METHODS AND DEVICES FOR INCREASING AQUEOUS HUMOR OUTFLOW

Applicants: Andrew T. SCHIEBER, Irvine, CA (US); Charles L. EUTENEUER, St. Michael, MN (US)

Inventors: Andrew T. SCHIEBER, Irvine, CA (US); Charles L. EUTENEUER, St. Michael, MN (US)

Appl. No.: 15/012,544
Filed: Feb. 1, 2016

Related U.S. Application Data
Continuation-in-part of application No. 14/691,267, filed on Apr. 20, 2015, Continuation-in-part of application No. 14/932,658, filed on Nov. 4, 2015.

Publication Classification

Int. Cl.
A61F 9/007 (2006.01)

U.S. Cl.
CPC A61F 9/00781 (2013.01)

ABSTRACT
An ocular implant having an inlet portion and a Schlemm’s canal portion distal to the inlet portion, the inlet portion being disposed at a proximal end of the implant and sized and configured to be placed within an anterior chamber of a human eye, the Schlemm’s canal portion being arranged and configured to be disposed within Schlemm’s canal of the eye when the inlet portion is disposed in the anterior chamber.
METHODS AND DEVICES FOR INCREASING AQUEOUS HUMOR OUTFLOW

CROSS REFERENCE TO RELATED APPLICATIONS

INCORPORATION BY REFERENCE

[0002] All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

FIELD OF THE INVENTION

[0003] The present invention relates generally to devices that are implanted within the eye. More particularly, the present invention relates to devices that facilitate the transfer of fluid from within one area of the eye to another area of the eye.

BACKGROUND

[0004] According to a draft report by The National Eye Institute (NEI) at The United States National Institutes of Health (NIH), glaucoma is now the leading cause of irreversible blindness worldwide and the second leading cause of blindness, behind cataract, in the world. Thus, the NEI draft report concludes, “it is critical that significant emphasis and resources continue to be devoted to determining the pathophysiology and management of this disease.” Glaucoma researchers have found a strong correlation between high intraocular pressure and glaucoma. For this reason, eye care professionals routinely screen patients for glaucoma by measuring intraocular pressure using a device known as a tonometer. Many modern tonometers make this measurement by blowing a sudden puff of air against the outer surface of the eye.

[0005] The eye can be conceptualized as a ball filled with fluid. There are two types of fluid inside the eye. The cavity behind the lens is filled with a viscous fluid known as vitreous humor. The cavities in front of the lens are filled with a fluid known as aqueous humor. Whenever a person views an object, he or she is viewing that object through both the vitreous humor and the aqueous humor.

[0006] Whenever a person views an object, he or she is also viewing that object through the cornea and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.

[0007] Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the anterior chamber of the eye through the trabecular meshwork and into Schlemm’s canal as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the venous blood stream from Schlemm’s canal and is carried along with the venous blood leaving the eye.

[0008] When the natural drainage mechanisms of the eye stop functioning properly, the pressure inside the eye begins to rise. Researchers have theorized prolonged exposure to high intraocular pressure causes damage to the optic nerve that transmits sensory information from the eye to the brain. This damage to the optic nerve results in loss of peripheral vision. As glaucoma progresses, more and more of the visual field is lost until the patient is completely blind.

[0009] In addition to drug treatments, a variety of surgical treatments for glaucoma have been performed. For example, shunts were implanted to direct aqueous humor from the anterior chamber to the extracocular vein (Lee and Schepps, “Aqueous-venous shunt and intraocular pressure,” Investigative Ophthalmology (February 1966)). Other early glaucoma treatment implants led from the anterior chamber to a subconjunctival bleb (e.g., U.S. Pat. No. 4,968,296 and U.S. Pat. No. 5,180,362). Still others were shunts leading from the anterior chamber to a point just inside Schlemm’s canal (Spiegel et al., “Schlemm’s canal implant: a new method to lower intraocular pressure in patients with POAG?” Ophthalmic Surgery and Lasers (June 1999); U.S. Pat. No. 6,450,984; U.S. Pat. No. 6,450,984). In addition to drug treatments, a variety of surgical treatments for glaucoma have been performed. For example, shunts were implanted to direct aqueous humor from the anterior chamber to the extracocular vein (Lee and Schepps, “Aqueous-venous shunt and intraocular pressure,” Investigative Ophthalmology (February 1966)). Other early glaucoma treatment implants led from the anterior chamber to a subconjunctival bleb (e.g., U.S. Pat. No. 4,968,296 and U.S. Pat. No. 5,180,362). Still others were shunts leading from the anterior chamber to a point just inside Schlemm’s canal (Spiegel et al., “Schlemm’s canal implant: a new method to lower intraocular pressure in patients with POAG?” Ophthalmic Surgery and Lasers (June 1999); U.S. Pat. No. 6,450,984; U.S. Pat. No. 6,450,984).

SUMMARY OF THE DISCLOSURE

[0010] This disclosure pertains to an ocular implant comprising a longitudinally extending body having an inlet portion and a Schlemm’s canal portion distal to the inlet portion, the inlet portion being configured to extend into and be in fluid communication with an anterior chamber of a human eye and the Schlemm’s canal portion being configured to be inserted into Schlemm’s canal adjacent to collector channels of the eye, a plurality of alternating spines and frames positioned longitudinally along at least a portion of the Schlemm’s canal portion wherein the plurality of alternating spines and frames define a central channel extending therethrough, with the central channel being in fluid communication with the inlet portion, each of the spines having edges partially defining an opening across from the central channel and in fluid communication with the central channel, and each of the frames including first and second struts, the first and second struts each having an edge contiguous with an edge of an adjacent spine, the edges defining the opening in fluid
communication with the central channel, wherein the ocular implant is configured to provide at least a 121% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

[0011] In some embodiments, the implant comprises at least three openings across from the central channel.

[0012] In other embodiments, the average outflow facility comprises 0.438 μl/min/mmHg.

[0013] In one embodiment, a peak circumferential flow rate through the ocular implant comprises 3.2 μl/min.

[0014] In some embodiments, the implant comprises at least six openings across from the central channel.

[0015] In one embodiment, the average outflow facility of the eye prior to implantation of the ocular implant comprises 0.138 μl/min/mmHg.

[0016] In some embodiments, a peak circumferential flow rate through the ocular implant comprises 5.7 μl/min.

[0017] In one embodiment, the average outflow facility of the eye prior to implantation of the ocular implant comprises 0.638 μl/min/mmHg.

[0018] An ocular implant adapted to reside at least partially in a portion of Schlemm’s canal of an eye adjacent to collector channels of the eye is provided, the implant comprising a longitudinally extending curved body including a proximal portion and a distal portion, the distal portion of the curved body defining a longitudinal channel including a channel opening, and the curved body being adapted and configured such that the distal portion of the curved body resides in Schlemm’s canal and the proximal portion extends into the anterior space of the eye while the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm’s canal when the ocular implant is implanted, wherein the ocular implant is configured to provide a 121%-222% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

[0019] In some embodiments, the implant comprises at least three openings across from the central channel.

[0020] In other embodiments, the average outflow facility comprises 0.438 μl/min/mmHg.

[0021] In one embodiment, a peak circumferential flow rate through the ocular implant comprises 3.2 μl/min.

[0022] In some embodiments, the implant comprises at least six openings across from the central channel.

[0023] In one embodiment, the average outflow facility comprises 0.638 μl/min/mmHg.

[0024] In some embodiments, a peak circumferential flow rate through the ocular implant comprises 5.7 μl/min.

[0025] In one embodiment, the average outflow facility of the eye prior to implantation of the ocular implant comprises 0.138 μl/min/mmHg.

[0026] In one embodiment, the distal portion of the curved body occupies up to 20% of Schlemm’s canal but accounts for up to 54.5% of total outflow in the eye.

[0027] In another embodiment, the distal portion of the curved body occupies up to 40% of Schlemm’s canal but accounts for up to 74.6% of total outflow in the eye.

[0028] An ocular implant is provided comprising an inlet portion and a Schlemm’s canal portion distal to the inlet portion, the inlet portion being disposed at a proximal end of the implant and sized and configured to be placed within an anterior chamber of a human eye, the inlet portion having an inlet adapted to be in fluid communication with the anterior chamber, the Schlemm’s canal portion comprising a central channel in fluid communication with the inlet, the central channel extending longitudinally in the Schlemm’s canal portion, a first element disposed along the central channel, a second element disposed along the central channel distal to the first element, a third element disposed along the central channel distal to the first element and proximal to the second, a fourth element disposed along the central channel distal to the second element, the first, second, third and fourth elements each comprising two edges partially defining an elongate opening in fluid communication with the central channel, each of the first, second, third and fourth elements having circumferential extents less than 360 degrees so that the elongate opening extends continuously along the first, second, third and fourth elements, the circumferential extents of the first and second elements being less than the circumferential extents of the third and fourth elements, the Schlemm’s canal portion being arranged and configured to be disposed within Schlemm’s canal of the eye when the inlet portion is disposed in the anterior chamber, wherein the ocular implant is configured to provide a 121%-222% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

[0029] In some embodiments, the implant comprises at least three openings across from the central channel.

[0030] In other embodiments, the average outflow facility comprises 0.438 μl/min/mmHg.

[0031] In one embodiment, a peak circumferential flow rate through the ocular implant comprises 3.2 μl/min.

[0032] In some embodiments, the implant comprises at least six openings across from the central channel.

[0033] In one embodiment, the average outflow facility comprises 0.638 μl/min/mmHg.

[0034] In some embodiments, a peak circumferential flow rate through the ocular implant comprises 5.7 μl/min.

[0035] In one embodiment, the average outflow facility of the eye prior to implantation of the ocular implant comprises 0.138 μl/min/mmHg.

[0036] In one embodiment, the distal portion of the curved body occupies up to 20% of Schlemm’s canal but accounts for up to 54.5% of total outflow in the eye.

[0037] In another embodiment, the distal portion of the curved body occupies up to 40% of Schlemm’s canal but accounts for up to 74.6% of total outflow in the eye.

[0038] A method of treating glaucoma is provided, comprising supporting tissue forming Schlemm’s canal in an eye with an implant extending at least partially in the canal along an axial length within the canal, contacting with the implant less than 50% of the tissue forming the canal along the axial length, disposing an inlet portion of the implant in an anterior chamber of the eye, and providing fluid communication between the anterior chamber and the canal axially through the inlet into a channel of the implant such that an average outflow facility between the anterior chamber and the canal is increased by 121%-222%, wherein the implant comprises open areas separated by spine areas along a first longitudinal section, the spine areas partially defining the channel, the supporting step comprising orienting the first longitudinal section openings towards a trabecular mesh portion of the canal.

[0039] An ocular implant adapted to reside at least partially in a portion of Schlemm’s canal of a human eye is provided, the implant comprising a body configured to extend within Schlemm’s canal in a curved volume having a large radius side and a short radius side, the body having a circumferential extent within the curved volume that varies along the length
of the body between sections having a lesser circumferential extent and sections having a greater circumferential extent, wherein the body defines a channel extending longitudinally through the body, the channel having a substantially open side disposed on the large radius side at one of the sections of lesser circumferential extent and an adjacent section of greater circumferential extent and a plurality of openings along the length of the body on the short radius side, the openings being in fluid communication with the channel, and an inlet portion configured to be disposed in an anterior chamber of the eye when the body is in Schlemm’s canal, the inlet portion disposed on a proximal end of the body in fluid communication with the channel, the inlet portion defining one or more openings in fluid communication with the anterior chamber of the eye, wherein the ocular implant is configured to provide a 121%-222% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

An ocular implant adapted to reside at least partially in a portion of Schlemm’s canal of an eye, the eye having an iris defining a pupil provided, the implant comprising a longitudinally extending curved body including a proximal portion and a distal portion, the distal portion of the curved body having a central longitudinal axis defined by a radius of curvature and a lateral cross section having a first lateral extent and a second lateral extent, an aspect ratio of the first lateral extent to the second lateral extent being greater than or equal to about two, the distal portion of the curved body defining a longitudinal channel including a channel opening, the channel opening included in defining the first lateral extent, the curved body being adapted and configured such that the distal portion of the curved body resides in Schlemm’s canal and the proximal portion extends into the anterior space of the eye while the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm’s canal when the ocular implant is implanted, and wherein the ocular implant is configured to provide a 121%-222% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

FIG. 1 is a stylized perspective view depicting a portion of a human eye and a portion of an ocular implant disposed in Schlemm’s canal.

FIG. 2 is an enlarged perspective view showing a portion of the implant of FIG. 1.

FIG. 3 is a perspective view showing a volume defined by the body of the ocular implant of FIGS. 1 and 2.

FIG. 4 is a perspective view showing a first plane intersecting the body of an ocular implant.

FIG. 5 is a perspective view showing a bending moment being applied to an ocular implant.

FIG. 6 is a plan view of the implant shown in FIG. 5 but in the absence of any bending moment.

FIG. 7A is a lateral cross-sectional view of the ocular implant of FIG. 6 taken along section line A-A of FIG. 6.

FIG. 7B is a lateral cross-sectional view of the ocular implant of FIG. 6 taken along section line B-B of FIG. 6.

FIG. 8 is an enlarged cross-sectional view of the ocular implant of FIG. 6 taken along section line B-B of FIG. 6.

FIG. 9 is an enlarged cross-sectional view of the ocular implant of FIG. 6 taken along section line A-A of FIG. 6.

FIG. 10 is a plan view showing an ocular implant according to another embodiment of the invention having a longitudinal radius of curvature that varies along its length.

FIG. 11 is a perspective view showing an ocular implant according to yet another embodiment of the invention that has substantially no radius of curvature.

FIG. 12 is a stylized representation of a medical procedure in accordance with this detailed description.

FIG. 13A is a perspective view further illustrating a delivery system 100 used in the medical procedure shown in the previous Figure. FIG. 13B is an enlarged detail view further illustrating a cannula of the delivery system shown in the previous Figure.

FIG. 14 is a stylized perspective view illustrating the anatomy of an eye.

FIG. 15 is a stylized perspective view showing Schlemm’s canal and an iris of the eye shown in the previous Figure.

FIG. 16 is an enlarged cross-sectional view further illustrating Schlemm’s canal SC shown in the previous Figure.

FIG. 17 is a perspective view showing an ocular implant in accordance with this detailed description.

FIG. 18A and FIG. 18B are section views showing an ocular implant disposed in Schlemm’s canal of an eye.

FIG. 19A, FIG. 19B and FIG. 19C are multiple plan views illustrating an implant in accordance with the present detailed description.

FIG. 20 is a lateral cross-sectional view of an ocular implant taken along section line A-A shown in the previous Figure.

FIG. 21A is a perspective view of an ocular implant and FIG. 21B is a stylized perspective view showing Schlemm’s canal SC encircling an iris.

FIG. 22A is a perspective view showing a delivery system 12100 that may be used to advance an ocular implant into Schlemm’s canal of an eye. FIG. 22B is an enlarged detail view illustrating a cannula portion of the delivery system.

FIG. 23 is an enlarged perspective view of an assembly including a cannula, an ocular implant, and a sheath.

FIG. 24 is an additional perspective view of the assembly shown in the previous Figure.

FIG. 25 is another perspective view of an assembly including a cannula, an ocular implant, and a sheath.

FIG. 26 is an additional perspective view of the assembly shown in the previous Figure.

FIG. 27A and FIG. 27B are perspective views showing a sheath in accordance with the present detailed description.

FIG. 28 is a perspective view of an assembly including the sheath shown in the previous Figure.

FIG. 29A and FIG. 29B are simplified plan views showing a sheath in accordance with the present detailed description.
FIG. 30A, FIG. 30B and FIG. 30C are plan views showing an implant in accordance with the present detailed description.

FIG. 31 is a lateral cross-sectional view of an ocular implant taken along section line A-A shown in the previous Figure.

FIG. 32 is a plan view showing an implant in accordance with the present detailed description.

FIG. 33A, FIG. 33B and FIG. 33C are plan views showing an additional implant in accordance with the present detailed description.

FIG. 34 is a lateral cross-sectional view of an ocular implant taken along section line B-B shown in the previous Figure.

FIG. 35 is a plan view showing an implant in accordance with the present detailed description.

FIG. 36A through FIG. 36D are a series of plan views illustrating a method in accordance with the present detailed description.

FIG. 37A through FIG. 37D are a series of section views illustrating a method in accordance with the present detailed description.

FIG. 38A and FIG. 38B are simplified plan views showing a sheath in accordance with the present detailed description.

FIG. 39 is a diagram showing the results of mathematical simulations of 8 mm and 16 mm ocular implants.

FIG. 40 is a diagram showing circumferential flow rates for 8 mm and 16 mm ocular implants.

DETAILED DESCRIPTION

FIG. 1 is a stylized perspective view depicting a portion of a human eye 20. Eye 20 can be conceptualized as a fluid filled ball having two chambers. Sclera 22 of eye 20 surrounds a posterior chamber 24 filled with a viscous fluid known as vitreous humor. Cornen 26 of eye 20 encloses an anterior chamber 30 that is filled with a fluid know as aqueous humor. The corneal 26 meets the sclera 22 at a limbus 28 of eye 20. A lens 32 of eye 20 is located between anterior chamber 30 and posterior chamber 24. Lens 32 is held in place by a number of ciliary zonules 34.

Whenever a person views an object, he or she is viewing that object through the cornea, the aqueous humor, and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor. A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.

Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the eye as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the blood stream and is carried away by venous blood leaving the eye.

In a healthy eye, aqueous humor flows out of the anterior chamber 30 through the trabecular meshwork 36 and into Schlemm’s canal 38, located at the outer edge of the iris 42. Aqueous humor exits Schlemm’s canal 38 by flowing through a number of outlets 40. After leaving Schlemm’s canal 38, aqueous humor is absorbed into the venous blood stream.

In FIG. 1, an ocular implant 100 is disposed in Schlemm’s canal 38 of eye 20. Ocular implant 100 has a body 102 including a plurality of tissue supporting frames 104 and a plurality of spines 106. Body 102 also includes a first edge 120 and a second edge 122 that define a first opening 124. First opening 124 is formed as a slot and fluidly communicates with an elongate channel 126 defined by an inner surface 128 of body 102. With reference to FIG. 1, it will be appreciated that first opening 124 is disposed on an outer side 130 of body 102. Accordingly, channel 126 opens in a radially outward direction 132 via first opening 124.

Ocular implant 100 may be inserted into Schlemm’s canal of a human eye to facilitate the flow of aqueous humor out of the anterior chamber. This flow may include axial flow along Schlemm’s canal, flow from the anterior chamber into Schlemm’s canal, and flow leaving Schlemm’s canal via outlets communicating with Schlemm’s canal. When in place within the eye, ocular implant 100 will support trabecular mesh tissue and Schlemm’s canal tissue and will provide for improved communication between the anterior chamber and Schlemm’s canal (via the trabecular meshwork) and between pockets or compartments along Schlemm’s canal. As shown in FIG. 1, the implant is preferably oriented so that the first opening 124 is disposed radially outwardly within Schlemm’s canal.

FIG. 2 is an enlarged perspective view showing a portion of ocular implant 100 shown in the previous figure. Ocular implant 100 has a body 102 that extends along a generally curved longitudinal axis 134. Body 102 has a plurality of tissue supporting frames 104 and a plurality of spines 106. As shown in FIG. 2, these spines 106 and frames 104 are arranged in a repeating AB pattern in which each A is a tissue supporting frame and each B is a spine. In the embodiment of FIG. 2, one spine extends between each adjacent pair of frames 104.

The frames 104 of body 102 include a first frame 136 of ocular implant 100 that is disposed between a first spine 140 and a second spine 142. In the embodiment of FIG. 2, first frame 136 is formed as a first strut 144 that extends between first spine 140 and second spine 142. First frame 136 also includes a second strut 146 extending between first spine 140 and second spine 142. In the exemplary embodiment of FIG. 2, each strut undulates in a circumferential direction as it extends longitudinally between first spine 140 and second spine 142.

In the embodiment of FIG. 2, body 102 has a longitudinal radius 150 and a lateral radius 148. Body 102 of ocular implant 100 includes a first edge 120 and a second edge 122 that define a first opening 124. First opening 124 fluidly communicates with an elongate channel 126 defined by an inner surface 128 of body 102. A second opening 138 is defined by a second edge 122A of a first strut 144 and a second edge 122B of a second strut 146. First opening 124, second opening 138 and additional openings defined by ocular implant 100 allow aqueous humor to flow latently across and/or laterally through ocular implant 100. The outer surfaces of body 102 define a volume 152.

FIG. 3 is an additional perspective view showing volume 152 defined by the body of the ocular implant shown in the previous figure. With reference to FIG. 3, it will be appreciated that volume 152 extends along a generally curved
longitudinal axis 134. Volume 152 has a longitudinal radius 150, a lateral radius 148, and a generally circular lateral cross section 153.

[0093] FIG. 4 is a perspective view showing a first plane 154 and a second plane 155 that both intersect ocular implant 100. In FIG. 4, first plane 154 is delineated with hatch marks. With reference to FIG. 4, it will be appreciated that spines 106 of body 102 are generally aligned with one another and that first plane 154 intersects all spines 106 shown in FIG. 4. In the embodiment of FIG. 4, body 102 of ocular implant 100 is generally symmetric about first plane 154.

[0094] In the embodiment of FIG. 4, the flexibility of body 102 is at a maximum when body 102 is bending along first plane 154, and body 102 has less flexibility when bending along a plane other than first plane 154 (e.g., a plane that intersects first plane 154). For example, in the embodiment shown in FIG. 4, body 102 has a second flexibility when bending along second plane 155 that is less than the first flexibility that body 102 has when bending along first plane 154.

[0095] Stated another way, in the embodiment of FIG. 4, the bending modulus of body 102 is at a minimum when body 102 is bent along first plane 154. Body 102 has a first bending modulus when bent along first plane 154 and a greater bending modulus when bent along a plane other than first plane 154 (e.g., a plane that intersects first plane 154). For example, in the embodiment shown in FIG. 4, body 102 has a second bending modulus when bent along second plane 155 that is greater than the first bending modulus that body 102 has when bent along first plane 154.

[0096] FIG. 5 is an enlarged perspective view showing a portion of ocular implant 100 shown in the previous figure. In the exemplary embodiment of FIG. 5, a bending moment M is being applied to body 102 of ocular implant 100. Bending moment M acts about a first axis 156 that is generally orthogonal to first plane 154. A second axis 158 and a third axis 160 are also shown in FIG. 5. Second axis 158 is generally perpendicular to first axis 156. Third axis 160 is skewed relative to first axis 156.

[0097] An inner surface 128 of body 102 defines a channel 126. Body 102 of ocular implant 100 includes a first edge 120 and a second edge 123 that define a first opening 124. Channel 126 of ocular implant 100 fluidly communicates with first opening 124. A second opening 138 is defined by a second edge 122A of a first strut 144 and a second edge 122B of a second strut 146. First opening 124, second opening 138 and additional openings defined by ocular implant 100 allow aqueous humor to flow laterally across and/or laterally through ocular implant 100.

[0098] As shown in FIG. 5, ocular implant 100 has a first spine 140 and a second spine 142. First strut 144 and a second strut 146 form a first frame 136 of ocular implant 100 that extends between first spine 140 and second spine 142. In the exemplary embodiment of FIG. 5, each strut undulates in a circumferential direction as it extends longitudinally between first spine 140 and second spine 142.

[0099] In the embodiment of FIG. 5, the flexibility of body 102 is at a maximum when body 102 is bent by a moment acting about first axis 156, and body 102 has less flexibility when bent by a moment acting about an axis other than first axis 156 (e.g., second axis 158 and third axis 160). Stated another way, the bending modulus of body 102 is at a minimum when body 102 is bent by a moment acting about first axis 156, and body 102 has a greater bending modulus when bent by a moment acting about an axis other than first axis 156 (e.g., second axis 158 and third axis 160).

[0100] FIG. 6 is a plan view showing ocular implant 100 shown in the previous figure. In the embodiment of FIG. 6, no external forces are acting on body 102 of ocular implant 100, and body 102 is free to assume the generally curved resting shape depicted in FIG. 6. Body 102 defines a first opening 124 that is disposed on an outer side 130 of body 102. A channel 126 is defined by the inner surface of body 102 and opens in a radially outward direction 132 via first opening 124.

[0101] Section lines A-A and B-B are visible in FIG. 6. Section line A-A intersects a first frame 136 of ocular implant 100. Section line B-B intersects a first spine 140 of ocular implant 100.

[0102] FIG. 7A is a lateral cross-sectional view of ocular implant 100 taken along section line A-A shown in the previous figure. Section line A-A intersects a first strut 144 and a second strut 146 of first frame 136 at the point where the circumferential undulation of these struts is at its maximum. Body 102 of ocular implant 100 has a longitudinal radius 150 and a lateral radius 148. An inner surface 128 of body 102 defines a channel 126. A first opening 124 fluidly communicates with channel 126.

[0103] In FIG. 7A, first opening 124 in body 102 can be seen extending between first edge 120A of first strut 144 and a first edge 120B of second strut 146. With reference to FIG. 7A, it will be appreciated that second strut 146 has a shape that is a mirror image of the shape of first strut 144.

[0104] FIG. 7B is a lateral cross-sectional view of ocular implant 100 taken along section line B-B shown in the previous figure. Section line B-B intersects first spine 140 of ocular implant 100. Body 102 has a longitudinal radius 150 and a lateral radius 148. In the embodiment of FIG. 7B, the center 159 of lateral radius 148 and the center 163 of longitudinal radius 150 are disposed on opposite sides of first spine 140. The center 159 of lateral radius 148 is disposed on a first side of first spine 140. The center 163 of longitudinal radius 150 is disposed on a second side of second spine 142.

[0105] FIG. 8 is an enlarged cross-sectional view of ocular implant 100 taken along section line B-B of FIG. 6. First spine 140 includes a first major side 160, a second major side 162, a first minor side 164, and second minor side 166. With reference to FIG. 8, it will be appreciated that first major side 160 comprises a concave surface 168. Second major side 162 is opposite first major side 160. In the embodiment of FIG. 8, second major side 162 comprises a convex surface 170.

[0106] The geometry of the spine provides the ocular implant with flexibility characteristics that may aid in advancing the ocular implant into Schlemm’s canal. In the embodiment of FIG. 8, first spine 140 has a thickness T1 extending between first major side 160 and second major side 162. Also in the embodiment of FIG. 8, first spine 140 has a width W1 extending between first minor side 164 and second minor side 166.

[0107] In some useful embodiments, the spine of an ocular implant in accordance with this detailed description has an aspect ratio of width W1 to thickness T1 greater than about 2. In some particularly useful embodiments, the spine of an ocular implant in accordance with this detailed description has an aspect ratio of width W1 to thickness T1 greater than about 4. In one useful embodiment, the ocular implant has a spine with an aspect ratio of width W1 to thickness T1 of about 5.2.
[0108] A first axis 156, a second axis 158 and a third axis 160 are shown in FIG. 8. Second axis 158 is generally perpendicular to first axis 156. Third axis 160 is skewed relative to first axis 156.

[0109] In the embodiment of FIG. 8, the flexibility of first spine 140 is at a maximum when first spine 140 is bent by a moment acting about first axis 156. First spine 140 has a first flexibility when bent by a moment acting about first axis 156 and less flexibility when bent by a moment acting about an axis other than first axis 156 (e.g., second axis 158 and third axis 160). For example, first spine 140 has a second flexibility when bent by a moment acting about second axis 158 shown in FIG. 8. This second flexibility is less than the flexibility that first spine 140 has when bent by a moment acting about first axis 156.

[0110] In the embodiment of FIG. 8, the bending modulus of first spine 140 is at a minimum when first spine 140 is bent by a moment acting about first axis 156. First spine 140 has a first bending modulus when bent by a moment acting about first axis 156 and a greater bending modulus when bent by a moment acting about an axis other than first axis 156 (e.g., second axis 158 and third axis 160). For example, first spine 140 has a second bending modulus when bent by a moment acting about second axis 158 shown in FIG. 8. This second bending modulus is greater than the first bending modulus that first spine 140 has when bent by a moment acting about first axis 156.

[0111] FIG. 9 is an enlarged cross-sectional view of ocular implant 100 taken along section line A-A of FIG. 6. Section line A-A intersects first strut 144 and second strut 146 at the point where the circumferential undulation of these struts is at its maximum.

[0112] Each strut shown in FIG. 9 includes a first major side 160, a second major side 162, a first minor side 164, and second minor side 166. With reference to FIG. 9, it will be appreciated that each first major side 160 comprises a concave surface 168 and each second major side 162 comprises a convex surface 170.

[0113] In the embodiment of FIG. 9, each strut has a thickness T2 extending between first major side 160 and second major side 162. Also in the embodiment of FIG. 9, each strut has a width W2 extending between first minor side 164 and second minor side 166. In some useful embodiments, an ocular implant in accordance with this detailed description includes spines having a width W1 that is greater than the width W2 of the struts of the ocular implant.

[0114] In some useful embodiments, the struts of an ocular implant in accordance with this detailed description have an aspect ratio of width W2 to thickness T2 greater than about 1.2. In some particularly useful embodiments, the struts of an ocular implant in accordance with this detailed description have a ratio of width W2 to thickness T2 greater than about 2. One exemplary ocular implant has struts with an aspect ratio of width W2 to thickness T2 of about 4.4.

[0115] Body 102 of ocular implant 100 has a longitudinal radius 150 and a lateral radius 148. In some useful embodiments, an ocular implant in accordance with this detailed description is sufficiently flexible to assume a shape matching the longitudinal curvature of Schlemm’s canal when the ocular implant advanced into the eye. Also in some useful embodiments, a length of the ocular implant is selected so that the implant will extend across a pre-selected angular span when the implant is positioned in Schlemm’s canal. Examples of pre-selected angular spans that may be suitable in some applications include 60°, 90°, 150° and 180°. The diameter of an ocular implant in accordance with this detailed description may be selected so that the ocular implant is dimensioned to lie within and support Schlemm’s canal. In some useful embodiments, the diameter of the ocular implant ranges between about 0.005 inches and about 0.04 inches. In some particularly useful embodiments, the diameter of the ocular implant ranges between about 0.005 inches and about 0.02 inches.

[0116] It is to be appreciated that an ocular implant in accordance with the present detailed description may be straight or curved. If the ocular implant is curved, it may have a substantially uniform longitudinal radius throughout its length, or the longitudinal radius of the ocular implant may vary along its length. FIG. 6 shows one example of an ocular implant having a substantially uniform radius of curvature. FIG. 10 shows an example of an ocular implant having a longitudinal radius of curvature that varies along the length of the ocular implant. An example of a substantially straight ocular implant is shown in FIG. 11.

[0117] FIG. 10 is a plan view showing an ocular implant 200 having a radius of curvature that varies along its length. In the embodiment of FIG. 10, ocular implant 200 has an at rest shape that is generally curved. This at rest shape can be established, for example, using a heat-setting process. The ocular implant shape shown in FIG. 10 includes a distal radius RA, a proximal radius RC, and an intermediate radius RB. In the embodiment of FIG. 10, distal radius RA is larger than both intermediate radius RB and proximal radius RC. Also in the embodiment of FIG. 10, intermediate radius RB is larger than proximal radius RC and smaller than distal radius RA. In one useful embodiment, distal radius RA is about 0.320 inches, intermediate radius RB is about 0.225 inches and proximal radius RC is about 0.205 inches.

[0118] In the embodiment of FIG. 10, a distal portion of the ocular implant follows an arc extending across an angle AA. A proximal portion of the ocular implant follows an arc extending across an angle AC. An intermediate portion of the ocular implant is disposed between the proximal portion and the distal portion. The intermediate portion extends across an angle AB. In one useful embodiment, angle AA is about 55 degrees, angle AB is about 79 degrees and angle AC is about 60 degrees.

[0119] Ocular implant 200 may be used in conjunction with a method of treating the eye of a human patient for a disease and/or disorder (e.g., glaucoma). Some such methods may include the step of inserting a core member into a lumen defined by ocular implant 200. The core member may comprise, for example, a wire or tube. The distal end of the ocular implant may be inserted into Schlemm’s canal. The ocular implant and the core member may then be advanced into Schlemm’s canal until the ocular implant has reached a desired position. In some embodiments, an inlet portion of the implant may be disposed in the anterior chamber of the eye while the remainder of the implant extends through the trabecular mesh into Schlemm’s canal. The core member may then be withdrawn from the ocular implant, leaving the implant in place to support tissue forming Schlemm’s canal. Further details of ocular implant delivery systems may be found in U.S. application Ser. No. 11/943,289, filed Nov. 20, 2007, now U.S. Pat. No. 8,512,404, the disclosure of which is incorporated herein by reference.

[0120] The flexibility and bending modulus features of the ocular implant of this invention help ensure proper orienta-
tation of the implant within Schlemm’s canal. FIG. 1 shows the desired orientation of opening 124 when the implant 100 is disposed in Schlemm’s canal. As shown, opening 124 faces radially outward. The implant 100 is therefore designed so that it is maximally flexible when bent along a plane defined by the longitudinal axis of implant 100 as shown in FIG. 1, and less flexible when bent in other planes, thereby enabling the curved shape of Schlemm’s canal to help place the implant in its orientation automatically if the implant is initially placed in Schlemm’s canal in a different orientation.

FIG. 11 is a perspective view showing an ocular implant 300 in accordance with an additional embodiment in accordance with the present detailed description. With reference to FIG. 11, it will be appreciated that ocular implant 300 has a resting (i.e., unstressed) shape that is generally straight. Ocular implant 300 extends along a longitudinal axis 334 that is generally straight. In some useful embodiments, ocular implant 300 is sufficiently flexible to assume a curved shape when advanced into Schlemm’s canal of an eye.

Ocular implant 300 comprises a body 302. With reference to FIG. 11, it will be appreciated that body 302 comprises a plurality of tissue supporting frames 304 and a plurality of spines 306. As shown in FIG. 11, these spines 306 and frames 304 are arranged in an alternating pattern in which one spine extends between each adjacent pair of frames 304. The frames 304 of body 302 include a first frame 336 of ocular implant 300 disposed between a first spine 340 and a second spine 342. In the embodiment of FIG. 11, first frame 336 comprises a first strut 344 that extends between first spine 340 and second spine 342. A second strut 346 of first frame also extends between first spine 340 and second spine 342. Each strut undulates in a circumferential direction as it extends longitudinally between first spine 340 and second spine 342.

An inner surface 328 of body 302 defines a channel 326. Body 302 of ocular implant 300 includes a first edge 320 and a second edge 322 that define a first opening 324. Channel 326 of ocular implant 300 fluidly communicates with first opening 324. First strut 344 of first frame 336 comprises a first edge 325A. Second strut 346 has a first edge 325B. In FIG. 11, first opening 324 in body 302 can be seen extending between first edge 325A of first strut 344 and a first edge 325B of second strut 346.

A first axis 356, a second axis 358 and a third axis 360 are shown in FIG. 11. Second axis 358 is generally perpendicular to first axis 356. Third axis 360 is generally skewed relative to first axis 356. The flexibility of body 302 is at a maximum when body 302 is bent by a moment acting about first axis 356, and body 302 has less flexibility when bent by a moment acting about an axis other than first axis 356 (e.g., second axis 358 and third axis 360). Stated another way, in the embodiment of FIG. 11, the bending modulus of body 302 is at a minimum when body 302 is bent by a moment acting about first axis 356, and body 302 has a greater bending modulus when bent by a moment acting about an axis other than first axis 356 (e.g., second axis 358 and third axis 360).

Many of the figures illustrating embodiments of the invention show only portions of the ocular implant. It should be understood that many embodiments of the invention include an inlet portion (such as inlet 101 in FIG. 6 and inlet 201 in FIG. 10) that can be placed within the anterior chamber to provide communication of aqueous humor from the anterior chamber through the trabecular mesh into Schlemm’s canal via the ocular implant. Further details of the inlet feature may be found in U.S. application Ser. No. 11/860,318.

FIG. 12 is a stylized representation of a medical procedure in accordance with this detailed description. In the procedure of FIG. 12, a physician is treating an eye 1220 of a patient P. In the procedure of FIG. 12, the physician is holding a delivery system 12100 in his or her right hand RH. The physician’s left hand (not shown) may be used to hold the handle H of a gonio lens 1223. It will be appreciated that some physician’s may prefer holding the delivery system handle in the left hand and the gonio lens handle H in the right hand RH.

During the procedure illustrated in FIG. 12, the physician may view the interior of the anterior chamber using gonio lens 1223 and a microscope 1225. Detail A of FIG. 12 is a stylized simulation of the image viewed by the physician. A distal portion of a cannula 12102 is visible in Detail A. A shadow-like line indicates the location of Schlemm’s canal SC which is lying under various tissue (e.g., the trabecular meshwork) that surround the anterior chamber. A distal opening 12104 of cannula 12102 is positioned near Schlemm’s canal SC of eye 1220. In some methods in accordance with this detailed description, distal opening 12104 of cannula 12102 is placed in fluid communication with Schlemm’s canal SC. When this is the case, an ocular implant may be advanced through distal opening 12104 and into Schlemm’s canal SC.

FIG. 13A is a perspective view further illustrating delivery system 12100 and eye 1220 shown in the previous Figure. In FIG. 13A, cannula 12102 of delivery system 12100 is shown extending through a cornea 1240 of eye 1220. A distal portion of cannula 12102 is disposed inside the anterior chamber defined by cornea 1240 of eye 1220. In the embodiment of FIG. 13A, cannula 12102 is configured so that a distal opening 12104 of cannula 12102 can be placed in fluid communication with Schlemm’s canal.

In the embodiment of FIG. 13A, an ocular implant is disposed in a lumen defined by cannula 12102. Delivery system 12100 includes a mechanism that is capable of advancing and retracting the ocular implant along the length of cannula 12102. The ocular implant may be placed in Schlemm’s canal of eye 1220 by advancing the ocular implant through distal opening 12104 of cannula 12102 while distal opening 12104 is in fluid communication with Schlemm’s canal.

FIG. 13B is an enlarged detail view further illustrating cannula 12102 of delivery system 12100. In one illustrative embodiment of FIG. 13B, an ocular implant 12126 has been advanced through distal opening 12104 of cannula 12102. Cannula 12102 of FIG. 13B defines a passageway 12124 that fluidly communicates with distal opening 12104. Ocular implant 12126 may be moved along passageway 12124 and through distal opening by delivery system 12100. Delivery system 12100 includes a mechanism capable of performing this function.

FIG. 14 is a stylized perspective view illustrating a portion of eye 1220 discussed above. Eye 1220 includes an iris 1230 defining a pupil 1232. In FIG. 14, eye 1220 is shown as a cross-sectional view created by a cutting plane passing through the center of pupil 1232. Eye 1220 can be conceptualized as a fluid filled ball having two chambers. Sclera 1234 of eye 1220 surrounds a posterior chamber PC filled with a viscous fluid known as vitreous humor. Cornea 1236 of eye 1220 encloses an anterior chamber AC that is filled with a fluid known as aqueous humor. The cornea 1236 meets the
Whenever a person views an object, he or she is viewing that object through the cornea, the aqueous humor, and the lens of the eye. In order to be transparent, the cornea and the lens can include no blood vessels. Accordingly, no blood flows through the cornea and the lens to provide nutrition to these tissues and to remove wastes from these tissues. Instead, these functions are performed by the aqueous humor.

A continuous flow of aqueous humor through the eye provides nutrition to portions of the eye (e.g., the cornea and the lens) that have no blood vessels. This flow of aqueous humor also removes waste from these tissues.

Aqueous humor is produced by an organ known as the ciliary body. The ciliary body includes epithelial cells that continuously secrete aqueous humor. In a healthy eye, a stream of aqueous humor flows out of the eye as new aqueous humor is secreted by the epithelial cells of the ciliary body. This excess aqueous humor enters the blood stream and is carried away by venous blood leaving the eye.

Schlemm’s canal SC is a tube-like structure that encircles iris 1230. Two laterally cut ends of Schlemm’s canal SC are visible in the cross-sectional view of FIG. 14. In a healthy eye, aqueous humor flows out of anterior chamber AC and into Schlemm’s canal SC. Aqueous humor exits Schlemm’s canal SC and flows into a number of collector channels. After leaving Schlemm’s canal SC, aqueous humor is absorbed into the venous blood stream and carried out of the eye.

Schlemm’s canal SC may be conceptualized as a cylindrical tube that has been partially flattened. The cross-sectional shape of lumen 1258 may be compared to the shape of an ellipse. A major axis 1260 and a minor axis 1262 of lumen 1258 are illustrated with dashed lines in FIG. 16.

The length of major axis 1260 and minor axis 1262 can vary from patient to patient. The length of minor axis 1262 is between one and thirty micrometers in most patients. The length of major axis 1260 is between one hundred and fifty micrometers and three hundred and fifty micrometers in most patients.

With reference to FIG. 16, it will be appreciated that Schlemm’s canal SC comprises a first major side 1250, a second major side 1252, a first minor side 1254, and a second minor side 1256. In the embodiment of FIG. 16, first major side 1250 is longer than both first minor side 1254 and second minor side 1256. Also in the embodiment of FIG. 16, second major side 1252 is longer than both first minor side 1254 and second minor side 1256.

FIG. 17 is a perspective view showing an ocular implant in accordance with this detailed description. Ocular implant 12126 of FIG. 17 comprises a body 12128 that extends along a generally curved longitudinal axis 12148. In the embodiment of FIG. 17, body 12128 has a radius of curvature R that is represented with an arrow extending between a lateral central axis 12176 and body 12128.

Body 12128 of ocular implant 12126 has a first major surface 12130 and a second major surface 12132. With reference to FIG. 17, it will be appreciated that body 12128 is curved about longitudinal central axis 12148 so that first major surface 12130 comprises a concave surface 12136 and second major surface 12132 comprises a convex surface 12134. The curvature of body 12128 can be pre-sized and configured to align with the curvature of Schlemm’s canal in a patient’s eye.

A distal portion of body 12128 defines a longitudinal channel 12138 including a channel opening 12139. Channel opening 12139 is disposed diametrically opposite a central portion 12135 of concave surface 12136. Because of the curvature of the body 12128, an outer diameter of the implant defined by the channel opening 12139 will be greater than an inner diameter of the implant defined by surface 12132. In some embodiments, the body is pre-biased to assume a configuration in which the channel opening 12139 is disposed along an outer diameter of the body, ensuring that the channel opening can be positioned adjacent to the first major side 1250 of Schlemm’s canal.

In the embodiment of FIG. 17, central portion 12135 of concave surface 12136 defines a plurality of apertures 12137. Each aperture 12137 fluidly communicates with channel 12138. In some useful embodiments, body 12128 is adapted and configured such that ocular implant 12126 assumes an orientation in which channel opening 12139 is adjacent a major side of Schlemm’s canal when ocular implant 12126 is disposed in Schlemm’s canal. Ocular implant 12126 can be made, for example, by laser cutting body 12128 from a length of metal or a shape memory material (e.g., nitinol or stainless steel) tubing.

FIG. 18A and FIG. 18B are section views showing an ocular implant 12126 disposed in Schlemm’s canal SC of an eye. FIG. 18A and FIG. 18B may be collectively referred to as FIG. 18. The eye of FIG. 18 includes an iris 1230. A central portion of iris 1230 defines a pupil 1232. Schlemm’s canal SC is disposed near an outer edge of iris 1230.
trabecular meshwork TM extends up from the iris of overlays Schlemm’s canal SC. The picture plane of FIG. 18 extends laterally across Schlemm’s canal SC and the trabecular meshwork TM.

[0146] Schlemm’s canal SC forms a ring around iris 1230 with pupil 1232 disposed in the center of that ring. Schlemm’s canal SC has a first major side 1250, a second major side 1252, a first minor side 1254, and a second minor side 1256. With reference to FIG. 18, it will be appreciated that first major side 1250 is further from pupil 1232 than second major side 1252. In the embodiment of FIG. 18, first major side 1250 is an outer major side of Schlemm’s canal SC and second major side 1252 is an inner major side of Schlemm’s canal SC.

[0147] In the embodiment of FIG. 18A, a distal portion of ocular implant 12126 is shown resting in Schlemm’s canal SC. A proximal portion of ocular implant 12126 is shown extending out of Schlemm’s canal SC, through trabecular meshwork TM and into anterior chamber AC. Ocular implant 12126 of FIG. 18 comprises a body having a first major surface 12130 and a second major surface 12132. With reference to FIG. 17, it will be appreciated that the body of ocular implant 12126 is curved about a longitudinal central axis so that first major surface 12130 comprises a concave surface and second major surface 12132 comprises a convex surface.

[0148] A distal portion of ocular implant 12126 defines a longitudinal channel 12138 including a channel opening 12139. Channel opening 12139 is disposed diametrically opposite a central portion 12135 of concave surface 12136. In the embodiment of FIG. 19, central portion 12135 of concave surface 12136 defines a plurality of apertures 12137. Each aperture 12137 fluidly communicates with channel 12138. In some useful embodiments, body 12128 is adapted and configured such that ocular implant 12126 assumes an orientation in which channel opening 12139 is adjacent a major side of Schlemm’s canal when ocular implant 12126 is disposed in Schlemm’s canal.

[0152] FIG. 20 is a lateral cross-sectional view of ocular implant 12126 taken along section line A-A shown in the previous Figure. Ocular implant 12126 comprises a body 12128 having a first major surface 12130 and a second major surface 12132. With reference to FIG. 20, it will be appreciated that body 12128 curves around a longitudinal central axis 12148 so that first major surface 12130 comprises a concave surface 12136 and second major surface 12132 comprises a convex surface 12134. The concave surface 12136 of body 12128 defines a longitudinal channel 12138 having a channel opening 12139.

[0153] As shown in FIG. 20, channel 12138 has a width WD and a depth DP. Body 12128 of ocular implant 12126 has a first lateral extent EF and a second lateral extent ES. In some cases, body 12128 is adapted and configured such that ocular implant 12126 automatically assumes an orientation in which the channel opening is adjacent a major side of Schlemm’s canal when ocular implant 12126 is disposed in Schlemm’s canal. In some useful embodiments, an aspect ratio of first lateral extent EF to second lateral extent ES is greater than about one. In some particularly useful embodiments, the aspect ratio of first lateral extent EF to second lateral extent ES is about two. In some useful embodiments, the aspect ratio of channel width WD to channel depth DP is greater than about one. In some particularly useful embodiments, the aspect ratio of channel width WD to channel depth DP is about two. In some useful embodiments, the aspect ratio of channel width WD to channel depth DP is greater than about two.

[0154] FIG. 21A is a perspective view of an ocular implant 12126 and FIG. 21B is a stylized perspective view showing Schlemm’s canal SC encircling an iris 1230. FIG. 21A and FIG. 21B may be collectively referred to as FIG. 21. With reference to FIG. 21B, it will be appreciated that Schlemm’s canal SC may overhang iris 1230 slightly. Iris 1230 defines a pupil 1232. Schlemm’s canal SC forms a ring around iris 1230 with pupil 1232 disposed in the center of that ring. With reference to FIG. 21B, it will be appreciated that Schlemm’s canal SC has a first major side 1250, a second major side 1252, a first minor side 1254, and a second minor side 1256. With reference to FIG. 21B, it will be appreciated that first major side 1250 is further from pupil 1232 than second major side 1252. In the embodiment of FIG. 21B, first major side 1250 is an outer major side of Schlemm’s canal SC and second major side 1252 is an inner major side of Schlemm’s canal SC.

[0156] For purposes of illustration, a window 1270 is cut through first major side 1250 of Schlemm’s canal SC in FIG. 21B. Through window 1270, an ocular implant 12126 can be seen residing in a lumen defined by Schlemm’s canal’s SC. Ocular implant 12126 of FIG. 21 comprises a body 12128 having a first major surface 12130. First major surface 12130 of body 12128 comprises a concave surface 12136. Body 12128

[0157] A distal portion of body 12128 defines a longitudinal channel 12138 including a channel opening 12139. Channel opening 12139 is disposed diametrically opposite a central portion 12135 of concave surface 12136. In the embodiment of FIG. 19, central portion 12135 of concave surface 12136 defines a plurality of apertures 12137. Each aperture 12137 fluidly communicates with channel 12138. In some useful embodiments, body 12128 is adapted and configured such that ocular implant 12126 assumes an orientation in which channel opening 12139 is adjacent a major side of Schlemm’s canal when ocular implant 12126 is disposed in Schlemm’s canal.

[0152] FIG. 20 is a lateral cross-sectional view of ocular implant 12126 taken along section line A-A shown in the previous Figure. Ocular implant 12126 comprises a body 12128 having a first major surface 12130 and a second major surface 12132. With reference to FIG. 20, it will be appreciated that body 12128 curves around a longitudinal central axis 12148 so that first major surface 12130 comprises a concave surface 12136 and second major surface 12132 comprises a convex surface 12134. The concave surface 12136 of body 12128 defines a longitudinal channel 12138 having a channel opening 12139.

[0153] As shown in FIG. 20, channel 12138 has a width WD and a depth DP. Body 12128 of ocular implant 12126 has a first lateral extent EF and a second lateral extent ES. In some cases, body 12128 is adapted and configured such that ocular implant 12126 automatically assumes an orientation in which the channel opening is adjacent a major side of Schlemm’s canal when ocular implant 12126 is disposed in Schlemm’s canal. In some useful embodiments, an aspect ratio of first lateral extent EF to second lateral extent ES is greater than about one. In some particularly useful embodiments, the aspect ratio of first lateral extent EF to second lateral extent ES is about two. In some useful embodiments, the aspect ratio of channel width WD to channel depth DP is greater than about one. In some particularly useful embodiments, the aspect ratio of channel width WD to channel depth DP is about two. In some useful embodiments, the aspect ratio of channel width WD to channel depth DP is greater than about two.

[0154] FIG. 21A is a perspective view of an ocular implant 12126 and FIG. 21B is a stylized perspective view showing Schlemm’s canal SC encircling an iris 1230. FIG. 21A and FIG. 21B may be collectively referred to as FIG. 21. With reference to FIG. 21B, it will be appreciated that Schlemm’s canal SC may overhang iris 1230 slightly. Iris 1230 defines a pupil 1232. Schlemm’s canal SC forms a ring around iris 1230 with pupil 1232 disposed in the center of that ring. With reference to FIG. 21B, it will be appreciated that Schlemm’s canal SC has a first major side 1250, a second major side 1252, a first minor side 1254, and a second minor side 1256. With reference to FIG. 21B, it will be appreciated that first major side 1250 is further from pupil 1232 than second major side 1252. In the embodiment of FIG. 21B, first major side 1250 is an outer major side of Schlemm’s canal SC and second major side 1252 is an inner major side of Schlemm’s canal SC.
defines a longitudinal channel 12138 including a channel opening 12139. Channel opening 12139 is disposed diametrically opposite a central portion 12135 of concave surface 12136. In the embodiment of FIG. 21B, ocular implant 12126 is assumed an orientation in which channel opening 12139 is adjacent first major side 1250 of Schlemm’s canal.

[0156] FIG. 22A is a perspective view showing a delivery system 12100 that may be used to advance an ocular implant 12126 into Schlemm’s canal of an eye. Delivery system 12100 includes a cannula 12102 that is coupled to a handle 12134. Cannula 12102 defines a distal opening 12104. The distal portion of cannula 12102 of delivery system 12100 is configured and adapted to be inserted into the anterior chamber of a human subject’s eye so that distal opening 12104 is positioned near Schlemm’s canal of the eye. Cannula 12102 is sized and configured so that the distal end of cannula 12102 can be advanced through the trabecular meshwork of the eye and into Schlemm’s canal. Positioning cannula 12102 in this way places distal opening 12104 in fluid communication with Schlemm’s canal.

[0157] In the embodiment of FIG. 22A, an ocular implant is disposed in a passageway defined by cannula 12102. Delivery system 12100 includes a mechanism that is capable of advancing and retracting the ocular implant along the length of cannula 12102. The ocular implant may be placed in Schlemm’s canal of eye 1220 by advancing the ocular implant through distal opening 12104 of cannula 12102 while distal opening 12104 is in fluid communication with Schlemm’s canal.

[0158] FIG. 22B is an enlarged detail view further illustrating cannula 12102 of delivery system 12100. With reference to FIG. 22B, it will be appreciated that cannula 12102 comprises a tubular member defining a distal opening 12104, a proximal opening 12105, and a passageway 12124 extending between proximal opening 12105 and distal opening 12104. With reference to FIG. 22B, it will be appreciated that cannula 12102 includes a curved portion 12107 disposed between distal opening 12104 and proximal opening 12105.

[0159] In the embodiment of FIG. 22B, an ocular implant 12126 is disposed in passageway 12124 defined by cannula 12102. Ocular implant 12126 of FIG. 22B comprises a body 12128 that extends along a generally curved longitudinal central axis 12148. Body 12128 of ocular implant 12126 has a first major surface 12130 and a second major surface 12132. With reference to FIG. 22B, it will be appreciated that body 12128 is curved about longitudinal central axis 12148 so that first major surface 12130 defines a longitudinal channel 12138 and second major surface 12132 comprises a convex surface 12134. Longitudinal channel 12138 includes a central opening 12139. Ocular implant 12126 is orient relative to delivery cannula 12102 such that longitudinal channel 12138 of ocular implant 12126 opens in a radially outward direction RD when ocular implant 12126 is disposed in curved portion 12107. Radially outward direction RD is illustrated using an arrow in FIG. 22B. Distal opening 12104 of cannula 12102 may be placed in fluid communication with Schlemm’s canal of an eye. Ocular implant 12126 may be advanced through distal opening 12104 and into Schlemm’s canal while assuming the orientation shown in FIG. 22B. When this is the case, ocular implant 12126 may be oriented such that channel opening 12139 is adjacent an outer major side of Schlemm’s canal when ocular implant 12126 is disposed in Schlemm’s canal.

[0160] FIG. 23 is an enlarged perspective view of an assembly 12106 including an ocular implant 12126, a sheath 12120, and a cannula 12102. For purposes of illustration, cannula 12102 is cross-sectionally illustrated in FIG. 23. In the embodiment of FIG. 23, a sheath 12120 is shown extending into a passageway 12124 defined by cannula 12102. In FIG. 23, sheath 12120 is illustrated in a transparent manner with a pattern of dots indicating the presence of sheath 12120.

[0161] FIG. 23 is an additional perspective view showing assembly 12106 shown in the previous figure. In FIG. 24, core 12166, sheath 12120, and implant 12126 are shown extending through a distal port 12104 of cannula 12102. Core 12166, sheath 12120, and implant 12126 have been moved in a distal direction relative to the position of those elements shown in the previous figure.

[0162] A push tube 12180 is visible in FIG. 24. In FIG. 24, a distal end of push tube 12180 is shown contacting a proximal end of implant 12126. In the embodiment of FIG. 24, push tube 12180 is disposed in a lumen 12122 defined by sheath 12120. Sheath 12120 comprises a proximal portion 12150 defining a passageway 12124 and a distal portion 12152 defining a distal aperture 12154. Core 12166 is disposed extending through distal aperture 12154 in FIG. 23. In the embodiment of FIG. 23, distal portion 12152 of sheath 12120 has a generally tapered shape.

[0163] FIG. 24 is an additional perspective view of assembly 12106 shown in the previous figure. In FIG. 24, core 12166, sheath 12120, and implant 12126 are shown extending through a distal port 12104 of cannula 12102. Core 12166, sheath 12120, and implant 12126 have been moved in a distal direction relative to the position of those elements shown in the previous figure.

[0164] A push tube 12180 is visible in FIG. 24. In FIG. 24, a distal end of push tube 12180 is shown contacting a proximal end of implant 12126. In the embodiment of FIG. 24, push tube 12180 is disposed in a lumen 12122 defined by sheath 12120. Sheath 12120 comprises a proximal portion 12150 defining a passageway 12124 and a distal portion 12152 defining a distal aperture 12154. Implant 12126 is disposed in lumen 12122 defined by sheath 12120. In FIG. 24, core 12166 is shown extending through a channel 12138 defined by implant 12126 and a distal aperture 12154 defined by distal portion 12152 of sheath 12120.

[0165] FIG. 25 is an additional perspective view showing assembly 12106 shown in the previous figure. With reference to FIG. 25, it will be appreciated that implant 12126 is disposed outside of cannula 12102. In the embodiment of FIG. 25, core 12166, sheath 12120, and push tube 12180 have been advanced further so that implant 12126 is in a position outside of cannula 12102.

[0166] Methods in accordance with the present invention can be used to deliver an implant into Schlemm’s canal of an eye. In these methods, a distal portion of core 12166 and sheath 12120 may be advanced out of the distal port of cannula 12102 and into Schlemm’s canal. Ocular implant 12126 may be disposed inside sheath 12120 while the distal portion of the sheath 12120 is advanced into Schlemm’s canal. Sheath 12120 and core 12166 may then be retracted while push tube 12180 prevents implant 12126 from being pulled proximally.

[0167] FIG. 26 is an additional perspective view showing assembly 12106 shown in the previous figure. In the embodiment of FIG. 26, core 12166 and sheath 12120 have
been moved in a proximal direction relative to implant 12126. With reference to FIG. 26, it will be appreciated that implant 12126 is now disposed outside of sheath 12120. Some methods in accordance with the present detailed description include the step of applying a proximally directed force to sheath 12120 and core 12166 while providing a distally directed reactionary force on implant 12126 to prevent implant 12126 from moving proximally. When this is the case, implant 12126 may pass through distal aperture 12154 of sheath 12120 as sheath 12120 is retracted over implant 12126.

In the embodiment of FIG. 26, distal portion 12152 of sheath 12120 comprises a first region 12156 and a second region 12158. The frangible connection between first region 12156 and second region 12158 has been broken in the embodiment of FIG. 26. This frangible connection may be selectively broken, for example, when sheath 12120 is moved in a proximal direction relative to implant 12126 due to the larger diameter of implant 12126 with respect to the diameters of distal portion 12152 and opening 12154 of sheath 12120. With reference to FIG. 26, it will be appreciated that the width of distal aperture 12154 becomes larger when the frangible connection is broken.

With reference to the Figures described above, it will be appreciated that methods in accordance with the present detailed description may be used to position a distal portion of an implant in Schlemm’s canal of an eye. A method in accordance with the present detailed description may include the step of advancing a distal end of a cannula through a cornea of the eye so that a distal portion of the cannula is disposed in the anterior chamber of the eye. The cannula may be used to access Schlemm’s canal, for example, by piercing the wall of Schlemm’s canal with a distal portion of the cannula. A distal portion of a sheath may be advanced out of a distal port of the cannula and into Schlemm’s canal. An ocular implant may be disposed inside the sheath while the distal portion of the sheath is advanced into Schlemm’s canal.

In some useful methods, the ocular implant comprises a body defining a plurality of apertures and the method includes the step of covering the apertures with a sheath. When this is the case, the distal portion of the implant may be advanced into Schlemm’s canal while the apertures are covered by the sheath. Covering the apertures as the implant is advanced into Schlemm’s canal may reduce the trauma inflicted on Schlemm’s canal by the procedure. The apertures may be uncovered, for example, after the implant has reached a desired location (e.g., inside Schlemm’s canal).

The apertures of the implant may be uncovered, for example, by moving the sheath in a proximal direction relative to the implant. In some applications, this may be accomplished by applying a proximal directed force to the sheath while holding the implant stationary. The implant may be held stationary, for example, by applying a distally directed reaction force on the implant. In one embodiment, a distally directed reaction force is provided by pushing on a proximal end of the implant with a push tube.

Some methods include the step of ceasing advancement of the sheath into Schlemm’s canal when a proximal portion of the implant remains in an anterior chamber of the eye and a distal portion of the implant lies in Schlemm’s canal. When this is the case, only a distal portion of the implant is advanced into Schlemm’s canal. The portion of the implant extending out of Schlemm’s canal and into the anterior chamber may provide a path for fluid flow between the anterior chamber and Schlemm’s canal.

An assembly may be created by placing a core in a channel defined by the ocular implant. A sheath may be placed around the implant and the core. For example, the core and the implant may then be inserted into the lumen of a sheath. By way of another example, the sheath may be slipped over the implant and the core. The core may be withdrawn from the channel defined by the ocular implant, for example, after the implant has been delivered to a desired location.

The core may be withdrawn from the channel, for example, by moving the core in a proximal direction relative to the implant. In some applications, this may be accomplished by applying a proximal directed force to the core while holding the implant stationary. The implant may be held stationary, for example, by applying a distally directed reaction force on the implant. In one embodiment, a distally directed reaction force is provided by pushing on a proximal end of the implant with a push tube.

The core, the implant, and the sheath may be advanced into Schlemm’s canal together. Once the implant is in a desired location, the core and the sheath may be withdrawn from the Schlemm’s canal leaving the implant in the desired location. In some methods, the core and the sheath are withdrawn from Schlemm’s canal simultaneously.

FIG. 27A and FIG. 27B are perspective views showing a sheath 12120 in accordance with the present detailed description. FIG. 27A and FIG. 27B may be referred to collectively as FIG. 27. Sheath 12120 of FIG. 27 comprises a proximal portion 12150 defining a lumen 12122 and a distal portion 12152 defining a distal aperture 12154. With reference to FIG. 27, it will be appreciated that lumen 12122 is generally larger than distal aperture 12154.

In the embodiment of FIG. 27A, distal portion 12152 of sheath 12120 comprises a first region 12156, a second region 12158, and a frangible connection 12160 between first region 12156 and second region 12158. In FIG. 27A, a slit 12164 defined by distal portion 12152 is shown disposed between first region 12156 and second region 12158. In the embodiment of FIG. 27A, frangible connection 12160 comprises a bridge 12162 extending across slit 12164.

In the embodiment of FIG. 27B, frangible connection 12160 has been broken. Frangible connection 12160 may be selectively broken, for example, by moving sheath 12120 in a proximal direction relative to an implant disposed in lumen 12122 having a diameter larger than the diameters of distal opening 12154 and distal portion 12152 of sheath 12120. With reference to FIG. 27, it will be appreciated that distal aperture 12154 becomes larger when frangible connection 12160 is broken.

In the embodiment of FIG. 27, the presence of slit 12164 creates a localized line of weakness in distal portion 12152 of sheath 12120. This localized line of weakness causes distal portion 12152 to selectively tear in the manner shown in FIG. 27. It is to be appreciated that distal portion 12152 may comprise various elements that create a localized line of weakness without deviating from the spirit and scope of the present detailed description. Examples of possible elements include: a skive cut extending partially through the wall of distal portion 12120, a series of holes extending through the wall of distal portion 12120, a perf cut, a crease, and a score cut.

FIG. 28 is a perspective view of an assembly including sheath 12120 shown in the previous Figure. In the
embodiment of FIG. 28, an implant 12126 is shown extending through distal aperture 12154 defined by distal portion 12152 of sheath 12120. Implant 12126 defines a channel 12138. In FIG. 28, a core 12166 can be seen resting in channel 12138. Implant 12126 and core 12166 extend proximally into lumen 12122 defined by sheath 12120. Distal portion 12152 of sheath 12120 comprises a first region 12156 and a second region 12158.

Fig. 29A and FIG. 29B are simplified plan views showing a sheath 12210 in accordance with the present detailed description. Sheath 12210 comprises a distal portion 12152 including a first region 12156, a second region 12158 and a frangible connection between first region 12156 and second region 12158. In the embodiment of FIG. 19A, frangible connection 12160 is intact. In the embodiment of FIG. 19B, frangible connection 12160 is broken. FIG. 29A and FIG. 29B may be referred to collectively as FIG. 29.

Sheath 12210 of FIG. 29 comprises a proximal portion 12150 defining a lumen 12212. In the embodiment of FIG. 29, an implant 12126 is disposed in lumen 12212. Lumen 12212 fluidly communicates with a distal aperture 12154 defined by distal portion 12152 of sheath 12120. Distal portion 12152 includes a slit 12164 disposed between first region 12156 and second region 12158. In FIG. 29A, a bridge 12162 can be seen spanning slit 12164. In some useful embodiments, distal portion 12152 of sheath 12120 has a first hoop strength and proximal portion 12150 sheath 12120 has a second hoop strength. The first hoop strength may be limited by the frangible connection in the embodiment of FIG. 29A. When this is the case, the second hoop strength is greater than the first hoop strength.

Sheath 12210 of FIG. 29 comprises a proximal portion 12150 defining a lumen 12212 and a distal portion 12152 defining a distal aperture 12154. Lumen 12212 has a lumen width LW. Distal aperture has an aperture width AW when frangible connection 12160 is intact. With reference to FIG. 29B, it will be appreciated that the distal aperture 12154 is free to open further when frangible connection 12160 is broken.

In some useful embodiments, lumen width LW of lumen 12212 is equal to or greater than the width of an implant 12126 disposed in lumen 12212. In some of these useful embodiments, aperture width AW is smaller than the width of the implant 12126. When this is the case, frangible connection 12160 can be selectively broken by moving sheath 12120 in a proximal direction relative to the implant 12126.

Fig. 30A, FIG. 30B and FIG. 30C are multiple plan views of an implant 12326 in accordance with the present detailed description. FIG. 30A, FIG. 30B and FIG. 30C may be referred to collectively as FIG. 30. FIG. 30A may be referred to as a top view of implant 12326, FIG. 30B may be referred to as a side view of implant 12326, and FIG. 30C may be referred to as a bottom view of implant 12326. The terms top view, side view, and bottom view are used herein as a convenient method for differentiating between the views shown in FIG. 30. It will be appreciated that the implant shown in FIG. 30 may assume various orientations without deviating from the spirit and scope of this detailed description. Accordingly, the terms top view, side view, and bottom view should not be interpreted to limit the scope of the invention recited in the attached claims.

Ocular implant 12326 of FIG. 30 comprises a body 12328 that extends along a longitudinal central axis 12348. Body 12328 of ocular implant 12326 has a first major surface 12330 and a second major surface 12332. In the embodiment of FIG. 30, body 12328 is curved about longitudinal central axis 12348 so that first major surface 12330 comprises a concave surface 12336 and second major surface 12332 comprises a convex surface 12334.

A distal portion of body 12328 defines a longitudinal channel 12338 including a channel opening 12339. Channel opening 12339 is disposed diametrically opposite a central portion 12335 of concave surface 12336. In the embodiment of FIG. 30, central portion 12335 of concave surface 12336 defines a plurality of apertures 12337. Each aperture 12337 fluidly communicates with channel 12338.

FIG. 31 is a lateral cross-sectional view of ocular implant 12326 taken along section line B-B shown in the previous Figure. Ocular implant 12326 comprises a body 12328 having a first major surface 12330 and a second major surface 12332. With reference to FIG. 31, it will be appreciated that body 12328 curves around a longitudinal central axis 12348 so that first major surface 12330 comprises a concave surface 12336 and second major surface 12332 comprises a convex surface 12334. The concave surface 12336 of body 12328 defines a longitudinal channel 12338 having a channel opening 12339. As shown in FIG. 31, body 12328 has a circumferential extent that spans an angle W. In the embodiment of FIG. 31, angle W has a magnitude that is greater than one hundred eighty degrees.

FIG. 32 is a cross-sectional view showing an implant 12326 in accordance with the present detailed description. Ocular implant 12326 of FIG. 32 comprises a body 12328 that extends along a generally curved longitudinal central axis 12348. In the embodiment of FIG. 32, body 12328 has a distal radius of curvature RD and a proximal radius of curvature RP. Each radius of curvature is represented with an arrow in FIG. 32. Distal radius of curvature RD is represented by an arrow extending between a first lateral central axis 12376 and a distal portion of longitudinal central axis 12348. Proximal radius of curvature RP is represented by an arrow extending between a second lateral central axis 12378 and a proximal portion of longitudinal central axis 12348. In the embodiment of FIG. 32, body 12328 of ocular implant 12326 has an at rest shape that is generally curved. This at rest shape can be established, for example, using a hard-setting process. The rest shape of the implant can be generally aligned with the radius of curvature of Schlemm’s canal in a human eye.

Fig. 33A, FIG. 33B and FIG. 33C are multiple plan views of an implant 12526 in accordance with the present detailed description. FIG. 33A, FIG. 33B and FIG. 33C may be referred to collectively as FIG. 33. FIG. 33A may be referred to as a top view of implant 12526, FIG. 33B may be referred to as a side view of implant 12526, and FIG. 33C may be referred to as a bottom view of implant 12526. The terms top view, side view, and bottom view are used herein as a convenient method for differentiating between the views shown in FIG. 33. It will be appreciated that the implant shown in FIG. 33 may assume various orientations without deviating from the spirit and scope of this detailed description.

Accordingly, the terms top view, side view, and bottom view should not be interpreted to limit the scope of the invention recited in the attached claims.

Ocular implant 12526 of FIG. 33 comprises a body 12528 that extends along a longitudinal central axis 12548.
Body 12528 of ocular implant 12526 has a first major surface 12530 and a second major surface 12532. In the embodiment of FIG. 33, body 12528 is curved about longitudinal central axis 12548 so that first major surface 12530 comprises a concave surface 12536 and second major surface 12532 comprises a convex surface 12534.

[0193] A distal portion of body 12528 defines a longitudinal channel 12538 including a channel opening 12539. Channel opening 12539 is disposed diametrically opposite a central portion 12535 of concave surface 12536. In the embodiment of FIG. 33, central portion 12535 of concave surface 12536 defines a plurality of apertures 12537. Each aperture 12537 fluidly communicates with channel 12538.

[0194] FIG. 34 is a lateral cross-sectional view of ocular implant 12526 taken along section line C-C shown in the previous Figure. Ocular implant 12526 comprises a body having a first major side 12530 and a second major side 12532. With reference to FIG. 34, it will be appreciated that body 12528 curves around a longitudinal central axis 1248 so that first major side 12530 comprises a concave surface 12536 and second major side 12532 comprises a convex surface 12534. The concave surface 12536 of body 12528 defines a longitudinal channel 12538 having a channel opening 12539. As shown in FIG. 34, body 12528 has a circumferential extent that spans an angle C. In the embodiment of FIG. 34, angle C has a magnitude that is about one hundred eighty degrees. Some useful implants in accordance with the present detailed description comprise a body having a circumferential extent that spans an angle that is about one hundred eighty degrees. Some particularly useful implants in accordance with the present detailed description comprise a body having a circumferential extend that spans an angle that is equal to or less than one hundred eighty degrees.

[0195] FIG. 35 is a plan view showing an implant 12526 in accordance with the present detailed description. Ocular implant 12526 of FIG. 35 comprises a body 12528 that extends along a generally curved longitudinal central axis 12548. In the embodiment of FIG. 35, body 12528 has a distal radius of curvature RD and a proximal radius of curvature RP. Each radius of curvature is represented with an arrow in FIG. 35. Distal radius of curvature RD is represented by an arrow extending between a first lateral central axis 12576 and a distal portion of longitudinal central axis 12548. Proximal radius of curvature RP is represented by an arrow extending between a second lateral central axis 12578 and a proximal portion of longitudinal central axis 12548. In the embodiment of FIG. 35, body 12528 of ocular implant 12526 has an at rest shape that is generally curved. This at rest shape can be established, for example, using a heat-setting process.

[0196] FIG. 36A through FIG. 36D are a series of plan views illustrating a method in accordance with the present detailed description. FIG. 36A is a plan view showing an implant 12426. Implant 12426 comprises a body 12428 defining a plurality of openings 12440. Openings 12440 include a first opening 12442 and a second opening 12444.

[0197] FIG. 36B is a plan view showing an assembly 12408 including implant 12426. Assembly 12408 of FIG. 36B may be created by placing a core 12406 in a channel defined by implant 12426. A sheath 12420 may be placed around implant 12426 and core 12406. For example, core 12406 and implant 12426 may be inserted into a lumen defined by sheath 12420. By way of another example, sheath 12420 may be slipped over implant 12426 and core 12406.

[0198] FIG. 36C is a plan view showing assembly 12408 disposed in Schlemm’s canal SC. The wall W of Schlemm’s canal SC comprises a plurality of cells 1290. With reference to FIG. 36C, it will be appreciated that sheath 12420 is disposed between implant 12426 and cells 1290. A method in accordance with the present detailed description may include the step of advancing a distal end of a cannula through a cornea of the eye so that a distal portion of the cannula is disposed in the anterior chamber of the eye. The cannula may be used to access Schlemm’s canal, for example, by piercing the wall of Schlemm’s canal with a distal portion of the cannula. A distal portion of sheath 12420 may be advanced out of a distal port of the cannula and into Schlemm’s canal SC. Ocular implant 12426 may be disposed inside sheath 12420 while the distal portion of sheath 12420 is advance into Schlemm’s canal SC.

[0199] In the embodiment of FIG. 36C, ocular implant 12426 comprises a body defining a plurality of openings 12440. With reference to FIG. 36C, it will be appreciated that openings 12440 are covered by sheath 12420 and that a distal portion of implant 12426 may be advanced into Schlemm’s canal while openings 12440 are covered by sheath 12420. Covering openings 12440 as implant 12426 is advanced into Schlemm’s canal SC may reduce the trauma inflicted on cells 1290 by the procedure.

[0200] In some useful embodiments, sheath 12420 comprises a coating disposed on an outer surface thereof. The properties of the coating may be selected to further reduce the trauma inflicted on cells 1290 by the procedure. The coating may comprise, for example, a hydrophilic material. The coating may also comprise, for example, a lubricious polymer. Examples of hydrophilic materials that may be suitable in some applications include: polyalkylene glycols, alkoxy polyalkylene glycols, copolymers of methylvinyl ether and maleic acid poly(vinylpyrrolidone), poly(N-alkylacrylamide), poly(acrylic acid), poly(vinyl alcohol), poly(ethyleneimine), methyl cellulose, carboxymethyl cellulose, polyvinyl sulfonic acid, heparin, dextran, modified dextran and chondroitin sulphate.

[0201] In FIG. 36C, the distal portion of sheath 12420 is shown extending between a smaller, distal diameter and a larger, proximal diameter. In the embodiment of FIG. 36C, the distal portion of sheath 12420 has a generally tapered shape. The tapered transition of the distal portion of sheath 12420 may create a nontraumatic transition that dilates Schlemm’s canal SC as sheath 12420 is advanced into Schlemm’s canal SC. This arrangement may reduce the likelihood that skiving of wall W occurs as sheath 12420 is advanced into Schlemm’s canal SC.

[0202] FIG. 36D is a plan view showing implant 12426 disposed in Schlemm’s canal SC. In the embodiment of FIG. 36D, openings 12440 defined by body 12428 have been uncovered. Openings 12440 may be uncovered, for example, by moving sheath 12420 in a proximal direction relative to implant 12426. In some applications, this may be accomplished by applying a proximal directed force to sheath 12420 while holding implant 12426 stationary. Implant 12426 may be held stationary, for example, by applying a distal directed reaction force on implant 12426. In the embodiment of FIG. 36, a distally directed reaction force may be provided by pushing on a proximal end of implant 12426 with a push tube.

[0203] In the embodiment of FIG. 36D, core 12406 has been removed channel 12438 defined by implant 12426. Core
12406 may be withdrawn from channel 12438, for example, by moving core 12406 in a proximal direction relative to impl ant 12426. In some applications, this may be accomplished by applying a proximal directed force to core 12406 while holding implant 12426 stationary. Implant 12426 may be held stationary, for example, by applying a distally directed reaction force on implant 12426.

[0204] FIG. 37A through FIG. 37D are a series of section views illustrating a method in accordance with the present detailed description. The picture plane of FIG. 37A extends laterally across Schlemm’s canal SC and the trabecular mesh- work 12596 overlaying Schlemm’s canal SC. In the embodiment of FIG. 37A, the distal end of a cannula 12502 has been positioned proximate Schlemm’s canal SC. A method in accordance with the present detailed description may include the step of advancing the distal end of cannula 12502 through the cornea of an eye so that a distal portion of cannula 12502 is disposed in the anterior chamber 12594 of the eye.

[0205] FIG. 37B is an additional section view showing Schlemm’s canal SC shown in the previous Figure. In FIG. 37B, a distal portion of cannula 502 is shown extending through a wall W of Schlemm’s canal SC and trabecular meshwork 12596. A distal port 12504 of cannula 12502 fluidly communicates with Schlemm’s canal in the embodiment of FIG. 37B.

[0206] FIG. 37C is an additional section view showing Schlemm’s canal SC shown in the previous Figure. In the embodiment of FIG. 37C, a distal portion of a sheath 12520 is shown extending through distal port 12504 of cannula 12502 and into Schlemm’s canal SC. Methods in accordance with the present invention can be used to deliver an implant 12526 into Schlemm’s canal SC. In these methods, a distal portion of sheath 12520 and a core 12506 may be advanced out of distal port 12504 of cannula 12502 and into Schlemm’s canal SC. Ocular implant 12526 may be disposed inside sheath 12520 while the distal portion of sheath 12520 is advanced into Schlemm’s canal SC.

[0207] FIG. 37D is an additional section view showing implant 12526 shown in the previous Figure. In the embodiment of FIG. 37D, sheath 12520, core 12506, and cannula 12502 have all been withdrawn from the eye. Implant 12526 is shown resting in Schlemm’s canal SC in FIG. 37D.

[0208] FIG. 38A and FIG. 38B are simplified plan views showing a sheath 12720 in accordance with the present detailed description. FIG. 38A and FIG. 38B may be referred to collectively as FIG. 38. Sheath 12720 of FIG. 38 comprises a proximal portion 12750 defining a lumen 12722 and a distal portion 12752 defining a distal aperture 12754. With reference to FIG. 38, it will be appreciated that lumen 12722 is generally larger than distal aperture 12754.

[0209] In the embodiment of FIG. 38A, distal portion 12752 of sheath 12720 comprises a first region 12756, a second region 12758, and a frangible connection 12760 between first region 12756 and second region 12758. In FIG. 38A, a first slit 12764 defined by distal portion 12752 is shown disposed between first region 12756 and second region 12758. In the embodiment of FIG. 38A, frangible connection 12760 comprises a bridge 12762 extending across first slit 12764. With reference to FIG. 38A, it will be appreciated that distal portion 12752 defines a number of slits in addition to first slit 12764.

[0210] In the embodiment of FIG. 38B, frangible connection 12760 has been broken. Frangible connection 12760 may be selectively broken, for example, by moving sheath 12720 in a proximal direction relative to an implant disposed in lumen 12722 having a diameter larger than the diameters of distal opening 12754 and distal portion 12752 of sheath 12720. With reference to FIG. 38, it will be appreciated that distal aperture 12754 becomes larger when frangible connection 12760 is broken.

[0211] In the embodiment of FIG. 38, the presence of slit 12764 creates a localized line of weakness in distal portion 12752 of sheath 12720. This localized line of weakness causes distal portion 12752 to selectively tear in the manner shown in FIG. 38. It is to be appreciated that distal portion 12752 may comprise various elements that create a localized line of weakness without deviating from the spirit and scope of the present detailed description. Examples of possible elements include: a skive cut extending partially through the wall of distal portion 12720, a series of holes extending through the wall of distal portion 12720, a perforation, a crease, and a score cut.

[0212] In FIG. 38, distal portion 12752 of sheath 12720 is shown extending between distal opening 12754 and lumen 12722. In the embodiment of FIG. 38, distal portion 12752 of sheath 12720 has a blunt shape. The blunt shape of distal portion 12752 of sheath 12720 may create a nontraumatic transition that dilates Schlemm’s canal as sheath 12720 is advanced into Schlemm’s canal. This arrangement may reduce the likelihood that skiving of the canal wall occurs as sheath 12720 is advanced into Schlemm’s canal.

[0213] Various fabrication techniques may be used to fabricate the ocular implant. For example, the ocular implant can be fabricated by providing a generally flat sheet of material, cutting the sheet of material, and forming the material into a desired shape. By way of a second example, the ocular implant may be fabricated by providing a tube and laser cutting openings in the tube to form the ocular implant.

[0214] The ocular implant of this invention can be fabricated from various biocompatible materials possessing the necessary structural and mechanical attributes. Both metallic and non-metallic materials may be suitable. Examples of metallic materials include stainless steel, tantalum, gold, titanium, and nickel-titanium alloys known in the art as Nitinol. Nitinol is commercially available from Memory Technologies (Brookfield, Conn.), TiNi Alloy Company (San Leandro, Calif.), and Shape Memory Applications (Sunnyvale, Calif.).

[0215] The ocular implant may include one or more therapeutic agents. One or more therapeutic agents may, for example, be incorporated into a polymeric coating that is deposited onto the outer surfaces of the struts and spines of the ocular implant. The therapeutic agent may comprise, for example, an anti-glaucoma drug. Examples of anti-glaucoma drugs include prostaglandin analogs. Examples of prostaglandin analogs include latanoprost.

[0216] The implants of the present disclosure provide a treatment for glaucoma by combining the mechanism of trabecular meshwork (TM) bypass and Schlemm’s canal (SC) dilation. The trabecular meshwork bypass is achieved through the openings, the longitudinal channel, and channel opening of the implants above, and Schlemm’s canal dilation is achieved by supporting Schlemm’s canal with the body of the implant itself.

[0217] A comprehensive mathematical model was developed in this disclosure to evaluate changes in fluid dynamics of aqueous humor outflow induced by combinations of trabecular meshwork bypass and/or Schlemm’s canal dilation, and to predict how the changes would affect outflow facility. First, a
control eye was modeled after an ex vivo human anterior segment perfusion model using typical dimensions for the eye and Schlemm’s canal. This was done in order to validate the model parameters with experimental data. Next, two combinations of bypass and dilation were modeled using the dimensional parameters of implants with 8 mm and 16 mm lengths. The mathematical model was used to predict outflow facilities in control and experimental simulations.

[0218] The mathematical model was developed to numerically simulate aqueous humor outflow based on the assumptions and physical principles that govern fluid flow. Schlemm’s canal is modeled as a rectangular channel with width (w) and height (h), where h varies with the location (x) along the canal. The mesh is treated as an elastic membrane in the model. The ostia of collector channels (CC) are distributed uniformly along the outer wall of Schlemm’s canal with the first collector channel located at $x=0$ mm. Collector channels are treated as individual sinks with flow rate, J_{CC} (see the governing equation below). Schlemm’s canal in the experimental simulations is modeled after either an 8 mm implant or 16 mm implant. The region of Schlemm’s canal with an implant is also modeled as a rectangular channel but with width (w) and height (h) corresponding to the implant cross-sectional area.

The height of Schlemm’s canal (h) is intraocular pressure (IOP) dependent. The dependence is assumed to be linear:

$$ h = h_0(1 - \text{IOP}/\text{PSCE}) $$

[0220] Across the trabecular meshwork, the aqueous humor flux (J_{TM}) is dependent on the trabecular mesh resistance (R_{TM}) and is governed by:

$$ J_{TM} = \frac{\Delta P}{R_{TM}} $$

$$ \frac{dP}{dx} = \frac{12\mu P}{w^3} $$

$$ \frac{dQ}{dx} = -J_{CC}(x - x_{CC}) $$

$$ J_{CC} = \frac{P_{CC} - P_{inlet}}{R_{CC}(x_{CC})} $$

[0221] In these equations, P_{cc} is the fluid pressure in the Schlemm’s canal, E is the Young’s modulus of the trabecular meshwork, h_0 is the value of h when intraocular pressure P_{inlet}, R_{TM} is the trabecular meshwork’s resistance to fluid flow, Q is the flow rate along the SC, μ is the viscosity of aqueous humor, x_{CC} indicates locations of collector channel ostia in the Schlemm’s canal, J_{CC} is the flow rate in the collector channels, P_{inlet} is the pressure in the episcleral veins, and R_{CC} is the flow resistance of collector channels that may depend on x_{CC}. Since Schlemm’s canal is a ring-like channel, the boundary conditions at $x=0$ for P_{cc} and Q are the same as those at $x=L$, where L is the circumferential length of Schlemm’s canal.

[0222] In simulations with an implant such as those described herein, a portion of Schlemm’s canal is stretched open. The implant inlet is assumed to be a unit-directional fluid source with zero flow resistance $P_{cc}=\text{IOP}$. The implant is modeled as a channel with three side walls, leaving the side facing the outer wall of Schlemm’s canal open. For example,

FIGS. 7A-7B show an implant having three “walls” comprising first strut 144, second strut 146, and spine 140 which leaves opening or channel 124 open and facing Schlemm’s canal when implanted. The wall of the implant facing the inner wall of Schlemm’s canal (spine 140) contains several openings, which allow the aqueous humor to enter SC through the TM.

[0223] Two scaffold designs are investigated in this disclosure. One has a total length of 8 mm with 3 windows and 3 spines (shown in FIGS. 2, 4, 11, 17, 19-A-C, 30-A-C, 32, 33-A-C, 35); and another has a total length of 16 mm with 5 windows and 6 spines (shown in FIG. 6, 10, 21A). Individual dimensions of 8 mm and 16 mm implants are shown in Table 2A and 2B, respectively. The governing equations for the region of SC without the scaffold and R_{TM} in window regions are equal to control parameters listed in Section (a). In the spine regions, Equations 1 and 2 are replaced by h_0 and J_{TM}, respectively. Equations 3 through 5 are unchanged, excepted that w and h_0 are replaced with h_{sp} and w_{sp} respectively. The boundary conditions are given as $P_{cc}=P_{inlet}$ at $x=0$ and $Q=0$ at $x=L$. Additionally, P_{cc}, Q, and R_{cc} are continuous at the distal end of the scaffold.

[0224] The baseline values of the constants are given in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>l_0</td>
<td>Intrinsic Height of SC</td>
<td>20 μm</td>
</tr>
<tr>
<td>w</td>
<td>Width of SC</td>
<td>230 μm</td>
</tr>
<tr>
<td>L</td>
<td>Length of SC</td>
<td>36 mm</td>
</tr>
<tr>
<td>E</td>
<td>Young’s modulus of TM</td>
<td>30 mmHg</td>
</tr>
<tr>
<td>ΔP</td>
<td>P_{inlet}</td>
<td>5 \pm 30 mmHg</td>
</tr>
<tr>
<td>N<sub>CC</sub></td>
<td>Number of CCs</td>
<td>30</td>
</tr>
<tr>
<td>R_{TM}</td>
<td>TM Resistance to Flow</td>
<td>9 cmHg/(µl/min)</td>
</tr>
<tr>
<td>R_{CC}</td>
<td>Resistance to flow in CC</td>
<td>2.5*(N_{CC} mmHg/µl/min)</td>
</tr>
<tr>
<td>β</td>
<td>Ratio of RCC in control SC vs. SC with TM bypass</td>
<td>3</td>
</tr>
<tr>
<td>μ</td>
<td>Viscosity of AH</td>
<td>7.5×10^{-4} kg/(m s)</td>
</tr>
</tbody>
</table>

[0225] Dimensions of the implants shown in Table 2A-2B are estimated based on the actual sizes except width.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_w</td>
<td>Area of window region</td>
<td>17553 μm²</td>
</tr>
<tr>
<td>A_s</td>
<td>Area of spine region</td>
<td>22955 μm²</td>
</tr>
<tr>
<td>A_{in}</td>
<td>Area of inlet region</td>
<td>29841 μm²</td>
</tr>
<tr>
<td>h_w</td>
<td>Height of window region</td>
<td>76.3 μm</td>
</tr>
<tr>
<td>h_s</td>
<td>Height of spine region</td>
<td>99.8 μm</td>
</tr>
<tr>
<td>h_{in}</td>
<td>Height of inlet region</td>
<td>129.7 μm</td>
</tr>
<tr>
<td>L_w</td>
<td>Length of window region</td>
<td>1.1 mm</td>
</tr>
<tr>
<td>N_{in}</td>
<td>Number of windows</td>
<td>3</td>
</tr>
<tr>
<td>w_d</td>
<td>Width of device</td>
<td>230 μm</td>
</tr>
<tr>
<td>L_{isp}</td>
<td>Length of inlet spine region</td>
<td>1.1 mm</td>
</tr>
<tr>
<td>L_{dev}</td>
<td>Length of device in SC</td>
<td>7.2 mm</td>
</tr>
<tr>
<td>L_s</td>
<td>Length of spine region</td>
<td>0.9 mm</td>
</tr>
</tbody>
</table>
TABLE 2B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_w</td>
<td>Area of window region</td>
<td>20994 μm^2</td>
</tr>
<tr>
<td>A_p</td>
<td>Area of spine region</td>
<td>32902 μm^2</td>
</tr>
<tr>
<td>A_s</td>
<td>Area of inlet region</td>
<td>29841 μm^2</td>
</tr>
<tr>
<td>h_w</td>
<td>Height of window region</td>
<td>91.3 μm</td>
</tr>
<tr>
<td>h_p</td>
<td>Height of spine region</td>
<td>139.5 μm</td>
</tr>
<tr>
<td>h_s</td>
<td>Height of inlet region</td>
<td>129.7 μm</td>
</tr>
<tr>
<td>L_w</td>
<td>Length of window region</td>
<td>1 mm</td>
</tr>
<tr>
<td>N_w</td>
<td>Number of windows</td>
<td>5</td>
</tr>
<tr>
<td>w_d</td>
<td>Width of device</td>
<td>230 μm</td>
</tr>
<tr>
<td>L_{Ip}</td>
<td>Length of inlet spine region</td>
<td>1.1 mm</td>
</tr>
<tr>
<td>L_{Isc}</td>
<td>Length of device in SC</td>
<td>15 mm</td>
</tr>
<tr>
<td>L_s</td>
<td>Length of spine region</td>
<td>1.5 μm</td>
</tr>
</tbody>
</table>

For simplicity, the width of all implants are assumed to be the same as that of the intact Schlemm’s canal; and the height of each implant is calculated from the cross-sectional areas estimated for that device divided by w_d. In Table 1, the viscosity of aqueous humor (μ) at 37°C is assumed to be the same as that measured at 34°C, because μ is close to the viscosity of water which changes only slightly (~6%) when the temperature is increased from 34°C to 37°C. The pressure in the episcleral vein (P_{ep}) is close to zero in experiments involving eye perfusion of whole eye or anterior segment, but approximately equal to 8 mm Hg in live eyes. In order to apply conclusions obtained from this mathematical model to both types of studies, ΔP was varied between 5 and 30 mm Hg, where $\Delta P = IOP - P_{ep}$ instead of changing the absolute value of IOP. Implantation of a bypass causes a significant increase in the pressure in the region of Schlemm’s canal and can lead to an increase in the diameter of collector channel ostia in the region. To account for diameter increase-induced decrease in outflow resistance in collector channels, a parameter, β, can be defined as the ratio of R_{cc} with ostia in control Schlemm’s canal versus that in dilated Schlemm’s canal. The value of β, which is >1, depends on how the three-dimensional shape of the collector channel is changed due to Schlemm’s canal dilation and pressure increase, which is unknown at present. If the collector channel is considered as a circular channel, and its diameter is uniformly increased by a factor of two, then β equals 16 for Newtonian fluid. However, it is likely that only the portion of the collector channel near its ostium is be dilated after device implantation. Thus, a baseline value of β is assumed to be three.

In control simulations, with the frequent and uniform distribution of collector channel ostia in Schlemm’s canal, the pressure difference between Schlemm’s canal and episcleral venous pressure ($P_{sc} - P_{ep}$) showed negligible variation. This resulted in negligible circumferential flow along Schlemm’s canal. When the pressure drop between the anterior chamber and episcleral veins (ΔP) was fixed at different pressures, ranging from 5 to 30 mm Hg, the shapes of these profiles varied only slightly although their magnitudes were increased significantly. Therefore, only the profiles at 10 mm Hg are shown in this disclosure. The total sum of the flow rates through the collector channels per unit ΔP is defined as the outflow facility (C). The average C of the control eye was 0.198 $\mu l/min/mm Hg$ (Table 3). When ΔP is increased from 5 to 30 mm Hg, C decreased slightly in the control simulation with TM intact, which falls within the range of experimental data of human eyes reported in the literature.

TABLE 3

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Average Outflow Facility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.198</td>
</tr>
<tr>
<td>8 mm implant</td>
<td>0.438</td>
</tr>
<tr>
<td>16 mm implant</td>
<td>0.638</td>
</tr>
</tbody>
</table>

FIG. 39 illustrates the results of mathematical simulations of the 8 mm and 16 mm implants with frequent and uniform circumferential distribution of collector channels and an IOP of 10 mm Hg. In FIG. 39, solid line 390 represents the P_{sc} in Schlemm’s canal of the eye with the 8 mm implant, and dashed line 392 represents the P_{sc} in Schlemm’s canal of the eye with the 16 mm implant. Circles 394 illustrate the flow in the collector channels of the eye with the 8 mm implant, and triangles 396 show the flow in the collector channels of the eye with the 16 mm implant. In the simulations, the pressure in the region of Schlemm’s canal (P_{sc}) with the implants was similar to IOP. Outside this region, P_{sc} decreased exponentially, starting at the distal end of the implants, with the smallest level of P_{sc} slightly greater than controls.

Consequently, the outflow rate through the collector channels (J_{sc}) was highest in the implant regions due to the high P_{sc} and Schlemm’s canal dilation-induced reduction in outflow resistance in these collector channels. Outside this region, the profile of J_{sc} matched the P_{sc} profile and was similar for both implants. The collector channels in the scaffold regions contributed to a majority of the overall difference in flow rate through collector channels when compared to controls. The average C value for the 8 mm implant was 121% greater than controls with a C value of 0.438 $\mu l/min/mm Hg$ and the 16 mm implant was 46% greater than the 8 mm implant (222% greater than controls) with a C value of 0.638 $\mu l/min/mm Hg$ (Table 3 above). However, the 16 mm implant reached twice as many collector channels as the 8 mm implant but only gained 46% greater outflow despite the addition of 6 collector channels. This indicates that as the distance from the collector channels to the inlet increases, the benefit to outflow facility diminishes.

Significant circumferential flow was observed adjacent to the trabecular meshwork bypass not seen in control simulations. The peak circumferential flow rate was 3.2 $\mu l/min$ with the 8 mm implant and 5.7 $\mu l/min$ with the 16 mm implant. The magnitude of the circumferential flow indicates a significant portion of the total outflow passed through the trabecular mesh bypass inlet. The circumferential flow rate peaked at the position of the bypass and decreased with a linear step pattern in the implant region. At the distal end of the scaffold, the circumferential flow rate decreased exponentially until it reached zero, as shown in FIG. 40, in which line 490 illustrates flow in Schlemm’s canal in the 8 mm implant and line 492 illustrates flow in Schlemm’s canal in the 16 mm implant. The circumferential flow region correlates to the regions of increased P_{sc} and J_{sc} for both the 8 mm and 16 mm implant. Throughout the first 90 degrees of Schlemm’s canal, the 16 mm implant maintained a 2.415 $\mu l/min$ flow difference versus the 8 mm implant. But when 150 degrees of Schlemm’s canal is reached, the difference is reduced to only 0.526 $\mu l/min$, indicating a diminishing advantage with a longer length device.
[0231] Calculations of the percentage of total aqueous humor outflow through collector channels within an implant region indicate that the longer the implanted region the greater the percentage of total outflow (Table 4).

<table>
<thead>
<tr>
<th>Type of Implant</th>
<th>Percent of Schlemm’s Canal Occupied</th>
<th>Average Percent of Total Outflow in Implant Region</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 mm implant</td>
<td>20%</td>
<td>54.5%</td>
</tr>
<tr>
<td>16 mm implant</td>
<td>40%</td>
<td>74.6%</td>
</tr>
</tbody>
</table>

[0232] The 8 mm implant occupied three clock-hours of Schlemm’s canal (20% of Schlemm’s canal length), however the collector channels in that region accounted for 54.5% of the total outflow in the eye. The 16 mm implant occupied five clock-hours of Schlemm’s canal (42% of Schlemm’s canal length) which accounted for 74.6% of the total outflow. These results indicate that a significant portion of total outflow is diverted into the implant area and drains out collector channels adjacent to the implant. The more collector channels adjacent to the implant the larger a percentage of total outflow. Likewise, a segmental variation of the collector channel patency would make the outflow facility results dependent on implant location.

[0233] Theoretical in vivo glaucoma scenarios were designed to simulate how different ocular implants could improve outflow in eyes with increased trabecular meshwork resistance (RIM) and reduced collector channel outflow capacity in the hemisphere of the implant. Three scenarios were simulated in Table 5, with fixed conventional outflow rate of 1.5 μL/min 27, 28 and Pepi of 10 mmHg.

<table>
<thead>
<tr>
<th>Theoretical Scenario</th>
<th>Collector Channels in Implant Hemisphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Zero Blocked</td>
</tr>
<tr>
<td>Glaucoma Case #1</td>
<td>50% Blocked</td>
</tr>
<tr>
<td>Glaucoma Case #2</td>
<td>75% Blocked</td>
</tr>
</tbody>
</table>

[0234] The first scenario was a normal eye, which assumed R IM to be 2.12 mmHg/μL/min and no blocked collector channels. The second scenario assumed R IM to be 6.34 mmHg/μL/min and 50% of the collector channels in the implanted hemisphere to be uniformly blocked including the collector channels at the trabecular mesh bypass. The third scenario assumed R IM to be 8.78 mmHg/μL/min and 75% of the collector channels in the implanted hemisphere to be uniformly blocked including the collector channel at the trabecular meshwork bypass. Simulation results showed that in the control eye without implant, the intra-ocular pressures under these scenarios were 17, 25 and 30 mmHg, respectively, and based on the Goldmann equation, the corresponding outflow facilities were 0.214, 0.100 and 0.075 μL/min/mmHg, respectively. Implantation of the 8 mm implant would improve the simulated outflow facility to 0.450, 0.240 and 0.171 μL/min/mmHg, or reduce IOPs to 13.3, 16.3 and 18.8 mmHg, respectively. When compared to the control simulations, the 8 mm implant resulted in IOP reductions of 22%, 35% and 37%, respectively.

[0235] The model shows the effects of trabecular meshwork bypass and Schlemm’s canal dilation on outflow facility and subsequent IOP reduction. In analysis of the dilation length, increasing the dilated portion of Schlemm’s canal from the bypass improved outflow facility. But, at a certain distance from the bypass there was diminished improvement. This indicates that dilation near the bypass creates circumferential flow from the bypass which allows more collector channels to be utilized.

[0236] Fluid dynamic mathematical modeling of scaffolding ocular implants as described herein shows that bypassing the trabecular meshwork increases the pressure within Schlemm’s canal, and increases circumferential flow rate, and the flow rate into collector channels adjacent to the trabecular meshwork bypass. The larger bypass size creates a larger increase in the circumferential flow when compared with controls. Dilation of Schlemm’s canal adjacent to the trabecular meshwork bypass increases the pressure in Schlemm’s canal in the area of dilation which further increases the circumferential flow. Increasing the length of dilation increases the number of collector channels accessed by the implant, however, there was diminishing improvement in circumferential flow and flow rate into collector channels over a distance of approximately one quadrant in the eye beyond the region with the implant. When trabecular meshwork resistance was increased and collector channels were closed segmentally to simulate glaucoma, the dependence on the location of trabecular meshwork bypass to collector channels and the dilation length of Schlemm’s canal was more pronounced.

[0237] While exemplary embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.

What is claimed is:

1. An ocular implant comprising:

a longitudinally extending body having an inlet portion and a Schlemm’s canal portion distal to the inlet portion, the inlet portion being configured to extend into and be in fluid communication with an anterior chamber of a human eye and the Schlemm’s canal portion being configured to be inserted into Schlemm’s canal adjacent to collector channels of the eye;

a plurality of alternating spines and frames positioned longitudinally along at least a portion of the Schlemm’s canal portion wherein the plurality of alternating spines and frames define a central channel extending therethrough, with the central channel being in fluid communication with the inlet portion;

each of the spines having edges partially defining an opening across from the central channel and in fluid communication with the central channel; and

each of the frames including first and second struts, the first and second struts each having an edge contiguous with an edge of an adjacent spine, the edges defining the opening in fluid communication with the central channel;
wherein the ocular implant is configured to provide at least a 121% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

2. The ocular implant of claim 1, wherein the implant comprises at least three openings across from the central channel.

3. The ocular implant of claim 2, wherein the average outflow facility comprises 0.438 µl/min/mmHg.

4. The ocular implant of claim 2, wherein a peak circumferential flow rate through the ocular implant comprises 3.2 µl/min.

5. The ocular implant of claim 1, wherein the implant comprises at least six openings across from the central channel.

6. The ocular implant of claim 5, wherein the average outflow facility comprises 0.638 µl/min/mmHg.

7. The ocular implant of claim 5, wherein a peak circumferential flow rate through the ocular implant comprises 5.7 µl/min.

8. The ocular implant of claim 1, wherein the average outflow facility of the eye prior to implantation of the ocular implant comprises 0.138 µl/min/mmHg.

9. An ocular implant adapted to reside at least partially in a portion of Schlemm’s canal of an eye adjacent to collector channels of the eye, the implant comprising:
 a longitudinally extending curved body including a proximal portion and a distal portion;
 the distal portion of the curved body defining a longitudinal channel including a channel opening; and
 the curved body being adapted and configured such that the distal portion of the curved body resides in Schlemm’s canal and the proximal portion extends into the anterior space of the eye while the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm’s canal when the ocular implant is implanted;
 wherein the ocular implant is configured to provide a 121%-222% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

10. The ocular implant of claim 9, wherein the implant comprises at least three openings across from the central channel.

11. The ocular implant of claim 10, wherein the average outflow facility comprises 0.438 µl/min/mmHg.

12. The ocular implant of claim 10, wherein a peak circumferential flow rate through the ocular implant comprises 3.2 µl/min.

13. The ocular implant of claim 9, wherein the implant comprises at least six openings across from the central channel.

14. The ocular implant of claim 13, wherein the average outflow facility comprises 0.638 µl/min/mmHg.

15. The ocular implant of claim 13, wherein a peak circumferential flow rate through the ocular implant comprises 5.70 µl/min.

16. The ocular implant of claim 9, wherein the average outflow facility of the eye prior to implantation of the ocular implant comprises 0.138 µl/min/mmHg.

17. The ocular implant of claim 10, wherein the distal portion of the curved body occupies up to 20% of Schlemm’s canal but accounts for up to 54.5% of total outflow in the eye.

18. The ocular implant of claim 13, wherein the distal portion of the curved body occupies up to 40% of Schlemm’s canal but accounts for up to 74.6% of total outflow in the eye.

19. An ocular implant comprising an inlet portion and a Schlemm’s canal portion distal to the inlet portion, the inlet portion being disposed at a proximal end of the implant and sized and configured to be placed within an anterior chamber of a human eye, the inlet portion having an inlet adapted to be in fluid communication with the anterior chamber, the Schlemm’s canal portion comprising:
 a central channel in fluid communication with the inlet, the central channel extending longitudinally in the Schlemm’s canal portion;
 a first element disposed along the central channel;
 a second element disposed along the central channel distal to the first element;
 a third element disposed along the central channel distal to the first element and proximal to the second;
 a fourth element disposed along the central channel distal to the second element;
 the first, second, third and fourth elements each comprising two edges partially defining an elongate opening in fluid communication with the central channel, each of the first, second, third and fourth elements having circumferential extents less than 360 degrees so that the elongate opening extends continuously along the first, second, third and fourth elements, the circumferential extents of the first and second elements being less than the circumferential extents of the third and fourth elements;
 the Schlemm’s canal portion being arranged and configured to be disposed within Schlemm’s canal of the eye when the inlet portion is disposed in the anterior chamber, wherein the ocular implant is configured to provide a 121%-222% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

20. The ocular implant of claim 19, wherein the implant comprises at least three openings across from the central channel.

21. The ocular implant of claim 20, wherein the average outflow facility comprises 0.438 µl/min/mmHg.

22. The ocular implant of claim 20, wherein a peak circumferential flow rate through the ocular implant comprises 3.2 µl/min.

23. The ocular implant of claim 19, wherein the implant comprises at least six openings across from the central channel.

24. The ocular implant of claim 23, wherein the average outflow facility comprises 0.638 µl/min/mmHg.

25. The ocular implant of claim 23, wherein a peak circumferential flow rate through the ocular implant comprises 5.7 µl/min.

26. The ocular implant of claim 19, wherein the average outflow facility of the eye prior to implantation of the ocular implant comprises 0.138 µl/min/mmHg.

27. The ocular implant of claim 20, wherein the Schlemm’s canal portion comprises up to 20% of Schlemm’s canal but accounts for up to 54.5% of total outflow in the eye.

28. The ocular implant of claim 23, wherein the Schlemm’s canal portion occupies up to 40% of Schlemm’s canal but accounts for up to 74.6% of total outflow in the eye.
29. A method of treating glaucoma comprising: supporting tissue forming Schlemm's canal in an eye with an implant extending at least partially in the canal along an axial length within the canal; contacting with the implant less than 50% of the tissue forming the canal along the axial length disposing an inlet portion of the implant in an anterior chamber of the eye; and providing fluid communication between the anterior chamber and the canal axially through the inlet into a channel of the implant such that an average outflow facility between the anterior chamber and the canal is increased by 121%-222%; and wherein the implant comprises open areas separated by spine areas along a first longitudinal section, the spine areas partially defining the channel, the supporting step comprising orienting the first longitudinal section openings towards a trabecular mesh portion of the canal.

30. An ocular implant adapted to reside at least partially in a portion of Schlemm's canal of a human eye, the implant comprising:

 a body configured to extend within Schlemm's canal in a curved volume having a large radius side and a short radius side, the body having a circumferential extent within the curved volume that varies along the length of the body between sections having a lesser circumferential extent and sections having a greater circumferential extent, wherein the body defines a channel extending longitudinally through the body, the channel having a substantially open side disposed on the large radius side at one of the sections of lesser circumferential extent and an adjacent section of greater circumferential extent and a plurality of openings along the length of the body on the short radius side, the openings being in fluid communication with the channel; and, an inlet portion configured to be disposed in an anterior chamber of the eye when the body is in Schlemm's canal, the inlet portion disposed on a proximal end of the body in fluid communication with the channel, the inlet portion defining one or more openings in fluid communication with the anterior chamber of the eye;

 wherein the ocular implant is configured to provide a 121%-222% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

31. An ocular implant adapted to reside at least partially in a portion of Schlemm's canal of an eye, the eye having an iris defining a pupil, the implant comprising:

 a longitudinally extending curved body including a proximal portion and a distal portion, the distal portion of the curved body having a central longitudinal axis defined by a radius of curvature and a lateral cross section having a first lateral extent and a second lateral extent, an aspect ratio of the first lateral extent to the second lateral extent being greater than or equal to about two;

 the distal portion of the curved body defining a longitudinal channel including a channel opening, the channel opening included in defining the first lateral extent;

 the curved body being adapted and configured such that the distal portion of the curved body resides in Schlemm's canal and the proximal portion extends into the anterior space of the eye while the ocular implant assumes an orientation in which the channel opening is adjacent a major side of Schlemm's canal when the ocular implant is implanted; and wherein the ocular implant is configured to provide a 121%-222% increase in average outflow facility of aqueous humor from the anterior chamber through the collector channels of the eye.

* * * * *