A block for use in construction has opposed front and rear surfaces, opposed top and bottom surfaces, and a pair of opposed ends. The top and bottom surfaces are complementarity profiled to mutually interfit. The end surfaces are shaped to permit a plurality of blocks to be laid in a course with no mortar in between blocks in a course.
ABSTRACT

A block for use in construction has opposed front and rear surfaces, opposed top and bottom surfaces, and a pair of opposed ends. The top and bottom surfaces are complementarity profiled to mutually interfit. The end surfaces are shaped to permit a plurality of blocks to be laid in a course with no mortar in between blocks in a course.
CONCRETE BLOCK FOR USE IN FENCE OR BUILDING CONSTRUCTION

Field of the Invention

The present invention relates to the field of concrete construction blocks. In particular, the present invention provides a sound barrier fence made from concrete blocks that is easy to assemble, maintain and repair. Some of the blocks of the present invention are also useful for construction of foundation and other walls of buildings.

Background of the Invention

Sound barrier fences are located beside highways, in urban areas, and serve to deaden vehicular noise from the highway, so that it is not a nuisance in surrounding neighbourhoods. Sound barrier fences may be made from wood, metal or concrete, but are most effective when made of concrete, because of the superior sound deadening characteristics of concrete.

Typically, a sound barrier fence comprises a series of posts, with panels extending between them. The panels may be unitary, or may be made of a series of stacked narrow concrete panels or blocks. The advantage of narrow stacked panels is that each extends from post to post, but the disadvantage is that a long narrow panel is both fragile and very heavy. It must be maneuvered into place by heavy equipment.

A less fragile concrete sound deadening fence construction is shown in U.S. Patent No. 5,623,797, which shows a sound barrier made of stacked blocks. The blocks interlock loosely at their top and bottom surfaces, but neighbouring blocks in a course of blocks do not interlock.

The present invention provides novel fence blocks for use in constructing a sound barrier fence.

In a broad aspect, therefore, the present invention relates to a block for use in erecting a fence, said block having opposed front and rear surfaces, opposed top and bottom surfaces, and a pair of opposed ends, the top and bottom surfaces being complementarity profiled to
mutually interfit, and the end surfaces being shaped to permit a plurality of blocks to be laid in a course with no mortar in between blocks in a course.

Brief Description of the Drawings

In drawings that illustrate the present invention by way of example:

- Figure 1 is an end view of a column for use with the blocks of the present invention;
- Figure 2 is an end view of a cap for use with the blocks of the present invention;
- Figure 3 is an end view of a block according to the present invention, said end view being applicable to each embodiment of the blocks of the present invention;
- Figure 4 is an end view of stacked blocks according to the present invention;
- Figure 5 is a front view of a stacked fence wall according to the present invention;
- Figure 6 is a top view of the wall of Figure 5, but without a cap;
- Figure 7 is a top view of a course of blocks exhibiting a preferred form of the present invention;
- Figure 7A is an end view of one of the blocks of Figure 7, adapted for use in general construction;
- Figure 8 is a top view of a course of blocks exhibiting another preferred form of the present invention; and
- Figure 9 is a top view of a corner block for use with the block of Figure 7A.

Detailed Description

Referring now to the drawings, in Figure 1 there is illustrated a column element 1 with flanges extending from the front 3 and rear 4 faces thereof to define channels 5 for receiving the ends of the blocks.

As shown in Figure 5, the column may be of any desired length. It is anchored firmly to the ground, for instance by being bolted and grouted to a footing. Additional columns are spaced at regular intervals to define fence posts between which the blocks of the present invention are stacked. The blocks are also stacked on a suitably prepared surface, that may be bevelled and provided with footings if desired. Such preparation is conventional. Moreover,
a column element 1 may be fabricated from block-height column element blocks, appropriately cemented together to form a column of any desired length.

A cap 6 for use especially along the top edge of a sound barrier fence according to the present invention is shown in Figure 2 and Figure 5. It consists of a main body 7, with flanges 8 depending downwardly therefrom. The cap 6, which is also of indeterminate length, may also be used to finish and end of a wall section, where a full column 1 is not required.

Blocks for use in connection with the present invention are fabricated from concrete, and are shown, in top or plan view in Figures 6, 7 and 8. In Figure 6, a basic form of the block of the present invention is shown. It consists of a front wall 9, a rear wall 10, and angled end walls 11,12. The front and rear walls 9/10, are joined by a web 13 that is at the mid-point of the block. The web reinforces the block structurally, and forms a convenience point to break the block in two as shown in Figure 6, as will be necessary to insert the block into a column on alternate courses of a wall, if a running bond pattern of block placement is utilized. As shown in Figure 3 and 4, the upper edges 13 of the block are bevelled, and the lower surface is provided with a shallow groove 14 to interfit with the top surface 15 of the block, with the edges 16 of the groove bearing against the bevelled edges of the top surface 15 of the block, to permit the block to be stacked easily.

The outermost end edges 17 of the blocks of the embodiment shown in Figure 6 are bevelled, so that each block in a wall is outlined by top bevelled edges 13 and side bevelled edges 17, to provide a pleasing masonry appearance.

Referring to Figure 8, a block that is similar to that shown in Figure 6 is shown. However, moisture 18, and tension 19 elements are formed in opposing ends of the block, to permit a strong interlocking fit between blocks in a course.

Another preferred embodiment of intermittent block is shown in plan in Figure 7. Each end of the block of Figure 7 is provided with a zig-zag profile having a major 20 and a minor 21 peak, and a valley 22 between them. The block exhibits rotational symmetry,
whereby the major peak 20 at one end is on the opposite side of the block from the major peak at the other, so that the major peak will fit neatly into the valley of an adjoining block. It will be noted that the blocks of Figures 7 and 8, especially Figure 7, because they interfit, do not have to be laid in a running bond pattern, which makes them more economical to use, and makes it less necessary to waste any block material during construction. The block of Figure 7, moreover, may also be used as a dry stack block, with only minor modification. That is, if the top surfaces of the ends and central web of the Figure 7 block are recessed in a semi-circular pattern 24, as shown in the block marked 'A' in Figure 7, the blocks may be stacked together to form a wall with a substantially hollow core, into which concrete may be poured. The purpose of recess 24 is to permit concrete poured into the hollow core of a wall formed with such blocks to flow into all block cores smoothly and efficiently.

In Figure 9 are illustrated corner blocks 25a and 25b for use with the construction block embodiment of Figure 7A. Corner blocks 25a and 25b include a corner element 26 formed in their side surfaces at one end thereof, and bevelled notches 27 in their upper surface corresponding to the lateral edges of the lower surface of the block flanking the edges 16 of groove 14, thereby to permit a block to be laid at 90° on top of corner block 25.

Corner element 26, it will be observed, corresponds in shape to the zig-zag profile of the end of the block of Figure 7A. The blocks shown in Figure 9 are a left corner block 25a and a right corner block 25b which is a mirror image thereof.

It is to be understood that the examples described above are not meant to limit the scope of the present invention. It is expected that numerous variants will be obvious to the person skilled in the field of concrete block design without any departure from the spirit of the invention. The appended claims, properly construed, form the only limitation upon the scope of the invention.
THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:

1. A block for use in construction, said block having opposed front and rear surfaces, opposed top and bottom surfaces, and a pair of opposed ends, the top and bottom surfaces being complementarily profiled to mutually interfit, and the end surfaces being shaped to permit a plurality of blocks to be laid in a course with no mortar in between blocks in a course.

2. A block as claimed in claim 1, wherein the angle between said end surfaces and said front and rear surfaces is not 90°.

3. A block as claimed in claim 2 wherein said angle is from about 60° to about 30° at diametrically opposed corners of said block.

4. A block as claimed in claim 3 wherein said angle is approximately 45° at diagonally opposed corners of said block.

5. A block as claimed in claim 3 or 4, wherein each end of said block includes a tongue or groove element, each said block having one tongue and one groove, whereby said adjacent blocks in a course interlock.

6. A block as claimed in claim 2, wherein the ends of said block, viewed from above, have a zig-zag profile including the peaks with a valley between them.

7. A block as claimed in claim 6, wherein one peak is larger than the other and fits into said valley on an adjacent block.

8. A fence system including a plurality of blocks as claimed in any of claims 1 - 7, arranged in wall panels in the space between column elements, each said column element being substantially I shaped.
9. A fence system as claimed in claim 8, wherein said I shaped column elements are made up of a series of stacked I shaped blocks.

10. A fence system as claimed in claim 9, further including C-shaped cap elements for capping the top course of a wall panel, or the end edge of a wall.

11. A fence system as claimed in claim 9, wherein said C-shaped cap elements are made up of a series of C-shaped blocks.

12. A fence system as claimed in claims 8 - 11, made from concrete.