

HU000030385T2

(19) **HU**

(11) Lajstromszám: **E 030 385**

(13) **T2**

MAGYARORSZÁG
Szellemi Tulajdon Nemzeti Hivatala

EURÓPAI SZABADALOM **SZÖVEGÉNEK FORDÍTÁSA**

(21) Magyar ügyszám: **E 12 719089**

(22) A bejelentés napja: **2012. 04. 06.**

(96) Az európai bejelentés bejelentési száma:
EP 20120719089

(97) Az európai bejelentés közzétételi adatai:
EP 2696694 A1 **2012. 10. 18.**

(97) Az európai szabadalom megadásának meghirdetési adatai:
EP 2696694 B1 **2016. 06. 29.**

(51) Int. Cl.: **A01P 13/00**

A01N 43/54 (2006.01)

A01N 43/56 (2006.01)

A01N 43/58 (2006.01)

A01N 436/53 (2006.01)

A01N 43/76 (2006.01)

A01N 43/82 (2006.01)

A01N 43/84 (2006.01)

A01N 43/90 (2006.01)

A01N 47/36 (2006.01)

(86) A nemzetközi (PCT) bejelentési szám:

PCT/JP 12/060090

(87) A nemzetközi közzétételi szám:

WO 12141276

(30) Elsőbbségi adatok:
2011087546

2011. 04. 11.

JP

(73) Jogosult(ak):
**Ishihara Sangyo Kaisha, Ltd., Osaka-shi,
Osaka 550-0002 (JP)**

(72) Feltaláló(k):

YAMADA, Ryu, Kusatsu-shi, Shiga, 525-0025 (JP)

OKAMOTO, Hiroyuki, Kusatsu-shi, Shiga, 525-0025 (JP)

TERADA, Takashi, Kusatsu-shi, Shiga, 525-0025 (JP)

(74) Képviselő:

**PINTZ ÉS TÁRSAI Szabadalmi, Védjegy és
Jogi Iroda Kft., Budapest**

(54) **Herbicid kompozíció, amely tartalmaz flazaszulfuront és tartalmazza a protoporfirinogén-oxidáz inhibitorát**

Az európai szabadalom ellen, megadásának az Európai Szabadalmi Közlönyben való meghirdetésétől számított kilenc hónapon belül, felszólalást lehet benyújtani az Európai Szabadalmi Hivatalnál. (Európai Szabadalmi Egyezmény 99. cikk(1))

A fordítást a szabadalmas az 1995. évi XXXIII. törvény 84/H. §-a szerint nyújtotta be. A fordítás tartalmi helyességét a Szellemi Tulajdon Nemzeti Hivatala nem vizsgálta.

(11)

EP 2 696 694 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention
of the grant of the patent:

29.06.2016 Bulletin 2016/26

(21) Application number: 12719089.0

(22) Date of filing: 06.04.2012

(51) Int Cl.:

A01P 13/00 (2006.01) **A01N 47/36** (2006.01)
A01N 43/54 (2006.01) **A01N 43/56** (2006.01)
A01N 43/58 (2006.01) **A01N 43/653** (2006.01)
A01N 43/76 (2006.01) **A01N 43/82** (2006.01)
A01N 43/84 (2006.01) **A01N 43/90** (2006.01)

(86) International application number:
PCT/JP2012/060090

(87) International publication number:
WO 2012/141276 (18.10.2012 Gazette 2012/42)

(54) HERBICIDAL COMPOSITION COMPRISING FLAZASULFURON AND AN INHIBITOR OF PROTOPORPHYRINOGEN OXIDASE

HERBIZIDE ZUSAMMENSETZUNG ENTHALTEND FLAZASULFURON UND EINEN INHIBITOR DER
PROTOPORPHYRINOGEN OXIDASE

COMPOSITION HERBICIDE COMPRENANT DE LA FLAZASULFURON ET UN INHIBITEUR DE
L'OXYDASE DE PROTOPORPHYRINOGEN

(84) Designated Contracting States:

AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO RS SE SI SK SM TR

Designated Extension States:

BA ME

(30) Priority: 11.04.2011 JP 2011087546

(43) Date of publication of application:
19.02.2014 Bulletin 2014/08

(73) Proprietor: Ishihara Sangyo Kaisha, Ltd.
Osaka-shi, Osaka 550-0002 (JP)

(72) Inventors:

• YAMADA, Ryu
Kusatsu-shi,
Shiga, 525-0025 (JP)

• OKAMOTO, Hiroyuki
Kusatsu-shi,
Shiga, 525-0025 (JP)
• TERADA, Takashi
Kusatsu-shi,
Shiga, 525-0025 (JP)

(74) Representative: Hartz, Nikolai
Wächtershäuser & Hartz
Patentanwaltspartnerschaft mbB
Weinstrasse 8
80333 München (DE)

(56) References cited:
WO-A2-2007/105377 DE-A1- 19 933 702
US-A1- 2002 004 457

EP 2 696 694 B1

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

TECHNICAL FIELD

5 [0001] The present invention relates to a method for controlling undesired plants which comprises applying a herbicidal composition or combination comprising (A) flazasulfuron or its salt and (B) at least one of pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, butafenacil, saflufenacil, oxadiargyl, pentoxyzone, fluthiacet-methyl, pyraclonil and flufenpyr-ethyl and their salts.

10 BACKGROUND ART

[0002] Various herbicidal compositions have been studied to control undesired plants (hereinafter sometimes referred to simply as "weeds") in agricultural fields and non-agricultural fields.

15 [0003] For example, Patent Document 1 discloses microgranules comprising a compound which inhibits protoporphyrinogen oxidase when absorbed from the stem and leaves, a photosynthesis inhibiting herbicide and an acetolactate synthase inhibiting herbicide, which are to be directly applied to plants to be controlled. Patent Documents 2 and 3 also disclose various herbicidal compositions, and as one example, a combination of a protoporphyrinogen oxidase inhibitor and an acetolactate synthase inhibiting herbicide is disclosed.

20 [0004] However, a herbicidal composition comprising flazasulfuron or its salt and a protoporphyrinogen oxidase inhibitor is not disclosed in any of Patent Documents 1 to 3.

[0005] Patent Document 4 describes compositions for controlling broadleaved weeds. A composition comprising flazasulfuron and butafenacil is mentioned in an extensive list of potential combinations.

Patent Document 5 describes compositions for controlling weeds comprising butafenacil. A potential coherbicide is flazasulfuron.

25 Neither of Patent Documents 4 and 5 provides data with regard to a potential synergistic effect.

PRIOR ART DOCUMENTS

PATENT DOCUMENTS

30 [0006]

Patent Document 1: JP-A-2005-68121

Patent Document 2: WO2003/024221

35 Patent Document 3: WO00/27203

Patent Document 4: US2002/0004457

Patent Document 5: DE19933702

40 DISCLOSURE OF INVENTION

TECHNICAL PROBLEM

[0007] Many herbicidal compositions have been developed and are presently used, but as weeds to be controlled are many in types and their emergence extends over a long period, it is desired to develop a herbicidal composition having a broader herbicidal spectrum, a high activity and a long-lasting effect.

SOLUTION TO PROBLEM

50 [0008] It is possible to provide a herbicidal composition having a broader herbicidal spectrum, a high activity and a long-lasting effect, by use of flazasulfuron or its salt and a specific protoporphyrinogen oxidase inhibitor in combination.

[0009] That is, the present invention provides a method for controlling undesired plants or inhibiting their growth, which comprises applying a herbicidally effective amount of the above herbicidal composition.

[0010] The present invention further provides a method for controlling undesired plants or inhibiting their growth, which comprises applying herbicidally effective amounts of (A) and (B), to the undesired plants or to a place where they grow.

55

ADVANTAGEOUS EFFECTS OF INVENTION

[0011] The herbicidal composition used in the method of the present invention comprising flazasulfuron or its salt and

a specific protoporphyrinogen oxidase inhibitor as active ingredients is capable of controlling a wide range of undesired plants in cropland or non-cropland, and it surprisingly presents a synergistic herbicidal effect i.e. a herbicidal effect higher than the mere addition of the respective herbicidal effects of the active ingredients, and it can be applied at a low dose as compared with a case where the respective active ingredients are applied individually. Such a herbicidal composition used in the method of the present invention has an enlarged herbicidal spectrum, and further its herbicidal effect will last over a long period of time.

[0012] When the herbicidal activity in a case where two active ingredients are combined, is larger than the simple sum of the respective herbicidal activities of the two active ingredients (the expected activity), it is called a synergistic effect. The activity expected by the combination of two active ingredients can be calculated as follows (Colby S.R., "Weed", vol. 15, p. 20-22, 1967).

$$E = \alpha + \beta - (\alpha \times \beta \div 100)$$

15 where

α : growth inhibition rate when treated with x (g/ha) of herbicide X,

β : growth inhibition rate when treated with y (g/ha) of herbicide Y,

E: growth inhibition rate expected when treated with x (g/ha) of herbicide X and y (g/ha) of herbicide Y.

[0013] That is, when the actual growth inhibition rate (measured value) is larger than the growth inhibition rate by the above calculation (calculated value), the activity by the combination can be regarded as showing a synergistic effect. The herbicidal composition used in the method of the present invention shows a synergistic effect when calculated by the above formula.

25 DESCRIPTION OF EMBODIMENTS

[0014] The herbicidal composition for use in the method of the present invention comprises, as active ingredients, (A) flazasulfuron or its salt (hereinafter sometimes referred to as "compound A") and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound, an oxazolidinedione compound, a thiadiazole compound, pyraclonil, flufenpyr-ethyl and their salts (hereinafter they will sometimes be referred to as "compound B").

[0015] In the compound A, flazasulfuron (common name) is 1-(4,6-dimethoxypyrimidin-2-yl)-3-(3-trifluoromethyl-2-pyridylsulfonyl)urea.

[0016] The compound B will be described in detail below. The compound B is represented by common names.

[0017] The phenylpyrazole compound is pyraflufen-ethyl.

[0018] The triazolinone compound is carfentrazone-ethyl or sulfentrazone.

[0019] The N-phenylphthalimide compound is flumioxazin.

[0020] The pyrimidindione compound is butafenacil or saflufenacil.

[0021] The oxadiazole compound is oxadiargyl.

[0022] The oxazolidinedione compound is pentoxyazole.

[0023] The thiadiazole is fluthiacet-methyl.

[0024] Other compounds included in the compound B are pyraclonil or flufenpyr-ethyl.

[0025] The compound B is preferably the phenylpyrazole compound, the triazolinone compound, the N-phenylphthalimide compound, the pyrimidindione compound or the oxadiazole compound, more preferably the phenylpyrazole compound, the triazolinone compound or the N-phenylphthalimide compound, capable of achieving a high herbicidal effect when combined with the compound A.

[0026] More specifically, preferred is pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, saflufenacil, oxadiargyl, fluthiacet-methyl, flufenpyr-ethyl, butafenacil, pentoxyazole or pyraclonil.

[0027] The salt included in the compound A or the compound B may be any salt so long as it is agriculturally acceptable. Examples thereof include alkali metal salts such as a sodium salt and a potassium salt; alkaline earth metal salts such as a magnesium salt and a calcium salt; ammonium salts such as a monomethylammonium salt, a dimethylammonium salt and a triethylammonium salt; inorganic acid salts such as a hydrochloride, a perchlorate, a sulfate and a nitrate, and organic acid salts such as an acetate and a methanesulfonate.

[0028] The mixing ratio of the compound A to the compound B cannot generally be defined, as it may vary depending upon various conditions such as the type of the formulation, the weather conditions, and the type and the growth stage

of the undesired plants to be controlled, but it is preferably a mixing ratio to achieve the herbicidally effective amounts (synergistic herbicidally effective amount) with which the synergistic herbicidal effect is obtained, and for example, by the weight ratio, it is preferably from 100:1 to 1:100, more preferably from 50:1 to 1:64, particularly preferably from 20:1 to 1:32.

5 [0029] When pyraflufen-ethyl is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:8, more preferably from 20:1 to 1:3.2.

[0030] When carfentrazone-ethyl is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 40:1 to 1:40, more preferably from 20:1 to 1:18, particularly preferably from 5:1 to 1:18.

10 [0031] When sulfentrazone is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 10:1 to 1:50, more preferably from 4:1 to 1:25, particularly preferably from 2:1 to 1:20.

[0032] When flumioxazin is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 100:1 to 1:75, more preferably from 50:1 to 1:24, particularly preferably from 20:1 to 1:20.

15 [0033] When saflufenacil is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:10, more preferably from 10:1 to 1:8.

[0034] When oxadiargyl is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 2:1 to 1:100, more preferably from 1:1 to 1:32.

20 [0035] When fluthiacet-methyl is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:10, more preferably from 10:1 to 1:2.

[0036] When flufenpyr-ethyl is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:10, more preferably from 10:1 to 1:2.

25 [0037] When butafenacil is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 20:1 to 1:25, more preferably from 5:1 to 1:8.

[0038] When pentoxyzone is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 2:1 to 1:50, more preferably from 0.5:1 to 1:10.

[0039] When pyraclonil is used as the compound B, the mixing ratio of the compound A to the compound B is, for example, by the weight ratio, preferably from 2:1 to 1:50, more preferably from 0.5:1 to 1:10.

30 [0040] The doses of the compound A and the compound B cannot generally be defined, as they may vary depending upon various conditions such as the mixing ratio of the compound A to the compound B, the type of the formulation, the weather conditions, and the type and the growth stage of the undesired plants to be controlled. However, they are preferably doses to achieve the herbicidally effective amounts (synergistic herbicidally effective amount) with which the synergistic herbicidal effect is obtained, and for example, the dose of the compound A is preferably from 0.5 to 120 g/ha, more preferably from 1 to 110 g/ha, particularly preferably from 1 to 100 g/ha, and the dose of the compound B is preferably from 0.5 to 1,000 g/ha, more preferably from 1 to 900 g/ha, particularly preferably from 2 to 800 g/ha.

35 [0041] With respect to the doses of the compounds A and B when pyraflufen-ethyl is used as the compound B, for example, the dose of the compound A is preferably from 0.5 to 120 g/ha, more preferably from 1 to 110 g/ha, particularly preferably from 1 to 100 g/ha, and the dose of the compound B is preferably from 1 to 100 g/ha, more preferably from 1 to 90 g/ha, particularly preferably from 2 to 80 g/ha.

40 [0042] With respect to the doses of the compounds A and B when carfentrazone-ethyl is used as the compound B, for example, the dose of the compound A is preferably from 0.5 to 120 g/ha, more preferably from 0.5 to 110 g/ha, particularly preferably from 1 to 100 g/ha, and the dose of the compound B is preferably from 2.5 to 400 g/ha, more preferably from 10 to 250 g/ha, particularly preferably from 10 to 50 g/ha.

45 [0043] With respect to the doses of the compounds A and B when sulfentrazone is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 20 to 100 g/ha, particularly preferably from 25 to 100 g/ha, and the dose of the compound B is preferably from 10 to 500 g/ha, more preferably from 25 to 500 g/ha.

50 [0044] With respect to the doses of the compounds A and B when flumioxazin is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 25 to 100 g/ha, particularly preferably from 25 to 50 g/ha, and the dose of the compound B is preferably from 1 to 750 g/ha, more preferably from 2 to 600 g/ha, particularly preferably from 2.5 to 500 g/ha.

[0045] With respect to the doses of the compounds A and B when saflufenacil is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 12.5 to 100 g/ha, and the dose of the compound B is preferably from 5 to 100 g/ha.

55 [0046] With respect to the doses of the compounds A and B when oxadiargyl is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 12.5 to 100 g/ha, and the dose of the compound B is preferably from 50 to 1,000 g/ha, more preferably from 150 to 800 g/ha.

[0047] With respect to the doses of the compounds A and B when fluthiacet-methyl is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 25 to 50 g/ha, and the dose of the compound B is preferably from 5 to 100 g/ha, more preferably from 5 to 50 g/ha.

[0048] With respect to the doses of the compounds A and B when flufenpyr-ethyl is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 25 to 50 g/ha, and the dose of the compound B is preferably from 5 to 100 g/ha, more preferably from 5 to 50 g/ha.

[0049] With respect to the doses of the compounds A and B when butafenacil is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 12.5 to 50 g/ha, and the dose of the compound B is preferably from 5 to 250 g/ha, more preferably from 10 to 100 g/ha.

[0050] With respect to the doses of the compounds A and B when pentoxyzone is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 25 to 50 g/ha, and the dose of the compound B is preferably from 50 to 500 g/ha, more preferably from 100 to 250 g/ha.

[0051] With respect to the doses of the compounds A and B when pyraclonil is used as the compound B, for example, the dose of the compound A is preferably from 10 to 100 g/ha, more preferably from 25 to 50 g/ha, and the dose of the compound B is preferably from 50 to 500 g/ha, more preferably from 100 to 250 g/ha.

[0052] The herbicidal composition for use in the method of the present invention may be applied to undesired plants or may be applied to a place where they grow. Further, it may be applied at any time either before or after the emergence of the undesired plants. Further, the herbicidal composition for use in the method of the present invention may take various application forms such as soil application, foliar application, irrigation application, and submerged application, and it can be applied to agricultural fields such as upland fields, orchards and paddy fields, and non-cropland such as ridges of fields, fallow fields, play grounds, golf courses, vacant lands, forests, factory sites, railway sides and roadsides.

[0053] The herbicidal composition for use in the method of the present invention can control a broad range of undesired plants such as annual weeds and perennial weeds. The undesired plants to be controlled by the method of the present invention are japanese millet (*Echinochloa utilis* Ohwi) and bermudagrass (*Cynodon dactylon* (L.) Pers.), wild oat (*Avena fatua* persian speedwell (*Veronica persica* Poir.), sunn-hemp (*Crotalaria juncea* L.)], rostrate sesbania (*Sesbania rostrata* Bremek. & Oberm.) sticky chickweed (*Cerastium glomeratum* Thuill.), velvetleaf (*Abutilon theophrasti* MEDIC.), ivy-leaved morningglory (*Ipomoea hederacea* (L.) Jacq.), common lambsquarters (*Chenopodium album* L.); black nightshade (*Solanum nigrum* L.).

[0054] The herbicidal method of the present invention can control even weeds against which the compound A has no satisfactory controlling effects depending upon various conditions such as the weather conditions, and the growth stage of the weeds. For example, the compound A has no satisfactory controlling effects against some weeds included in solanaceae, scrophulariaceae and gramineae in some cases depending upon various conditions such as the weather conditions and the growth stage of the weeds, however, the herbicidal composition of the present invention comprising the combination of the compounds A and B has excellent effect to control such weeds or to inhibit their growth.

[0055] Further, the herbicidal method of the present invention has a high herbicidal activity also against weeds in late leaf stage, such as weeds in 5-leaf stage to heading stage, and such is particularly remarkable for grass weeds. The herbicidal method of the present invention has favorable herbicidal effects against grass weeds and broad leaf weeds either by foliar application or soil application.

[0056] Further, as one of cultivation manners for crop plants, different crop plants may be cultivated in the same field by differentiating timing for their cultivation. For example, in the same field where corn was cultivated last year, sugarcane may be cultivated this year, and in such a case, the previous crop plant such as the corn may be an object to be controlled as an undesired plant. Further, along with spread of genetically modified crop plants or increase of cultivation fields, there may be a case where at the time of repeated cultivation, rotational cropping or change in cropping, the previous crop plant grown as weeds (volunteer crop plant) becomes an object to be controlled as an undesired plant. Even in such a situation, the herbicidal method of the present invention is capable of controlling the undesired plant to be controlled and thus is very useful in such a practical application.

[0057] Further, in practical application in which the rapid herbicidal efficacy and regrowth of the undesired plants after the herbicidal composition is applied are problematic, the herbicidal method of the present invention is useful in view of the rapid herbicidal efficacy and a high effect of suppressing regrowth of the undesired plants.

[0058] The herbicidal composition used in the method of the present invention may further contain other herbicidal compounds in addition to the above-described active ingredients so long as such will meet the object of the present invention, and there may be a case where it is thereby possible to improve e.g. the range of undesired plants to be controlled, the timing for application of the herbicidal composition, the herbicidal activities, etc. to more desirable directions. Such other herbicidal compounds include, for example, the following compounds (common names including ones under application for approval by ISO, or test codes, here, "under application for approval by ISO" means common names before approval by ISO (International Organization for Standardization)), and one or more of them may suitably be selected for use. Even when not specifically mentioned here, in a case where such compounds have salts, alkyl esters, hydrates, different crystal forms, various structural isomers, etc., they are, of course, all included.

[0059] Further, in consideration of the application site of the herbicidal composition or the type or growth state of the undesired plants, the herbicidal composition used in the method of the present invention may be mixed with or may be used in combination with fungicides, antibiotics, plant hormones, insecticides, fertilizers, phytotoxicity-reducing agents, etc., whereby more excellent effects and activities may sometimes be obtained.

5 (1) Those which are believed to exhibit herbicidal effects by disturbing hormone activities of plants, such as a phenoxy type such as 2,4-D, 2,4-D-butyl, 2,4-D-butyl, 2,4-D-dimethylammonium, 2,4-D-diolamine, 2,4-D-ethyl, 2,4-D-2-ethylhexyl, 2,4-D-isobutyl, 2,4-D-isoctyl, 2,4-D-isopropyl, 2,4-D-isopropylammonium, 2,4-D-sodium, 2,4-D-isopropanolammonium, 2,4-D-trolamine, 2,4-DB, 2,4-DB-butyl, 2,4-DB-dimethylammonium, 2,4-DB-isoctyl, 2,4-DB-potassium, 2,4-DB-sodium, dichlorprop, dichlorprop-butyl, dichlorprop-dimethylammonium, dichlorprop-isooctyl, dichlorprop-potassium, dichlorprop-P, dichlorprop-P-dimethylammonium, dichlorprop-P-potassium, dichlorprop-P-sodium, MCPA, MCPA-butyl, MCPA-dimethylammonium, MCPA-2-ethylhexyl, MCPA-potassium, MCPA-sodium, MCPA-thioethyl, MCPB, MCPB-ethyl, MCPB-sodium, mecoprop, mecoprop-butyl, mecoprop-sodium, mecoprop-P, mecoprop-P-butyl, mecoprop-P-dimethylammonium, mecoprop-P-2-ethylhexyl, mecoprop-P-potassium, naproanilide or clomeprop; an aromatic carboxylic acid type such as 2,3,6-TBA, dicamba, dicamba-butyl, dicamba-diglycolamine, dicamba-dimethylammonium, dicamba-diolamine, dicamba-isopropylammonium, dicamba-potassium, dicamba-sodium, dichlobenil, picloram, picloram-dimethylammonium, picloram-isooctyl, picloram-potassium, picloram-triisopropanolammonium, picloram-trisopropylammonium, picloram-trolamine, triclopyr, triclopyr-butyl, triclopyr-triethylammonium, clopyralid, clopyralid-olamine, clopyralid-potassium, clopyralid-triisopropanolammonium or aminopyralid; and others such as naptalam, naptalam-sodium, benazolin, benazolin-ethyl, quinclorac, quinmerac, diflufenzopyr, diflufenzopyr-sodium, fluoxypyrr, fluoxypyrr-2-butoxy-1-methylethyl, fluoxypyrr-meptyl, chlorflurenol, chlorflurenol-methyl, aminocyclopyrachlor, aminocyclopyrachlor-methyl or aminocyclopyrachlor-potassium.

10 (2) Those which are believed to exhibit herbicidal effects by inhibiting photosynthesis of plants, such as a urea type such as chlorotoluron, diuron, fluometuron, linuron, isoproturon, metobenzuron, tebuthiuron, dimefuron, isouron, karbutilate, methabenzthiazuron, metoxuron, monolinuron, neburon, siduron, terbumeton, trietazine or metobromuron; a triazine type such as simazine, atrazine, atratone, simetryn, prometryn, dimethametryn, hexazinone, metribuzin, terbutylazine, cyanazine, ametryn, cybutryne, triaziflam, indaziflam, terbutryn, propazine, metamitron or prometon; a uracil type such as bromacil, bromacyl-lithium, lenacil or terbacil; an anilide type such as propanil or cypromid; a carbamate type such as swep, desmedipham or phenmedipham; a hydroxybenzonitrile type such as bromoxynil, bromoxynil-octanoate, bromoxynil-heptanoate, ioxynil, ioxynil-octanoate, ioxynil-potassium or ioxynil-sodium; and others such as pyridate, bentazone, bentazone-sodium, amicarbazone, methazole or pentanochlor.

15 (3) Quaternary ammonium salt type such as paraquat or diquat, which is believed to be converted to free radicals by itself to form active oxygen in the plant body and shows rapid herbicidal efficacy.

20 (4) Those which are believed to exhibit herbicidal effects by inhibiting chlorophyll biosynthesis of plants and abnormally accumulating a photosensitizing peroxide substance in the plant body, such as a diphenylether type such as nitrofen, chlomethoxyfen, bifenox, acifluorfen, acifluorfen-sodium, fomesafen, fomesafen-sodium, oxyfluorfen, lactofen, aclonifen, ethoxyfen-ethyl (HC-252), fluoroglycofen-ethyl or fluoroglycofen; a cyclic imide type such as chlorphthalim; and others such as isopropazole or flupoxam.

25 (5) Those which are believed to exhibit herbicidal effects characterized by bleaching activities by inhibiting chromogenesis of plants such as carotenoids, such as a pyridazinone type such as norflurazon, chlорidazon or metflurazon; a pyrazole type such as pyrazolynate, pyrazoxyfen, benzofenap, topramezone or pyrasulfotole; and others such as amitrole, fluridone, flurtamone, diflufenican, methoxyphenone, clomazone, sulcotrione, mesotrione, tembotrione, tefuryltrione (AVH-301), bicyclopyrone, isoxaflutole, difenzoquat, difenzoquat-metilsulfate, isoxachlortole, benzobicyclon, picolinafen, beflubutamid, a compound (SW-065, H-965) disclosed in the claim of WO2003/016286, a compound (KIH-3653, KUH-110) disclosed in the claim of WO2009/016841, a compound disclosed in the claim of WO2005/118530, a compound disclosed in the claim of WO2008/065907, or a compound disclosed in the claim of WO2009/142318.

30 (6) Those which exhibit strong herbicidal effects specifically to gramineous plants, such as an aryloxyphenoxypropanoic acid type such as diclofop-methyl, diclofop, pyriphenop-sodium, fluazifop-butyl, fluazifop, fluazifop-P, fluazifop-P-butyl, haloxyfop-methyl, haloxyfop, haloxyfop-etyl, haloxyfop-P, haloxyfop-P-methyl, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, cyhalofop-butyl, fenoxaprop-ethyl, fenoxaprop-P, fenoxaprop-P-ethyl, metamifop-propyl, metamifop, clodinafop-propargyl, clodinafop or propaquizafop; a cyclohexanedione type such as aloxydim-sodium, aloxydim, clethodim, sethoxydim, tralkoxydim, butoxydim, tepraloxydim, prooxydim or cycloxydim; and others such as flamprop-M-methyl, flamprop-M or flamprop-M-isopropyl.

35 (7) Those which are believed to exhibit herbicidal effects by inhibiting an amino acid biosynthesis of plants, such as a sulfonylurea type such as chlorimuron-ethyl, chlorimuron, sulfometuron-methyl, sulfometuron, primisulfuron-methyl, primisulfuron, bensulfuron-methyl, bensulfuron, chlorsulfuron, metsulfuron-methyl, metsulfuron, cinosulfuron,

5 pyrazosulfuron-ethyl, pyrazosulfuron, azimsulfuron, rimsulfuron, nicosulfuron, imazosulfuron, cyclosulfamuron, pro-
sulfuron, fluprysulfuron-methyl-sodium, fluprysulfuron, triflusulfuron-methyl, triflusulfuron, halosulfuron-methyl, ha-
losulfuron, thifensulfuron-methyl, thifensulfuron, ethoxysulfuron, oxasulfuron, ethametsulfuron, ethametsulfuron-
methyl, iodosulfuron, iodosulfuron-methyl-sodium, sulfosulfuron, triasulfuron, tribenuron-methyl, tribenuron, tritosul-
furon, foramsulfuron, trifloxsulfuron, trifloxsulfuron-sodium, mesosulfuron-methyl, mesosulfuron, orthosulfamuron,
flucetosulfuron, amidosulfuron, propyrisulfuron (TH-547), metazosulfuron, iofensulfuron, or a compound disclosed
in the claim of EP0645386; a triazolopyrimidinesulfonamide type such as flumetsulam, metosulam, diclosulam,
10 cloransulam-methyl, florasulam, penoxsulam or pyroxsulam; an imidazolinone type such as imazapyr, imazapyr-
isopropylammonium, imazethapyr, imazethapyr-ammonium, imazaquin, imazaquin-ammonium, imazamox, ima-
zamox-ammonium, imazamethabenz, imazamethabenz-methyl or imazapic; a pyrimidinylsalicylic acid type such as
pyrithiobac-sodium, bispyribac-sodium, pyriminobac-methyl, pyribenzoxim, pyrftalid or pyrimisulfan; a sulfonylami-
nocarbonyltriazolinone type such as flucarbazone, flucarbazone-sodium, propoxycarbazone-sodium, propoxycar-
bazone or thiencarbazone; and others such as glyphosate, glyphosate-sodium, glyphosate-potassium, glyphosate-
ammonium, glyphosate-diammonium, glyphosate-isopropylammonium, glyphosate-trimesium, glyphosate-ses-
15 quisodium, glufosinate, glufosinate-ammonium, glufosinate-P, glufosinate-P-ammonium, glufosinate-P-sodium, bi-
lanafos, bilanafos-sodium, cimmethylin or triafamone.

(8) Those which are believed to exhibit herbicidal effects by inhibiting cell mitoses of plants, such as a dinitroaniline
type such as trifluralin, oryzalin, nitralin, pendimethalin, ethafluralin, benfluralin, prodiamine, butralin or dinitramine;
20 an amide type such as bensulide, napropamide, propyzamide or pronamide; an organic phosphorus type such as
amiprofos-methyl, butamifos, anilofos or piperophos; a phenyl carbamate type such as prophan, chlorprophan,
barban or carbetamide; a cumylamine type such as daimuron, cumyluron, bromobutide or methylidymron; and others
such as asulam, asulam-sodium, dithiopyr, thiazopyr, chlorthal-dimethyl, chlorthal or diphenamid.

(9) Those which are believed to exhibit herbicidal effects by inhibiting protein biosynthesis or lipid biosynthesis of
plants, such as a chloroacetamide type such as alachlor, metazachlor, butachlor, pretilachlor, metolachlor, S-me-
25 tolachlor, thenylchlor, pethoxamid, acetochlor, propachlor, dimethenamid, dimethenamid-P, propisochlor or dimeth-
achlor; a thiocarbamate type such as molinate, dimepiperate, pyributicarb, EPTC, butylate, vernolate, pebulate,
cycloate, prosulfocarb, esprocarb, thiobencarb, diallate, tri-allate or orbencarb; and others such as etobenzanid,
mefenacet, flufenacet, tridiphane, cafenstrole, fentrazamide, oxaziclomefone, indanofan, benfuresate, pyroxasul-
30 fone, fenoxasulfone, dalapon, dalapon-sodium, TCA-sodium or trichloroacetic acid.

(10) MSMA, DSMA, CMA, endothall, endothall-dipotassium, endothall-sodium, endothall-mono(N,N-dimethylalkyl-
ammonium), ethofumesate, sodium chlorate, pelargonic acid (nonanoic acid), fosamine, fosamine-ammonium,
pinoxaden, ipfencarbazone (HOK-201), acrolein, ammonium sulfamate, borax, chloroacetic acid, sodium chloroac-
35 ete, cyanamide, methylarsonic acid, dimethylarsinic acid, sodium dimethylarsinate, dinoterb, dinoterb-ammonium,
dinoterb-diolamine, dinoterb-acetate, DNOC, ferrous sulfate, flupropanate, flupropanate-sodium, isoxaben, meflu-
idide, mefluidide-diolamine, metam, metam-ammonium, metam-potassium, metam-sodium, methyl isothiocyanate,
pentachlorophenol, sodium pentachlorophenoxy, pentachlorophenol laurate, quinoclamine, sulfuric acid, urea
sulfate, methiozolin (MRC-01), etc.

(11) Those which are believed to exhibit herbicidal effects by being parasitic on plants, such as Xanthomonas
40 campestris, Epicoccusirus nematosorus, Epicoccusirus nematosperus, Exserohilum monoseras or Drechsrela
monoceras.

[0060] The herbicidal composition used in the method of the present invention may be prepared by mixing the com-
pounds A and B, as active ingredients, with various agricultural additives in accordance with conventional formulation
45 methods for agricultural chemicals, and applied in various formulations such as dusts, granules, water dispersible gran-
ules, wettable powders, tablets, pills, capsules (including a formulation packaged by a water soluble film), water-based
suspensions, oil-based suspensions, microemulsions, suspoemulsions, water soluble powders, emulsifiable concen-
trates, soluble concentrates or pastes. It may be formed into any formulation which is commonly used in this field, so
long as the object of the present invention is thereby met.

[0061] The type of the formulation of the herbicidal composition used in the method of the present invention is preferably
50 a liquid formulation which can be applied as it is or a formulation to be applied after diluted with water, since by the
formulation such that a solid formulation such as microgranules is applied as it is without being diluted with water,
application to a wide area at once is difficult, and the application will take long. More specifically, water dispersible gran-
ules, wettable powders, water-based suspensions, oil-based suspensions, emulsifiable concentrates, soluble concen-
trates and the like are preferred.

[0062] At the time of the formulation, the compounds A and B may be mixed together for the formulation, or they may
55 be separately formulated.

[0063] The additives to be used for the formulation include, for example, a solid carrier such as kaolinite, sericite,
diatomaceous earth, slaked lime, calcium carbonate, talc, white carbon, kaoline, bentonite, clay, sodium carbonate,

sodium bicarbonate, mirabilite, zeolite or starch; a solvent such as water, toluene, xylene, solvent naphtha, dioxane, dimethylsulfoxide, N,N-dimethylformamide, dimethylacetamide, N-methyl-2-pyrrolidone or an alcohol; an anionic surfactant such as a salt of fatty acid, a benzoate, a polycarboxylate, a salt of alkylsulfuric acid ester, an alkyl sulfate, an alkylarylsulfate, an alkyl diglycol ether sulfate, a salt of alcohol sulfuric acid ester, an alkyl sulfonate, an alkylarylsulfonate, an aryl sulfonate, a lignin sulfonate, an alkylidiphenylether disulfonate, a polystyrene sulfonate, a salt of alkylphosphoric acid ester, an alkylaryl phosphate, a styrylaryl phosphate, a salt of polyoxyethylene alkyl ether sulfuric acid ester, a polyoxyethylene alkylaryl ether sulfate, a salt of polyoxyethylene alkylaryl ether sulfuric acid ester, a polyoxyethylene alkyl ether phosphate, a salt of polyoxyethylene alkylaryl phosphoric acid ester, a salt of polyoxyethylene aryl ether phosphoric acid ester, a naphthalene sulfonic acid condensed with formaldehyde or a salt of alkylnaphthalene sulfonic acid condensed with formaldehyde; a nonionic surfactant such as a sorbitan fatty acid ester, a glycerin fatty acid ester, a fatty acid polyglyceride, a fatty acid alcohol polyglycol ether, acetylene glycol, acetylene alcohol, an oxyalkylene block polymer, a polyoxyethylene alkyl ether, a polyoxyethylene alkylaryl ether, a polyoxyethylene styrylaryl ether, a polyoxyethylene glycol alkyl ether, polyethylene glycol, a polyoxyethylene fatty acid ester, a polyoxyethylene sorbitan fatty acid ester, a polyoxyethylene glycerin fatty acid ester, a polyoxyethylene hydrogenated castor oil or a polyoxypropylene fatty acid ester; and a vegetable oil or mineral oil such as olive oil, kapok oil, castor oil, palm oil, camellia oil, coconut oil, sesame oil, corn oil, rice bran oil, peanut oil, cottonseed oil, soybean oil, rapeseed oil, linseed oil, tung oil or liquid paraffins; transesterified vegetable oil such as methylated rapeseed oil or ethylated rapeseed oil. These additives may suitably be selected for use alone or in combination as a mixture of two or more of them, so long as the object of the present invention is met. Further, additives other than the above-mentioned may be suitably selected for use among those known in this field. For example, various additives commonly used, such as a filler, a thickener, an anti-settling agent, an anti-freezing agent, a dispersion stabilizer, a safener, an anti-mold agent, a bubble agent, a disintegrator and a binder, may be used. The mix ratio by weight of the active ingredient to such various additives in the herbicidal composition of the present invention may be from 0.001:99.999 to 95:5, preferably from 0.005:99.995 to 90:10.

[0064] As a method of applying the herbicidal composition used in the method of the present invention, a proper method can be employed among various methods depending upon various conditions such as the application site, the type of the formulation, and the type and the growth stage of the undesired plants to be controlled, and for example, the following methods may be mentioned.

1. The compound A and the compound B are formulated together, and the formulation is applied as it is.
2. The compound A and the compound B are formulated together, the formulation is diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a mineral oil) is added for application.
3. The compound A and the compound B are separately formulated and applied as they are.
4. The compound A and the compound B are separately formulated, and they are diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a mineral oil) is added for application.
5. The compound A and the compound B are separately formulated, and the formulations are mixed when diluted to a predetermined concentration with e.g. water, and as the case requires, a spreader (such as a surfactant, a vegetable oil or a mineral oil) is added for application.

[0065] Now, preferred compositions for use in the method and preferred herbicidal methods of the present invention will be described below.

(1) A herbicidal composition comprising (A) flazasulfuron or its salt and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound, an oxazolidinedione compound, a thiadiazole compound, pyraclonil, flufenpyr-ethyl and their salts.

(2) The compound according to the above (1), wherein (B) is at least one member selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound, an oxadiazole compound and their salts.

(3) The compound according to the above (2), wherein (B) is at least one member selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound, a pyrimidindione compound and their salts.

(4) The compound according to the above (3), wherein (B) is at least one member selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, a N-phenylphthalimide compound and their salts.

(5) The composition according to the above (1), wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, saflufenacil, oxadiargyl, fluthiacet-methyl, flufenpyr-ethyl, butafenacil, pentozacone, pyraclonil and their salts.

(6) The composition according to the above (1), wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl and carfentrazone-ethyl.

(7) The composition according to the above (1), wherein (B) is pyraflufen-ethyl.

(8) (9) The composition according to the above (1), wherein (B) is carfentrazone-ethyl.

5 (9) The composition according to any one of the above (1) to (8), which contains synergistic herbicidally effective amounts of (A) and (B).

(10) The composition according to any one of the above (1) to (9), wherein the mixing ratio of (A) to (B) is from 100:1 to 1:100 by the weight ratio.

10 (11) A method for controlling undesired plants or inhibiting their growth, which comprises applying a herbicidally effective amount of a herbicidal composition comprising (A) flazasulfuron or its salt and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, an oxadiazole compound, an oxazolidinedione compound, a N-phenylphthalimide compound, a thiadiazole compound, a pyrimidindione compound, pyraclonil, flufenpyr-ethyl and their salts, to the undesired plants or to a place where they grow.

15 (12) A method for controlling undesired plants or inhibiting their growth, which comprises applying herbicidally effective amounts of (A) flazasulfuron or its salt and (B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of a phenylpyrazole compound, a triazolinone compound, an oxadiazole compound, an oxazolidinedione compound, a N-phenylphthalimide compound, a thiadiazole compound, a pyrimidindione compound, pyraclonil, flufenpyr-ethyl and their salts, to the undesired plants or to a place where they grow.

20 (13) The method according to the above (11) or (12), wherein (B) is at least one member selected from the group consisting of pyraflufen-ethyl and carfentrazone-ethyl.

(14) The method according to the above (11) or (12), wherein (B) is pyraflufen-ethyl.

(15) The method according to the above (11) or (12), wherein (B) is carfentrazone-ethyl.

25 (16) The method according to the above (11) or (12), wherein synergistic herbicidally effective amounts of (A) and (B) are applied.

(17) The method according to the above (11) or (12), wherein (A) is applied in an amount of from 0.5 to 120 g/ha, and (B) is applied in an amount of from 0.5 to 1,000 g/ha.

(18) The method according to the above (11) or (12), wherein (A) is applied in an amount of from 10 to 100 g/ha, and (B) is applied in an amount of from 1 to 1,000 g/ha.

30 (19) The method according to the above (14), wherein (A) is applied in an amount of from 10 to 100 g/ha, and (B) is applied in an amount of from 5 to 80 g/ha.

(20) The method according to the above (15), wherein (A) is applied in an amount of from 10 to 100 g/ha, and (B) is applied in an amount of from 2.5 to 400 g/ha.

35 EXAMPLES

[0066] The present invention will be described in further detail with reference to Examples.

40 TEST EXAMPLE 1

[0067] Upland field soil was put into a 1/1,000,000 ha pot, and seeds of persian speedwell (*Veronica persica* Poir.) were sown. When persian speedwell reached from 7 to 8 leaf-stage, water dispersible granules containing flazasulfuron as an active ingredient (tradename: SHIBAGEN DF, manufactured by Ishihara Sangyo Kaisha, Ltd.) and SC agent containing pyraflufen-ethyl as an active ingredient (tradename: ECOPART FLOWABLE, manufactured by NIHON NOYAKU CO., LTD.) in predetermined amounts were diluted with water (corresponding to 1,000 Uha) containing 0.05 vol% of an agricultural adjuvant (tradename: KUSARINO, manufactured by NIHON NOYAKU CO., LTD.) and applied for foliar treatment by a small sprayer.

[0068] On the 21 st day after the treatment, the state of growth of persian speedwell was visually observed and evaluated in accordance with the following evaluation standard. The growth inhibition rate (%) (measured value) and the growth inhibition rate (%) (calculated value) calculated in accordance with the Colby's formula are shown in Table 1.

55 **Growth inhibition rate (%) = 0 (equivalent to the non-treated area) to 100 (complete kill)**

TABLE 1

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of persian speedwell	
		Measured value	Calculated value
Flazasulfuron	25	10	-
Pyraflufen-ethyl	10	43	-
Flazasulfuron + Pyraflufen-ethyl	25+10	63	49

TEST EXAMPLE 2

[0069] Upland field soil was put into a 1/1,000,000 ha pot, and seeds of black nightshade (*Solanum nigrum* L.) were sown. When black nightshade reached from 3.2 to 3.5 leaf-stage, SHIBAGEN DF (tradename) and ECOPART FLOWABLE (tradename) in predetermined amounts were diluted with water (corresponding to 1,000 L/ha) containing 0.05 vol% of KUSARINO (tradename) and applied for foliar treatment by a small sprayer.

[0070] On the 21 st day after the treatment, the state of growth of black nightshade was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 2.

TABLE 2

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of black nightshade	
		Measured value	Calculated value
Flazasulfuron	50	74	-
Pyraflufen-ethyl	2.5	88	-
Flazasulfuron + Pyraflufen-ethyl	50+2.5	99	97

[0071] As shown in Table 2, in order to completely suppress growth of black nightshade with flazasulfuron alone, a dose of 50 g/ha or more is required. On the other hand, although not shown in the above Table, the growth inhibition rate of black nightshade was 100% (calculated value: 96%) when flazasulfuron (12.5 g/ha) and pyraflufen-ethyl (5 g/ha) were used in combination, and accordingly it was found that the total dose can be reduced to 17.5 g/ha by using the herbicidal composition of the present invention.

TEST EXAMPLE 3

[0072] Upland field soil was put into a 1/1,000,000 ha pot, and seeds of sticky chickweed (*Cerastium glomeratum* Thuii.) were sown: When sticky chickweed reached from 3.3 to 4.0 leaf-stage, SHIBAGEN DF (tradename) and ECOPART FLOWABLE (tradename) in predetermined amounts were diluted with water (corresponding to 1,000 L/ha) and applied for foliar treatment by a small sprayer.

[0073] On the 21 st day after the treatment, the state of growth of sticky chickweed was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 3.

TABLE 3

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of sticky chickweed	
		Measured value	Calculated value
Flazasulfuron	6.3	92	-
Pyraflufen-ethyl	10	58	-
Flazasulfuron + Pyraflufen-ethyl	6.3+10	99	97

TEST EXAMPLE 4

[0074] Upland field soil was put into a 1/1,000,000 ha pot, and seeds of common lambsquarters (Chenopodium album L.) were sown. When common lambsquarters reached from 6 to 7 leaf-stage, SHIBAGEN DF (tradename) and water dispersible granules containing carfentrazone-ethyl as an active ingredient (tradename: TASK DF, manufactured by Ishihara Sangyo Kaisha, Ltd.) in predetermined amounts were diluted with water (corresponding to 1,000 L/ha) and applied for foliar treatment by a small sprayer.

[0075] On the 21 st day after the treatment, the state of growth of common lambsquarters was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 4.

TABLE 4

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of common lambsquarters	
		Measured value	Calculated value
Flazasulfuron	1.6	3	-
Carfentrazone-ethyl	27.4	92	-
Flazasulfuron + Carfentrazone-ethyl	1.6+27.4	96	92

TEST EXAMPLE 5

[0076] Upland field soil was put into a 1/300,000 ha pot, and seeds of wild oat (Avena fatua L.) were sown. One day later, SHIBAGEN DF (tradename), water dispersible granules containing saflufenacil as an active ingredient (tradename: Treevix, manufactured by BASF) and a wettable powder containing oxadiargyl (manufactured by SIGMA-ALDRICH) as an active ingredient prepared in accordance with a conventional preparation method, in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0077] On the 13th day after the treatment, the state of growth of wild oat was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 5.

TABLE 5

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of wild oat	
		Measured value	Calculated value
Flazasulfuron	25	40	-
	50	70	-
Saflufenacil	25	15	-
	50	5	-
Oxadiargyl	50	5	-
	800	20	-
Flazasulfuron + Saflufenacil	25+25	70	49
	50+50	80	72
Flazasulfuron + Oxadiargyl	50+50	80	72
	25+800	78	52

TEST EXAMPLE 6

[0078] Upland field soil was put into a 1/300,000 ha pot, and seeds of rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) were sown. One day later, SHIBAGEN DF (tradename), water dispersible granules containing flumioxazin as an active ingredient (tradename: Chateau, manufactured by Valent) and a wettable powder containing oxadiargyl (manufactured by SIGMA-ALDRICH) as an active ingredient prepared in accordance with a conventional preparation method, in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment

5 by a small sprayer.

10 [0079] On the 28th day after the treatment, the state of growth of rostrate sesbania was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 6.

15 TABLE 6

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of rostrate sesbania	
		Measured value	Calculated value
Flazasulfuron	12.5	25	-
Flumioxazin	250	70	-
Oxadiargyl	400	20	-
Flazasulfuron + Flumioxazin	12.5+250	95	78
Flazasulfuron + Oxadiargyl	12.5+400	65	40

20 TEST EXAMPLE 7

25 [0080] Upland field soil was put into a 1/300,000 ha pot, and seeds of sunn-hemp (*Crotalaria juncea* L.) were sown. One day later, SHIBAGEN DF (tradename), ECOPART FLOWABLE (tradename) and a wettable powder containing oxadiargyl (manufactured by SIGMA-ALDRICH) as an active ingredient prepared in accordance with a conventional preparation method, in predetermined amounts were diluted with water (corresponding to 300 Uha) and applied for soil treatment by a small sprayer.

30 [0081] On the 28th day after the treatment, the state of growth of sunn-hemp was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 7.

35 TABLE 7

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of sunn-hemp	
		Measured value	Calculated value
Flazasulfuron	50	55	-
Pyraflufen-ethyl	10	20	-
	50	45	-
Oxadiargyl	400	40	-
Flazasulfuron + Pyraflufen-ethyl	50+10	70	64
	50+50	85	75
Flazasulfuron + Oxadiargyl	50+400	78	73

40 TEST EXAMPLE 8

45 [0082] Upland field soil was put into a 1/300,000 ha pot, and seeds of velvetleaf (*Abutilon theophrasti* Medic.) were sown. One day later, SHIBAGEN DF (tradename), water dispersible granules containing sulfentrazone as an active ingredient (tradename: Authority, manufactured by FMC Corporation) and Treevix (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

50 [0083] On the 28th day after the treatment, the state of growth of velvetleaf was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 8.

TABLE 8

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of velvetleaf	
		Measured value	Calculated value
Flazasulfuron	50	88	-
	100	88	-
Sulfentrazone	25	20	-
Saflufenacil	5	0	
	10	65	-
Flazasulfuron + Sulfentrazone	50+25	100	90
Flazasulfuron + Saflufenacil	50+5	100	88
	100+10	100	96

TEST EXAMPLE 9

[0084] Upland field soil was put into a 1/300,000 ha pot, and seeds of black nightshade (*Solanum nigrum* L.) were sown. One day later, SHIBAGEN DF (tradename) and Chateau (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0085] On the 28th day after the treatment, the state of growth of black nightshade was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 9.

TABLE 9

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of black nightshade	
		Measured value	Calculated value
Flazasulfuron	50	85	-
Flumioxazin	2.5	0	-
Flazasulfuron + Flumioxazin	50+2.5	90	85

TEST EXAMPLE 10

[0086] Upland field soil was put into a 1/1,000,000 ha pot, and seeds of bermudagrass (*Cynodon dactylon* (L.) Pers.) were sown. When bermudagrass reached from 2.2 to 2.5 leaf-stage, SHIBAGEN DF (tradename), TASK DF (tradename), Authority (tradename) and Chateau (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) containing 0.2 vol% of KUSARINO (tradename) and applied for foliar treatment by a small sprayer.

[0087] On the 28th day after the treatment, the state of growth of bermudagrass was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 10.

TABLE 10

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of bermudagrass	
		Measured value	Calculated value
Flazasulfuron	50	75	-
	100	75	-
Carfentrazone-ethyl	20	0	-
	50	0	-
Sulfentrazone	50	30	-
Flumioxazin	5	20	-

(continued)

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of bermudagrass	
		Measured value	Calculated value
Flazasulfuron + Carfentrazone-ethyl	50+50	85	75
	100+20	88	75
Flazasulfuron + Sulfentrazone	100+50	90	83
Flazasulfuron + Flumioxazin	100+5	88	80

TEST EXAMPLE 11

[0088] Upland field soil was put into a 1/1,000,000 ha pot, and seeds of bermudagrass (Cynodon dactylon (L.) Pers.) were sown. When bermudagrass reached from 3.8 to 4.3 leaf-stage, SHIBAGEN DF (tradename) and ECOPART FLOWABLE (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) containing 0.2 vol% of KUSARINO (tradename) and applied for foliar treatment by a small sprayer.

[0089] On the 28th day after the treatment, the state of growth of bermudagrass was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 11.

TABLE 11

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of bermudagrass	
		Measured value	Calculated value
Flazasulfuron	12.5	15	-
Pyraflufen-ethyl	40	0	-
Flazasulfuron + Pyraflufen-ethyl	12.5+40	60	15

TEST EXAMPLE 12

[0090] Upland field soil was put into a 1/1,000,000 ha pot, and seeds of persian speedwell (Veronica persica Poir.) were sown. When persian speedwell reached from 4.0 to 4.3 leaf-stage, SHIBAGEN DF (tradename), ECOPART FLOWABLE (tradename) and TASK DF (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) containing 0.2 vol% of KUSARINO (tradename) and applied for foliar treatment by a small sprayer.

[0091] On the 28th day after the treatment, the state of growth of persian speedwell was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 12.

TABLE 12

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of persian speedwell	
		Measured value	Calculated value
Flazasulfuron	25	0	-
Pyraflufen-ethyl	80	80	-
Carfentrazone-ethyl	25	65	-
Flazasulfuron + Pyraflufen-ethyl	25+80	100	80
Flazasulfuron + Carfentrazone-ethyl	25+25	85	65

TEST EXAMPLE 13

[0092] Upland field soil was put into a 1/300,000 ha pot, and seeds of japanese millet (Echinochloa esculenta (A.Braun) H.Scholz.) were sown. One day later, SHIBAGEN DF (tradename), a SC agent containing pyraclonil as an active ingredient (tradename: PYRACLON FLOWABLE, manufactured by Kyoyu Agri Co., Ltd.) and a SC agent containing pento-

azone as an active ingredient (tradename: WECHSER FLOWABLE, manufactured by MITSUI CHEMICALS AGRO, INC.) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0093] On the 14th day after the treatment, the state of growth of Japanese millet was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 13.

TABLE 13

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of Japanese millet	
		Measured value	Calculated value
Flazasulfuron	50	80	-
Pyraclonil	100	30	-
Pentoxazone	100	0	-
Flazasulfuron + Pyraclonil	50+100	95	86
Flazasulfuron + Pentoxazone	50+100	90	80

TEST EXAMPLE 14

[0094] Upland field soil was put into a 1/300,000 ha pot, and seeds of rostrate sesbania (Sesbania rostrata Bremek. & Oberm.) were sown. One day later, SHIBAGEN DF (tradename), Chateau (tradename), a wettable powder containing flufenpyr-ethyl (manufactured by Wako Pure Chemical Industries, Ltd.) as an active ingredient prepared in accordance with a conventional preparation method, and water dispersible granules containing fluthiacet-methyl as an active ingredient (tradename: Cadet, manufactured by FMC Corporation) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0095] On the 14th day after the treatment, the state of growth of rostrate sesbania was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 14.

TABLE 14

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of rostrate sesbania	
		Measured value	Calculated value
Flazasulfuron	50	50	-
Flumioxazin	200	75	-
Flufenpyr-ethyl	5	0	-
Fluthiacet-methyl	5	0	-
Flazasulfuron + Flumioxazin	50+200	99	88
Flazasulfuron + Flufenpyr-ethyl	50+5	70	50
Flazasulfuron + Fluthiacet-methyl	50+5	100	50

TEST EXAMPLE 15

[0096] Upland field soil was put into a 1/300,000 ha pot, and seeds of sunn-hemp (Crotalaria juncea L.) were sown. One day later, SHIBAGEN DF (tradename), Authority (tradename), Chateau (tradename), a wettable powder containing flufenpyr-ethyl (manufactured by Wako Pure Chemical Industries, Ltd.) as an active ingredient prepared in accordance with a conventional preparation method, and Cadet (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0097] On the 28th day after the treatment, the state of growth of sunn-hemp was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 15.

TABLE 15

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of sunn-hemp	
		Measured value	Calculated value
Flazasulfuron	25	0	-
Sulfentrazone	500	30	-
Flumioxazin	100	0	-
Flufenpyr-ethyl	50	0	-
Fluthiacet-methyl	50	0	-
Flazasulfuron + Sulfentrazone	25+500	100	30
Flazasulfuron + Flumioxazin	25+100	70	0
Flazasulfuron + Flufenpyr-ethyl	25+50	90	0
Flazasulfuron + Fluthiacet-methyl	25+50	80	0

TEST EXAMPLE 16

[0098] Upland field soil was put into a 1/300,000 ha pot, and seeds of wild oat (*Avena fatua* L.) were sown. One day later, SHIBAGEN DF (tradename), Chateau (tradename), Treevix (tradename), PYRACLON FLOWABLE (tradename) and WECHSER FLOWABLE (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0099] On the 28th day after the treatment, the state of growth of wild oat was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 16.

TABLE 16

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of wild oat	
		Measured value	Calculated value
Flazasulfuron	12.5	20	-
	25	75	-
Flumioxazin	250	90	-
Saflufenacil	50	0	-
Pyraclonil	250	40	-
Pentoxazone	250	0	-
Flazasulfuron + Flumioxazin	12.5+250	100	92
Flazasulfuron + Saflufenacil	12.5+50	70	20
Flazasulfuron + Pyraclonil	25+250	90	85
Flazasulfuron + Pentoxazone	25+250	80	75

TEST EXAMPLE 17

[0100] Upland field soil was put into a 1/300,000 ha pot, and seeds of wild oat (*Avena fatua* L.) were sown. One day later, SHIBAGEN DF (tradename) and Chateau (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0101] On the 14th day after the treatment, the state of growth of wild oat was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 17.

TABLE 17

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of wild oat	
		Measured value	Calculated value
Flazasulfuron	25	30	-
Flumioxazin	500	75	-
Flazasulfuron + Flumioxazin	25+500	90	83

TEST EXAMPLE 18

[0102] Upland field soil was put into a 1/300,000 ha pot, and seeds of corn (*Zea mays* L.) were sown. One day later, SHIBAGEN DF (tradename) and a wettable powder containing butafenacil (synthesized by Ishihara Sangyo Kaisha, Ltd.) as an active ingredient prepared in accordance with a conventional preparation method, in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0103] On the 14th day after the treatment, the state of growth of corn was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 18.

TABLE 18

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of corn	
		Measured value	Calculated value
Flazasulfuron	12.5	70	-
Butafenacil	100	20	-
Flazasulfuron + Butafenacil	12.5+100	83	76

TEST EXAMPLE 19

[0104] Upland field soil was put into a 1/300,000 ha pot, and seeds of ivy-leaved morningglory (*Ipomoea hederacea* Jacq.) were sown. One day later, SHIBAGEN DF (tradename) and a wettable powder containing butafenacil (synthesized by Ishihara Sangyo Kaisha, Ltd.) as an active ingredient prepared in accordance with a conventional preparation method, in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0105] On the 14th day after the treatment, the state of growth of ivy-leaved morningglory was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 19.

TABLE 19

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of ivy-leaved morningglory	
		Measured value	Calculated value
Flazasulfuron	50	60	-
Butafenacil	10	0	-
Flazasulfuron + Butafenacil	50+10	85	60

TEST EXAMPLE 20

[0106] Upland field soil was put into a 1/300,000 ha pot, and seeds of shattercane (*sorghum bicolor* (L.) Moench) were sown. One day later, SHIBAGEN DF (tradename) and Treevix (tradename) in predetermined amounts were diluted with water (corresponding to 300 L/ha) and applied for soil treatment by a small sprayer.

[0107] On the 14th day after the treatment, the state of growth of shattercane was visually observed, and the growth inhibition rate (%) obtained in the same manner as in Test Example 1 is shown in Table 20.

TABLE 20

Active ingredient	Dose (g/ha)	Growth inhibition rate (%) of shattercane	
		Measured value	Calculated value
Flazasulfuron	12.5	0	-
Saflufenacil	100	20	-
Flazasulfuron + Saflufenacil	12.5+100	98	20

INDUSTRIAL APPLICABILITY

[0108] According to the present invention, it is possible to provide a herbicidal composition which has a broad herbicidal spectrum and also has a high activity and a long-lasting effect.

Claims

1. A method for controlling undesired plants or inhibiting their growth, which comprises

(i) applying a herbicidally effective amount of a herbicidal composition comprising

(A) flazasulfuron or its salt and

(B) at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, butafenacil, saflufenacil, oxadiargyl, pentoxazone, fluthiacet-methyl, pyraclonil and flufenpyr-ethyl and their salts, or which comprises

(ii) applying herbicidally effective amounts of components (A) and (B),

wherein (A) is flazasulfuron or its salt and

(B) is at least one protoporphyrinogen oxidase inhibitor selected from the group consisting of pyraflufen-ethyl, carfentrazone-ethyl, sulfentrazone, flumioxazin, butafenacil, saflufenacil, oxadiargyl, pentoxazone, fluthiacet-methyl, pyraclonil and flufenpyr-ethyl and their salts,

to the undesired plants or to a place where they grow, wherein the undesired plants is persian speedwell, black nightshade, sticky chickweed, common lambsquarters, wild oat, rostrate sesbania, sunn-hemp, velvetleaf, bermudagrass, japanese millet, corn, ivy-leaved morningglory or shattercane, and wherein said composition presents a synergistic herbicidal effect, or wherein the combination of components (A) and (B) presents a synergistic herbicidal effect.

2. The method according to Claim 1, wherein (A) is applied in an amount of from 0.5 to 120 g/ha, and (B) is applied in an amount of from 0.5 to 1,000 g/ha.

Patentansprüche

1. Verfahren zum Bekämpfen unerwünschter Pflanzen oder zum Inhibieren von deren Wachstum, welches folgendes umfasst:

(i) Anwenden einer als Herbizid wirksamen Menge einer Herbizidzusammensetzung, umfassend:

(A) Flazasulfuron oder dessen Salz und

(B) wenigstens einen Protoporphyrinogen-Oxidase-Inhibitor, ausgewählt aus der Gruppe, bestehend aus Pyraflufen-Ethyl, Carfentrazon-Ethyl, Sulfentrazon, Flumioxazin, Butafenacil, Saflufenacil, Oxadiargyl, Pentoxazon, Fluthiacet-Methyl, Pyraclonil und Flufenpyr-Ethyl und deren Salzen, oder welches folgendes umfasst

(ii) Anwenden einer als Herbizid wirksamen Menge der Bestandteile (A) und (B),

wobei (A) Flazasulfuron oder dessen Salz ist und

(B) wenigstens ein Protoporphyrinogen-Oxidase-Inhibitor ist, ausgewählt aus der Gruppe, bestehend aus Pyraflufen-Ethyl, Carfentrazon-Ethyl, Sulfentrazon, Flumioxazin, Butafenacil, Saflufenacil, Oxadiargyl, Pento-
5 toxazon, Fluthiacet-Methyl, Pyraclonil und Flufenpyr-Ethyl und deren Salzen,

an den unerwünschten Pflanzen oder an einem Ort, an dem diese wachsen, wobei die unerwünschten Pflanzen Persischer Ehrenpreis, Schwarzer Nachtschatten, Knäuel-Hornkraut, Weißer Gänsefuß, Flughäfer, *Sesbania rostrata*, Ostindischer Hanf, Samtpappel, Hundszahngras, Japanische Hirse, Mais, Efeu-Prunkwinde oder Bartgras sind, und wobei die Zusammensetzung eine synergistische Herbizidwirkung zeigt oder wobei die Kombination der Bestandteile (A) und (B) eine synergistische Herbizidwirkung zeigt.

10 2. Verfahren nach Anspruch 1, wobei (A) in einer Menge von 0,5 bis 120 g/ha angewendet wird und (B) in einer Menge von 0,5 bis 1000 g/ha angewendet wird.

Revendications

20 1. Procédé pour lutter contre des plantes non souhaitées ou inhiber leur croissance, qui comprend

(I) l'application d'une quantité efficace du point de vue herbicide d'une composition herbicide comprenant

(A) du flazasulfuron ou son sel, et

(B) au moins un inhibiteur de protoporphyrinogène oxydase choisi dans l'ensemble constitué par le pyraflufen-éthyl, le carfentrazone-éthyl, la sulfentrazone, la flumioxazine, le butafénacil, le saflufenacil, l'oxadiargyl, la pento-
25 toxazon, le fluthiacet-méthyl, le pyraclonil et le flufenpyr-éthyl et leurs sels, ou qui comprend

(II) l'application de quantités efficaces du point de vue herbicide des composants (A) et (B), où (A) est le flazasulfuron ou son sel, et (B) est au moins un inhibiteur de protoporphyrinogène oxydase choisi dans l'ensemble constitué par le pyraflufen-éthyl, le carfentrazone-éthyl, la sulfentrazone, la flumioxazine, le butafénacil, le saflufenacil, l'oxadiargyl, la pento-
30 toxazon, le fluthiacet-méthyl, le pyraclonil et le flufenpyr-éthyl et leurs sels, à des plantes non souhaitées ou à un endroit où elles poussent, dans lequel les plantes non souhaitées sont la véronique de Perse, la morelle noire, le mouron des oiseaux, le chénopode blanc commun, la folle avoine, le sesbania rostré, le chanvre du Bengale, l'abutilon, le chiendent pied de poule, le millet du Japon, le maïs, l'ipomée à feuilles de lierre et le sorgho commun, et dans lequel ladite composition présente un effet herbicide synergique, ou dans lequel la combinaison des composants (A) et (B) présente un effet herbicide synergique.

35 2. Procédé selon la revendication 1, dans lequel (A) est appliqué en une quantité de 0,5 à 120 g/ha, et (B) est appliqué en une quantité de 0,5 à 1000 g/ha.

45

50

55

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- JP 2005068121 A [0006]
- WO 2003024221 A [0006]
- WO 0027203 A [0006]
- US 20020004457 A [0006]
- DE 19933702 [0006]
- WO 2003016286 A [0059]
- WO 2009016841 A [0059]
- WO 2005118530 A [0059]
- WO 2008065907 A [0059]
- WO 2009142318 A [0059]
- EP 0645386 A [0059]

Non-patent literature cited in the description

- COLBY S.R. *Weed*, 1967, vol. 15, 20-22 [0012]

HERBICID KOMPOZÍCIÓ, AMELY TARTALMAZ FLAZASZULFURONT ÉS TARTALMAZZA PROTOPORFIRINOGÉN-
OXIDÁZ INHIBITORÁT
SZABADALMI IGÉNYPONTOK

1. Eljárás nem kívántatos növények szabályozására vagy növekedésük gátlására, amely eljárás a következő lépésekkel tartalmazza:

(i) felvisszük egy herbicid kompozíció herbicidként hatékony mennyiségét, amely a következőket tartalmazza:

(A) flazaszulfuron vagy sója, és
(B) legalább egy protoporfirinogén-oxidáz inhibitor, amely a következők közül választható ki: piraflufen-etyl, karfenitrazon-etyl, szulfentrazon, flumioxazin, butafenacil, szafufenacil, oxadiargil, penoxazon, fluiacet-metil, piraklonil és flufenpir-etyl és mindenek elő, vagy

(ii) felvisszük (A) és (B) komponensek herbicidként hatékony mennyiségét,

ahol (A) flazaszulfuron vagy sója, és

(B) legalább egy protoporfirinogén-oxidáz inhibitor, amely a következők közül választható ki: piraflufen-etyl, karfenitrazon-etyl, szulfentrazon, flumioxazin, butafenacil, szafufenacil, oxadiargil, penoxazon, fluiacet-metil, piraklonil és flufenpir-etyl és mindenek elő,

a nem kívántatos növényekre vagy arra a halire, ahol ezek növekednek, ahol a nem kívántatos növény perzsa veronika, fekete ebszűfű, ragacsos tyúkhúr, közönséges libatop, vadzab, Rostrata sesshania, bengáliai kender, madármályva, csillagpázsit, jacán köles, gabonák (corn), horostyárilevelű hajnalka vagy cukorgyök, és ahol az említett kompozíció szinergétikus herbicid hatást képvisel, vagy ahol az (A) és (B) komponensek kombinációja szinergétikus herbicid hatást képvisel.

2. Az 1. igénypont szerinti eljárás, ahol (A)-t olyan mennyiségben visszük fel, amely a 0,5 g/ha és 120 g/ha közötti tartományban van, és a (B)-t olyan mennyiségben visszük fel, amely a 0,5 g/ha és 1000 g/ha közötti tartományban van.