased or moved around in the logical address space of the storage device) severe restrictions

on repartitioning are administered by the SSA system. Only an ACR residing in a root AGP

- 18 of 88 -

WO 2008/013656 PCT/US2007/015304

(explained below) is allowed to issue a repartition command and it can only reference
partitions owned by it. Since the SSA system is not aware of how data is organized in the
partitions (FAT or other file system structure) it is the host’s responsibility to reconstruct

these structures any time the device is repartitioned.

[0097] Repartitioning of the user partition will change the size and other attributes of this

partition as seen by the host OS. .

[0098] After repartitioning, it is the host system’s responsibility to make sure any ACR in the
SSA system is not referencing the non-existing partitions. If these ACRs are not deleted or
up_dated'appropri'ately, future attempts, on behalf of these ACRs, to access the non-existing
partitions will be detected and rejected by the system. Similar care is taken, regarding deleted

‘keys and key IDs.

Keys, Key IDs and Logical Protection _
[0099] When a file is written to a certain hidden partition, it is hidden from the general

phblic. But, once an entity (hostile or not) gets knowledge and access to this partition the file
bcéomes available and pléin to see. To further secure the file, the SSA can encrypt it in the
hidden partition, where the credentials for accessing the key for decrypting the file are
‘preferably different from those for accessing the partition.'Due'to the fact that files are totally
controlled and managed by ‘the host, associating a CEK with a file is a problem. Linking the
file to something the SSA acknowledges — the key ID, rectifies this. Thus, when a key is
created by the SSA, the hoét associates the key ID for this key with the data encrypted using
the key created by the SSA. If the key is sent to the SSA together with key ID, the key and

key ID can be readily associated with each other.

[00100] The key value and key ID provide logical security. All data associated with a
given key ID, regardless of its location, is ciphered with the same key value in the content

encryption key (CEK) whose reference name or key ID is uniquely provided at creation by

~ the host application. If an entity obtains access to a hidden partition (by authenticating

through an ACR) and wishes to either read or write an encrypted file within this partition, it
needs to have access to the key ID that is associated with the file. When granting access to
the key for this key ID, the SSA loads the key value in CEK associated with this key ID and

either decrypts the data before sending it to the host or encrypts the data before writing it to

-19 of 88 -

WO 2008/013656 PCT/US2007/015304

the flash memory 20. In°one embodiment, a key value in CEK associated with a key ID is

randomly created once by the. SSA system and maintained by it. No one outside the SSA

system has knowledge or access to this key value in CEK. The outside world only provides

and uses a reference or key ID, not the key value in CEK. The key value is entirely managed

and preferébly only accessible by the SSA. Alternatively, the key may be provided to the
SSA system. '

[00101] The SSA system protects the data associated with the key ID lisjng any one
(user defined) of the following cipher modes (the actual cryptographic algorithms used, as

well as the key values in CEKs, are system controlled and not revealed to the outside world):

(00102} - Block mode — Data is divided into blocks, each one of them, encryptéd
individuaily. This mode is generally considered less secure and susceptive to dictionary

"attacks, However, it will allow users to randomly access any one of the data blocks.

[00103] Chained mode - Data is-divided into blocks, which are chained during the
encryption process. Evcry block is used as one of the inputs to the encryption process of the
next one. In this mode, although considered as more secure, the data is written and read

sequentially from start to end, creating an Qverhead which may not be acceptable to the users.:

{00104} Hashed — Chain mode with the additional creation of a data digest that cah be

used for validating data integrity.

ACRs and Access Control
[00105] The SSA is designed to handle multiple applications where each one of them

is represented as a tree of nodes in the system database. Mutual exclusion between the

applicatiohs is achieved by ensuring no cross talk between the tree branches.

[00106] In order to gain access to the SSA system, an entity needs to establish a
connection via one of the system’s ACRs. Login procedures are administered by the SSA

system according to the definitions embedded in the ACR the user chose to connect with.

[00107] The ACR is an individual login point to the SSA system. The ACR holds the
login credentials and the authentication method. Also residing in the record are the login
permissions within the SSA system, among which are the read and write privileges. This is

illustrated in Fig. 5, which illustrates n ACRs in the same AGP. This means that at least

-200f88 -

WO 2008/013656 PCT/US2007/015304

some of the n ACRs may share access to the same key. Thus, ACR #1 and ACR #n share
access to a key with key ID “key 3”, where ACR#1 and ACRin are the ACR IDs, and“‘key
3”isa kéy ID for the key that is used to encrypt data associated with “key 3”. The same key

can also be used to encrypt and/or decrypt multiple files, or multiple sets of data.

[00108] - The SSA system‘ supports several types of login onto the system where
authentication algorithms and user credentials may vary, as may the user’s privileges in the
system once he logged in successfully. Fig. 5 again illustrates differeht login algorithms and
credentials; | ACR#1 specifies a password login algorithm anci password as credential whereas
ACR#2 specifies a PKI (public key infrastructure) login algorithm and public key as
credential Thus, to login, an enuty will need to present a valid ACR D, as well as the

correct login algorxthm and credentxal

[00109]) ~ Once an entity is logged into an ACR of the SSA system, its permissions - its
rights to usé SSA commands - are defined in the Permissions Control Record (PCR) which is
assc)ciated with the ACR. In Fig. 5, ACR#! grants read only permission to data associated
with “key 3”, and ACR #2 grants permission to read and write data associated with “key 57

according to the PCR shown.

[00110] Different ACRS may share common interests and privileges in the system such
as in keys with which to read and write. To accomplish that, ACRs with something in
common are grouped in AGPs — ACR .Groups. Thus, ACR #1 and ACR #n share access to a
key with key ID “key 3”. | | |

[00111] AGPs and, the ACRs within, are organized. in hierarchical trees and so aside
from creating secure keys thét keep sensitive data secure; an ACR can preferably also create
other ACR entries that correspond to his key ID/partitions. Thcse ACR children will havc the
same or less permissions as their father — creator and, may be given permissions for keys the
father ACR himself created. Needless to add, the children ACRs get access permissions to
V any key that they create. This is illustrated in Fig. 6. Thus, all of the ACRs in ACP 120 were
created by ACR 122 and two of such ACRs inherit from ACR 122 permission(s) to access to

data associated with “key 3”.

AGP
[00112] Logging onto the SSA system is done by specifying an AGP and an. ACR
within the AGP.

-210f 88 -

WO 2008/013656 PCT/US2007/015304

[00113]. Every AGP has a unique ID (reference name), which is used as an index to its
entry in the SSA database. The AGP name is provided to the SSA system, when the AGP is
. created. If the provided AGP name already exists in the system, the SSA will reject the

creation operation.

[00114] = AGPs are used to administer restrictions on delegation of access and
management permissions as will be described in the following .sections'. One of the functions
served by the two trees in Fig. 6 is to administer the access by entirely separate entities, such
as two different applications, or two different 'eomputer users. For such purposes, it may be
important for the two access processes to be snbstantially independent of one another (i.e.
subétantia]ly no cross-talk), even though both occur at the same time. This means that the
authentication, permiseions as well as the creation of additional ACRs and AGPs in each tree
are not connected to and do not depend on those of the other tree. Hence, when the SSA
system is used in memory 10, this allows the memory system 10 to serve multiple
~ applications simultaneously. It also allows the two applications to access two separate sets of
data independently. of one another (e.g. a set of photographs and a set of songs). This is
illustrated in Fig. 6. Thus, the data associated with “keys 3”7, “key X and “key Z” for the
application or user accessing _via.nbdes (ACRs) in the tree in the top portion of Fig. 6 may
comprise photographs. The data associated with “key 5” and “key Y” for the application or
user accessing via nodes (ACRs) of the tree in the bottom portion of Fig. 6 may comprise
songs. The ACR that created the AGP has the permission to delete it only when the AGP is

empty of ACR entries. |
The entity’s SSA entry point: Access Control Record (ACR)

[00115]. An ACR in the SSA system describes the way the entity is permitted to log "
into the system. When an entity logs into the SSA system it needs to specify the ACR that
corresponds to the auihenticalion process it is about to perform. An ACR includes a
Permissions Control Record (PCR) that illustrates the granted actions the user can execute
once authenticated as defined in the ACR as illustrated in Fig. 5. The host side entity provides
all of the ACR data fields. "

[00116] When an entity has successfully logged onto an ACR, the entity will be able to
query on all of the ACR’s partition and key access permissions and ACAM permissions

(explained below).

-220f 88 -

WO 2008/013656 PCT/US2007/015304

ACR ID

[00117] When an SSA system entity initiates the login process it needs to specify the
ACR ID (as provided by the host when the ACR was created) that corresponds to the login .
method so that the SSA will set up the correct algorithms and select the correct PCR when all
login requirements have been met. The ACR ID is provided to the SSA system when the
ACR is created. | '

Login/Authentication Algorithm
| [00118] The authentication algorithm speciﬂés what sort of login procedure. will be -
used by the ehtity, and what kind of credentials are needed to provide proof of user’s identity.
- The SSA system supports several standai’d‘login algorithms, ranging from no procedure (and
no credential) and passwad-based procedures to a two-way authentication protocols based

on either symmctri_c or asymmetric cryptography; '

Credentials

[00119] The entity’s credentials correspond to the login algori‘thm and are used by the
SSA to verify and authenticate the user.. An example for credential can be a password/PIN-
number for password authentication, AES-key for AES authentication, etc. The type/format
of the credentials (i.e. fhe PIN, the symmetrié key, etc...) is predefined and derived from the
authentication mode“; they are provided to .'thc SSA sysfcm when the ACR is created. The
SSAV ‘system has no part in defining, distributing and managing these credentials, with the
exception of PKI based authentication where the device (e.g. flash card) can be used to
generate the RSA or other type of key pair Vand the public key cah be exported for certificate

generation.

The Permissions Control Record (PCR) ‘

(00120} The PCR show§ what is graﬁtcd to the entity after logging into the SSA system
and passing the ACR’s authcnticatioﬁ process successfully. There are three types of
permission categories: Creation permissions for partition and keys, Access pcﬁnissions to

partitions and keys and management permissions for Entity-ACR Attributes

Accessing Partitions

[00121] This section of the PCR contains the list of partitions. (using their IDs as
provided to the SSA system) the entity can access upon completing the ACR phase

successfully. For each partition the access type may be restricted to write-only or read-only or

-230f 88 -

WO 2008/013656 PCT/US2007/015304

may specify full write/read access rights. Thus, the ACR#1 in Fig. 5 has access to partition
#2 and not partition #1. The restrictions specified in the PCR apply to the SSA partitions and
the public partition. ’ k

[00122] . The public partition can be accessed either by régular read and write
commands to the device (e.g. flash card) hosting the SSA system, or by SSA commands.
When a root ACR (explained below) is created with the permission to restrict the public
. partition, he can pass it on to his children. An ACR can preferably only restrict the fegular
read and write commands from accessing the public_ partition. ACRs in the SSA' system can
be restricted preferably only upon their creation. Once an ACR has the permission to

read/_i/rite from/to the public partition, preferably it cannot be taken away.

Accessing Key IDs

(00123} - -~ This section of the PCR contains the data associatéd with the list of key IDs
(as provided to the SSA system by the host) the entity can access when the ACR policies
‘_have been met by the entity’s login process. The key ID specified is associated with a
file/files that reside in ‘the partition appearing in the PCR. Since the key IDs are not
associated with logical addresses in the device (e.'g. flash card), when more than one partition
is associated with a speciﬂchC»R, the files can be in either one of the partitions. Thebkey IDs
~ specified in the PCR can have each, a different set.of access rights. Accessing data pointed to
by key IDs can be restricted to write-only or read-only or may specify full write/read access

rivghts.

ACR Attributes Management (ACAM)

[00124] This section describes how in certain cases the ACR’s‘ system attributes can be
changed. |
[00125] The ACAM éctions that may be permitted in the SSA system are:

1. | Create/delete/update AGPs and ACR.. |

2. Create/deletg: Partitioﬁs and Keys.

3. Delegate access rights to keys and partitions.

- 24 of 88 -

WO 2008/013656 PCT/US2007/015304

[00126] A father ACR preférably cannot edit ACAM permissions. This would .
preferably need the deletion and recreation of the ACR. Also the access permission to a key

ID created by the ACR can preferably not be taken away.

[00127] An ACR may have the capacity to create other ACRs and AGPs. Creating |
ACRs also may mean delegating them some or all of the ACAM permissions possessed by
their creator. Having the permission to create ACRs means having the permission for the

following actions:

L Define and edit the child’s credentiais — the authentication method preferably
cannot be edited once set by the creating ACR. The credentials may be altered within the
boundary of the authentication algorithm that is already defined for the child.

2. Delete an ACR. o

3. Delegate the creating permission to the child ACR (thus having
grandchildren). _ | ,
[00128] An ACR with the permissions to create chcr ACRs has the permission to

delegate the unblocking pérmissioﬁ to ACRs it creates (although it probably does not have
the permission to unblock ACRs). The father ACR will place in the child A_CR a reference to

his unblocker.

{00129} The father ACR is the only ACR that has the permission to delete his child-
"~ ACR. When an ACR deletes a lower level ACR that he created, then all ACRs spawned by
this lower-level ACR are automatically deleted as well. When an ACR is deleted then all the

key IDs and partitions that it created are deleted.

[00130] There are two exceptions by which an ACR can update its own record:

1. Passwords/PINs, although set by the creator ACR, can be updated only by the
ACR that includes them.

2. Aroot ACR may'delcte itself and the AGP that it resides in.

Delegate access rights to Keys and partitions _
[00131] ACRs and their AGPs are assembled in hierarchical trees where the root AGP

and the ACRs within are at the top of the tree (e.g. root AGPs 130 and 132 in Fig. 6). There

can be several AGP trees in the SSA system though they are totally separated from one

-250f 88 -

WO 2008/013656 PCT/US2007/015304

another. An ACR within an AGP can delegate access permissions to its keys to all ACRs
within the same AGP that it is in, and to all the ACRs created by them. The permission to

create keys preferably includes the permission to delegate access permissions to use the keys.

[00132] Permissions to keys are divided into three categories:

1. Access — this defines the access permissions for the key i.e. Read, Write.
2. Ownership — an ACR that created a key is by definition its owner. This

ownership can be delegated from one ACR to another (provided that they are in the same
AGP or in a child AGP). An ownership of a key provides the permission to delete it as well

as delegate permissions to it.

3. Access Rights Delegauon — this permission enables the ACR to delegate the
rights he holds. '
[00133] An ACR can delegate access permissions to partitions he created as well as

other partitions he has access permissions to.

[00134] The permission delegaiion is done by adding the names of the partitions and
key IDs to the designated ACR’s PCR. Delegating key access permissions may either be by
the key ID or by stating that access permission is for all of the created keys of the delegating
ACR. o

Blocking and Unblocking of ACRs '
[00135] An ACR -may”have a blocking counter which increments when the entity’s

ACR authentication process with the system is unsuccessful. When a certain maximum
number (MAX) Qf -unsuccessful authentications is reached, the ACR will be blocked by the
SSA system.

[00136] The blocked ACR can be unblocked by another ACR, referenced by the
blocked ACR. The reference to the unblocking ACR is set by its creator. The unblocking
ACR preferably is in the same AGP as the creator of the blocked ACR and has the

unblockmg permission.

-26 of 88 -

WO 2008/013656 PCT/US2007/015304

[00137] No other ACR in the system can unblock the blocked ACR. An ACR may be
configured with a blocking counter but without an unblocker ACR. In this case, if this ACR
get blocked it cannot be unblocked.

Root AGP — Creating an application database

[00138] The SSA system is designed to handle multiple appliéations and isolate the
data of each one of them. The tree structure of the AGP system is the main tool used to
identify and isolate application specific data. The root AGP is at the tip of an application SSA
database tree and adheres to somewhat different be_havior rules. Several root AGPs can be
configured in the SSA system. Two root AGPs 130 and 132 are shown in >Fig. 6. Obviously

fewer or more AGPs may be used and are within the scope of this invention.

[00139] Registering the device (e.g. flash card) for a new application and/or issue .
credentials of a new applications for the device are done through the process of adding new

, AGP/ACR tree to the device.

'[00140) The SSA system supports. three different modes of root AGP creation (as well
as all of the ACRs of the root AGP and their permissions):

1. . Open: Any user or entity without requiring any sort of authentication, or
users/entities authenticated through the system ACR (explained below), can ’cre.ate a new root
AGP. The open mode enables creation of root AGPs either without any security measures
while all data transfer is done oh an open éhannel (i.e. in the secure environment of an
issuance agency) or, through a secure channel established through the system ACR
authentiéation (i.e. Over The Air (OTA) and post issuance proéedures).

[00141j If the system ACR is n0£ configured (this is an opﬁonal feature) and the root

AGP creation mode is sét to Open, only the open'channel option is available.

2. Controlled: Only entities authenticated through the System ACR can create a
new root AGP. The SSA system cannot be set to this mode if system ACR is not configured.
3. Locked: Creation of root AGPs is disabled and no additional root AGPs can be
added to the system | ‘

[00142] Two SSA commands control this feature (these commands are available to any .

user/entity without authentication):

-27 of 88 -

WO 2008/013656 PCT/US2007/015304

1. Method configuration command — Used to configure the SSA system to use
any one of the three root AGP creation modes. Only the following mode changes are allowed:
Open -> Controlled, Controlled -> Locked (i.e. if the SSA system is currently configured as
Controlled, it can only be changed to locked). '

2. Method cbnﬁ’guration lock command - Used to disable the method

configuration command and permanently lock the currently selected method.

[00143] - When a root AGP is created, it is in a special initializing mode that enables the
creation and confi gurationzof its ACRs (using the same access restrictions that applied to the
creation of the root AGP). At the end of the root AGP configuration process, when the entity
explicitly switches it to operating mbdé, the existing ACRs can no longer be updated and

additional ACRs can no longer be created

[00144] Once a.root AGP is put in standard mode it can be deleted only by logging
into the system thfough one of its ACRs that is assigned with the permission to delete the root
~ AGP. This is énother exception of root AGP, in addition to the special initialization mode; it
is preferably the only AGP that may contain an ACR with the perrrﬁssion to delete its own

AGP, as opposed to AGPs in the next tree level.

[00145] : The tt_iird and last difference between a i'dot ACR and a standard ACR is that it

" is the only ACR in the system that can have the permission to create and delete partitions.

SSA System ACR , :
[00146] The system ACR may be used for the following two SSA operations:

1. Create an ACR/AGP tree under the protection of a secured channel within
hostile environments. '

2. Identify and authenticate the device hosting the SSA system.

[00147] There may preferably be only one System ACR in the SSA and once defined it
preferably cannot be changed. There is no need for system authehtication when creating the
System ACR; only a SSA command is needed. The create-system-ACR feature can be
disabled (similarly to the create-root-AGP feature). After the system ACR is created, the
create-system-ACR command has no effect, since preferably only one System ACR is

allowed.

-28 of 88 -

WO 2008/013656 PCT/US2007/015304

{00148} While in the process of creating, the System ACR is not operational. Upon
finishing, a special command needs to be issued indicating that the System ACR is created

and ready to go. After this pbint the System ACR preferably cannot be updated or replaced.

' [00149] | The System ACR créates the root ACR/AGP in the SSA. It has permission to
add/change the root level until such time that the host is satisfied with it and blocks it.
Blocking the root AGP essentially cuts off its connection to the system ACR and renders it
tempef prbof. At this point no one can change/edit the root AGP and the ACRs within. This
is done through an SSA command. Disabling creation of root AGPs has a permanent effect
and cannot be reversed. The above features involving the system ACR are illustrated in Fig.
7. The systefn ACR is used to create three different root AGPs. At a certain time after,i these
are créatcd, the SSA command is sent from the host to block the root AGPs from the system
ACR, thereby disabling the create-root-AGP feature, as indicated by the dotted iincs
connecting the System ACR to the root AGPs in Fig. 7. This renders the three root AGi’s
temper proof. The three root AGPs may be used to create children AGPs to form three

v separél_te trees, before of after the root AGPs are blocked.

[00150] The above described features provides great flexibility to the content owner in
configuring secure products with content. Secure products need to be "Issued"”. Issuanée‘ is
the process of putting identification keys by which the device can identify the host and vice
- versa. Identifying the device (e.g. flash card) enables the host to decide whether it can trust its
“secrets with it. On the other hand, identifying the host enables the device to enforce security

policies (grant and execute a specific host command) only if the host is allowed to.

[00151] Products that are designed to serve multiple applications will have several
identification keys. The product can be "pre-issued" - keys stored during. manufacturing
" before shipping, or "pos‘t issued” - new keys are added after shipping. For post issuancé, the
memory dev.ice (e.g. memory card) needs to contain some kind of master or device level keys

which are being used to identify entities which are allowed to add applications to the device.

[00152] The above described features enables a product to be configured to
enable/disable post issuance. In addition, the post issuance configuration can be securely
done after shipping. The device may be bought as a retail product with no keys on it in
addition to the master or device level keys described above, and then be configured by the

new owner to either enable further post issuance applications or disable them.

-29 of 88 -

WO 2008/013656 PCT/US2007/015304

[00153] Thus, the system ACR feature provides the capability to accomplish the above

objectives:

- Memory devices with no system ACR will allow unlimited and uncontrolled
addition of applications. ,

- Memory devices without system ACR can be configured to disable the system ACR
creation, which means there is no way.to control adding of new applications (unless the
feature of créating new root AGP is disabled as well) |

- Mefnory devices with system ACR will allow only controlled addition of
applications via a secure channel to establish through an authentication procedure using the |
System ACR credehtial_. : | _‘

- Mein_ory devices with system ACR may be configured to disable the application

adding feature, before or after applications have been added.

Key ID list
[00154] Key IDs are created per specific ACR request; however, in the memory

system 10, they are used solely by the SSA system. When a key ID is created the following
data is provided by or to the creating ACR: A '

, 1. Key ID. The ID is provided by the entity through the host and is used to
reference the key_anvd data that is encrypted or decrypted using the key in aﬂ further fead or
Write accesses. _ | - _ _ _ |

2. Key Cipher ‘and data integrity Mode (the Blocked, Chained and Hashed Modes

above and as explained below).

[00155] In addition to the host provided attributes, the following data is maintained by
the SSA system: '

1. Key ID Owner. The ID of the ACR that is the owner. When a key ID is
created the creator ACR is its owner. Key ID ownership may, hoWever, be‘ transferred to |
another ACR. Prefcrf;bly only the key ID owner is allowed to transfer ownership of, and
~ delegate, a key ID. Delegating access permission to the associated key, and revoking these
rights can be administered either by the key ID owner or any other ACR assigned with
delegation permissions. Whenever an attempt is made to exercise any one of these operations,

the SSA system will grant it only if the requesting ACR 1is authorized.

-30 of 88 -

WO 2008/013656 PCT/US2007/015304

o2 CEK. This is the CEK whose key value is used to cipher the content
associated with or pointed to by the key ID. The key value may be a 128 bit AES random key
generated by the SSA system. »

3. MAC and IV values. Dynamic information (message autheéntication codes and

initiation vectors) used in the Chained Block Cipher (CBC) encryption algorithms.

[00156] " The various features of the SSA are alse illustrated in reference to the flow
charts in Figs. 8A-16, where ‘H’ to the left of a step means the operation is performed by the
host, and ‘C; means the operation is performed by the card. While these SSA features are
illustrated with reference to memory eards, it will be understood that these features apply as
well to memory- devices in other physical fo’rms. In order to create a System ACR, the host
issues to the SSA in the memory device 10 a command to create Systerh ACR (block 202).
The device 10 responds by checking whether a- System ACR already exists (block 204, |
diamond 206). If it already exists, then device 10 returns failure and stops (oblong 208). If it
does not, then memory 10 checks to see if System ACR creation is allowed (diamond 210),
and returns a failure status if not allowed (block 212). Thus, there may be instances where
the device issuer does not allow the creation of a System ACR, such as in the case where the
security features needed have been predetermined so that no System ACR is needed. If this is
allowed, the device 10 returns OK status and waits for System ACR credentials from the host
(block 214). The host checks the SSA status aed ‘whether the device 10 has indicated that the
creation of a System ACR is allowed (block 216 and diamond 218). If creation is not
allowed or if a system ACR already exists, the host stops (oblong 220). If the device 10 has
indicated 4that the creation of a'System ACR is allowed, the host issues a SSA command to
define its login credential and sends it to the device 10 (block 222). The device 10 updates a-
System ACR record with the credential received and returns OK status (block 224). In
response to this status signal, the host issues SSA command ihdicating the system ACR is
ready (block 226). The device 10 responds by locking the System ACR so that it cannot be
updated or replaced (block 228). This locks in the features of the system ACR and its
identity for identifying'the device 10 to the host. . '

[00157] The procedure for creating new trees (New Root AGPs and ACR) is
-determined by the way these functions are configured in the device. Fig 9 explains the
procedures. Both the host 24 and the memory system 10 follow it. If adding new root AGP is
disabled altogether, new root AGPs cannot be added (diamond 246). If it is enabled but a

-31 of 88 -

WO 2008/013656 PCT/US2007/015304

system ACR is needed, the.host authenticates through the system ACR ahdes;ablishes a
secure channel (diamond 250, block 252) prior to issuing the Create Root_ AGP command
(block 254). If sjrstem ACR is not needed (diémond 248) the host 24 can issue the create root
AGP command without authentication and proceed to block 254. If system ACR doeé exist,
the host may use it even if it is not needed (not shown in the flow c‘harl).’The device (e.g.
flash card)‘will reject any attempt to create a new root AGP if the function is disabled and it
will rejéct an attempt to create a new root AGP without authenitication,vif system ACR is
needed (diamonds 246 and 250). The neWIy created AGP and ACR _in block 254, are now
switched to Opérational Mode so .. that the ACRs in such AGPs cénno; be updated or
otherwise changed,‘ and no ACRs can be édded to them (block 256). The system is then,
optionally locked so that additional root AGPs cannot be created (block 258). The dotted line
box 258 is a convention indicating that this step is an optional step. All the boxes in the flow
charts of .the ﬁgures of this application in dotted lines are optional steps. This allows the
content owner to block the use of device 10 for other illicit purposes that may mutate a

genuine memory device wnth legitimate content.

[00158] To create ACRs (other than the ACRs in the root AGP as described above),
one may start with ény ACR that has the right to create an ACR (block 270) as shown in
Figure 10. An entity may attempt to enter through the host 24 by providing the entry point
ACR identity, and fhe ACR with all the nécessary attributes that it wishes to create (block
272). The SSA checks for a match to the ACR identity and whether the ACR with such
identity has the permission to create an ACR (diamond 274). If the request is verified to be
authorized, the SSA in device 10 creates an ACR (block 276). '

[00159] Fig. 11 shows two AGPs that illustrate a tree useful in security applicatidns
using the method of Fig. 10." Thus, the ACR with idéntity m1 in the marketing AGP has the |
permission to create an ACR. The ACR m1 also has the permission io use a key for reading
and writing data associated with the key ID “Marketing Information” and data associated
with the key ID “Price List”. Using the method of Fig. 10, it creates the Sales AGP with two
ACRs: sl and s2 with only read permission to the key for accessing pricing data associated
with the key ID “Price List”, but not to the key necessary for accessing data dssociated with
the key ID “Marketing Information”. In this mannef, the entities with the ACRs sl and s2
can only read but not change the pricing aata, and will have no accesé to marketing data. The

ACR m2, on the other hand, has no permission to create ACRs, and has only read permission

-32 of 88 -

WO 2008/013656 PCT/US2007/015304

to the keys for accessing data associated with the key ID “Price List” and with the key ID

“Marketing Information”.

[00160] Thus, access rights may be delegated in the manner explained above where m1
“delegates rights to read pricing data to sl and s2. ‘This‘is particularly useful where large
marketing and sales groups are involved. Where there are but one or a few sales people,
there may be no _need to use the method of Fig. 10. Instead, the‘ access rights may be
delegated, by an ACR to one at a lower or the same level within the same AGP, as illustrated
in Fig. 12. First, the entity enters the tree for such AGP by specifying an ACR in the manner
described above in the tree through the host (block 280). Next the host will specify the ACR
and the rights to delegate to. The SSA checks the tree(s) for such ACR and whether the ACR
has the permission to delegate rights to the specified another ACR (diamond 282). If it does,
the irights are delegated (block- 284); if not it stopé. -The result is illustrated in Fig. 13. The
ACR ml in this case has the .permission to delegate read permission to the ACR sl, so that s
will be able to use a key to access pricing data after the delegation. This may be performed if
m1 has the same or greater rights to access pricing data and the permission to so delegate. In
one em-bodiyme_:nt, m1 retains its access righté after-ihe delegation. Preferably access rights
may be delegated under restricted conditions (rather then permanently) such as for a»lim'itved

time, limited number of accesses, etc.

[OOIGIj The process for créating a key and key ID is illustrated in Fig. 14. The entity
authenticates through an ACR (block 302). The entity requests the creation of a key with an
ID specified by the host (block 304). Thé SSA checks and see if the ACR specified has the
permission to do so (diamond 306). For example, if the key is to be used for accessing data
in a particular partition, the SSA will check and see if the ACR may access such partition. If
the ACR is authorized, then the memory device 10 vcr’eates a key value associated with the
key ID provided by the host (block 308), ands stores the key ID ih the ACR, and the key
value in its memory (either in the controller-associated memory or memory 20) and assigns
rights and permiséions according to information supplied by the entity (block 310) and
modifies the PCR of such ACR with such assigned nghts and permissions (block 312). Thus, |
the creator of the key has all available rights, such as read and write permissions, right to
delegate and share with other ACRs in the same AGP or an ACR at a lower level, and. the

right to transfer ownership of the key.

-330of 88 -

WO 2008/013656 PCT/US2007/015304

[00162] An ACR can change the permissions (or the existence altogether) of arrother
ACR in the SSA system as illustrated in Fig. 15. An entity may enter a tree through an ACR
as before; in one case the entity is au_thenticated and then it specifies an ACR' (blocks 330,
332). It requests the deletion of a target ACR or the permission in a target ACR (block 334).
If the ACR specified or the one active at such time has the right to do sd (diamond 336), the
target ACR is deleted, or the PCR of the target ACR is altered to delete such permission
(block 338). If this is not authorized the system stops.

[00163] After the above described proceés, the target will no longer be able to access
the data it was able to prior to the process. As shown in Fig. 16, an entity may attempt to '
enter at the target ACR (block 350) and ﬁnds that the authentication process fails, since the
previously existing ACR ID is no longer present in the SSA, so that access rights are denied
(diam_ond 352). Assuming that the ACR ID has not been deleted, the entity specifies an ACR
(block 354) and the key ID and/orf data in va particular partition (block 356), and the SSA then
checks to see the key ID or bartition access request is permitted according to the PCR of such
ACR (diamond 358). If the permission has been deleted or has expired, then the request is

égain denied. Otherwise, the request is granted (block 360). |

[00164] The above process describes how access to protected data is managed by the
device (e g flash card) regardless of whether the ACR and its PCR were just changed by

another ACR or were so configured to begm with.

Sessions

[00165] The SSA system is designed to handle multiple users, logged in concurrently.
When this feature is ueed, every command received by the SSA is associated with a specific
entity and executed only if the ACR, used to authenticate this entity, has the permissions for

the requested action.

[00166] Mhltiple entities are supported through the session cencept. A session is
established during the authentication process and assigned a session-id by the SSA system.
The session-id is internally associated with the ACR used for logging into the system and is

exported to the entity to be used in all further SSA commands.

[00167] The SSA system supports two types of sessions: Open, and Secure sessions.

The session type associated with a specific authentication process is defined in the ACR. The

-34 of 88 -

WO 2008/013656 PCT/US2007/015304

SSA system will enforce session establishment in 2 way similar to the way it enforces the -
authentication itself. Since the ACR defines the entity permissions, this mechanism enables
system designers to associate secure tunneling either with accessing specific key IDs or
invoking specific ACR management operations (i.c. creating new ACRs and setting

credentials)

Open session

[00168] Open session is a session identified with a session-id but without bus
~ encryption, all commands and data are passed in the clear. This mode of _operation is
preferably used in a multi-user or multi-entity environment where the entities are not part of

the threat model, nor is eavesdropping on the bus.

[00169] " Although not protecting the transmission of the data nor enabling efficient
fire-walling between the applications on the host side, the Open session mode enables the
SSA system to allow access only to the information allowed for the currently authenticated
ACRs. |

{00170] The Open session can also be used for cases where a partition or a key needs
to-be protected. However, after a valid authentication process, access is granted to all entities
on the host. The only thing the various host applications need to share, ih order to get the
permissions of the authenticated ACR is the session-id. This is illustrated ih Fig. 17A. The
| Steps above the line 400 are those taken by the host.24. After an entity is -authenticated
(block 402) for ACRI, it rcquests access to a file associated with a key ID X in thé_ memory
- device 10 (blocks 404, 406 and 408). If the PCR of the ACR l allows such access, device 10
- grants the request (diamond 410). If not, the system retums to block 402. After
authentication is completed, the memory system 10 identifies the entity issuing a command .
only by the assigned session id (and not the ACR credentials). Oncé the ACR 1 gains access
to the data associated with the key IDs in its PCR, in an open session, any other application or
user can access the same data by specifying the correct session ID which is shared between.
the different applications on the host 24. This feature is advantageous in applications where
it is more convenient to the user to be able to log in only once, and be able to access all the
data tied to the account through which the log in is performed for different applications.
Thus, a cellular phone user may be able to access stored emails, and listen to stored music in
memory 20 without having to log in multiple times. On the other hand, data not

encompassed by the ACR1 will not be accessible. Thus, the same cellular phone user may

-350f 88 -

WO 2008/013656 PCT/US2007/015304

have valuable content such as games and phdtographs accessible through a separate account
ACR2. This is data that he does not wish others who borrow his phone to access, even
though he may not mind others accessing data available through his first account ACRI1.
Separating access to the data into two separate accounts while allowing access to ACRI1 in

open session provides ease of use as well as affording protection of valuable data.

[00171] To even further ease the process of sharing the session-id amongst the host
applications, when an ACR is requesting an Open session it can specifically request that the
session will be assigned the “0 (zero)” id. This way, applications can be designed to use a
pre-defined session-id. The only restriction is, for obvious reasons, that only one ACR,
reqhesting session O, can be authenticated at a specific time. An attempt to authenticate

another ACR requesting session 0, will be rejected.

Secure session

[00172] - To add a layer of security, the session id may be used as shown in Fig. 17B.
The memory 10 then also stores the session ids of the active sessions. In Fig. 17B, for
example, in order to be able to access a ﬁle‘associated‘ with key ID X, the entity will need to
also provide a session id, such as session id “A” before it is allowed to access the file (blocks
1404, 406, 412 and 414). In this manner, unless the requesting entity is aware of the correct
session id, it cannot access the memory 10. Since the session id is deleted after the session is
over and will be different for each session, an entity can gain access only when it has been

able to provide the session number.

[00173] - The SSA system tracks whether a command is really coming from the correct
authenticated entity by using the session number. For applications and use cases where there
is a threat that attackers will try to use an open channel to send malicious commands, the host

application uses a secure session (a secure channel).

[00174] “When using a secure channel, the session-id, as well as the entire command, is
encrypted with the secure channel encryption (session) key and the security level is as high as

the host side implementation.

Termipating a session
[00175] A session is terminated and, the ACR is logged off, in any one of the

following scenarios:

- 36 of 88 -

WO 2008/013656 PCT/US2007/015304

1. The entity issues an explicit end-session command.

2. Time out on communication. A specific entity issued no command for a time
period defined as one of the ACR parameters.

3. All open sessions are terminated after device (e.g. flash card) reset and/or

power cycle.

- Data Integrity services

[00176] - The SSA system verifies the integrity of the SSA databaéc; (which contains all
the ACRs, PCRs, etc...). In addition data integrity services are offered for entity data through

the key ID mechanism.

[00177] If a key ID is configured with Hashéd as its encryption algorithms the hash
~ values are stored along side with the CEK and IV in the CEK record. Hash values are
calculated and stored during write operation. Hash values are again calculated during read
_operations and compared with the values stored during the previous write operations. Every
time the entity is accessing the key ID the additional data is concatenated (cryptographically) .

to the old data and the appropriate Hash value (for read or for write) updated.

[00178] Since only the host knows the data files associated with or pointed to by a key
ID, the host explicitly manages several aspects of the data integrity function in the following

manner:

1. ‘A data file as_sbciated with or pointed to by a key ID is written or read from

the beginning to end. Any attempt to access portions of the file will mess it up since the SSA
| system 1is using.a CBC encryption method and generates a hashed message digest of the
entire data '

2. There is no need to process the data in a contiguous stream (the data stream
can be interleaved with data streams of other key Ids and may be split over multiple sessions)
since intermediate Hash values are maintained by the SSA system. However, the entity will
" need to explicitly instruct the SSA system to reset the Hash values if the data stream is
restarted. .

3. When a read operation is completed, the host explicitly requests the SSA
system to validate the read Hash by comparing it with the Hash value calculated‘ during the

write operation.

-37 of 88 -

WO 2008/013656 PCT/US2007/015304

4. The SSA system provides a “dummy read” operation as well. This feature will
stream the data through the encryption engines but will not send it out to the host. This
feature can be used to verify data integrity before it is actually read out of the device (e.g.

flash card).

Random number generation

{00179)] The SSA system will enable external entities to make use of the internal
random number genera_tbr and request random numbers to be used outside of the SSA system.

This service is available to any host and does not need authentication.

RSA key pair generation

[00180] The SSA system will enable external users to make use of the internal RSA
key pair generation feature and request a key pair to be used outside of the SSA system. This

service is available to any host and does not need authentication.

Alternative Embodiment
[00181] Instead of using a hierarchical approach, similar results can be achieved using

a data base approach, as illustrated in Fig. 18.

(00182} As shown in Fig. 18, a list of credentials for entities, authentication methods,
* the maximum number of failed atiempts; and the minimum number of credentials needed to
unblock may be entered into a database stored in controller 12 or memory 20, which relates
such credential requirements to the policies (read, write access to keys and partitions, secure
channel requirement) in the database carried out by the controller 12 of memory 10. Also

stored in the database are constraints and limitations to the access to keys and partitions.
‘Thus, some entities (e.g. system administrator) may be on a white list, which means that these
“entities can access all keys and partitions. ‘Other entities m;y be on a black list, and their
attempts to access any information will be blocked. The linﬁtation can be global, or key
and/or partition specific. This means that only certain entities can access certain specific
keys and partitions, and certain entities cannot do so. Constraints can also be put on the
content itself, irrespective of the partition it is in or the key used to encrypt or decrypi it.
Thus, certain data (e.g. songs) may have the attribute that they can only be accessed by the
first five host devices that access them, or that other data (é.g. movies) can only be read for a

limited number of times, irrespective of which entities had access.

- 38 of 88 -

WO 2008/013656 PCT/US2007/015304

AUTHENTICATION
[00183] o Password Protection
| Password-protect means that a password needs to be presented to access the
protected area. Unless it cannot be more than one password then passwords could be
asSbciated with different rights such as read access or read/write access.
Password protect means that the device (e.g. flash card) is able to verify a
password provided by the host i.e. the device also has the password stored in device

managed secured memory area.

[00184] Issues and limitations |

Pﬁsswords are subjcct.to replay attack. Because the password does not change
after each presentation it can be identically resent. It means that password as is should not be
used if the data to be protected are valu able, and the c_othunicatibn bus is easily acce.ssible..

Password could protect access to stored data but should NOT be used to
protect data (not a key) ‘ '

" To increase the security level associated with passwords, they can be
diversified using a master key, with the result that hacking one does not crack entire system.

A session key based secure communication channel can be use to send the password.

[00185] Fig. 19 is a flow chart illustrating authentication using a password. The entity
sends in an account id and pasSword to system 10 (e.g. flash memory Cax"d). The system'
“checks to see if the password matches that in its memory. If it matches, authenticated status
is returned. Otherwise, fhe error éouhter is incremented for that account, and the entity is
asked to re-enter an account id and password. If the counter overflows, the system return

status that access is denied.

vSymrnetric key
[00186] _ Symmctric'key algorithm means that the SAME key is used on both sides to
| encrypt a'nd.de(':rypt. It means that the key has been pre-agreed prior .to communicating. Also
each side should implement the reverse algorithm of each other i.e. encrypt algorithm on one
side and decrypt on the other. Both sides do not need to implement both algorithms to

communicate.

Authentication

-39 of 88 -

WO 2008/013656 PCT/US2007/015304

‘Symmetric key authentication means that device (e.g. flash card) and host
share the same key and have the same cryptographic algorithm (direct and reverse e.g. DES -
and DES-1). o

Symmetric key authentication means challenge-responSe (protect against
replay attack). The protected device generates a challenge fof the other device and both
compute the response. The authenticating device sends back the response and the protected
device check the response and validate authentication accordingly. Then rights aesociated

with authentication can be granted.

Authentication could be:
‘ ‘-Exte'rnal: th'e device (e.'g. flash card) authenticates the outside world i.e. the
device validates credentials of a given host or application |
| Mutual: a challenge is generated on both sides - |
. Intefrial:,the host appl-icatien authenticates the device (e.g. flash card) i.e. host

checks if device is genuine for its application.

To increase the security level of the entire eystem (i.e. breaking one does not break -
all)

Symmetric key are usually combined with diversiﬁcation using a master key
Mutual authentication uses challenge from both side to ensure challenge is a

real challenge

Encryption :
Symmetric key cryptography is also used for encryption because it is a very efficient

algorithm i.e. it does not need a powerful CPU to handle cryptography.

[00187] When used to secure a communication channel:

Both devices have to know the session key used to secure the channel (i.e.
encrypt all outgoing data and decrypt all incoming data). This session key is usually
established using a pre-shared secret symmetrie key or using PKI.

| Both devices have to know and impiement the same cryptographic algorithms

Signature

-40 of 88 -

WO 2008/013656 PCT/US2007/015304

[00188] Symmetric key can also be used to sign data. In that case the signature is a
partial result of the encryption. Keeping the result partial allows to sign as many time as

needed without exposing the key value.

Issues and Limitations
{00189] Symmetric algorithms are very efficient and secure but they are based on a -
pre-shared secret. The issue is securely share this secret in a dynémic manner and possibly to
have it random (like ‘a session key). The idea is that a shared secret is hard to keep safe in a -

- long term and is almost impossible to share with multiple people.

[00190] | To facilitate this operation, public key algorithm has been invented as it allows

the ekchange of secrets without sharing them.
Asymmetric authentication procedure

[00191] Asymmetric key based authentication uses a series of data passing commands
that eventually construct the session key for the secure channel communication. The basic
' protocol. authenticates the user to the SSA system. Protocol variations allow for mutual
authentication, where the user gets fo verify the ACR that he wishes to use, and two-factor

authentication.

[00192] The‘asymmet'n'é authentication protocols of the SSA preferably uses Public
Key Infrastructure (PKI) and RSA algorithms. As defined by these algorithms, each party in
the authent_icatioh process is allowed to create its own RSA key pair. Each pair consists of
public and private keys. Since the keys are anonymous they cannot provide proof of idcntity.
The PKI layer calls for a third, trusted, party which signs each one of the public keys. The
public key of the trﬁsted party is pre-shafed between the parties which are to authenticate
each other and is being used to verify the public keys of the parties. Once trust is established .
(both parties determined that the public key provided by the other party can be trusted) the
protocol continues to authentication (verifying that each party holds thé matching private
key) and key exchahge. This can be done through the challenge response mechanism

illustrated in Figs. 22 and 23 described below.

[00193] The structure containing the signed public key is referred to as a Certificate.
The trusted party that signed the certificates is referred to as Certificate Authority (CA). In

order for a'party to be authenticated it has an RSA key pair and a Certificate attesting to the

-41 of 88 -

WO 2008/013656 PCT/US2007/015304

authenticity of the public key. The Certificate is signed by a Certificate Authority which is
trusted by the other (the authenticating) party. The authenticating party is expected to have in

its possession the public key of its trusted CA.

- [00194]) The SSA allows for certificate chaining. This means that the public key of the -
party being identified may be signed by a different - from the one trusted by the identifying

party - CA. In this case the identified party will provide, in addition to its own certificate, the

certificate of the CA which signed its public key. If this second level Certificafc is still not

trusted by the other pany (not signed by‘its trusied CA), a third level certificate can be

provided. In this Certificate chaining algdrithm, each party will possess the complete list of

certificates needed to authenticate its public key. This is illustrated in Figs. 23 and 24. The

credentials, needed for mutual authentication by this type of ACR are RSA key pairs .in the

selected len gth. |

SSA Certificates

[00195] = SSA employs [X.509] version 3 digi.tal certificates. [X.509] is a general
purpose standard; the SSA certificate profile, described here, further specifies and restrict the
contents of the certificate’s defined fields. The certificate profile also defines the hierarchy of
‘trust defined for the management of certificate chain, the validation of SSA certificates and

the Certificate Revocation List (CRL) profile. ‘

{00196} The certificate is considered public information (as the public‘ key inside) and
- therefore is not encrypted. However, it includes an RSA Signature which verifies that the

public key, as well as, all other information fields were not tempered with.

_[00197] [X.509] defines that each field is formatted using ASN.1 standard which, in.

turn, is using DER format for data encoding.
SSA Certificate Overview

[00198) One embodiment of the SSA certificate management architecture, depicted in
Fig. 20 and Fig. 21, consists of unlimited level of hierarchy for the host and up to three-level
hierarchy for the device, although a larger or fewer number of levels of hierarchy than three

may be used for the device.

Host certificate Hierarchy

-42 of 88 -

WO 2008/013656 PCT/US2007/015304

[00199] The device authenticates hosts based on two factors: the root CA certificate
stored in the device (as an ACR credential, stored on creation of the ACR) and the
certificate/certificate chain supplied by the entity trying to access the device (for that specific

" ACR).

{00200] | For each ACR the Host Certificate Authority serves as the root CA (this is the
certificate residing.in the ACR credentials). For example: for one ACR the root CA could be
- “Host 1 CA (level 2) cert” and for. another ACR it could be “Host Root CA cert”. For each
ACR, every entity which holds a certificate (or a certificate chain which connects the root CA
to the end-entity certificate) signed by the root CA can login into that ACR provided it has
the corresponding private key er the end—éntity certifipate. As mentioned above, certificates

are public knowledge, and are not kept secret.

[00201] The fact that all certificate holders (and the corresponding private key) issued
by the root CA can login into that ACR means that authentication to a specific ACR is
~determined by the issuer of the root CA stored in the ACR credential. Put in other words, the

issuer of the root CA can be the entity managing the authentication scheme of the ACR.
Host Root Certificate

[0(')202]' The Root Certificate is the trusted CA Cerﬁﬁcate the SSA is using to start
verifying the public key of the entity attempting to log-in (host). This certificate is provided
when the ACR is crcatcd as part of the ACR credentials. It is the root of trust for the PKI
system and, therefore,v it is assumed to be provided by a trusted entity (either a father ACR or
manufacturin g/conﬁguration~ trusted environment). The SSA verifies this certificate using its
public key to verify the certificate signature. The host root certificate is stored encrypted in a
v non-volatile memory (not shown in Fig. 1) With secret keys of the device preferably

accessible only by the CPU 12 of Fig. 1 of system 10.

. Host Certificate Chain

[00203] These are the certificates provided to the SSA during authentication. No
recollection of the Host certificate chain should be stored in the device after the processing of

the chain is completed.

-43 of 88 -

WO 2008/013656 PCT/US2007/015304

[00204] Fig. 20 is a schematic view of a host certificate level hierarchy illustrating a
number of different host certificate chains. As illustrated in Fig. 20, the host certificate may

have many different certificate chains, where only three are illustrated:

Al. Host root CA certificate 502, host 1 CA (level 2) certificate 504 and host

certificate 506;

Bl. Host root CA certificate 502, host n CA (level 2) certificate 508, host 1 CA

(Ievel 3) certificate 510, host certificate 512;

Cl. Host root CA certificate 502, host n CA ‘(level 2) certificate 508 and host
certificate 514. ’

[00205] The three certificate chains A1, B1 and C1 above illustrate three possible host
certificate chains that may be used to proveb that the public key of the host is genuine. In
reference to the certificate chain Al above and in Fig. 20, -thc public key in the hoét 1 CA
(level 2) certificate 504 is signed (i.e. by encrypting a digest of the public key) by the private
key of the host root CA, whose public key is in the Host root CA certificate 502. The host
public key in the host certificate 506 is in turn signed by the private key of the host 1 CA
(levél 2), whose public key is pfovided in the host 1 CA (level 2) certificate 504. Hence, an
entity that has the public key of the Host root CA will be able to verify the authénticity of the
certificate chain Al above. As the first step, the entity uses the public key of the Host root
CA in its possession to decrypt the signed public key in host 1 CA (level 2) certiﬁéate 504
sent to it by the host and compare the decrypted signed public key with the digest of the
unsigned public key in the host 1 CA (level 2) certificate 504 sent by the host. If the two
match, the public key of the host 1 CA (level 2) is“auth'enticated, and the entity will then use
the authenticated public key of the host 1 CA (leVel 2‘) to decrypt the public key of the host |
Signed by the private key of the host 1 CA (level 2) in thc host certificate 506 sent by the
host. If this décryptcd signed value matches that of the digest of the public key in the host
certificate 506 sent by the host, the public key of the host is then also authenticated. The

certificate chains B1 and C1 vmay be used for authentication in a similar manner.

[00206] As will be noted from the above process involving chain Al, the first public
key from the host that needs to be verified by the entity is the one in host 1 CA (level 2), and
not the host root CA certificate. Therefore, all the host needs to send to the entity are the host

1 CA (level 2) certificate 504 and the host certificate 506, so that host 1 CA (level 2)

- 44 of 88 -

WO 2008/013656 PCT/US2007/015304

certificate will be the first one in the éhain that needs to be sent. As illustrated above, the
sequence of certificate verification is as follows. The verifying entity, in this éase, Iemory
device 10, first verifies the genuineness of the public key in the first certificate in the chain,
which in this case is the certificate 504 of the CA undemeath the root CA. After the public
- key in such éeni'ﬁcate is verified to be genuine, device 10 then proceeds to verify the next
certificate, in this case the host certiﬁcate 506. By the same token, a similar sequence of
verification may be applied where the certificate chain contains more than two .certi'ﬁcates,
beginning with the certificate immediately below the root certificate and ending with the

certificate of the entity to be authenticated.
Device certificate Hierarchy

[00207] The host authenticates the dévice based on two factors: the device root CA
stored in the host and the certificate/certificate chain supplied by device to the host (which
are supplied to the device upon creation of the ACR as a credential). The process for
authenticating the device by the host is similar to that for the device authenticating the host

described above.
Device Certificate Chain

[00208) - These are the Certificates of the ACR’s key pair. They are provided to the card
- when the ACR is created. The SSA stores these Certificates individually and will provide
them to the host, one by one, duririg the authentication. The SSA uses these certificates _tb
authenticate to the host. The device is able to handle a chain of 3 certificates, although a
number of certificates different from 3 can be used. The number of Certificates may vary
" from one ACR to another. It is determined when the ACR is created. The device is able to
send the certificate chain to the host, howevér it does not need to parse them since it does not

use the certificate chain data.

[00209] Fig. 21 is a schematic view illustrating a device certificate level hierarchy for
illustrating 1 through n different certificate chains for devices using SSA such as storage

devices. The n different certificate chains illustrated in Fig. 21 are as follows:

A2. Device Root CA -certificate 520, device 1 CA (manufacturer) certificate 522

and device certificate 524;

-45 of 88 -

WO 2008/013656 PCT/US2007/015304

B2. Device root CA certificate 520, device n CA (manufacturer) certificate 526

and device certificate 528.

[00210] The SSA device may be manufactured by 1 through n different manufacturers,
each with their own device CA certificate. Therefore, the public key in the device certificate -
for a particular device will be signed by the private key of its manufacturer, and the public
key of the manufacture is in turn signed by the private key of the device root CA. The way
the public key of the device is verified is similar to that in the case of the public key of the
~ host described above. As in the case of the verification of chain Al described above for the
| host, there is no need to send the device root CA certificate, and the first certificate in thé
chains that will need to be sent is the Device 1 CA (Manufactufer) certificate, followed by the

device certificate, 1 being an integer from 1 to n.

[00211] In the embodiment illustrated in Fig. 21, the device will present two
. certificates: the device i CA (manufacturer) certificate followed by its own devi.ce certificate.
The device i CA (manufacturer) certificate is that of the manufacturer that manufactured such
device and is the manufacturer that i)rovides the private key to sign the public key of thé
device. When the device i CA (manufacturer) certificate is received by the host, the host
would use the public key of the root CA in its possession to decrypt and verify the device i
CA (manufécturer) publi.c key. If this verification fails, the host would abort the process and
-notify the device that authenticatidn has failed. If authentication succeeds, the host then
sends a request to the device for the next certificate. The device would then send its own

device certificate to be verified by the host in a similar manner.

[00212] The above-described verification processes are also illustrated in more detail
in Figs. 22 and 23. In Fig. 22, the “SSM system” is a software module that implements the
SSA system described herein as well as other functions described below. SSM may be
embodied as software or computer code with database stored in the memory 20 or a non-

volatile memory (nc‘)t‘shown) in CPU 12, and is read into RAM 12a and executed by CPU 12.

[00213] _ As shown in Fig. 22, there are three phases in the process where the SSM
system 542 in device 10 _authenticétes a host system 540. In the first public key verification
phase, the host system 540 sends to the SSM system 542 the host certificate chain in the SSM
command. The SSM system 542 verifies (block 552) genuineness of the host certificate 544

and of the host public key 546 using the root certificate authority public key located in the

- 46 of 88 -

WO 2008/013656 PCT/US2007/015304

host root certificate 548 in the ACR 550. Where an intermediate certificate authority
between the root certificate authority and the host is involved, the intermediate certificate 549
is used as well for the verification in block 552. Assuming that the verification or process

“(block 552) is successful, the SSM system 542 then.proceeds to the second phase.

[00214] The SSM system 542 generates a random number 554 and sends it as a
challenge to the host system 540. System 540 signs the random number 554 using the private
_key 547 of the host system (block 556) and sends thersigned random number as the response
to the challenge. The reéponse is decrypted using the host public key 546 (blbck 558) and
corﬁparcd with the random number 554 (block 560). Assuming that the decrypted response

matches the random number 554, then the challenge response is successful.

[00215] ~ In the third phase, random number 562 is encrypted using the host public key
546. This random number 562 is then the sessioh key. The host system 540 can obtain the
session key by using its private key to decrypt (block 564) the encrypted number 562 from
the SSM system 542. By means of this session key, secure communication between the host
system 540 and SSM system 542 may then be initiated. Fig. 22 illustratcsAa one way
asymmetric authentication where the host system 540 is authenticated by the SSM system
542 in device 10. Fig. 23 is a protocol diagram illuétrating a two—Way_ mutual authentication
process analogoﬁs to the one-.way authentication protocol of Fig. 22, where the SSM system

542 in Fig. 23 is also authcnti_céted by the host system 540.

[00216] | Fig. 24 is a diagram of a certificate chain 590 used for illustrating one
embodiment of the invention. As noted above, the certificate chain that needs to be presented
for verification may include a number of certificates. Thus the certificate chain of Fig. 24
includes a total of nine (9) certificates, all of which may need to be verified for
authentication. As explained above in the background section, in the existing system for
certificate verification, either an incomplete certificate chain is sent, or if the entire certificate
_is sent, the certificates are not sent in any particular order so that the recipient will not be able
to analyze the certificates until the entire group of certificates have been received and stored.
Since the number of certificates in a chain is not known befbrehand, this can present a
problem. A large amount of storage space may need to be reserved for storing the certificate
chain of uncertain length. This can be an issue for storage devices that perform the

verification.

-47 of 88 -

WO 2008/013656 PCT/US2007/015304

[00217] One embodiment of the invention is based on the recognition that the problem
can be alleviated by a system where host devices send its certificate chain in the same order
that the certificate chain will be verified by the storage device. Thus as shown in Fig. 24, the
chain 590 of certificates starts with certificate chain 590 (1) which is the certificate
immediately below the host rbot certificate and endé with certificate 590 (9) which is the host
certificate. Therefore, device 10 will first verify the public key in certificate 590 (1),
followed by a verification of the public kéy in certificate 590 (2) and so on until the host
public key in certificate 590 (9) is verified. This then completes the verification process of
the entire certificate chain 590. Thus if the host device sends to memory device-10 the
certificate chain 590 in the same order or sequence in which the certificate chain is to be
verified, then memory device 110'.can start verifying each certificate as it is received, without

having to wait until the entire 9 certificates in the chain 590 have been received.

[00218] Thus, in one embodiment, the host device sends one certificate at a time in
chain 590 to memory device 10. Memory device 10 will then have to store a single
certificate ‘at a time. After the certificate has been veriﬁed,' it can be over—wﬁtten by the next
certificate that is sent by the host, except for the last certificate in the chain. In this manner,

mémOry device 10 will need to reserve space for storing only a single certificate at any time.

[0021_9] : The mefnory device will need to know when the. entire chain 590 has been
received. Thus, preferably, the last certificate 590 (9) contains’ an indicator or indication that
this is thé last certificate in the chain. This feature is illustrated in Fig. 25 which is a table
‘illustrating information in a.control sector that pr_ecedes the certificate buffer that is sent by
the host to the mevmory dcvice 10. As shown in Fig. 25, the control sector of certificate 590
(9) contains an argument name ‘’is final’ flag.” Memory device 10 can then verify that
certificate 590 (9) is the last certificate in the chain by checking whether the “is final” flag is

- set, to determine whether the certificate received is the last one in the chain.

[{00220] In an alternative embodiment, the certificates in chain 590 may be sent not
one-by-one, but in groups of one, fwo, or three certificates. Obviously, groups with other
number of certificates, or the same number of certificates in the groups, may be used. Thus,
chain 590 includes five (5) continuous strings of certificates 591, 593, 595, 597, and 599.
Each of the strings contains at least one certificate. A continuous string of certificates is one
that contains the certificate which is next to the string before the one string at issue in the

chain (beginning certificate), the certificate immediately next to the string that follows the

-48 of 88 -

WO 2008/013656 PCT/US2007/015304

one string in the chain (ending certiﬁcaté), and all of the certificates in between the beginning
and the'ending certificates. For example, string 593 contains all three certificates 590 (2),
590 (3), and 590 (4). The five strings of certificates are verified by memory device 10 in the
following sequence: 591, 593, 595, 597, and ending with 599. Therefore, if the five strings .
are sent and received in the same sequence as the verification performed by memory device
10, the mémory device will not need to store any of the strings‘after they have been verified,
and all strings except for the last one can be overwritten by the next string that arrives from
the host. As in the prior embodiment, it is desirable for the last certificate in the chain to
contain an indicator such as a flag that is set to a paniculaf value to indicate that it is-the last
certificate in the chain. In this embodiment, the memory device will only need to reserve
space adequate for storing the la;‘geSt" number of certificates in the five strings. Thus if the
host first notifies the memory device 10 of the longest string it intends to send, the memory.

device 10 will only need to reserve enough space for the longest string.

[(00221] Preferably, the length of each certificate in the chain sent by the host is not
more than four times the length of the public key that is cextiﬁed by the certificate. Similarly,
the length of the certiﬁca_té sent by the memory device 10 to a host device to certify the
public key of the memory device is preferably not more than four times the length of the

public key certified by the certificate.

[00222] _ The above described embodiment for verification of certificate chains is
illustrated in the flow chart of Fig. 26, where for simplicity, the number of certificates in each
group is‘assumed to be one. As shown in Fig. 26, the host sehds the certificates in the chain
sequentially to the card.” Starting with the first certificate in the chain (typically the one
folloWing the root certificate as explained above), the card receives sequentially the
certificate chain from the host that is being authenticated (block 602). The card then verifies

each of the certificates received and aborts the process if any.one of the certificates fails to be

verified. If any one of the certificates fails to be verified, the card notifies the host (Blocks -

604, 606). The card will then detect whether the last certificate has been received and -
verified (diamond 608). If the last certificate has not been received and verified, the card
‘then returns to block 602 to continue receiving and verifying certiﬁcateg from the host. If the
last certificate has been received and verified, the card then proceeds to the next phase after

certificate verification (610). While the features in Fig. 26 and subsequent figures below

-49 of 88 -

WO 2008/013656 PCT/US2007/015304

refer to memory cards as examples, it will be understood that these features are applicable as

well to memory devices with physical forms that are not memory cards. -

[00223] The process carried out by the host when the card is authenticating the host is
illustrated in Fig. 27. As shown in Fig. 27, the host sends the bext'certiﬁcate in the chain to
the card (block 620)(typically beginning with the one following the root certificate. The host
then determines whether an abort notice indicating authentication failure has been received
from the card (diamond 622). If an abort notice has been received, the.host stops (block 624).
If an abort notice has not been received, the host checks to see if the last certificate in the
chain has been sent by checking whether the “is final flag” has been set in the last certificate
sent (diamond 626). If the last certificate has been sent, the host then proceeds to the next
phase after certificate verification (block 628). As illustrated in Flgs 22 and 23, the next
phase can be a challenge response followed by session key creation. If the last certificate in
the chain has not yet been sent, the host returns to block 620 to send the next certificate in the

chain.

[00224] = The actions taken by the. card and the. host when the card .is being
authenticated are illustrated in Figs. 28 and 29. As shown ih Fig. 28, after starting, the card
waits for a request from the host for sending a certificate in the chain (block 630, diar_nond
632). If a request from the host is not recéive;l, the card will return to diamond 632. If a
request from thé host is received, the card will then send the next certificate in the éhain,
beginning with the first certificate that should be sent (typically beginning with the one
following the root certificate, (block 634). The card determines whether a failure notice has
- been received from the host (diamond 636). If a failure notice has been received, the -card
stops (block 637). If no failure notice is received, the card then determines whether the last
certificate has been sent (diamond 638). If the last certificate has not been sent, the card
returns to diamond 632 and waits until it receives the next retjuest frbm the host for sending
the next certificate in the chain. If the last certificate has been sent, the card then proceeds to

the next phase (block 639).

[00225] Fig. 29 illustrates the actions taken by the host when the card is being
authenticated. The host sends the request for the next certificate in the chain to the card,
beginning with the request for the first certificate to be sent (block 640). The host then
verifies each certificate received, and aborts the process and notifies the card if verification

fails (block 642). If verification passes, the host checks to see whether the last certificate has

- 50 of 88 -

WO 2008/013656 PCT/US2007/015304

been received and successfully verified (diamond 644). If the last certificate has not been
received and successfully verified, the host then returns to block 640 to send a request for the
_next certificate in the chain. If the last certificate has been received and successfully verified,

the host then proceeds to the next phase after certificate verification (block 646).
Certificate Revocation

[00226] "~ When a centificate is issued, it is expected to be in use for its entire validity
period. However, various circumstances In'lay cause a certificate to become invalid prior to
the expiration of the vélidity perioci. Such circumstances include change of name, change of
association bétween subject and CA (e.g., an employee terminatés employment with an
organization), and compronnse or suspected compromise of the correspondmg private key.

Under such circumstances, the CA needs to revoke the certificate.

[00227] SSA enables certificates revocation in different ways, each’ ACR can be
configured for a specific method for revoking certificates. An ACR can be configured not to
support a revocation scheme. In this case, each_'Certiﬁcate is' considered valid until its
expiration date. Or Certificate Revocation Lists (CRL) may be employed. As still another
alternative, the revocation scheme can be specific to a particular application, or Application-
Specific, which will be explained below. An ACR specifies which of the three revocation
schemes is adopted by specifying a revocation value. If an ACR is created with no
revocation scheme, it is possible for it to adopt a revocation scheme which can be activated
by the ACR owner. Revocation of memory device certificates is enforced by the host and not
by the SSA security system. An ACR owner is responsible for mﬁnaging the revocation of a
Host Root certificate, the mechanism by ‘which it is done is by updating the ACR's

- credentials.
Certificate Revocation List (CRL)

{00228] The SSA system uses a revocation scheme which involves each CA
periodically issuing a signed data structure called a Certificate Revocation List (CRL). A
" CRL is a time stamped list identifyi'ng revoked certificates which is signed by a CA (the same
CA that issued the certificates in question), and made freely available to the public. Each
revoked certificate is identified in a CRL by its certificate serial number. The size of the
CRL is arbitrary and is dependent on the number of non-expired certificates revoked. When a

device uses a certificate (e.g., for verifying a host's identity), the device not only checks the

-51 of 88 -

WO 2008/013656 PCT/US2007/015304

certificate signature (and validity) but also verifies it against a list of serial numbers received
through a CRL. If an identification such as serial number of a certificate is found on the CRL
issued by the CA that issued the certificate, this indicates that the certificate has been revoked

and is no longer valid.

[00229] The CRL also will need to be verified to be genuine in ordef for it to serve the
purpose of validating certificates. CRLs are signed using the private key of the CA that
issued the CRL, and can be verified to be genuine by decrypting the signed CRL using the |
public key of the CA. If the decrypted CRL 'matches the digest of the unsigned CRL, this
means that the CRL has not been tampered with and is genuine. CRLs are frequently hashed
to obtain their digests using a hashing algorithm and the digests are encrypted by the private
key of the CA. In order to'verify‘ whether a CRL is valid, the signed CRL (i.e. hashed and
encrypted CRL) is deérypted using the public key of the CA to yield a decrypted and hashed
| CRL (i.e. a digést of the CRL). This is then cohlpared to the hashed CRL. Thus, the
verification process may frequently involve the step of hashing the CRL for comparison with
the decrypted and hashed CRL.

[00230] - One of the characteristics of the CRL scheme is that the validation of the
certificate (against the CRL) can be performed separate from obtaining the CRL. CRLs are
also signed by the issuers.of the pertinent cefﬁﬁcates, and are verified in a manner similar to
the verification of certificates, using the public keys of CAs that issued the CRLs, in the
manner described above. The memory device verifies that the éignature is of the CRL and
that the issuer of the CRL matches the issuer of the certificate. Another characteristic of the
CRL scheme is that CRLs may be distributed by exactly the same means as the certificates
themselves, namely, via un-trusted servers and- un-trusted communications. CRLs and their

characteristics are explained in detail in the X.509 Standard.
SSA infrastructure for CRL

[00231] SSA provides an infrastructure for revocation of hosts using the CRL scheme.
When authenticating to an RSA based ACR with CRL revocation scheme, the host -adds one
CRL (potentially — if no certificates are révoked by the issuer CA — an empty one) as an
additional field to a Set Certificate Command. This field iwill contain a CRL signed by the
issuer of the certificate. When this field is present, the memory. device 10 first verifies the

certificate in the Set Certificate Command. The obtaining and accessing the CRL repository

-520f 88 -

WO 2008/013656 PCT/US2007/015304

is completely the hosts’ responsibility. CRLs are issued with time periods (CRL expiration
time periods or CET) during which they are valid. During verification, if the current time is
found to be not within this time périod, then the CRL is deemed defective, and cannot be
used for certificate verification. The outcome is then that the authentication of the certificate

fails.

[00232] In conventional certificate verification methods, the authenticating or
- verifying entity is expected to eifher possess or be able to retrieve cerﬁﬁcate revocation lists
from certificate authorities (CA) and check the serial numbers of the certificate presented for
authentication against the list to determine whether thé certificate presentcd has been
revoked. Where the authenticating or verifying entity is a memory device, the meémory
device may not have been used on its own to retrieve certificate revocation lists from CAs. If
a certificate revocation list is pre-stored in the device, ;such list may become outdated so that
certificates revoked afte’r.the date of installation will not appear on the list.” This will enable

users to access the storage device using a revoked certificate. This is undesirable.

[00233] - The above problem may be solved in one embodiment by a system where the
entity that wishes to be authenticated presents a certificate revocation list together with the
certificate to be authcnticated to the authenticéting entity, which may be a memory device 10.
The authénticating entity then verifies the authenticity of the certificate and of the certificate
revocationﬁst received.. The authenticating entity checks whether the ceniﬁéate is on the
revocation list by checking whether an identification of the certificate, such as a serial

number of the certificate, is present on the list.

[00234] In view of the above, an asymmetric authentication scheme may be used for
.mutu_al authentication between a host device and memory device 10. The host device
| wishing to be authenticated to memory device 10 will need to provide both its certificate
chain and the corrcsponding CRLs. Host devices, on the other hand, have been used to
connect fo CAs to obtain CRLs, so that when memory device 10 is to be authenticated by
host devices, the memory device need not present CRLs to the host devices along with their

- certificates or certificate chains.

[00235] In recent years, there is an expanding number of different types of portable
devices that can be used to play content, such as different embedded or stand alone music

players, mp3 players, cellular phones, personal digital assistants, and notebook computers.

- 53 of 88 -

WO 2008/013656 PCT/US2007/015304

While it is possible to connect such devices to the World Wide Web in. order to access
certificate verification lists from certificate authorities, many users typically do not connect to-
the web on a day to day basis, but instead will do so only to obtain new content or to renew
subscriptions, such as every few weeks. Therefore, it may be cumbersome for such users to
have to obtain certificate revocation lists from certificate authoﬁtics on a more frequent basis.
For such users, the certificate revocation 'list and optionally also the host certificate that will
need to be presented to a storage device to access protected content may be stored in a
preferably unprot‘ected area of the storage device itsélf. In many types of storage devices
(e.g. flash memories) the unprotected areas of the storage devices are managed by host
devices and not by the storége devices themselves. In this manner, there is no need for the
user (throﬁgh the host device) to have to connect to the web to obtain more up to date
certificate revocation lists. The host device may simpfy retrieve such information from the |
unsecured area of the storage device and then turn around and present such certificate and list
to the storage or memory device to access protected content in the storage device. Since the
certificate for accessing prdtected content and its cdrresponding certificate revocation list are
 typically valid for certain time periods, as ldng as they are still valid, the user will not have to
obtain up to date certificates or certificate revocation list. The above feature enables users to
have convenient access to the certificate and the certificate revocation list during reasonably
lohg periods while both are still valid, without having to connect to-the certificate authority

for updated information.

[00236] The above—déscribed process is illustrated in the flowcharts of Figs. 30 and 31.
As shown in Fig. 30, the host 24 reads from an unsecured public area of the memory device
10 the CRL (block 652) that pertains to a certificate the host will present to the memory
de?ice for authentication. Since the CRL is stored in an unsecured area of the memory, there
is no need .for authentication before the CRL can be obtained by the host. Because the CRL
is stored in the public area of the memory device, thé reading of the CRL is controlled by the
host device 24. The host in tumn sends the CRL with the éeniﬁcate to be verified to the
memory device (block 654) and proceeds to the next phase unless it receives a failure notice
from the memory device 10 (block 656). In reference to Fig. 31, the memory device receives
the CRL and certificate from the host (block 658) and checks whether the certificate serial
number is on the CRL (block 660), as well as in other respects (e-g. whether the CRL has
expired). If the certificate serial numbcf is found on the CRL or fails for other reasons, the

memory device then sends a fail notice to the host (block 662). In this manner, different

- 54 of 88 -

WO 2008/013656 PCT/US2007/015304

hosts can obtain the CRL stored in the public area of the memory device, because the same
CRL can be used for the authentication of different hosts. As noted above, the certificate that
is to be verified using the CRL may also be stored together with the CRL preferably in an
unsecured area of memory device 10 for convenience of the user. However, the certificate is
usable for authentication to the memory device only by the host to which the certificate is

issued.

[00237] .thrc the CRL contains in its fields a time for the néxt update as illustrated in
'Fig.-- 32, SSA in device 10 also checks the current time égainst this time to see if the current
time is after this time; if it is, then the authentication also fails. The SSA thus preferably
checks both the time for the next update as well as the CET against" the current time (or

against the time when the CRL is received by'the memory device 10).

[00238] As noted above, if the CRL contains a long list of identifications of revoked
certiﬁcétes, processing (e.g. hashing) and searching the list for the serial number of the
certificate presented by the host may take a long timé, especially if the processing and
searching ére carried out in sequence. Thus, to speed up the process, these may be carried out
. concurrently. Furthénnore, if the entire CRL needs to be received before it is procéssed and
searched, the process may also be time éonsuming. The applicants recognized that the |
précess.can be expedited by processing and searching portions of the 'CRL as they are
received (on-the-fly), so that when the last portions of the CRL are. receivéd, the process is

about to be completed.

[00239] Figs. 33 and 34 illustrate the above features of revocation schemes. At the
authenticating entity (e.g. a memory device such as a memory card), the certificate and CRL
are received from the entity wishing to be authenticated (bloCk. 702). Portions of the
unencrypted CRL are processed (e.g. hashed) and’a search is performéd on such portions
concurrently for identification (e.g. serial number) of the certificate presented. The processed
(e.g. hashed) CRL portions are compiled into a hashed complete CRL, which iS compared to
the complete decrypted and hashed CRL formed by compiling the decrypted CRL portions
from the portions received from the entity wishing to be authenticated. Authentication fails if
the comparison indicates there is not a match in the comparison. The authenticating entity
also checks both the time for the next update as well as thé CET against the current time
(blocks 706, 708). Authentication also fails if the identification of the certificate presented is .

found to be on the CRL, or if the current time is not within the CET, or if time for the next

- 55 of 88 -

WO 2008/013656 PCT/US2007/015304

updated CRL has passed (block 710). Storing the hashed CRL portions and the decrypted
hashed CRL portions for the compilations in some implementations may not require a large

amount of memory space.

| [060240] When an ehtity (e.g. the host) wishes to be authenticated, it will send to the
authenticaﬁng entity its certificate and CRL (block 722), and proceed to the next phase (block
724). This is illustrated in Fig: 34. '

(00241} A process similar to that above can be implemented if the entity presents a
certificate chain for authentication. In such event, the above describcd process will need to
be repeated for each certificate in the chain, along with its corresponding CRL. Each
certificate and its CRL .may be processed as they are received without waiting for receipt of

the rest of the certificate chain and their comresponding CRLs.
Identity object (IDO)

[00242] The identity object is a protected object 'designed‘ to allow the memofy device
10 such as a flash memory card to store an RSA key-pair or other fypes of cryptographic IDs.
The identity object includes any type of cryptographic ID that can be used to sign and verify
identities, and encrypt and decrypt data. The identity object includesv also a certificate from a
CA (or a certificate chain from multiple CAs) that certifies that the public key in the key pair
is genuine. The identity object may be used to provide proof of identity either of an external
entity or an internal card entity (Le. the deific;c itself, an internal application, etc. referred to .
as the owner of the identity object). Therefore, the card is not using the RSA key-pair or
other types of cryptographic IDs to authenticate the host throu_gh a challenge response
mcchanisin, but rather as a proof of identification through signihg data streams provided to it.
In other words, the identity object contains the cryrptogr’ap.hic ID of its owner. To access the
cryptographic ID in the identi'ty object, the host will first need to be authenticated. As
described below, the authentication process is controlled by means of an ACR. After the host
has been successfully authenticated, thev cryptographic ID can be used by the identity object
-owner to establish the identity of the owner to another party. For example, the cryptographic
ID (e.g; the private key of a public-private key pair) can be used to sign data presented
through the host by the other party. The signed data and the certificate in the identity object
are presented on behalf of the identity object owner to the other party. The public key of the

public-private key pair in the certificate is certified to be genuine by a CA (i.e. a trusted

- 56 of 88 -

WO 2008/013656 PCT/US2007/015304

authority), so that the other party can trust that this public key is genuine. The other party can
then decrypt the signed data using the bublic key in the certificate, and éompare the decrypted
data with the data sent by the other party. If the .decrypted data matches the data sent by the
other party, this shows that the owner of the identity object does have access to the genuine

‘private key, and is therefore tnjly the entity it is represehting to be.

[00243] A second usage of the identity object is to protect data designated to the owner -
of the IDO using the cryptographic ID such as the RSA key itself. The data is expected to be
encrypted using the IDO public key. The memory device 10 such as'a memory card will use

the private key to decrypt the data.

[00244] The IDO is an object that can be created for any type of ACR. In one
embodiment, an ACR may have only one IDO object. Both the data signing and protection
features are services the SSA system is providing to any entity capable of authenticating to
the ACR. The protection level of the IDO is as high as the ACR’s login authentication
scheme. Any authentication algorithm can be chosen for an ACR that 1s bound to have an
1DO. It is up to. the creator (host) to decide and evaluate which algorithm can better protect

the IDO usage. An ACR with an IDO provides its Certificate chain in response to a command
' to get the IDO public key. |

_ [00245] When the IDO is.bcing used for data protection, the decryptéd data outputted
from the card may need further protection. In such case, the host is encouraged to use a

secure channel established through anyone of the available authentication algorithms.

[00246]) When creating the IDO, the key length, as well as the PKCS#1 version, are
selected. In one eihbodiment, the public and the private keys are hsing ‘the (exponent,

modulus) representation as defined in the PKCS#1 v2.1;

[00247] In one embodiment, the data included during creation of an IDO is the RSA
key pair in the selected length, and a chain of certificates that, recursively, attests to the

authenticity of the public key.

[00248] The ACR that owns the IDO will allow signing of user data. This is done

through two SSA commands:

. Set user data: Provides a free format data buffer to be signed.

-57 of 88 -

WO 2008/013656 PCT/US2007/015304

. vaet SSA signature. The card will provide an RSA signature (using the ACR private
key). The format and size of the signature may be set according to PKCS#1 V1.5 or V2.1
depending on the object type. |

[00249] The operaiion using an IDO is illustrated in Figs. 35-37, where the memory
device 10 is a flash-memory card, and the card is the owner of the IDO. Fig. 35 illustrates a
process carried out by the card in signing data sent to a host. Referring to Fig. 35, after a host
is authenticated (block 802) as controlled by an ACR at a néde of a tree _structurevvdescribed
above, the card waits for a host request for a certificate (diamond 804). After rccei\iing the
‘request, the Ca;d sends the certificate and returns to diamond 804 for the next host réquest
(block 806). If a chain of certificates needs to be sent to certify the public key of the IDO
owned by the card, the above actions are repeated until all the certificates in the chain have
been sent to the host. After each: certificate has been sent to the host, the card waits for other
commands from the host (diamond 808). If no command is received from the host within a
preset time period, the card returns to diamond 804. Upon receiving data and a command
from the host, the card checks to see if the command is for si gning data (diamond 810). If the
command is for signing data, the card signs the data with the private key in the IDO and then
sends the signed data to the host (block 812) and returns to diamond 804. If the command

from the host is not for signing the data from the. host, the card uses the private kéy_ in the |

IDO to decrypt the received data (block 814), and returns to diamond 804.

[00250] Fig. 36 illustrates a process carried out by the host in the card’s signing of data
to be sent to the host. Referrilig to Fig. 36, the host sends authentication information to the
card (block 822). After suéccssful vauthentication as controlled by an .ACR at a node of a tree
structure described above, the host sends requests to the card for the certificate chain and
receives the chain (block 824). After the public key of the card has been verified, the host
sends data to the card for signing and receives the data signed by the card’s private key
(block 826). | | | | |

[00251] Fig. 37 iliustrates a process carried out by the host when the host eﬁcrypts data
using the card’s public key and sends the encrypted data to the card. Reférring to Fig. 37, the
host sends authenticatioh information to the card (block 862). After authentication as -
controlted by an ACR is successfully performed, the host sends requests to the card for the
certificate chain (block 864) needed to verify the card’s public key in the IDO, and sends

requests to the card for data. After the public key of the card in the IDO has been verified,

-58 of 88 -

WO 2008/013656 PCT/US2007/015304

the host encrypts data from the card using the verified public key of the card and sends it to
the card (blocks 866, 868).

QUERIES

[00252] Hosts and applications need to .posses certain information regarding the
- memory device or card they are working with in order to execute system operations. For
example, hosts and applications may need to know which applications stored on the memory
card are available for invocatioﬁ. The information needed by the host is sometimés not
public knowledge meaning that n6t everyone has the right to possess it. So to differentiafe
between the authorized and hon—author_ized users there is a need to provide two methods of

Qherigs that can be used by a host.
General Information Qucry

- [00253] This query gives out system public information without restrictions.
C.onﬁdential information stored in the memory devicés_‘comp'rises two portions: a shared
portion, and an unshared portion. One portion of the conﬁdéntial information includes
.information that may be prdprietary to individual entities, so that each entity should be
“allowed to access only his or her own proprietary information, without being able to access
the proprietary confidential information of others. This type of confidential information is

not shared and forms the unshared part or portion of the confidential information.

[00254] Certain information normally thought to be public might in some cases be
regarded as confidential such as the names of applications residing in the card and their life
cycle state. Another example for this might be Root ACR names Which are considered public
but could be confidential for some SSA use cases. For these cases the system shall provide
the optio_n to keep this inforniation available only " to all authenticated users, but not to
unauthenticated users, in response to a general information query. Such information
constitutes the shared portion of the confidential information. An example of the shared
portion of the conﬁden‘tial information may include a Root ACR List — list of all Root ACRs

currently present on the device.

- 59 of 88 -

WO 2008/013656 PCT/US2007/015304

[00255] Access to public information through the general information query does not
need the host/user to be logged into an ACR. Thus anyone knowledgeable with the SSA
standard can execute and receive the information. In SSA terms this query command is
handled without a Session number. = However, if access to the shared portion of the
confidential information by an entity is desircd, the entity needs to be first authenticated
through any of the control structures (e.g. any of the ACRs) éomrolling access to data in the
memory device. After a successful authentication, the entity will be able to access the shared
portion of the confidential information through a general informétion query. As explained

above, the authentication process will result in a SSA session number or id for the access.
Discreet Information Query

[00256] Private information regarding individual ACRs and their system access and
assets is considered to be discreet and needs explicit authentication. So this kind of query
calls for ACR login and authe'_nticationA(if authentication is specified by the ACR) before -

' receiving authorization for information query. This query needs a SSA Session number.

[00257] Before the two types of queries-are described in detail, it will be useful to first

describe the concept of index groups as a practical solution for implementing the queries.
Index Groups

[00258]) Appliéations running on potential SSA hosts are rcquested' by the operating
system (OS) on the host and system drivers to specify the nuf_nber of sectors intended to be
read. This in turn means that the host application needs to know how many sectors need to be

read for every SSA read operation.

[60259] = Because the nature of query operations is to supply information which is
generally not known to the one who requests it, there is a difficulty for the host application to

issue the query and guessing the amount of sectors needed for this operation.

[00260) To solve this problem the SSA query output buffer consists of only one sector
(512 bytes) per query request. Objects that are part of the output information are organized in’
what is called Index Groups. Each type of object may have a different byte size which
accounts for the number of objects that may fit to a single sector. This defines this object's

Index group. If an object had a size of 20‘ bytes then the Index group for this object would

- 60 of 88 -

WO 2008/013656 PCT/US2007/015304

contain up to 25 objects. If there where a total of 56 such objects they would have been
organized in 3 Index groups where object '0 (the first object) would start the first Index
group, object 25’ would start the second Index group and Object 50 would start the 3rd and
" last Index group.

System Query (General Information Query)

[00261] This query provides general public information regarding the supported SSA
system in the device and the current system that is setup like the different Trees and
applications running on the device. Similar to the ACR Query (discreet query) described

below, the system query is structured to give several query opnons
. General — SSA supported version.

. SSA Applications — list of all SSA applications currently present on the device

including their running state.

- [00262] The above listed mformatlon is public information. As with the ACR Query, .
..to forgo the need of the host to know how many sectors to read for the query output buffer
-there will be one sector sent back from the device while still enabling the host to further
query additional Index groups. So if the number of Root ACR objects exceeds that of the
output buffer size for Index Group '0" the host can send another query request w1th the

following Index group (' 1)
ACR Query (Discreet Information Query)

[00262.5} The SSA ACR Query command is intended to supply the ACR user with
information about the ACR's system resources like key and application IDs, Partitions and
‘ Child ACRs. The Query information is only about the logged in ACR and nothing concerning ’
other ACRs on the system Tree. In other words, access is limited to only that portion of the

confidential information which is accessible under the permissions of the ACR involved.

-[00264] There are three different ACR objects that the user can query:
. Partitions — name and access rights (Owner, Read, Write).
. Key IDs and application IDs — name and access rights (Owner, Read, Write).

- 61 of 88 -

WO 2008/013656 PCT/US2007/015304

. Child ACRs - ACR and AGP name of a direct child ACR.
. IDOs and Secure Data Objects (described below) — name and access rights
(Owner, Read, Write).

[00265] Because the number of objects connected with an ACR may vary and the

information might be more then 512 bytes — one sector. Without knowing in advance the
number of objects, the user has no way of knowing how many sectors are needed to be read
from the SSA system in the device in order to get the full list. So each object list provided by
the SSA system is divided into Index groups, sinﬁlar to the case of system queries desc.ribed
above. An Index group is the number of objects that fit into on sector i.e. how many objects
can be sent in one sector from.SSA systerh in the device to the host. This lets the SSA system
in the device to send one sector of a requested Index group. The host/user will receive a
buffer of the queried objects, the number of objects in the buffer. If the buffer is full then the

user can query for the next object Index group.

[00266] Fig. 38 is a flow chart illustrating an operation involving a general information
query. In reference to Fig. 38, when the SSA system receives a general information query
from a'n‘entity (block 902), the system determines whether the entity has been authenticated
(diamond 904). If it has been, then the system supplies the entity with public information and
the shared portion of the confidential information (block 906). If it has not been, the system

supplies the entity with only public information (block 908).

[00267) Fig. 39 is aA flow chart illustrating an operation involving a_ discreet
information query. In reference to Fig. 39, when the SSA system receives a discreet
information query from an entity (block 922); the system determines whether the entity has
been authenticated (diamond 924). If it has been, then the system supplies the entity with
confidential information (block 926). If it has not been, the system denies access of the entity

to confidential information (block 928).
FEATURE SET EXTENSION (FSE)

[00268] " In many cases it is very advantageous to run data processing activities (e.g.

DRM license object validation) inside the SSA on the card. The resulting system will be more

- 62 of 88 -

WO 2008/013656 PCT/US2007/015304

secure, more efficient, and less host dependent relative to an alterative solution where all of

the data processing tasks are executed on the host.

[00269] The SSA security system comprises a set of authentication algorithms and
authorization policies designed to control the access to, and usage of, a collection of objects
stored, managed, and protected by the memory card. Once a host gains access, the host will
then carry out processes.on the data stored in the membry device, where the access to the
mefnory device is controlled by the SSA It is assumed, however, that data is, by nature, very
application specific and, therefore, neither the data format, nor data processing is defined in

the SSA, which does not deal with the data stored on the devices.

[00270] One embodiment of the invention is based on the recognition that the SSA
system can be enhanced to permit hosfs to execute some of the functions normally performed
by the hosts in the memory card‘. Hence some of the software functions of the hosts may be
split into two parts: with one part still performed by the hosts and another part now performed
by the card. This enhances the security and efficiency of the data processing for many
applications. For this purpose, a mechanism known as FSE rﬁay be added to enhance the
capabilities of the SSA, The host applications in FSE executed by the card in this manner are

also referred herein as internal applications, or device internal applications.

[06271] : The enhanced SSA system provides a mechanism to extend the basic SSA
cofnrhand set, which provides authentication and access control, c;f the card via introduction
~of the card application. A card application is assumed to implément services (e.g. DRM
schemes, eCommerce transactions) in addition to those of the SSA. The SSA feature set
extension (FSE) is a mechanism designed to enhance the standard SSA security system with
data processing software/hardware. modules, which can be proprietary. The services defined
by the SSA FSE system enable host devices to query the card for available application, Selcct
and communicate with a specific application, in addition to the information that can be
obtained using the queries described above. The general and discreet queries described

above may be used for this purpose.
[00272] ‘ Two methods to extend the card feature set in SSA FSE are utilized:

. providing services —This feature is enabled through allowing authorized entities to
communicate directly with the internal application using a command channel known as

communication pipe, which can be proprietary.

-630f 88 -

WO 2008/013656 PCT/US2007/015304

. - extensions of the SSA standard access contiol policies — This feature is enabled
through associating internal protected data objects (e.g.' CEKSs, secure data 6bjects or SDOs
described below) with internal card applications. Whenever such an object is accessed, if the
standard SSA policies defined are satisfied, the associated applicatjoﬁ is invoked to thereby
impose at least one condition in addition to the standard SSA policies. This condition
preferably will not conflict with the standard SSA policies. Access is granted only if this
“additional condition is satisfied as well. Before the capabilities of the FSE are further
elaborated, the architectural aspects of FSE as well as the communication pipe and SDO will

now be éddfessed.
The SSM Module and Related Modules

[00273] . Fig. 40A is a functional block diagram of the system architecture 1000 in a
memory device 10 (such as a flash memory card) connected to a host device 24 to illustrate
an embodiment of the invention. The main components of the software modules in memory

device of card 20 are as follows:
SSA Transport Layer 1002

" [00274] The SSA transport layer is card protocol dependent. Ii handles the host side
'SSA requests (commands) on the protocol layer of the card 10 and then relays them to the
SSM APIL Al host-card synchronization and SSA command identification is done at this
~module. The transport layer is also résponsible for all SSA data transfer between host 24 and
card 10.

Secure Services Module Core (SSM Core) 1004

[00275] This module is an important part of the SSA implementation. The SSM core
implements the SSA architecture. More specifically the SSM Core implements the SSA Tree
and ACR system and all of the corresponding rules described above that make up the system.
The SSM core module uses a cryptographic library 1012 to support the SSA security and

cryptographic features, such as encryption, decryption and hashing.

SSM Core API 1006

- 64 of 88 -

WO 2008/013656 PCT/US2007/015304

[00276] This is the layer in which host and internal applications will interface with the
SSM core to carryout SSA operatlons As shown in Flg 40A, both host 24 and internal

device applications 1010 will use the same APIL
Secure Application Manager Modute (SAMM) 1008

[00277] SAMM is not part of the SSA system but it is an important module in the card

that controls internal device applications interfacing with the SSA system.

[0027.8] The SAMM manages ali internal device runﬁing applicatiérjs which il;clude:
1. Application lifecycle nionitof and control. ‘.

2. Application in_itializatioh.

3. Application/Host/SSM interface.

" Device Internal Applications 1010

[00279] These are applications approved for running on the card side. They are
 managed by SAMM and may have access to the SSA system. The SSM Core also provides a
éommunication pipe between the host- side appliéations and the internal applications.
Examples for such internal running applications are DRM applications and one time

password (OTP) applications as explained further below.
Device Management System (DMS) 1011

[00280] = This is a module that contains the processes and protocols needed to update
the card’s system and application firmware as well as add/remove services, in a post

shipment (commonly referred to as post issuance) mode.

[00281] Fig. 40B is a functional block diagram of the internal software modules of the
SSM core 1004. As shown in Fig. 40B, core 1004 ihclu_des a SSA command handler 1022.
Handler 1022 parses the SSA commands originating from the host or from the device internal
applications 1010 before the commands are passed to the SSA manager 1024. All of the SSA
security. data structures such as AGPs and ACRs as well as all SSA rules and policies are
stored in the SSA database 1026. SSA manager 1024 implements the control exerted by the
ACRs and AGPs and other control structures stored in database 1026. Other objects such as

- 65 of 88 -

WO 2008/013656 PCT/US2007/015304

IDOs, and secure data objects are also stored in the SSA database 1026. SSA manager 1024
implements the control exerted by the ACRs and AGPs and other control structures stored in
database 1026. Non-secure operations that do not involve SSA are handled by the SSA non-
secure operations module 1028. Secure operations under the SSA architecture are handled by
~ the SSA secure operations module 1030. Module 1032 is an interface that connects module
1030 to the cryptographic library 1012. 1034 is a layer that connects modules 1026 and 1028
to the flash memory 20 in Fig. 1. |

Communication (or Pass-Through) Pipe

[00282] The Pass-Through Pipe objects enable authorized host side entities to
communicate with the internal applicétions, as controlled by the SSM core and SAMM. Data
transfer between the host and the internal application is éarried over the SEND and
‘RECEIVE commands (defined below). Thevact.ual commands are application specific. The
entity (ACR) creating the Pipe will need to provide the Pipe name and 'thc ID of the
application it will open a channel to. As with all other protected objects, the ACR becomes its
owner and is >allowed to delegate usage rights, as well as ownership, to other ACR according

‘to the standard delegation rules and restrictions.

[00283] An authenticated entity will be allowe,d to create’ Pipe objects if the
'CREATE;PIPE Permissions is set in its. ACAM. Communication with the internal
application will be allowed only if the Write or Read Piﬁe Permissions are set in its PCR.
Ownership vand ‘Access rights delegation is allowed only if the éntity is the Pipe owner or
Delegate access rights is set in its PCR. As with all other Permissions when delegating
ownership rights to another ACR, the original owner will preferably be stripped from all its

permissions to this device application.

[00284] ” Pfeferably only one communication pipe is created for a specific application.
An attempt to create a second Pipe and connect it to an application which is already
connected will preferably be rejected by the SSM system 1000. Thus, preferably there is a
one-to-one relationship between one of the device - infema] applications 1010 and a
communication pipe. However, multiple ACRs may communicate with one device internal
application (via the delegation mechanism). A single ACR may communicate with several
device applications (either via delegation or ownership of multiple Pipes connected to

different applications). The ACRs controlling different pipes are preferably located in nodes

- 66 of 88 -

WO 2008/013656 PCT/US2007/015304

of trees that are entirely separate, so that there is no crosstalk between the communication

pipes.

- [00285] Transferring data between the host and a specific application is done using the

- following Commands:

. WRITE PASS THROUGH - Will transfer an unformatted data buffer from the host to

the device internal application.

. READ PASS THROUGH - Will transfer an unformatted data buffer from the host to
the device internal application and, once the internal processing is done, will output an

unformatted data buffer back to the host.

[00286] Write and read pass through commands provide as parameter the ID of the
device internal application 1008 the hosts wish to communicate with. Thc entities permission
will be validated and if the requesting entity (i.e: the ACR hosting the session this entity is
using) has the Permission to use the Pipe connected to the requested application the data

. buffer will be interpreted and the command executed.

[00287] . This communication method allows the host application to pass
vendor/proprietary specific commands to an internal device application through the SSA

ACR session channel.
Secure Data Object (SDO)
[00288] A useful dbject that can be employed in conjunction with FSE is the SDO.

[002389] The SDO serves as a general purpose container for secure storage of sensitive
information. Similar to CEK objects, it is owned by an ACR, and access rights and ownership
can be delegated between ACRs. It contains data which is p'roteéted and used according to
predefined policy restrictions and, optionally, has a link to a device internal application 1008.
The sensitive data is preferably not 'used, nor interpreted, by the SSA system, but rather, by
the object’s owner and users. In other words, the SSA system does not discern information in
the data handled by it. In this manner, owners and users of the data in the object can be less -
concerned about loss of sensitive information due to the interface with the SSA system, when
data is passed between hosts and the data objects. Hence, SDO objects are created by the

host system (or internal applications), and assigned a string ID, similar to the way CEKs are

- 67 of 88 -

WO 2008/013656 PCT/US2007/015304

created. Upon creation the host provides, in addition to the nafne, an application ID for the
application linked to the SDO and a data block which will be stored, integrity verified, and
retrieved by the SSA. v '

[00290]' ~ Similar to CEKs, SDO(s) are preferably only created within a SSA session.
The ACR used to open the session becomes the owner of the SDO and has the rights to delete
it, write and read the sensitive data, as well as, delegate the ownérship and the permission to

access the SDO to another ACR (either its child or within the»sarﬁc AGP).

[00291] The Write and Read operations are reserved exclusively for the owner of the
SDO. A Write operation overwrites the existing SDO object data with the provided data
buffer. A Read operation will retrieve the complete data record of the SDO.

[00292] ~ The SDO access operations are allowed to non-owner ACRs which have the

proper access permissions. The following operations are defined:

« SDO Set, application ID is defined: The data will be processed by the internal
SSA application with the application ID. The application is invoked by the association with

the SDO. As an optional résult, the application will write the SDO object.

. SDO Set, application ID is null: This optio’n is not valid and will prompt an

illegal cominand error. The Set command rieeds an internal application running in the card.

. SDO Get, application ID is defined: The request will be processed by the
"device internal application with the application ID. The application is invoked by the
association with the SDO. The output, although not dgﬁned, will be sent back to the

requestor. The application will optionally read the SDO object.

. SDO Get, ap‘pl.ication ID is null: This option is not valid and will prompt an

illegal command error. The Get command needs an internal application running in the card.

. SDO related permissions: An ACR can be an SDO owner or just'have access
permissions (Set, Get or both). In addition, an ACR can be permitted to transfer his access
rights, to an SDO it does not own, to another ACR. An ACR may be explicitly permitted to .

create SDO(s) and to delegate access rights if it has ACAM permission.

Internal ACR

- 68 of 88 -

WO 2008/013656 PCT/US2007/015304

[00293] - The internal ACR 1is similar to any ACR with a PCR, except that external
entities to the device 10 cannot log in to this ACR. Instead, the SSA manager 1024 of Fig.
40B automatically logs in to the internal ACR when the 6bjects under its control or
applications associated with it are invoked. Since the entity trying to gain access is an entity

internal to the card or memory device, thefe is no need for authentication. The SSA manager |

1024 will simply pass a session key to the internal ACR to enable internal communication.

[00294) The capabilities of FSE will be illustrated using two examples:_ one time
password generation and digital rights management. Before the one time password
generation example is described, the issue of dual factor authentication will first be

addressed.

OTP Embodiment
Dual Factor Authentication (DFA)

[00295] 'DFA is an authentication protocol designed to enhance the security of personal
logins into, as an example, a ‘web services servér by adding to the standard user credentials
(namely user name and password) an additional secret, a “second factor.” The second secret
is typically something Stored in a physical secure token that the user has in his possession.
During the process of login the user needs to provide proof of possession as part of the login
credential. A commonly used way to prove possession is using a One Time Password (OTP),
a password good for a single login only, which is generated by, and outputted from, the
secure Token. If the user is able to prc)vidc the correct OTP it is considered as a.sufficient
' proof of possession of the token since it is cryptographically infeasible to calculate the OTP
without the Token. Sine the OTP is good for one login only, the user should have the Token
at the time of login, since usage of an old password captured from a previous login will not

do any good any more.

[00296] The produét described in the following sections is making use of the SSA
security data structure, plus one FSE design to calculate the next password in the OTP series,
to implement a flash memory card with multiple “virtual” secure Tokens, each one is
genei’atihg a different series of passwords (which can be used to login into different web

sites). A block diagram of this system is depicted in Figure 41.

- 69 of 88.-

WO 2008/013656 PCT/US2007/015304

[00297] The complete system 1050 comprises an authentication server 1052, an
Internet server 1054 and a user 1056 with token 1058. The first step is to agree on a shared
secret between the authentication server and the user (also referred to as seed provisioning).
‘The user 1056 will request a secret or seed to be issued and will store it in the secure token
1058. The next step is to bind the issued secfet or seed with a specific web services server.
Once this is done, the authentication can take place. The user will instruct the Token to
generate an OTP. The OTP with the user name and passWord are sent to Internet server
1054. The Internet server 1054 .forwards the OTP to the authentication server 1052 asking it
to verify the user identity. The authentication server will generate an OTP as well, and since
it is generated from a shared secret with the Token, it should match the OTP generated from
the Token. If a match is found the user identity is verified and the authentication server will
return a positiveacknoWledgement to the Internet server 1054 which will complete the user

login process.

[00298] The FSE implementation for the OTP generation has the following
characteristics: ' ‘

. The OTP seed is securely stored (encrypted) in the card.

. The pastord gcneration algorithm is executed inside the card.

. The device 10 can emulate multiple Virtual Tokens each of them stores

a dnfferent seed and may use different password generation algorithms.

. The device 10 is providing a secure protocol to transport the seed from

the authentication server into the device.

[00299] _ The. SSA features for ‘OTP seed provisioning and OTP generation are
illustrated in Fig. 42, where solid- line arrows illustrate ownership or access rights, and broken
line arrows illustrate associations or links. As showh in Fig. 42, in the SSA FSE system
1100, software program code FSE 1102 may be accessed through one or more
communication pipes 1104 which is controlled by each of N application ACRs 1106. In the
embodimenté. described below, only one FSE softhare application ‘is illustrated, and for each
'FSE application, there is only one-.communication pipe. It will be understood, however, that
more than one FSE application may be utilized. While only one communication pipe is
illustrated in Fig. 42, it will be understood that a plurality of communication pipes may be
used. All such variations are possible. In reference to Figs. 40A, 40B émd 42, the FSE 1102

- 70 of 88 -

WO 2008/013656 PCT/US2007/015304

may be an application used for OTP provisioning and form a subset of the device internal
applications 1010 of Fig. 40A. The control structures (ACRs 1101, 1103, 1106, 1110) are
part. of the secufity data structures in SSA and are stored in the SSA database 1026. Data)
structures such as IDO 1120, SDO objects 1122, and communication pipe 1104 are also
stored in the SSA database 1026. |

[00300] In reference to Figs. 40A and 40B, security related operations (e.g. data
transfer in sessions, and operations such as encrjption, decryption and hashing) involving the
ACRs and data structures are handled By module 10_30, with the assistance of interface 1032
and cryptographic library 1012. SSM Core API 1006 dbes not distinguish between operations
involving ACRs that interact with hosts (external ACRs) and the internal ACRs that do not,
and thus does not distinguish between operations involving the hosts versus ..the device
internal applications 1010. In this manner, the same control mechanism is used for
controlling access by host side entities and access by device ‘intemal applications 1010. This
lends flexibility for dividing data processing between host side applications and device
internal applicatidns 1010. The internal applications 1010 (e.g. FSE 1102 in Fig. 42) are
associated with and are invoked through the control of the internal ACRs (e.g- ACR 1103 in
Fig. 42). | | '

[00301] Furthermore, the security data structurés such as ACRs and AGPs with the
associated SSA rules and policies prefcrably control access to 1mportant information such as
the content in or mformauon that can be denved from the content in SDOs, so that outside or
internal applications can only access this content or information in accordance with the SSA
rules and policies. For example, if two different users can invoke an individual one of the
device internal applications. 1010 to process data, internal ACRs located in separate
hierarchical trees are used to control access by the two users, so that there is no crosstalk
between them. In this manner, both users can access a common set of device internal
_appllcatlons 1010 for processing data without fear on the part of owners of the content or
information in the SDOs of losing control of the content or information. For example access
to the SDOs storing data accessed by the device internal applications 1010 can be controlled
by ACRs located in separate hierarchical trees, so that there is no crosstalk between them.
This manner of control is similar to the manner by which SSA controls access to data
described above. This provides security of data stored in the data objecté to content owners

and users.

-71 0of 88 -

WO 2008/013656 PCT/US2007/015304

[00302] In reference to Fig. 42, it is possible for a portion of the software application
" code needed for the OTP related host application to be stored (e.g. pre-stored prior to or
loaded after memory card issuance) in the memory device 10 as the application in FSE 1102.
To execute such code, the host will need to first authenticate through one of the N
authentication ACRs 1106, N being a positive integer, in order to gain access to pipe 1104.
The host will also n.eed. to provide an application ID for identifying the OTP related
application 1t wishes to invoke. After a successful authentication, such code can be accessed
for execution through pipe 1104 associated with the OTP related application. As noted
ébove, there is preferably a one-to-one relationship between a pipe 1104 and ‘a specific
'application, such as an OTP related internal application. As shown in Fig. 42, multiple ACRs

1106 may share control of a common pipe 1104. An ACR can also control more than one

pipe.

[00303] = Secure daté objects SDO 1, SDO 2 and SDO 3 referred to collectively as
objects 1114 are illustrated in Fig. 42, each containing data, such as a seed for OTP
generation, which seed is valuable and preferably encrypted. The links or association 1108
between the three data objects and FSE 1102 illustrate an attribute of the objects, in that,
when any one of the objects is accessed, the application in FSE 1102 with an application ID
in the SDQ’s attribute will be invoked, and the application will be executed by the memory

device’s CPU 12 without requiring receipt of any further host commands (Fig. 1).

[00304] In reference to. Fig. 42, before a oser is in a position to start the OTP process,
the security data structures (ACRs 1101, 1103, 1106 and 1110) are aiready created with their
" PCRs for controlling the OTP process. The user will need to have access rights to invoke an
OTP device internal application 1102 through one of the authentication server ACRs 1106.
The user will also need to have access rights to the OTP that will be generated, through one
of the N user ACRs 1110. The SDOs 1114 may be creaied during the OTP seed provisioning
process. The IDO 1116 is préferab]y already created -.and controlled by the internal ACR
1103. The internal ACR 1103 also controls the SDOs 1114 after they are created. When the
~SDOs 1114 are accessed, the SSA managér 1024 in Figs 40B antomatically logs in to the
ACR 1103. The internal ACR 1103 is associated with FSE 1102. The SDCS 1114 can
become associated with the FSE during the OTP seed provisioning process as shown by the
broken lines 1108. After the association is in place, when the SDOs are accessed by the host,

the association 1108 will cause the FSE 1102 to be invoked without a further request from the

- 72 of 88 -

WO 2008/013656 PCT/US2007/015304

host. The SSA ménager 1024 in Figs 40B will also automatically logs in to the ACR 1103,
'when communication pipe 1104 is accessed through one of the N ACRs 1106. In both cases
(accessing SDO 1114 and bipe 1104), the SSA manager will pass a session number to the
FSE 1102, which session number will identify the channel to the internal ACR 1103.

[00305] The OTP operation involves two phases: a seed provisioning phase illustrated
in Fig. 43 and an OTP generation phase illustrated in Fig. 44. Reference to Figs. 40-42 will
alé,o be made where it aids the descript_ion‘. Fig. 43 is a protocol diagram illdstrating the seed'
. provisioning process. As shown in Fig. 43, van'ouéactions are taken by the host such as host
24 as wclt as by the card. One entity on the Card. taking various actions is the SSM system of
Figs. 40A and 40B, including the SSM core 1004 Another enttty on the card takmg various
actions is the FSE 1102 shown in F1g 42.

[00306] - In dual factor authentication, the user requests a seed to be.issued and once the
seed is issttcd, the seed is to be stored in a secure to‘ken.' In this example, the secure token is
the memory device or card. The user authenticates to one of the authentication ACRs 1106 in
| Fig. 42 to gain access to the SSM system (arrow' 1 122). Assuming that authentication is
successful (arrow 1124), the user then requests for a seed (arrow 1126). The host sends the
request to sign the seed request to the card by selecting a particular application 1102 for
-signing the seed request. If the user is not aware of the particular applicationAI.D. that needs
to be invoked, this information can be ’o'btaibned from -device 10, for example, throtlgh a
discreet query to the device. The user then inputs the application LD. of the application that
should be invoked, thereby also Selecting a communication pipe corresponding to the
application. The user command is then forwarded in a ‘pass through command to the
application specified by the application 1.D. from -the user (arrow 1128) through the
corresponding communication pipe. The application that is invoked requests a signature by
means of the public key in the speciﬁed IDO, such as IDO 1112 in Fig. 42. |

[00307] = The SSM system signs the seed request using the public key of the IDO and
notifies the application that the signing is completed (arrow 1132). The invoked application
then requests the certificate chain of the IDO (arrow 1134). In response, the SSM system
provides the certificate chain of the IDO as controlled by the ACR 1103 (arrow 1136). The
invoked application then provides the signed seed request and the certificate chain of the IDO
through the communication pipe to the SSM system which forwards the same to the host

(arrow 1138). The sending of the signed seed request and IDO certificate chain through the

-73 of 88 -

WO 2008/013656 PCT/US2007/015304

communication pipe is through a callback function that is established between the SAMM
1008 and the SSM core 1004 of Fig. 40A, where the callback function will be elaborated

below.

[00308]. | The signed seed réquest and IDO certificate chain received by the host are
then sent to the authentication server 1052 shown in Fig. 41. The certificate chain provided
by the card certified that the signed seed request originates from the trusted token so that the
authentication server 1052 is willing to .provide the card with the secret seed. The
authentication server 1052 therefore sends the seed encrypted with the public key of the IDO
together with the user ACR information to the host. The user information indicates which
one of the N user ACRs under which the user has rights for accessing the OTP to be
generated. The host invokes an OTP application in FSE 1102 by supplying the application
L.D., thereby élso selecting the communication pipe corresponding to the application, and
forward the usef ACR information to the SSM system (arrow 1140). The encfyptcd seed and
the user ACR information are then forwarded through the communication pipe to the
application selected (arrow 1142). The invoked application sends a request to the SSM
system for decryption of the seed using the private key of the IDO (arrow 1144). The SSM
‘system decrypts the seed and sends a notice to the application that decryption has been
completed (arrow 1146). The invoked application then requests a creation of a secured data
object and the storing of the seed in the secured data object. It also requests that the SDO be
associated with ID of the OTP application (which can be the same application that is doing
the requesting) for generating the one time password (arrow 1148). The SSM system creates
one of the SDOs 1114 and stores the seed inside the SDO é_nd associates the SDO with the ID
of the OTP application, and sends notice to the application when completed (arrow 1150).
The application then requests the SSM system to delegate access rights by the internal ACR
1103 for accessiﬁg the SDO 1114 to the api)ropriate user ACR based on user information
supplied by the host (arrow 1152). After delegation has been éompleted, the SSM system |
notifies the application (arrow 1154). The application then sends the name of the SDO (slot
ID) through the communication pipe to the SSM system through a call back function (arrow
1156). SSM system then forwards the same to the host (arrow 1158). The host then binds

the name of the SDO to the user ACR, so that the user can now acceés the SDO.

[00309] The process of OTP generation will now be described in reference to the

protocol diagram in Fig. 44. To obtain the one time password, the user will log in the user

- 74 of 88 -

WO 2008/013656 PCT/US2007/015304

ACR to which it has access rights (arrow 1172). Assuming that the authentication is
successful, the SSM system notifies the host and the host sends a “get SDO” comimand to the
SSM (arrows 1174, 1176). As noted above, the SDO that stores the seed has been associated
with an application for generating the OTP. Therefore instead of selecting an application
through the communication pipe as before; the OTP generation application is invoked by
means of the association between the SDO that is accessed by the command in arrow 1176
and the OTP generation application (arrow 1178). The OTP generation application then
requests the SSM system to read the content (i.e. the seed) from the SDO (arrow 1180).
Preferably, the SSM is not aware of the information that is contained in the content of the
SDO, and will simply process the data in the SDO as instructed by the FSE. If the seed is
éncrypted, this may in.volve‘ decrypting the seed béfor’e reading as commanded by the FSE.
The SSM system reads the seed from the SDO and provides the seed to the OTP generation
application (arrow 1182). The OTP generation application then genefates the OTP and
provides it to the SSM system (arrow 1184). The OTP is then forwarded by the SSM to the
host (arrow 1186)4which in turn forwards the ‘OTP to the authentication server 1052 to

complete the dual factor authentication process.
Callback Function

[00310) A generic callback function is established betweeh the SSM core 1004 and
SAMM 1008 of Fig. 40A. Different device internal applications and communication pipes
may be registered with such function. Thus when a device internal application is invoked,
the application can use this callback funct_ioﬁ to.pass data after processing to the SSM system

through he same communication pipe that was used to pass a host command to the

application.
DRM System Embodiment
[00311] Fig. 45 is a functional block diagram illustrating a DRM system employing

communication pipe 1104°, CEKs 1114’ with links 1108’ to FSE applications 1102’ and
control structures 1101°, 1103°, 1106’ for controlling the functions to implement DRM
functions. As will be noted, the architecture in Fig. 45 is quite similar to that of Fig. 42,
except that the security data structure now includes license server ACRs 1106’ and playback
ACRs 1110, instead of authentication server ACRs and user ACRs, and CEKs 1114’ instead
of SDOs. In addition, the IDO is not involved and is thus omitted in Fig. 45. The CEKs

-75of 88 -

WO 2008/013656 PCT/US2007/015304

1114’ may be created in the license provisioning process. Protocol diagram Fig. 46 illustrates
a process for license provisioning and content download where the key is provided in the
license object. As in the OTP embodiment, a user wishing to acquire a license will first need
to acquire access rights under one of the N ACRs 1106’ and one of the N-ACRs 1110’ so that
content can be rendered by means of a media player such as a media player software

application.

[003_12] _As shoWn» in Fig. 46, the host authcnticétes to a license seﬁ/e'r ACR 1106’
(arrow 1202). ‘Ass‘uming that authentication is successful (arrow 1204) the license server
provides a license file together with a CEK (key ID and key value), to the host. The host also
selects the application to be invoked by supplying the applicaﬁon ID to the SSM system on
the card. The host also sends player information (e.g. information on a media player software
| application). (arrow 1206). The player information will indicate which one of the N
playback ACRs 1110’ under which the playef has access rights. The .SSMb system forwards
to the DRM application the license file and the CEK through the communication pipe
corresponding to the application selected (arrow 1208). The application invoked then
requests the SSM system to write the license file to the hidden partition (arrow 1210). When
the licehsc file has been so written, the SSM system notifies the application (arrow -1212).
The DRM application then requests a CEK object 1114’ be created and stores in it the key
value from the license file. The. DRM application also requests that the CEK object be
ass'ocivated with ID of a DRM .application that checks licenses - associated with the key
provided (arrow 1214). The SSM system completes these tasks and so notifies the
application (arrow 1216). The application then requests that read accéss rights to the CEK
1114" be delegated to a playback ACR to which the player has permission to access content
based on player information sent by host (arrow 1218). The SSM system performs the
deiegation and so notifies the application (arrow 1220). A message that the storage of the
license has been completed is sent by the application through the cdmmunication pipe to the
SSM system and the SSM systemn forwards it to the license server (arrows 1222 and 1224). A
call back function is used for this action through the communication pipe. Upon receiving
this notice, the license server then provides the content file encrypted with the key value in
the CEK provided to the card. The encrypted content is stored by the host in the public card
area. The storing of the encrypted content file does not involve security functions so that the

SSM system is not involved in the storing.

- 76 of 88 -

WO 2008/013656 PCT/US2007/015304

[00313] The playback operation is illustrated in Fig. 47. The user authenticates to the
appropriate playback ACR (i.e. the playback ACR to which read rights has been delegated
_above in arrows 1152 and 1154) through the host (arrow 1242). Assuming that
a_uthenlicalion is successful (arrow 1244) the user then sends a request to read the content
associated with the key ID (arrow 1246). Upon receiving the request, the SSM system will _
discover that a DRM application ID is associated with the CEK object being accessed and so
will cause the identified DRM application to be invoked (arrow 1248). The DRM application
requests the SSM system to read data (i.e. the license) associated with the key ID (arrow
1250). The SSM is not aware of the information in the data it is requested to read, and
simply processes the requeét from the FSE to perform the data reading process.‘ The SSM
system reads the data (i.e. iicenﬁe) from the hidden 'partition and provides the data io the
DRM application (arrow 1252). The DRM application then interprets the data and checks the
" license information in-the data to see if the license is valid. If the license is still valid, the
DRM application will so inform the SSM system that content decryption is approved (arrow
1254). The SSM system then decrypts the content requested using the key value in the CEK
object and éu[ﬁplies th¢ decrypted content to the host for pléyb‘éck (arrow 1256). If the

license is no longer valid, the request for content access is denied.

[00314] .In the event that no key is provided in the license file from the l_icense server,
the license provisioning and content download will be‘ somewhat different from that
illustrated in Fig. 46. Such a different scheme is illustrated in the protocol diagram of Fig.
48. The identical steps between Figs. 46 and 48 are identified by the same numerals. Thus
the host and the SSM system ﬁrsf engage in authentication (arrdws 1202, 1204).. The li.(:cnse
server provides the license file and the key ID but without the key valﬁe to the host, and the
host will forward the same togcther with the application ID of the DRM application it wishes
to invoke to the SSM system. The host also sends along player information (arrow 1206°).
The SSM system then forwards. the license ﬁle and key ID through the communication pipe
corresponding to the selected application, to the selected DRM application (arrow 1208).
The DRM application requests t'hat the license file be Written to the hidden partition (arrow
1210). When the license file has been so written, the SSM system notifies the DRM
application (arrow 1212). The DRM application then requests that the SSM system generate
a key value, create a CEK object, store the key value therein and associate.the CEK object
with the ID of a DRM application (arrow 1214°). After the request has been complied with,
the SSM system sends a notice to the DRM application (arrow 1216). The DRM application

-77 of 88 -

WO 2008/013656 PCT/US2007/015304

will then re(jucst the SSM system to delegate read access rights to the CEK object to the
playback ACR based on the player information from the host (arrow 1218). When this is
completed, the SSM system so notifies the DRM application (arrbw 1220). The DRM
application then notifies the SSM system that the license has been stored where the notice is
sent through the communication pipe by means of a 'callbaék function (arrow 1222). This
notice is forwarded by the SSM system to the license server (arrow 1224). The license server
then sends the content file associated with a key ID to the SSM system (arrow 1226). The
SSM system encrypts the content file with the key value identified by the key ID, without
involving any appli_cations.. The éontent so encrypted and stored on the card may be played

back using the protocol of Fig. 47.

[00315] " In the OTP and the DRM embodiments above, the FSE 1102 and 1102’ can
contain many different OTP and DRM applica;ions for selection by host devices. Users have
the choice of ‘selecting and invoking the desired device internal application. Nonetheless, the
overall relationship between the SSM module and the FSE remains the same, so that users
and data providers can use standard set of protocols for interacting witfl the SSM module and
for invoking the FSE. Users and providers do not have to become involved in the
particularities of the many different device internal applications, some of which may be

proprietary.

[00316] .Furthermore, .the provisioning protocols can bé somewhat different, as is the
case in Figs, 46 and 48. The license object contains a key value in the case of Fig. 46, but no
key value in the case of Fig. 48. This difference calls for slightly different protocols as
illustrated above. However, the playback in Fig. 47 is the same irrespective of hbw the
license was provisioned. " Hence, this difference will only matter to content pfoviders and
distributors, but not typically to consumers, who typically are only involved in the playback
phase. Thié architecture thus provides great flexibility to content providers and distributors to
customize protocols, while remaining easy to use by consumers. Obviously information
derived from the data provisioned by more than two sets of provisioning pr.otocols may still A

be accessible using the second protocol.

[00317] Another advantage provided by the embodiments above is that while outside
entities such as users and the device internal applications can share the usage of data
controlled by the security data structure, the user is able only to access the results derived by

the device internal applications from the store data. Thus, in the OTP embodiment, the user

-78 of 88 -

WO 2008/013656 PCT/US2007/015304

through the host devices is able only to obtain the OTP, but not the seed value. In the DRM
embodiment, the user through the host devices is able only to obtain the rendered content, but
- not access to either the license file or the cryptographic key. This feature permits

convenience to consumers without compromising security.

[00318] In one DRM embodiment, neither the device internal applications nor hosts
have access to the cryptographic keys; only the security data structure has such access. In
other embodiments, éntitics’ other than the security data structure can also access the:
cryptographic keys. V'I_‘he keys can also be generated by means of the device internal -

applications, and then controlled by the security data structure.

[00319] Access to the device internal applications and to information (e.g. OTP and
rendered codtént) is controlled by the same security data structure. This reduces complexity

in the control systems and costs.

[00320] | By providing the ability to delegate access >ri'ghts from the internal ACR
controlling access to the device internal applications to an ACR controlling the access by
hosts to the information obtained from invoking the device internal applications, this feature

makes it possible to achieve the features and functions above.
Application specific Revocation Scheme

[00321] - The éccess control protocol of the security data structure can also be modified
when a device internal .applicétion is invoked. For examplé, The Certificate Revocation
protocol may be either a standard one ﬁsing CRL or a proprietary protocol. Thus, by
invoking a FSE, the standard CRL revocation protocol can be replaced by an FSE proprietary

protocol.

[00322] In addition to supporting the CRL revocation scheme, SSA enables a specific
internal-application residing in the device to revoke hosts through a private communication
channel between the device internal application and the CA or any other Revocation
Authority. The internal application proprietary revocation scheme is bounded in the

relationship of the host-application.

[(00323] When application-specific revocation scheme is configured, the SSA system
will REJECT the CRL (if provided) ELSE will use the Certificate and the proprietary

-79 of 88 -

WO 2008/013656 PCT/US2007/015304

application data (previously provided through an application specific com pipe) to decide

whether the given certification revoked or not.

[00324] As noted above, an ACR specifies whieh of three revocation schemes (no
~ revocation scheme, the standard CRL scheme, and application-speciﬁc revocation scheme) is
adopted by specifying a revocation value. When the application-specific revocation scheme
option is chosen, the ACR will also specify an ID for the internal application 1D in charge of
the revocation scheme, and the value in the CET/APP_ID field will correspond te the internal

application ID in charge of the revocation scheme. When authenticating the device, SSA

system will then adhere to the proprietary scheme of the internal application.

[00325] Instead of replacing one set of protocols by another, the invocation of a device
internal application may impose additional '_access conditions to the access control already
exerted by the SSA. For example, the right to access a key value in CEK can be further
scrutinized by an FSE. After the SSA system determines that ah ACR has access rights to a
key value, the FSE will be consulted before the access is granted. ThlS feature allows great

flexibility to the content owner to control access to the content

[00326] While the invention has been described above by reference to various
embodlments it will be understood that changes and modlﬂcatlons may be made without
departing from the scope of the invention, wh1ch is to be defined only by- the appended claims

and their equivalent.

- 80 of 88 -

WO 2008/013656 PCT/US2007/015304

WHAT IS CLAIMED IS:

1. A method for authenticating a first entity by a second entity, comprising:

receiving at the second enfity a chain‘of certificates for authenticating the first entity
to the bsecond entity, said chain of certificates including a plurality of continuous strings of
certificates, the strings individually including at least one certificate;

~ said second entity verifying in a sequence the strings of certificates in said chain 6f

certificates, wherein said strings of the certificates in the chain are received at the second
entity in said sequence; and . |

detecting at the second entity whether the complete chaih of certificates has been

received.

2. The method of claim 1, wherein the detecting detects whether at least one of

the certificates received by the second entity is the last one in the chain of certificates.
3. The method of claim 2, further comprising verifying the certificates received.

_ 4. The method of claim 2, wherein the last certificate in the chain contains an
mdlcanon that it is the last one in the chain of certificates, and said detecting detects said

mdlcatlon

5. The method of claim 2, wherein the first entity comprises a memory device
and the second entity comprises a host device, said memory device removably connected to

~ said host device.
6. The method of claim 5, further Comprising the second entity sending a request
for the next string of certificates in the sequence to the first enuty after receipt of each of the

strmgs of certificates except after recelpt of the last certificate in the cham

7. The method of claim 6, further comprising the first entity sending one of the

strings of certificates to the second entity in response to each request from the second entity.

- 81 of 88 -

WO 2008/013656 PCT/US2007/015304

8. The method of claim 1, wherein the second entity comprises a memory device

and the first entity comprises a host device, said memofy device removably connected to said

host device.
9. The method of claim 1, wherein the second entity comprises a memory card.
10. The method of claim 1, further cqmprising sending consecutively according to-

said Sequence to the second entity said strings of certificates for authenticating the first entity

to the second entity.

11. © The methodbfclaim 1, wherein each of the stringé of certificates includes one
certificate, said second entity c_omprising a memory device, said method further comprising
storing in the memory device the certificates received at the sek:dnd entity, wherein each
certificate except for the last certificate in the chain stored in the memory is overwritten by

the next certificate that is received at the second entity.

12. The method of claim 11, further comprising allocating not more memory

space in the memory device than enough for storing one certificate.

13. A method for authenticating a ﬂrsf entity by a second entity, comprising:

sending to the second entity a chain of ceniﬁ;:ates for authenticating the first entity to
the second entity, said chain of certificates including a piurality of continuous strings of
certificates, the strings individually including at least one certificate;

said second ehtity verifying consecutively in a sequence the strings of certificates in
said chain of certificates, wherein the strings of certificates in the chain are sent consecutively

in said sequence.

14. The method of claim 13, said second entity verifying the certificates sent to
the second entity in a verification process, and when at least one of the certificates sent to the
second entity fails the verification process, said method further comprising terminating the

verification process and sending to the first entity an indication of the termination.

15. The method of claim 14, further comprising receiving at the first entity the

indication and stopping the sending when said indication is received.

-82 of 88 -

WO 2008/013656 PCT/US2007/015304

16. The method of claim 13, wherein the last certificate in the chain sent to the

second entity contains an indication that it is the last one in the chain of certificates.

17. The method of claim 13, wherein the first entity comprisés a memory device
and the second entity comprises a host device, said memory device removably connected to

said host device. -

18. - The method of claim 17, further comprising the second entity sending a
request for the next string of certificates in the sequence to the first entity after receipt of each

of the strings of certificate except after receipt of the last string of certificates in the chain.

19. The method of claim 18, further comprising the first entity sending one 6f- the

strings of certificate to the second entity in response to each request from the second entity.

20. The method of claim 13, wherein the second entity comprises a memory
device and the first entity comprises a host device, said memory device removably connected

to said host device.

21. The method of claim 13, wherein each string of certificates includes ohe
certificate, said second entity verifying the certificates received in a veriﬁcation process, and
wherein said sending sends sequehtially to the second entity the chain of certificates for
authenticating the first entity to the second entity, until all the certiﬁéates in the chain have
been sent unless at least one of the certificates sent to the second entity fails the verification

process.
22. The method of claim 13, wherein the second entity comprises a memory card.

23. The method of claim 13, wherein each of the strings of ceﬁiﬁcates includes
one certificate, and said second entity includes a memory, further comprising storing in the
memory the certificates received at the second entity, wherein each certificate except for the
last certificate in the chain stored in the memory is overwritten by the next certificate that is

received at the second entity.

-83 of 88 -

WO 2008/013656 PCT/US2007/015304

24, The method of claim 23, further comprising allocating for storing said

certificates not more memory.space in the memory device than enough for storing one

certificate.

25. A method for mutual authentication between a first and a second entity,
comprising: '

(a) receiving at the second ehtity a first chain of certificates for authenticating the

first entity to the second entity, said first chain of certificates including a plurality of
continuoué strings'of certificates, the strings in said first chain individually including at least
one certificate, said second entity verifying consccunvely the strmgs of certlﬁcates in said
first chain of certificates in a first sequence, wherein said strings of the ccmficates in the first
chain are received at the second entity consecutively in said first sequence;

®) detecting at the second entity whether the complete first chain of certificates
has been received from the first entity; '

(c) rccelvmg at the first entity a second cham of certificates for authenticating the
second entity to the first entity, said second chain of cemﬁcates including a plurality of
continuous strings of certificates, each of the strings in said second chain including at least
one certificate, said first'entity verifying consecutively the strings of certificates in said
second chain of certificates in a second sequence, wherein the strings of the certiﬁcates in
second chain are received consecutively in the second sequence and

(d) detecting at the first entity whether the complete second chain of certificates

- has been received from the second entity.

26. The method of claim 25, wherein the detecting in (b) or (d) detects whether at

least one of the certificates received is the last one in the first or second chain of certificates.
27. The method of claim 26, further comprising verifying the certificates received
~ after (a) or (c) in a verification process, and terminating said process when at least one of the

certificates sent to the first or second entity fails the verification process.

28. The method of claim 26, wherein the last certificate in the first or second chain

contains an indication that it is the last one in such chain of certificates.

-84 of 88 -

WO 2008/013656 PCT/US2007/015304

29. The method of claim 25, wherein the first entity comprises a memory device
and the second entity comprises a host device, said memory device removably connected to

said host device.

30. The method of claim 29, further comprising one of the first and second entities
sending a request to the other entity for the next string of certificate in the first or second
sequence after receipt of each string of certificates in (a) or (c), except after receipt of the last

string of certificate in the first or second chain. -

31. . The method of claim 30, further comprising one of the first and second entities
~ sending one of the strings of certificate to the other entity in response to each request from

the other entity.

32. The method of claim 25, wherein the second entity comprises a memory
device and the first entity comprises a host device, said memory device removably connected

to said host device.
33. The method of claim 32, wherein the second entity comprises a memory card.

34, - The method of claim 33, further comprising sending sequentially to the second

entity the first chain of certificates for authenticating the first entity to the second entity.

35. The method of claim 25, further comprising storing in a memory at the first 6r
second entity the strings of cenificat'es. received sequentially in (a) or (c), wherein each of tﬁe
strings of certificates except for the last certificate in the first or second chain stored in the
memory is overwritten by the next string in the first or second sequence of certificates that is

received sequentially in (a) or (c).

36. The method of claim 35, further comprising allocating not more memory

space in the memory than enough for storing one of the strings of certificates.

37. A system for accessing data at a first entity by a second entity, said system
comprising said second entity, said second entity comprising certificates in a chain adapted to

be sent sequentially from the second entity to the first entity, wherein the last certificate of

-850f 88 -

WO 2008/013656 PCT/US2007/015304

the chain that is to be sent sequentially contains an indication that it is the last one in the

chain of certificates.

38. The system of claim 37, further comprising a storage device at the first entity
for storing the certificates after they have been received, wherein said storage device
overwrites each certificate stored in the storage device by the next certificate in the chain that

is received at the first entity, except for the last certificate in the chain.

39 The system of claim 38, wherein the storage device allocates not more
memory space than enough for storing one certificate for storing the certificates received at

the first entity.

40. The system of claim 37, wherein said data at the first entity is encrypted, said
second entity further comprising a key for decrypting said data, wherein said certificate chain
certifies that the key is authentic, said key having a length, and aAlength of each certificate in

the chain sent to the second entity is not more than about 4 times the length of the key.

41. - The system of claim 37, wherein said first entity comprises a non-volatile
'memory device, and the second entity comprises a host device removably connected to said

memory device.

42. | A memory system supplying data to a host device, comprising:

a non-volatile memory capable of storing data;

a controlier controlling access to data in said non-volatile memory by said host device
through an authentication process when said host device is removably connected to the
memory system,

‘wherein said host device sends to the memory system a chain of certificates including
a plurality of strings of certificates, each of the strings including at least one certificate, said
controller verifying consecutively in a sequence the strings of certificates, wherein said
strings are sent in said sequence and said controller causes each string of certificates to be
stored in said non-volatile memory, and causes at least one strihg of certificates stored in said
non-volatile memory to be overwritten by a string of certificates received from the host

device after the string that is overwritten.

- 86 of 88 -

WO 2008/013656 PCT/US2007/015304

43. The memory system of claim 42, said controller allocating memory space that

is not more than enough for storing each of the strings of certificates at any one time.

44. - "The memdry systein of claim 42, wherein the controller detects whether at
least one of the certificates received from said host device is the last one in the chain of

certificates.
45. The memory systém of claim 44, wherein the last certificate in the chain
contains an indication that it is the last one in the chain of certificates, said controller

detecting said indication.’

46. The memory system of claim 42, wherein the mc;mory syétem comprises a

memory card.

- 87 of 88 -

PCT/US2007/015304

1/33

WO 2008/013656

-- o -
boEms_ yse|q \Tom F.Q\l . $2~\] eomeqisoH

(= A ...or::ww_.m.@m-\e

< _ _
| | m_ﬁm_u_ . | . 8 P 4pisoH |
N T ’ —
EJHH\ , Wvd8 cN/HH 9!
~ 19ousnbag _ : 1 _ o "
/1 use|4 | * | sngison | |!

| . _

— . ge/|__ BV |

odid I or o] |

J Y]

o YNNG |, .. wial | % “

-] useid Ssubuzodhy e o [|

pe~ T] | Nze 1

_ Y n | “

ssiboy | NdO % NNE | sisibay | s1a)siboy _
T _) . "

nid o | ‘ nNg b} WiH “
Y A =.] |

ainpoyy ssaooy essydiisg |/ ce “

, I v _

BgL _ 2l _

_\ Y /4 _

SWYY Ndd| ndo |

_

4.

PCT/US2007/015304

WO 2008/013656

2/33

A
N
[]
®
‘ ddy
¢ o onuon | | 9l peey
100100 $5900Yy paseg | ¢99V WY |
aNy 4 |We| ¥ | Y _ jddy - sejoy Joy (
- @ - UONEBILUSP] }SOH . (auinusg
MWH | o | M| wy VI pddy - ple
$319]]0d SS90y =~ - 2es(@ N7 S S|
suibu3 XY | Qf o® |ddy
oydAiy X | x |ma| x | . wE uonednuUaYINY
| Liasn | pien
1 My | u < J@W zddy
A A 'Y ﬁ“ v\.ow
®
1 J
SO~ -
<d
_ wojsn
SIS b0 19
peays Jusjuo)
SJUM Pa}28)0.d
peSy _ Y , plen g 'd .
: = wojsny SJUMS
‘ ‘ @ "y peays
F r 1 WY/ OS
| 0d eaJy Jesn @mm& pajas)jold ple)

SpJeD UORRIGUSED MON NSIQUES

PCT/US2007/015304

WO 2008/013656

3/33

v "Old

[AR)F

3o qgend

1ed

0-j8d

‘uoniped wajshg

HS_%&
- ¢d

AN

£ Old
uojeg
Zd

VAN

Yco_u_t& |
- ld

uoniped

> 2ljqnd

- 0d

uojived ¢d

uolued zd

uoniyed Ld

uonied
aland 0d

uoiiped weisAs

PCT/US2007/015304

WO 2008/013656

4/33

§ 9l

~dd

[
] =\
1+ £ - pesy t# sbuajieyn -
[: 81gnoQ AoXs3v S3v
“ siybry Qi Aoy _ ug
. - < pouIe Iy wyoBly | ¥V
| . wn.n_ uonealjuayny SIERUaPaLd ﬂ_mo.__<
" Q1 uotiiped _
| YoV J
E —
1 \ s)ybiy j0nu0n) ssagoy J
I , -ajepdn/eieieq/aleald .
“ - sujewoq ‘sqdoy CEEVECETLE
I SofjsuajoRIRY) UOROY —
“ “ ST o agL | Aedoiand | pid ”
[peay |# - ,
_ , < POYIBIN wyobyy | IV
g4 1 ~__SlVPESY G# - uojesUBLINY . S|efjuspal) u_mo.__
S Qi Aay ,
4d OV
Q| voiyed V.
pesy 4]
pEay oH sseqd payseH | piomssed | piomssed y
sy afey e POUW | siequepasy | WipioBly | ¥V
24 d uoneanuayiny . uboq
@l uohiued HOV |
| Jd9v)
weyshs yss Y.

PCT/US2007/015304

WO 2008/013656

5/33

'l

o
m
<

ACR

.\\\
JHE
< <[] <

\

]
N
A ol

Level 3 "

Level 3

- Level 1

FIG. 6

WO 2008/013656 PCT/US2007/015304

6/33

AGP
Level n

AGP
Level 3

AGP
Level n

AGP
Level 1

AGP
- Level -1

AGP
Level 1

AGP
Level 1

AGP Y}
LeyelZ

"AGP
Level 2
AGP '

- Level 2

[——— e —————

Level 3

Level 3

_ A\ Level 1 '
— —{ Root | _ :
. FIG.7

r--—---—--—_-———-————-v_<

WO 2008/013656 PCT/US2007/015304

7133

Create System ACR ' : ‘Create Systerﬁ ACR
Host Side | . _ - Card Side
Issue SSA Command to ' N | Create System ACR
Create System ACR | - Command Received
1 - \-202 \-204
Read SSA Status , | N 208 System 206

ACR Already

Exist
?

216

Return Failure
Status and Stop

218

Card

Status OK
?

210

212
Yes - et
222 (Ret"m Failure ACR Creation
Yy Status and Stop Allowed
Issue SSA Command to ?
Define System ACR Yes
Login Credential
| ' — 214
l 226 _ - -
_ Return OK Status and Wait
System ACR Ready '
. ' 1 S~ 224
FIG. 8A v | System ACR Credentials
- - : Command Received:
: " Update System ACR

Record, Return Status OK,
and Wait for Creation Done

f [-228

System ACR | System ACR Creation Done
Cannot Be Command Received: Retum
Updated or OK Status, Mark System
-Replaced ACR as Existing and Active

FIG. 8B

WO 2008/013656 PCT/US2007/015304

8/33

~~ Does
Adding Root '
AGP Require System ACR?
(Set to Controlled)

Syétem

ACR Exists
?

Y

©e 252
/-

Authenticate through System ACR
and Establish a Secure Channel .

l ['-254

Use SSA Commands to Create
Root AGP and Root ACRs

256 :
, l - . . _—258
Switch the AGPs to Operational | gy it B :
‘Mode. Existing ACRs in AGP(s) |] Dl'f'at;'e R_‘ﬁ :.‘SP P;‘fgg“ | '
Cannot Be Updated, No Addition |1 "€ature. Addiiona v FIG. 9
b Cannot Be Created |

of New ACRs to the Root AGP

\

- o 270 | Process Used
Authenticate Through an Existing ACR | /~ to Create
. m1, m2, s1,
l 272 A

H | Request to Create Account (ACR)

- FIG. 10

274

Authorized

2 Stop

Yes 276
/-
HIC ACR Created ' p

WO 2008/013656 PCT/US2007/015304

9/33 ‘
Create 2 ACRs (m1, m2) in Marketing AGP, 2ACRs (s1, s2) in Sales AGP
Level1 ' Level 2
Marketing AGP /’EE@?’S/—’ Sales AGP
m1 (ACR) AGP . s1 (ACR)
m2 (ACR) / s2 (ACR)

o~

. ~

| ‘Marketing T~. - -
‘ F I G. 1 1 Information - ROnly "~ _ R ane List
H Specify Accounts for 280
Delegation of Specific Rights |/~
" 3 Markefing ASP |~ s1(ACR)
c Authorized » m1 (ACR)
Stop m2 (ACR)
Yes _
284 ,
— o Price List

Rights Delegated

FIG. 12 . FIG.13

H [Authenticate Through an ACR V‘?OZ

Y

H Request to Create Key, Vs 304
Provide Reference Name
306

c Authorized ™, Stop ' s 310

? ; : » Creator Has All

. H | Assign nghts Rights
Yes f308 and Permissions (R/W Delegate..)
312 . i i
c | Create Random Key with | ((S)?:;S E;ggzsnglth
Reference Name for Account 7 C| Modify PCR
* Share Keys

FIG. 14

WO 2008/013656 PCT/US2007/015304

10/33
H/IC Authentication Process | /~ 330
1l 332
=
H Specify Account '
- - 334
P
H Request Deletion of Access
Rights/Permission of Another Account
Cc Authorize Stop
Yes
338
/—
Access Rights or
c Permission Deleted F , G- 15
" H Request Access | /390
352
c ~ Access Authorized Stop (Accesg
| ? _ Rights Deleted)
H
H .
c Stop (Penniséion

Deleted or Expired)

360
/—

c | Permission Granted Fl G. 1 6

PCT/US2007/015304

11133

WO 2008/013656

gioHd V9

SUOISSas YD

uoissag uadQ

$8800Y 8814 GNVYN | n_., D_ 853920V 8314 ONVN
Z2 Z
[\ : 3 [\
zZ 2
]]]
oLy .
X QI Aoy
" pue \ uoissag
pLp- | Buisn ssaooy
. , |
B)eQ PajeIoossy ol Tl 1o .\s/_.
uoissag L D _ _ 2
2,5J| usdojo ejqel gl 8] |¢ oopJ] X Q1 fo¥ Buisn ssacoy m —
L a1 12 |8 _ c
_ nl o] o _
X Q1 fay <- X 9ji4 | X Q1 Aoy <- 8yi4 g
a0y L Y Y gop S Lo’ m
- y _ . . z) \ /
X Al A8y Yim , . - A4 X alLASy yum
Vov\ CHERS =0k 20y .ﬁ uoheapusny VOvH 9|4 sSa%0y Now\ ,wco_umo_«cmr_u:x\
SUO|SSES JOYIO “SA uoisseg uedo _ « SUOISSag 35.0 "SA uojssag uadp

PCT/US2007/015304

WO 2008/013656

121733

8L 'Ol

18y Aay| Jusuon
oy0adg Ay Jo [BqojD
1817 #oeig Jo SlyM

uopepwI] |

BUON J0

1S17 ¥oe|g Jo sjum

9y sulelsuo)) jeqo|o

- §58%0Yy

Pejted [eqoj jusun)
$S800Y pazuoyny-un
40 JaqUINN @ARONSU0)
pajie jeqolo xepy
pazuoyiny Ajjnyssasong
JO JaquinN Ul :$S800y
Josjold dnyoeg
AluQ [euuey) aindsg

_ anjep AaY
aWeN 8%uai9)aYy a|pueH

aje)s ualing

Xe 40 Uiy

("018 ‘!9)uno”n

‘awl] ‘sajAqy) adA)

SujeJ}suo9

Aoy Jusjuon

90UB.8jY SuleNsuo)
|suueyQ a.ndag 8210

uojjebajaq ssaooy

. . A.Ouw
‘I ‘Peoy) siybiy

3o0|qun o} [efuapai)
Jo JaquinN Wi
sjejuapal)
Bupooiqun o3 Joy

- abesn pajieq juaung

abesn pa|le

JO JaquINN Xen

(018

'vSY '$3v) poyiai
'0)0 ‘deimun

'uBIS ‘yiny) abesn
(psomsseqd ‘Aayy) adAy

sa19110d

sjejjuspai)

WO 2008/013656 PCT/US2007/015304

13733

Login/Password Type

Host : ' ' - Card

Specify Account

Send Password -

Check if Password
and Account Match

‘ lncremtzg; es:

: Set Account

Error Counter . ‘as Authenticated
for Account etc.

FIG. 19 - | ' ReturnAStatus

WO 2008/013656 PCT/US2007/015304
14 /33
Host Root
5027 | CACert
l-(lost 1ICA : Host n CA
. Level 2) cee (Level 2)
504 e Cert Vs Cert
. N / \
: l-(ifst 1CA -
‘ evel 3)
Host Cert : Cert Host Cert
506 B 510 S
_ <
A1 x c1 514
_ Host Cert
: 512 /
FiIG. 20 - B1
Device Root
Device 1 CA , Device n CA
/ (Manufacturer) X (Manufacturer)
522 Cert - / Cert
- 526
Device Cert Device Cert
524 /] 528 /|
A2 | B2

FIG. 2

PCT/US2007/015304

WO 2008/013656

156/33

Z¢ "9l

Y t44% e 0vS
4 g \ v N
s \
LS8jdwo) o , - Sledwosy
uoReayuBInY, 383v Ge1 GNo iss) 1983 [AN [uojieayuauiny,
a)edwiog uojesiuayINY Q] _ |
UOISSag UelS, = AsA - — : : - UoIssag uels,
: as3v (9¢L QWD NSS) F=3v : SRS
) uolsses el S |
1] . . ' 1
A8} uoIssog e—11aquInN Wwopuey == jdAsous . . »{ JdAioa = Aoy uoIssa
— ‘ - ¢4 AIND INSS d _v_ 5%e8
z9¢ 181088 JaJse|\-ald adine(199 | ,fvmm aseyqd Uoness)
" § . . _ As)| uoissag
| | ;
~ _ : _)
o~ \[eueduoofe—c—{ iy | ¢ AND WSS A8 150H Ajuep A oo
41 . - ¢ aw ! _ _
A 4 Jess—} | [sseud
J8qQUINN Wopueyt—¢ € —{ ubig | UonedylsA
L — 1] i anowss ebusiieyg someq 199 — Koy ajenid
_ |
S = ™
sjeoyen m —r mumuom_.mw_nmo
<m0vm Aoy onang 1 44 aseyd
R JSOH @ — ‘ _ uonesyLan
L 266" g R AND WSS 8edyis) 1soH 189 Aoy o__nan
2)eoyIa)D v ,
9pc /| 10041500 ﬂ ,Smcm._ Ao, = =)
| (uoneonuayIny Aem-auQ) 055 . . e b8
 sieiuspai) Yo 0 L/ UleyD @)eoyiuad IsoH | A aleAld 1SoH L/
— Em,uw>m INSS . L | wa)sAg jsoH y

PCT/US2007/015304

WO 2008/013656

16/ 33

Vvee "OId

m..N wm

EZ°OH F-----

SN mm

(| . A
| e)eoye)
I o i -
ey dligng - Ao 2gnd :
. IsoH adlneq -
DULMIET) .
v0 | > J) _
= 22 WD WSS 52 N e e R\
= S)BOYa) 2080 18D apeoiIag &
~ d01A9Q
Rop (et ==\
sl T =3 . aNOWss onaond
sleoype) SIBOLINSD ISOH 198 [HoREDLUA
L 1SOH Key aljgnd
J
m ‘o =) ﬁ ybusT ﬁ = m
ojeoya) | "oX BBA | yeyy ajeoypag] Ao ureyy ojeoyal | Aoy sjeAud | eyeoypad
)00y 1SOH 991AeQ . JSOH 1SOH . |100Yy 821n8Q
-~ (uopesyusyiny [emny)
' S|BRUSPRIO MOV
L wasAs WSS) WaJSAS 1SOH

PCT/US2007/015304

WO 2008/013656

171733

K: 40

\.Nvm \va
N 0
,191dwon N _ . B - 21e|dwo)
uojedyuBINY, m 3s3v e ano sl LaS3Y [ARA] uofesiynusiiny,
* ajo|dwon uoneoRUAYINY * | o
MoIsseg Lelg, - Aap | Q-SIY he— , - a1 UOISSSS LE)S,
_] 22V *Teer awo wss) 253v SHHS
) | © Uoissag pelg ? |
f : . -
£ay| uoissa 1dA308(] b= dAsous fe—J1equinN wopuey| '|Aey uoisse
2 dhioeg TS Jdkiouz quiny wopuey| '[Aey uossses

101088 J9)SEN-91d ISOH 18S

)

JaquinN wopuey -»{1dAiou & 1dAi00
T 3 & QIND INSS ‘ d
101095 IISEIN-Bld 29INa(] 18D _ aseyd uonealn
A&y uolssag
W,
[T N
L — . -1 AJUOA L € > dledwon
¢é QNI WSS —
ke¥ a0inaQ Aja H 1
ubig — € : _ : - JaquinN Wwopuey
| - | (L QNOWSS 1] TN oPRY
LLI abus|iey? 1SoH leg
asedwo) ISIETN € _ € ¢
; _ ¢t ANONSS
| “ A8 150H ApIap,
,) . J aseud
13qWINN Wwopueyf—¢ —£ £ T .A ¢ ubig UOLEOLIIAA
L abuayjey) eo1neq j89 A Aoy oﬁz_nc

PCT/US2007/015304

WO 2008/013656

18733

2¢ ‘9l

140) =BT =1)
ainjeud 43quinN wywoByy [suny syepdn| 1. wiyob) fo 19 Joqunt
IS | jeysg joisn | ubig IXeN omieudis | "l | oign | sjeq g e
auQ IS) SI UfeyD aly el
Ul oINS UsLN) JI 9]3408| ’
sajeolpu| be) w__mh ? o[EUld Sl F ¢
_ S3lAg u Aay saiAg uf
sleoypie) joybusn | B0 | szgaoyuey | ¢ | MO
adAy awep | ybua | jos
Sjuswiuoy ‘Bly wawnbiy "Bay memmo
 (AE | 058
. -665 166 G665 £65 166
|:..|\||.|_.,|nhn|,1 nnnnnn A

_ _ _
Tl fiE o

(8)oss

(9)065

(v)o6s

R

|/ 2)o62 (1)oss

WO 2008/013656

19/33

CERTIFICATE CHAIN

» Card :
(Card Authenticating Host)

Receiving. Sequentially

From Entity Being
Authenticated

| |

Certificates Received

1

Aborting the Process

Certificates Fails
to be Verified and
Notify Entity -

608

Has

Last Certificate

Been Received

and Verified
9

Yes

Proceed to

Next Phase / 610
After Certificate

Verification

FIG. 26

Certificate Chain /602
Verifying Each of / 604

_if Any One of Ve 606

PCT/US2007/015304

CERTIFICATE CHAIN

: Host v
(Card Authenticating Host)

Send Next

' A 620
————=1 Certificate in / ‘

_ Chain

622

Has.
Failure Notice
Been Received

From Card
NG ?

Stop

626

Has '
Last Certificat

Been Sent
? L

Proceed to _

Next Phase / 628
After Certificate ’

Verification

FIG. 27

WO 2008/013656 PCT/US2007/015304

20/ 33
CERTIFICATE CHAIN 'CERTIFICATE CHAIN
Card Actions _ _ ~ Host
(Host Authenticating Card) ~ (Host Authenticating Card)
630 ' ' .
Start 4 Send Request for] /~ 640
-Next Certificate :
_ in Chain
N 632 | : 1
~ Receive : . ' _
Request for - : _ -
Next Certificate Verify Each 642
in Chain Cerfificate e
? Received, Abort :
and Notify if Fails
Send Next | 634
Certificate |7~ : 644
in Chain Has ‘
Last Certificate ™
Been Received and
_ Successfully
636 Verified
Has . ?
- Failure
Notice Been
Received
Proceed to
Stop | , Next Phase / 646
After Certificate
Verification
Last Certificate

Been Sent
2

FIG. 29

Proceed to - ' 639

Next Phase / .
After Certificate

Verification

"FIG. 28

WO 2008/013656 PCT/US2007/015304

21/33

Host
(CRL on Card)

Reads CRL

From Card /552

User(Public)
Partition

!

Sends CRL

654
and Cerificate / _

to Card

l

Proceed to

Next Phase / 656

Unless Receive
Failure Notice

FIG. 30

Card
(CRL on Card)

Receive CRL

658
From Host - /

with Certificate

l.

|Check Whether] _ 660
Cerificate |/~

S.N.ison CRL

l

Send Failure

Notice to Host / 662

if Certificate
S.N.is on CRL

FIG. 31

WO 2008/013656 PCT/US2007/015304

22733
REVOCATION
At Authenticating ’ - At Entity to be
Entity (Card) : : Authenticated (Host)
| Receive Certificate | ~~ 792 ‘Send Certificate | 722
and CRL From Entity[- : ' and CRL
‘Process Portions of CRL : - Proceed to Next 724
and Search for Certificate { /94 . Phase After e
S.N. in CRL Concurrently, | /~ . Certificate and CRL
Processing Includes Verification.
Hashing CRL Portions o ’
and Comparing to ;
Decrypted Hashed Portions : FIG_ 34

Checking if Current Time Ve 706

is not Within CRL
Expiration Time Period

l

Check Whether Time 708
for Next Updated CRL -
in CRL has Passed

J

Authentication fails if
Certificate S.N. is on CRL, 710
or if Current Time /

is not Within CRL
Expiration Time

Period, or Time for Next |}

Updated CRL has Passed

FIG. 33

WO 2008/013656

23 /33

Card
Host Sends Data to Card

802
/

Authenticate Host

PCT/US2007/015304

‘Send
Certificate
to Host

- I /"806

Yes

804

Has
Host Request
for Certificate Been

Received
2

— 808

Has
Data and

Command Been _No

Received From

‘Host
?.

810

Is
Command
for Signing
Dgta

Yes
— 812

Sign and

| Return Data

- FIG. 35

814
r
. Use Private

Key to
| Decrypt Data

WO 2008/013656 PCT/US2007/015304

24 /33
Host : Host
. Host Receives Signed Data: ‘Host Sends Data to Card -
822 — 1.
Send Authentication / . | Send Authentication / :862
- Information - Information_to Cad |
1 |
' Request and Receive|
Requestand | ~ 824 . Certificate Chain | ~ 864
- Receive : to Certify Card :
Certificate Chain : - , - Public Key

1 ' | o EncryptData | /~ 866

Send Data and 826 : :
Receive Signed e Using Public Key
Y

Data Back
o ‘ - 868
Send Encrypted e
. Data to Card

FIG. 36 FIG. 37

WO 2008/013656 PCT/US2007/015304

25/33

Receive General information / 902
‘Query From Entity

904

Has
Entity Been

Authenticated
?

Supply Public 908 Supply Public and 206
Information to |/~ - : Shared Confidential |/~
Entity - information to Entity }

FIG. 38

Receive Discreet / 922
Information Query '

924

Has
. Entity Been

Authenticated
?

R
928 -
Deny- Supply Only Portion .926
Access 4 - of Confidential L~

Information Allowed
by Contro! Structure

FIG. 39

WO 2008/013656 PCT/US2007/015304

26 /33

24 ' » :
| \(Host | _ /—1000.

Host Side

10_02 SSA Protocol |
Transport Layer N

1006 _
N ssMcCore APl

1004~ | SSM Core

U | Device Internal Appliéations
. 3 | _
- | 1010 -
> .
1012~) o FIG. 40A
_ Cryptographic Library
f | | ﬁ — 1022 SSM Core)
SSA Command Handler
| | 1024 »
b |
| ssA
_ Manager 1 :
: +— 1028
Ir1030 JT r“ml ke
SSA . ssa. | | SSANon
Secure |ja— Database . Secure
Operations Operatlons
1032 1034
@ ~ j t 193 j t
CryptFlash . To SNDK Layer |
lis | | FIG. 40B

WO 2008/013656

O
_ —

Authentlcatlon
Service

PCT/US2007/015304

27 /33

internet] /~ 1054
Serwce .

i
A

FIG. 41

- OTP GENERATION USING SEED

HOST

User Authentication
to User ACR

CARD

SSM SYSTEM

1172
4]

L.

r

‘Authentication Successful 1~ 1174

7050
'

- FSE
Controlled by

FSE

ACR

FSE with
Forward with FSE ID Assoc.
Get SDO Associated with SDO FSE ID
/ > : ' t Invoked
1176 Request to Read — 1178
Seed From SDO 11180
<€ - , _
| Seed Read From SDO 1182
»| Generate
(- 1052 OTP From
Seed
Authenti-
cation
Server | Forward _OTP e 1184
) 1186 —

FIG. 44

PCT/US2007/015304

WO 2008/013656

28733

No:\

POLL

Comm. Pipe

| 9044~

dov
(Buiuoisinoid)

JETNEIY
uoledjusyiny -

WO

~-F=-\£
0as / 0as / 0as

el
HOV oy ¥V
(leusauy) N L co_mwmwo
Jesn 188 :
354 d10 n #sN dLo
Hov
(100y)
ulwpYy
V4@ |
:/8:
dOV 100y

WO 2008/013656 PCT/US2007/015304
29/ 33 :
1102
SEED PROVISIONING ™
. FSE
CARD Controlied by
HOST SSM SYSTEM OTP FSE ACR
Authentication Request
to Authentication ACR (" 1122
Authentrcatlon Successful ya 1124
Generate
Seed Send Request to Sign Seed Fowvard Request Through FSE
Request |Request, Select COMM. PIPE] COMM. PIPE = invoked
' ' : " N v
1126 '/ _ Request Slgnature by Key 1128
o |n DO — 1130
Slgnlng Completed ya B 1132
_ Request IDO Certificate Chain -~ 1734
e 1052 IDO Certificate Chain Provided 1136
_ : > :
Authenti- Signed Seed Request and
cation IDO Certificate Chain
Server | Forward ~ Through COMM. PIPE 7138
| Seed Encrypted with h '
Authenti- | Assy ID Public Key and
cation User ACR Information L — 1142
Server Select COMM. PIPE Forward Through COMM. PIPE/ FSE
. > e > invoked
k 1140 _/ Request Decryptlon of Seed :
1052 _ ' Usmg Private Key in Assy ID - 1144
Decryptlon Completed y<B 1146
Request Creation of SDO and
Storing Seed Therein, Request
_to Associate SDO with FSE ID 1748
EDO Creation, Seed Storing,
Association with FSE ID
Completed y<i 1150
_ L '
Request to Delegate Access
Rights to SDO to User ACR -~ 1152
E';ogt - | 1154
inds Del i | —
Slot ID elegation Completed /: A
to SDO Name (Siot ID) Through 6
User ACR| Forward COMM. PIPE — 115
1158 /

PCT/US2007/015304

WO 2008/013656

30/33

AR_S: \.::N.VENE:

[354
2041 /S "ed
L\ B S TN

bOL}

Comm. Pipe

2 ¢ \
xmon_mov
\

Ok
_ dov 4oV dov
(Buiuoisinold) feusayu)) L dOv
PPYVESS oeqhe
asuso o e
o Goow)
- R /1 \ uuwpy
Gy 'Old 40~ A
dOV 100y

WO 2008/013656 PCT/US2007/015304

31/33

LICENSE PROVISIONING AND CONTENT
DOWNLOAD, KEY IN LICENSE OBJECT

FSE
_ . CARD : Controlied by
HOST : SSM SYSTEM ~ DRMACR
| Authenticate to License :
Server ACR a (L 1202
Authentication Sdccessful T 1204
e
License File, CEK (Key ID, ,
Key Value) : - _
License SELECT COMM. PIPE Forward License File, CEK FSE
Server | Player Information Through COMM. PIPE invoked
g 1206 — g | | _ 1208
-Request to Write License File 1210
| Lo Hidden Partition yd
License File Written - T 1212
Create CEK Object, Store Key
- Value in Object, Associate CEK 1214
__Object with FSE ID Attribute T~
CEK Object Creation, Key Storing,|
Association Completed y<Bb 1216
Delegate Read Access Rights
to CEK Object to Playback ACR 1~ 12718
Access Rights Delegation |
Completed y<ii 1220 _
License ' : ' License Stored fhrbugh
Server | Forward ,—1224 | cOMM.PIPE = | A 1222
- : ‘Write Content File Encrypted| - '
License | with Key Value in CEK
Server to Public Card Area
> _ >
' "~ 1226 -

FIG. 46

WO 2008/013656 PCT/US2007/015304

321/33 |
PLAYBACK
' FSE
- : CARD - : - Controlled by
HOST ‘ SSM SYSTEM - DRM ACR
Authenticate '
to Playback ACR - 1242
Authentication Successful 1~ 7_244 ;
Read Content Associated | FSE with ID Associated with FSE
with Key ID ‘ Key ID in CEK) Invoked
> -
: : . ' . - 1
1246 — Request to Read License o ggg
: ‘Associated with Key ID T
Read License From :
Hidden Partition 1252
Check
License
- <Content Decryption Approved 1 1254
_Content Playback ' -
1256 —

WO 2008/013656 PCT/US2007/015304

33/33

LICENSE PROVISIONING AND CONTENT
DOWNLOAD, KEY CREATED BY CARD FSE

CARD S : Controlied by
HOST : SSM SYSTEM - DRM ACR

Authenticate to License

Server ACR y<Bb 1202

'Authen’tication Successful 1204

o License File, Key ID : ' - '
-License 'SELECT COMM PIPE Forward License File, Key ID 1 FSE
Server | Player Information > Through COMM. PIPE Invokec
T 1206 __ 1208
' 0 — 71210

" Request to Write License File
&Hidden Partition

License File Written — 1212

N N A

Generate Key Value, Create .
CEK Object, Store Key Value
in Object, Associate CEK 1214
Object with FSE ID Attribute T ¢

Key Value Generation, CEK
Creation, Storing in CEK Obiject, A
Association with FSE ID

Attribute Completed T 1216

P

‘Delegate Read Access Rights _
to CEK Object to Playback ACR A~ 1278
€——

Access Rights Delegation .
Completed - j<B 1220

>

License License Stored Through

Server Forward - 1224 COMM PIPE . 41222
rv <__(0 - /_ /

' _ . Secun System Encrypts
License Write Content File v Contertl)t, Fl?le with Keyr)(?alue .
Server | Associated with Key ID _| \dentified by Key ID

% | 1226/' j
FIG. 48

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings

