

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization  
International Bureau



(10) International Publication Number

WO 2015/030539 A1

(43) International Publication Date  
5 March 2015 (05.03.2015)

(51) International Patent Classification:  
*C07K 16/18* (2006.01) *A61K 39/395* (2006.01)  
*C07K 16/46* (2006.01)

(74) Agent: NAM & NAM WORLD PATENT & LAW FIRM; (KAL Bldg. 3rd Fl., Seosomun-dong), 117, Seosomun-ro, Jung-gu, Seoul 100-813 (KR).

(21) International Application Number:  
PCT/KR2014/008106

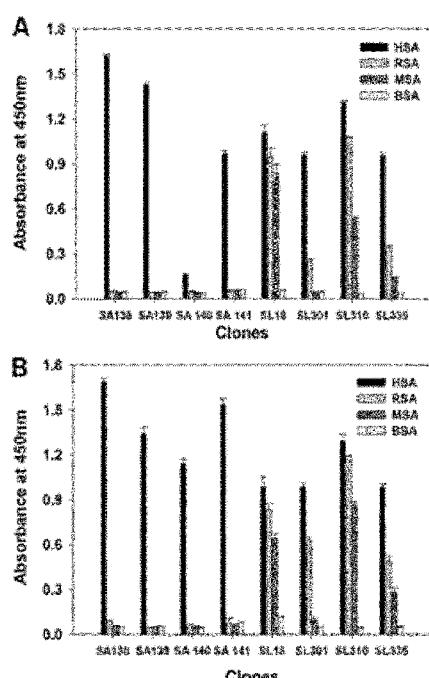
(22) International Filing Date:  
29 August 2014 (29.08.2014)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:  
10-2013-0104112 30 August 2013 (30.08.2013) KR

(71) Applicant: APRILBIO CO., LTD [KR/KR]; (202-208, A-dong, Kangwon National University Biomedical Science Building, Hyoja-dong), 1, Gangwondaeak-gil, Chuncheon-si, Gangwon-do 200-701 (KR).


(72) Inventor: CHA, Sanghoon; 107-1204, Seoksa Deawoo Apt., 86, Useok-ro 101beon-gil, Chuncheon-si, Gangwon-do 200-765 (KR).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

[Continued on next page]

(54) Title: AN ANTI SERUM ALBUMIN FAB-EFFECTOR MOIETY FUSION CONSTRUCT, AND THE PREPARING METHOD THEREOF



(57) Abstract: The present invention relates to antigen-binding fragment(Fab) and a Fab-effector fusion protein or (poly)peptide comprising thereof. The Fab of the present invention specifically binds to serum albumin and thereby has extended *in vivo* half-life. The Fab of the present invention is characterized by not having cysteine residues that are responsible for the interchain disulfide bond in  $C_{\text{HI}}$  domain and  $C_{\text{L}}$  domain as well. The Fab-effector fusion protein or (poly)peptide of the present invention can be produced in periplasm of *E. coli* with high yield, and has increased *in vivo* half-life. Further, the present invention provides *E. coli* strain which produces various kinds of Fab-effector fusion proteins or (poly)peptides, and a pharmaceutical composition comprising the fab-effector fusion proteins or (poly)peptides.

WO 2015/030539 A1



LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,  
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,  
GW, KM, ML, MR, NE, SN, TD, TG).

**Published:**

- *with international search report (Art. 21(3))*
- *with sequence listing part of description (Rule 5.2(a))*

## Description

# Title of Invention: AN ANTI SERUM ALBUMIN FAB-EFFECTOR MOIETY FUSION CONSTRUCT, AND THE PREPARING METHOD THEREOF

### Technical Field

[1] The present invention relates to antigen-binding fragment(Fab) and a Fab-effector fusion protein comprising thereof.

[2]

### Background Art

[3] Antigen-binding fragment (Fab) preparation is one of the most successful monoclonal antibody therapeutic agents. For example, Abciximab(ReoPro®), Ranibizumab(Lucentis®), and Certolizumab pegol(Cimzia ®) etc. had already been approved as drugs in many countries. Furthermore, polyclonal Fab preparations including Abciximab(ReoPro®), Ranibizumab(Lucentis®) and Certolizumab pegol (Cimzia®) are commercially available in EU.

[4]

Conjugation of an exogenous effector domain may confer therapeutic effects to Fab fragments, when they form a Fab-effector fusion format. Therefore, in fact, lots of antibody fragments in clinical development status are conjugated to an exogenous functional moiety. In such a Fab-fusion protein construct (or Fab-effector moieties construct), the antigen binding fragment may provide a target-specific delivery, and the fusion protein or (poly)peptide (effector domain) may provide therapeutic effects. Fusion domains originated from prokaryotic origin may include cytotoxins, for example, deBouganin (a de-immunized plant toxin) (see Entwistle *et al.*, (2012) *Cancer Biother Radiopharm.* 27, 582-92), staphylococcal enterotoxin (SE) (see Ilack *et al.*, (2003) *Toxicology.* 185, 161-174) or a mutant form of *Pseudomonas* exotoxin (see Choe *et al.*, (1994) *Cancer Res.* 54, 3460-3467; see Kreitman *et al.*, (1994) *Int. J. Cancer* 57, 856-864). In addition, fusion domains comprising polypeptides from eukaryotes, such as, scFv (see Lu *et al.*, (2002) *J Immunol Meth.* 267, 213- 226) or cytokine (see Holzer *et al.*, (1996) *Cytokine.* 8, 214-221; see Sjogaard *et al.*, (1999) *Int J Oncol.* 15, 873-882), may function as therapeutics. Although radioactive isotope is chemically conjugated to Fab or (Fab')<sub>2</sub> fragment in general, cytotoxin, cytokine or enzyme is genetically fused to Fab or (Fab')<sub>2</sub>. It is known that Fab molecules, unlike scFv, Fv or dsFv, can be produced with ease up to 1 - 2 g/L as a soluble form in the periplasm of *E. coli* (see Humphreys *et al.*, *J. Immunol. Methods.* 209, 193-202; Carter *et al.*, *Biotechnology (N Y).* 10, 163167; Venturi *et al.*, *J Mol Biol.* 315, 1-8; Donzeau *et al.*, *Methods Mol Biol.* 378, 14-31), or even in *Pseudomonas fluorescens* (see

Retallack et al., *Prot Exp Purif.* 81, 157-165). Currently, lots of commercially available biological agents such as rhGH, insulin or various types of cytokines are being produced in *E. coli* (see Graumann and Premstaller, (2006) *Biotechnol J.* 1, 164-186; Chadd and Chamow, (2001) *Curr Opin Biotechnol.* 12, 188-194). In this regard, the genetic linkage of a therapeutic domain to a Fab fragment and other therapeutic agents has great advantage in the development of a new biological medicinal agent, and the improvement of the current biological drugs efficacy as well. Further, a Fab molecule might be fused with other antibody fragments such as scFv, Fv, dsFv or dAb to prepare bi-specific or tri-specific antibody molecule (see Lu et al., (2002) *J Immunol Meth.* 267, 213-226). However, the expression of Fab-effector fusion proteins of which the effector is of eukaryotic origin in *E. coli* has been hampered because the effector domain could not be biologically functional due to inappropriate folding or the lack of glycosylation process in *E. coli*. Furthermore, the optimal fusion format to produce Fab-effector fusion proteins in *E. coli* periplasm has not yet been thoroughly studied. Most of serum proteins having molecular weight less than between 50 kDa and 60 kDa, such as, cytokines and growth factors, have a short half-life *in vivo*, for instance, from several minutes to several hours due to renal clearance. Thus, extending the serum half-life of therapeutic polypeptides or proteins is one of the most intensely studied areas in bio-pharmaceutical research (see Kontermann, (2012) Wiley, ISBN: 978-3-527-32849-9). For this purpose, various methods including pegylation, polysialylation, HESylation, glycosylation, or recombinant PEG analogue fused to flexible and hydrophilic amino acid chain (500 to 600 amino acids) have been developed (See Chapman, 2002; *Adv Drug Deliv Rev.* 54, 531~545; Schlapschy et al., (2007) *Prot Eng Des Sel.* 20, 273~283; Contermann (2011) *Curr Op Biotechnol.* 22, 868~876; Jevsevar et al., (2012) *Methods Mol Biol.* 901, 233~246). Furthermore, the FcRn-mediated recycling mechanism has been directly or indirectly employed in order to extend *in vivo* half-life of therapeutic proteins. Among serum proteins, it is known that a human serum albumin (HSA) and an immune globulin (in particular, IgG) have exceptionally a long half-life through the FcRn-mediated recycling mechanism. In a human body, the serum half-life of albumin is 19 days and that of an IgG molecule is between one week and almost 4 weeks depending on the subclass of IgG. Thus, these two molecules have been used as fusion partners to extend half-life of therapeutic proteins and/or (poly)peptides.

[5]

Recombinant hGH (~ 19kDa) prepared in cytoplasm or the periplasm of *E. coli* has been used in clinics to treat diseases caused by the lack of growth hormones in infants and adults as well, after *in vitro* folding process (see Blethen et al., (1997) *J. Clin. Endocrinol. Metab.* 82, 418-420). One major inconvenience in rhGH administration is the daily injection due to the short period of half-life (< 30 minutes). To extend the serum

half-life of hGH, chemical conjugation of polyethylene glycol (see Clark *et al.*, (1996) *J. Biol. Chem.* 271, 21969-21977; Pradhananga *et al.*, 2002 *J Mol Endocrinol.* 29, 1114; Cho *et al.*, 2011; Sondergaard *et al.*, (2011) *J Clin Endocrinol Metabol.* 96, 681-688), and chemical conjugation of the modified hGH to the arm of Fab of humanized CovX-Body IgG (see Palanki *et al.*, (2013) *Bioorg. Med. Chem. Lett.* 23, 402-406) had been attempted. In addition, the elongation of the half-life of hGH in serum has been successfully achieved by the genetic fusion of human serum albumin (HSA) (Albutropin®) or the polypeptide sequences comprising hundreds of Pro-Ala-Ser (PAS) residues (PASylation) (see Osborn *et al.*, 2002 *Eur J Pharmacol.* 456, 149-158; Anderson *et al.*, (2011) *J Biol Chem.* 286, 5234-5241; Sleep *et al.*, (2013) *Biochimica et Biophysica Acta.* 1830, 5526-5534; Schlapschy *et al.*, (2013) *Protein Eng Des Sel.* 26, 489~501). The most well studied one in this category is VRS-317, a rGH genetically linked with XTEN amino acid sequences to the N-terminus and the C-terminus, which allows one month dosage regimen (see Schellenberger *et al.*, (2007) *Nat Biotech.* 27, 1186-1190; Cleland *et al.*, (2012) *J Pharm Sci.* 101, 2744-2754; Yuen *et al.*, (2013) *J Clin Endocrinol Metab.* 98, 2595-2603). Also, hGH is associated with vascular disease(See Thomas J Merimee *et. al.*, (1973), *Diabetes*, 22, 813-819 ) and CRETZFELDT-JAKOB disease(See John Powell-Jackson *et al.*, 1985, *Lancet*, 2, 244-246). In addition, IFN- $\gamma$  accelerates Graft-Versus-Host-Disease (See Bruce R. Blazar *et.al.*, 2003, *The Journal of Immunology*, 171, 1272-1277) and IFN- $\alpha$  is related with autoimmune disease(See A Imagawa *et al.*, 1995, *The Journal of clinical endocrinology & metabolism*, 80, 922-926 ). Also, GSCF is related with auto-immune disease (See Anke Franzke *et al.*, 2003, *Blood*, 102, 734-739 ) and HCV associated with liver disease (See Van Thiel DH *et al.*, 1995, *Hepato-gastroenterology*, 42, 907-912).

[6] A Fab-fusion protein (or polypeptide) has a great potential as a therapeutic agent for treating chronical diseases which require a large dose of drugs for a long period of time, in particular, especially when the Fab-fusion protein can be produced in microorganism expression system with low cost. Despite such possible potent advantages of employing a Fab, however, there has been no attempt applying an anti-serum albumin (SA) Fab antibody in the development of a protein or a (poly)peptide drug having extended *in vivo* half-life. Herein, the inventors have completed the present invention by constructing a novel anti-serum albumin (SA) Fab-effector protein (or (poly)peptide) fusion constructs, and confirming the high-yield production of functional fusion constructs in the periplasm of *E. coli*.

[7]

## Disclosure of Invention

## Technical Problem

- [8] The technical problem to be solved by the present invention is to provide a novel antigen binding fragment (Fab) having extended *in vivo* serum half-life.
- [9] Another technical problem to be solved by the present invention is to provide the Fab-effector moieties fusion construct which enables the optimal production in the periplasm of host cell.
- [10] Yet another technical problem to be solved by the present invention is to provide an expression vector and an host cell to produce the Fab-effector constructs in soluble form with high yield.
- [11] Yet another technical problem to be solved by the present invention is to provide a pharmaceutical composition comprising the fusion constructs above.
- [12]

## Solution to Problem

- [13] In order to solve the problems above, the present invention provides an optimal Fab-effector fusion construct (or format) for the periplasmic expression in *E. coli*, wherein the Fab has a heavy chain variable domain binding to heavy chain constant 1 domain (C<sub>H1</sub>), and has a light chain variable domain binding to light chain constant domain (C<sub>L</sub>).
- [14] In one embodiment of the present invention, a human anti-SA Fab was chosen as an antibody fragment, considering that the fusion of various therapeutic proteins to albumin or to albumin-binding moieties, such as small peptides or domain antibodies (dAb) has been shown to extend the half-lives of therapeutic proteins through the FcRn-mediated recycling mechanism (see Dennis *et al.*, (2002) *Biochimica et Biophysica Acta.* 1830, 5526-5534; Sleep *et al.*, (2013) *Biochimica et Biophysica Acta.* 1830, 5526-5534; Nguyen *et al.*, (2006) *Protein Eng Des Sel.* 19, 291-297; Kontermann, (2011) *Curr Op Biotechnol.* 22, 868~876). According to the prior studies, a Fab fragment has an elemination half-life of 16-20h in humans(See Ujhelyi and Robert, (1995) *Clin Pharmacokinet.* 28, 483493) and ~ 3 h in rats after intravenous administration (see Nguyen *et al.*, 2006 *Protein Eng Des Sel.* 19, 291 ~ 297). Surprisingly, the half-life of Fab (SL335) in this invention is 37 h in rats which is approximately 12-fold longer than conventional human Fabs, and thus it is reasonable to assume that SL335 might have a half-life of at least 160 200 h (6 - 8 days) in humans. In the meantime, two Vk domains, dAbr3 and dAbr16 possessing 13 nM and 1 mM of binding affinities to RSA, respectively, had been known to have the *t*<sub>1/2</sub> values of 53 h (dAbr3) and 43 h (dAbr16) in rats (see Holt *et al.*, (2008) *Protein Eng Des Sel.* 21, 283 - 288). Moreover, the *t*<sub>1/2b</sub> of Ab Fab4D5-H with a 92 nM affinity to RSA was 26.9 h (see Nguyen *et al.*, 2006). Therefore, it is implied that the *in vivo* functionality of

SL335 is comparable to that of previously reported dAbs and peptides specific for SA. It is noteworthy that the V<sub>H</sub> and the V<sub>L</sub> of SL335 shared only a 65 - 67% amino acid homology at the full sequence level, and a ~ 50% amino acid homology at the complementarity determining region (CDR) level with the previously reported albumin-specific dAbs (data not shown). Specifically, the Fab specific for serum albumin (SA) in an embodiment of the present invention comprises a heavy chain variable domain which has an amino acid sequence selected from the group consisting of SEQ ID NO.1 (SA138 VH: QVQLLQSGAE VKKPGASVKV SCKASGYTFT SYGISWVRQA PGQGLEWVGW INTYSGGTYA QKFQGRVTMT RDT SISTVYM ELS-GLKSDDTAVY YCARLGHCQRGICSDAL DTWGQQGTLVT VSS ), SEQ ID NO.2 (SA139 VH: EVQLLQSGAE VKEPGASVKV SCKASGYTFS SYGISWVRQA PGQGLEWVGR INTYNGNTGYA QRLQGRVTMT TDTSTSIAYM EVRSLRSDDTAVY YCARLGHCQRGICSDAL DTWGQQGTMVT VSS ), SEQ ID NO.3 (SA140 VH: QVQLVQSGGG VVQTGGSLRL SCAASGFTFR NY-GIH WVRQA PGKGLEWVAS ISYDGDSNKYYA DSVKGRFTIS RDNSRNTVHV QMDSLRGGDTAVY YCARDVHYYGSGSYYNAF DIWGQQGTLVT VSS ), SEQ ID NO.4 (SA141 VH: QVQLVQSGGG LVQPGGSLRL SCAASGFTFS SYAMSWVRQA PGKGLEWLSV ISHDGGFQYYA DSVKGRFTVS RDNSKNTLYL QMNSLRAEDTAVY YCARAGWLRQYGM DVWGQQGTLVT VSS ), SEQ ID NO.5 (SL18 VH: EVQLVQSGTE VKKPGESLKI SCKISGYSFT AY-WIAWVRQM PGKGLEWMGM IWPPDADARYS PSFQGQVTFS VDKSISTAYL QWHSLKTSDDTAVY YCARLYSGSY SPWGQQGTLVT VSS ) and SEQ ID NO.6 (SL301, SL310 and SL335 VH: QVQLVQSGGG PVKPGGSLRL SCAASGFMFR AYSMNWVRQA PGKGLEWVSS ISSSGRYIHYA DSVKGRFTIS RDNAKNSLYL QMNSLRAEDTAVY YCARETVMAGKAL DYWGQQGTLVT VSS ); and a light chain variable domain which has an amino acid sequence selected from the group consisting of SEQ ID NO.7 (SA130: ELVLTQSPSS LSASVGDRVT ITCRASQSI S RYLNWYQQKP GKAPKLLIYG ASRLESGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ SDSVPVTFGQ GTRLEIKR ), SEQ ID NO.8 (SA139 VL: DIVLTQSPSS LSASVGDRVT ITCRASQSI S YLNWYQQKP GKAPKLLIYA ASSLQSGVPS RFSGSGSGTD FTLTISSLQP EDFATYYCQQ SYSTPPYTFGQ GTKLEIKR ), SEQ ID NO.9 (SL18 VL: ELVLTQSPGT LSLSPGERAT LSCRASQSI F NYVAWYQQKP GQAPRLLIYD ASN RATGIPA RFSGSGSGTD FTLTISSLQP EDFAVYYCQQ RSKWPPTWTFGQ GTRVDIKR ), SEQ ID NO.10 (SL301 VL: ELVLTQSPGT LSLSPGERAT LSCRASQSI F RQLAWYQQKP GQAPRLLIYG ASSRATGIPD RFSGSGSGTD FTLTISRLEP EDSAVFYCQQ YGSSPRTFGG GTKLEIKR ), SEQ ID NO.11 (SL310 VL: ELVLTQSPGT LSLSPGERAT LSCRASQSVSS SSLAWYQQKP GQAPRLLIYG ASSRATGIPD

RFSGSGSGTD FTLTISSLQP EDAATYYCQK YSSYPLTFGQ GTKLEIKR ) and SEQ ID NO.12 (SL335 VL: ELVLTQSPGT LSLSPGETAT LSCRASQSVG SNLAWYQQKP GQAPRLLIYG ASTGATGVPA RFSGSRSGTD FTLTITSLQP EDFATYYCQQ YYSFLAKTFGQ GTQLEIKR ). And the  $V_H$  domain of the Fab above is bound to the heavy chain constant 1 domain ( $C_{H1}$  domain), and VL domain of the Fab is bound to light chain constant domain ( $C_{kL}$  domain). Furthermore, the Fab specific for serum albumin (SA) of the present invention comprises the amino acid sequences of SEQ ID NO. 13 (CDR1)(AYSMN), 14 (CDR2) (SISSSGRYIHYADSVKG) and 15 (CDR3) (ETVMAGKALDY) in the VH region of SL335, and the amino acid sequence of SEQ ID NOS. 16 (CDR1)(RASQSVGSNLA), 17 (CDR2)(GASTGAT) and 18 (CDR3)(QQYYSFLAKT) in the VL region of SL335.

[15] In one embodiment, the amino acid of cysteine of  $C_{H1}$  domain and  $C_{kL}$  domain of the Fab might be deleted or substituted with serine residues. In particular, as for the SL335 above, the amino acid of cysteine of  $C_{H1}$  domain is the 233<sup>th</sup> amino acid starting from the N-terminus of the  $C_{H1}$  domain , and the cysteine of  $C_{kL}$  domain is the 214<sup>th</sup> amino acid starting from the N-terminus of the  $C_{kL}$  domain are substituted with serine residues. To avoid confusion, the H chains and the L chains that compose the Fab were named as follow: 1) Hcys: the H chain with cysteine at the 233<sup>th</sup> position, 2) Lcys: the L chain with cysteine at the 214<sup>th</sup> position, 3) Hser: the H chain with serine at the 233<sup>th</sup> position, and 4) Lser: the L chain with serine at the 214<sup>th</sup> position.

[16] In another embodiment of the present invention, the Fab-effector fusion is constructed by linking the effector domain to the N- or C-terminus of either the Fd or light chain of a Fab molecule through genetic fusion. Since the folding and heterodimerization mechanisms of recombinant proteins in the periplasmic environment of *E. coli* are rather complicated and largely unknown, it is unpredictable which Fab-effector fusion format is optimal for a functional expression.

[17] Further, in another embodiment, a fusion construct of an antigen binding fragment(Fab) and effector domain (a bioactive effector moiety) is provided, wherein the amino acid of Cysteine of  $C_{H1}$  domain and the amino acid of Cysteine of  $C_{kL}$  domain of the Fab are deleted or substituted with serine residues; and wherein the bioactive effector moiety is a protein or a (poly)peptide; and wherein the Fab and the bioactive effector moiety are covalently linked by genetic fusion. The Fab and the bioactive effector moiety may be covalently linked by genetic fusion using a peptide linker of 0 to 20 amino acids. Among six Fab-effector fusion formats (or constructs) comprising hGH of the present invention, the results clearly demonstrated that HserG/ Lser exhibited the highest expression yield in *E. coli*. That is, in accordance with this embodiment, the removal of both Cys<sup>233</sup> in the  $C_{H1}$  domain and Cys<sup>214</sup> of in the  $C_{kL}$  either by deletion or substitution with other amino acid residue improves soluble ex-

pression of SL335-fusion effector constructs in the culture supernatant. This addresses three important issues. First, the fusion of an effector moiety, for example, hGH to the C-terminus of  $C_{H1}$  is preferable to the C-terminus of  $C_{Lk}$ . Previously, Lu *et al.* had reported that the genetic linkage of the anti-Flt-1 scFv to the C-terminus of  $C_{H1}$  of the anti-KDR Fab produced a five-fold higher yield than linkage to the C-terminal of  $C_L$  domain (see Lu *et al.*, (2002) *J Immunol Meth.* 267, 213 - 226). Although the data were not included, we inventor's western blot analysis using total *E. coli* lysates revealed that the Fd fragments of LcysG/Hcys and LserG/Hcys were almost completely degraded, resulting in no detection of the soluble form of the fusion proteins in the *E. coli* supernatant. Because  $V_H$  domains are prone to aggregate in *E. coli* (Dudgeon *et al.*, (2009) *Protein Eng Des Sel.* 22, 217 - 220), it can be speculated that the presence of an effector domain at the C-terminal end of  $C_L$  may restrain the interaction of a  $V_H$  domain to a  $V_L$  domain and a  $C_{H1}$  domain to a  $C_L$  domain, leading to rapid aggregation and degradation of Fd fragments. Comparing the soluble expression yields between LserG/Hcys and LserG/Hser, the presence of Cys<sup>233</sup> in the  $C_{H1}$  domain seemed to accelerate this process probably due to aberrant disulfide bond formations. After removing Cys<sup>233</sup> in the  $C_{H1}$  domain, the presence of an effector domain at the end of a  $C_{H1}$  might have a beneficial effect on reducing  $V_H$  domain aggregation by the partial blocking of hydrophobic surfaces on the  $V_H$  domain before  $V_H$ - $V_L$  pairing. Second, the presence of the Cys<sup>214</sup> of  $C_{Lk}$  further aggravates the soluble production of SL335-hGH fusion protein in an additive manner. Lower yield of HserG/Lcys than that of HserG/Lser could be explained by the tendency of L chains to form homodimers, known as Bence Jones proteins (see Kirsh *et al.*, (2005) *J Immunol Methods.* 301, 173 - 185), in which the Cys<sup>214</sup> of  $C_{Lk}$  may act on stabilization of homodimers, or is involved in forming aberrant disulfide bond(s) with other cysteine residues in the fusion protein. It has been also known that the disulfide bonds between the C-termini of  $C_{H1}$  and  $C_L$  in a Fab are highly mobile with a considerable degree of flexibility (see Rothlisberger *et al.*, (2005) *J. Mol. Biol.* 347, 773 - 789; Humphreys *et al.*, (2007) *Protein Eng Des Sel.* 20, 227 - 234). In this regard, the present invention provides an antigen-binding fragment (Fab) without the Cys<sup>233</sup> of heavy chain constant domain 1 ( $C_{H1}$ ) and the Cys<sup>214</sup> of light chain constant domain ( $C_{Lk}$ ). Likewise, HerGF/Lser and HserIFNb/Lser exhibited the highest expression yield in *E. Coli*. In the fusion construct of the present invention, the molar ratio of the bioactive polypeptide (or protein) to the Fab is between 1:1 and 10:1, preferably between 1:1 and 4:1. Third, not only the expression yield but the accessibility of the anti-hGH antibody to the hGH domain is also restrained at some extend by the presence of these two C-terminal cysteine residues in SL335. This could be important for the therapeutic function of an effector domain in a Fab-effector fusion if the interaction between an effector domain and its ligand is also

interfered. We inventors demonstrated that the utilization of  $\text{Fab}_{\Delta\text{ds}}$  as a fusion partner is beneficial not just for hGH, because other effectors such as G-CSF and IFN- $\beta$  produced identical conclusions.

[18] In another aspect of the present invention, an expression vector and the mutant *E. Coli* SUPEX5 strain (KCTC 12657BP) as a host cell are provided to solve the technical problems. This strain was created by random chemical mutagenesis of MC1061 *E. coli* strain which was chosen because it derives from *E. coli* K12 stain, one of major host strain for producing commercial bio-pharmaceuticals. By comparing with the parental MC1061 strain, utilization of the mutant SUPEX5 *E. coli* strain as an expression host further implemented the beneficial effect on the production of HserG/Lser. Not only for SL335-hGH fusion, but the combination of  $\text{Fab}_{\Delta\text{ds}}$  and SUPEX5 *E. coli* strain is also advantageous in soluble expression of a Fab-effector fusion protein in general, which was clearly demonstrated by the results obtained from SL335-GCSF fusions (SL335<sub>wt</sub>-GCSF vs. SL335 <sub>$\Delta\text{ds}$</sub> -GCSF), SL335-IFN $\beta$  fusions (SL335<sub>wt</sub>-IFNb vs. SL335 <sub>$\Delta\text{ds}$</sub> -IFN $\beta$ ) EGL4-hGH fusions (EGL4<sub>wt</sub>-hGH vs. EGL4 <sub>$\Delta\text{ds}$</sub> -hGH), and 1 $\beta$ 28-hGH fusions (1 $\beta$ 28<sub>wt</sub>-hGH vs. 1 $\beta$ 28 <sub>$\Delta\text{ds}$</sub> -hGH). Therefore, the results strongly support that the utilization of  $\text{Fab}_{\Delta\text{ds}}$ , the mutant form of Fab without the Cys<sup>233</sup> of C<sub>H1</sub> and the Cys<sup>214</sup> of C<sub>LK</sub>, is beneficial over a conventional Fab in the soluble expression of Fab-effector fusion proteins at least in SUPEX5 *E. coli* strain. The coexpression of chaperone proteins or disulfide isomerase (FkpA, SurA, Skp, Sec A, Sec B, DsbA or Dsb C) would improve the soluble and functional expression of SL335<sub>wt</sub>-GCSF or even SL335 <sub>$\Delta\text{ds}$</sub> -GCSF, since these fusions are known to increase the periplasmic production yield of soluble Fab fragments in *E. coli* (see Schlapschy *et al.*, (2006) *Escherichia coli. Protein Eng Des Sel.* **19**, 385 - 390). We inventors believe the utilization of  $\text{Fab}_{\Delta\text{ds}}$  can be beneficial especially when chaperones and the catalytic machinery for disulfide formation in the endoplasmic reticulum are overloaded because of the high expression of Fab-effector fusion proteins in host cells.

[19] In one embodiment of the present invention, SL335 <sub>$\Delta\text{ds}$</sub> -hGH was produced at approximately 10 mg/L concentration using a culture flask, which is higher yield than the previous reports, despite of a 4-fold increase in molecular size in the present invention. According to the prior reports, studies on soluble expression of rhGH in the periplasm of *E. coli* showed that the yield was 0.64 - 2.57 mg/L for pelB-hGH and 0.32 - 2.29 mg/L for ompA-hGH (see Sockolosky and Szoka, (2013) *Protein Exp Purif.* **87**, 129 - 135), while the yields of rhGH were largely dependent on the promoters and host *E. coli* strains that were used (see Soares *et al.*, (2003) *Protein Engineering.* **16**, 1131 - 1138). Through a simple medium optimization, we inventors routinely obtained the yield of ~ 50 mg/L in the culture supernatant using a culture flask that allows the cell density of OD<sub>600nm</sub> = ~ 10 - 11 (manuscript in preparation), which can be further

improved enough for an industrial scale through the refined adjustment of medium compositions and a fed-batch culture system.

[20] In another aspect of the present invention, SL335<sub>ds</sub>-effector proteins shows increased affinity to HSA. In one embodiment, SL335<sub>ds</sub>-hGH showed a five to nine-fold increase in response to HSA(Human Serum Albumin) and a 1.3 to 4-fold decrease in response to RSA(Rat Serum Albumin) depending on the pH condition compared to those of parent SL335. Genetic linking of an antibody fragment and an effector domain would affect an antigen-binding affinity of the antibody fragment, and the changes in affinity can be varied at large extent depending on the nature of an antibody fragment, an effector domain and how to link these two functional moieties. It is not clear whether these differences in affinity result from the absence of the interchain disulfide bond or the presence of the hGH fusion domain. Nonetheless, the effect of hGH fusion on the binding affinities of SL335<sub>Δds</sub> to the antigens seems negligible compared to that of IFN-a2b-DOM7 h-14, whose affinities to human, mouse and rat SA decreased 7.7, 22.3 and 15.8-fold relative to the parent DOM7 h-14 (see Walker *et al.*, (2010) *Protein Eng Des Sel.* 23, 271 - 278). Therefore, Fab might have an advantage over domain Ab in maintaining the affinity and effector folding because the C<sub>H1</sub> and C<sub>L</sub> domains provide space for reducing steric hindrance between an antigen-binding region and an effector domain that binds to the respective ligands.

[21] In another embodiment of the present invention, SL335<sub>Δds</sub>-hGH profoundly extended the serum half-life in that its  $t_{1/2}$  (16.6 h in intravenous administration) was similar to that of PEG5-hGH (250 kDa) (see Clark *et al.*, 1996). Interestingly, the  $t_{1/2}$  of SL335<sub>Δds</sub>-hGH was 5.6-fold longer than that of Albutropin® ( $t_{1/2} = 2.96$  h), and the difference in the  $t_{1/2}$  between SL335<sub>Δds</sub>-hGH and Albutropin® was further extended in the S.C. (subcutaneous) administration up to 16-fold (97.2 h vs. 5.93 h) (see Osborn *et al.*, 2002), although these comparisons are circumstantial unless the experiments are performed under the same settings. Similarly, the  $t_{1/2}$  of IFN-a2b-DOM7 h-14 was also approximately 1.5 times longer than that of HSA-IFN-a2b (see Walker *et al.*, 2010). Therefore, it seems likely that the fusion of an albumin-binder provides a longer half-life than the fusion with albumin, and the underlying mechanisms are yet to be determined. It is noteworthy that the serum  $t_{1/2}$  of SL335<sub>Δds</sub>-hGH in I.V. administration was similar to that of VRS-317 ( $t_{1/2} = 15$  h) (Cleland *et al.*, (2012) *J Pharm Sci.* 101, 27442754). This may suggest that longer than once-weekly or even once a month dosing could be possible for SL335<sub>Δds</sub>-hGH (termed SAFAtrypin®).

[22] In another embodiment of the present invention, the pharmacodynamic effects of SL335<sub>Δds</sub>-hGH seemed far superior to those of Albutropin®, and 7-fold more potent than Growthropin® at molar basis considering the once-weekly dosage regimen. Unfortunately, we had to discontinue a 2-week pharmacodynamic study at Day 11 because

some of the hypophysectomized rats, especially those belonging to the Excipient Only group, died early. It seemed likely that the animals were severely stressed by the long-distance transportation from Japan to South Korea after surgery during August, which manifested by 5% weight loss of those belonging to the Excipient Only group and the bigger standard deviation values than we anticipated. Nonetheless, it seems clear that  $SL335_{\text{Ads}}$ -hGH has a huge potential being developed as a long-acting hGH, and, therefore, we referred it to SAFAtrropin® now on.

[23] In another embodiment of the present invention, the bioactive polypeptide fused to the Fab above is anyone selected from the group consisting of hormone, cytokine, enzyme, antibody, growth factor, transcription factor, blood factor, vaccine, structure protein, ligand protein, and receptor.

[24] In yet another embodiment of the present invention, the bioactive polypeptide is anyone selected from the group consisting of human growth hormone, growth hormone releasing hormone (GHRH), growth hormone releasing peptide, interferons, interferon receptors, colony stimulating factors (CSFs), glucagon-like peptides, G-protein-coupled receptor, interleukins, interleukin receptors, enzymes, interleukin binding proteins, cytokine binding proteins, macrophage activating factor, macrophage peptide, B cell factor, T cell factor, protein A, allergy inhibitor, cell necrosis glycoproteins, immunotoxin, lymphotoxin, tumor necrosis factor, tumor suppressors, metastasis growth factor, alpha-1 antitrypsin, albumin, alpha-lactalbumin, apolipoprotein-E, erythropoietin, highly glycosylated erythropoietin, angiopoietins, hemoglobin, thrombin, thrombin receptor activating peptide, thrombomodulin, factor VII, factor VIIa, factor VIII, factor IX, factor XIII, plasminogen activating factor, fibrin-binding peptide, urokinase, streptokinase, hirudin, protein C, C-reactive protein, renin inhibitor, collagenase inhibitor, superoxide dismutase, leptin, platelet-derived growth factor, epithelial growth factor, epidermal growth factor, angiostatin, angiotensin, bone growth factor, bone stimulating protein, calcitonin, insulin, atriopeptin, cartilage inducing factor, elcatonin, connective tissue activating factor, tissue factor pathway inhibitor, follicle stimulating hormone, luteinizing hormone, luteinizing hormone releasing hormone, nerve growth factors, parathyroid hormone, relaxin, secretin, somatomedin, insulin-like growth factor, adrenocortical hormone, glucagon, cholecystokinin, pancreatic polypeptide, gastrin releasing peptide, corticotropin releasing factor, thyroid stimulating hormone, autotaxin, lactoferrin, myostatin, receptors, receptor antagonists, cell surface antigens, virus derived vaccine antigens, monoclonal antibodies, polyclonal antibodies, and antibody fragments.

[25] In another aspect of the present invention, a pharmaceutical composition is provided, wherein the composition comprises the Fab-effector moieties fusion constructs of the present invention and pharmaceutically acceptable excipient, and has increased *in vivo*

sustainability. The pharmaceutical composition of the president invention can be administered into a body through various ways including oral, transcutaneous, subcutaneous, intravenous, or intramuscular administration, and more preferably can be administered as an injection type preparation. Further, the pharmaceutical composition of the present invention can be formulated using the method well known to the skilled in the art to provide rapid, sustained or delayed release of the active ingredient following the administration thereof. The formulations may be in the form of a tablet, pill, powder, sachet, elixir, suspension, emulsion, solution, syrup, aerosol, soft and hard gelatin capsule, sterile injectable solution, sterile packaged powder and the like. Examples of suitable carriers, excipients, and diluents are lactose, dextrose, sucrose, mannitol, xylitol, erythritol, maltitol, starches, gum acacia, alginates, gelatin, calcium phosphate, calcium silicate, cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoates, propylhydroxybenzoates, talc, magnesium stearate and mineral oil. Further, the formulations may additionally include fillers, anti-agglutinating agents, lubricating agents, wetting agents, favoring agents, emulsifiers, preservatives and the like.

[26] It should be understood that the amount of the fusion protein or polypeptide actually administered ought to be determined in light of various relevant factors including the condition to be treated, the selected route of administration, the age, sex and body weight of the individual patient, and the severity of the patients symptom; and the type of bioactive polypeptide of active ingredient. Since the fusion protein of the present invention has very excellent sustainability in blood, the number and frequency of administration of the peptide preparations comprising the fusion protein of the present invention can be reduced significantly.

[27] As used herein, the singular forms "a," "an," and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. Furthermore, to the extent that the terms "including," "includes," "having," "has," "with," "such as," or variants thereof, are used in either the specification and/or the claims, such terms are not limiting and are intended to be inclusive in a manner similar to the term "comprising".

[28] In the present invention, the "bioactive polypeptide or protein" is the (poly)peptide or protein representing useful biological activity when it is administered into a mammal including human.

[29] In the present invention, the "Fab-effector moiety(s) fusion construct(or format)" is the construct wherein a bioactive (poly)peptide or protein covalently bonded to the Fab. Further, "Fag-effector moiety(s) fusion construct (or format)" is understood to include Fab-fusion protein, Fab-fusion (poly)peptide, fusion constructs, and fusion formats.

[30] In this regard, the present invention is described in detail in examples. It should be noted that the description of the examples does not limit the scope of the invention as described in the preceding disclosure.

[31]

### **Advantageous Effects of Invention**

[32] In the present invention, an anti-Serum Albumin Fab<sub>Δds</sub>-Associated (SAFA) technology is provided as a novel platform technology for developing long-acting biotherapeutics. In this regard, the present invention has advantages over other conventional technologies including PEGylation, Fc-fusion, AlbulAb technology and albumin-fusions in terms of long acting *in vivo*, maintaining the conformation of an effector domain, binding affinities, and simple production and procedures with low costs.

[33]

### **Brief Description of Drawings**

[34] Figure 1 shows the results of monoclonal phage ELISA to determine the binding specificity of anti-SA Fab phage antibodies.

[35] Figure 2 shows the determination of the antigen-binding specificity of the human Fab clones by ELISA.

[36] Figure 3 represents *in vivo* pharmacokinetics of SL335.

[37] Figure 4 is a diagram depicting six SL335-hGH fusion formats constructed in this study.

[38] Figure 5 shows the results of ELISA to determine the yields and the binding reactivity of soluble SL335-hGH fusions in *E. coli* culture supernatant. The binding signals were visualized using TMB substrate, and the absorbance at 450 nm was measured using an ELISA reader. The data represent the average ± SD of three experiments.

[39] Figure 6 represents the ELISA to determine host *E. coli*- and temperature-dependent expression of SL335 and SL335-hGH variants(20°C, A; 25°C, B; or 30°C, C).

[40] Figure 7 represents the ELISA to determine the yields of soluble SL335-GCSF and SL335-IFN $\beta$  fusion constructs in the *E. coli* culture supernatant.

[41] Figure 8 represents the ELISA to determine the yields of soluble EGL4-hGH (A), and 1 $\beta$ 28-hGH fusions (B) in *E. coli* culture supernatant.

[42] Figure 9 represents the Analyses of SL335<sub>wt</sub>-hGH and SL335<sub>ds</sub>-hGH by SDS-PAGE and western blot.

[43] Figure 10 represents the analyses of HcycG/Lcys and HserG/Lser by Chip-based capillary electrophoresis.

[44] Figure 11 represents the analysis of HcycG/Lcys and HserG/Lser by MALDI-TOF

mass spectrometry.

- [45] Figure 12 represents the purification of HserG/Lser *via* gel filtration using FPLC.
- [46] Figure 13 shows the determination of the *in vitro* hGH bioactivity of SL335<sub>ds</sub>-hGH by the Nb2-11 cell proliferation assay.
- [47] Figure 14 shows the Determination of serum stability of SL335<sub>ds</sub>-hGH by ELISA and *in vitro* Nb2-11 cell proliferation assay.
- [48] Figure 15 is the pharmacokinetic analysis of Growtropin or SL335<sub>ds</sub>-hGH in rats.
- [49] Figure 16 shows the dose-dependent weight gain in hypophysectomized rats treated with Growtropin® or SL335<sub>Δds</sub>-hGH. N= 3 rats per treatment group, one daily weight measurement per rat.
- [50] Figure 17 shows the dose-dependent increase in tibia length with treated Growtropin® or SL335<sub>Δds</sub>-hGH. N=3-4 rats per treatment group, one tibia measurement per rat.
- [51] Figure 18 depicts the pHEKA vector of the present invention.
- [52] Figure 19 shows the nucleic acid sequence of the pHEKA vector of the present invention.
- [53] Figure 20 shows the Deduced amino acid sequence of the VH and the VLgenes utilized by the anti-SA Fab clones of the present invention.
- [54] Figure 21 shows the DNA sequence of the VH(A)and the VLgenes(B)utilized by the anti-SA Fab clones of the present invention.
- [55] Fig. 22 shows the sequence informaion of the Fab-effector fusion constructs of the present invention. The linker and the effector domains were underlined and CDRs were written in bold.
- [56]

## Mode for the Invention

- [57] **1. Materials and Analysis**
- [58] **1-(1) Cloning and Strains**
- [59] All of the DNA cloning experiments were performed according to standard procedure (See Sambrook *et al.*, (1989) Molecular cloning: A laboratory manula, 2nd ed., (New Youk, USA: Cold Spring Harbor Laboratory Press)). The oligonucleotides of sequencing grade and the codon-optimized genes for constructing SL335-effector fusion constructs were synthesized by Bioneer, Daejeon, South Korea. PCR amplification was performed using Pyrobest or Ex-Taq DNA polymerase (Takara, tsu, Japan) under the condition of 25 cycles at 94°C for 1 min, 58°C for 1 min and 72°C for 1 min, followed by 72°C for 10 min unless otherwise noted. The restriction endonucleases, shrimp alkaline phosphatase (SIP) and T4 DNA ligase were also purchased from Takara. The *E. coli* MC1061 strain [araD139 Del(araA-leu)7697 Del(

*lac*)X74 *galK16 galE15*(GalS) lambda- e14- *mcrA0 relA1 rpsL150(strR) spoT1 mcrB1 hsdR2*] (ATCC, Manassas, USA) was used for cloning and the *E. coli* SUPEX5 strain was used for recombinant protein expression. The *E. coli* TG1 strain {F' [trαD36 *proAB+lacI<sup>q</sup>lacZΔM15]supE thi-1 Δ(*lac-proAB*) Δ(*mcrB-hsdSM*)5, (r<sub>K</sub> m<sub>K</sub><sup>-</sup>)} (Agilent Technologies, Palo Alto, USA) was used for recombinant phage preparations.*

[60]

[61] 1-(2) Biopanning of the HuDVFab-8L antibody library

[62] An enrichment of recombinant phages bound to target antigens was performed as previously described (see Joo *et al.*, (2008) *J. Immunol. Methods.* 333, 24-37; Hur *et al.*, (2010) *Immunol Lett.* 132, 24-30). Briefly, tosylated magnetic beads conjugated with human, rat or mouse serum albumin (HSA, RSA or MSA, respectively) (Sigma-Aldrich, St. Louis, MO, USA) were mixed with 10<sup>10</sup> phages from the HuDVFab-8L antibody library (AprilBio, Chuncheon, South Korea) for 4 h at 4°C, and washed three times with phosphate-buffered saline containing 0.02% Tween (PBST). The phage antibodies that were bound to the beads were eluted with elution buffer (0.1 M glycine, pH 2). Fresh TG1 cells carrying the corresponding light (L) (V<sub>L</sub>+C<sub>Lk</sub>) chains were infected with eluted phages, and grown in 2 YT medium containing 25 µg/ml ampicillin, 10 µg/ml carbenicillin and 10 µg/ml tetracycline (2 × YT /ACT). The recombinant phages were then amplified using Ex-12 helper phage (AprilBio) for subsequent panning. After the final panning, a monoclonal phage ELISA was performed to identify the positive clones. The Fd (V<sub>H</sub>+C<sub>H1</sub>) genes from the positive clones were subcloned into the pHg3A-3 vector (AprilBio, Chuncheon, South Korea), and L chain optimization was performed using 1.410<sup>8</sup> humannave kL chain repertoire in pLf1T-3 phagemid vector(AprilBio).

[63]

[64] 1-(3)- DNA sequencing analysis

[65] The pHf1g3A-2 (AprilBio) phagemid and pLf1A-3 plasmid (AprilBio) were isolated from *E. coli* cells producing anti-SA Fab molecules using the Wizard Plasmid Miniprep Kit (Promega, Medison, WI, USA). Two different sequencing primers (5'-gtgccgttatagccatagcac-3' (SEQ ID NO:19) and 5'-ggcactggctggttcgtaccgtg-3'(SEQ ID NO:20)) that were complementary to pHf1g3A-2 or pLT-2 were used to read the V<sub>H</sub> and V<sub>L</sub> genes, respectively. The DNA sequencing was performed by SolGent, Daejeon, South Korea.

[66]

[67] 1-(4) Construction of the pHEKA expression vector

[68] The DNA fragment #1 containing a *Bgl* II restriction site + *trc* promoter + g10 translation enhancer-ribosome binding site (RBS) was obtained by PCR amplification from the pTrcHis-B vector (Invitrogen, Carlsbad, CA, USA) using Pyrobest DNA

[69]

[70] Table 1

[Table 1]

PCR primers preparing pHEKA expression vector

| Constructs | Primers  | Oligonucleotide sequence                                                                         |
|------------|----------|--------------------------------------------------------------------------------------------------|
| pHEKA      | Primer 1 | 5'- gggagatctgaaatgagctgtgacaattaatcatccg-3' (SEQ ID No:21)                                      |
|            | Primer 2 | 5' - cctcttaattttataataataaagttaatcgataattcc-3' (SEQ ID No:22)                                   |
|            | Primer 3 | 5' -<br>ggaattatcgattactttattattaaaaattaaagaggatattaggatccgagc<br>tcgagttctgca-3' (SEQ ID No:23) |
|            | Primer 4 | 5' - gggcactacgtgcgaaaggcccagtcttcgact-3' (SEQ ID No:24)                                         |
|            | Primer 5 | 5' - ggccgcagatctgttaattaaggaggaattaaagaattcatgaaaaact-<br>gctgttcgcgattccgct-3' (SEQ ID No:25)  |
|            | Primer 6 | 5' - ggaaagcttattaacaagattggctcaactcttgc-3' (SEQ ID No:26)                                       |
|            | Primer 7 | 5' - gggggatccatgaaaaagacagctatcgcgattgcagtg-3' (SEQ ID No:27)                                   |
|            | Primer 8 | 5' - attcctcctaattaacagatctcgccgcactcgagattaacactctccc-<br>ctgttgaagctttgt-3' (SEQ ID No:28)     |

[71]

[72] 1-(5)- Establishment of the mutant *E. Coli* SUPEX5 strain

[73] Chemical mutagenesis was carried out essentially as described in previous work.

Briefly, *E. coli* MC1061 cells expressing the anti-human branched chain keto acid dehydrogenase complex-E2(BCKD-E2) scFv fused with alkaline phosphatase(AP) were grown in Luria Broth (LB) medium containing 50  $\mu$ g/ml of ampicillin to an OD<sub>600</sub> of ~0.3. The cells contained in 5 ml of culture were collected by centrifugation at 3,000 g for 10 min, washed twice with cold 0.1 M sodium citrate buffer (pH 5.5). The cells were then resuspended in 1.9 ml of the same buffer, and treated with 50  $\mu$ g/ml of N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) (Sigma-Aldrich, St. Louis, MO, USA) at 37°C for 15, 30 and 45 min. After MNNG treatment, the cells were mixed, washed twice and resuspended in 2 ml of LB medium. Colony lift assay with a two-membrane system was then performed as described. Briefly, LB agar plates containing 50  $\mu$ g/ml ampicillin and 10  $\mu$ g/ml carbenicillin were covered with the first nylon membranes (0.45 m Nytran N Nylon blotting membrane) (GE Healthcare Life Science,

Wauwatosa, WI, USA) of low protein binding capacity. The mutated bacteria were spread on the membranes at the density of a  $10^6$  cells/plate and grown for 8 h at 37°C. Meanwhile, the second nitrocellulose membranes (Bio-Trace™ NT Nitrocellulose Transfer Membrane) (PALL, Port Washington, NY, USA) were laid over fresh LB agar plates containing 50  $\mu$ g/ml ampicillin, 10  $\mu$ g/ml carbenicillin and 1 mM isopropyl-D-1-thiogalactopyranoside (IPTG) (Sigma-Aldrich). The first nylon membranes were removed from the LB agar plated and placed on top of the second membranes, followed by incubation 37°C for 5 h. After incubation, the first membrane (with colonies) was removed, placed onto fresh LB agar plates containing 50  $\mu$ g/ml ampicillin and 10  $\mu$ g/ml carbenicillin, and stored at 4°C for later recovery of the bacteria. The second membranes were washed three times for 10 min in fresh phosphate-buffered saline containing 0.1% v/v Tween 20 (PBS/Tween), and immersed into the nitro blue tetrazolium chloride (NBT)/5-bromo-4-chloro-3-indolyl phosphate (BCIP) substrate (Duchefa, Haarelem, Netherlands) to visualize the AP of *E. coli* colonies. The *E. coli* colonies showing a distinctive AP activity were picked from the corresponding first filters, pooled together, and the second round of mutagenesis and colony lift assay were performed. After the second round of colony lift assay, the tentative positive *E. coli* clones were selected, and grown in 10 ml 2 YT medium containing 50  $\mu$ g/ml ampicillin and 10  $\mu$ g/ml carbenicillin until OD<sub>600</sub> reaches 0.5. IPTG was added into the culture at 0.1 mM final concentration, and the cells were grown over night at 27°C. The culture supernatant was then harvested by centrifugation at 3,300 g for 20 min. For preparing periplasmic extracts, the cell pellet was re-suspended in the periplasmic extraction buffer (2 stock; 200 mM Tris-HCl, 20 mM EDTA, 2 M NaCl, pH 7.4), frozen and thawed three times, and centrifuged at 10,000 g for 20 min at 4°C. The periplasmic extract containing soluble anti-BCKD-AP fusion was finally obtained by harvesting the supernatant. Serial dilutions of the culture supernatant and the periplasmic extract were prepared by using PBS containing 1% bovine serum albumin (BSA) (Sigma-Aldrich), and 50 ml of the culture supernatant or the periplasmic extract samples were mixed with 100 ml of a p-nitrophenyl phosphate (pNPP) substrate (Roche, South Sna Francisco, CA, USA) in a 96-well microtiter plate (SPL, South Korea). After 5 - 10 min, 25  $\mu$ l of 3 M NaOH was added into each well to stop the reaction, and the absorbance at 415 nm was measured using an ELISA reader (Bio-Rad, Hercules, CA, USA). Four mutant *E. coli* strains (M#5, M#7, M#54 and M#69) showing the enhanced expression of the anti-BCKD-AP fusion were grown in 2 YT medium without antibiotics at 37°C overnight. The cells were then spread onto LB agar plates at a ~  $10^3$  cells/plate density, and grown at 37°C overnight. The resulting colonies were replicated onto LB agar plates with or without 50  $\mu$ g/ml ampicillin. The *E. coli* colonies grown in the LB agar plates without antibiotics but failed to grow in

the LB agar plates with antibiotics were selected, and grown in 2 YT medium without antibiotics until OD<sub>600</sub> reaches ~1.0. The cell stocks were prepared by adding glycerol (20% v/v), and stored at 80°C. For being used for cloning, the electro competent cells were prepared from the mutant strains according to a standard protocol, and stored at 80°C. M#5, one of the mutant *E. coli* strains, was named as SUPEX5 (KCTC 12657BP), and used for expressing Fab and Fab-effector fusion proteins.

[74]

[75] 1-(6)-Enzyme-linked immunosorbent assay(ELISA)

[76] For the monoclonal phage ELISA, the recombinant phage was obtained from positive *E. coli* clones by phage rescue, and ~ 10<sup>8</sup> CFU/well were added to MaxiSorb ELISA plates (Nunc, Roskilde, Denmark) that were coated with 5 µg/ml HSA, RSA, MSA or BSA. The phage was allowed to bind to the antigens either at pH 6 or at pH 7.4 for 1 h at 37°C. A goat anti-human kappa L Ab-conjugated with HRPO (Sigma-Aldrich) was used as a secondary antibody. The binding signals were visualized with a TMB substrate (BD Science, San Jose, CA, USA), and the absorbance at 450 nm was measured using an ELISA reader (Bio-Rad, Hercules, CA, USA). The data represent the average of three experiments standard deviation. For the conventional ELISA, the various antigens [human SA, rat SA, mouse SA, monkey SA (Alpha diagnostic Intl., San Antonio, TX, USA), canine SA (CUSABIO, Wuhan, Hubei, China), rabbit SA (Sigma-Aldrich), epidermal growth factor receptor (EGFR) (R&D systems, Minneapolis, MN, USA), epithelial cell adhesion molecule (EpCAM) (R&D systems), IL-15 receptor α (IL-15Ra) (R&D systems), IL-1β (eBioscience, San Diego, CA, USA), CD16a (R&D systems), c-MET (Sinobiological, Beijing, China)] at 5 µg/ml concentrations were immobilized on the microtiter plates, and the Fab molecules were allowed to bind to the antigens, and detected as above. To determine the concentration of soluble Fab or Fab-hGH fusion proteins, a sandwich ELISA was performed using a mouse anti-human IgG Fd mAb (AprilBio) as a capturing Ab and the goat anti-human kappa L chain pAb-HRPO conjugated (Sigma-Aldrich) as a detecting antibody. The human Fab fragment (Bethyl, Montgomery, TX, USA) with a known concentration was used to draw the standard curve. For detecting the hGH domain, T-20, a goat pAb specific for the C-terminus of the hGH (Santacruz Biotechnology, Dallas, Tx, USA) and NYThGH, a mouse mAb specific for full-length hGH (Prospec, East Brunswick, NJ, USA) were used followed by a rabbit anti-goat IgG pAb-HRPO conjugated (Sigma-Aldrich) or a goat anti-mouse IgG pAb-HRPO conjugated (Sigma-Aldrich), respectively as a secondary antibody. A goat anti-human GCSF pAb (R&D Systems) was used to detecting the G-CSF domain, and a rabbit anti-human IFN-β pAb (PEPROTECH, Rocky Hill, USA) was used to detect the IFN-β domain.

[77]

[78] 1-(7)-Preparation of soluble Fab and Fab-effector fusion proteins

[79] Soluble Fab and Fab-hGH fusion proteins were produced by growing *E. coli* SUPEX5 cells in 10 ml or 1 L of 2 YT medium containing 50  $\mu$ g/ml kanamycin at 37°C until an  $OD_{600nm} = 0.5$  followed by the addition of 0.05 mM IPTG. After 20 h of incubation at 20°C with vigorous shaking, the culture supernatant and cell pellet were separated by centrifugation at 3,300 g for 20 min. The periplasmic extracts were obtained as described earlier. For purification, the culture supernatant and/or the periplasmic extracts were then passed through Sepharose 4B resins that were immobilized with HSA (AprilBio). After extensive washing the Fab molecules bound to the resin were eluted with elution buffer (0.1 M glycine, 10% glycerol, pH 3) followed by immediate neutralization with Tris buffer (0.5 M Tris HCl, 2 M NaCl, pH 9.0). Gel filtration of HserG/Lser was also performed after affinity purification using AKTA FPLC (GE Healthcare, Wauwatosa, WI, USA). Briefly, Hiprep™16/60 Sephacryl™ S-200HRP repacked Column was equilibrated with equilibration buffer (20 mM HEPES, 150 mM NaCl, pH 7.4), and loaded with 5  $\mu$ l of HserG/Lser (SL335<sub>Δds</sub>-hGH fusion). Elution was performed with equilibration buffer at 0.35 Mpa alarm pressure and 0.5  $\mu$ l/min running flow rate. Fraction number 13, 16, 19 and 23 were analyzed by SDS-PAGE as described below.

[80]

[81] 1-(8) Affinity measurement by biolayer interferometry

[82] Real-time binding assays between the purified SL335 and the antigens (human SA, rat SA or mouse SA) were performed using biolayer interferometry with an Octet RED system (ForteBio, Menlo park, CA, USA) as previously described except that AR2G (Amine Reactive Second-Generation) sensors were used (Costin *et al.*, (2013) *J Virol.* 87, 52-66). Briefly, the predetermined concentration of SL335 was coupled to kinetics grade AR2G biosensors, and unbound Fab fragments were removed from the surfaces of the sensors by incubating in the kinetics buffer (1 M ethanolamine, pH 8.5). The probes were then allowed to bind to human SA, rat SA or mouse SA at the predetermined concentrations under pH 6.0 or pH 7.4 conditions (human SA concentration at pH 6 and pH 7.4: 200 nM, 100 nM, 50 nM, 25 nM and 12.5 nM; rat SA concentration at pH 6: 4 mM, 1 mM, 500 nM, 250 nM and 125 nM; rat SA concentration at pH 7.4: 4 mM, 2 mM, 1 mM, 500 nM and 125 nM; mouse SA concentration at pH 6 and pH 7.4: 20 mM, 10 mM, 5 mM, 2.5 mM and 12.5 mM), followed by dissociation in PBS containing 0.1% BSA, pH 6 or pH 7.4. The binding and dissociation kinetics were calculated using the Octet QK software package, which fit the observed binding curves to a 1:1 binding model to calculate the association rate constants. The association and dissociation rate constants were calculated using at least three different concentrations of human SA, rat SA or mouse SA. The equilibrium dissociation

constants were calculated as the kinetic dissociation rate constant divided by the kinetic association rate constant.

[83]

[84] 1-(9) Generation of the SL335-hGH fusion constructs

[85] To create SL335ds, the mutant Fd (Cys<sup>233</sup> Ser<sup>233</sup> substitution), termed Hser, was obtained by PCR amplification from the codon-optimized Fd chain gene of SL335 using a set of PCR primer #9 (5'-gggaaattt catgaaatatctgctgcctacggcggcggcggcgtcgtgcgtggcataaa-3' (SEQ ID NO:29)) and #10 (5'-gggaagcttttagctgttcggccacgcgtt-3' SEQ ID NO:30)). The ~750 bp PCR product was treated with *EcoR I/Hind III* and ligated with pHEKA. The mutant L chain (Cys<sup>214</sup> → Ser<sup>214</sup> substitution), termed Lser, was also obtained by PCR amplification from the codon-optimized L chain gene of SL335 using a set of PCR primer #11 (5'- gggggatc- catgaaaaaaaaactgcgattgcattgcgtgcgttccacgcgtt-3' (SEQ ID NO:31)) and #12 (5'- gggctcgagtttagcttcgc cgggttaagcttttgcgttccacgcgtt-3' (SEQ ID NO:32)), cut with *BamH I/Xho I* and cloned into pHEKA containing Hser. The cloning procedures for generating the HcysG/Lcys construct were as follow: the wild type Fd with Cys<sup>233</sup>, termed Hcys, was PCR amplified from the codon-optimized Fd of SL335 using a set of PCR primer #9 and #13 (5'-agatccaggagctggtcagaaccgcagcttcggccacgcgtt-3' (SEQ ID NO: 33)), and the hGH containing a linker sequence was also PCR amplified from the codon-optimized hGH gene using a set of PCR primer #14 (5'-gggtctgcaccagctccgttatccgaccattccgctgagccg-3' (SEQ ID NO: 34)) and #15 (5'-gggaagcttttagaagccgcaggagccctca-3' (SEQ ID NO: 35)). The Hcys and the hGH genes were linked together to generate HcysG by assembly PCR using a set of PCR #9 and #15 primers, cut with *EcoR I/Hind III*, and cloned into pHEKA containing the wild type L chain with Cys<sup>214</sup> of SL335, termed Lcys. To generate the LcysG/Hcys construct, Lcys, was PCR amplified from the codon-optimized L chain of SL335 using a set of PCR primer #11 and #16 (5'-agatccaggagctggtcagaaccgcattccgcggtaaagctttt-3' (SEQ ID NO: 36)), and the hGH containing a linker sequence was also PCR amplified from the codon-optimized hGH gene using a set of PCR primer #14 and #17 (5'-gggctcgagtttagaagccgcaggagccctca-3' (SEQ ID NO: 37)). Lcys and the hGH gene were linked to generate LcysG by assembly PCR using a set of PCR #11 and #17 primers, cut with *BamH I/Xho I* and cloned into pHEKA containing the wild type Fd. To create the HserG/Lcys construct, Hser was PCR amplified from the codon-optimized wild type Fd chain using a set of PCR primer #9 and #18 (5'-gggctcgagtttagaagccgcaggagccctca-3' (SEQ ID NO: 38)). The PCR amplification of the hGH containing a linker sequence, assembly PCR and cloning of HserG were performed as creating the HcysG/Lcys construct. To generate the LserG/Hcys

construct, Lser was PCR amplified from the codon-optimized L chain of SL335 using a set of PCR primer #11 and #19 (5'-agatccaggagctggtcagaaccgctgtctcggtccacgcgtt-3' (SEQ ID NO: 39)). PCR amplification of the hGH containing a linker sequence, assembly PCR and cloning of LserG were performed as in creating the LcysG/Hcys construct. To generate the HerG/Lser construct, the PCR amplification of HserG and the hGH, and assembly PCR were performed as creating the HserG/Lcys construct except that pHEKA containing Lser was used for cloning. LserG/Hser was also constructed as the creation of the LserG/Hcys construct except that pHEKA containing Hser was used for cloning. The PCR primers for preparing SL335-hGH fusion constructs and SL335<sub>Δds</sub>-hGH fusion constructs are shown in Table 2 below.

[86]

[87] Table 2

[Table 2]  
PCR primers for SL335-hGH or SL335<sub>Δds</sub>-hGH fusion constructs

| Constructs                       | Primers   | Oligonucleotide sequence                                                      |
|----------------------------------|-----------|-------------------------------------------------------------------------------|
| SL335 <sub>Δds</sub>             | Primer 9  | 5'-gggaaattcatgaaatatctgtgcctacggcggcggcggcgtgctgtggctgacaa-3' (SEQ ID No:29) |
|                                  | Primer 10 | 5'-gggaagcttttagctgtctcggtccacgcgtt-3' (SEQ ID No:30)                         |
|                                  | Primer 11 | 5'-ggggatccatgaaaaactgcgtgcattgcgggtggccggcttg-3' (SEQ ID No:31)              |
|                                  | Primer 12 | 5'-gggctcgagtttagttcgc cgccgttaagctttg-3' (SEQ ID No:32)                      |
| SL335 <sub>wt</sub> -hGH fusion  | Primer 13 | 5'-agatccaggagctggtcagaaccgcagcttcgggtccacgcgtt-3' (SEQ ID No:33)             |
|                                  | Primer 14 | 5'-ggttctgcaccagctcctggatcttccgaccattccgtggcc-3' (SEQ ID No:34)               |
|                                  | Primer 15 | 5'-gggaagctttagaagccgcaggagccctcca-3' (SEQ ID No:35)                          |
|                                  | Primer 16 | 5'-agatccaggagctggtcagaaccgcattgcgggttaagcttt-3' (SEQ ID No:36)               |
|                                  | Primer 17 | 5'-gggctcgagttagaagccgcaggagccctcca-3' (SEQ ID No:37)                         |
| SL335 <sub>Δds</sub> -hGH fusion | Primer 18 | 5'-agatccaggagctggtcagaaccgcgtcttcgggtccacgcgtt-3' (SEQ ID No:38)             |
|                                  | Primer 19 | 5'-agatccaggagctggtcagaaccgcattcgccgcgggttaagctttg-3' (SEQ ID No:39)          |

[88]

[89] 1-(10)-Generation of the SL335-GCSF fusion constructs

[90] The cloning procedures for generating the HcysGF/Lcys construct were as follow; Hcys was PCR amplified from the codon-optimized H chain of SL335 using a set of PCR primer #9 and #20 (5'-agatccaggagctggtcagaaccgcattcgccgcggtaagctttg-3' (SEQ ID NO: 40)), and the G-CSF containing a linker sequence was also PCR amplified from the codon-optimized G-CSF gene using a set of PCR primer #21 (5'-ggttctgcaccagctcctgatctgcgcctacctatgcgcgagca-3' (SEQ ID NO:41)) and #22 (5'-gggaagcttattaaggctgtgccagatggcgcag-3' (SEQ ID NO:42)). The Hcys and the G-CSF genes were linked together by assembly PCR using a set of PCR #9 and #22 primers, cut with *EcoR I/Hind III*, and cloned into pHEKA containing the L chain of SL335. To generate the LcysGF/Hcys construct, Lcys was PCR amplified from the codon-optimized L chain of SL335 using a set of PCR primer #11 and #23 (5'-agatccaggagctggtcagaaccgcattcgccgcggtaagcttt-3' (SEQ ID NO: 43)), and the G-CSF containing a linker sequence was also PCR amplified from the codon-optimized G-CSF gene using a set of PCR primer #21 and #24 (5'-taacagatctggccgcactcgagattaaggctgtgccagatggcgcag-3' (SEQ ID NO: 44)). The Lcys and G-CSF genes were linked by assembly PCR using a set of PCR primer #11 and #25 (5'-agatccaggagctggtcagaaccgcattcgccgcggtaagcttt-3' (SEQ ID NO: 45)), cut with *BamH I/Xho I* and cloned into pHEKA containing the Fd of SL335. To create the HserGF/Lser construct, Hser was PCR amplified from the codon-optimized Fd of SL335 using a set of PCR #9 and #25 primers. The Hser and the G-CSF genes were linked together by assembly PCR using a set of PCR #9 and #22 primers, cut with *EcoR I/Hind III*, and cloned into pHEKA containing Lser. To generate the LserGF/Hser construct, Lser was PCR amplified from the codon-optimized L chain of SL335 using a set of PCR primer #11 and #26 (5'-agatccaggagctggtcagaaccgcattcgccgcggtaagcttt-3(SEQ ID NO: 46)), and the G-CSF containing a linker sequence was also PCR amplified from the codon-optimized G-CSF gene using a set of PCR #21 and #24 primers. The Lcys and G-CSF genes were linked by assembly PCR using a set of PCR #11 and #25 primers, cut with *BamH I/Xho I* and cloned into pHEKA containing Hser. The PCR primers for preparing SL335-GCSH fusion constructs and SL335<sub>Δds</sub>-GCSF fusion constructs are shown in Table 3 below.

[91]

[92] Table 3

[Table 3]

PCR primers for SL335-GCSH or SL335<sub>Δds</sub>-GCSF fusion constructs

| Constructs                            | Primers   | Oligonucleotide sequence                                                   |
|---------------------------------------|-----------|----------------------------------------------------------------------------|
| SL335 <sub>wt</sub> -GCS<br>F fusion  | Primer 20 | 5'-agatccaggagctggcagaaccgcagcttcgggtccacgcgtt-3'<br>(SEQ ID No:40)        |
|                                       | Primer 21 | 5'-gggtctgcaccagctcctggatctgcgcctacctatgcgcgagca-3'<br>(SEQ ID No:41)      |
|                                       | Primer 22 | 5'-gggaagtttataaggctgtgccagatggcgcag-3' (SEQ ID<br>No:42)                  |
|                                       | Primer 23 | 5'-agatccaggagctggcagaaccgcattcgcgcggtaaagctctt-3'<br>(SEQ ID No:43)       |
|                                       | Primer 24 | 5'-taacagatctgcggccgcactcgagattaaggctgtgccagatggcgcag-3'<br>(SEQ ID No:44) |
| SL335 <sub>Δds</sub> -GC<br>SF fusion | Primer 25 | 5'-agatccaggagctggcagaaccgcgttcgggtccacgcgtt-3'<br>(SEQ ID No:45)          |
|                                       | Primer 26 | 5'-agatccaggagctggcagaaccgcattcgcgcggtaaagctcttg-3'<br>(SEQ ID No:46)      |

[93]

[94] 1-(11) Generation of the SL335-IFN-b fusion constructs

[95] The cloning procedures for generating the HcysIFNb/Lcys construct were as follow.

Hcys was PCR amplified from the codon-optimized H chain of SL335 using a set of primer #9 and #27 (5'-agatccaggagctggcagaaccgcagcttcgggtccacgcgtt-3' (SEQ ID NO: 47)), and the IFN-b containing a linker sequence was also PCR amplified from the codon-optimized IFN-b1a gene using a set of PCR primer #28 (5'- gggtctgcaccagctcctggatcttcataacaacctgctgggttcctg -3' (SEQ ID NO:48)) and #29 (5'- gggaagcttttagttgcgcagatgccggtcag -3' (SEQ ID NO:49)). Hcys and the IFN-b1a genes were linked together by assembly PCR using a set of PCR #9 and #29 primers, cut with EcoR I/Hind III, and cloned into the pHEKA containing Lcys. To create the HserIFN-b/Lser construct, Hser was PCR amplified from the codon-optimized H chain of SL335 using a set of PCR primer #9 and #30 (5'- agatccaggagctggcagaaccgcgttcgggtccacgcgtt -3' (SEQ ID NO:50)). Hser and the IFN-b 1a genes were linked together by assembly PCR using a set of PCR #9 and #29 primers, cut with EcoR I/Hind III, and cloned into the pHEKA containing Lser. The PCR primers for preparing SL334-IFNb fusion constructs and SL335<sub>Δds</sub>-IFNb fusion constructs are shown in Table 4 below.

[96]

[97] Table 4

[Table 4]

PCR primers for SL335-IFNb or SL335<sub>Δds</sub>-IFNb fusion constructs

| Constructs                                       | Primers   | Oligonucleotide sequence                                               |
|--------------------------------------------------|-----------|------------------------------------------------------------------------|
| SL335 <sub>Δds</sub> -IFNb and SL335-IFNb fusion | Primer 27 | 5'-agatccaggagctggtcagaaccgcagcttcgggtccacgcgtt-3' (SEQ ID NO: 47)     |
|                                                  | Primer 28 | 5'-ggttctgcaccagctcctggatcttcataacaacctgctgggttcctg-3' (SEQ ID NO: 48) |
|                                                  | Primer 29 | 5'-gggaaggcttttagttgcgcagatagccggtcag-3' (SEQ ID NO: 49)               |
|                                                  | Primer 30 | 5'-agatccaggagctggtcagaaccgcgtcttcgggtccacgcgtt-3' (SEQ ID NO: 50)     |

[98]

[99] 1-(12) Generation of the EGL4-hGH and the 1b28-hGH fusion constructs

[100] EGL4, a human anti-EGFR Fab, and 1b28, a human anti-IL-1b Fab, had been isolated from HuDVFab-8L antibody library (unpublished, AprilBio Co.). To create EGL4<sub>wt</sub> and EGL4<sub>Δds</sub>, Hcys and Hser were PCR amplified from the H chain gene of EGL4 cDNA using a set of PCR primer #5 and #6, and #5 and #31 (5'-gggaaggcttattaactagattgggctcaactctcttg-3' (SEQ ID NO: 51)), respectively. The ~750 bp PCR products were treated with *Eco*R I/*Hind* III and ligated with pHEKA, followed by transforming MC1061 competent cells. Lcys and Lser were also PCR amplified the L chain gene of EGL4 cDNA using a set of PCR primer #11 and #32 (5'-gggctcgagtttagcattgcgcgggttaagctcttt-3' (SEQ ID NO: 52)), and #11 and #33 (5'-gggctcgagtttagcttcgcgcgggttaagctcttt-3' (SEQ ID NO: 53)), respectively. They were cut with *Bam*H I/*Xho* I and cloned into the pHEKA containing Hcys or Hser of EGL4, respectively. To create the EGL4<sub>wt</sub>-hGH fusion construct, the cloning procedures for generating the HcysG/Lcys construct were as follow. Hcys was PCR amplified from the H chain of EGL4 cDNA using a set of PCR primer #5 and #34 (5'-agatccaggagctggtcagaaccacaagattgggctcaactcttgc-3' (SEQ ID NO: 54)), and the hGH containing a linker sequence was also PCR amplified from the codon-optimized hGH gene using a set of PCR #14 and #15 primers. The Hcys and the hGH genes were linked together by assembly PCR using a set of PCR #5 and #15 primers, cut with *Eco* R I/*Hind* III, and cloned into the pHEKA containing Lcys of EGL4. For creating the EGL4<sub>Δds</sub>-hGH fusion construct, Hser was PCR amplified from the H chain of EGL4 cDNA using a set of PCR primer #5 and #35 (5'-agatccaggagctggtcagaaccactagattgggctcaactcttgc-3' (SEQ ID NO: 55)), and the hGH containing a linker sequence was also PCR amplified from the codon-optimized

HGH gene using a set of PCR #14 and #15 primers. The Hser and the hGH genes were linked together by assembly PCR using a set of PCR #5 and #15 primers, cut with *Eco* R I/*Hind* III, and cloned into the pHEKA containing Lser of EGL4<sub>Δds</sub>. 1b28<sub>wt</sub>, 1b28<sub>Δds</sub>, 1b28<sub>wt</sub>-hGH and 1b28<sub>Δds</sub>-hGH were created as EGL4-hGH fusions using the same PCR primer sets except that 1b28 cDNA was served for PCR templates. The PCR primers for preparing EGL4-hGH and the 1b28-hGH fusion constructs are shown in Table 5 below,

[101]

[102] Table 5

[Table 5]

PCR primers for repaing EGL4-hGH and the 1b28-hGH fusion constructs

| Constructs                         | Primers      | Oligonucleotide sequence                                                     |
|------------------------------------|--------------|------------------------------------------------------------------------------|
| EGL4-hGH<br>and 1b28-hGH<br>fusion | Primer<br>31 | 5'-gggaagcttattaactagattgggctcaactctcttg - 3' (SEQ ID<br>NO. 51)             |
|                                    | Primer<br>32 | 5' -gggctcgagtttagcattcgccgcggtaaagctctt - 3' (SEQ ID<br>NO. 52)             |
|                                    | Primer<br>33 | 5' -gggctcgagtttagcttcgcgcggtaaagctctt - 3' (SEQ ID<br>NO. 53)               |
|                                    | Primer<br>34 | 5' - agatccaggagctggtgcagaaccacaagattgggctcaactcttgc<br>- 3' (SEQ IN NO. 54) |
|                                    | Primer<br>35 | 5' - agatccaggagctggtgcagaaccactagattgggctcaactcttgc<br>- 3' (SEQ ID NO. 55) |

[103]

[104] 1-(13) SDS-PAGE and western blot analyses

[105] For SDS-PAGE analysis, purified SL335<sub>wt</sub>-hGH and SL335<sub>Δds</sub>-hGH proteins were re-suspended in NuPAGE® LDS Sample Buffer (Invitrogen) with or without NuPAGE® Sample Reducing Agent (Invitrogen), and loaded onto the gel at 7 µg/well concentration. The protein bands were visualized by using Coomassie Blue staining (Bio-Rad). For the western blot analysis, 500 ng of affinity-purified SL335<sub>wt</sub>-hGH and SL335<sub>Δds</sub>-hGH were loaded onto each well as above, and transferred to nitrocellulose membrane. After blocking the membrane with 3% skimmed milk (Bio-Rad) in PBS containing 0.01% Tween (Sigma-Aldrich), proteins were detected by incubation with a goat anti-human kappa L chain pAb conjugated with AP (Bethyl). The nitro blue tetrazolium chloride (NBT)/5-bromo-4-chloro-3-indolyl phosphate (BCIP) substrate (Duchefa) was added onto the membrane to visualize the binding signals.

[106]

[107] 1-(14) Chip-based capillary electrophoresis

[108] Chip-based capillary electrophoresis was carried out with the Agilent 2100 Bio-analyzer system (Agilent Technologies, Santa Clara, CA, USA). The protein samples were prepared according to the manufacturers protocol and analyzed on the Protein 80 kit, which is recommended for the analysis of proteins between 5 to 80 kDa. Briefly, the samples were mixed with sample buffer in the presence or absence of DTT for reducing or non-reducing electrophoresis, respectively. The samples were denatured at 95°C and loaded on the chip which had been filled with proper reagents including the fluorescent dye and gel solution. The chip was then inserted into the system and run on the system using the Expert 2100 software. The results were plotted to reflect fluorescence intensity units against protein size.

[109]

[110] 1-(15) MALDI-TOF mass spectrometry

[111] MALDI-TOF mass spectrometry was performed on an Autoflex III Smartbeam device (Bruker Daltonics, Billerica, MA, USA). Sample was mixed with the same volume of MALDI matrix (10 mg/mL of a-cyano-4-hydroxycinnamic acid) and spotted on a MALDI target plate. External calibration was performed with a Peptide and Protein MALDI-MS Calibration Kit (Sigma-Aldrich). Mass spectra in the m/z range of 15000160000 and 1000070000 were acquired for SL335<sub>wt</sub>-hGH fusion and SL335<sub>Δds</sub> - hGH fusion, respectively, in the positive ion mode.

[112]

[113] 1-(16) In vitro hGH bioactivity assay

[114] Nb2-11 rat lymphoma cells (Sigma-Aldrich) were grown in complete DMEM supplemented with 5% horse serum (Sigma-Aldrich) and 1% PenicillinStreptomycin (Invitrogen) in a humidified 5% CO<sub>2</sub> incubator at 37°C (Tanaka *et al.*, 1980). The cells were washed two times with DMEM, centrifuged at 1,000 g for 5 min and resuspended in DMEM containing 5% (v/v) horse serum at 8 × 10<sup>4</sup> cells/ml. A 50 µg aliquot of the cell suspension was added to each well of 96-well plates, and incubated overnight. The cells were then treated with increasing concentrations (0 - 20 nM) of Growtropin® (a unmodified rhGH; Dong-A Pharmaceuticals, Seoul, South Korea) or SL335<sub>Δds</sub>-hGH in 50 ml DMEM containing 5% horse serum for 48 h at 37°C. Following the incubation, 10 µl of CCK-8 (Dojindo, Mashiki-machi, Japan) was added to each well, and incubated for 4 h. The absorbance was recorded on a microplate reader (Bio-Rad) at a wavelength of 450 nm.

[115]

[116] 1-(17) Serum stability of SL335Δds-hGH

[117] SL335<sub>wt</sub> and SL335<sub>Δds</sub>-hGH (10 µg/ml final concentration) were resuspended in fetal bovine serum (FBS) (Thermo Scientific, Waltham, MA, USA) containing 0.03%

sodium azide, and incubated for 16 days at 37°C. Small aliquots (50 ml) were taken every day and stored at -20°C before use. The binding reactivity to HSA was determined by ELISA, and the *in vitro* hGH bioactivity was measured using Nb2-11 cells(Sigma-Aldrich) as described above.

[118]

[119] 1-(18) *In vivo pharmacokinetics assay*

[120] The PK studies were performed at a certified CRO company (ChemOn, Suwon, South Korea). The animals were fed a standard diet of rodent pellets and water *ad libitum* and kept in a room of constant humidity and temperature with controlled lighting (12 h light followed by 12 h dark). Briefly, SL335 and Neg Fab (an irrelevant human Fab) were intravenously (I.V.) or subcutaneously (S.C.) injected separately into groups of three Sprague Dawley rats at 1 mg/kg, and serum samples were obtained at several time points (5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, 48 h, 96 h and 144 h for I.V., and 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, 48 h, and 96 h for S.C.). The concentration of SL335 and Neg Fab in the serum samples was measured by sandwich ELISA using the mouse anti-human IgG Fd mAb and the goat anti-human kappa L chain pAb conjugated with HRPO as a capture and detecting antibodies, respectively. Human Fab fragments of known concentration were also included in the assay to obtain a standard curve. Curves of serum concentration versus time were fitted for a noncompartment model using WinNonlin software (SL335 and Neg Fab) and plotted using Sigma Plot software. Similarly, Growtropin® and SL335<sub>Δds</sub>-hGH were intravenously or subcutaneously injected separately into group of three to four rats. The dosages of Growtropin® and SL335<sub>Δds</sub>-hGH for I.V. administration were 0.3 mg/kg, and for S.C. administration were 0.6 mg/kg, respectively. Serum samples were obtained at several time points (5 min, 15 min, 30 min, 1 h, 2 h, 3 h, 4 h, 6 h and 8 h for Growtropin® and 5 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, 48 h, 96 h and 144 h for SL335<sub>Δds</sub>-hGH. The amount of Growtropin® in the serum samples was measured using the hGH ELISA detection kit (Genway, San Diego, CA, USA), and that of SL335<sub>Δds</sub>-hGH was measured by sandwich ELISA as described above. A serum concentration versus time curve was fitted for a one compartment model using Phoenix™ WinNonlin software (Version 6.2).

[121]

[122] 1-(19) *In vivo pharmacodynamics assay*

[123] The ability of daily dosing of Growtropin® and once-weekly dosing of SL335<sub>Δds</sub>-hGH to promote weight gain was analyzed in hypophysectomized rats by using S.C. administration at ChemOn as previously described (see Clark et al., (1996) *J. Biol. Chem.* 271, 21969-21977). Briefly, young hypophysectomized Sprague Dawley rats (Harlan, Tokyo, Japan) were purchased, and any animal gaining more than 7 g over the

first 15 days following surgery was excluded from the study. The animals were randomized for five treatment groups (Excipient only, daily injection of 0.3 mg/kg Growtropin® and once-weekly injection of 0.6 mg/kg, 1.2 mg/kg or 2.4 mg/kg SL335<sub>Δds</sub>-hGH). The body weights were recorded daily after starting dosage regimen. The tibia bone growth was carefully measured with a bone caliper. Statistical comparisons were made using an analysis of variance followed by Dunnett's Multiple Comparison Test, and *p* values less than 0.05 were considered significant.

[124]

**[125] 2. Experimental results**

**[126] 2-(1) Isolation of anti-SA Fab clones**

[127] The HuDVFab-8L antibody library was selected against the magnetic beads conjugated with human SA, rat SA or mouse SA at pH 6 or pH 7.4. After three rounds of biopanning, a monoclonal phage ELISA was performed to identify the phage antibody clones that were specific for the antigens. More than 60 positive clones were identified by the ELISA (data not shown), and a DNA sequencing analysis of the V<sub>H</sub> and the V<sub>L</sub> genes identified eight discrete phage antibodies, termed SA138, SA139, SA140, SA141, SL18, SL301, SL310 and SL335, respectively. The binding reactivity of these clones to human SA, rat SA, mouse SA or bovine SA was confirmed by a monoclonal phage ELISA under pH 6 or pH 7.4 conditions (Fig. 1A & 1B). Three phage antibody clones, SA138, SA139 and SA141, were reactive only to human SA regardless of pH conditions. SA140 also recognized human SA only at pH 7.4, but its binding reactivity disappeared at pH 6. On the other hand, SL18, SL310 and SL335 bound to human SA, rat SA and mouse SA under both pH conditions with slightly different intensities. SL301 was significantly reactive to human SA and rat SA at both pH, and weakly to mouse SA at pH 7.4 only. None of eight Fab clones were reactive to bovine SA. SL18, SL301, SL310 and SL335 were further characterized because of their cross-reactivity to SAs from at least two different species. The Fd and the L chain genes of four phage antibody clones were subcloned into the pHEKA vector for periplasmic expression in *E. coli*, and the soluble Fab fragments were prepared from the culture supernatant or periplasmic extracts. After affinity purification, an ELISA was performed to compare the binding reactivity of these fragments to human SA, rat SA or mouse SA under pH 6 (Fig. 2A) and pH 7.4 conditions (Fig. 2B). HSA, RSA, MSA or BSA at 5 µg/ml concentrations was immobilized in each well of the microtiter plates, and four purified Fab molecules (SL18, SL301, SL310 and SL335) were allowed to bind to the antigens at pH 6.0 (Fig. 2A) or at pH 7.4 (Fig. 2B). The goat antihuman kappa L chain pAb HRPO conjugate was used as a secondary antibody. The binding signals were visualized using TMB substrate, and the absorbance at 450 nm was measured using an ELISA reader (Bio-Rad). The data represent the average

standard deviation of three experiments. In the human SA binding, the order of binding signals was SL335 > SL310 > SL301 > SL18 at both pH 6 and pH 7.4. In the rat SA binding, the order was SL335 > SL310 > SL301 > SL18 at pH 6, and SL335 = SL310 > SL301 = SL18 at pH 7.4. In the mouse SA binding, the order was SL18 > SL335 > SL310 at pH 6, and SL335 > SL310 > SL18 at pH 7.4. In accordance with Fig. 2, SL301 failed to bind to mouse SA at pH 6, yet very weakly at pH 7.4. SL335 was found to be the best binder among four the Fab clones to both human SA and rat SA regardless of the pH condition. SL335 bound to human SA at pH 6 twice as strongly than it did at pH 7.4 (50% binding signal at 20 ng/ml vs. 40 ng/ml), 20-fold stronger than to rat SA under the same pH condition (50% binding signal at 20 ng/ml vs. 400 ng/ml), and four-fold stronger than to rat SA at pH 7.4 (50% binding signal at 40 ng/ml vs. 160 ng/ml).

[128]

[129] 2-(2) Cross-reactivity and binding affinity of SL335

[130]

Since SL335 was the best binder among four anti-human SA Fab clones, its cross-reactivity was further analyzed by ELISA. Binding reactivity to human SA, rat SA and mouse SA was reproduced as shown in Fig. 2. It was also found that SL335 intensely recognized cynomolgus monkey SA and weakly bound to canine SA. However, SL335 did not recognize rabbit SA as well as other irrelevant antigens including EGFR, EpCAM, IL-15Ra, IL-1b, CD16a or c-MET. The binding affinities of SL335 to human SA, rat SA and mouse SA at pH 6 or pH 7.4 were further measured *via* biolayer interferometry by passing through different concentration of the antigens on biosensors that were coated with SL335 (see Table 6 below). The results correlated well with the ELISA data in Fig. 2 in that the dissociation constants of SL335 to HSA were 9 nM at pH 6 and 13 nM at pH 7.4, respectively, and those to RSA were 122 nM and 65 nM at pH 6 and pH 7.4, respectively. The binding affinities of SL335 for MSA were approximately 10 mM at pH 6 and 1.6 mM at pH 7.4, but these data were not included in Table 6 due to lack of reliability.

[131]

[132] Table 6

[Table 6]

Determination of binding affinity of SL335 and HserG/Lser by Biolayer interferometry binding assay

| Binde<br>r     | Antige<br>n | pH<br>condition | KD(M)    | K<br>on(1/Ms) | K<br>off(1/s) | Full R^2 | Chi2<br>values |
|----------------|-------------|-----------------|----------|---------------|---------------|----------|----------------|
| SL335          | HSA         | pH 6.0          | 8.68E-09 | 1.79E+05      | 1.55E-03      | 0.920807 | 0.479289       |
|                |             | pH 7.4          | 1.30E-08 | 1.17E+05      | 1.52E-03      | 0.966233 | 0.378597       |
|                | RSA         | pH 6.0          | 1.22E-07 | 4.71E+04      | 5.76E-03      | 0.882417 | 1.299042       |
|                |             | pH 7.4          | 6.53E-08 | 4.32E+04      | 2.82E-03      | 0.839612 | 2.718799       |
| HserG<br>/Lser | HSA         | pH 6.0          | 1.68E-09 | 5.00E+05      | 8.41E-04      | 0.951998 | 1.015294       |
|                |             | pH 7.4          | 1.51E-09 | 6.73E+05      | 1.02E-03      | 0.915507 | 0.652098       |
|                | RSA         | pH 6.0          | 4.99E-07 | 6.96E+04      | 3.47E-02      | 0.980042 | 0.214899       |
|                |             | pH 7.4          | 8.36E-08 | 9.33E+04      | 7.80E-03      | 0.836744 | 1.101016       |

[133] The binding kinetics and the dissociation kinetics were calculated using the Octet QK software package.

[134]

[135] 2-(3) In vivo pharmacokinetics of SL335

[136] Of all of the plasma proteins, HSA has an exceptionally long half-life through the FcRn-mediated recycling mechanism, and is commonly used as a fusion partner for extending the half-lives of therapeutic proteins. In addition, antibody fragments that are associated with serum albumin have been known to have an extended serum half-life. Thence, a pharmacokinetic analysis was performed to verify whether SL335 also has a long serum half-life. Human Fab with an unknown binding specificity was included as a negative control (Neg Fab). SL335 and Neg Fab were intravenously or subcutaneously injected separately into group of three rats at 1 mg/kg, and serum samples were collected at several time points (5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h, 48 h, 96 h and 144 h for I.V., and 5 min, 15 min, 30 min, 1 h, 2 h, 4 h, 8 h, 24 h,

48 h, and 96 h for S.C.). The concentration of SL335 and Neg Fab in the serum samples was measured by sandwich ELISA using the mouse anti-human IgG Fd mAb and the goat anti-human kappa L chain pAb conjugated with HRPO as a capture and detecting antibodies, respectively. Human Fab fragments of known concentration were also included in the assay to obtain a standard curve. Curves of serum concentration versus time were fitted for a one compartment model using WinNonlin software (SL335 and Neg Fab) and a two-compartment model using Sigma Plot software. In intravenous administration, the terminal half-life ( $t_{1/2}$ ) of SL335 was 37 h and its area under the curve ( $AUC_{0-\infty}$ ) was 187 h mg/ml, representing a ten-fold increase in the  $t_{1/2}$  and a 26-fold increase in  $AUC_{0-\infty}$  compared to Neg Fab (3.8 h and 7 h mg/ml, respectively) (Fig. 3A). The subcutaneous injection of SL335 produced similar measurements, including a nine-fold increase in  $t_{1/2}$  (120 h vs. 13 h) and a 44-fold increase  $AUC_{0-\infty}$  compared to Neg Fab (87 vs. 2 h mg/ml) (Fig. 3B). These results clearly showed an extended serum half-life of SL335, and implied that SL335 would not interfere with the interaction between RSA and FcRn in rats.

[137]

[138] *2-(4) Production of the SL335-hGH fusions*

[139] SL335 was used to create two SL335-hGH fusions and four additional SL335-hGH fusions by genetically fusing the recombinant hGH (27 - 191 aa) to the N- or C-terminus of the Fd or the L chain *via* a short peptide linker. Recombinant hGH cDNA (27 - 191 aa) was fused to the C-terminus of the H or L chain of SL335<sub>wt</sub> in a classic Fab form *via* a short peptide linker, resulting in construction of two fusion formats (HcysG/Lcys and LcysG/Hcys). Four additional fusion formats (HserG/Lcys, LserG/Hcys, HserG/Lser and LserG/Hser) were also constructed as above except for using SL335 in a null form (SL335<sub>null</sub>) or a ds Fab form (SL335<sub>Δds</sub>) of which Cys<sup>233</sup> at the C-terminal C<sub>H1</sub> and/or Cys<sup>214</sup> at the C-terminal C<sub>Lk</sub> were replaced with Ser. For periplasmic expression of the fusion proteins, the ompA (MKKTAIAIAVLAGFATVAQQA (SEQ ID No:56)) leader sequence was located at the upstream of the L chain or the L-hGH fusions, and the pelB leader sequence (MKYLLPTAAAGLLLLAAQPAMA (SEQ IN No:57)) was located at the upstream of the H chain or the H-hGH fusions. In these preliminary experiments, the genetic linking of hGH to the N-terminus of the Fd or the L chain resulted in low or no expression of soluble fusion proteins. The fusion of hGH to the C-terminus of the Fd also showed low expression yields, and seemed to interrupt the folding of the hGH domain probably due to aberrant disulfide bonding in the SL335-hGH fusion (data not shown). Previously, it had been reported that the removal of the interchain disulfide bond of a Fab by mutating the C-terminal Cys residues in the C<sub>H1</sub> and the C<sub>Lk</sub> (Cys<sup>233</sup> and Cys<sup>214</sup>, respectively) does not affect the levels of periplasmic production, stability upon ex-

traction and purification, serum stability or serum half-life (see Kabat *et al.*, (1991) *Sequences of Proteins of Immunological Interest*; Humphreys *et al.*, (1997) *J. Immunol. Methods*. 209, 193202; Humphreys *et al.*, (2007) *Protein Eng Des Sel.* 20, 227234.). By replacing both Cys<sup>233</sup> of the C<sub>H1</sub> and Cys<sup>214</sup> of the C<sub>Lk</sub> with serine (Cys<sup>233</sup> Ser<sup>233</sup> and Cys<sup>214</sup> Ser<sup>214</sup> substitutions), we tested whether these Cys residues in SL335 modulate the soluble expression and appropriate folding of SL335-hGH fusions. Fig. 4 illustrates six SL335-hGH fusion constructs. Other than SL335<sub>wt</sub> and SL335<sub>Δds</sub>, one more SL335 variant, termed SL335<sub>null</sub>, was also created by substituting either Cys<sup>233</sup> of the C<sub>H1</sub> or Cys<sup>214</sup> of the C<sub>Lk</sub>, with Ser to elucidate the effect of each cysteine residues (Cys<sup>233</sup> or Cys<sup>214</sup>) separately. Two SL335<sub>wt</sub> fusion derivatives were HcysG/Lcys (HCys<sup>233</sup>-hGH fusion paired with LCys<sup>214</sup>) and LcysG/Hcys (LCys<sup>214</sup>-hGH fusion paired with HCys<sup>233</sup>), two SL335<sub>null</sub> fusion derivatives were HserG/Lcys (HSer<sup>233</sup>-hGH fusion paired with LCys<sup>214</sup>) and LserG/Hcys (LSer<sup>214</sup>-hGH fusion paired with HCys<sup>233</sup>). Finally, two SL335<sub>Δds</sub> fusion derivatives were HserG/Lser (HSer<sup>233</sup>-hGH fusion paired with LSer<sup>214</sup>) and LserG/Hser (LSer<sup>214</sup>-hGH fusion paired with HSer<sup>233</sup>). These six SL335-hGH fusion constructs were expressed in the *E. coli* SUPEX5 host cells, the yields and HSA-binding reactivity of these six SL335-hGH fusion proteins in the culture supernatant were analyzed by ELISA. *E. coli* clones expressing SL335-hGH fusion proteins were grown under the identical conditions in the presence of IPTG, and culture supernatant was harvested by brief centrifugation. The concentration of soluble SL335-hGH fusions was measured by sandwich ELISA using the mouse anti-human Fd mAb as a capturing Ab and the goat anti-human kappa L chain pAb conjugated with HRPO was used as a detecting antibody (Fig. 5A). No soluble Fab forms were detected from LcysG/Hcys or LserG/Hcys. Although the data were not presented, the western blot using the *E. coli* cell lysates revealed that Cys<sup>233</sup> of the Fd were responsible for heavy degradation and no secretion of the Fd fragments probably due to protein aggregation. The yield of HcysG/Lcys was 0.5  $\mu$ g/ml, and those of HserG/Lcys and LserG/Hser were approximately 1.8  $\mu$ g/ml and 1.4  $\mu$ g/ml, respectively (Fig. 5A). Interestingly, the yield of HserG/Lser was about 4  $\mu$ g/ml which was eight-fold higher than that of HcysG/Lcys. The periplasmic extracts showed the identical expression pattern, although the total yields were only ~30% to those present in the culture supernatant (data not shown). In the repeated experiments, it was confirmed that the difference in the yields between HcysG/Lcys and HserG/Lser was independent of the clonal variation or growth rate of the *E. coli* clones. The binding reactivity of SL335-hGH fusions to HSA were compared using the microtiter plates coated with 5  $\mu$ g/ml HSA, and incubated with the serial dilutions of the culture supernatant containing SL335-hGH fusions. SL335-hGH fusions bound to HSA were then detected using the goat anti-human kappa L chain pAb conjugated with HRPO. As expected,

the detection of HserG/Lser that bound to HSA with the anti-human κL pAb produced an eight-fold stronger binding signal than that of HcysG/Lcys and approximately four-fold stronger binding signal than those of HserG/Lcys and LserG/Hser (Fig. 5B). Similar binding signal patterns were also observed when T-20, a goat pAb specific for the C-terminus of the hGH was used to detect the SL335-hGH fusions (Fig. 5C). In the detection with NYThGH, a mouse mAb specific for full-length hGH, however, HserG/Lser produced a 30-fold higher binding signal than those of both HserG/Lcys and LserG/Hser and 60-fold higher binding signal than that of HcysG/Lcys (Fig. 5D), suggesting that the binding of NYThGH to the hGH domain of HcysG/Lcys was interfered by the presence of the interchain disulfide bond in SL335. Since HcysG/Lcys and HserG/Lser represent the utilization of SL335<sub>wt</sub> and SL335<sub>Δds</sub> for creating the SL335-hGH fusions, they were named as SL335<sub>wt</sub>-hGH fusion and SL335<sub>Δds</sub>-hGH fusion, respectively, hereafter (Fig 5).

[140] To determine the high yield of soluble SL335<sub>Δds</sub>-hGH fusion was dependent upon removal of the interchain disulfide bond in SL335, host *E. coli* strains or induction temperature, SL335<sub>wt</sub>, SL335<sub>Δds</sub>, SL335<sub>wt</sub>-hGH fusion and SL335<sub>Δds</sub>-hGH fusion were expressed in the parental MC1061 as well as the mutant SUPEX5 cells at 20°C (Fig. 6A), 25°C (Fig. 6B) or 30°C (Fig. 6C) and the amount of Fab molecules in the culture supernatant was measured by ELISA. The yield of SL335<sub>wt</sub> expressed in the MC1061 strain was 1 μg/ml at 20°C, which was about three-fold higher than that at 25°C and 30°C. This implied induction of SL335<sub>wt</sub> below 25°C is advantageous especially when MC1061 was used as a host strain. Similar results were also obtained with the SUPEX5 strain. In the case of SL335<sub>Δds</sub>, the yield was about 1.3 μg/ml at 20°C regardless of the host *E. coli* strains and induction temperature. These results indicated that the presence or absence of the interchain disulfide bond in a Fab did not significantly influence the yield of soluble Fab production at 20°C regardless of the *E. coli* host strains. The yield of SL335<sub>wt</sub>-hGH fusion was about 0.3 - 0.5 μg/ml regardless of the host *E. coli* strains and induction temperature. On the other hand, the yield of SL335<sub>Δds</sub>-hGH fusion expressed in the MC1061 strain was 1.8 μg/ml at both 20°C and 25°C, and 1.5 μg/ml at 30°C, showing minor temperature-dependency, whereas, the yield of SL335<sub>Δds</sub>-hGH fusion expressed in the SUPEX5 strain was 4.0 μg/ml at both 20°C and 25°C, and 3.5 μg/ml at 30°C. These results meant that utilization of the SL335<sub>Δds</sub> form and the *E. coli* SUPEX5 strain enabled about 12-fold higher yield of the SL335-hGH fusion protein compared to the combination of the SL335<sub>wt</sub> form and the *E. coli* MC1061 strain.

[141]

[142] 2-(5) Generation of the SL335-GCSF, SL335-IFNb, EGL4-hGH and 1b28-hGH fusion constructs

[143] To demonstrate the beneficial effect of a  $\text{Fab}_{\Delta\text{ds}}$  form and the SUPEX5 strain on improving soluble expression of a Fab-effector fusion protein, diverse Fab-effector fusion constructs were generated. First, two SL335-GCSF fusion variants (HcysGCSF/Lcys that termed as  $\text{SL335}_{\text{wt}}\text{-GCSF}$ , HserGF/Lser that termed as  $\text{SL335}_{\Delta\text{ds}}\text{-GCSF}$ ) and two SL335-IFNb fusion variants (HcysIFNb/Lcys that termed as  $\text{SL335}_{\text{wt}}\text{-IFNb}$ , HserIFNb/Lser that termed as  $\text{SL335}_{\Delta\text{ds}}\text{-IFNb}$ ) were created as the same way as generating  $\text{SL335}_{\text{wt}}\text{-hGH}$  and  $\text{SL335}_{\Delta\text{ds}}\text{-hGH}$  fusions to determine the influence of an effector domain. Induction temperature was set to optimal 20°C and the expression yields of these fusion proteins in the *E. coli* culture supernatant were compared by ELISA. The yields of  $\text{SL335}_{\text{wt}}\text{-GCSF}$  were 0.3 and 0.6 mg/ml in MC1061 and SUPEX5, respectively, and those of  $\text{SL335}_{\Delta\text{ds}}\text{-GCSF}$  were 0.6 and 1.5 mg/ml in MC1061 and SUPEX5, respectively (Fig. 7A). Whereas, the yield of  $\text{SL335}_{\text{wt}}\text{-IFNb}$  was approximately 0.16 mg/ml in both MC1061 and SUPEX5, and those of  $\text{SL335}_{\Delta\text{ds}}\text{-IFNb}$  were 0.2 and 0.5 mg/ml in MC1061 and SUPEX5, respectively (Fig. 7B). Therefore, the combination of  $\text{SL335}_{\Delta\text{ds}}\text{-GCSF}$  fusion and SUPEX5 strain produced about 5-fold higher yield of a SL335-GCSF fusion form compared to the combination of  $\text{SL335}_{\text{wt}}\text{-GCSF}$  fusion and the MC1061 strain, and the combination of  $\text{SL335}_{\Delta\text{ds}}\text{-IFNb}$  fusion and SUPEX5 strain produced about 3-fold higher amount of a SL335-IFNb fusion form compared to the combination of  $\text{SL335}_{\text{wt}}\text{-IFNb}$  fusion and the MC1061 strain. Second, we also created two Fab-hGH fusion constructs using EGL4, a human anti-EFGR Fab, and 1b28, a human anti-IL-1b Fab to determine the influence of a Fab. As the same way as generating  $\text{SL335}_{\text{wt}}\text{-hGH}$  and  $\text{SL335}_{\Delta\text{ds}}\text{-hGH}$  fusions, the two EGL4-hGH fusion constructs were EGL4<sub>wt</sub>-hGH fusion in the HcysG/Lcys format and EGL4<sub>Δds</sub>-hGH fusion in the HserG/Lser format. Likewise, the 1b284-hGH fusion constructs were 1b28<sub>wt</sub>-hGH fusion in the HcysG/Lcys format and 1b28<sub>Δds</sub>-hGH fusion in the HserG/Lser format. The yield of EGL4<sub>wt</sub>-hGH fusion was 8090 ng/ml in the MC1061 and SUPEX5 strains, and the yields of EGL4<sub>Δds</sub>-hGH fusion were 140 ng/ml in the MC1061 strain and 220 ng/ml in the SUPEX5 strain (Fig. 8A), indicating that the combination of EGL4<sub>Δds</sub>-hGH fusion and the SUPEX5 host cell produced 2.4-fold higher amount of a EGL4-hGH fusion protein in the culture supernatant compared to the combination of EGL4<sub>wt</sub>-hGH fusion and the MC1061 host cell. In the case of the 1b28-hGH fusion constructs, the yield of 1b284<sub>wt</sub>-hGH fusion was 50 ng/ml in the MC1061 and 100 ng/ml SUPEX5 strains, respectively, and the yields of 1b28<sub>Δds</sub>-hGH fusion were 900 ng/ml in the MC1061 strain and 4 mg/ml in the SUPEX5 strain (Fig. 8B), indicating that the combination of 1b28<sub>Δds</sub>-hGH fusion and the SUPEX5 host cell produced 800-fold higher amount of a 1b28-hGH fusion form in the culture supernatant compared to the combination of 1b28<sub>wt</sub>-hGH fusion and the MC1061 host cell.

[144]

[145] 2-(6) Molecular Characterization of SL335<sub>wt</sub>-hGH and SL335<sub>Δds</sub>-hGH

[146] SL335<sub>wt</sub>-hGH and SL335<sub>Δds</sub>-hGH fusions were further characterized at the molecular level. The fusion proteins in the culture supernatant were affinity-purified by passing through the resins coated with HSA, and analyzed by SDS-PAGE and western blot under the reducing and non-reducing conditions. HcysG/Lcys (lane 1) and HserG/Lser (lane 2) were affinity-purified from the culture supernatant with HSA-immobilized sepharose beads, and SDS-PAGE was carried out using 4-12% Bis-Tris gel under the reducing or non-reducing condition. Protein bands were visualized with Coomassie Blue staining (Fig. 9A). The proteins of the separate SDS-PAGE were transferred to nitrocellulose membrane, and the goat anti-human kappa L Ab-conjugated with AP was used to detect Lcys and Lser (Fig. 9B). The binding signals were visualized with a NBT/BCIP substrate. In SDS-PAGE analysis, both SL335<sub>wt</sub>-hGH and SL335<sub>Δds</sub>-hGH produced two major protein bands at 46kDa and 23kDa in size which correspond to the Fd-hGH fusions and the L chains, respectively, under the reducing conditions. Under the non-reducing conditions, SL335<sub>Δds</sub>-hGH expectedly produced two identical protein bands due to the absence of an interchain disulfide bond. In the case of SL335<sub>wt</sub>-hGH, a major 70 kD a protein band which corresponds to a correct heterodimeric form of SL335<sub>wt</sub>-hGH was visible. Yet, many different size of SL335<sub>wt</sub>-hGH derivatives were also found, including four obvious protein bands ranging from 24 kDa to 45 kDa of unknown identity and a couple of weak protein bands corresponding to 100 kDa and 135 kDa in size. The proteins at 15 kDa and 12.5 kDa in size were also visible from all of the samples. Western blot analysis was then performed using an anti-human Fd mAb, the anti-kappa L chain pAb and the anti-hGH pAb, T-20. The blot with the anti-human Fd mAb detected only HcysG and HserG of 46 kDa in size under both non-reducing and reducing conditions (data not shown). On the other hand, four protein bands ranging from 24 kDa to 45 kDa as well as those larger than 70 kDa in the SL335<sub>wt</sub>-hGH sample were all detected by the anti-kappa L chain pAb under the non-reducing condition (Fig. 9B). This result indicated that Cys<sup>214</sup> of the L chain is responsible for the formation of the diverse multimeric L chains, at least, *via* aberrant disulfide bond formations. The blot with T-20 anti-hGH pAb correctly recognized the 70 kDa heterodimeric form of SL335<sub>wt</sub>-hGH and the ~ 45 kDa monomeric HerG of SL335<sub>Δds</sub>-hGH under the non-reducing condition (Fig. 9C). The proteins at 15 kDa and 12.5 kDa in size were not detected by any of those antibodies, suggesting that they were either the degraded products from the fusions or the contaminants from *E. coli* host proteins.

[147]

A chip-based capillary electrophoresis confirmed the SDS-PAGE analysis. HcysG/Lcys (Fig. 10A) and HserG/Lser (Fig. 10B) were prepared with sample buffer in the presence or absence of DTT for reducing or non-reducing electrophoresis, and chip-

based capillary electrophoresis was carried out with the Agilent 2100 Bioanalyzer system according to the manufacturers protocol using the Protein 80 kit. The results were plotted to reflect fluorescence intensity units against protein size. SL335<sub>wt</sub>-hGH produced several SL335<sub>wt</sub>-hGH derivatives ranging from 27.1 kDa to 52.4 kDa in size under the non-reducing condition, and many of them disappeared under the reducing condition in the presence of DTT (Fig. 10A). SL335<sub>Δds</sub>-hGH produced almost identical protein peaks between the non-reducing and reducing conditions except for minor changes in molecular weights (Fig. 10B).

[148] SL335<sub>wt</sub>-hGH and SL335<sub>Δds</sub>-hGH were further analyzed using MALDI-TOF mass spectrometry. MALDI-TOF mass spectrometry was performed on an Autoflex III Smartbeam device (Bruker Daltonics, Billerica, MA, USA). Affinity-purified HcysG/Lcys (Fig. 11A) and HserG/Lser (Fig. 11B) were mixed with the MALDI matrix, and spectra were acquired over the m/z range 10000 - 150000 Da in the positive ion mode. Mass spectra in the m/z range of 10000 - 70000 were acquired for SL335<sub>Δds</sub>-hGH. For SL335<sub>wt</sub>-hGH, those of 15000 - 160000 were obtained because the SL335<sub>wt</sub>-hGH sample showed the protein bands larger than 70 kDa as shown in Fig. 8A. Molecular masses of Lcys, HcysG and SL335<sub>wt</sub>-hGH were identified as 23,226 Da, 46226 Da and 69,837 Da, respectively (Fig. 11A). The size of three discrete proteins those are bigger than the correct SL335<sub>wt</sub>-hGH were found to be 92,824 Da, 117,455 Da and 139,347 Da. In the case of SL335<sub>Δds</sub>-hGH, molecular masses of Lser and HserG were identified as 23,334 Da and 46,667 Da, respectively (Fig. 11B). The low peak of HserG compared to Lser might represent lower ionizing efficiency of larger molecules, or the presence of lower molar ratio of HserG than Lser in the sample.

[149] Affinity-purified SL335<sub>Δds</sub>-hGH was further purified by passing through SephadrylS-200HR column using FPLC. Gel filtration of HserG/Lser was performed after affinity purification using Sephadryl™ S-200HR Prepacked Column and AKTA FPLC (GE Healthcare, Wauwatosa, WI, USA). The column was equilibrated with equilibration buffer (20 mM HEPES pH 7.4 containing 150 mM NaCl), and loaded with affinity-purified HserG/Lser. Elution was performed with equilibration buffer at 0.5 ml/min running flow rate. Arrows indicate the fractions chosen for SDS-PAGE analysis (Fig. 12A). Fraction #13, #16, #19 and #23 that retrieved from two distinctive peaks were analyzed by 4-12% Bis-Tris gel under the reducing condition (Fig. 12B). Protein bands were visualized with Coomassie Blue staining. Two peaks that correspond to approximately 66 kDa and 25 kDa were visible from the fraction #12 to #27 (Fig. 9A). Thence, four fractions (fraction #13, #16, #19 and #23) were analyzed by SDS-PAGE under the reducing condition to determine protein contents in the fractions (Fig. 9B). The results showed that the fractions from the 66 kDa peak (fraction #13, #16 and #19) contained the heterodimeric SL335<sub>Δds</sub>-hGH, and the fraction from the 25 kDa peak

(fraction #23) mainly contained the monomeric Lser.

[150]

[151] 2-(7) *In vitro* functional characterization of SL335<sub>Δds</sub>-hGH

[152] To determine whether removal of an interchain disulfide bond in SL335<sub>wt</sub> and the fusion of the hGH affect binding affinities to HSA or RSA, a biolayer interferometry assay was performed using SL335<sub>Δds</sub>-hGH under pH 6 and pH 7.4 conditions (see the Table 6 below). The dissociation constants of SL335<sub>Δds</sub>-hGH to HSA were 1.7 nM at pH 6 and 1.5 nM at pH 7.4, showing a five-fold and an 8.7-fold increase of affinity compared to those of SL335, respectively. The dissociation constants to RSA were 499 nM and 83.6 nM under pH 6 and pH 7.4, showing a 4.2-fold and a 1.3-fold decrease of affinity compared with those of SL335, respectively.

[153] The *in vitro* hGH activity of SL335<sub>ds</sub>-hGH was also measured using the Nb2-11 rat lymphoma cells that proliferate upon hGH treatment in a concentration-dependent manner. Nb2-11 rat lymphoma cells were resuspended in DMEM containing 5% (v/v) horse serum at  $8 \times 10^4$  cells/ml, and a 50  $\mu\text{l}$  aliquot of the cell suspension was added into each well of the 96-well plates, followed by overnight incubation. The cells were then treated with increasing concentrations of Growtropin® or HserG/Lser (0 - 20 nM) in 50 ml DMEM containing 5% horse serum for 48 h at 37°C. Following incubation, 10  $\mu\text{l}$  of CCK-8 solution was added to each well, and cells were incubated for 4 h. The absorbance was recorded on a microplate reader at a wavelength of 450 nm. The data represent the average SD of three experiments. In the absence of HSA, SL335<sub>Δds</sub>-hGH was able to stimulate the growth of Nb2-11 with an apparent EC<sub>50</sub> of 50 pM (3.5 ng/ml) (Fig. 13A). This value is 6.7-fold less potent than that of Growtropin®, the rhGH standard (7.5 pM). In the presence of 10 mM HSA, the respective potencies of Growtropin® and SL335<sub>Δds</sub>-hGH were largely unaffected, although SL335<sub>Δds</sub>-hGH represented an approximately five-fold reduction in potency compared to that of Growtropin® (Fig. 13B). SL335 that was used as a negative control did not show any proliferative effect. These results clearly demonstrated a functional hGH bioactivity of SL335<sub>Δds</sub>-hGH.

[154] The serum stability was then determined by incubating SL335<sub>Δds</sub>-hGH at 37°C for 16 days. FBS was used instead of human serum for resuspending the samples because the binding capabilities of SL335<sub>Δds</sub>-hGH and SL335 to HSA in human serum would complicate the subsequent experiments. Samples were collected once a day, and the HSA-binding reactivity and *in vitro* bioactivity were measured by ELISA (Fig. 14A) and the Nb2-11 cell proliferation assay (Fig. 14B), respectively. SL335 was also included as a control. Similar to SL335, the binding reactivity to HSA and the Nb2-11 proliferative activity of SL335<sub>Δds</sub>-hGH did not change even after 16 days of incubation at 37°C, demonstrating that SL335<sub>Δds</sub>-hGH is as stable as SL335 despite the absence of

the interchain disulfide bond.

[155]

[156] 2-(8) Pharmacokinetics and pharmacodynamics studies in rats

[157] Because SL335<sub>Δds</sub>-hGH was shown to be a promising candidate for a long-acting hGH, *in vivo* efficacy studies were performed. Firstly, the pharmacokinetics of Growtropin® and SL335<sub>Δds</sub>-hGH were compared in rats by measuring serum levels of each analog as a function of time after a single intravenous or subcutaneous injection. Each group of rats (four in a group) was given subcutaneous injection (Fig. 15A) of a single bolus dose of 0.6mg/kg of Growtropin or SAFAtrypin, or intravenous injection (Fig. 15B) of a single bolus dose of 0.3mg/kg of Growtropin or SAFAtrypin. Serum samples were taken over intervals extending to 144h depending upon the protein. Serum samples were analyzed at indicated times for Growtropin® or SAFAtrypin® by an ELISA as described above. The pharmacokinetic parameters are shown in Table 7.

[158]

[159] Table 7

[Table 7]

Pharmacokinetic parameters in rats given a single intravenous or subcutaneous injection of Growtropin or SAFAtrypin

|      |            | $t_{1/2}$ (h) | Cmax (ng/ml)  | $AUC_{0 \rightarrow \infty}$ (h ng/ml) | Cl/f (ml/hr/kg) |
|------|------------|---------------|---------------|----------------------------------------|-----------------|
| I.V. | Growtropin | 0.23±0.05     | 5168.69±61.32 | 1759.97±145.03                         | 171.04±13.66    |
|      | SAFAtrypin | 16.6±1.5      | 882.2±81.8    | 19580.3±999.3                          | 15.34±0.76      |
| S.C  | Growtropin | 1.35±0.13     | 283.42±28.84  | 821.8±52.56                            | 714.79±45.63    |
| .    | SAFAtrypin | 97.16±30.86   | 83.2±23.12    | 7689.4±2640.71                         | 56.11±25.39     |

[160] Values shown are averages standard deviation. Abbreviations are as follow: Cmax: maximum concentration;  $t_{1/2}$ : terminal half-life;  $AUC_{0 \rightarrow \infty}$ : area under the concentration-time curve extrapolated to infinity; Cl/f: apparent total plasma clearance.

[161] SL335<sub>Δds</sub>-hGH showed dramatically extension of the  $t_{1/2}$  irrespective of the route of administration. In intravenous administration, SL335<sub>Δds</sub>-hGH represented an 83-fold increase in the  $t_{1/2}$  compared to Growtropin (16.6 h vs. 0.2 h) and a 69-fold increase in the subcutaneous administration (97.2 h vs. 1.4 h).

[162] SL335<sub>Δds</sub>-hGH also exhibited a ~ 10-fold increase in  $AUC_{0 \rightarrow \infty}$  and a more than

10-fold slower clearance rate (Cl/f) compared to those of Growtropin® regardless of the route of administration. Each group of rats (four in a group) was given subcutaneous injection of a single bolus dose of 0.6 mg/kg of Growtropin or SAFAtrypin, or intravenous injection of a single bolus dose of 0.3 mg /kg of Growtropin or SAFAtrypin. Serum samples were taken over intervals extending to 144 h depending upon the protein. Serum samples were analyzed at indicated times for Growtropin® or SAFAtrypin® by an ELISA as described above. Interestingly, the  $C_{max}$  values of SL335<sub>Δds</sub>-hGH were 6-fold and 3-fold lower than those of Growtropin® depending on the route of administration.

[163] Next, the growth rates of hypophysectomized rats were compared over ten days after daily S.C. administration of Growtropin® or an excipient buffer control (Excipient only), or once-weekly S.C. administration of SL335<sub>Δds</sub>-hGH. Hypophysectomized rats were treated with Excipient only or 0.3 mg/kg Growtropin® daily, or with increasing dose of SAFAtrypin® on days 0 and 7 (Fig. 16). Solid lines indicate the mean percentage change in body weight. Error bars represent standard deviation. The excipient-treated rats showed an approximately 5% weightloss. Whereas, those receiving daily injection of Growtropin® (0.3 mg/kg) showed a 5% weight gain, resulting in a total 10% weight gain over the Excipient Only group. Once-weekly injections of SL335<sub>Δds</sub>-hGH produced dose-dependent weight gains in that the 2.4 mg/kg dosage produced a 15% weight gain, and the 0.6 mg/kg dosage produced a 3.5 % weight gain. An equimolar SL335<sub>Δds</sub>-hGH (1.2 mg/kg) dosage regimen resulted in a 5% weight gain which was comparable to that obtained by daily injections of Growtropin®.

[164] Fig. 17 shows that the once-weekly administration of 0.6 mg/kg SL335<sub>Δds</sub>-hGH achieved equivalent increases in tibia length as those achieved by the daily administration of Growtropin®. Solid bars indicate the mean of measured tibia bone length. Error bars represent standard deviation.

[165]

### **Industrial Applicability**

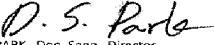
[166] The present invention would be used to develop bioactive protein or polypeptide therapeutic agents, since the fusion constructs of the invention can be prepared to comprise various types of effector moieties including human growth hormone, interferon, erythropoietin, colony stimulating factors or derivatives therof, and antibody derivatives, etc.

[167]

[168] The teachings of all patents, published applications and references cited herein are incorporated by reference in their entirety.

[169]

[170]


BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT  
OF MICROORGANISMS FOR THE PURPOSE OF PATENT PROCEDURE

INTERNATIONAL FORM

**RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT**

issued pursuant to Rule 7.1

TO : **CHA, Sang Hoon**  
ApriBio Co. Ltd.  
1, Kangwondaejak-gil, Chuncheon-si, Gangwon-do 200-701  
Republic of Korea

|                                                                                                                                                                                                                                     |                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>I. IDENTIFICATION OF THE MICROORGANISM</b>                                                                                                                                                                                       |                                                                                                                                                      |
| Identification reference given by the DEPOSITOR:                                                                                                                                                                                    | Accession number given by the INTERNATIONAL DEPOSITORY AUTHORITY:                                                                                    |
| <i>Escherichia coli SUPEX5</i>                                                                                                                                                                                                      | <b>KCTC 12657BP</b>                                                                                                                                  |
| <b>II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION</b>                                                                                                                                                             |                                                                                                                                                      |
| The microorganism identified under I above was accompanied by:<br><input checked="" type="checkbox"/> a scientific description<br><input type="checkbox"/> a proposed taxonomic designation<br>(Mark with a cross where applicable) |                                                                                                                                                      |
| <b>III. RECEIPT AND ACCEPTANCE</b>                                                                                                                                                                                                  |                                                                                                                                                      |
| This International Depository Authority accepts the microorganism identified under I above, which was received by it on <b>August 20, 2014</b> .                                                                                    |                                                                                                                                                      |
| <b>IV. RECEIPT OF REQUEST FOR CONVERSION</b>                                                                                                                                                                                        |                                                                                                                                                      |
| The microorganism identified under I above was received by this International Depository Authority on _____ and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on _____        |                                                                                                                                                      |
| <b>V. INTERNATIONAL DEPOSITORY AUTHORITY</b>                                                                                                                                                                                        |                                                                                                                                                      |
| Name: <b>Korean Collection for Type Cultures</b>                                                                                                                                                                                    | Signature(s) of person(s) having the power to represent the International Depository Authority or authorized official(s):                            |
| Address: Korea Research Institute of<br>Bioscience and Biotechnology (KRIIBB)<br>125 Gwahak-ro, Yuseong-gu,<br>Daejeon 305-806<br>Republic of Korea                                                                                 | <br><b>PARK, Doo Sang, Director</b><br>Date: <b>August 21, 2014</b> |

Form IBM4 (KCTC Form 17)

1 of 1 page

## Claims

[Claim 1] An antigen binding fragment (Fab) to a serum albumin (SA), wherein the Fab comprises,  
(a) a heavy chain variable domain ( $V_H$  domain) having the amino acid sequence selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 2, SEQ ID NO. 3, SEQ ID NO. 4, SEQ ID NO. 5 and SEQ ID NO. 6; and  
(b) a light chain variable domain ( $V_L$  domain) having the amino acid sequence selected from the group consisting of SEQ ID NO. 7, SEQ ID NO. 8, SEQ ID NO. 9, SEQ ID NO. 10, SEQ ID NO. 11 and SEQ ID NO. 12, wherein the Fab binds specifically to serum albumin.

[Claim 2] An antigen binding fragment (Fab) binding to a serum albumin (SA), wherein the Fab comprises,  
(a) the amino acid sequences of SEQ ID NOS. 13 (CDR1), 14 (CDR2) and 15 (CDR15) determining the CDRs of  $V_H$  domain; and  
(b) the amino acid sequences of SEQ ID NOS. 16 (CDR1), 17 (CDR2) and 18 (CDR3) determining the CDRs of  $V_L$  domain.

[Claim 3] The Fab according to claim 2, wherein the  $V_H$  domain is bound to the heavy chain constant 1 domain ( $C_{H1}$  domain), and  $V_L$  domain is bound to light chain constant domain ( $C_{kL}$  domain).

[Claim 4] The Fab according to claim 3, wherein the  $V_H$  domain has the amino acid sequence of SEQ ID NO. 6 and the  $V_L$  domain has the amino acid sequence of SEQ ID NO. 12.

[Claim 5] The Fab according to any one of claims 1 to 4, wherein the amino acid of Cystein of  $C_{H1}$  domain and  $C_{kL}$  domain are deleted or substituted with any other amino acid residues, including serine, except for cysteine.

[Claim 6] The Fab according to claim 5, wherein the amino acid of Cystein of  $C_{H1}$  domain is the 233<sup>th</sup> amino acid starting from the N-terminus of the  $C_{H1}$  domain, and the Cystein of  $C_{kL}$  domain is the 214<sup>th</sup> amino acid starting from the N-terminus of the  $C_{kL}$  domain.

[Claim 7] A fusion construct of an antigen binding fragment (Fab) and a bioactive effector moiety, wherein the amino acid of Cystein of  $C_{H1}$  domain and the amino acid of Cystein of  $C_{kL}$  domain of the Fab are deleted or substituted with any other amino acid residue, including serine, except for cysteine; and wherein the bioactive effector moiety is a protein or a (poly)peptide; and wherein the Fab and the bioactive effector moiety

are covalently linked by genetic fusion.

[Claim 8]

A fusion construct of the antigen binding fragment (Fab) of any one of claims 1 to 6 and a bioactive effector moiety; wherein the bioactive effector moiety is a protein or a (poly)peptide; and wherein the Fab and the bioactive effector moiety are covalently linked by genetic fusion.

[Claim 9]

The fusion construct according to claim 7 or claim 8, wherein the Fab and the bioactive effector moiety are covalently linked by genetic fusion using a peptide linker of 0 to 20 amino acids.

[Claim 10]

The fusion construct according to any one of claims 7 to 9, wherein the bioactive effector moiety is one selected from the group consisting of hormone, cytokine, enzyme, antibody, growth factor, transcription factor, blood factor, vaccine, structure protein, ligand protein, and receptor.

[Claim 11]

The fusion construct according to claim 7 to 9, wherein the bioactive effector moiety is one selected from the group consisting of human growth hormone(hGH), growth hormone releasing hormone (GHRH), growth hormone releasing peptide, interferons, interferon receptors, colony stimulating factors (CSFs), glucagon-like peptides, G-protein-coupled receptor, interleukins, interleukin receptors, enzymes, interleukin binding proteins, cytokine binding proteins, macrophage activating factor, macrophage peptide, B cell factor, T cell factor, protein A, allergy inhibitor, cell necrosis glycoproteins, immunotoxin, lymphotoxin, tumor necrosis factor, tumor suppressors, metastasis growth factor, alpha-1 antitrypsin, albumin, alpha-lactalbumin, apolipoprotein-E, erythropoietin, highly glycosylated erythropoietin, angiopoietins, hemoglobin, thrombin, thrombin receptor activating peptide, thrombomodulin, factor VII, factor VIIa, factor VIII, factor IX, factor XIII, plasminogen activating factor, fibrin-binding peptide, urokinase, stromokinase, hirudin, protein C, C-reactive protein, renin inhibitor, collagenase inhibitor, superoxide dismutase, leptin, platelet-derived growth factor, epithelial growth factor, epidermal growth factor, angiostatin, angiotensin, bone growth factor, bone stimulating protein, calcitonin, insulin, atriopeptin, cartilage inducing factor, elcatonin, connective tissue activating factor, tissue factor pathway inhibitor, follicle stimulating hormone, luteinizing hormone, luteinizing hormone releasing hormone, nerve growth factors, parathyroid hormone, relaxin, secretin, somatomedin, insulin-like growth factor, adrenocortical hormone, glucagon, cholecystokinin, pancreatic polypeptide, gastrin

releasing peptide, corticotropin releasing factor, thyroid stimulating hormone, autotaxin, lactoferrin, myostatin, receptors, receptor antagonists, cell surface antigens, virus derived vaccine antigens, monoclonal antibodies, polyclonal antibodies, and antibody fragments.

[Claim 12] The fusion construct according to claim 11, wherein the bioactive effector moiety is hGH, GCSFs, or IFNs.

[Claim 13] The fusion construct according to any one of claims 7 to 12, wherein the molar ratio of the bioactive (poly)peptide (or protein) to the Fab is between 1:1 and 10:1, preferably between 1:1 and 4:1.

[Claim 14] An expression vector comprising: (a) promoter; (b) a first nucleic acid sequence encoding the Fab of any one of claims 1 to 5; and (c) a second nucleic acid sequence encoding a bioactive (poly)peptide or protein and optionally a linker, wherein the promoter, the first nucleic acid sequence and the second nucleic acid sequence are operably linked.

[Claim 15] A host cell comprising the expression vector of claim 14.

[Claim 16] The host cell according to claim 15, in which the host cell is *E. coli*.

[Claim 17] The host cell according to claim 17, in which the host cell is SUPEX5 (KCTC 12657BP).

[Claim 18] A method of increasing soluble expression of a bioactive protein or a (poly)peptide in periplasm of *E. coli*, the method comprising introducing an expression vector into *E. coli*; wherein the expression vector comprises (a) promotor, (b) a first nucleic acid sequence encoding an antigen binding fragment (Fab), and (c) a second nucleic acid sequence encoding a linker and the bioactive (poly)peptide or protein; wherein the promotor, the first nucleic acid sequence and the second nucleic acid sequence are operably linked; and wherein the amino acids of Cystein of C<sub>H1</sub> domain and C<sub>KL</sub> domain of the Fab are deleted or substituted with Serine residues.

[Claim 19] The method of increasing soluble expression of a bioactive protein or a (poly)peptide in periplasm of *E. coli* of claim 18, wherein the *E. coli* is SUPEX5 (KCTC 12657BP).

[Claim 20] A method of increasing soluble expression of a bioactive protein or a (poly)peptide in periplasm of *E. coli*, which comprises introducing the expression vector of claim 13 into *E. coli*.

[Claim 21] The method of increasing soluble expression of a bioactive protein or a (poly)peptide in periplasm of *E. coli* of claim 20, wherein the *E. coli* is SUPEX5 (KCTC 12657BP).

[Claim 22] The method according to any one of claims 18 to 21, wherein the

bioactive protein or (poly)peptide is one selected from the group consisting of hormone, cytokine, enzyme, antibody, growth factor, transcription factor, blood factor, vaccine, structure protein, ligand protein, and receptor.

[Claim 23]

The method according to any one of claim 18 to 21, in which the bioactive protein or (poly)peptide is one selected from the group consisting of human growth hormone(hGH), growth hormone releasing hormone (GHRH), growth hormone releasing peptide, interferons, interferon receptors, colony stimulating factors (CSFs), glucagon-like peptides, G-protein-coupled receptor, interleukins, interleukin receptors, enzymes, interleukin binding proteins, cytokine binding proteins, macrophage activating factor, macrophage peptide, B cell factor, T cell factor, protein A, allergy inhibitor, cell necrosis glycoproteins, immunotoxin, lymphotoxin, tumor necrosis factor, tumor suppressors, metastasis growth factor, alpha-1 antitrypsin, albumin, alpha-lactalbumin, apolipoprotein-E, erythropoietin, highly glycosylated erythropoietin, angiopoietins, hemoglobin, thrombin, thrombin receptor activating peptide, thrombomodulin, factor VII, factor VIIa, factor VIII, factor IX, factor XIII, plasminogen activating factor, fibrin-binding peptide, urokinase, streptokinase, hirudin, protein C, C-reactive protein, renin inhibitor, collagenase inhibitor, superoxide dismutase, leptin, platelet-derived growth factor, epithelial growth factor, epidermal growth factor, angiostatin, angiotensin, bone growth factor, bone stimulating protein, calcitonin, insulin, atriopeptin, cartilage inducing factor, elcatonin, connective tissue activating factor, tissue factor pathway inhibitor, follicle stimulating hormone, luteinizing hormone, luteinizing hormone releasing hormone, nerve growth factors, parathyroid hormone, relaxin, secretin, somatomedin, insulin-like growth factor, adrenocortical hormone, glucagon, cholecystokinin, pancreatic polypeptide, gastrin releasing peptide, corticotropin releasing factor, thyroid stimulating hormone, autotaxin, lactoferrin, myostatin, receptors, receptor antagonists, cell surface antigens, virus derived vaccine antigens, monoclonal antibodies, polyclonal antibodies, and antibody fragments.

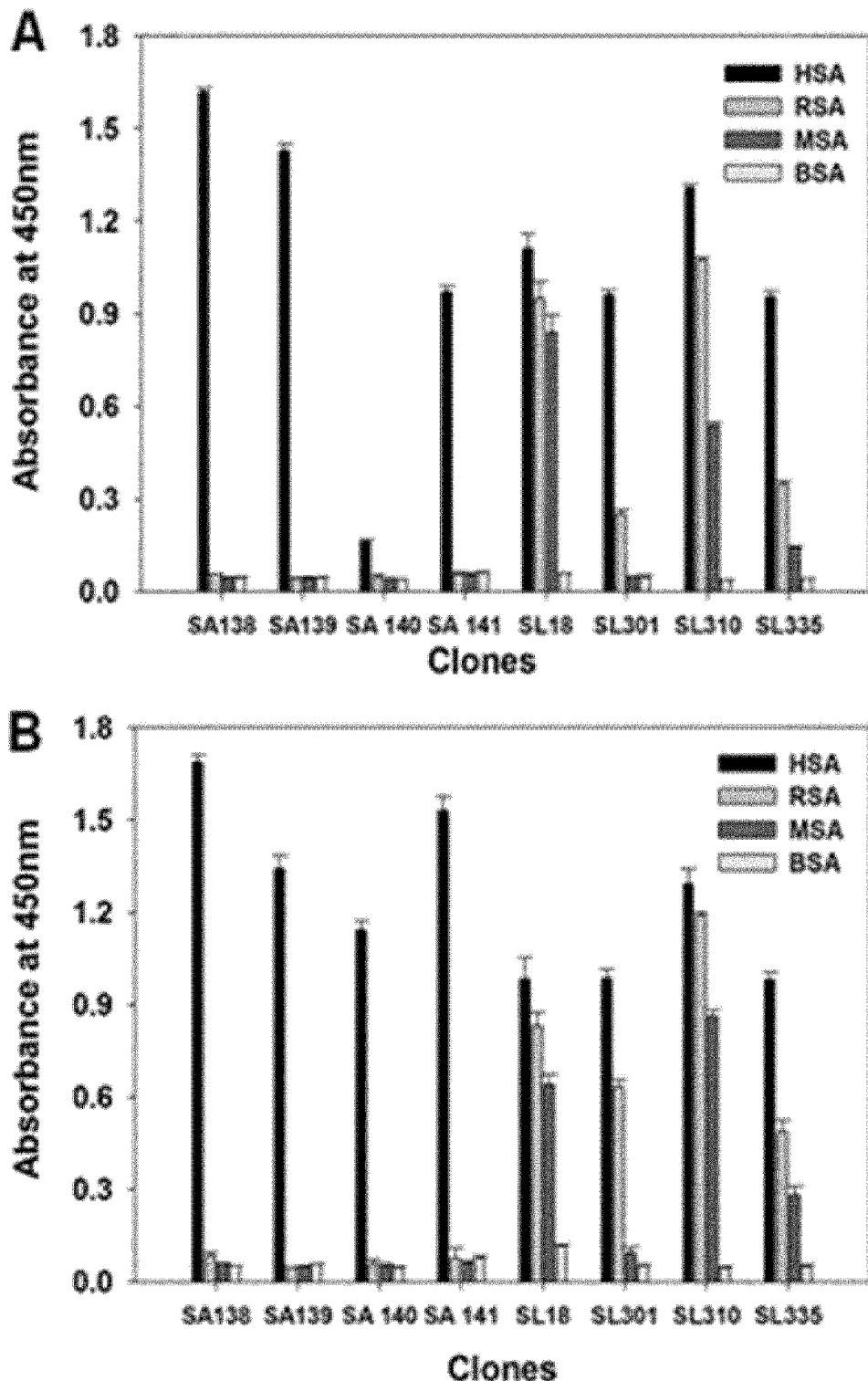
[Claim 24]

A method of increasing *in vivo* half-life of a bioactive protein or a (poly)peptide, which comprises linking a bioactive protein or a (poly)peptide to the Fab of any one of claims 1 to 6 by genetic fusion.

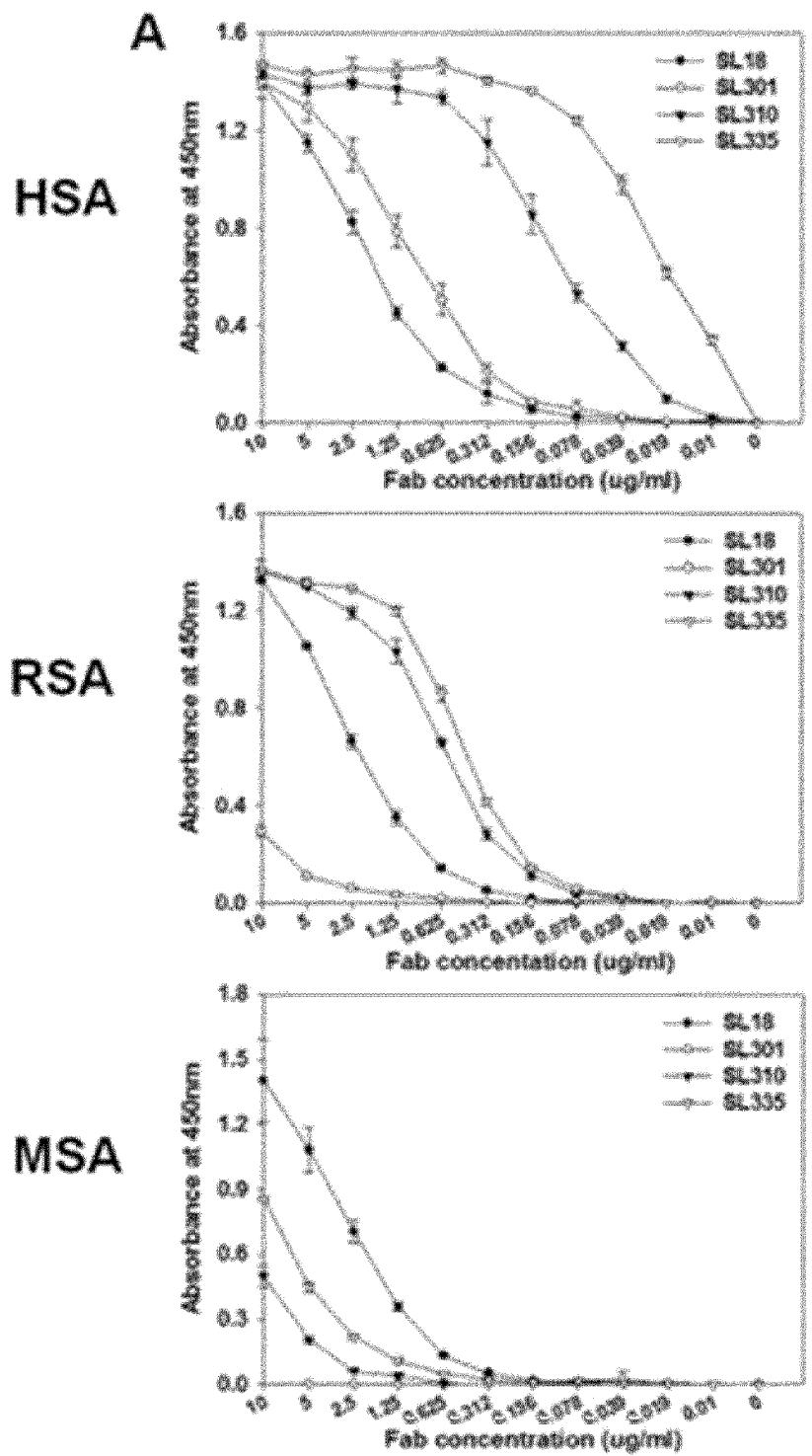
[Claim 25]

The method of increasing *in vivo* half-life of a bioactive protein or a

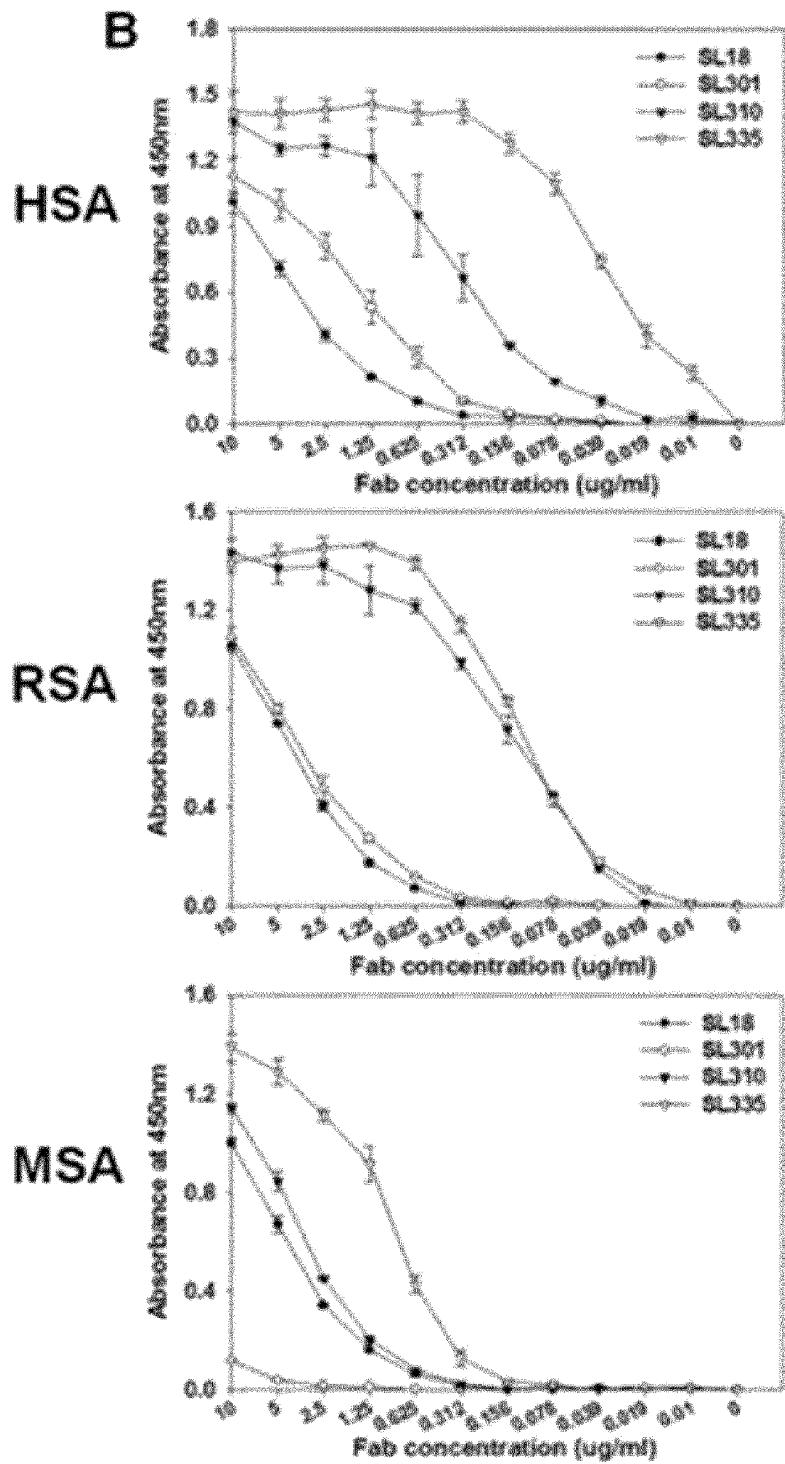
(poly)peptide according to claim 24, wherein the bioactive protein or the (poly)peptide is linked to the Fab by a peptide linker of 0 to 20 amino acids.


[Claim 26]

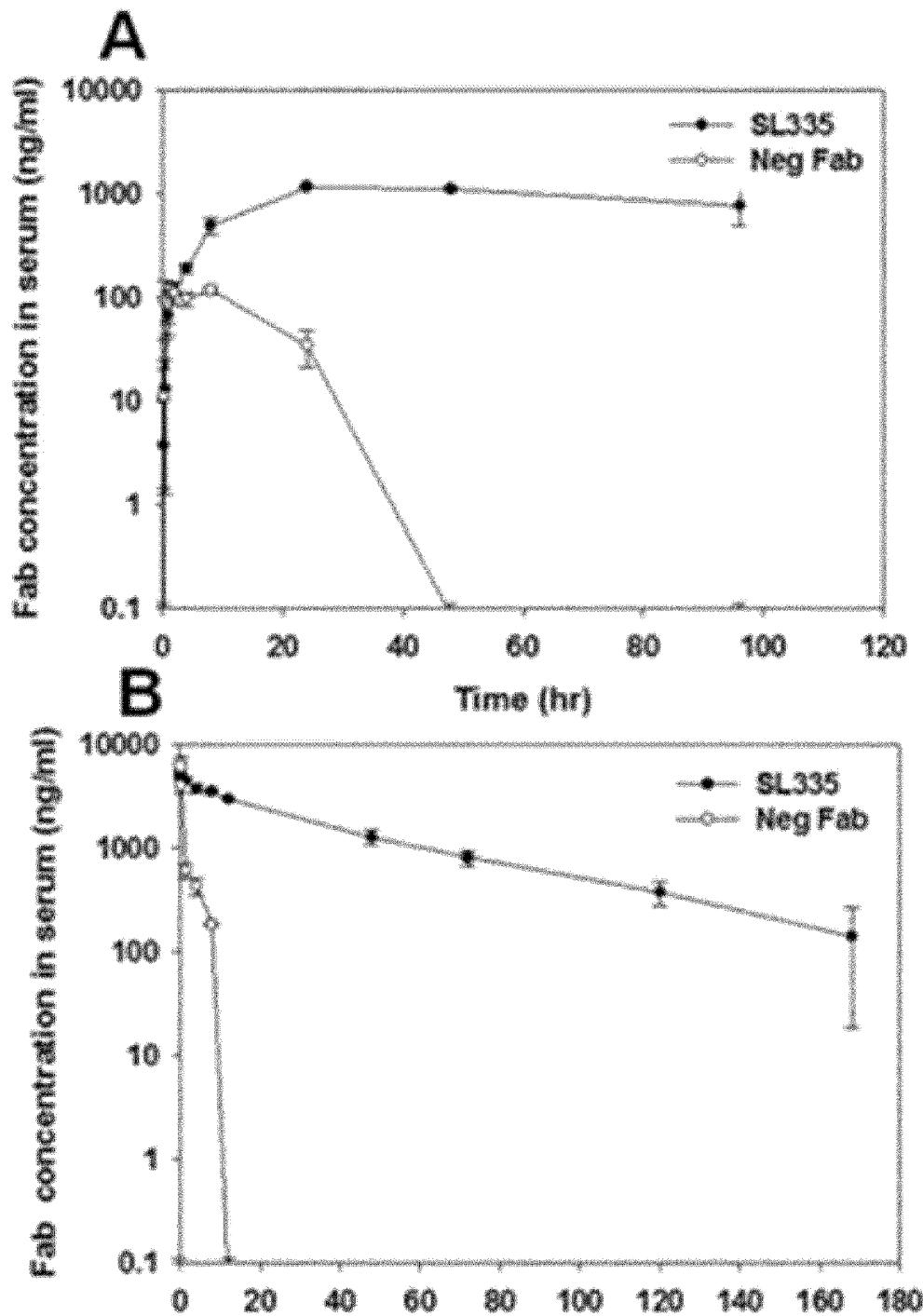
The method according to claim 24 or claim 25, wherein the bioactive protein or (poly)peptide is one selected from the group consisting of human growth hormone (hGH), growth hormone releasing hormone (GHRH), growth hormone releasing peptide, interferons (IFNs), interferon receptors, colony stimulating factors (CSFs), granulocyte-colony stimulating factors (GCSFs), glucagon-like peptides, G-protein-coupled receptor, interleukins, interleukin receptors, enzymes, interleukin binding proteins, cytokine binding proteins, macrophage activating factor, macrophage peptide, B cell factor, T cell factor, protein A, allergy inhibitor, cell necrosis glycoproteins, immunotoxin, lymphotoxin, tumor necrosis factor, tumor suppressors, metastasis growth factor, alpha-1 antitrypsin, albumin, alpha-lactalbumin, apolipoprotein-E, erythropoietin, highly glycosylated erythropoietin, angiopoietins, hemoglobin, thrombin, thrombin receptor activating peptide, thrombomodulin, factor VII, factor VIIa, factor VIII, factor IX, factor XIII, plasminogen activating factor, fibrin-binding peptide, urokinase, streptokinase, hirudin, protein C, C-reactive protein, renin inhibitor, collagenase inhibitor, superoxide dismutase, leptin, platelet-derived growth factor, epithelial growth factor, epidermal growth factor, angiostatin, angiotensin, bone growth factor, bone stimulating protein, calcitonin, insulin, atriopeptin, cartilage inducing factor, elcatonin, connective tissue activating factor, tissue factor pathway inhibitor, follicle stimulating hormone, luteinizing hormone, luteinizing hormone releasing hormone, nerve growth factors, parathyroid hormone, relaxin, secretin, somatomedin, insulin-like growth factor, adrenocortical hormone, glucagon, cholecystokinin, pancreatic (poly)peptide, gastrin releasing peptide, corticotropin releasing factor, thyroid stimulating hormone, autotaxin, lactoferrin, myostatin, receptors, receptor antagonists, cell surface antigens, virus derived vaccine antigens, monoclonal antibodies, polyclonal antibodies, and antibody fragments.


[Claim 27]

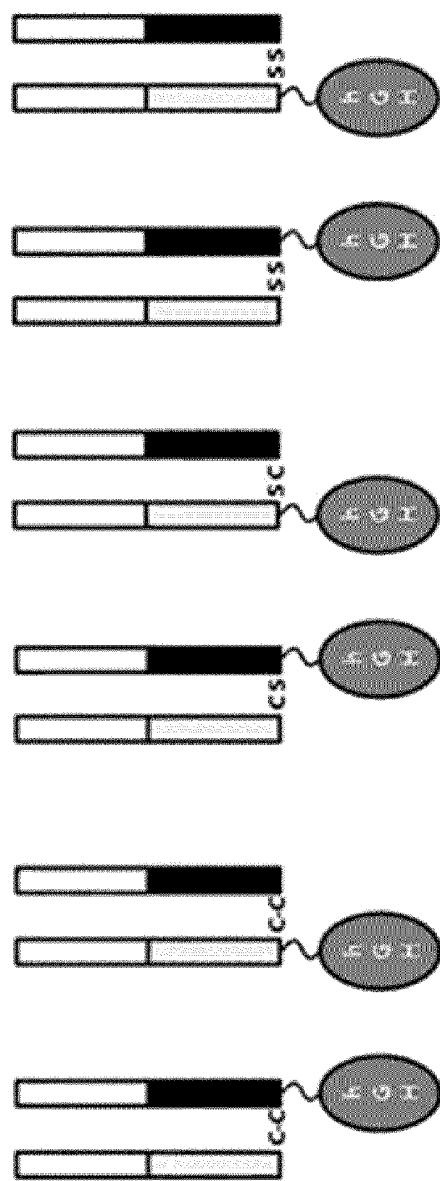
A pharmaceutical composition comprising the fusion construct of any one of claims 7 to 13, and pharmaceutically accepted excipient.


[Fig. 1]




[Fig. 2a]

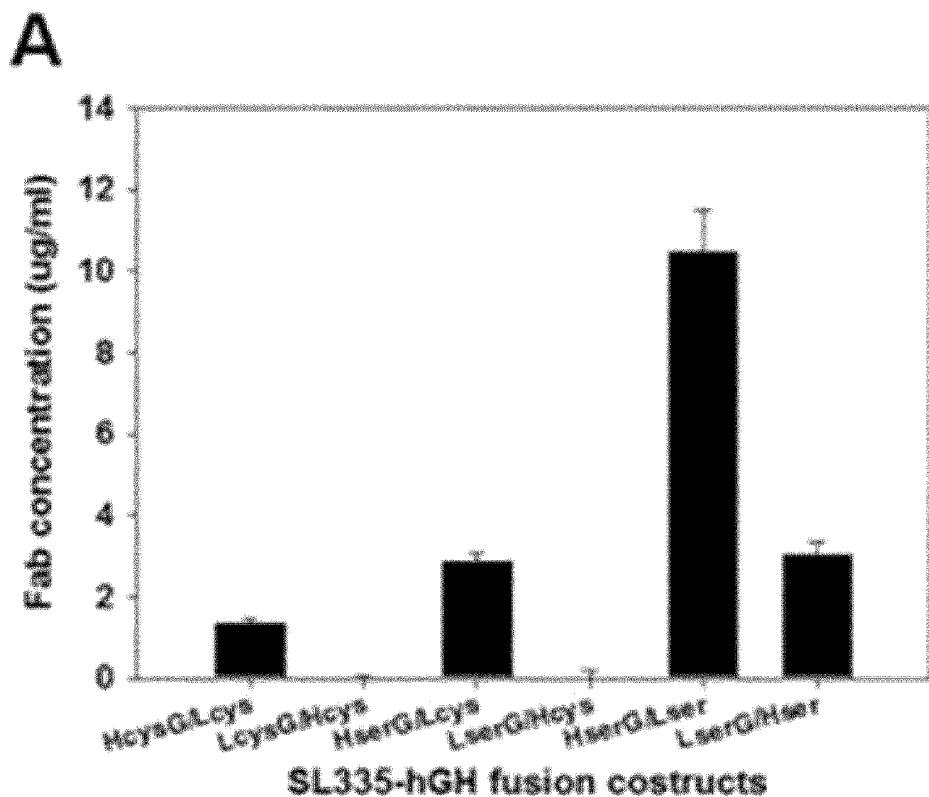



[Fig. 2b]

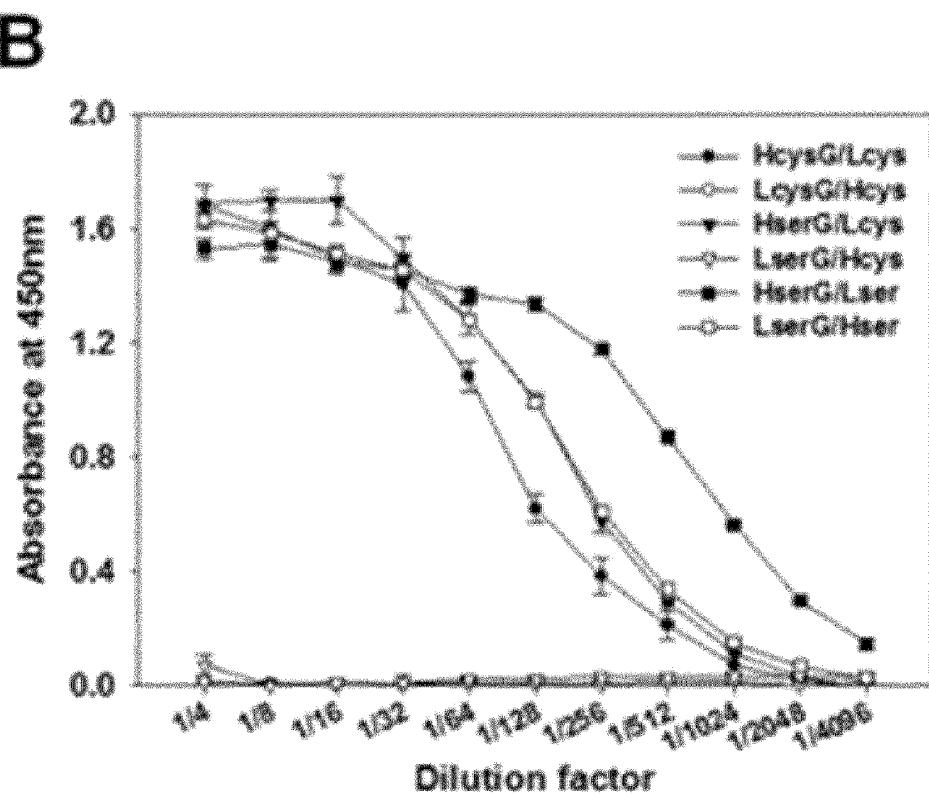


[Fig. 3]



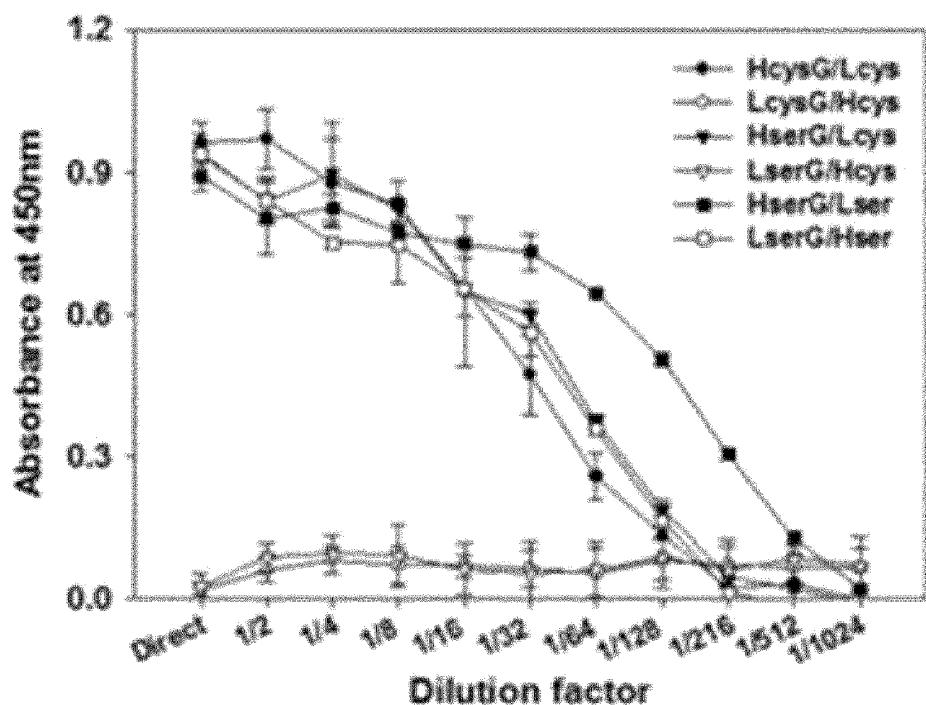

[Fig. 4]




| SL335          | Classic Fab (SL335) |             | Null Fab (SL335 <sub>null</sub> ) |             | Ads Fab (SL335 <sub>ads</sub> ) |             |
|----------------|---------------------|-------------|-----------------------------------|-------------|---------------------------------|-------------|
|                | Hcys/Lcys           | Lcys/Hcys   | Hcys/Hcys                         | Lcys/Hcys   | Hcys/Hcys                       | Lcys/Hcys   |
| Fab-HcH format |                     |             |                                   |             |                                 |             |
| L chain        | 335Lcys             | 335Lcys-HcH | 335Lcys                           | 335Lcys-HcH | 335Lcys                         | 335Lcys-HcH |
| H chain        | 335Hcys             | 335Hcys-HcH | 335Hcys                           | 335Hcys-HcH | 335Hcys-HcH                     | 335Hcys     |

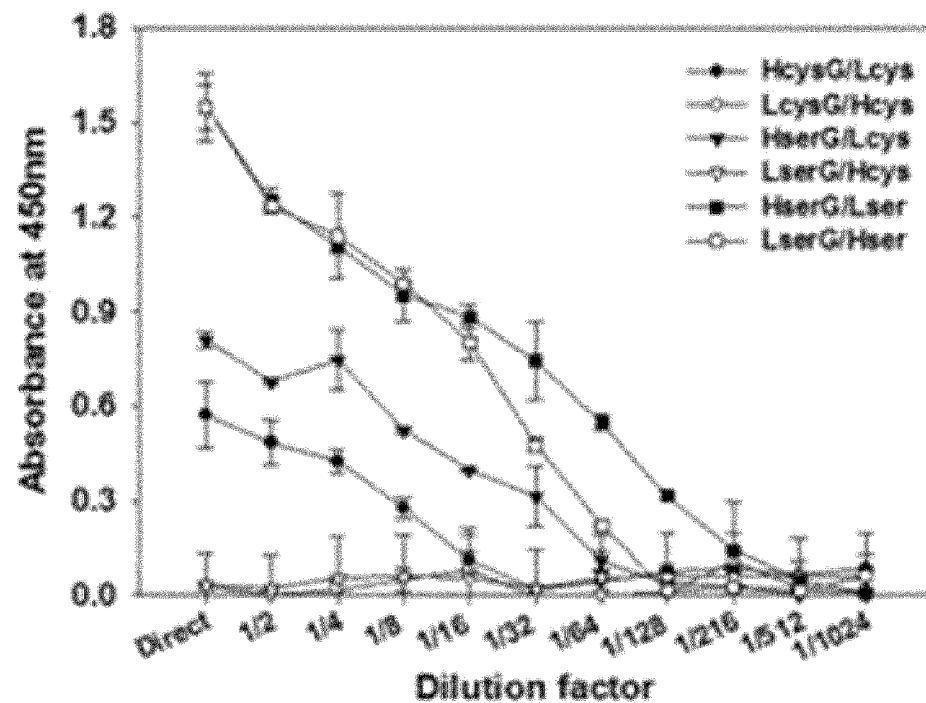
Hcys = H chain with Cys<sup>229</sup>; Lcys = L chain with Cys<sup>214</sup>; HcH = H chain with Ser<sup>229</sup>; LcH = L chain with Ser<sup>214</sup>

[Fig. 5a]

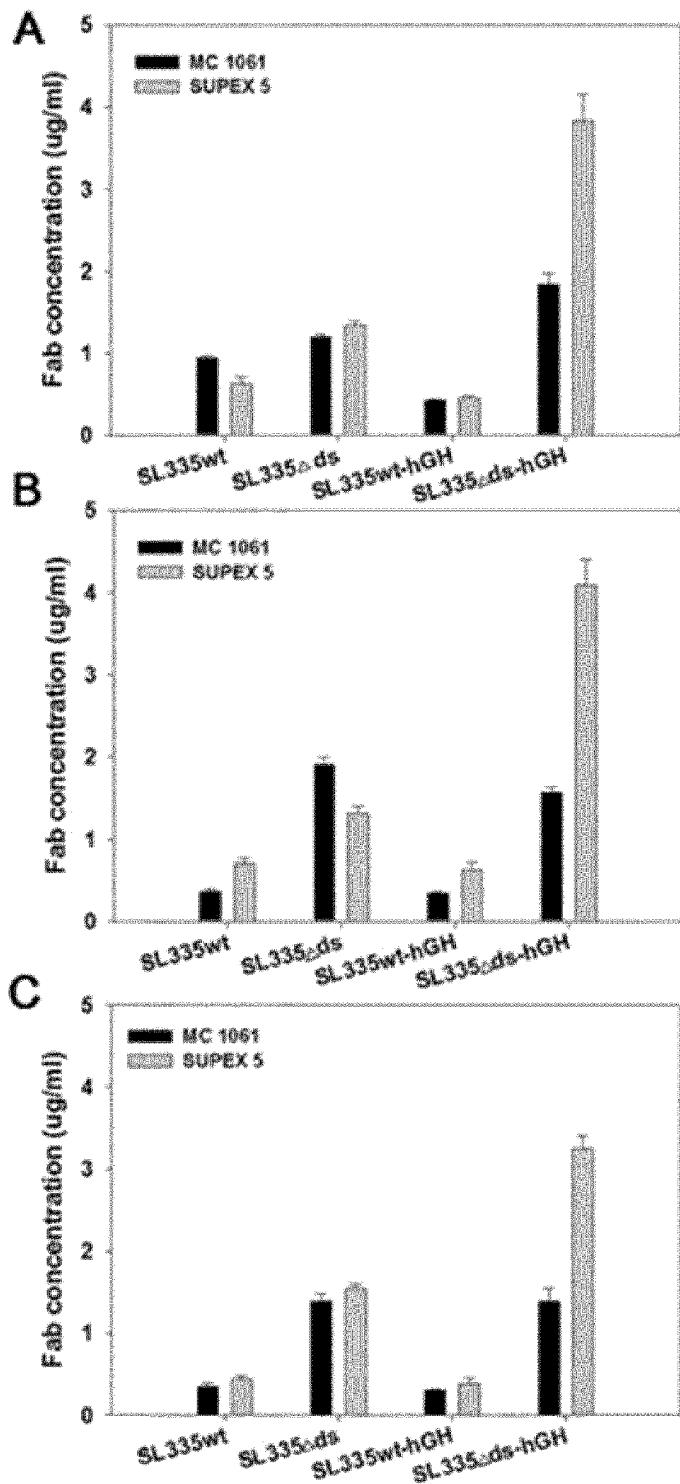



[Fig. 5b]

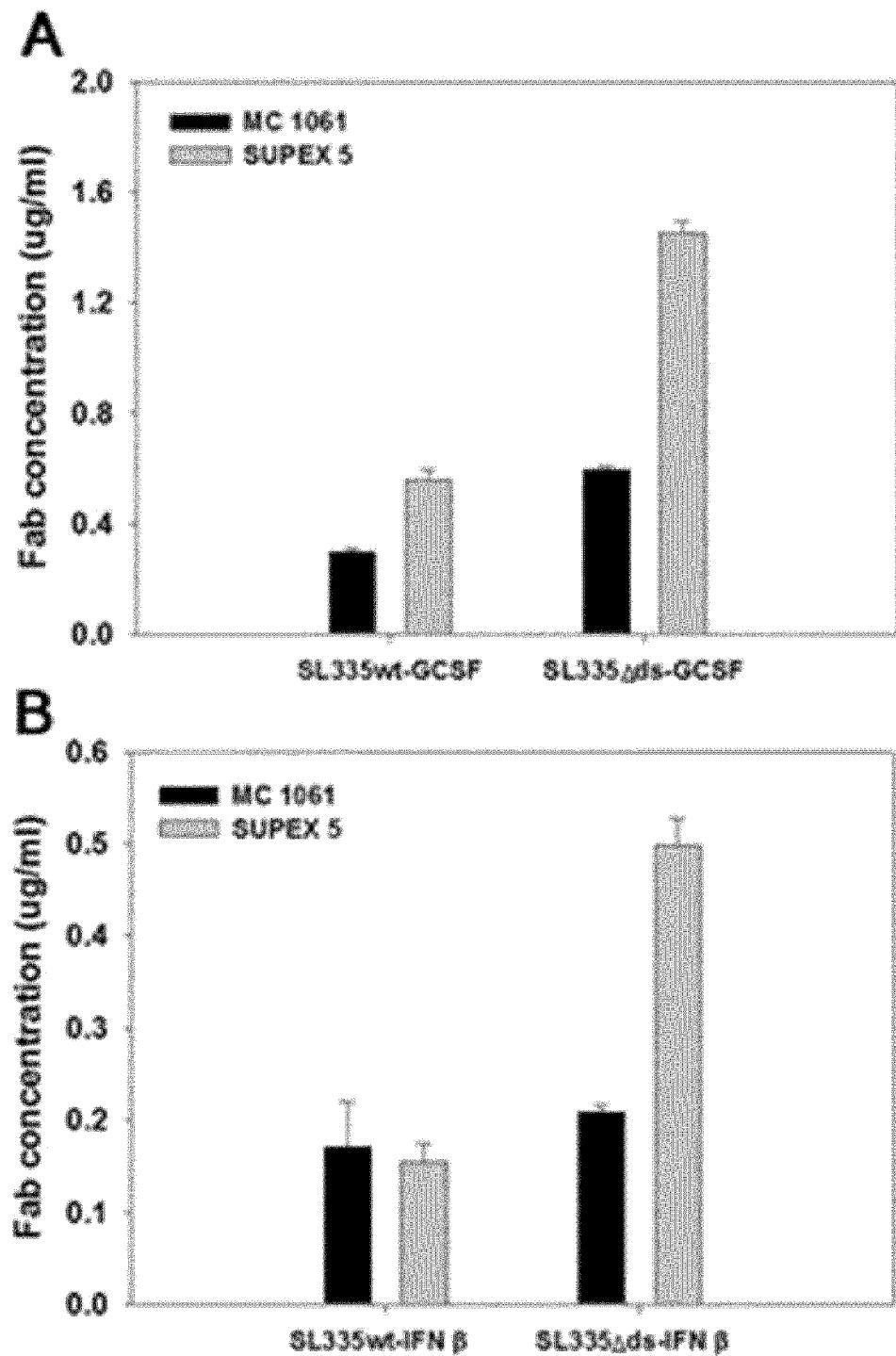



[Fig. 5c]

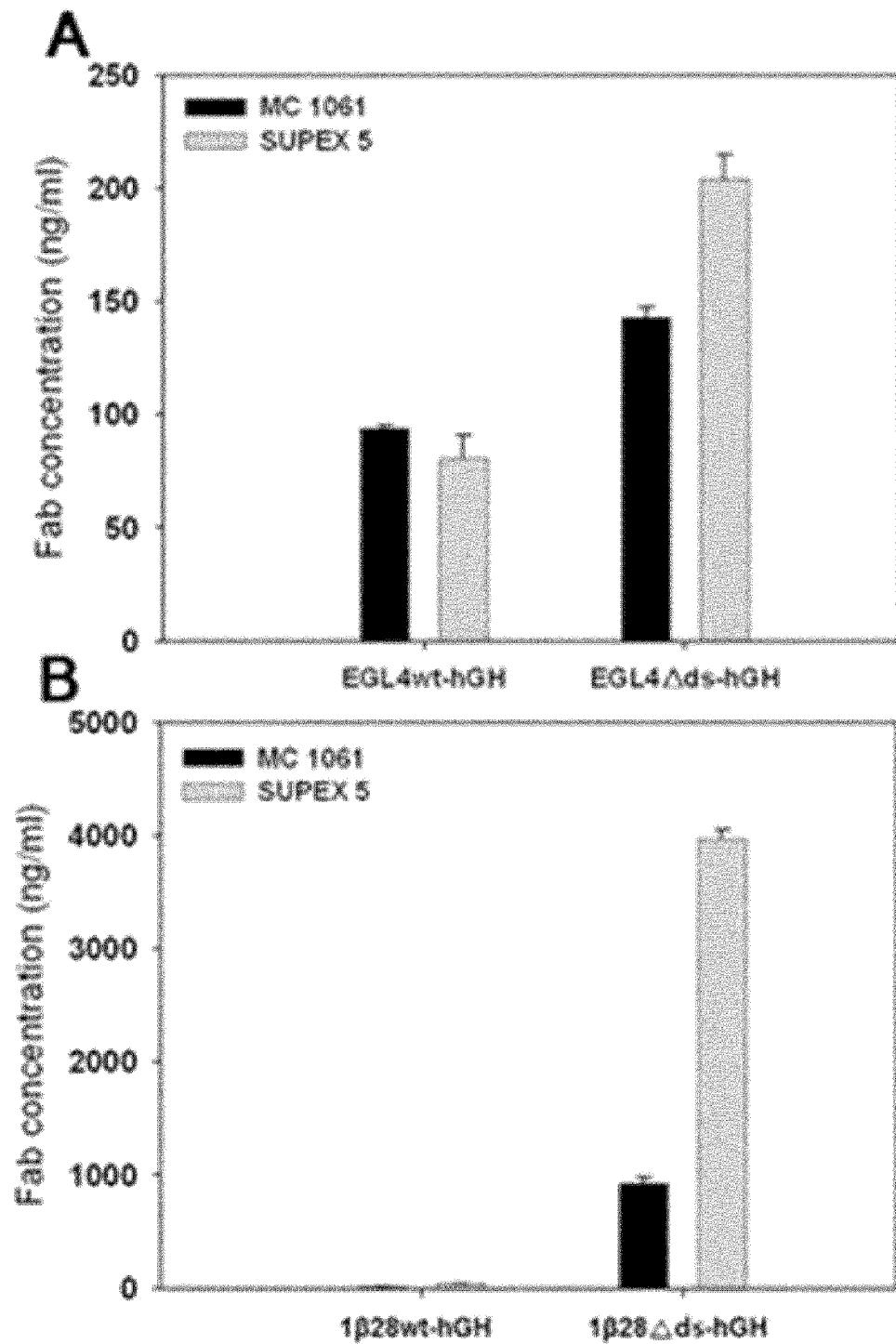
**C SL335-hGH fusion constructs**



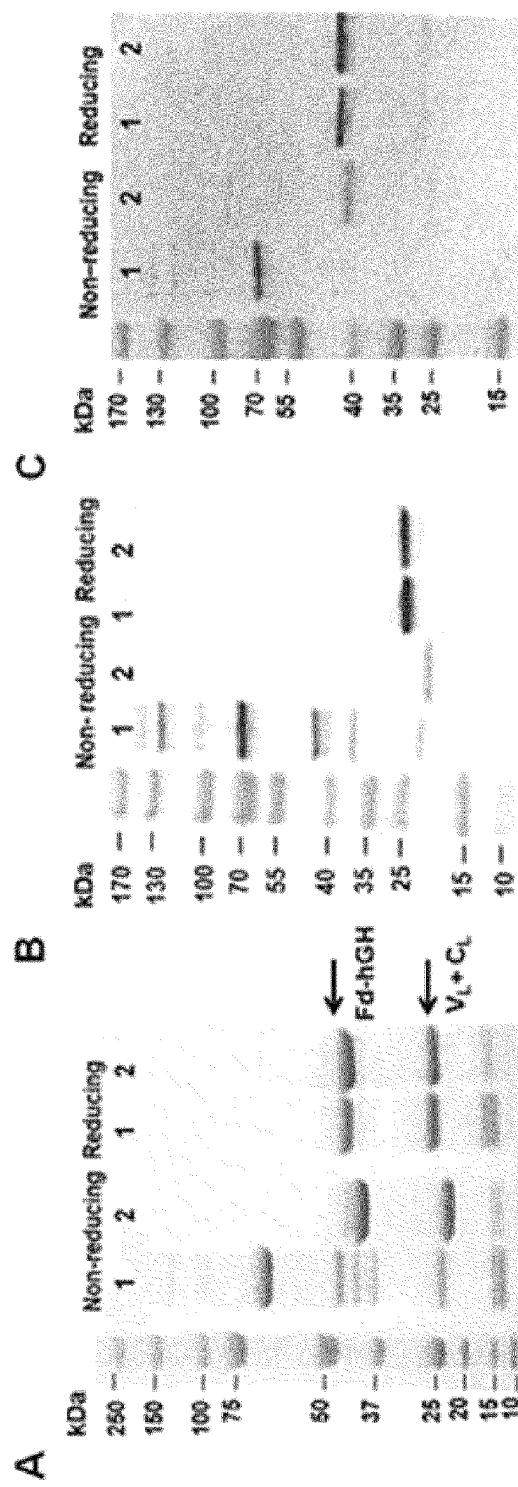

[Fig. 5d]


**D**

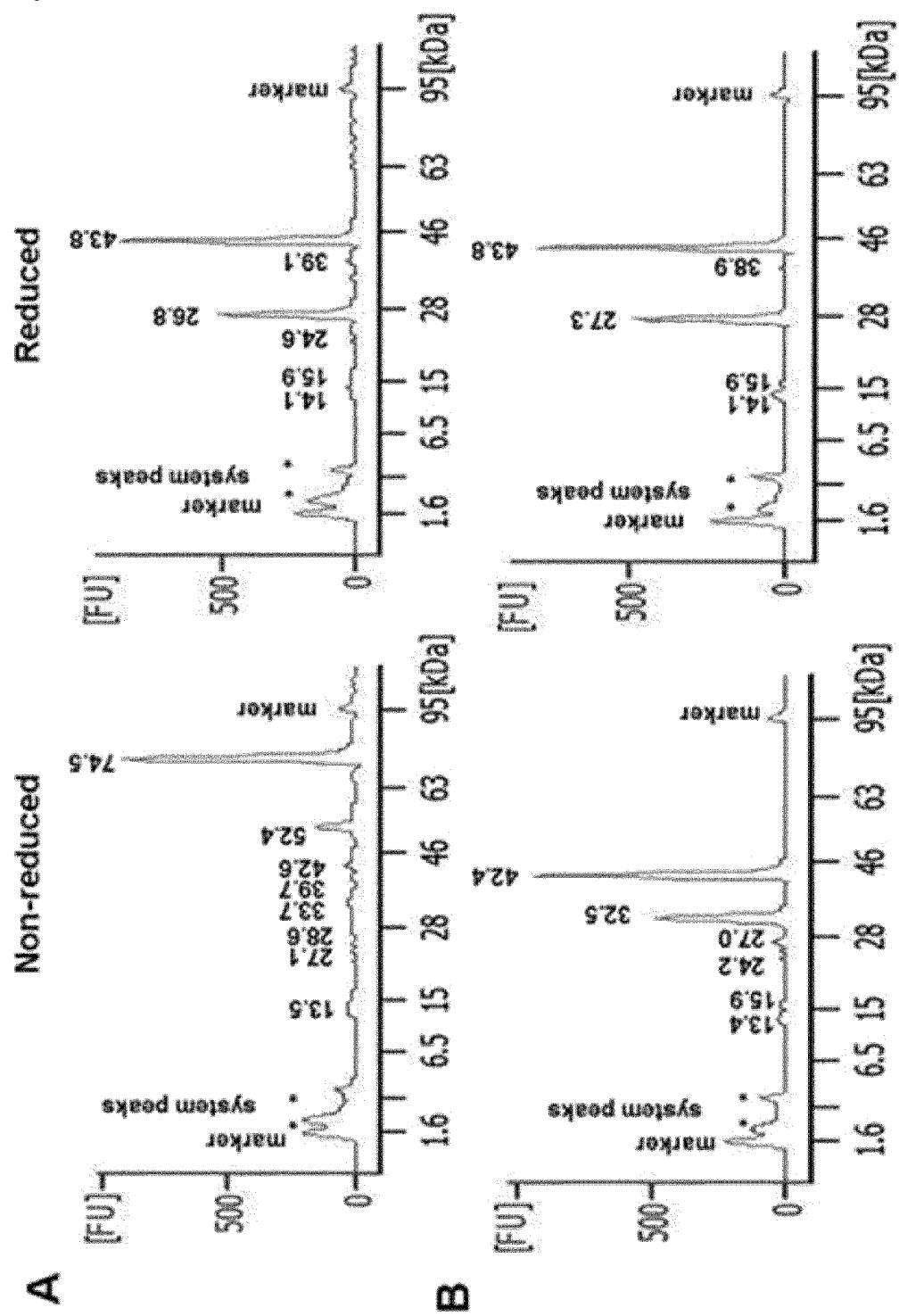



[Fig. 6]

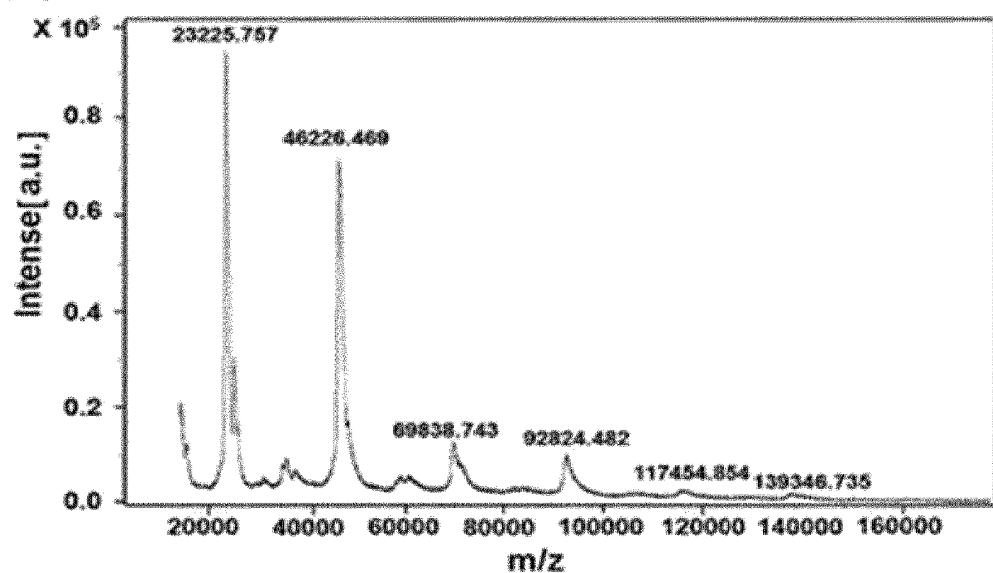
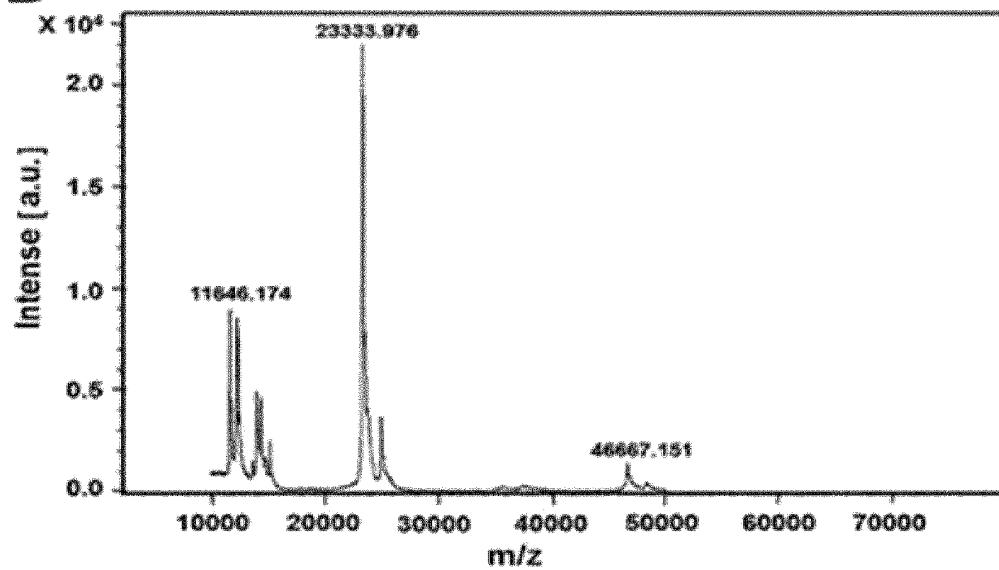



[Fig. 7]

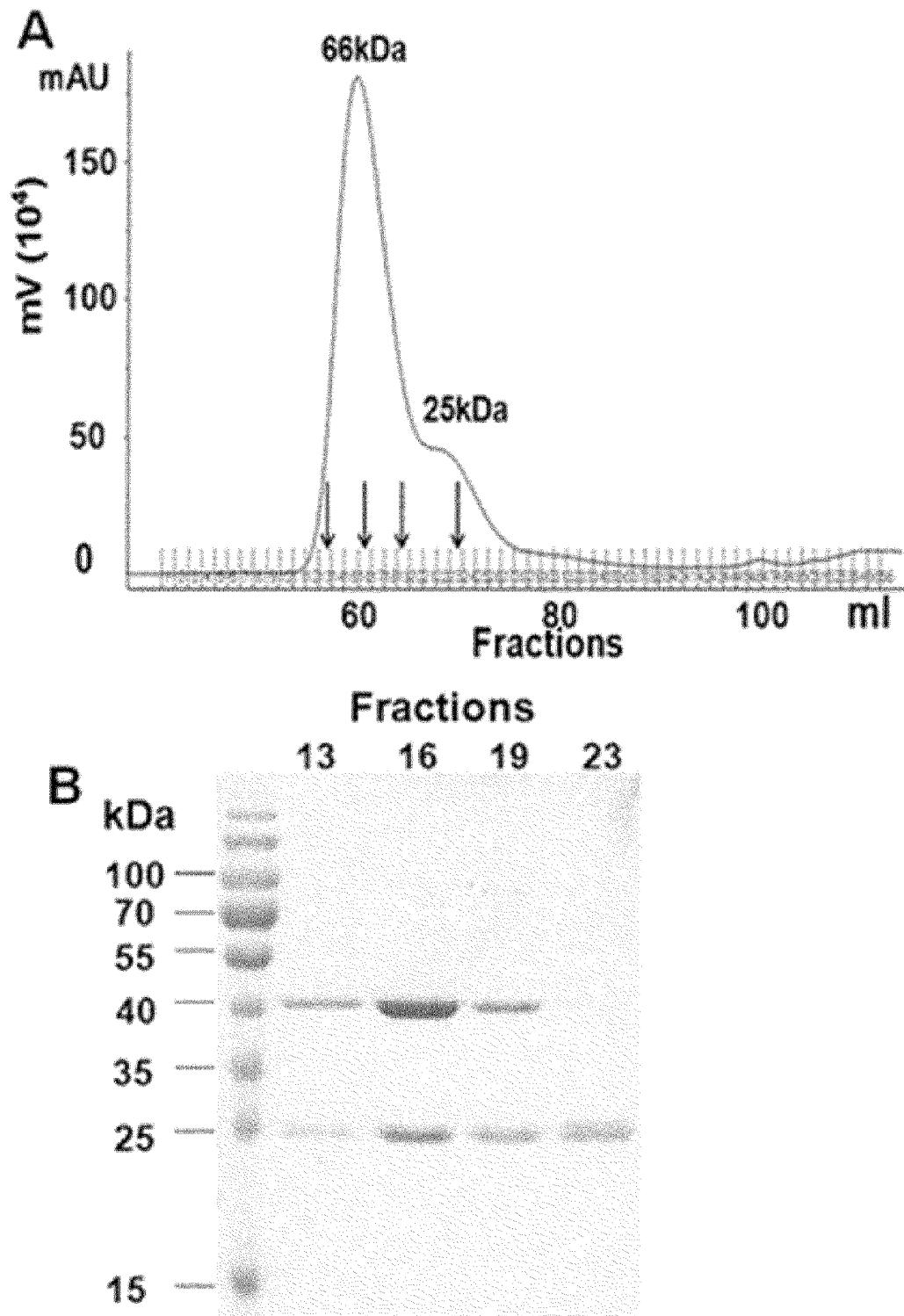



[Fig. 8]

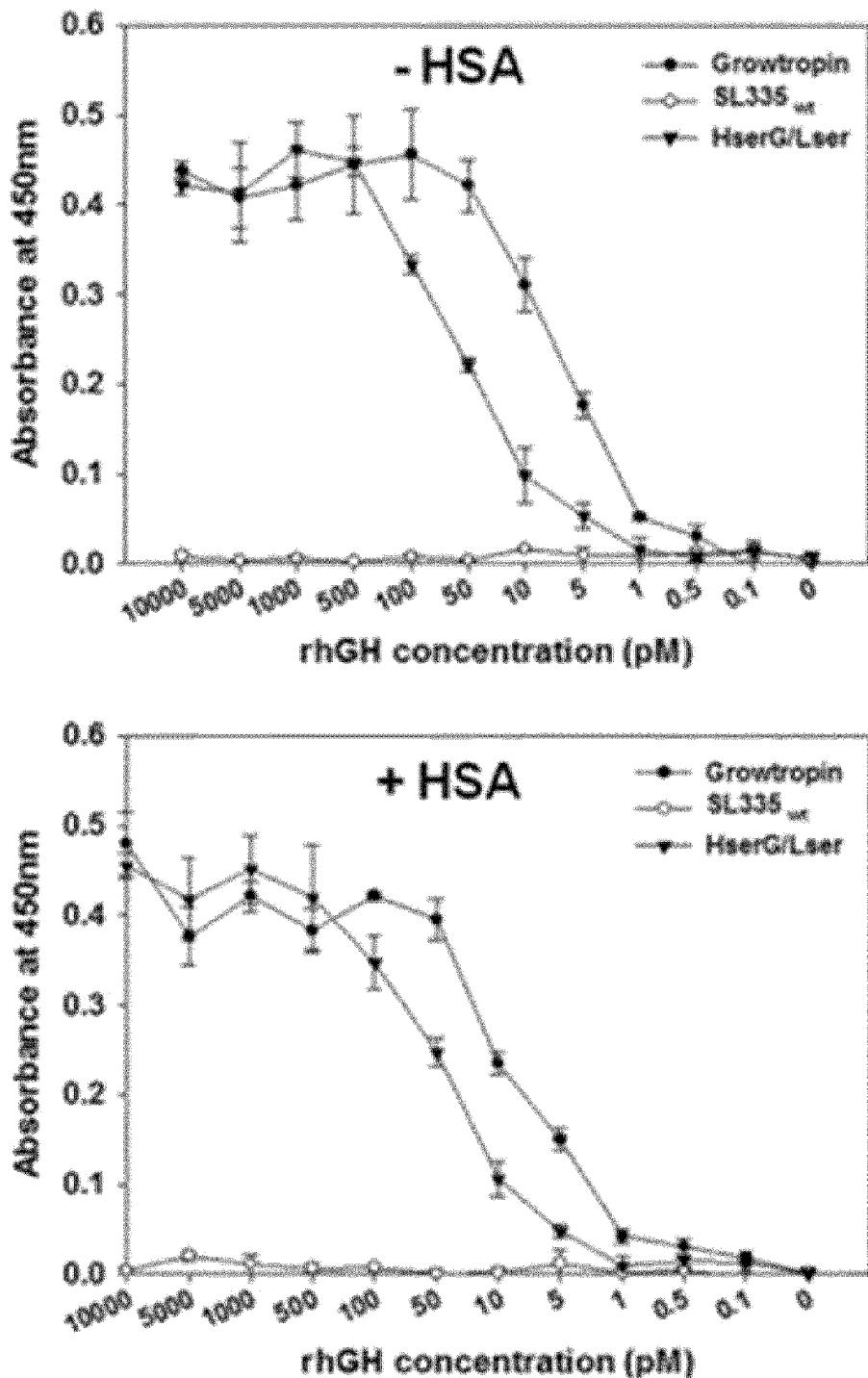




[Fig. 9]

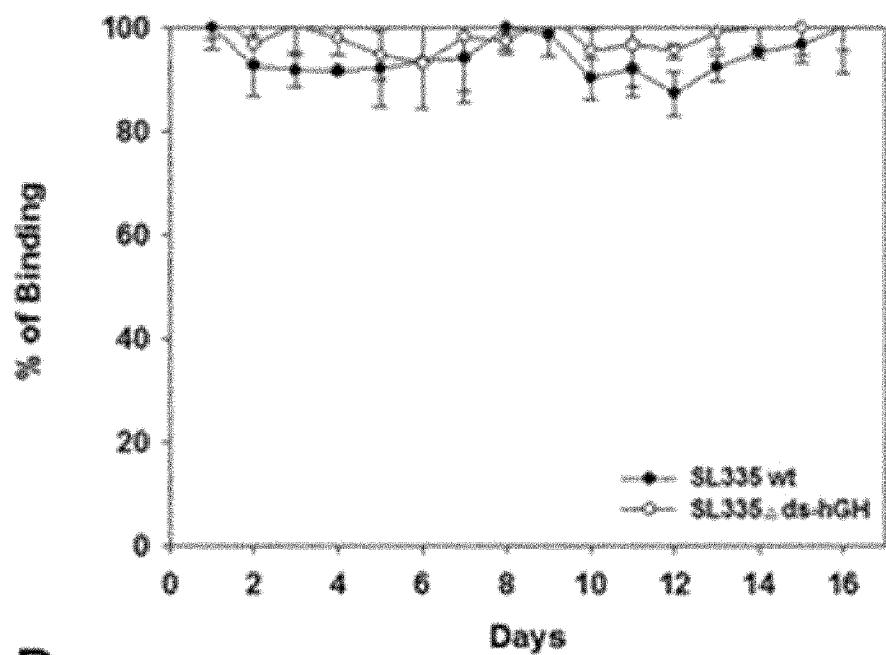
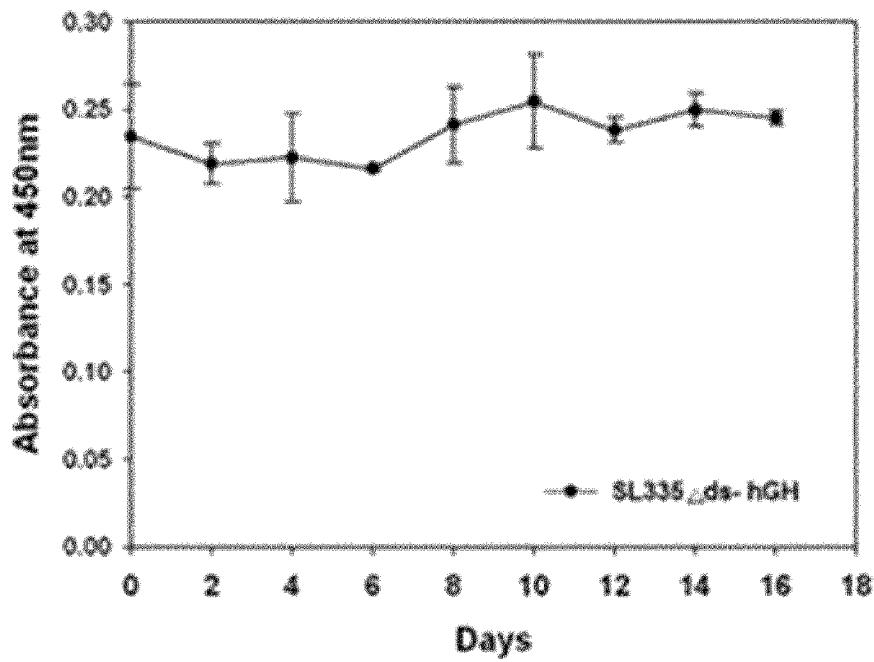



[Fig. 10]

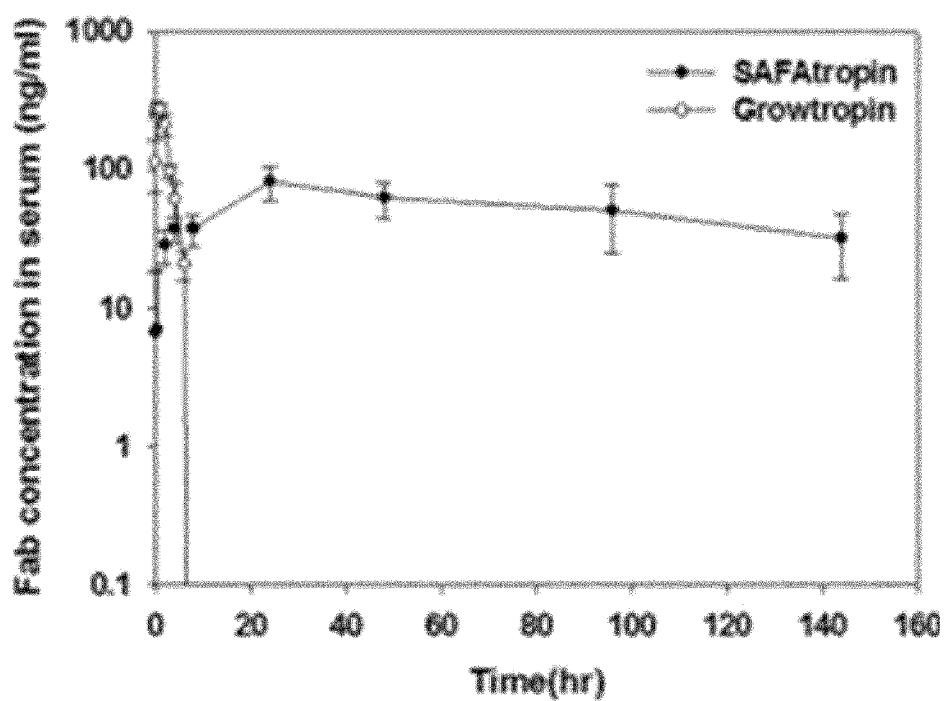
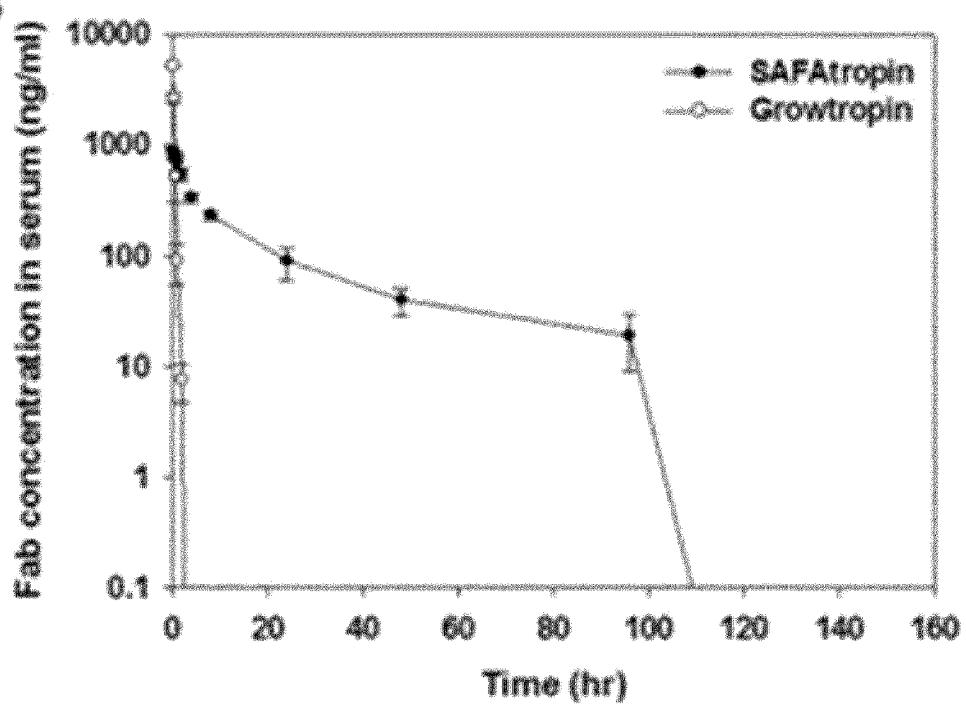



[Fig. 11]

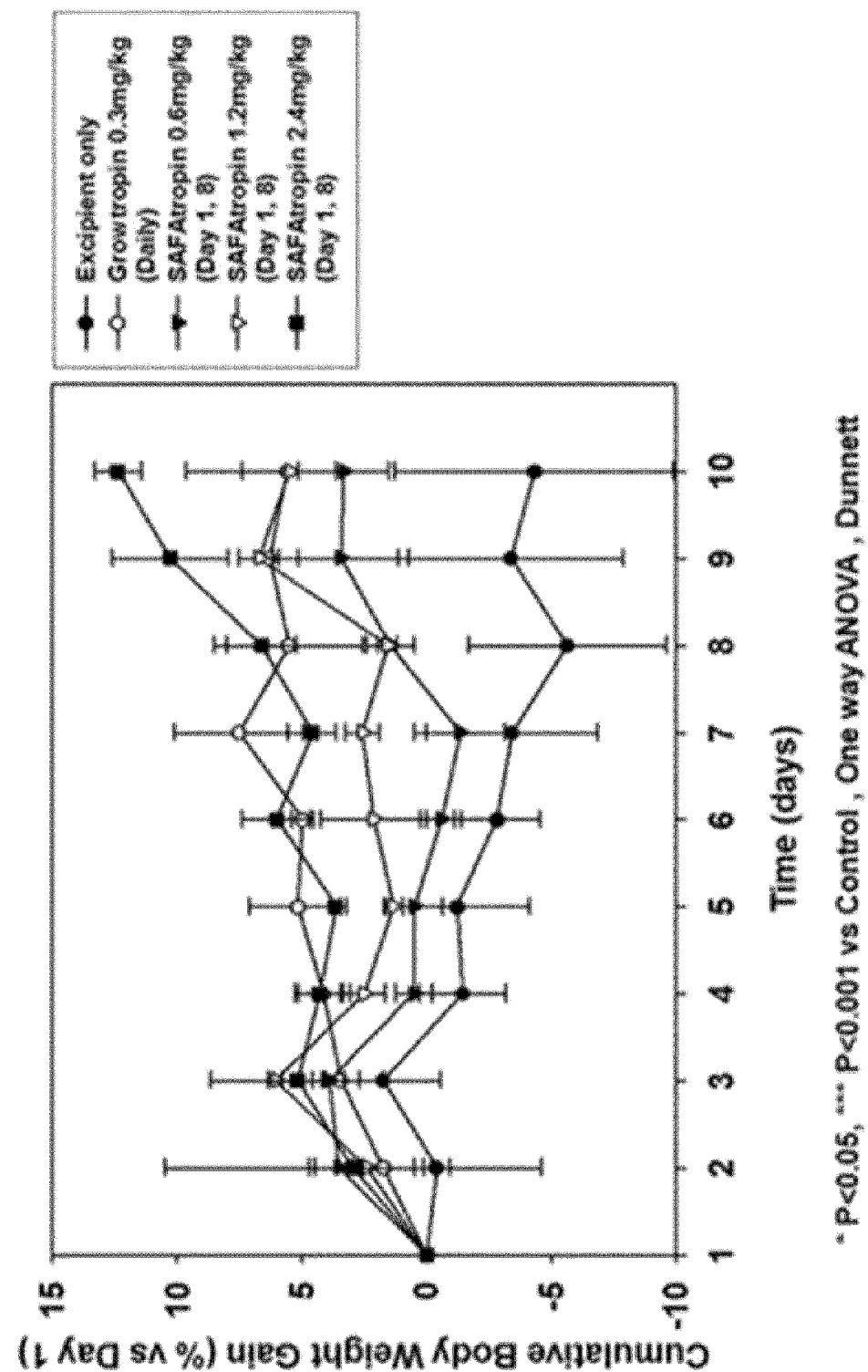
**A****B**



[Fig. 12]

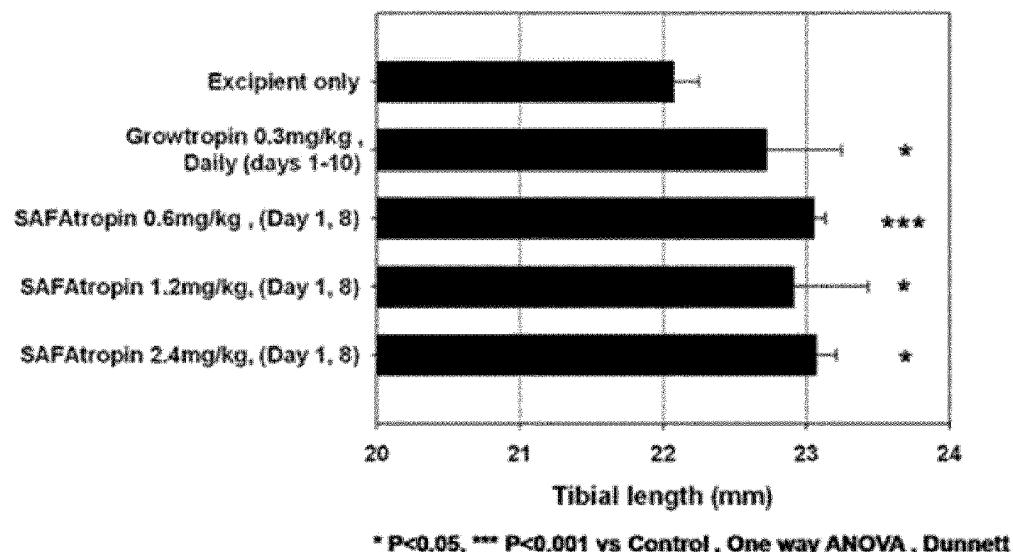




[Fig. 13]



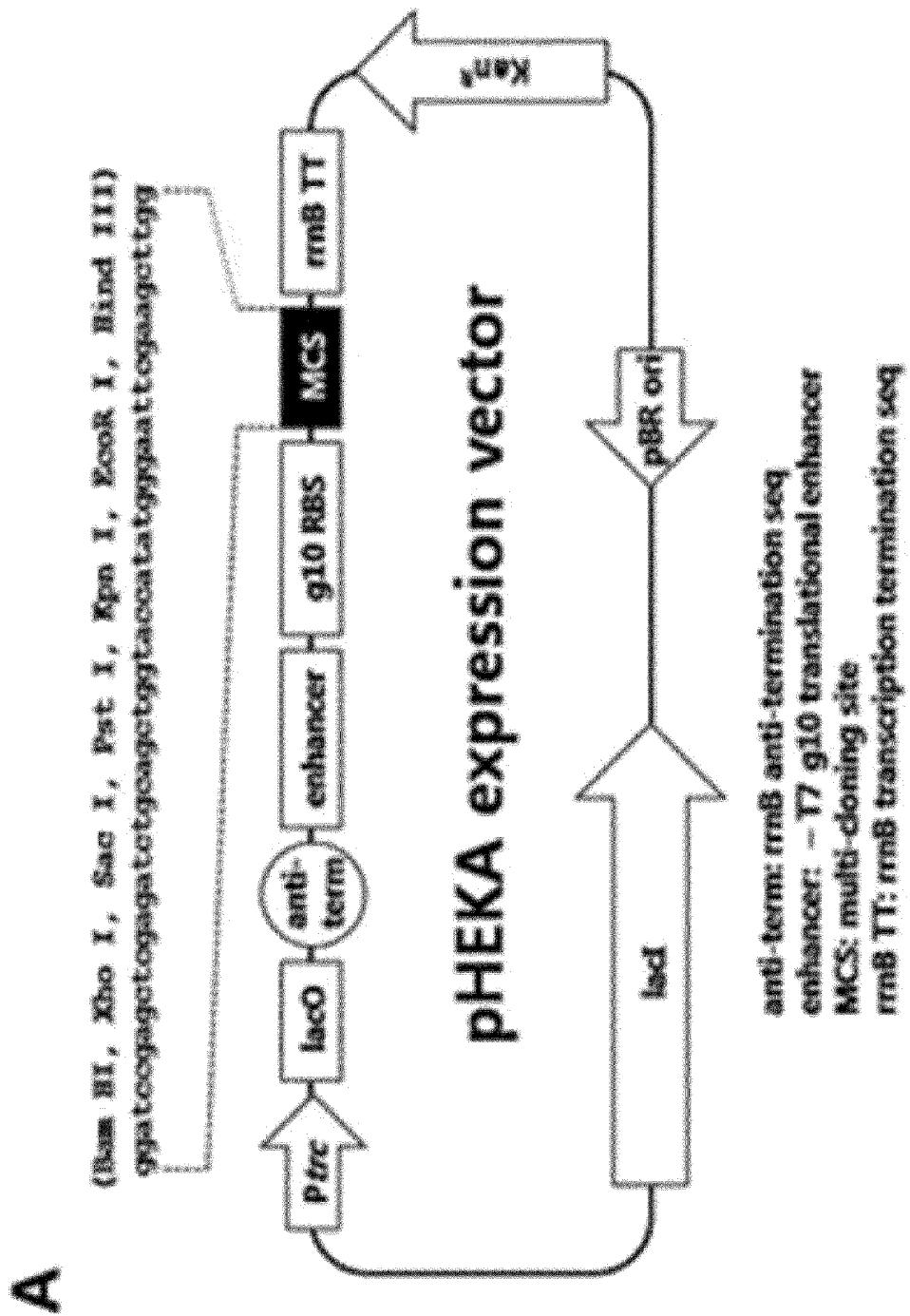

[Fig. 14]

**A****B**


[Fig. 15]

**A****B**

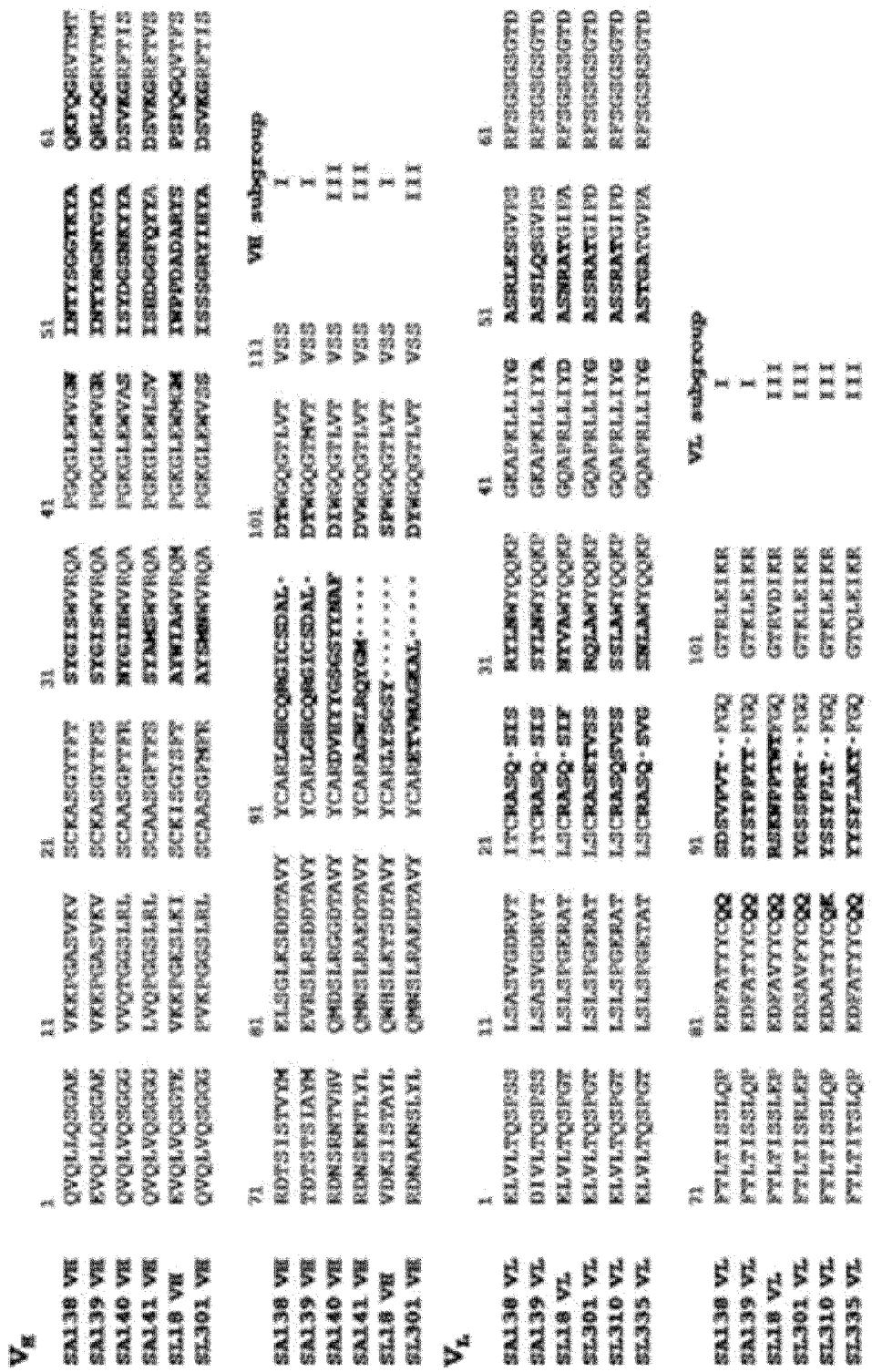
[Fig. 16]




[Fig. 17]



\* P<0.05, \*\*\* P<0.001 vs Control, One way ANOVA, Dunnett


[Fig. 18]



[Fig. 19]

**B** pHEKA sequence (5240 bp)

[Fig. 20]



[Fig. 21a]

卷之三

[Fig. 21b]

| SL141 VM                                                                                                                             | 11  | 21  | 31  | 41  | 51  | 61  | 71  | 81  | 91  |
|--------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| quantitative triptorelin | 101 | 111 | 121 | 131 | 141 | 151 | 161 | 171 | 181 |
| quantitative triptorelin | 201 | 211 | 221 | 231 | 241 | 251 | 261 | 271 | 281 |
| quantitative triptorelin | 301 | 311 | 321 | 331 | 341 | 351 | 361 | 371 | 381 |
| quantitative triptorelin | 401 | 411 | 421 | 431 | 441 | 451 | 461 | 471 | 481 |

[Fig. 21c]

6

卷之三

| Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |
|--------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|
| 1      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 |

卷之三

THE VI. EDITION

[Fig. 21d]

SL301 WL 1 11 21 31 41 51 61 71 81 91  
 101 111 121 131 141 151 161 171 181 191  
 201 211 221 231 241 251 261 271 281 291  
 301 311 321 331 341 351 361 371 381 391  
 401 411 421 431 441 451 461 471 481 491  
 501 511 521 531 541 551 561 571 581 591  
 601 611 621 631 641 651 661 671 681 691  
 701 711 721 731 741 751 761 771 781 791  
 801 811 821 831 841 851 861 871 881 891  
 901 911 921 931 941 951 961 971 981 991

SL310 WL 1 11 21 31 41 51 61 71 81 91  
 101 111 121 131 141 151 161 171 181 191  
 201 211 221 231 241 251 261 271 281 291  
 301 311 321 331 341 351 361 371 381 391  
 401 411 421 431 441 451 461 471 481 491  
 501 511 521 531 541 551 561 571 581 591  
 601 611 621 631 641 651 661 671 681 691  
 701 711 721 731 741 751 761 771 781 791  
 801 811 821 831 841 851 861 871 881 891  
 901 911 921 931 941 951 961 971 981 991

SL325 WL 1 11 21 31 41 51 61 71 81 91  
 101 111 121 131 141 151 161 171 181 191  
 201 211 221 231 241 251 261 271 281 291  
 301 311 321 331 341 351 361 371 381 391  
 401 411 421 431 441 451 461 471 481 491  
 501 511 521 531 541 551 561 571 581 591  
 601 611 621 631 641 651 661 671 681 691  
 701 711 721 731 741 751 761 771 781 791  
 801 811 821 831 841 851 861 871 881 891  
 901 911 921 931 941 951 961 971 981 991

[Fig. 22a]

1) SL335<sub>wt</sub>-hGH

|                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Heavy chain (Hcys + hGH format)</b> | <b>DNA</b>        | CAAGTTAGCTGGTTCAGAGCGGTGGCGGGCCGGTGAACCAACCGGTGGCAGCCTGCG<br>TCTGTCCTGCGCGCGAGCGCTTTATGTTCTGCGTATAGCATGAACCTGGGTGCG<br>CCAGGGCGCCGGCAAAAGGCCTGGAAATGGGTGAGCAGCAGCAGTGGCCGC<br>TATATTCAATTAGCCGACAGTGTAAAGGTCGTTTACCATTTCTGTCGACATGCG<br>AAAACAGCTGTATCTGCAAAATGAATAGCCTGCGCGGAAAGACACCGCGGTGTA<br>CTACTGTCGCGCGAAACCGTGAATGCGGGCAAGCAGTGGAAATGGGTGAGCAGCAGTGGCC<br>GCACCCCTGGTGAACCGTGAAGCAGCGAGCACCAGGGCCAGCGCAGCACAA<br>AGGCCCGAGCGTGTGGCAGTGGAAATCAACCCAGCGGTGGCACCG<br>CGGCCTCTGGGCTGCTGGTGAAGAGATTATTCGGAACCTGTCGACATGAG<br>ACAGCGGTGCGTTGACGAGTGGTGTGCAACCTTCCCGCAGTTCTGCAATCGAGC<br>GACCTATTTGTAACGTAACCCACAGCCITCGAACACGAAATGACAAACGCG<br>TGGAAACCGAAGAGCTGGGTTCTGCACCAAGCTCTGGATCTTCCGACCATCCGC<br>TGAGCCGCGCTGCTGATAACGCGATGCTGCGGCGCCCTGCAACTGGCCT<br>TTGATACCTATCAGGAGTTGAGGAAGCGTACATCCCGAAGGAACAGAAATTTCT<br>TTCTGCAAGAACCCACAGACAGCTGTGCTTACCGAATCTATCCGACCCCGTCC<br>AAACCGCGAAGAACCCACAGAACAGTCTAACCTGAACTGCTGCGTATCTCTGCT<br>GCIGATICAATCTGGCTGGAACCGGTTCAATITCIGCTAGCGTGTGCGAACCTC<br>TCTGGTGTATGGCGCGTCTGACTCTAACCGTGTATGACCTGCTGAAAGATCTGGAAG<br>AAGGCATCCAACACTCTGATGGGCCGCTGGAGGAGCAGGCTCTCACCGTACCGGCCAG<br>ATCTTAAACAGACCTATAGCAAATTGACACCAACAGATGATGCGCTG<br>CTGAAAAAAACTATGGCTGCTGTATTGCTCCGTAAGACATGATAAGTTGAAAC<br>GTTCTGCGCATTGTCAGTGGCGTCCCTGGAGGGCTCTGCGGCTTC |
|                                        | <b>Amino acid</b> | QVQLVQSGGPVKPGGSRLSCAASGFMRAYSMN WVRQAPGKGLEWVSSISSS<br><b>GRYIHYADSVKGRTFISRDNAKNSIYI</b> QMNSI RAFDTAVYYCARETVMAGKALDYW<br>GQGTLVTVSSASTKGPSASTKGPSVFLAPSSKSTS GTAAALGCLVKDYPFPEPVTVSWN<br>SGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGQTQYICNVNHPNSNTKYDKRVEPKS<br>CGSAPAPGSPFTIPLSRLFDNAMLRAHRLHQLAFTYQEFEAYIPIKEQKYSFLQNPOTS<br>LCTSESIPTPSNREETQQKSNLELLRISLLIQSWLEPVQFLRSVFANSLVYASDSDNVYD<br>LLKDLLEGIQTLGMRLLEDGSPRTGQIFKQTYSKFDTN\$HNDALLKNYGLYCFRKDM<br>DKVETFLRIVQCRSVEGSCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Light chain (Leys format)</b>       | <b>DNA</b>        | GATATCGTTCTGACCCAATCTCGGGTACCGTGAAGCCTGAGCCCCGGGGAAACCGC<br>GACCCCTGAGCTGCCGCGAGCAGGAAAGCGTGGGTCTAATCTGCTTGGTATCAGC<br>AGAAAACCGGGTCAGGCCCGCGCCCTGCTGATCTATGGGGCGAGCACGGGGCTACC<br>GGCGTTCGGCGCCTTGTAGTGGCAGTGCAGCGAGCAGCGACCATTTCACCTGACCATTC<br>ACAAGTCTGCAAGCCGAAGATTTCGGACCTTATTGCGCAGCAATTAGCTTACCGT<br>CTGGCGAAAACCTTGGTCAAGGGCACCCAGCTGGAAATTAAACGCAACCGTGGCGC<br>ACCCAGCGTACGGTGGCGGACCCAGCGTGTATTTCCTCCAGTGTGAAACA<br>GCTGAAAAGCGGGACCGCAGGTGGTGTGCTGTGAACAACTCTATCTCGCG<br>AAAGCGAAAGTGCAGTGGAAAGTGGATAACGCAATTGCAAGAGCGGAAACAGTCAGGA<br>AAAGCGTTACTGAAACAGGATAGCAAAGATAGTACGTACAGCTTGAGCAACACTCTGA<br>CCCTGAGTAAGCGGATTATGAAAACATAAAGTGTATGCAATGCGAAGTTACGCAT<br>CAGGGGCTGAGCAGTCCGGTGACAAAGCGTTAACCGCGGGAATGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                        | <b>Amino acid</b> | DIVLTQSPGTLSLSPGETATLSCRASQS VGSNLAWYQQKPGQAPRLLIYGASTGATGVP<br>ARFSGSRSGTDFTLTITSLQPEDFATYYC <b>QQQYSFLAKTFGQGTQLEIKRTVAAPSVTVA</b><br>APSVFIFPPSDEQLKSGTASVCLNNFYPREAKVQWVKVDNALQSGNSQESVTEQDSKD<br>STYLSNITLTSKADYEHKVYACEVTHQGLSSPVTKSFRGEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

\*The linker and the effector domains were underlined and CDRs were written in bold.

[Fig. 22b]

## 2) SL335<sub>Δds</sub>-hGH

|                                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Heavy chain<br>(Hser +<br>hGH<br>format) | DNA        | CAAGTTCAGCTGGTTCAGAGCGGTGGCGGGCCCGTGAAACCAGGTGGCAGCCCTGCGTCTGTCCTGCAGCGCAGCGGTTTATGTTCTGTCGTATAGCATGAACTGGGTGCGCCTATAGCGCCGGGCAAAAGGCCCTGGAATGGGTGAGCAGCATTAGCAGCAGTGGCCGCTATATCCATTATGCCAGACAGTAAAGGTCGTTTACCATTTCTCGTGCAGAACAGCAGCAGTGGCTGTACTACTGTGCGCGGAAACAGCTGATGCCAGGAGCAGCAGTGGGATTAATGGGGTCAGGGCACCCTGCGACCGTGAAGCAGCGAGCACCAAGGGCCAGCGCAGGACCAAAGGGCCAGCGTGTCCGACCTAGTTCGAATACACAGAGCAGCTGGCACCAGCCGGCTCTGGCTGCCIGGTAAGAAGTATTTCCGGACCTGTTACCGGTTGAGCTGGAAACAGCGGTCGCTTGAAGCAGGAGTGGTGTGCATACCTTCCCGAGCTTCTGCATACAGCAGCGCCGTGACTCACTGAGCAGCGTGGTTACGGTCCCAGCAGTAGCCTGGTACACAGACCTATATTGTAACTGTAACGACAAAGCCTCGAACACGAAAGTGTGACAAACGGTGGAAACCCGAAGAGCAGCGGTTCTGCACCCAGCTCTGGATCTTCCCGACCATTCCTGTCAGGCCCTGTTCGATAACCGCGAAGTGCCTGCAGCCCACCCGCTGCATCAACTGGCTTITGATACCTATICAAGGAGTITGAGGAAGGGTACATCCCGAAGGAACAGAACAGAAATATCTTCTGTCAGAACCCACAGACGGCTGTGTTAACGGAATATATCCCGACCCGCTGCACCCGCAAGAACCCAACAGAAGTCTAACCTGGAACTGTGCGTATCTCTGTCGTGATTCAATCCCTGGCTGGAAACGGTCAATTCTGCGTAGCGTGTGGCAACTCTCTGCTGTATGGCGCTCTGACTCTAACGTGTATGACCTGTCGAAAGAACAGAACATCCAAACTCTGAAGGAGGACGGCTCCACAGTACCGGCCAGATCTTAAACAGACCTATAAGCAAAATTGACACCAAACTTCACAAACGATGATGCCGTGCTGAAAAAACTATGGCCTGCTGTATTGCTTCCGAAAGACATGGATAAAGGTTGAAACGTTCTGCGCATTGTCAGTGCCTCGTGGAGGGCTCTGCGGCTTC |
|                                          | Amino acid | QVQLVQSGGGPVKPGGSLRLSCAASGMFRAYSMNWVRQAPGKGLEWVSSISSSGRYIHYADSVKGRTISRDNAKNSLYQLMNSRLSRAEDTAVYYCARETV <del>MAKALDY</del> WQGQTLVTVSSAATKGSASKTGPSPVFLAPASSKS <del>T</del> SGGT <del>A</del> ALGCLVKDYFPEPVTVWSNGSALTSGVHTFPAAVLIQSSGLYSLISSLVTPVSSSI GTQTYICNVNHPKPSNTKVDKRVFVKSSGASA PGSPFTIPLSLRFLDNAMLAHLRHLQQLAFDTQYEEFAYIPKEKQYSFLNPQTSCLFCSESIPTPSNREEQTQKNSLLELLRISLQLQSLWEPVQFLRSVAFNLYVGASDNSNVYDLDLKDLEEGIQLTLMGRLEDGSPTRGQIFKQTYSKFDTSNTINDDALLKNYGLLYCFRKDMKDVKETFLRIVQCRSVEGSCGF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Light<br>chain<br>(Lser<br>format)       | DNA        | GATATCGTTCTGACCCAATCTCGGGTACGCTGAGCTGAGGCCGGGGCAAACCGGCACCCCTGAGCTGCCGAGCCAAAGCTGCGGTTCTAATCTGGCTGGTATCAGCAGAAACCGGGTCAGGCCCGCCTGCTGATCTATGGGGCGAGCACGGGGGCTACCGGC <del>G</del> TTCGGCGCGCTT <del>A</del> GTGGCAG <del>T</del> ICGCAGCGCAGCGAACCTGTTACCTGACCATTA <del>A</del> ALGCLVKDYFPEPVTVWSNGSALTGTCTGACCGGGAAAGATTTCGCGACATTATTCGCGAACATATTATAGCTTCTCTGGGAAACCTTGGTCAGGGCACCCAGCTGGAAATTAAACGCACCCGTGGCGCACCCAGCGTGGAGCTGGCGGCCACCCAGCAGCTGGTTGTGGCTCTGGTGAACAACTCTATCTCTCGCAAGCGAACAGCTGAAAGCAGGGACATCCCGAAGCAGAACAGTCAAGGAAAGCGTACTGAAGCAGGATAGCAAAAGATAGTACGTCAGCTGAGCAACACTCTGACCCCTGAGTAAAGCAGGATTATGAAAAACATAAGTGTATGTCATGCCAGAGTACCGCATGCCATCAGGGCTGAGCAGTCGGTGACAAAGCTTAAACCGCGGCGAAAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                          | Amino acid | DIVLTQSPGTLSSLPGELATLSCRASQSVGSNLAWYQQKPGQAPRLLIYGASTGATGVPA <del>R</del> FSGRSRSGTDFDTLTSIQLP <del>E</del> DFATY <del>Y</del> QQY <del>S</del> FLAKT <del>T</del> FGQ <del>T</del> QLEIKRTVAAPS <del>V</del> TAAPSVF <del>T</del> PPSD <del>E</del> QLKS <del>T</del> GSV <del>V</del> CLNN <del>Y</del> PREAK <del>V</del> QWKVDN <del>AL</del> QSGNSQES <del>V</del> TEQDSKD <del>STY</del> SLSN <del>T</del> ILSKADY <del>E</del> YKKH <del>V</del> YACEV <del>T</del> HQGLSSP <del>V</del> TSFNR <del>G</del> ES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

\*The linker and the effector domains were underlined and CDRs were written in bold.

[Fig. 22c]

### 3) SL335<sub>wt</sub>-GCSF

\*The linker and the effector domains were underlined and CDRs were written in bold.

[Fig. 22d]

#### 4) SL335<sub>Δds</sub>-GCSF

\*The linker and the effector domains were underlined and CDRs were written in bold.

[Fig. 22e]

### 5) SL335<sub>wt</sub>-IFN $\beta$

|                                                     |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Heavy chain<br/>(Heys<br/>+ IFNβ<br/>format)</b> | <b>DNA</b>        | CAAGTTCAGCTGGTCAGAGCGGTGGCGGGCCGGTGAACCAGGTGGCAGCCCTCGCTCTGCTCTCGCAGCGGAGCGGTTTATGTTCTGTCGTATAGCATGAACTGGGTGCGCCTGGCGGGCAAAGGCCCTGGAAATGGGTGAGCAGCAGCTTACCTTCGTCGATGAGCAGAACAGCCTGTATGCAAAATGAACCTGGCTCGCGCGGAAGAACCCGCGGTGTAACACTGTGCGCGGAACACCGTGGCTAGGGCACCCCTGGTACCGTGGACGAGCAGCAGCACAAAGGCCCGAGCGCGAGCACAAAGGCCCGAGCGTGTTCICCGCTGCACTTAGTTCGAAATCACAGAGCGGTGGCTGACCGCCGCTCTGGCTGGTAAAGGATTATTCGCGGAACCTGTTACCTGGTGAACCTGGAAACAGCGGTGCGTTGACGAGTGGTGTGCAATCCCTCCCGAGCTTCTGCAATCATGAGCGGGCTGTGACTCACTGAGCAGCGTGGTACGGTICCCGAGCAGTAGCCCTGGTACACAGACCTATATTTGTAACGTGAAACCAAGCTCGAACACGAAAGTGTGACAAACCGCTGGAAACCGAGAGACTCGGGCTTCGACAGTACGTTCTGGATCTTCATACAACTCTGGGCTTCGTCAACGTAGCAGTAACCTTCAGAGCCAGAAGCTGTTATGGCAACTGAAACGCCGCGCTGGAGTACTGCGTGAAGGATCGCATGAACTTGTGATATTCCGGAAGAAATTAAACAGCTGCAACAGTTCGAAAGAAGATGCGCGCTGACCATTATGAAATGCTGCAAAACATTITGCGATTITCGCCAAGATAGTAGTAGCAGCACCCTGGAACGAAACATTGTGAAAALLTGCTCGCCAACGTGTAACCTAGATAACCCACTGGAAGACCGTGTGGAAAGAAAACTGAAAAGAAGATTACCGCGCGAACACTGTGAGCAGCAGCTGACATGAAACGCTATTATGCCGCAATTCTCATTATCTGAAAGCCAAGAGTATTCCACTGTGCTTGGACATTGTTCGCGTGGAAATTCTGCGCAACTTTATTAAACCGCCTGACCGGCTATCGCGCAAC |
|                                                     | <b>Amino acid</b> | QVQLVQSGGGPVKPGGSLRLSCAASGFMRAYSMNWVRQAPGKLEWVSSSISSSGRYHYADSVKGRFTISRDNAKNSLYQMNSLRAEDTAVYYCARETVMAGKALDYWGQGTLVTVSSASTKGPSPASTKGPSPVFPLAPSSKSTSGGTAAI.GCI.VKDYFYPFPVTWSNSGAI.TSGVHITPAVLQSSGGLYSLSSVTVPPSSLLGTQIYICNVNHKPSNTVKDRVERPKSCGSAPAGPSYNLLGLPQRSSNFIQSKQLLWQLNRLREYCLKDRMNFIDPEEIKQLQFQKDEAALTIYEMLQIFIAFRQDSSSTGWNETIVFNIILANVYHQINHI.KTVI.FFKLFKEFDTRGKLMSSIIHLKRYGRILHYHLKAKELYSHCATWIVTVERLNRNFYFIRNLTYGILRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Light chain<br/>(Lcys<br/>format)</b>            | <b>DNA</b>        | GATATCGCTTCGACCAATCTCGGGTACGCTGAGCTGAGCCCTGGCGAAACCGCGACCCCTGAGCTCGCGCGAGCCAAGCTGTTCTAATCTGCTGGTATACAGCAGAACCCGGGTAGCGGCCGCGCTCTGATCTATGGGGCGAGCAGCGGGGGCTACCGGGCCTTCCGCGTTAGTCGAGCAGGGCAACCTGAGCAGCGGGCACCAGATTACCTGACATTACAGTCTCGAGCAGGGAAAGATTTCGACGCAATTATTCGACGCAATATTATGCTCTCTGGGAAAAACCTTGGTCAGGGCACCCAGTGGAAATTAAACGCACCGTGGCGCACCCAGCTGACGGTGGCGGCCACCAGCTGTTTATTCCTCCCGAGTGAACAGCTGAAAGCTGAAAGCGGGAGCAGCGGCGAGTGTGCTGTCGTCGAAACTCTATCTCTCGCAAGCGAAAAGTCAGTGGAAAGTGGATAACGCATTGCAAGAGCGGCACACAGTCAGGAAAGCGTTACTGAACAGCAGTAAAGATAGTACGTCAGCTGAGCAGACACTTCGACCCCTGAGTAAAGCGGATTATGAAACATAAGTGTGATGCATGCGAAGTTCAGCATCAGGGCTGAGCAGTCGGGAGCAGAGTCAGCTGGCGGAATTCACCCGCGCAATGCG                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                     | <b>Amino acid</b> | DIVLQSQPGTLSPGETATLSCRASQS VGSNLA WYQQKPGQAPRLLIY GASTGATGVPA RFSGSRSGTDFLTITLSLQPEDFATYVYQQYSSFLAKTFFGQGTQLEIKRTVAAPS VTVAAAP SVFVFPSPDFQIKSGTASVVCI.I.NNFYFPRPACFVQWVKVDNAQ.SQSGNSQESVTQFQDSKDDSTY SLSNITLTSKADYEHKKVYACEVTHQGLSSPVTKSFNRGE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

\*The linker and the effector domains were underlined and CDRs were written in bold.

[Fig. 22f]

### 6) SL335<sub>Δds</sub>-IFNβ

\*The linker and the effector domains were underlined and CDRs were written in bold.

[Fig. 22g]

7) EGL4<sub>wr</sub>-hGH

|                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Heavy chain (Hcys – hGH format)</b> | <b>DNA</b>        | GAGGTGCAGCTGGTGCAGTCTGGGGAGGGCTTGGTACAGCCTGGCAGGTCCCTGAGA CTCTCCTGCACAGCCTCTGGATTCACTTTGATGATTATGCCATGCACTGGGCCGGC AAGC'CCAGGGAGGGCCTGGAGTGGGTC'CAAGGATTAGTGGAA'GG'GGTAGCG TAGCTATGCGGACTCTGTCAGGGGCCGATTACCATCTCCAGAGACAACGCCAAGA ACTCCCTGTATCTGCAAATGAACAGTCTGAGAAGTGGACACGGCGTCTATTACTG TGCGAGAGATTACGGTTACTACGGTATGGACGTCCTGGGCCAAGGAACCCCTGGTCAC CGTCTCCTCATCGGCCACATTGGGCCCTCCACCAAGGGGCCACCGGGCCCTGGCTGCTCAAG GCACCCCTCTCCAAGAGACCTCTGAGGGCACAGCGGCCCTGGCTGCTCAAG GACTACTTCCCGAACCCGGTACGGTTGCTGGAACTCAGGCCTGACCAGCGGC GTGCACACCTCCCGCTGCTTACAGCTCTCAGGGACTCTACTCCCTCAGCAGCGTGG TGACCGTGCCTCCAGCAGCTTGGCACCCAGACTACATCTGAACTGTAATCACA AGCCCAGCAACACCAAGGTGGACAAGAGAGTTGAGCCAAATTTGTGGTTCTGAC AGCTCTCTGGATCTTTCGCAACCCGCTGAGCCATTCCGCTGTTGATAACCGCATGCT GCGCGCCCACCGCCCTGCATCAACTGCGCTTGTACCTATCAGGAGTTGAGGAAGC GTACATCCCGAAGGAACAGAAATATTCTTCTGAGAACCCACAGACGAGCCTGTG CTTAGCGAATCTCGGCAACCCGCTCAACCCAAACAGAAAGCTAA CTTCTGCGTAGCGTGTGGAACCTCTCTGGTGTATGGCGCTGACTCTAACGTGT ATGACCTGCTGAAAGATCTGGAAGAGCATCCAAACTCTGATGGGCCGTCTGGAGG ACGGCTCTCACAGTACCGGCCAGATCTTAAACAGACCTATAGCAAAATTGACACCA ATTCTCACACAGTATCGCTGCTGAAAAAAATATGCCCTGCTGATTGCTTCCGTA AGACATGGATAAGATTGAAACGTTCTGCGCATTTGTCAGTGGCTTCCGTGGAGGG CTCCTGCGGCTTC |
|                                        | <b>Amino acid</b> | EVQLVQSGGGGLVQPGRSLRLSCTASGTFDDYAMHWVRQAPGKLEWVSGISWNGGSV <b>VYADSVRGRFTISRDNAKNSLYLQMNLSRILEDTA</b> YYCARD <b>DYGGYGM</b> DVWGQGTLVT VSSSATLA <del>AAST</del> KGPSVFLAPSSKSTSEGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTF PAVLQSSGLYSLSSVVTPSSSLGTQTYICNVNHPSTNKVDKRVEPKSCGSAPAPGSPTI PLSRLFDNAMLRALRHLHQ <del>LA</del> FDTYQFEEAYIPKEQKYSFLQNPQTSCLFSESIPTPSNREE TQQKSNELLRLISL <del>LL</del> IQSWL <del>LPV</del> QFLRSVFANSLVY <del>GASD</del> SVYD <del>LL</del> KDLE <del>E</del> GIQTLMGR LEDGSPRTGQIFKQTYSKFDTNSHND <del>ALL</del> KNYGLLYC <del>FR</del> KDM <del>DK</del> VETFLRIVQCRSVEG SCGF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>Light chain (Lcys format)</b>       | <b>DNA</b>        | GATATTGTGATGACCCAGTCTCCATCTTCCGTGTCGATCTGTGGAGACAGAGTCACCATCACTTGTGCGGAGTCAGAAATTGGCAGCTGGTATGGCTGGTATCAGCAGAAACCAGGTAAACGCCCTAAAGTTGTTGATCTATAGAGCATCCAATTTCGCGAAGTGGGG TCCCATCAAGGTTACGGCCAGTGGCTCTGGGACAGATTCACTCTAACATCAGCAG CCTGCAGCTGAAGATTTCGCAACTTACTTTGTCAACAGGCTACCATTTCCCTCTCA CTTTCGGCGAGGGACCCGGGTGGATCTAAACGTTCTAGAGCTGTGGCTGACCAT CTGTCTTCTATCTTCCCACATCTGATGAGCAGTTGAAATTGGAAC <del>T</del> GCCTCTGTGTG TGCCCTGCTGAATAACTCTATCCCAGAGAGGCCAAAGTACAGTGAAGGTGGATAAC GCCCTCCAATCGGGTAACTCCAGAGAGGAGATGTCA <del>C</del> AGAGCAGGACAGCAAGGACAG CACCTCACGCTCAGAACACCCCTGACGCTGAGCAAAGCAGACTACGAGAAACACAA AGTCTACGCC <del>T</del> GAAGTCACCCATCAGGGCTGAGTTCGCCGT <del>C</del> ACAAAGAGCTT CAACAGGGAGAGTGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                        | <b>Amino acid</b> | DIVMTQSPSSV <del>S</del> ASVGDRV <del>IT</del> ICRASQ <b>NIGSWLA</b> WYQ <del>Q</del> KPGNAPKLLIYRASNL <del>R</del> GVPS RFSGSGSGTDF <del>TL</del> TISSLQ <del>Q</del> EDFATYFC <b>QQATIFPL</b> ITGGGTRVDIKRSRTVAAPSV <del>IF</del> PPS D <del>E</del> QLKSGT <del>I</del> ASV <del>V</del> CL <del>NN</del> Y <del>P</del> REAKVQW <del>K</del> VD <del>N</del> ALQSGNSQ <del>E</del> SV <del>T</del> EQDSKD <del>S</del> T <del>Y</del> LS <del>N</del> TL <del>T</del> LSKADYEKHKVYACEV <del>T</del> HQGLSSPV <del>T</del> KS <del>N</del> R <del>G</del> E <del>C</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

\*The linker and the effector domains were underlined and CDRs were written in bold.

[Fig. 22h]

8) EGL4<sub>Δds</sub>-hGH

|                                        |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Heavy chain (Hser – hGH format)</b> | <b>DNA</b>        | GAGGTGCAGCTGGTGCAGTCTGGGGAGGCTTGGTACAGCCTGGCAGGTCCCTGAGA CTCTCTGCACAGCCTCTGGATTACCTTGATGATTATGCCATGCACGGTCCGGCA AGCTCCAGGGAGGGCTGGAGGTGGTCTCAGGTATTAGTTGAATGGTGGTAGCGT AGTCTATGCCACTCTGTCAGGGGCCGATTCAACCATCTCCAGAGACACGCCAAGAA C'ICCCIGTAIC'IGCAAATGAACAGTC'IGAGAACAGGGCGTCAIT'ACT'GT GCGAGAGATTACGGTTACTACGGTATGGACGTCTGGGGCAAGGAACCCCTGGTACCC GTCTCTCATCGGCCACATTGGGCCCTCCACCAAGGGGCCATCGGTCTCCCCCTGG CACCCCTCTCCAAGAGCACCTCTGAGGGCACAGCGGCCCTGGCTGCTGGTCAAGG ACTACTTCCCGAACCGGTGACGGTGTGGAACCTAGGGGCCCTGACCAAGCGCGT GCACACCTTCCCGTGTCTACAGTCTCAGGACACTACTCCCTCAGCAGCGTGGTGC ACCGTGCCCTCCAGCAGCTGGGACCCAGACCTACATCTGCAACGTGAATCACAAGC CCAGCAACACCAAGGTGACAAGAGAGAGTTGAGCCCACATCTAGTGGTCTGACCAG CTCCCTGGATCTTCCGACCATTCGGCCTGAGCCCTGCTGATAACCGCATGTCGC GCACCCGCCCTCGCATCAACTGGCCTTGTACACTATCAGGAGTTGAGGAACCGTACA TCCCGAAGGAACAGAAATATTCTTTCTGCAAGAACCCACAGACGAGCCTGCTGCTTAG CGAATCTATCCCGAAGAACAGAAGTCTAACCTGGGA ACTGCTGCGTATCTCTGCTGCTGATTCATCTGGCTGAGAACCGGTTCAATTCTGC GTAGCGTGTGCGAACTCTCTGGTGTATGGCGCGCTGACTCTAACCGTGTATGACCT GCTGAAAGATCTGGAAGGAAGGCATCCAAACTCTGATGGGCCGTCIGGAGGACGGCTC TCCACCGTACCGGCCAGATCTTAAACAGACCTATAGCAAATTGACACCAATTCTCAC AACGATGATGCGCTGCTGAAAAACTATGGCCTGCTGTATTGCTCCGTAAGACATGG ATAAAGTTGAAACGTTCTGCGCATTGTTCAAGTGGCTCCGGAGGGCTCTGCGG CTTC |
|                                        | <b>Amino acid</b> | EVQI.VQSGGGI.VQPGRSLI.RL.SCTASGFTFDDYAMHWVRQAPKGLEFWVSGISWNGGSV VYADSVRGRFTISRDNAKNSLYLQMNSLRTEDTAVYYCAR <b>DYGYYGMVDWQGQLVTVSSSATLA</b> ASTKGPSVFLAPSSKSTSEGTAALGCLVKDYFPEPVTVWSNSGALTSGVHIFT PAVI.QSSGI.YSI.SSVVTPPSSL.GTQTYICNVNIKPSNTKVDKRVPKSSGAPAPGSPTI PLSRLFDNAMLRAHRLHQLAFTDITYQEEFEAYIPKEQKYSFLQNPQTSCLFSESIPTPSNREE TQQKSNIELIRISI.LI.QSWL.FPVQFLRSVFAISI.VYGAQSDSNVYDILKDI.FFGIQTLMGR LEDGSPRTGQIFKQTYSKFDTNSHNDALLKNYGLLYCFRKDMDKVETLRLIVQCRSVEG SCGF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Light chain (Lser format)</b>       | <b>DNA</b>        | GATATTGTGATGACCCAGTCTCCATCTTCCGTGTCGATCTGTGGAGACAGAGTCACCATCACTTGTGCGGAGTCAGAATATTGGCAGCTGGTTAGCCTGGTATCAGCAGAA ACCAGGTAAACGCCCTAAAGTGTGATCTATAGACATCTCAAACTCCAAATTGCGAAGTGGGTC CCATCAAGGGTTCAGCGGAGTGGCTCTGGGACAGATTCTACTCTTACCATCAGCAGCC TGCAGCCTGAAGATTTCGCAACTTACTTTGTCAACAGGCTACCAATTTCCTCTCACT TTCGGCGGAGGGACCCGGGGTGGATATCAAACAGTGTAGAGCTGTGGCTGCACCATCTG TCTTCATCTCCCGCCATCTGATGAGCAGTTGAAATCTGGAATCTGCTCTGTTGTGTC CTGCTGTAATAACCTCTATCCCAGAGAGGGCAAAGTACAGTGGAGGTGGATAACGCC CTCCAATCGGGTAACTCCCAGGAGAGATGTACAGAGCAGGACAGCAAGGACAGCACC TACAGCCTCAGCAACCCCTGACGCTGAGCAAAGCAGACTACCGAGAAACACAAAGTC TACGGCTCGCGAAGTCACCCATCAGGGCCCTGAGTTGCCGTACAAGAGCTCAACAGGGAGAGT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                        | <b>Amino acid</b> | DIVMTQSPSSVSASVGDRVTTICRASQNIGSWI.AWYQQKPGNAPKLIYRASNLRSGVPSRFSGSGSGTIDFTLTISLQPEDFATYFC <b>QQATIFPLTFGGG</b> IVVDIKRSRIVAAPSVFIFPPSDE QLKSGTASVVCLNNFYPREAKVQWKVDNALQSGNSQESVTEQDSKDSTYSLNTTLS KADYEKHKVYACEVTHQGLSSPVTKSFNRGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

\*The linker and the effector domains were underlined and CDRs were written in bold.

[Fig. 22i]

9) 1B28<sub>wt</sub>-hGH

|                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Heavy chain (Hcys hGH format)</b> | <b>DNA</b>        | CAGGTGCAGCTGGTCAGTCAGGGGGAGGCCTGGTCAGGCCGGGGGGTCCCTGAG ACTCTCCTGTGCAGCCTCTGGACTCATATTCACTAATTATAGCATGAACGGTCCGC CAGGCTCCGGGAAGGGCTGGAGTGGGTCTCATCAATAAGTAGTGTGGTAGTTAC AAATACTACACAGACTCACTGAAGGGCCGATTCAACCATCTCCAGAGACAAACGCCAAG AAGTCACTGTATCTGCAATGAACAGCCTGAGAGTCACGACACGGCGCTCTATTAC TGTCAAGAAGGGGACTATGATACGGGCATGGAGCCCTGGGGCAAGGCACCATGGTC ACCGCTCTCCATCGGCCACATTGGCCGCTCCACCAAGGGCCCACCGCCTGGGCTGGTCA TGGCACCCCTCTCCAAGAGCACCTCTGGGGCACAGCGCCCTGGGCTGGTCA AGGAACTACTCCCCGAACCGGTGACGGTGTGCAACTCAGGGCCTGACAGCAGCG GGGTGCACACCTCCCCGGGTGCTCTACAGTCTCAGGACTCTACTCCCTCAGCAGCGT GGTGACCGTGCCTCCAGCAGCTGGGACCCAGACCTACATGCAACGTGAATCA CAAGGCCAGCAACACCAAGGIGGACAAGAGAGTGAGCCCAAATCTTG <b>1 GTTCTGC</b> ACCAGCTCCTGGATCT <b>1 TCCGACCA</b> TCTCCGCTGAGGCCCTGGTCAAGCAGATG CTGCGGCCACCCGCCATGCACTGGCTTGTACACTTACAGGAGTTGAGGAAG CGTACATCCCGAAGGAACAGAAATATTCTTCTGAGAACCCACAGACGAGCCTGT GCTTACGCGAATCTGGAT <b>1 TCCGACCA</b> TCTCCGCTGAGGCCCTGGTCAAGCAGATG ACCTTGGAACTGCTGCGTATCTCTGCTGAACTCTCTGGTGTATGGCGCTGTGACTCTAACGTG ATTTCTGCGTAGCGTGTGCGAACTCTCTGGTGTATGGCGCTGTGACTCTAACGTG TATGACCTGCTGAAAGATCTGGAAAGGACATCCAAACTCTGTATGGGCCGTGGAG GACGGCTCTCCACGTACCGCCAGATCTTAAACAGCATATAGCAAATTGACACC AATTCTCACACAGATGCGCTGTGAAAACATGGCCTGCTGTATTGCTTCCGTA AAGACATGGATAAAGTTGAAACGTTCTGCGCATTGTCAGTGCCGTTCCGTGGAGG GCTCTGCGGCTTC |
|                                      | <b>Amino acid</b> | QVQLVQSGGLVRPGGSLRLSCAASGLIFSNYSMNWVRQAPKGLEWVSSISSAGSYK YTDSVKGRTIISRDNAKKSLYLMQNSLRVDDTAVYYCARG <b>DYDTGMEPWGQG</b> IMTV SSSATI <del>A</del> STKGPSSVFP <del>I</del> APSSKSTSF <del>G</del> TA <del>I</del> G <del>C</del> I <del>V</del> DY <del>P</del> EP <del>V</del> T <del>V</del> WSNSGAI TSGVHTFP AVLQSSGLYSLSSVTPVSSSLGTQTYC <del>I</del> CVNVNHP <del>S</del> NTKV <del>D</del> KRVEPKSCGSAPAPGS <del>P</del> PTIP LSRLFDNAMLRAHRLHQ <del>A</del> FT <del>D</del> YQ <del>E</del> EEAYIPKEQ <del>K</del> Y <del>S</del> FLQNPQ <del>T</del> LCFSEIPT <del>S</del> NE <del>E</del> ET QQ <del>K</del> SN <del>I</del> FL <del>I</del> LRIS <del>I</del> LIQ <del>S</del> W <del>I</del> EPVQFLRSV <del>F</del> ANS <del>I</del> VYGASDSN <del>V</del> Y <del>D</del> LLK <del>D</del> I <del>E</del> FG <del>I</del> QT <del>I</del> MGRI <del>E</del> DGS <del>P</del> RTGQ <del>I</del> FK <del>Q</del> TY <del>S</del> K <del>F</del> D <del>T</del> NSHND <del>A</del> LLK <del>N</del> Y <del>G</del> LLY <del>C</del> FRK <del>D</del> MD <del>K</del> V <del>E</del> T <del>L</del> RIVQCRS <del>V</del> EGS CGF                                                                                                                                                                                         |
| <b>Light chain (Leys format)</b>     | <b>DNA</b>        | GAGCTCGAGCTCGTGTGACGCAGTCCTCCATCCCTCCCTGTCAGCATCTGTGGGAGACA GAGTCACCACTTCTGCGGGCAAGTCAGACGATTAGCAGGTATTAAATTGGTATCA GCAGAAAC <del>C</del> AGGGAAAGCCCTAAGCTCTGATCTGCTGACATCCAGATTAGAAAG TGGGGTCCCACTCAAGGTTCAGTGGCAGTGGTCTGGACAGAC <del>T</del> CACTCTCACCA <del>T</del> AACAGCCTGCAACCTGAAGATTTCGA <del>C</del> ACTACTACTGTCAACAGAGTTACAGTACCC CTCTAACATTGGCCAGGGACCCGACTCGA <del>A</del> ACGTGCTGTGGCTGCACC <del>A</del> TC TGTCTTAC <del>T</del> CTCCCGCATCTGATGAGCAGTTGA <del>A</del> ATCTGGAACTG <del>C</del> CTGTTGTG <del>T</del> GCCTGCTGAATAACTCTATCC <del>C</del> AGAGAGGCCAAAGTACAGTGGAA <del>G</del> GTGATAACG CCC <del>T</del> CAATCGGG <del>I</del> AAC <del>T</del> CCCAGGGAG <del>G</del> GTCA <del>C</del> AGAGCAGCAGCAAGGACAGC ACCTACAGCCTCAGCAACACCC <del>T</del> GC <del>G</del> CTGAGCAAAGCAGACTACGAGAAACCAA AGTCTACGCC <del>T</del> GC <del>G</del> AA <del>G</del> TCA <del>C</del> CC <del>A</del> T <del>C</del> AGGGC <del>T</del> AGTTGCC <del>C</del> GT <del>C</del> ACAAAGAGCTT CAACAGGGAGAG <del>T</del> GTG                                                                                                                                                                                                                                                                                |
|                                      | <b>Amino acid</b> | ELVSTQSPSS <del>I</del> SASVGDRV <del>T</del> ITCRASQ <del>S</del> RYLN <del>W</del> YQ <del>K</del> PG <del>K</del> AP <del>K</del> LL <del>I</del> Y <del>G</del> ASR <del>L</del> ESG <del>V</del> PSRF SGSGSGTDF <del>T</del> LTINSLOPEDF <del>A</del> TY <del>Y</del> C <del>Q</del> Q <del>S</del> Y <del>S</del> T <del>P</del> LT <del>H</del> FG <del>G</del> TR <del>V</del> E <del>I</del> K <del>R</del> S <del>R</del> TV <del>A</del> APS <del>V</del> H <del>F</del> PPS <del>D</del> EQLKSGTASV <del>V</del> CLLNNF <del>Y</del> P <del>R</del> EAKV <del>Q</del> W <del>K</del> V <del>D</del> NALQSG <del>N</del> Q <del>S</del> E <del>V</del> TEQ <del>D</del> SK <del>D</del> ST <del>S</del> L <del>N</del> TL <del>T</del> LS KADYEKH <del>K</del> VY <del>A</del> CE <del>V</del> THQ <del>G</del> LSS <del>P</del> V <del>K</del> FS <del>N</del> R <del>G</del> E <del>C</del>                                                                                                                                                                                                                                                                                                                                                                                                                   |

\*The linker and the effector domains were underlined and CDRs were written in bold.

[Fig. 22j]

10)  $1\beta28_{\Delta\text{ds-hGH}}$ 

|                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Heavy chain (Hser-hGH format)</b> | <b>DNA</b>        | CAGGTGCAGCTGGTGCAGTCAGGGGGAGGGCCTGGTCAGGCGGGGGGGGGCTCTGAGACTCTCTGTGCAGCCTCTGGACTCATATTCACTGAGTAATTATAGCATGAACTGGTCCGCAGGGCTCCGGGGAGGGGCTGGAGTGGGTCTCATCAATAAGTAGTGTGCTGGTAGTTAACATACTACACAGACTCAGTGAAGGGCCGATTCAACCATCTCAGAGACAACGCCAAGAAGTCAGTGTACTGCAAATGAACAGCCTGAGAGTCAGCAGCACCGCCGTCTATTAC TGTGCAAGAGGGGACTATGATAACGGGATGGAGGCCCTGGGGCAAGGCACCATGGTCACCGCCTCCATCGGTCCTCCCCCTGGCACCCCTCTCCAAAGAGCACCTCTGGGGCACAGGCCCTGGGTGCTCTGGTCAAGGAACTACTCCCCGAACCCGGTACGGGTGACTCAGGCCCTGACCAGCGGCCGTCAGCTACTCTCAGCAGCGTGGTACACCTTCCCGCTGCTCTACAGTCTCACAGGACTCTACTCTCCCTCAGCAGCGTGGTACCGTGCCTCCACAGCTGGGCAAGGCACCATCTGCAACGTGAATCA                                                                                                                                                                                                                                                                |
|                                      | <b>Amino acid</b> | QVQLVQSGGLVPRPGGLRLSCAASGLIFSNYSMNWVRQAPKGLEWVSSISSAGSYKY <b>YTD</b> <b>SVKGRFTISRDNAKKSLYQLMNSLRVDDTAVYYCARGD</b> <b>YDTGMEPWGQGTMVTV</b> SSSATLAASKTGPSPVFLAPSSKSTSEGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTEP AVLQSSGLYSLSVVIVPSSSLGIQTYICNVNHPNSNTKVDKRVEPKSSGAPAPGSPTIP <b>LSRLFDNAMLRHJRLIQLAFD</b> <b>TYQEIEAYIPKEQKYSFLQNPQTSLCFSEIPTPSNREET</b> QOKSNLELLRISLLIQSWLEPVQFLRSVFANSLVYGASDSNVYDILLKDEEGIQ <sup>Q</sup> LMGRLEDGSRTGQIFKQTYSKEDNTSITNDALLKNYGLIYCFRKDMKVETTLRIVQCRSVEGSCGF                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>Light chain (Lser format)</b>     | <b>DNA</b>        | GAGCTCGAGCTCGTGCACGCAGCTCCATCCTCCCTGTCTGCATCTGTGGGAGACAAGTCACCATTACTTGCCTGGGCAAGTCAGAGCATTAGCAGGTATTAAATTGGTATCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                      | <b>Amino acid</b> | GCAGAACACCAGGGAAAGGCCCTAAAGCTCTGATCTGGTGCATCCAGATTAGAAAG <b>TGGGGTCCC</b> <b>ATCAAGG</b> <b>TCAGTGGCAGTGG</b> <b>GTCTGGGACAGAC</b> <b>TCAC</b> <b>TCAC</b> <b>CACT</b> <b>ACACG</b> <b>CCTGCAACCTGAAAG</b> <b>ATT</b> <b>TTGCAACTACT</b> <b>ATGTCAACAGAGTTACAGTACCC</b> <b>C</b> <b>TC</b> <b>TAAC</b> <b>TTTGGCCAGGGGACCCGAGTCGA</b> <b>AA</b> <b>TTAAACG</b> <b>TCG</b> <b>TCG</b> <b>TCAC</b> <b>TC</b> <b>TGTCTT</b> <b>CAT</b> <b>CTCCCGCC</b> <b>ATCTGAT</b> <b>AGCAGTTG</b> <b>GAATCTGGAA</b> <b>CTGCCT</b> <b>GTG</b> <b>TGT</b> <b>GCTGCTGA</b> <b>ATAACT</b> <b>CTATCCCAGAGAGGCCAAAGTACAGTGGAAAGGTGGATAACG</b> <b>CCCTCCA</b> <b>ATCTGGGTA</b> <b>ACT</b> <b>CCCAGGAGAGTGT</b> <b>TCACAGGAGCAGCAAGGACAGC</b> <b>ACCTACAGCCTCAGCAACACCC</b> <b>TGACGCTGAGCAAGCAGACTACGAGAAACACAA</b> <b>AGTCTACGCTCGCGAAGTCACCCATCAGGGCCTGAGTTCGCCGT</b> <b>CAAAAGAGCT</b> <b>CAACAGGGGAGAGT</b> |

\*The linker and the effector domains were underlined and CDRs were written in bold.

## INTERNATIONAL SEARCH REPORT

International application No.  
**PCT/KR2014/008106****A. CLASSIFICATION OF SUBJECT MATTER****C07K 16/18(2006.01)i, C07K 16/46(2006.01)i, A61K 39/395(2006.01)i**

According to International Patent Classification (IPC) or to both national classification and IPC

**B. FIELDS SEARCHED**

Minimum documentation searched (classification system followed by classification symbols)

C07K 16/18; A61K 39/395; C07K 19/00; A61K 51/00; A61K 38/04; C07K 16/00; C09K 19/00; A61K 47/48; C07K 16/46

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched  
Korean utility models and applications for utility models  
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)  
eKOMPASS(KIPO internal) & Keywords: antigen binding fragment(Fab), serum albumin, fusion construct, half-life**C. DOCUMENTS CONSIDERED TO BE RELEVANT**

| Category* | Citation of document, with indication, where appropriate, of the relevant passages                                                                                              | Relevant to claim No. |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| X         | KR 10-2012-0133403 A (Domantis, Ltd) 10 Dec. 2012<br>See abstract, page 23                                                                                                      | 7, 18                 |
| A         |                                                                                                                                                                                 | 1-6, 19               |
| X         | KR 10-2007-0073886 A (Genentech, Inc.) 10 Jul. 2007<br>See abstract, claims 1, 10                                                                                               | 7, 18                 |
| A         |                                                                                                                                                                                 | 1-6, 19               |
| A         | KR 10-2007-0041781 A (Trubion Pharmaceuticals, Inc.) 19 Apr. 2007<br>See abstract, claim 1                                                                                      | 1-7, 18, 19           |
| A         | KR 10-2011-0008086 A (Merrimack Pharmaceuticals, Inc.) 25 Jan. 2011<br>See abstract                                                                                             | 1-7, 18, 19           |
| A         | Smith, B.J. et al., Prolonged in vivo residence times of antibody fragments associated with albumin. Bioconjug. Chem. 2001 Sep.-Oct.; 12(5): 750-756.<br>See the whole document | 1-7, 18, 19           |

 Further documents are listed in the continuation of Box C. See patent family annex.

|                                                                                                                                                                         |                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| * Special categories of cited documents:                                                                                                                                | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention                                              |
| "A" document defining the general state of the art which is not considered to be of particular relevance                                                                | "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone                                                                     |
| "E" earlier application or patent but published on or after the international filing date                                                                               | "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art |
| "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) | "&" document member of the same patent family                                                                                                                                                                                                    |
| "O" document referring to an oral disclosure, use, exhibition or other means                                                                                            |                                                                                                                                                                                                                                                  |
| "P" document published prior to the international filing date but later than the priority date claimed                                                                  |                                                                                                                                                                                                                                                  |

|                                                                                                                                                                                                                                               |                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Date of the actual completion of the international search<br><br>01 December 2014 (01.12.2014)                                                                                                                                                | Date of mailing of the international search report<br><br><b>02 December 2014 (02.12.2014)</b> |
| Name and mailing address of the ISA/KR<br><br>International Application Division<br>Korean Intellectual Property Office<br>189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan City, 302-701,<br>Republic of Korea<br>Facsimile No. +82-42-472-7140 | Authorized officer<br><br>CHO, Kyung Joo<br><br>Telephone No. +82-42-481-3486                  |



**INTERNATIONAL SEARCH REPORT**International application No.  
**PCT/KR2014/008106****Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)**

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1.  Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
  
2.  Claims Nos.: 12, 15-17, 20-23, 25 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:  
Claims 12, 15, 16, 20-23, 25 ultimately refer to one of claims 11, 13, 14, 24, which are not drafted in accordance with third sentence of Rule 6.4(a), rendering said claims unclear.  
Claim 17 is unclear, since it refers to claim 17 itself.
3.  Claims Nos.: 8-11, 13, 14, 24, 26, 27 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

**Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)**

This International Searching Authority found multiple inventions in this international application, as follows:

1.  As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.  As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of any additional fees.
3.  As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
  
4.  No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

**Remark on Protest**

- The additional search fees were accompanied by the applicant's protest and, where applicable, the payment of a protest fee.
- The additional search fees were accompanied by the applicant's protest but the applicable protest fee was not paid within the time limit specified in the invitation.
- No protest accompanied the payment of additional search fees.

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International application No.

**PCT/KR2014/008106**

| Patent document cited in search report | Publication date | Patent family member(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Publication date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KR 10-2012-0133403 A                   | 10/12/2012       | AU 2002-319402 B2<br>AU 2003-244817 A1<br>AU 2003-244817 B2<br>AU 2003-290330 A1<br>AU 2004-220325 A1<br>AU 2004-220325 B2<br>AU 2004-280288 A1<br>AU 2004-280288 B2<br>AU 2005-250216 A1<br>AU 2005-250216 B2<br>AU 2005-259006 A1<br>AU 2005-291017 A1<br>AU 2005-291017 B2<br>AU 2005-303584 A1<br>AU 2005-311099 A1<br>AU 2005-311101 A1<br>AU 2005-311101 B2<br>AU 2005-311103 A1<br>AU 2006-307733 A1<br>AU 2006-323412 A1<br>AU 2006-323415 A1<br>AU 2007-204218 A1<br>AU 2007-209201 A1<br>AU 2007-209202 A1<br>AU 2008-212682 A1<br>CA 2447851 A1<br>CA 2447851 C<br>CA 2492092 A1<br>CA 2511910 A1<br>CA 2529819 A1<br>CA 2539999 A1<br>CA 2569240 A1<br>CA 2571536 A1<br>CA 2583417 A1<br>CA 2587206 A1<br>CA 2588892 A1<br>CA 2589800 A1<br>CA 2589802 A1<br>CA 2626939 A1<br>CA 2632417 A1<br>CA 2632424 A1<br>CA 2636742 A1<br>CA 2667141 A1<br>CA 2677069 A1<br>CN 101031588 A0<br>CN 101039959 A0<br>CN 101084014 A0<br>CN 101098712 A0<br>CN 101111522 A0 | 11/09/2008<br>19/01/2004<br>26/08/2010<br>22/07/2004<br>23/09/2004<br>12/05/2011<br>21/04/2005<br>01/02/2007<br>15/12/2005<br>10/12/2009<br>12/01/2006<br>13/04/2006<br>15/09/2011<br>18/05/2006<br>08/06/2006<br>08/06/2006<br>11/11/2010<br>08/06/2006<br>03/05/2007<br>14/06/2007<br>14/06/2007<br>19/07/2007<br>02/08/2007<br>02/08/2007<br>14/08/2008<br>09/01/2003<br>28/08/2012<br>08/01/2004<br>15/07/2004<br>23/09/2004<br>21/04/2005<br>15/12/2005<br>12/01/2006<br>13/04/2006<br>18/05/2006<br>08/06/2006<br>08/06/2006<br>08/06/2006<br>03/05/2007<br>14/06/2007<br>14/06/2007<br>19/07/2007<br>08/05/2008<br>14/08/2008<br>05/09/2007<br>19/09/2007<br>05/12/2007<br>02/01/2008<br>23/01/2008 |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International application No.

**PCT/KR2014/008106**

| Patent document cited in search report | Publication date | Patent family member(s) | Publication date |
|----------------------------------------|------------------|-------------------------|------------------|
|                                        |                  | CN 101128487 A0         | 20/02/2008       |
|                                        |                  | CN 101128487 B          | 10/10/2012       |
|                                        |                  | CN 101133084 A0         | 27/02/2008       |
|                                        |                  | CN 101346397 A          | 14/01/2009       |
|                                        |                  | CN 101346397 B          | 23/10/2013       |
|                                        |                  | CN 101379088 A          | 04/03/2009       |
|                                        |                  | CN 101426815 A          | 06/05/2009       |
|                                        |                  | CN 101432304 A          | 13/05/2009       |
|                                        |                  | CN 101443043 A          | 27/05/2009       |
|                                        |                  | CN 101578298 A          | 11/11/2009       |
|                                        |                  | CN 101724071 A          | 09/06/2010       |
|                                        |                  | CN 101965364 A          | 02/02/2011       |
|                                        |                  | CN 102302777 A          | 04/01/2012       |
|                                        |                  | CN 1845938 A            | 11/10/2006       |
|                                        |                  | CN 1845938 B            | 26/05/2010       |
|                                        |                  | CN 1845938 C0           | 11/10/2006       |
|                                        |                  | EP 1399484 A2           | 24/03/2004       |
|                                        |                  | EP 1399484 B1           | 11/08/2010       |
|                                        |                  | EP 1517921 A2           | 30/03/2005       |
|                                        |                  | EP 1517921 B1           | 07/06/2006       |
|                                        |                  | EP 1578801 A2           | 28/09/2005       |
|                                        |                  | EP 1600459 A2           | 30/11/2005       |
|                                        |                  | EP 1600459 A3           | 07/12/2005       |
|                                        |                  | EP 1639011 A2           | 29/03/2006       |
|                                        |                  | EP 1639011 B1           | 12/11/2008       |
|                                        |                  | EP 1720906 A2           | 15/11/2006       |
|                                        |                  | EP 1761565 A2           | 14/03/2007       |
|                                        |                  | EP 1777235 A1           | 25/04/2007       |
|                                        |                  | EP 1784427 A2           | 16/05/2007       |
|                                        |                  | EP 1814584 A2           | 08/08/2007       |
|                                        |                  | EP 1841452 A2           | 10/10/2007       |
|                                        |                  | EP 1841452 B1           | 02/04/2014       |
|                                        |                  | EP 1841452 B8           | 11/06/2014       |
|                                        |                  | EP 1841796 A2           | 10/10/2007       |
|                                        |                  | EP 1863847 A2           | 12/12/2007       |
|                                        |                  | EP 1948694 A2           | 30/07/2008       |
|                                        |                  | EP 1963370 A1           | 03/09/2008       |
|                                        |                  | EP 1966242 A1           | 10/09/2008       |
|                                        |                  | EP 1976879 A2           | 08/10/2008       |
|                                        |                  | EP 1976882 A2           | 08/10/2008       |
|                                        |                  | EP 1976991 A1           | 08/10/2008       |
|                                        |                  | EP 2024396 A2           | 18/02/2009       |
|                                        |                  | EP 2079761 A2           | 22/07/2009       |
|                                        |                  | EP 2135879 A2           | 23/12/2009       |
|                                        |                  | EP 2135879 A3           | 23/06/2010       |
|                                        |                  | EP 2139918 A2           | 06/01/2010       |
|                                        |                  | EP 2221317 A2           | 25/08/2010       |
|                                        |                  | EP 2221317 A3           | 27/07/2011       |
|                                        |                  | EP 2267028 A2           | 29/12/2010       |
|                                        |                  | EP 2267028 A3           | 27/07/2011       |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International application No.

**PCT/KR2014/008106**

| Patent document cited in search report | Publication date | Patent family member(s) | Publication date |
|----------------------------------------|------------------|-------------------------|------------------|
|                                        |                  | EP 2322554 A1           | 18/05/2011       |
|                                        |                  | EP 2364999 A2           | 14/09/2011       |
|                                        |                  | EP 2364999 A3           | 04/01/2012       |
|                                        |                  | EP 2366718 A2           | 21/09/2011       |
|                                        |                  | EP 2366718 A3           | 02/05/2012       |
|                                        |                  | EP 2371390 A2           | 05/10/2011       |
|                                        |                  | EP 2371390 A3           | 13/03/2013       |
|                                        |                  | EP 2420251 A2           | 22/02/2012       |
|                                        |                  | EP 2420251 A3           | 13/03/2013       |
|                                        |                  | EP 2441838 A2           | 18/04/2012       |
|                                        |                  | EP 2441838 A3           | 10/07/2013       |
|                                        |                  | EP 2559702 A1           | 20/02/2013       |
|                                        |                  | EP 2559703 A1           | 20/02/2013       |
|                                        |                  | EP 2559704 A1           | 20/02/2013       |
|                                        |                  | JP 04-303105 B2         | 29/07/2009       |
|                                        |                  | JP 05-030782 B2         | 19/09/2012       |
|                                        |                  | JP 05-087274 B2         | 05/12/2012       |
|                                        |                  | JP 05-185624 B2         | 17/04/2013       |
|                                        |                  | JP 05-562650 B2         | 30/07/2014       |
|                                        |                  | JP 2005-504524 A        | 17/02/2005       |
|                                        |                  | JP 2006-512895 A        | 20/04/2006       |
|                                        |                  | JP 2006-523090 A        | 12/10/2006       |
|                                        |                  | JP 2007-516195 A        | 21/06/2007       |
|                                        |                  | JP 2008-500268 A        | 10/01/2008       |
|                                        |                  | JP 2008-500830 A        | 17/01/2008       |
|                                        |                  | JP 2008-504356 A        | 14/02/2008       |
|                                        |                  | JP 2008-515420 A        | 15/05/2008       |
|                                        |                  | JP 2008-519813 A        | 12/06/2008       |
|                                        |                  | JP 2008-521426 A        | 26/06/2008       |
|                                        |                  | JP 2008-521869 A        | 26/06/2008       |
|                                        |                  | JP 2008-521870 A        | 26/06/2008       |
|                                        |                  | JP 2009-082141 A        | 23/04/2009       |
|                                        |                  | JP 2009-512672 A        | 26/03/2009       |
|                                        |                  | JP 2009-518024 A        | 07/05/2009       |
|                                        |                  | JP 2009-518025 A        | 07/05/2009       |
|                                        |                  | JP 2009-523162 A        | 18/06/2009       |
|                                        |                  | JP 2009-523459 A        | 25/06/2009       |
|                                        |                  | JP 2009-523460 A        | 25/06/2009       |
|                                        |                  | JP 2010-508016 A        | 18/03/2010       |
|                                        |                  | JP 2010-518062 A        | 27/05/2010       |
|                                        |                  | JP 2011-125342 A        | 30/06/2011       |
|                                        |                  | JP 2012-135311A         | 19/07/2012       |
|                                        |                  | JP 2013-018785 A        | 31/01/2013       |
|                                        |                  | JP 2013-056890 A        | 28/03/2013       |
|                                        |                  | KR 10-1205643 B1        | 27/11/2012       |
|                                        |                  | KR 10-2005-0024397 A    | 10/03/2005       |
|                                        |                  | KR 10-2007-0039911 A    | 13/04/2007       |
|                                        |                  | KR 10-2007-0050912 A    | 16/05/2007       |
|                                        |                  | KR 10-2007-0084069 A    | 24/08/2007       |
|                                        |                  | KR 10-2007-0086896 A    | 27/08/2007       |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International application No.

**PCT/KR2014/008106**

| Patent document cited in search report | Publication date | Patent family member(s) | Publication date |
|----------------------------------------|------------------|-------------------------|------------------|
|                                        |                  | KR 10-2007-0089930 A    | 04/09/2007       |
|                                        |                  | KR 10-2007-0094909 A    | 27/09/2007       |
|                                        |                  | KR 10-2007-0099584 A    | 09/10/2007       |
|                                        |                  | KR 10-2008-0066962 A    | 17/07/2008       |
|                                        |                  | KR 10-2008-0077261 A    | 21/08/2008       |
|                                        |                  | KR 10-2008-0090414 A    | 08/10/2008       |
|                                        |                  | KR 10-2008-0090507 A    | 08/10/2008       |
|                                        |                  | KR 10-2008-0098382 A    | 07/11/2008       |
|                                        |                  | KR 10-2009-0114445 A    | 03/11/2009       |
|                                        |                  | TW 200804425 A          | 16/01/2008       |
|                                        |                  | TW 200804593 A          | 16/01/2008       |
|                                        |                  | TW 200825103 A          | 16/06/2008       |
|                                        |                  | TW 200848427 A          | 16/12/2008       |
|                                        |                  | US 2004-0219643 A1      | 04/11/2004       |
|                                        |                  | US 2005-0271663 A1      | 08/12/2005       |
|                                        |                  | US 2006-002935 A1       | 05/01/2006       |
|                                        |                  | US 2006-063921 A1       | 23/03/2006       |
|                                        |                  | US 2006-073141 A1       | 06/04/2006       |
|                                        |                  | US 2006-106203 A1       | 18/05/2006       |
|                                        |                  | US 2006-257406 A1       | 16/11/2006       |
|                                        |                  | US 2006-286066 A1       | 21/12/2006       |
|                                        |                  | US 2007-003549 A1       | 04/01/2007       |
|                                        |                  | US 2007-065440 A1       | 22/03/2007       |
|                                        |                  | US 2007-093651 A1       | 26/04/2007       |
|                                        |                  | US 2007-104710 A1       | 10/05/2007       |
|                                        |                  | US 2007-298041 A1       | 27/12/2007       |
|                                        |                  | US 2008-008713 A1       | 10/01/2008       |
|                                        |                  | US 2008-233129 A1       | 25/09/2008       |
|                                        |                  | US 2008-233130 A1       | 25/09/2008       |
|                                        |                  | US 2008-241166 A1       | 02/10/2008       |
|                                        |                  | US 2009-082550 A1       | 26/03/2009       |
|                                        |                  | US 2009-111745 A1       | 30/04/2009       |
|                                        |                  | US 2009-148434 A1       | 11/06/2009       |
|                                        |                  | US 2009-191217 A1       | 30/07/2009       |
|                                        |                  | US 2009-214534 A1       | 27/08/2009       |
|                                        |                  | US 2009-258012 A1       | 15/10/2009       |
|                                        |                  | US 2009-259026 A1       | 15/10/2009       |
|                                        |                  | US 2010-021473 A1       | 28/01/2010       |
|                                        |                  | US 2010-034831 A1       | 11/02/2010       |
|                                        |                  | US 2010-047171 A1       | 25/02/2010       |
|                                        |                  | US 2010-047237 A1       | 25/02/2010       |
|                                        |                  | US 2010-056439 A1       | 04/03/2010       |
|                                        |                  | US 2010-081792 A1       | 01/04/2010       |
|                                        |                  | US 2010-234570 A1       | 16/09/2010       |
|                                        |                  | US 2011-159003 A1       | 30/06/2011       |
|                                        |                  | US 7696320 B2           | 13/04/2010       |
|                                        |                  | US 8129503 B2           | 06/03/2012       |
|                                        |                  | US 8236931 B2           | 07/08/2012       |
|                                        |                  | US 8497244 B2           | 30/07/2013       |

**INTERNATIONAL SEARCH REPORT**

Information on patent family members

International application No.

**PCT/KR2014/008106**

| Patent document cited in search report | Publication date | Patent family member(s)                                                                                                                                                                                                                                        | Publication date                                                                                                                                                                   |
|----------------------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| KR 10-2007-0073886 A                   | 10/07/2007       | AU 2005-294723 A1<br>CA 2583137 A1<br>CN 101072581 A0<br>EP 1796718 A2<br>JP 2008-515889 A<br>US 2006-0073152 A1<br>US 2009-0123376 A1<br>WO 2006-041641 A2<br>WO 2006-041641 A3                                                                               | 20/04/2006<br>20/04/2006<br>14/11/2007<br>20/06/2007<br>15/05/2008<br>06/04/2006<br>14/05/2009<br>20/04/2006<br>29/06/2006                                                         |
| KR 10-2007-0041781 A                   | 19/04/2007       | AU 2005-334481 A1<br>CA 2578613 A1<br>CN 101124248 A0<br>EP 1791866 A2<br>JP 2008-509666 A<br>US 2008-0181892 A1<br>WO 2007-011363 A2<br>WO 2007-011363 A3                                                                                                     | 25/01/2007<br>25/01/2007<br>13/02/2008<br>06/06/2007<br>03/04/2008<br>31/07/2008<br>25/01/2007<br>05/07/2007                                                                       |
| KR 10-2011-0008086 A                   | 25/01/2011       | AU 2009-234253 A1<br>CA 2721093 A1<br>CN 102057054 A<br>CN 102282168 A<br>EP 2288715 A2<br>EP 2288715 B1<br>JP 2011-518137 A<br>JP 2012-509259 A<br>KR 10-2011-0112301 A<br>US 2011-0059076 A1<br>US 2012-0003221 A1<br>WO 2009-126920 A2<br>WO 2010-059315 A1 | 15/10/2009<br>15/10/2009<br>11/05/2011<br>14/12/2011<br>02/03/2011<br>24/09/2014<br>23/06/2011<br>19/04/2012<br>12/10/2011<br>10/03/2011<br>05/01/2012<br>15/10/2009<br>27/05/2010 |