

J. A. DUNLAP.
PACKAGE DISPLAY RACK.
APPLICATION FILED MAY 26, 1906.

J. A. DUNLAP.
PACKAGE DISPLAY RACK.
APPLICATION FILED MAY 26, 1806.

UNITED STATES PATENT OFFICE.

JOHN ARCHIBALD DUNLAP, OF NASHUA, NEW HAMPSHIRE.

PACKAGE-DISPLAY RACK.

No. 866,634.

Specification of Letters Patent.

Patented Sept. 24, 1907.

Application filed May 26, 1906. Serial No. 318,893.

To all whom it may concern:

Be it known that I, John Archibald Dunlar, of Nashua, in the county of Hillsboro and State of New Hampshire, have invented certain new and useful Improvements in Package-Display Racks, of which the following is a specification.

This invention relates to devices for holding packages of seeds in an upright position, for the purpose of displaying the same, and has for its object to provide a strong and durable rack which at the same time is of small weight and is adapted to hold a number of packages securely.

The invention consists of a wire frame-work forming a plane backing or supporting surface and pocket-forming wires which are connected to the frame-work and extend outwardly therefrom and toward each other, making pockets in which the packages may be placed and retained.

The invention is described in detail in the following 20 specification, and illustrated in the drawings forming a part thereof, in which,—

Figure 1 represents a front elevation of a rack embodying my invention. Fig. 2 represents a side elevation of the same. Fig. 3 represents a perspective 25 view of a part thereof. Fig. 4 represents a side elevation of a modified form of the invention.

The same reference characters indicate the same parts in all the figures.

The back of the rack is a frame-work of wire having an outer rim consisting of the top transverse wire a, the longitudinal side wires b c, and the bottom wire d. These members are preferably all formed from one wire bent into a rectangular outline, but they may, if desired, be separate wires connected together at the 35 corners of the frame. To the longitudinal outside wires b and c are connected the transverse intermediate wires e, while to the top and bottom wires a d are attached longitudinal intermediate wires f. The intermediate wires have their ends twisted about the outermost 40 wires of the frame, and where they cross each other at the points g h, etc., are soldered together to make a comparatively stiff and strong whole.

The pockets for the seed packages are made from wires *i* and *j*, which are arranged in pairs, each pair to
45 gether being formed so as to make one pocket. They are secured in place by having their ends twisted about and soldered to adjacent transverse wires or members of the frame-work, those forming the upper row of pockets being secured to the top wire *a*, and the upper
most cross wire *e*, the lower row of pockets being attached to the bottom cross wire *e* and to the bottom member *d* of the frame, while the intermediate pocketforming wires are attached to adjacent intermediate cross wire *e*.

The shape into which the pocket-forming wires are bent to make the pockets is best illustrated in Fig. 3.

The uppermost portions i' j' of each pair of pocketforming wires extend directly away from the cross wires to which they are attached, and are separated by a distance sufficient to permit insertion of a seed pack- 60 age between them. At the required distance from the plane of the frame-work to form the desired thickness of the pocket, the wires are bent toward each other, forming the horizontal transverse portions i^2 j^2 which are in alinement with each other, and extend partially 65 across the front of seed packages placed in the pocket, as shown in Fig. 1, to hold the latter in place and prevent lateral or forward movement thereof away from the frame. The pocket-forming wires are then bent downward at right angles to the portions $i^2 j^2$, forming 70 parallel stretches which lie in a plane removed from and forward of the plane of the frame-work and preferably inclined thereto, extending in this direction to the points $i^3 j^3$ respectively, whence they are bent inward toward the adjacent lower cross wire and there secured 75 at their ends, forming the parallel portions $i^{i}j^{i}$.

It will be seen that the portions i' j' are parallel to each other and in a plane approximately perpendicular to the plane of the frame-work back, and they are also parallel to the portions i^4 j^4 . The transverse lengths 80 $i^2 j^2$ and parallel downwardly-extending lengths are all in the same plane, which is separated from the plane of the back, and the portions $i^4 j^4$ are nearer together than are the portions i' j'. Thus when a package is placed from above in the pocket, it passes between the 85 widely-separated portions i' j', while its lower edge is arrested by the parts $i^4 j^4$ which are nearer together. These last-named parts together with the intermediate angularly-offset portions $i^2 j^2$ sustain the packages and also keep them from falling forward, while the parts 90 $i'\,j'$ embrace the sides of the packages and keep them from displacement laterally. The longitudinal intermediate wires f are arranged approximately midway between the wires ij of each pocket and prevent the packages falling through between the transverse wires 95 of the back. It will be seen that the intermediate longitudinal wires f are on the forward side of the transverse wires e. This arrangement is provided so that packages placed in the pockets will not be obstructed by the cross wires, but will all rest on the lower por- 100 tions i^4 j^4 of the pocket forming wires. If the crosswires were in front of the longitudinal wires the rearmost package would be engaged by them and held above the tops of the forward package, but the arrangement described prevents this, and allows the up- 105 per edges of all the packages in the same pocket to be practically on the same level.

All of the pockets are formed alike, with the exception of some of the lowermost pockets, which differ slightly, as will be later described. The pockets are 110 placed as closely together as possible so that the portion i' of the left-hand wire i of each pocket lies in con-

tact with the portion j' of the right-hand wire j of the next pocket to the left, the lower portions $i^4\,j^4$ of adjacent pockets being separated. The distance between the abutments $i^4 j^4$ of adjacent pockets is less, in the 5 case of all except the two lower rows, than the height of the seed packages, while the forward parts of the wires ij are inclined upwardly and away from the back b. This arrangement permits great compactness, allowing a large number of packages to be held by a 10 frame which is not excessively high. The tops of the packages in each row are, by reason of this formation of the pockets, set forward from the plane of the back, and while overlapping the bars of the pockets in the row next above to allow convenient withdrawing or 15 replacing, do not hide from view the illustration on the packages next above.

In the device illustrated herein, the two lower rows of pockets are made wider than the upper pockets, and their front intermediate portions are parallel with 20 the plane of the back. The top lengths i' j' of the wires forming these lower pockets are also somewhat differently supported, being wrapped about and soldered to additional longitudinal wires f'.

To the upper member a of the frame are hung two or 25 more narrow hooks or clips k which are adapted to receive and support an advertising or display card l in position where it can be seen above the rows of packages. In order to hold the rack in an upright position, I provide a support m pivoted to one of the cross wires 30 e and formed with two legs m'. To the support is pivoted a brace p which has a hook p' adapted to catch over another of the cross wires e and hold the legs of the support away from the frame, also to prevent the legs slipping away from the frame. The frame may 35 also be hung up against a wall, and for this purpose I provide a wire hanger r pivoted to one of the uppermost of the cross wires and provided with a loop r'which can be slipped over a hook or nail.

In Fig. 4, is shown a modification which is adapted to be folded and packed away in a small compass. In 40 this modification the frame is formed in two parts a and a^2 , each of which is complete in itself and has a number of pockets. The two parts are connected together by links a3 surrounding the lowermost cross wire of the upper frame and the uppermost cross wire 45 of the lower frame. As may readily be seen, the two parts of the frame can either be separated or doubled together and contained in a small case. This form of the device has a hanger r by which it may be supported from a hook, it not being practicable to stand it up on a 50 supporting surface.

I claim:-

1. A display rack consisting of a wire frame having transverse and longitudinal members, and wires attached at their ends to adjacent transverse members; said wires 55 being arranged in pairs to form pockets, the wires of each pair between their points of attachment being carried away from the frame and bent toward each other, said points of attachment to the upper member being further separated than the corresponding points of attachment to 60 the lower member.

2. A display rack consisting of a rectangular wire frame having intermediate transverse and longitudinal wires connected to the outer longitudinal and transverse wires respectively of the frame; and pocket-forming wires arranged in pairs and attached to the transverse wires, each pair of such wires forming one pocket, their uppermost points of attachment being separated sufficiently to admit a package between them and their lower attaching points being closer together to support a package; each pair of 70 said pocket-forming wires extending in parallelism away from their upper points of attachment, then toward each other in alinement, then in parallelism in a plane removed from the plane of the frame, and finally extending toward the lower transverse wire to which they are attached.

In testimony whereof I have affixed my signature, in presence of two witnesses.

JOHN ARCHIBALD DUNLAP.

75

Witnesses: A. C. RATIGAN, ARTHUR H. BROWN.