(57) Abrégé/Abstract:
Described are polypeptide dimers comprising two soluble gp130 molecules wherein each of said molecules is fused to an Fc domain of an IgG1 protein and wherein the hinge region of the Fc domain is modified resulting in advantageous properties of the dimer. In a particularly preferred embodiment, the hinge region comprises the amino acid sequence motif Ala_{234}Glu_{235}Gly_{236} Ala_{237}. Moreover, a pharmaceutical composition containing said dimer and various medical uses are described.
Title: IMPROVED sgp130/c DIMERS

hinge region ——— Fc

...sgp130 extracellular domain DKTHTCPPCPAPELLGGPSVQ... wildtype IgG1

...sgp130 extracellular domain DKTHTCPPCPAELLGGPSV... mutation scheme

...sgp130 extracellular domain DKTHTCPPCPAELLGGPSV... mutant 1 (e.g. in CRS/18)

...sgp130 extracellular domain DKTHTCPPCPAELLGGPSV... mutant 2

...sgp130 extracellular domain DKTHTCPPCPAELLGGPSV... mutant 3

...sgp130 extracellular domain DKTHTCPPCPAELLGGPSV... mutant 4

as 234-235-236-237 (EU numbering)

Abstract: Described are polypeptide dimers comprising two soluble gpl30 molecules wherein each of said molecules is fused to an Fc domain of an IgG1 protein and wherein the hinge region of the Fc domain is modified resulting in advantageous properties of the dimer. In a particularly preferred embodiment, the hinge region comprises the amino acid sequence motif Ala234-Glu235-Gly236-Ala237. Moreover, a pharmaceutical composition containing said dimer and various medical uses are described.
Improved sgp130Fc dimers

The present invention relates to a polypeptide dimer comprising two soluble gp130 molecules each being fused to an Fc domain of an IgG1 protein wherein the hinge region of the Fc domain is modified resulting in advantageous properties of the dimer. The present invention also relates to a pharmaceutical composition containing said dimer and various medical uses.

The pleiotropic cytokine interleukin-6 (IL-6) shows a wide spectrum of biological functions among which stimulation of B cells and induction of acute phase protein synthesis in liver are mostly notable. IL-6 exerts its activity on target cells via binding to an IL-6 specific surface receptor (IL-6R). This receptor/ligand complex facilitates homodimerization of gp130, the second subunit of the IL-6 receptor complex. Dimerization of gp130 results in transduction of an IL-6 signal. Soluble forms of the IL-6R (sIL-6R) which are generated by two mechanisms (alternative splicing and shedding) are also able to trigger gp130 dimerization and signalling when complexed with IL-6.

Since the cytoplasmic portion of the IL-6R does not contribute to signal transduction, signalling by a gp130 homodimer can be induced by IL-6 in complex with membrane bound or soluble IL-6R. The presence of sIL-6R, however, leads to sensitization of IL-6 responsive cells towards the ligand. Furthermore, strictly IL-6 dependent hybridoma cells do not proliferate in
response to very low amounts of IL-6 when sIL-6R present in culture media is continuously removed.

Initially described as the interleukin-6 signal transducer, gp130 is a transducer chain shared by many cytokines, such as IL-6, IL-11, leukaemia inhibitory factor (LIF), oncostatin M (OSM) and ciliary neurotrophic factor (CNTF). All of these cytokines act via a bi- or tripartite receptor complex in which signalling is triggered by homodimerization (for IL-6) or heterodimerization of gp130 with LIF-R (for LIF, CT-1, OSM, CLC and CNTF) or OSM-R (for OSM). These cytokines can thus mediate similar biologic activities in various tissues.

While gp130 can be found on nearly all cell types, the IL-6R shows a much more restricted expression. The release of sIL-6R by one cell type renders other cells, which only express gp130, responsive to IL-6. This scenario is called trans-signalling. Indeed, several cellular activities have been described which require the complex of sIL-6R and IL-6 and are not seen with IL-6 alone. Soluble gp130 protein is found in high concentrations in human plasma. Recently the designer-cytokine hyper-IL-6 (H-IL-6), in which the C-terminus of sIL-6R is covalently fused to the N-terminus of mature IL-6 by a flexible peptide linker, has been described. As seen with the complex of IL-6/sIL-6R, H-IL-6 also acts on cells which only express gp130. In contrast to the separate components IL-6 and sIL-6R, a 100 to 1000 fold lower concentration of this fusion molecule is sufficient to induce comparable biological signals.

For the treatment of various diseases or disorders, specific blocking of IL-6 responses dependent on soluble IL-6R might be desirable. Such diseases include bone resorption, hypercalcemia, cachexia, tumors or other types of cancer
(e.g., colon cancer, multiple myeloma, lymphoma, leukaemia, Hodgkin’s disease), autoimmune diseases (e.g., multiple sclerosis (MS) or type 1 diabetes), inflammatory or atopic diseases (e.g., Crohn’s disease, ulcerative colitis, rheumatoid arthritis, juvenile rheumatoid arthritis, asthma, psoriasis, sarcoidosis, lupus erythematosus or uveitis), infections (e.g., by bacteria, viruses, fungi, or other pathogens), as well as endocrinologic disorders and metabolic or catabolic diseases (e.g., type 2 diabetes, obesity, hyperglycemia or hypercholesterinemia). It was found that, e.g., sgp130 dimers or sgp130Fc dimers are useful for therapeutic applications.

The technical problem underlying the present invention was to provide improved sgp130Fc dimers.

The solution of said technical problem is achieved by providing the embodiments characterized in the claims. During the experiments leading to the present invention it was found that the biological activity, purifiability and stability of sgp130Fc fusion proteins significantly depends on the amino acid composition of the hinge region between the sgp130 and the Fc part. The amino acids 234, 235 and 237 of the human IgG1-Fc (according to EU numbering) were mutated in order to reduce Fc receptor binding to this motif (Duncan et al., Nature (1988), 332: 563-564; Canfield and Morrison, J. Exp. Med. (1991), 173: 1483-1491; Wines et al., J. Immunol. (2000), 164: 5313-5318; Sondermann et al., Nature (2000), 406: 267). Unexpectedly, by replacing Leu235 of the wild type sequence Leu234-Leu235-Gly236-Gly237 with glutamate (Glu, E) or aspartate (Asp, D) and, thus, breaking the hydrophobic motif with a strongly hydrophilic (charged) amino acid the biological activity and stability of sgp130Fc fusion proteins could be improved. Mutations in position 234 and 237 add to this
effect. The most potent mutant features the sequence Ala₂₃₄-Glu₂₃₅-Gly₂₃₆-Ala₂₃₇.

Brief description of the drawings

Figure 1: Hinge region muteins of sgp130Fc
The lower hinge region of human IgGl-Fc was modified by site-directed mutagenesis. The ideal sequence, as determined in the experiments, is "AEGA" (as incorporated in the compound CR5/18).

Abbreviations and symbols: aa, amino acid(s); C, cysteines forming the two disulfide bridges needed for dimerization of the Fc fusion protein; X, alanine (Ala, A) or phenylalanine (Phe, F); Z, glutamate (Glu, E) or Aspartate (Asp, D).

Figure 2: Size exclusion chromatography elution curves of wildtype sgp130Fc and CR5/18
CR5/18 shows a significantly reduced amount of aggregates (side products) compared to wild type sgp130Fc and, thus, a higher yield of uncontaminated product.

Figure 3: Inhibition of IL-6/sIL-6R-induced proliferation of BAF3/gp130 cells by CR5/18 or wildtype sgp130Fc as determined by MTS cell viability assays
CR5/18 is significantly more biologically active than wild type (wt) sgp130Fc in blocking proliferation triggered by 100 ng/mL IL-6 and 50 ng/mL sIL-6R. This is reflected by the IC₅₀ of CR5/18 (1), which is about half the IC₅₀ of sgp130Fc (2).

Abbreviations and symbols: IC₅₀, concentration with 50% inhibitory efficacy; IL-6, interleukin-6; I/R, IL-6 plus sIL-6R; MTS, substrate which is converted by metabolically active
cells to a soluble formazan product absorbing at 490 nm; OD, optical density at 490 nm; sIL-6R, soluble interleukin-6 receptor.

Thus, the present invention relates to a polypeptide-dimer capable of inhibiting the activity of the agonistic complex IL-6/sIL-6R and comprising two monomers wherein each monomer comprises a soluble gp130 molecule or variant or fragment thereof fused to an Fc domain of an IgG protein and wherein at least the amino acid residue Leu_{235} of the hinge region of the Fc domain is replaced by at least one hydrophilic amino acid residue. Preferred hydrophilic amino acid residues are Glu and Asp.

The term “soluble” as used herein refers to a gp130 molecule lacking the intracellular domain and, preferably, the transmembrane domain.

The dimers of the present invention may be engineered using known methods. The domains utilized may consist of the entire extracellular domain of gp130 or they may consist of mutants or fragments thereof that maintain the ability to inhibit the activity of the agonistic complex IL-6/sIL-6R. Preferred fragments are fragments consisting at least of the extracellular domains D1 to D3.

The expression “fused to an Fc domain of an IgG protein” means that, preferably, the fusion partner of the dimer merely consists of the Fc domain of the IgGl protein. However, the Fc part may comprise sequences from more than one IgG isotype, and selecting particular sequence motifs to optimize desired effector functions is within the ordinary skill in the art.
In a preferred embodiment of the polypeptide dimer of the present invention, the hinge region amino acid residue Leu\textsubscript{234} is replaced by Phe or Ala.

In a more preferred embodiment of the polypeptide dimer of the present invention, the amino acid residues Leu\textsubscript{234} and/or Gly\textsubscript{237} of the hinge region are replaced by the amino acid residue Ala.

In an even more preferred embodiment of the polypeptide dimer of the present invention, the hinge region comprises the amino acid sequence motif Ala\textsubscript{234}-Glu\textsubscript{235}-Gly\textsubscript{236}-Ala\textsubscript{237} instead of Leu\textsubscript{234}-Leu\textsubscript{235}-Gly\textsubscript{236}-Gly\textsubscript{237}.

Particularly preferred is a polypeptide dimer, wherein the hinge region comprises the amino acid sequence Asp\textsubscript{221}-Lys\textsubscript{222}-Thr\textsubscript{223}-His\textsubscript{224}-Thr\textsubscript{225}-Cys\textsubscript{226}-Pro\textsubscript{227}-Pro\textsubscript{228}-Cys\textsubscript{229}-Pro\textsubscript{230}-Ala\textsubscript{231}-Pro\textsubscript{232}-Glu\textsubscript{233}-Ala\textsubscript{234}-Glu\textsubscript{235}-Gly\textsubscript{236}-Ala\textsubscript{237}-Pro\textsubscript{238}-Ser\textsubscript{239}-Val\textsubscript{240}.

The fusions of the gp130 extracellular domain (sgp130), preferably at the C-terminus, or the variant or fragment thereof to the hinge region of the Fc part may be direct or they may employ a flexible polypeptide linker domain of various lengths and amino acid combinations. These linkers may be entirely artificial (e.g., comprising 2 – 50 amino acid residues independently selected from the group consisting of glycine, serine, asparagine, threonine and alanine) or adopted from naturally occurring proteins. Such linkers can enhance flexibility and binding properties of the dimer.

Additionally, the sgp130Fc fusion proteins of the invention may be further fused to tags, such as poly(His), Myc, Strep, polyarginine, Flag, green fluorescent protein (GFP), TAP, glutathione S-transferase (GST), HA, calmodulin-binding
peptide (CBP), maltose-binding protein (MBP), V5, HSV, S, vesicular stomatitis virus (VSV), Protein C, Luciferase, Glu-Glu, E, beta-GAL, T7 or other epitopes to which antibodies or other binding molecules are available to allow rapid purification, detection in Western blot or ELISA, immunoprecipitation, or activity depletion/blocking in bioassays.

In a further preferred embodiment of the polypeptide dimer of the present invention, one or more N-glycosylation sites are inserted between the soluble gp130 molecule or variant or fragment and the Fc domain. Amino acid motifs of N-glycosylation sites with the core sequence Asn-X-Ser or Asn-X-Thr depend on the context of the motif in the protein and can be predicted and designed by the person skilled in the art, e.g. by using free software such as NetNGlyc (Center for Biological Sequence Analysis, Technical University of Denmark). A preferred N-glycosylation linker element for sgp130Fc dimers of the invention is His-Asn-Leu-Ser-Val-Ile.

Another object of the present invention are PEGylated or other chemically modified forms of the dimers. PEGylation of the sgp130 molecules can be carried out, e.g., according to the methods described for human IFN-γ, IFN-α, IFN-β, IL-15 or IL-2 (Youngster et al., Curr Pharm Des (2002), 8:2139; Grace et al., J Interferon Cytokine Res (2001), 21:1103; Pepinsky et al., J Pharmacol Exp Ther (2001), 297:1059; Pettit et al., J Biol Chem (1997), 272:2312; Goodson et al. Biotechnology NY (1990), 8:343; Katre; J Immunol (1990), 144:209).

Any kind of polyethylene glycol is suitable for the present invention provided that the PEG-polypeptide-dimer is still capable of blocking IL-6 responses dependent on sIL-6R which can be assayed according to methods known in the art.
Preferably, the polyethylene glycol of the polypeptide-dimer of the present invention is PEG 1000, 2000, 3000, 5000, 10000, 15000, 20000 or 40000 with PEG 20000 or 40000 being particularly preferred.

In order to form the dimer the two soluble gp130 molecules are linked to each other through a simple covalent bond, a flexible peptide linker or, preferably, via one or more disulfide bridges. Peptide linkers may be entirely artificial (e.g., comprising 2 to 20 amino acid residues independently selected from the group consisting of glycine, serine, asparagine, threonine and alanine) or adopted from naturally occurring proteins. Disulfide bridge formation can be achieved, e.g., by recombinant expression, wherein the nucleic acid sequence encoding the sgp130Fc monomer contains one or more cysteine encoding codons, preferably in the hinge region of the Fc domain.

The dimers of the present invention are preferably recombinantly produced by use of a polynucleotide encoding a monomer of the dimer and vectors, preferably expression vectors containing said polynucleotides. For the production of the dimers of the invention, the polynucleotides are obtained from existing clones, i.e., preferably encode the naturally occurring polypeptide or a part thereof (for human gp130/IL6ST: GenBank sequence NM_002184 and supporting clones; for the constant region of human IgG1/IGHG1: e.g., GenBank sequence AK057754). Polypeptides encoded by any polynucleotide which hybridises to the complement of the native DNA or RNA under highly stringent or moderate stringent conditions (for definitions, see Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y.) as long as that polypeptide maintains the biological activity of the
native sequence, are also useful for producing the dimers of the present invention.

The recombinant vectors can be constructed according to methods well known to the person skilled in the art; see, e.g., Sambrook, Molecular Cloning A Laboratory Manual, Cold Spring Harbor Laboratory (1989) N.Y. A variety of expression vector/host systems may be utilised to contain and express sequences encoding the dimers of the present invention. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transformed with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.

In bacterial systems, a number of expression vectors may be selected depending upon the use intended for the polypeptide dimer of the present invention. Vectors suitable for use in the present invention include, but are not limited to the pSKK expression vector for expression in bacteria.

In wild type or modified (e.g., glycoengineered) yeast species, such as Saccharomyces cerevisiae, Schizosaccharomyces pombe or Pichia pastoris, a number of vectors containing constitutive or inducible promoters or promoter systems such as alpha factor, alcohol oxidase, PGH, tetracycline glucose etc. may be used; for reviews, see Grant et al. (1987) Methods Enzymol. 153:516-544; Siam et al. (2004) Methods 33:189-198; Macauley-Patrick et al. (2005) Yeast 22:249-270, Gellissen et

In cases where state of the art plant expression systems are used (for review, see, e.g., Stoger et al. (2005) Curr.Opin.Biotechnol.16:167-173; Gomord et al. (2005) Trends Biotechnol. 23:559-565) the expression of sequences encoding a dimer (or monomers thereof) of the present invention may be driven by any of a number of promoters. For example, viral promoters such as the 35S and 19S promoters of CaMV may be used alone or in combination with the omega leader sequence from TMV (Takamatsu (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used (Coruzzi et al. (1984) EMBO J. 3:1671-1680; Broglie et al. (1984) Science 224:838-843; and Winter et al. (1991) Results Probl. Cell Differ. 17:85-105). These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. Such techniques are described in a number of generally available reviews (see, for example, Hobbs and Murry in McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York, N.Y.; pp. 191-196).

An insect system may also be used to express the dimers (or the monomers thereof) of the present invention. For example, in one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The sequences may be cloned into a non-essential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the DNA sequence encoding sgp130Fc monomers or fragments or variants thereof will render the polyhedrin gene inactive and produce recombinant virus lacking
coat protein. The recombinant viruses may then be used to infect, for example, *S. frugiperda* cells or *Trichoplusia* larvae in which sgp130Fc of the present invention may be expressed (Engelhard et al. (1994) Proc. Natl. Acad. Sci. 91:3224-3227).

In mammalian host cells, a number of expression systems based, e.g., on lipid-based transfection or viral transduction of the cells may be utilised. In cases where an adenovirus is used as an expression vector, sequences encoding the polypeptide(s) of the present invention may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain a viable virus which is capable of expressing the polypeptides of the present invention in infected host cells (Logan, J. and Shenk, T. (1984) Proc. Natl. Acad. Sci. 81:3655-3659). In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells.

After the introduction of the recombinant vector(s), the host cells are grown in a selective medium, which selects for the growth of vector-containing cells. Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase (Wigler, M. et al. (1977) Cell 11:223-32) and adenine phosphoribosyltransferase (Lowy, I. et al. (1980) Cell 22:817-23) genes which can be employed in tk.sup.- or aprt.sup.- cells, respectively. Also, antimetabolite, antibiotic or herbicide resistance can be used as the basis for selection; for example, dhfr which confers resistance to methotrexate (Wigler, M. et al. (1980) Proc. Natl. Acad. Sci.
npt, which confers resistance to the aminoglycosides neomycin and G-418 (Colbere-Garapin, F. et al (1981) J. Mol. Biol. 150:1-14) and als or pat, which confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. Additional selectable genes have been described, for example, trpB, which allows cells to utilise indole in place of tryptophan, or hisD, which allows cells to utilise histinol in place of histidine (Hartman, S. C. and R. C. Mulligan (1988) Proc. Natl. Acad. Sci. 85:8047-51). The use of visible markers has gained popularity with such markers as anthocyanins, beta-glucuronidase and its substrate GUS, and luciferase and its substrate luciferin, being widely used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system (Rhodes, C. A. et al. (1995) Methods Mol. Biol. 55:121-131).

Purification of the recombinant polypeptides is carried out by any one of the methods known for this purpose, i.e., any conventional procedure involving extraction, precipitation, chromatography, electrophoresis, or the like. A further purification procedure that may be used is affinity chromatography using, e.g., Protein A, Protein G or monoclonal antibodies, which bind the target polypeptide and which are produced and immobilized on a gel matrix contained within a column. Impure preparations containing the recombinant polypeptide are passed through the column. The polypeptide will be bound to the column by the specific interaction with the affinity gel matrix while the impurities will pass through. After washing the polypeptide is eluted from the gel by a change in pH or ionic strength and then, if it is produced as the monomer, dimerized and, if desired, PEGylated.
Accordingly, the present invention also relates to a method of producing the polypeptide dimer of the present invention, comprising culturing a host cell transformed with a DNA sequence encoding a monomer of said polypeptide and recovering the polypeptide-monomer or dimer from said host cell or the culture.

The polypeptide dimers of the present invention are useful in the treatment and/or prevention of all the pathologies, in which the activity of the agonistic complex IL-6/sIL6R should be inhibited.

Thus, the present invention also relates to a pharmaceutical composition containing an effective amount of a polypeptide-dimer of the present invention, preferably combined with a pharmaceutically acceptable carrier. "Pharmaceutically acceptable" is meant to encompass any carrier, which does not interfere with the effectiveness of the biological activity of the active ingredient and that is not toxic to the host to which it is administered. Examples of suitable pharmaceutical carriers are well known in the art and include phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various types of wetting agents, sterile solutions etc.. Such carriers can be formulated by conventional methods and can be administered to the subject at an effective dose.

An "effective amount" refers to an amount of the active ingredient that is sufficient to affect the course and the severity of the disease, leading to the reduction or remission of such pathology.

An "effective dose" useful for treating and/or preventing these diseases or disorders may be determined using methods
known to one skilled in the art (see for example, Fingl et al., The Pharmacological Basis of Therapeutics, Goodman and Gilman, eds. Macmillan Publishing Co., New York, pp. 1-46 ((1975)).

Administration of the compositions may be effected by different ways, e.g. by intravenous, intraperitoneal, subcutaneous, intramuscular, topical or intradermal administration. The dosage regimen will be determined by the attending physician and other clinical factors. As is well known in the medical arts, dosages for any one patient depend on many factors, including the patient's size, body surface area, age, sex, the particular compound to be administered, time and route of administration, the kind of therapy, general health and other drugs being administered concurrently.

The present invention also relates to the use of a polypeptide dimer as defined above for the preparation of a pharmaceutical composition for the treatment and/or prevention of a disease or disorder where blockage of the agonistic complex IL-6/sIL-6R has a beneficial effect. Preferred medical uses of the polypeptide-dimers of the present invention are the treatment/prevention of bone resorption, hypercalcemia, cachexia, tumors or other types of cancer (e.g., colon cancer, multiple myeloma, lymphoma, leukaemia or Hodgkin's disease), autoimmune diseases (e.g., multiple sclerosis or type 1 diabetes), inflammatory or atopic diseases (e.g., Crohn's disease, ulcerative colitis, rheumatoid arthritis, juvenile rheumatoid arthritis, asthma, psoriasis, sarcoidosis, lupus erythematosus or uveitis), infections (e.g., by bacteria, viruses, fungi or other pathogens), as well as endocrinologic disorders and metabolic or catabolic diseases (e.g., type 2 diabetes, obesity, hyperglycemia or hypercholesterinemia).
The examples below explain the invention in more detail.

Example 1

Construction and production of the sgp130Fc mutein CR5/18

(A) Material
The Gateway cloning system components (AccuPrime Pfx DNA Polymerase, the donor vector pDONR221, the CMV promoter-controlled expression vector pcDNA-DEST40, BP and LR recombinase for insert transfer and competent E. coli cells) were purchased from Invitrogen (Karlsruhe, Germany). The QuikChange II site-directed mutagenesis kit was obtained from Stratagene (Amsterdam, The Netherlands). PAGE purified mutagenesis primers were from Microsynth (Balgach, Switzerland). CHO-K1 cells were obtained from the German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany). Culture medium components were purchased as follows: Ham’s F12 medium, low IgG FBS and PBS (PAA Laboratories; Colbe, Germany), FBS (Biochrom; Berlin, Germany), Trypsin/EDTA solution (Invitrogen) and G418 solution (Sigma-Aldrich; Taufkirchen, Germany). The transfection reagent Lipofectamine 2000 was from Invitrogen. Santa Cruz (Heidelberg, Germany) supplied Protein A/G Plus Agarose for immunoprecipitation. For both immunoprecipitation and primary detection in Western blots, a mouse anti-human IgG (Fc) monoclonal antibody was used (CBL102; Chemicon; Hofheim, Germany). Western blot secondary detection was performed with an anti-mouse IgG HRP-linked antibody, ECL-Plus Western blotting substrate and Hyperfilm ECL (all from GE Healthcare; Munich, Germany).
Roller bottles (2.1 L, 2.5X surface) were purchased from Greiner Bio-One (Frickenhausen, Germany). Cellulose acetate filters (0.45 µm) for a vacuum filter unit were purchased from Sartorius (Göttingen, Germany). Materials for affinity and size exclusion chromatography (SEC) were all obtained from GE Healthcare (Munich, Germany): MabSelect material (product code 17-5199-01) in a XK16/20 column, PD-10 desalting columns and a HiLoad 26/60 Superdex 200 pg column for SEC. Amicon Ultra-15 50 kDa Ultracel-PL membrane concentration units were purchased from Millipore (Eschborn, Germany). Ready-made acrylamide-bis solution (19:1, 30%) for PAGE was supplied by Bio-Rad (Munich, Germany).

(B) Construction of CR5/18
A cDNA for full-length sgp130Fc comprising the complete extracellular domain of gp130 and the wildtype human IgG1 Fc (sources: for human gp130/IL6ST: GenBank sequence NM_002184 and supporting clones; for the constant region of human IgG1/IGHG1: e.g., GenBank sequence AK057754) was codon-optimized for expression in CHO-K1 cells and subcloned into pDONR221 using Gateway primers, AccuPrime Pfx DNA Polymerase and BP recombinase in a standard Gateway cloning procedure. The subcloned insert was completely sequence-verified using stacked forward and reverse sequencing primers every 250-300 bp. In a site-directed mutagenesis with the QuikChange II kit, the lower hinge region of the IgG1-Fc (amino acids 234, 235 and 237 according to EU numbering) were mutated from the wildtype sequence „LLGG“ to „AEGA“. Mutated clones were verified by complete sequencing as described above. Subsequently, the insert was transferred to the expression vector pcDNA-DEST40 by Gateway LR recombination. As the insert encodes two stop codons after the Fc part, the tags coded in pcDNA-DEST40 (V5 and 6xHis epitopes) are not present in
CR5/18. Positive clones were identified by AlwNI restriction digest and sequence verified again.

(C) Cell culture and transfection
CHO-K1 cells were grown in Ham's F12 medium supplemented with 10% FBS at 37°C and 5% CO₂ in a water-saturated atmosphere. Maintenance cultures were split every 3-4 days and used only up to 20 passages. Cells were transfected with the expression construct pcDNA-DEST40_CR5/18 using Lipofectamine 2000 and standard conditions for CHO-K1 supplied by Invitrogen. For a first transient expression test, CHO-K1 cells were transfected in 6-well plates, and both, cells and supernatants, were harvested 24h after transfection. CR5/18 was immunoprecipitated from the supernatants using Protein A/G Plus Agarose and the anti-human IgG (Fc) antibody according to the manufacturer's instructions. Whole cell protein was extracted and Western blots with anti-human IgG (Fc) antibody were performed with the cell lysates and immunoprecipitates as described in Waetzig et al., J. Immunol. 168: 5342 (2002).

(D) Production of CR5/18 in CHO-K1 cells
After successful transient expression, CHO-K1 cells were transfected and positive clones were selected using 400 µg/ml G418 in 10 cm plates. To determine product quality and properties, a pre-selected polyclonal CHO-K1 pool was transferred to roller bottles and cultured with low IgG FBS. Supernatants of the confluent cells were harvested 2-3 times a week, centrifuged twice at 3,500 x g and 4°C for 15 min to remove cell debris and either processed immediately or frozen at -80°C. In parallel, stable cell clones were selected from the pre-selected pool using a limited dilution method and characterized by Western blot expression analysis as described above. The clone with the highest and most stable expression
was transferred to roller bottles and used for permanent production.

(E) Purification by affinity and size exclusion chromatography
CR5/18-containing supernatants from roller bottle cultures were purified at 4°C using a P-1 peristaltic pump and an ÄKTA Purifier 100 System (both from GE Healthcare; Munich, Germany). The protocol was based on the manufacturer’s recommendations for the purification of monoclonal antibodies. After centrifugation, the pH of the fresh or thawed (on ice) supernatant was adjusted to 6.7-7.0. After two rounds of vacuum filtration (0.45 μm) the supernatant was degassed and - if necessary - the pH was adjusted again to a value of 6.7-7.0. Subsequently, the PBS-equilibrated affinity chromatography column (6-25 ml MabSelect in a XK16/20 column) was loaded with 2-4 L of supernatant at a flow rate of 3-10 ml/min using the P-1 pump. After washing with PBS, the column was transferred to the ÄKTA purifier and washed again with PBS until the A$_{280}$ stabilized after quantitative removal of unbound protein. For the elution, the ÄKTA system was equipped with two 50 mM sodium citrate buffers at pH 3.25 and 5.5, respectively, which were mixed to produce the desired pH conditions. One washing step at pH 5.1 was followed by elution with pH 3.7. Fractions of 10 ml were collected in 15 ml tubes containing 2 ml of 1 M Tris-HCl (pH 11). The peak fractions were pooled, and the pH was measured and adjusted to 7.5, if necessary. Pool protein concentration was measured by A$_{280}$ and the pool was carefully concentrated to a maximum of 1.5 mg/ml using Amicon Ultra-15 50 kDa Ultracel-PL membrane concentration units. PBS-equilibrated PD-10 desalting columns were used to replace the citrate buffer with PBS, followed by another protein concentration measurement at 280 nm.
For size exclusion chromatography (SEC), a maximum protein concentration of 1.2 mg/ml in PBS was recommendable. SEC was performed with the ÄKTA system in a PBS-equilibrated HiLoad 26/60 Superdex 200 pg column at a flow rate of 0.8 ml/min. In contrast to wild type sgp130Fc, CR5/18 eluted in a single peak after a low peak of aggregates of higher molecular weight (Figure 2). In the first runs, samples of all fractions were obtained for PAGE analysis. Peak fractions were pooled, their protein concentrations were measured and set to 400-500 µg/ml in PBS, and single-use aliquots were frozen at -80°C for long-term storage. Fractions and pool samples were analysed by native PAGE (7.5%) and subsequent silver or Coomassie staining.

As shown in Figure 2, the amount of side products (aggregates) of CR5/18 is significantly reduced as compared to the parental compound sgp130Fc which was purified in a parallel experiment. Moreover, the elution of the desired product (CR5/18 dimer) is clearly separable from the impurity fractions (aggregates), which is not the case with wild type sgp130Fc. Thus, both yield (due to a higher proportion of the desired product) and quality of CR5/18 preparations are better than those of conventional sgp130Fc, leading to lower costs for the industrial production. These results indicate a clear improvement of CR5/18 over the parental sgp130Fc molecule.

Example 2

Bioactivity of CR5/18 in a standardized cell proliferation assay

(A) Material
The stably transfected B cell precursor cell line BAF3/gp130 and the designer cytokine Hyper-IL-6 were used. Culture medium components were purchased as follows: DMEM and PBS (PAA Laboratories; Cölbe, Germany), FBS (Biochrom; Berlin, Germany) and Trypsin/EDTA solution (Invitrogen; Karlsruhe, Germany). Interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6R) were purchased from BioSource (Solingen, Germany) and R&D Systems (Wiesbaden, Germany), respectively. The Cell Titer 96 Aqueous Non-Radioactive Cell Proliferation Assay (MTS) was obtained from Promega (Mannheim, Germany).

(B) Blockage of IL-6/sIL-6R-induced BAF3/gp130 cell proliferation by sgp130Fc or CR5/18

BAF3/gp130 cells depend on the presence of the IL-6/sIL-6R complex in the culture medium for proliferation and viability. For maintenance, BAF3/gp130 cells were cultured at a density of less than 5 x 10^5 cells/mL in DMEM with 10% FBS and 10 ng/mL Hyper-IL-6 (a designer cytokine consisting of covalently linked IL-6 and sIL-6R; Fischer et al. 1997, Nat. Biotechnol. 15: 142-145). The 10 ng/mL Hyper-IL-6 could be replaced by 100 ng/mL IL-6 and 50 ng/mL sIL-6R. Cells were passaged twice a week. For assays, cells were washed twice in medium without Hyper-IL-6 (or IL-6/sIL-6R) and were then seeded at 5,000 cells/well in 96-well plates. CR5/18 or the parent compound sgp130Fc were added at various concentrations ranging from 20 µg/mL to 78 ng/mL (1:4 dilution series; Figure 3). Subsequently, cells were incubated for 3 days in the presence of 100 ng/mL IL-6 and 50 ng/mL sIL-6R. Controls included unstimulated cells without and with the maximum concentration of CR5/18 or sgp130Fc as well as cells incubated with the stimulants IL-6 and sIL-6R only (Figure 3).

(C) Results
The biological activity of CR5/18 or wild type sgp130Fc in the cell culture was measured by the reduction of the number of viable BAF3/gp130 cells (as determined by MTS substrate conversion) after 3 days. CR5/18 is more biologically active than wildtype sgp130Fc, reaching its IC\textsubscript{50} at a concentration of ca. 400 ng/mL where sgp130Fc (IC\textsubscript{50} \approx 800 ng/mL) still shows no significant effect (Figure 3). This indicates that CR5/18 could be used at about half the therapeutic concentration of the wildtype compound.
1. A polypeptide dimer capable of inhibiting the activity of the agonistic complex IL-6/sIL-6R and comprising two monomers wherein each of said monomers comprises an extra-cellular part of a gp130 molecule or variant or fragment thereof fused to an Fc domain of an IgG1 protein and wherein at least the amino acid residue Leu\textsubscript{233} of the hinge region of the Fc domain is replaced by at least one hydrophilic amino acid residue.

2. The polypeptide dimer of claim 1, wherein the hydrophilic amino acid residue is Glu or Asp.

3. The polypeptide dimer of claim 1 or 2, wherein, furthermore, the amino acid residue Leu\textsubscript{234} of the hinge region is replaced by Phe or Ala.

4. The polypeptide dimer of claim 3, wherein the amino acid residues Leu\textsubscript{234} and/or Gly\textsubscript{237} of the hinge region are replaced by the amino acid residue Ala.

5. The polypeptide dimer of any one of claims 1 to 4, wherein the hinge region comprises the amino acid sequence motif Ala\textsubscript{234}-Glu\textsubscript{235}-Gly\textsubscript{236}-Ala\textsubscript{237} instead of Leu\textsubscript{234}-Leu\textsubscript{235}-Gly\textsubscript{236}-Gly\textsubscript{237}.

6. The polypeptide dimer of claim 5, wherein the hinge region comprises the amino acid sequence Asp\textsubscript{221}-Lys\textsubscript{222}-Thr\textsubscript{223}-His\textsubscript{224}-Thr\textsubscript{225}-Cys\textsubscript{226}-Pro\textsubscript{227}-Pro\textsubscript{228}-Cys\textsubscript{229}-Pro\textsubscript{230}-Ala\textsubscript{231}-Pro\textsubscript{232}-Glu\textsubscript{233}-Ala\textsubscript{234}-Glu\textsubscript{235}-Gly\textsubscript{236}-Ala\textsubscript{237}-Pro\textsubscript{238}-Ser\textsubscript{239}-Val\textsubscript{240}.

7. The polypeptide dimer of any one of claims 1 to 6, wherein the soluble gp130 molecule or variant or fragment thereof is directly fused to the hinge region of the Fc domain of the IgG1 protein or via a flexible polypeptide linker.
8. The polypeptide dimer of claim 7, wherein the linker is a linker comprising 2 to 50 amino acid residues independently selected from the group consisting of glycine, serine, asparagine, threonine and alanine.

9. The polypeptide dimer of any one of claims 1 to 8, wherein one or more N-glycosylation sites are inserted between the soluble gp130 molecule or variant or fragment and the Fc domain.

10. The polypeptide dimer of any one of claims 1 to 9, wherein the monomers are linked to each other through a simple covalent bond, a flexible peptide linker or one or more disulfide bridges.

11. The polypeptide dimer of any one of claims 1 to 10, wherein at least one monomer of said dimer is PEGylated.

12. A polynucleotide encoding a monomer of the polypeptide dimer of any one of claims 1 to 10.

13. An expression vector containing a polynucleotide of claim 12.

15. A method of producing the polypeptide dimer of any one of claims 1 to 10, comprising culturing a host cell of claim 14 and recovering the monomer or dimer from said host cell or the culture.

16. A pharmaceutical composition containing a polypeptide dimer as defined in any one of claims 1 to 11.

AMENDED SHEET (ARTICLE 19)
17. Use of a polypeptide dimer as defined in any one of claims 1 to 11 for the preparation of a pharmaceutical composition for the treatment and/or prevention of a disease or disorder where blockage of the agonistic complex IL-6/sIL-6R has a beneficial effect.

18. Use according to claim 17, wherein said disease is bone resorption, hypercalcemia, cachexia, a tumor or other type of cancer, an autoimmune disease, an inflammatory or atopic disease, an infection, an endocrinologic disorder or a metabolic or catabolic disease.
MTS cell viability assay with BAF/gp130 cells

![Graph showing MTS cell viability assay with BAF/gp130 cells. The x-axis represents different conditions: control, 20,000, I/R, 78 + I/R, 313 + I/R, 1,250 + I/R, 5,000 + I/R, 20,000 + I/R. The y-axis represents OD. The graph compares sgp130Fc (wt) and CR5/18.](image)

sgp130Fc or CR5/18 [ng/mL]; I/R = IL-6+IL-6R

Fig. 3
hinge region \(\cdots \) Fc

\[\ldots \text{sgp130 extracellular domain} \text{ DKTHTCPPCPAPE } \text{ LLGG } \text{ PSV} \ldots \text{ wildtype IgG1}\]

\[\ldots \text{sgp130 extracellular domain} \text{ DKTHTCPPCPAPE } \text{ XZGA } \text{ PSV} \ldots \text{ mutation scheme}\]

\[\ldots \text{sgp130 extracellular domain} \text{ DKTHTCPPCPAPE } \text{ AEGA } \text{ PSV} \ldots \text{ mutant 1 (e.g. in CR5/18)}\]

\[\ldots \text{sgp130 extracellular domain} \text{ DKTHTCPPCPAPE } \text{ ADGA } \text{ PSV} \ldots \text{ mutant 2}\]

\[\ldots \text{sgp130 extracellular domain} \text{ DKTHTCPPCPAPE } \text{ FECA } \text{ PSV} \ldots \text{ mutant 3}\]

\[\ldots \text{sgp130 extracellular domain} \text{ DKTHTCPPCPAPE } \text{ FDGA } \text{ PSV} \ldots \text{ mutant 4}\]

\[\text{aa 234-235-236-237 (EU numbering)}\]