(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

10 October 2002 (10.10.2002)

PCT

A0 0 OO

(10) International Publication Number

WO 02/079964 Al

(51) International Patent Classification’:
3/14, 17/30, 17/28

(21) International Application Number:

GO6F 3/00,

PCT/US02/04328

(22) International Filing Date: 12 February 2002 (12.02.2002)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

09/822,644 30 March 2001 (30.03.2001) US

(71) Applicant: PARK CITY GROUP, INC. [US/US]; 333

Main Street, Park City, UT 84060 (US).

(72) Inventors: LITSTER, Andre; 11 South 200 East, Mor-

gan, UT 84050 (US). BROADHEAD,
600 North, Heber City, UT 84032 (US).

Shaun; 957 East

(74) Agent: CHRISTENSEN, Kory; Madson & Metcalf, 15

West South Temple, Suite 900, Salt Lake City, UT 84101
(US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
CZ,DE, DK, DM, DZ, EC, EE, ES, Fl, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SIL, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN,
YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Burasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent

[Continued on next page]

PROGRAMS

English

Language Resource
Bundle
110

LSE
130
A

Language Resource

100
¥

French

Bundle
110

Language Resource
Manager
120

Selected
Language
160

4
LSE
KEY 130
150

Y

Application Program
170

LSE
130

GuUI
140

WO 02/079964 Al

(54) Title: SYSTEM AND METHOD FOR PROVIDING DYNAMIC MULTIPLE LANGUAGE SUPPORT FOR APPLICATION

(57) Abstract: In response to a user activating a language
switching mechanism (250) to indicate a newly selected lan-
guage, a language switch component (25) sends a language
key (150) that corresponds to a first language sensitive el-
ement (130) displayed in the user interface to a language
resource manager (120). The language resource manager
(120) receives from a language resource bundle (110), which
corresponds to the newly selected language (160), a second
language sensitive element. The language switch compo-
nent (150) then replaces the first language sensitive element
with the second language sensitive element. The replace-
ment process is then repeated for all language sensitive ele-
ments in the user interface.



w0 02/079964 A1 IO ORO0 000 0O A

(BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,  For two-letter codes and other abbreviations, refer to the "Guid-
NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

Published:

—  with international search report



10

15

20

25

30

WO 02/079964 PCT/US02/04328

SYSTEM AND METHOD FOR PROVIDING DYNAMIC MULTIPLE
LANGUAGE SUPPORT FOR APPLICATION PROGRAMS

BACKGROUND OF THE INVENTION

FIELD OF THE INVENTION

The present invention relates generally to the field of data processing.
More specifically, the present invention relates to a system and method for
providing dynamic support for multiple languages within one or more application

programs.

DESCRIPTION OF RELATED BACKGROUND ART

In the early development of the software industry, engineers and
developers knew the demographics of those who would use an application
program. Generally, due to the cost of software and hardware, users tended to
be middle to upper class business people who speak English. Additionally, the
developers and designers of the application programs were of the same culture
and nationality as the users of the programs. Translation and support for multiple
languages was not an important issue.

Today, however, with inexpensive hardware and software being used at
almost every level of society, support for multiple languages in an application
program is a very important issue. The importance of multiple language support
has also increased due to globalization. Businesses compete more now than
ever across international borders. Often a business will have several offices
around the world. As a result, the developers of an application program often
speak different languages than the endOusers of the program.

To accommodate users of different languages, developers identify which
elements of the program are sensitive to difference in language between users.
Generally, these elements are the displayable elements of the program’s user

interface. These elements of the user interface are referred to herin as language-



10

16

20

25

30

WO 02/079964 PCT/US02/04328

sensitive elements (LSEs). LSEs may include displayable elements such as
symbols, numbers, text, icons, graphics, and the like. LSEs are not limited solely
to words and phrases. Likewise, some icons or graphics may be understood by
only a particular culture. Additionally, certain audio clips such as tones, chimes,
and the like may be LSEs. The definition of which elements of an application
program user interface are LSEs depends largely on who the potential user of the
application program will be.

A conventional approach to providing multiple language support is to
distribute an alternative set of LSEs with the application program code.
Generally, this is implemented in one of two ways. First, the actual code of the
program may include alternate text messages, icons, and other LSEs that are
compiled and distributed with the program code. The alternate LSEs are
displayed based on a global language indicator condition. For example, if the
language indicator is English, then “Hello” is displayed. [f the language indicator
is Spanish, then “Hola” is displayed. Similar conditions may be dispersed
throughout an application program. Under this technique, modifying and adding
support for new languages to each LSE is very expensive because a computer
programmer is needed to navigate through the code to change the LSE
conditions.

A second conventional approach for supporting multiple languages is to
build separate user interface code. For example, one set of code may display a
set of database fields and field indicators to identify each field in a user interface
window. The field indicators are generally LSEs. Therefore, a completely
identical set of computer code may exist to perform all of the same functions as
the first, but simply include field indicators translated into the the desired
languages. As a new language must be supported, the code containing LSEs is
then duplicated and the field indicators are translated.

The two conventional approaches outlined are generally referred to as
“hard coded” approaches and have several limitations. First, the application
program code must be changed each time a new language is to be supported or
an error in translation is found. Second, changes must be implemented by a
computer programmer so that the application code continues to function properly.

Because the changes are hard coded into the application program, the cost of



10

15

20

25

30

WO 02/079964 PCT/US02/04328

fixing or modifying the program is very high. Also, duplicating the computer code
increases the amount of code which must be changed if a programming bug is
discovered. Additionally, each change in an LSE may require that the whole set
of application program code be updated. Third, the indicator of which language
the application program is to use is generally only set when the application
program begins execution. Even if the language indicator may be changed, the
whole program generally must be re-started to implement the change.

Application programs that support multiple languages have generally
made assumptions about the user to simplify the task of providing mulitiple
language support. For example, it is often assumed that the language used in
the Operating System (OS) of a computer is the same one the user will want for
application programs executing on that OS. Alternatively, it is assumed that the
physical location of a particular computer is a reasonable indicator as to what
language the user desires to use for all application programs on the computer.

Because these assumptions may not always be true, most OSs allow the
user to modify the OS configuration settings to support a different language.
However, the process generally requires that the computer system be powered
down and re-booted. Re-booting generally takes from one to five minutes.
Sometimes, the user does not know how, or is not allowed, to change the OS
configuration settings.

While assumptions about the desired user language may have worked in
the past, today’s diverse workplace have made the assumptions impractical.
More and more companies and organizations operate offices in various different
countries. Additionally, people often live in countries whose native language
differs from their own. Clear communication between the user and the
application program is vital.

Conventional multiple language support by re-booting the OS or re-starting
an application is impractical. For example, applications that serve as point of
sale (POS) terminals, i.e. check-out stands for a retailer, are often operated by a
minimum wage employee whose native language may differ from the majority of
people where the store is located including the manager. Re-booting the terminal
for an exchange of employees, or to allow a supervisor to momentarily operate

the terminal, causes delays which most customers will not tolerate. Similarly, re-



10

15

20

25

WO 02/079964 PCT/US02/04328

starting the application may require a sales transaction to be re-initiated as well.
Configuration changes to support a different language and re-starting may lead to

a significant loss of business.

Accordingly, what is needed is a system and method for providing dynamic
multiple language support for application programs. What is also needed is a
system and method for providing dynamic multiple language support for
application programs that allows new languages to be supported without using
expensive application programmer resources. Additionally, what is needed is a
system and method for providing dynamic multiple language support for
application programs that separates application program support and upgrades
from those relating to language translations. What is also needed is a system
and method for providing dynamic multiple language support for application
programs that does not require re-booting the computer system or re-starting the
application program to change which language is being used. What is also
needed is a system and method for providing dynamic multiple language support
for application programs that allows for dynamic switching of the current
language of the user interface based on who the user is rather than the location

of the machine or configuration of the operating system.

BRIEF DESCRIPTION OF THE DRAWINGS

Non-exhaustive embodiments of the invention are described with reference to

the figures, in which:

FIG. 1 is a schematic block diagram of a system for managing multiple

languages;

FIG. 2 is a schematic block diagram of a system for switching between

multiple languages;

FIG. 3 is a schematic block diagram illustrating a system that replaces the

graphical user interface of an application program;

FIG. 4 is a block diagram of components within a language resource bundle;

4



10

15

20

25

WO 02/079964 PCT/US02/04328

FIG. 5 is a schematic block diagram illustrating a parser within a system for

supporting multiple languages;

FIG. 6 illustrates a language resource file used to support a system for

supporting multiple languages;

FIG. 7 is a block diagram illustrating use of the present invention in an

application framework; and

FIG. 8 is a flowchart of a method for providing dynamic multiple language

support for one or more application programs.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention solves the foregoing problems and disadvantages
with a system and method for providing dynamic multiple language support for
application programs. For example, in response to activation of a language
switching mechanism, Language Sensitive Elements (LSEs) of a Graphical User
Interface (GUI) in an application program are replaced with LSEs that correspond
to a newly selected language. An LSE may be text, an icon, a graphic, a video

clip or the like.

In one embodiment, in response to activation of a language switching
mechanism an application program is preempted. A state of the current GUI
and/or application is saved, after which the current GUI is discarded. Then, a
new GUI is generated having LSEs that correspond to a newly selected

language.

Reference throughout this specification to “one embodiment” or “an
embodiment” means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of the phrases “in one
embodiment” or “in an embodiment” in various places throughout this

specification are not necessarily all referring to the same embodiment.



10

15

20

25

30

WO 02/079964 PCT/US02/04328

Furthermore, the described features, structures, or characteristics may be
combined in any suitable manner in one or more embodiments. In the following
description, numerous specific details are provided, such as examples of
programming, user selections, network transactions, database queries, database
structures, etc., to provide a thorough understanding of embodiments of the
invention. One skilled in the relevant art will recognize, however, that the
invention can be practiced without one or more of the specific details, or with
other methods, components, materials, etc. In other instances, well-known
structures, materials, or operations are not shown or described in detail to avoid

obscuring aspects of the invention.

Referring now to FIG. 1, there is shown a system 100 for managing
multiple languages. In one implementation, the system 100 includes one or more
language resource bundles 110 (LRBs) and a language resource manager 120
(LRM). The LRM 120 uses one or more LRBs 110 to provide language sensitive
elements 130 (LSEs) for display in a graphical user interface 140 (GUI).

An LRB 110 stores associations between language keys 150 and
displayable LSEs 130. For each language supported by the system 100, there is
preferably a unique LRB 110. For example, in the illustrated embodiment, a
separate LRB 110 exists to support the English and French languages. The LRB
110 is preferably an object data structure. Alternatively, an LRB 110 may be
implemented as an array, a linked list, or other data structure well known in the
art.

In one embodiment, an LRM 120 provides logic to receive a language key
150, access the appropriate LRB 110, and provide an LSE 130 that corresponds
to the language key 150. Preferably, the LRM 120 stores an indicator of the
currently selected language 160. The currently selected language 160 identifies
which LRB 110 should be used in retrieving LSEs 130 for given language keys
150. Preferably, the currently selected language 160 is set by default when the
system 100 begins execution. In one embodiment, the selected language 160 is
the same language used in the operating system of the computer. Alternatively,
the selected language 160 may be set initially from a configuration file, registry

setting, or other like initialization structure.

6



10

15

20

25

30

WO 02/079964 PCT/US02/04328

In general, the purpose of the LRM 120 is to receive a language key 150
and respond with an LSE 130 associated with the language key 150. Preferably,
a language key 150 is a unique identifier for an element that an application

program 170 is programmed to display in a Graphical User Interface 140 (GUI).

For example, the application program 170 may conventionally be
programmed to display the text “Hello World,” which is an LSE 130. The text
generally must be displayed in different languages in order to be properly
understood by users having different native languages. In one embodiment, the
application program 170 is programmed to display a language key 150 such as
“LK_GREETING”. The application program 170 may be programmed to
recognize language keys 150 as those variables that have an “LK_" prefix. The
application program 170 is programmed, in one implementation, to take the
language key 150, “LK_GREETING”, and pass it to the LRM 120.

Those of skill in the art readily recognize various other implementations
that would allow the application program to recognize language keys 150 to be
passed to the LRM 120. For example, a special LSE display routine may be
implemented that receives language keys 150, retrieves LSEs 130 using the LRM
120, and then displays the LSE 130 in different ways based on the type of LSE
130. This and other implementations are considered within the scope of the

present invention.

The LRM 120 receives the language key 150. Based on the currently
selected language 160, the LRM 120 searches the LRB 110 corresponding to the
selected language 160 for the language key 150. Once found, the LRM 120
retrieves from the LRB 110 the LSE 130 corresponding to the language key 150.

For example, if the selected language 160 is French and the language key
is “LK_GREETING”, the LRM 120 would search the French LRB 110 for the
language key 150. The language key 150 is associated with an LSE 130 such as
“Allo Monde”. In this example, the LSE 130 is a translation of the text string
“Hello World”. The LRM 120 then passes the LSE 130 to the application program
170.



10

15

20

25

WO 02/079964 PCT/US02/04328

The application program 170 receives the LSE 130 and displays the LSE
130 in a GUI 140 maintained, in one configuration, by the application program
170. The LSE 130 may be of various different types. For example, the LSE 130
may be a symbol, a character, a string, a number, an icon, a graphic, a sound
clip, a video clip, or other similar element that may be subject to differences

between languages.

An LSE 130 may include, for example, a whole graphic user interface
object or a sub-part of a graphical user interface object. For example, an LSE
130 may be embodied as a simple string displayed in a window. Alternatively, an
LSE 130 may be the title attribute of a window object, or a menu display string

for an item in a menu object.

LSEs 130 may exist at various different levels within an application
program 170. For example, LSEs 130 may be used in the application program
170 to produce reports, charts, or other human readable output besides a GUI
140. LSE’s may be defined for these forms of application program 170 output as

well.

In the case of a string LSE 130, such as “Allo Monde”, the application
program 170 simply displays the string at a certain location within the GUI 140.
The same steps as described above may be followed for subsequent language
keys 150.

Using the components discussed above, the system 100 in the illustrated
embodiment is capable of supporting an application program 170 with one or
more different languages. In this manner, language translations for LSEs 130

and application programming are separated.

The application program 170 may be written using language keys 150.
The translations and support of different languages is managed by providing
different LRBs 110. This separation provides less complicated application
program code. The separation also provides flexibility in supporting multiple

languages. Based on the selected language 160, an application program 170 is



10

15

20

25

30

WO 02/079964 PCT/US02/04328

capable of generating a GUI 140 using LSEs 130 from any of the languages
having corresponding LRBs 110.

Figure 2 illustrates one embodiment of a system 200 for dynamically
switching from one selected language 160 to another. The system 200 includes
a plurality of LRBs 110 and a Language Resource Manager 120 (LRM), as

described in connection with Figure 1.

The LRM 120 includes a language switching mechanism 210 which allows
a user to dynamically change the language the application program 170 uses in
the GUI 140. Preferably, the language switching mechanism 210 is a user
interface component such as a drop-down list of available languages, a menu
item, a button, an edit box, an icon, or other like user interface component that a
user may activate to indicate a desire to change the selected language 160.
Those of skill in the art recognize that the language switching mechanism 210
may activate other user interface components such as a pop-up menu, pop-up
window, or other component to allow a user to further designate what the

selected language 160 is to be.

In the illustrated embodiment, the language switching mechanism 210 is
implemented in the GUI 140 as a button 210 on a status bar 220. The user may
click on the button 210 to cause a pop-up window (not shown) to appear in the
GUI 140. The pop-up window may display two or more buttons indicating
different languages that may be selected. The user may then select a language
button, after which the pop-up window provides an indicator of the new language

230 to the language switching mechanism 210.

In one embodiment, the LRM 120 provides the language switching
mechanism 210 with a set of two or more languages that the system 200 is
configured to support. This set may be generated using various configuration
and/or initialization techniques. As shown in Figure 2, a language domain file
240 provides the LRM 120 information about which languages are supported and
which language should be the initial selected language 160. Alternatively, a OS

registry setting, initialization file, or other technique may be used.



10

15

20

25

30

WO 02/079964 PCT/US02/04328

In an alternative embodiment, the LRM 120 may include a component that
allows the language to be changed by one or more keystrokes or other
indications of a user input device such as a keyboard, mouse, or the like. For
example, a key on a keyboard may be configured as a language toggle switch.
Pressing the key may cause the system 200 to switch the language from a
currently selected language 160 to a next language in an ordered list of
supported languages. Alternatively, particular keyboard function keys may be
associated with switching the selected language 160 to a particular supported

language.

As depicted in Figure 2, an initial GUI 140 may be created by an
application program 170 as described in relation to Figure 1. The GUI 140 may
include one or more LSEs 130 provided by the LRM 120. Additionally, the GUI
140 includes the language switching mechanism 210 associated with the LRM
120. The application program 170 may then continue to create new LSEs 130 as

necessary in the manner described for Figure 1.

Once the application program 170 is executing, a user may indicate, using
the language switch mechanism 210, a desire to change the language used in
the GUI 140. First, the user selects the language switching mechanism 210. As
described above, the user indicates what the new language 230 is to be. The
LRM 120 then updates the selected language 160 to be the new language 230.
Additionally, the LRM 120 signals to a language switch component 250 that the

selected language 160 has changed.

A language switch component 250 allows the system 200 to dynamically
change the language used in an application program 170. This is accomplished
by the language switch component 250, in one embodiment, by replacing
currently displayed LSEs 130 with new LSEs 130 from the LRB 110

corresponding to a new language 230.

The language switch component 250 is activated, in one implementation,
by a change in the selected language 160. For example, the LRM 120 may notify
the language switch component 250 that the selected language 160 has

changed. Once the selected language 160 has changed, the language swiich

10



10

15

20

25

30

WO 02/079964 PCT/US02/04328

component 250 sends a language key 150 associated with a first LSE 130 of the
GUI 140 to the LRM 120. The LRM 120 retrieves a second LSE 130 from an
LRB 110 corresponding to the selected language 160, the new language 230.
The LRM 120 sends the second LSE 130 to the language switch component 250.
Thereafter, the language switch component 250 replaces the first LSE 130 with
the second LSE 130.

Similarly, the language switch component 250 may iterate through all the
LSEs 130 of the GUI 140 replacing the current LSEs 130 with LSEs 130 that
correspond to the new language 230. In this way, the LSEs 130 of a GUI 140
may be dynamically changed from one language to another. This allows the
application program 170 to operate independent of a language change.
Additionally, the application program 170 provides LSEs 130 based on the needs

of the user.

As an example, suppose the primary language of a supervisor is French
and a worker operating the application program 170 speaks primarily English.
The application program 170 may be initialized in English based on the domain
file 240. Alternatively, the worker may select the language at the beginning of a
shift. If the worker has a question, the supervisor may wish to examine the GUI
140 in his or her own language, French. To do so, the supervisor activates the
language switching mechanism 210 and indicates French as the new languagé
230. The selected language 160 changes to French and the language switch
component 250 is notified. The language switch component 250 then iterates
through all the LSEs 130 of the GUI 140. For each LSE 130 the language switch
component 250 uses the language key 150 associated with the current LSE 130
to retrieve a new LSE 130 from the French LRB 110. The English LSE 130 is
replaced with the French LSE 130. Similarly, when the languages are switched
back for the worker, the French LSEs 130 are replaced by English LSEs 130.

Identification of the LSEs 130 and the language keys 150 may be
accomplished by providing the language switch component 250 access to a
common data structure that records the current LSEs 130. Of course, other
techniques may allow the language switch component 250 to access the

displayed LSEs 130, such as object method calls, arrays of currently displayed

11



10

15

20

25

30

WO 02/079964 PCT/US02/04328

LSEs 130 and the like. Similarly, replacement may be accomplished by

execution of LSE replacement methods within each LSE 130. These and other
similar techniques for identifying characteristics such as the language keys 150
and causing the LSE 130 to be replaced are considered within the scope of the

present invention.

Figure 3 illustrates an alternative embodiment of the present invention in
which the language switch component 250 interacts more directly with the
application program 170 through an interface 300. The LRB 110 and LRM 120
function similar to the embodiments described in Figures 1 and 2. Therefore,
Figure 3 does not illustrate the LRB 110 and LRM 120 with the same detail as

earlier.

The interface 300 is illustrated by a wider arrow connecting the language
switch component 250 to the application program 170. Figure 3 illustrates the
language switch component 250 replacing the whole GUI 140 rather than
individual LSEs 130, as shown in Figure 2.

When the application program 170 begins execution, a default language is
used to generate a GUI 140 in a manner similar to that described with Figure 1.
For example, in Figure 3 the GUI 140a represents the original GUI 140 generated
using LSEs 130 provided by the English LRB 110. Next, a user may change the
selected language 160 in a manner similar to that described with Figure 2.
Therefore, the l[anguage switch component 250 communicates with the

application program 170 using the interface 300.

Initially, the language switch component 250 preempts execution of the
application program 170. In one embodiment, preemption is implemented
through an interrupt sent to the Operating System (OS). Those of skill in the art
recognize there are many ways to interrupt an application program 170 during its
execution including signals sent directly to the application program 170, through

an OS interrupt, and the like.

Next, the language switch component 250 stores a state of the application

program 170. Generally, executing programs have some form of state

12



10

15

20

25

30

WO 02/079964 PCT/US02/04328

information. State information includes information such as the values for certain
variables, where the program is in its execution flow, what the current input
values are, which windows and other GUI components are being displayed, as
well as other information about execution of the program 170. In one
implementation, only state information concerning the GUI 140 (i.e. GUI 140a) is
stored. Alternatively, all the state information for the application program 170

may be stored.

Thereafter, the language switch component 250 discards the current GUI
140 (i.e. GUI 140a). The current GUI 140 (i.e. GUI 140a) includes LSEs 130 that
are in a language other than the new language 230 selected by the user.
Generally, the GUI 140 is discarded by initializing the memory and data
structures of the computer that define the GUI 140.

The language switch component 250 then generates a new GUI 140 (e.g.
GUI 140b). During the generation process, the language switch component 250
uses the LRM 120, in one embodiment, to create LSEs 130 in the new GUI 140
that correspond to the new language 230 (e.g. GUI 140b, corresponds to the
French LRB 110). One embodiment uses the same process of generating LSEs
130 for the new GUI 140 as discussed with Figure 1.

Finally, the language switch component 250 restores the state of the
application program 170 and resumes execution of the program 170. Restoring
the state of the application program 170 may include displaying the same window
as was displayed when the language was switched, setting the focus in the GUI
140 (e.g. GUI 140b) to the same GUI component as before, and other changes
such that the user may continue working with the application program 170 as
though nothing has changed besides the language. In this manner, the
application program 170 has dynamically changed the language used for
displayable LSEs 130.

The embodiment in Figure 3 also illustrates an ability of the present
invention to provide multiple language support and switch functionality to one or
more application programs. In one embodiment, the language switch component

250 may be configured to identify which application program 170 requests a new

13



10

15

20

25

30

WO 02/079964 PCT/US02/04328

language 230. Accordingly, the language switch component 250 may then

interface 300 with a particular application program 170.

In another embodiment, the LRM 120 may be implemented as a server
program configured to provide language switching features, similar to those
described in Figure 2, to a plurality of application programs 170. Application
programs 170 may execute on the same computer or be in network

communication with the language switch component 250 and/or LRM 120.

Figure 4 illustrates a language resource bundle (LRB) 110 in more detail
according to one embodiment of the present invention. The LRB 110 may
correspond to a particular language (e.g. Spanish). Those of skill in the art
readily recognize that a variety of data structures may be used to implement the
LRB 110, such as an array, a stack, a queue, and the like. Alternatively, an LRB
110 may be implemented as an object having access methods that allow the LRB
110 to receive a language key 150 and return the appropriate LSE 130. Such

implementations are contemplated within the scope of the present invention.

Generally, an LRB 110 includes a set of associations between language
keys 150 and LSEs 130. Of course, more associations may exist than those
illustrated. In one embodiment, a [anguage key 150 is a unique identifier used in
the application program 110 as a place holder where an LSE 130 needs to be
displayed during execution. Preferably, there is a one to one correspondence

between each language key 150 and each LSE 130 within a particular LRB 110.

[n one embodiment, an LRB 110 includes two different types of
associations between language keys 150 and LSEs 130. For example, a first
group of associations may comprise common associations 400. Common
associations 400 may include associations that are common to a plurality of
application programs 170. As illustrated in Figure 4, the language keys 150 for
*OK”, “Print”, “Copy”, and “Exit” are included in the group of common associations
400. These language keys 150 may be text titles for buttons, menu items or
other GUI 140 components in a typical application program 170. Therefore, a
single LRB 110 may service one or more application programs 170 that require

these common associations 400.

14



10

15

20

25

30

WO 02/079964 PCT/US02/04328

In addition, an LRB 110 may include a set of associations 410 having
language keys 150 that are specific to a particular application program 170. For
example, a hospital patient inventory program 170 may record the patient’s
name, ID number, and phone number, among other information. These elements
may require field identifiers in a particular GUI 140 that are LSEs 130. Therefore,
the LRB 110 may contain specific language keys 150 to provide LSE 130 field
identifiers in the appropriate language. For example, “Paciente Nombre” may be
the LSE 130 to replace the “Patient Name”. The illustrated specific associations
410 may be very different from another application program 170 designed to

teach children math, for example.

A single LRB 110 may include one or more sets of specific associations
410 allowing it to support more than one application program 170. Alternatively,
the present invention may include a plurality of LRBs 110. Each LRB 110 may
correspond to a particular language as well as a particular set of associations,
specific 410 and common 400. Those of skill in the art will recognize that the
LRB 110 illustrated may be configured differently and still serve the same
purpose. Other configurations of the LRB 110 are considered within the scope of

this present invention.

In one presently preferred embodiment, the LSEs 130 stored in the LRB
110 are implemented as objects rather than descriptors. In this manner, the LRM
120 may simply provide a copy of an LSE 130 or an address to the LSE 130 in
computer memory rather than creating the LSE 130 for each request of the LSE
130 made by an application program 170. For example, rather than simple text,
an LSE 130 may include a graphic. The graphic may be stored completely within
the LRB 110. In this manner, the LRM 120 need not re-load or create a
commonly requested LSE 130. Re-loading or re-creating a more complicated
LSE 130, such as a graphic, for each request may slow the response time of the

LRM 120 and diminish performance.

Figure 5 illustrates a parser 500 for generating LRBs 110 according to an
embodiment of the invention. In one embodiment, a parser 500 generates one

LRB 110 to correspond to each language supported. The parser 500 converts

15



10

15

20

25

WO 02/079964 PCT/US02/04328

human-readable text containing associations between language keys 150 and

LSEs 130 into a machine useable format.

The parser 500 may be configured to accept a language resource file 510
(LRF) for any language and generate therefrom a corresponding LRB 110. An
LRF 510 is a file comprised of text organized such that a person may read the file
and understand what text represents file keys 150 and what part represents LSEs
130. The details of an LRF 510 are discussed below.

The parser 500 may be configured to operate on one or a batch of LRFs
510. For example, all the LRFs 510 may be stored in a known directory on a
hard drive. The parser 500 may examine the directory and parse all the LRFs

510 within the directory to create corresponding LRBs 110.

Alternatively, the parser 500 may operate on an as-needed basis. For
example, when an application program 170 is initiated, the parser 500 may be
used to create an LRB 110 for a default language, such as English. Thereatfter, if
the system 100 supports French, Spanish, and German, as illustrated, the parser
500 may be invoked by the LRM 120 to only create an LRB 110 when one does
not exist. For example, having created an English LRB 110, the user may select
German. This may cause the LRM 120 to request that the parser 500 create a
German LRB 110. To do so, the parser 500 may be configured to distinguish
between multiple LRFs 510 stored on a hard drive using a certain file naming
convention. The parser 500 may then read in the German LRF 510 and create
the German LRB 110.

Figure 6 illustrates one embodiment of an LRF 510. Preferably, the LRF
510 is organized such that a person easily read the LRF 510. This is
accomplished by representing both language keys 150 and LSEs 130 using

descriptors. As depicted, the descriptors may include text strings.

In one embodiment, LRF 510 may include one or more comment lines 602
generally used to notify a human reader concerning various certain sections of

the LRF 510. For example, as shown in Figure 6, a comment line 602 indicates

16



10

15

20

25

30

WO 02/079964 PCT/US02/04328

that the lines that follow relate to tool bar titles in the GUI 140. Sectioning the
LRF 510 aids in finding particular language key 150 or LSE 130 descriptors.

The parser 500 identifies comment lines 602 by a token 603 such as a
number symbol. Of course other tokens 603 may be used to indicate a comment

line 602. Generally, the parser 500 ignores the comment lines 602.

Line 604 illustrates a first line that the parser 500 will recognize as an
association. In one embodiment, a language key descriptor 606 is the first word
of text on a line. The language key descriptor 606 is separated from the LSE
descriptor 608 by an association token 610, such as “=". Generally, the text used
in the LRF 510 for the language key descriptor 606 is the same as the language
key 150 used in the application program 170 and the language key 150 used in
the association in the LRB 110. Additionally, the language key descriptor 606

may be a string, a symbol, a character, a number, or similar indicator.

The LSE descriptor 608 to be associated with the language key descriptor
606 follows the token 610. For example, as depicted, “Nuevo” is a string LSE
descriptor 608 to be associated with the language key 150 “New._title” in the LRB
110.

The LSE descriptor 608 may be a simple text string such as “Nuevo”.
However, the LSE descriptor 608 may also comprise an encoded indicator or an
address. For example, in line 612, LSE descriptor 614 is a string of numbers,
letters and symbols comprising a Unicode string. Unicode strings are a format
that may be used to represent characters, symbols, and words from different
languages in one common ASCIlI format. Typically, a Unicode character is
indicated by a “\" followed by a hexadecimal number. The hexadecimal number

corresponds to a character definition in a Unicode table.

As an address, the LSE descriptor 608 may indicate what type of LSE 130
is to be created and the location of other resources needed to create the LSE
130. For example, the LSE descriptor 616 corresponds to an icon. For
example, the word “icon” following the association token 610 indicates that the

LSE 130 is to be an icon. The “\" may separate the LSE type identifier from the

17



10

15

20

25

30

WO 02/079964 PCT/US02/04328

file name, file name and path or other address that must be accessed to create
the proper LSE 130. LSE descriptor 616 may indicate that the parser 500 is to
access a file “new.gif” located in a default directory to create the icon. Figure 6
illustrates both icon, and image addresses. However, those of skill in the art
recognize that the address may be a uniform resource locator (URL), sound clip

file name, and other like addresses.

In an alternative embodiment, the parser 500 may simply convert the
address LSE descriptors 616 into an intermediate machine readable form. The
LRM 120 may processes the intermediate form. For example, the LRM 120 may
follow the address to the resource needed to create an appropriate LSE 130,
such as loading the icon into an LRB 110.

In this manner an LRF 510 provides a structure storing data that is both
human-readable and machine-readable. A human readable LRF 510 allows the
definition of LSEs 130 and support for different languages to be separated from
the application program code. For example, Figure 6 illustrates a Spanish LRF
510. To define the same LRF 510 in German, a translator having minimal
training may simply read the Spanish LRF 510 and translate the Spanish LSE
descriptors 608 into German. Similarly, the translator may create icons, and
images that correspond to German from those provided for Spanish.

Accordingly, the expensive time of a programmer is not required.

Preferably, the language key descriptors 606 clearly indicate what idea or
words must be provided in the new language as an LSE 130. Therefore, an LRF
template having only comment lines 602 and language key descriptors 606 may
provide enough information to allow the translator to produce an operable LRF
510.

Figure 7 illustrates an application framework 700 comprising a Language
Resource Manager 120 (LRM) configured according an embodiment of the
present invention. An application framework 700, as indicated by the thick
rectangle, is generally used to produce a suite of application programs 170

including a consistent user interface and other useful features. Application

18



10

15

20

25

30

WO 02/079964 PCT/US02/04328

frameworks 700 are generally used as a starting point during the programming

phase of an application program 170.

For example, most modern application programs 170 include a GUI 140.
Accordingly, most application frameworks 700 include a graphical user interface
manager 710 to organize GUI components, redraw the screen, and perform other
functions common between applications 170. Similarly, a number of applications
170 may require standard network connections to a database. The application
framework 700 may include a database connection manager 720 to provide
consistent programming code for supporting those functions. Often, the
application framework 700 includes base classes 730 to provide common

functionality among descendant objects in an object oriented application 170.

The modular nature of the LRM 120 allows it to be included in an
application framework 700. By doing so, all applications 170 developed using
this framework 700 may, by default, include the multiple language support
provided by the LRM 120. The only remaining task for a programmer is to
identify common and specific LSEs and create a first LRF 510. The programmer
then uses language keys 150 in the application program 170 to provide mulitple
language support. As mentioned above, a first LRF 510 may be translated to

allow support for any number of languages foreign to the programmer.

Other components such as the language switch component 250 (See
Figure 2), language switching mechanism 210 (See Figure 2), and parser 500
(See Figure 5) may also be included in the application framework 700. In this
manner, the features of the various embodiments described above may be easily
included in various applications 170. Additionally these components as well as
the LRM 120 may be implemented as a server, a plug-in, a single class object, a
dynamic linked library (DLL), or other module to allow the present invention to be

used by a variety of multiple application programs 170.

Referring now to FIG. 8, there is shown a flowchart of one embodiment of
a method 800 for providing multiple language support for at least one application
program in a computer system. The method 800 begins when an LRM 120

receives 802 a first language key 150 from an application program 170.

19



10

15

20

25

30

WO 02/079964 PCT/US02/04328

The LRM 120 then locates 804 an LRB 110 that corresponds to the
currently selected language 160. Thereafter, the LRM 120 identifies 806 an LSE
130 associated with the first language key 150 in the LRB 110. Next, the LRM
120 provides 808 the LSE 130 to the application program 170. Finally, the LSE
130 is displayed 810 in a GUI 140.

In one embodiment, a language switching mechanism 210 is displayed in
the GUI 140. The language switching mechanism 210 may receive 812 a
selection of a new language. A language switch component 250 may then
replace 814 each displayed LSE 130 with a new LSE 130 provided by a language

resource manager 120.

Based on the foregoing, the present invention offers numerous
advantages not available in conventional approaches. For example, the present
invention allows an application program 170 to be written in one language and
deployed in multiple languages with minimal costs and overhead for translations
and minimal computer programmer time. Support in a new language may be
accomplished simply by having a translator translate LSE descriptors 608 in an
LRF 510. In addition, the present invention allows an application program 170 to
provide a graphical user interface 140 (GUI) that meets the user’s needs without
restarting the computer or the application program 170. The language of the GUI
140 may be switched when the person using the program 170 changes. The
present invention separates computer programming code from the elements
requiring translation into different languages. This aids in the maintenance and
upgrading of the program 170. Additionally, the present invention is not limited to
languages spoken in a certain location of the world, the location where the
machine resides makes no difference, since the multiple language support is

user-oriented.

While specific embodiments and applications of the present invention have
been illustrated and described, it is to be understood that the invention is not
limited to the precise configuration and components disclosed herein. Various
modifications, changes, and variations which will be apparent o those skilled in

the art may be made in the arrangement, operation, and details of the methods

20



WO 02/079964 PCT/US02/04328

and systems of the present invention disclosed herein without departing from the

spirit and scope of the invention.

21



10

15

20

25

30

WO 02/079964 PCT/US02/04328

What is claimed is;

1. A system for providing multiple language support for at least one
application program, the system comprising:

a plurality of language resource bundles comprising associations between
language keys and displayable language-sensitive elements, each resource
bundle corresponding to a different language; and

a language resource manager configured to receive a first language key
from an application program, locate a language resource bundle corresponding to
a currently-selected language, identify a language-sensitive element associated
with the first language key, and provide the identified language-sensitive element

to the application program for display in a graphical user interface.

2. The system of claim 1, further comprising:

an application program configured to provide a language key to the
language resource manager, receive a language-sensitive element from the
language resource manager, and display the language-sensitive element in a

graphical user interface.

3. The system of claim 1, wherein at least one language-sensitive
element is selected from the group consisting of a text string, an icon, a graphic,

and a video clip.

4. The method of claim 1, wherein the language resource manager is
further configured to display a language switching mechanism in the graphical
user interface for changing the currently-selected language in response to user

input.
5. The method of claim 4, wherein the language switching mechanism

is selected from the group consisting of a drop-down list, a menu, a button, an

edit box, and an icon.

22



WO 02/079964 PCT/US02/04328

10

15

20

25

30

6. The method of claim 1, wherein the language resource manager is
further configured to change the currently-selected language in response to at

least one keystroke.

7. The system of claim 1, further comprising:

a language switching component configured, in response to a change in
the currently-selected language, to send to the language resource manager a
language key corresponding to a first language-sensitive element displayed in the
graphical user interface, receive from the language resource manager a second
language-sensitive element, and replace the first language-sensitive element with

the second language-sensitive element in the graphical user interface.

8. The system of claim 7, wherein the language switching component
is further configured to replace each language-sensitive element displayed in the
graphical user interface with a new language-sensitive element in response to a

change in the currently-selected language.

9. The system of claim 7, wherein the language switching component
is further configured to preempt the application program, save a state of the
application program, discard the graphical user interface being currently
displayed, generate a new graphical user interface comprising at least one new
language-sensitive element provided by the language resource manager, restore
the state of the application program, and resume execution of the application

program.
10.  The system of claim 1, wherein the language resource manager is
in communication with a plurality of applications to receive language keys and

provide language-sensitive elements.

11.  The system of claim 1, wherein at least one association in a

language bundle is specific to a particular application.

23



10

15

20

25

30

WO 02/079964 PCT/US02/04328

12.  The system of claim 1, wherein at least one association in a

language bundle is applicable to a plurality of applications.

13.  The system of claim 1, further comprising:
a parser configured to parse a language resource file comprising
descriptors of language keys and descriptors of language-sensitive elements and

to generate therefrom a language resource bundle.

14.  The system of claim 13, wherein the language resource file

comprises human-readable text.
15.  The system of claim 13, wherein at least one descriptor of a
language key is selected from the group consisting of a string, a character, a

number, and a symbol.

16.  The system of claim 13, wherein at least one descriptor of a

language-sensitive element comprises a Unicode string.

17.  The system of claim 13, wherein at least one descriptor of a

language-sensitive element comprises an address.

18.  The system of claim 17, wherein the address comprises a file

name.

19.  The system of claim 17, wherein the address comprises a uniform

resource locator (URL).

20.  The system of claim 1, wherein the language resource manager is a

component of a framework used by the at least one application program.

24



10

15

20

25

30

WO 02/079964 PCT/US02/04328

21. A method for providing multiple language support for at least one
application program in a computer system comprising a plurality of language
bundles, each language bundle corresponding to a particular language and
comprising associations between language keys and displayable language-
sensitive elements, the method comprising:

receiving a first language key from an application program,

locating a language resource bundle corresponding to a currently-selected
language;

identifying a language-sensitive element associated with the first language
key; and

providing the identified language-sensitive element to the application

program for display in a graphical user interface.

22.  The method of claim 21, further comprising:

displaying the language-sensitive element in a graphical user interface.

23.  The method of claim 21, wherein_ at least one language-sensitive
element is selected from the group consisting of a text string, an icon, a graphic,

and a video clip.

24.  The method of claim 21, further comprising:
displaying a language switching mechanism in the graphical user interface

for changing the currently-selected language in response to user input.

25. The method of claim 24, wherein the language switching
mechanism is selected from the group consisting of a drop-down list, a menu, a
button, an edit box, and an icon.

26. The method of claim 21, further comprising:

changing the currently-selected language in response to at least one

keystroke.

27. The method of claim 21, further comprising:

25



10

15

20

25

30

WO 02/079964 PCT/US02/04328

in response to a change in the currently-selected language:

sending a language key corresponding to a first language-sensitive
element displayed in the graphical user interface;

receiving a second language-sensitive element in response to the
language key; and

replacing the first language-sensitive element with the second

language-sensitive element in the graphical user interface.

28.  The method of claim 27, further comprising":
replacing each language-sensitive element displayed in the graphical user
with a new language—sensitiVe element in response to a change in the currently-

selected l[anguage.

29. The method of claim 27, further comprising:

preempting the application program;

saving a state of the application program;

discarding the graphical user interface being currently displayed;

generating a new graphical user interface comprising at least one new
language-sensitive element received in response to a language key;

restoring the state of the application program; and

resuming execution of the application program.
30. The method of claim 21, receiving language keys from a plurality of
applications and;

providing corresponding language-sensitive elements to each application.

31.  The method of claim 21, wherein at least one association in a

language bundle is specific to a particular application.

32. The method of claim 21, wherein at least one association in a

language bundle is applicable to a plurality of applications.

26



WO 02/079964 PCT/US02/04328

10

15

20

25

33. The method of claim 21, further comprising:
parsing'a language resource file comprising descriptors of language keys
and descriptors of language-sensitive elements to generate therefrom a language

resource bundle.

34.  The method of claim 33, wherein the language resource file

comprises human-readable text.
35. The method of claim 33, wherein at least one descriptor of a
language key is selected from the group consisting of a string, a character, a

number, and a symbol.

36. The method of claim 33, wherein at least one descriptor of a

language-sensitive element comprises a Unicode string.

37. The method of claim 33, wherein at least one descriptor of a

language-sensitive element comprises an address.

38. The method of claim 37, wherein the address comprises a file

name.

39. The method of claim 37, wherein the address comprises a uniform

resource locator (URL).

27



WO 02/079964

PCT/US02/04328

100
4

French

Language Resource

Bundle
110

1/8
English
Language Resource
Bundle
110
LSE
130
Y
Language Resource
Manager
120
Selected
Language
160
T LSE
KEY 130
150

’

Application Program

170

LSE
130

I

GUI

140

FIG. 1



WO 02/079964 PCT/US02/04328

2/8

200

English French
Language Resource Language Resource
Bundie Bundie
110 110

Language Resource
Manager
120

Language
Domain File
240

Selected
Language
160

{

KEY
150

Language Switch
Component
250

Application Program
170 LSE
130

GUI
140

LSE LSE LSE New
130 130 130 Language

230

220 —

/

FIG. 2



WO 02/079964 PCT/US02/04328

3/8

English French
______________ Language Resource Language Resource
Bundle Bundle
110 110

|
|
|
|
I
: I
: Language Resource :
| Manager ,
' 120 |
: {
: |
| |
| i
| s
: )
| |
: 300 :
| .
: Application Program <_i Largouri;g)i r?engtCh |
170 |
: 250 :
|
| i :
| | i
: |
| ;
| . :
l GUI . Gul |
| |
|

_]  140a L1400 e

FIG. 3



WO 02/079964 PCT/US02/04328

4/8

Spanish
Language Resource Bundle
110
Specific
Associations | Patient Paciente
410 Name Nombre
150 Patient Paciente || | \ 439
ID ID
Phone # Teleihone
Common
Associations OK |a—» Si
400
150 Print [«— Impression (T~ 130
Copy Copian
Exit |«—>»| Salen

FIG. 4



WO 02/079964 PCT/US02/04328
5/8
510 510 510 510
English French Spanish German
Language Language Language Language
Resource Resource Resource Resource
File File File File
Parser
500
Y
A4 A 4
English French Spanish German

Language Language Language Language
Resource Resource Resource Resource
Bundle Bundle Bundle Bundle

110

110

110 110

FIG. 5



WO 02/079964 PCT/US02/04328

6/8
Spanish
Language
Resource File
510
603
602 ~ #Tool Bar Titles
604 ~ Delete_title = Cancelacion
Open_title = Abierto
Exit_title = Salen
610
606 ~ New title | \-éNuevo L~ 608
Search_title = Hallazgo 614

612 N Undo_title  ="\uB5e5\u672c\u8a9e\uB587\usb57\u5217" !

#Tool Bar Icons

618 N New_icon  =iicon\new.gif ———— 616
Save icon =icon\:c:\icons\save.gif
+#
Splash_image = Image\:.default_splash.jpg

FIG. 6



WO 02/079964 PCT/US02/04328

7/8

Application Application Application Application
Program 1 Program 2 Program 3 Program 4
170 170 170 170
Language Resource Graphical User Database Connection
Manager Interface Manager Manager
120 710 720
700 ~

Base Classes
730

FIG. 7



WO 02/079964 PCT/US02/04328

8/8

Q0
o

Receive a first [anguage key from an
802 — application program

v

Locate a resource bundle corresponding to a
currently-selected language

l

[dentify a language-sensitive associated with
806 — the first language key

'

Provide the identified language sensitive
element to the application program

l

Display the identified language sensitive
810 —7  element in a graphical user Interface

'

g12 — Receive a selection of a new language

Replace each language sensitive element

814 —1 displayed with a new language sensitive
element corresponding to the new language

804 —

808 —

FIG. 8



INTERNATIONAL SEARCH REPORT International application No.
PCT/US02/04328

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 8/00,3/14, 17/30, 17/28
US CL :704/7, 8; 707/536; 8345/333, 334, 348,
According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

us. : 704/7, 8; 707/536; 845/3383, 334, 348,

Documentation searched other than minimum documentation to the extent that such documents are included in the fields
seafchathet, google, Altavista

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

West/East, IBM IDS, Derwent, JPO, EPO
search term: (nls or national language support) and (internationaliz$ or globaliz$ or local$)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 5,907,326 A (ATKIN ET AL) 25 May 1999, Abstract, figures | 1-39
2-7, col. 4, line 60-col. 8, line 58.

US 5,583,761 A (CHOU) 10 DECEMBER 1996, Abstract. 1-39
, | US 5,974,372 A (BARNES ET AL) 26 OCTOBER 1999, Abstract. | 1-39

US 5,678,039 A (HINKS ET AL) 14 OCTOBER 1997, Abstract. | 1-39

<> <

US 5,917,484 A (MULLANEY) 29 JUNE 1999, Abstract, col. 4,| 1-39
line 19-68-col. 6, line 45.

Further documents are listed in the continuation of Box C. D See patent family annex.

hd Special categories of cited documents: "T" later document published after the international filing date or priority
i L date and not in conflict with the application but cited to understand
"A" document defining the general state of the art which is not the principle or theory underlying the invention
considered to be of particular relevance
. N R . - X" document of particular relevance; the claimed invention cannot be
L) nll] ’
E earlier document published on or after the international filing date considered novel ot cannot be considered to involve an inventive step
"L document which may throw doubts on priority claim(s) or which is when the document is taken alone
cited to establish the publication date of another citation or other . . . . i
special reason (as specified) Y document of pa_rtlcular rele'vance;. the claimed invention cannot b.e
considered to involve an inventive step when the document is
"o document referring to an oral disclosure, use, exhibition or other combined with one or more other such d ts, such combination
means being obvious to a person skilled in the art
"p" document published prior to the international filing date but later  ng document member of the same patent family
than the priority date claimed
Date of the actual completion of the international search Date of mailing of the international sqarch report

038 MAY 2002 % -& M ﬁWf “Z@ Z

Al ]
Name and mailing address of the ISA/US Authorized officer J
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231 PATRICK N. EDOUARD .

Facsimile No.  (703) 305-3230 Telephone No.  (708) 308-67

Form PCT/ISA/210 (second sheet) (July 1998)%




INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/04328
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 4,566,078 A (CRABTREE) 21 JANUARY 1986, Abstract. 1-39

Form PCT/ISA/210 (continuation of second sheet) (July 1998)%




	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

