
Publiée

Avec rapport de recherche internationale.

Avant l'expiration du délai prévu pour la modification des revendications, sera reproduite si des modifications sont reçues.

(21) Numéro de la demande internationale: PCT/FR99/00739
(22) Date de dépôt international: 30 mars 1999 (30.03.99)
(30) Données relatives à la priorité:
98/04202 31 mars 1998 (31.03.98) FR

(72) Inventeurs; et
(75) Inventeurs/Déposants (US seulement): PELTIER, Marc [FR/FR]; 73, rue Pasteur, F-38300 Bourgoin-Jallieu (FR).
GRISIEL, Lucien [FR/FR]; Les Combes, F-38320 Herbeys (FR).

(74) Mandataire: HECKE, Gérard; Cabinet Hecke, WTC Europole, 5, place Robert Schuman, Bole postale 1537, F-38025 Grenoble Cedex 1 (FR).

(54) Title: MODULAR MACHINE FOR POLISHING AND PLANING SUBSTRATES

(54) Titre: MACHINE MODULAIRE DE POISSLAGE ET DE PLANARISATION DE SUBSTRATS

(57) Abstract

The invention concerns a polishing machine comprising at least a base unit (10) in the form of a parallelepiped (12), with a first loading and unloading surface (14), a second opposite parallel surface (16) for access to the working zone located in an intermediate section (24), and third and fourth surfaces (18, 20). The loading pallet board (48) and unloading pallet board (56) are respectively borne by a loading arm (50) and an unloading arm (58) operating independently of each other, said pallet boards being both accessible on the first surface (14) side. The mechanism (28, 30) is located in the lower section beneath the cell (12) intermediate section (24), while the automaton is arranged in the top section, the mechanism and the automaton being accessible on the second surface (16) side.

(57) Abrégé

Une machine de polissage comporte au moins une unité de base (10) en forme de cellule (12) parallélépipédique, ayant une première face (14) de chargement et de déchargement, une deuxième face (16) parallèle opposée d'accès à la zone de travail située dans le compartiment intermédiaire (24), et des troisième et quatrième faces (18, 20). La palette de chargement (48) et la palette de déchargement (56) sont portées respectivement par un bras de chargement (50) et un bras de chargement (58) à fonctionnements indépendants l'un de l'autre, lesdites palettes étant accessibles toutes les deux du côté de la première face (14). Le mécanisme (28, 30) est situé dans le compartiment inférieur sous le compartiment intermédiaire (24) de la cellule (12), alors que l'automate est disposé dans le compartiment supérieur, le mécanisme et l'automate étant accessibles du côté de la deuxième face (16).
UNIQUEMENT A TITRE D’INFORMATION

Codes utilisés pour identifier les États parties au PCT, sur les pages de couverture des brochures publient des demandes internationales en vertu du PCT:

<table>
<thead>
<tr>
<th>AL</th>
<th>Albanie</th>
<th>BA</th>
<th>Bosnie-Herzégovine</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Arménie</td>
<td>BB</td>
<td>Barbade</td>
</tr>
<tr>
<td>AT</td>
<td>Autriche</td>
<td>BE</td>
<td>Belgique</td>
</tr>
<tr>
<td>AU</td>
<td>Australie</td>
<td>BG</td>
<td>Bulgarie</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaïdjan</td>
<td>BJ</td>
<td>Bénin</td>
</tr>
<tr>
<td>BE</td>
<td>Belgique</td>
<td>BR</td>
<td>Brésil</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>CA</td>
<td>Canada</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgarie</td>
<td>CF</td>
<td>République centrafricaine</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>CH</td>
<td>Suisse</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>CM</td>
<td>Cameroun</td>
</tr>
<tr>
<td>CN</td>
<td>Chine</td>
<td>CU</td>
<td>Cuba</td>
</tr>
<tr>
<td>CZ</td>
<td>République tchèque</td>
<td>DE</td>
<td>Allemagne</td>
</tr>
<tr>
<td>DK</td>
<td>Danemark</td>
<td>EE</td>
<td>Estonie</td>
</tr>
<tr>
<td>ES</td>
<td>Espagne</td>
<td>FI</td>
<td>Finlande</td>
</tr>
<tr>
<td>FR</td>
<td>France</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>GA</td>
<td>Gabon</td>
<td>GN</td>
<td>Guinée</td>
</tr>
<tr>
<td>GR</td>
<td>Grèce</td>
<td>HU</td>
<td>Hongrie</td>
</tr>
<tr>
<td>IE</td>
<td>Irlande</td>
<td>IL</td>
<td>Israël</td>
</tr>
<tr>
<td>IS</td>
<td>Islande</td>
<td>IT</td>
<td>Italie</td>
</tr>
<tr>
<td>JP</td>
<td>Japon</td>
<td>KG</td>
<td>Kirghizistan</td>
</tr>
<tr>
<td>KP</td>
<td>République populaire</td>
<td>KR</td>
<td>République de Corée</td>
</tr>
<tr>
<td>KB</td>
<td>Kazakhstan</td>
<td>LC</td>
<td>Sainte-Lucie</td>
</tr>
<tr>
<td>LI</td>
<td>Lichtenstein</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>LR</td>
<td>Libéria</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>LT</td>
<td>Lituanie</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>LV</td>
<td>Lettonie</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>République de Moldova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MG</td>
<td>Madagascar</td>
<td>MK</td>
<td>Ex-République yougoslave de Macédoine</td>
</tr>
<tr>
<td>ML</td>
<td>Mali</td>
<td>MN</td>
<td>Mongolie</td>
</tr>
<tr>
<td>MR</td>
<td>Mauritanie</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>MX</td>
<td>Mexique</td>
<td>NE</td>
<td>Niger</td>
</tr>
<tr>
<td>NL</td>
<td>Pays-Bas</td>
<td>NO</td>
<td>Norvège</td>
</tr>
<tr>
<td>NZ</td>
<td>Nouvelle-Zélande</td>
<td>PL</td>
<td>Pologne</td>
</tr>
<tr>
<td>PT</td>
<td>Portugal</td>
<td>RO</td>
<td>Roumanie</td>
</tr>
<tr>
<td>RU</td>
<td>Fédération de Russie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>Soudan</td>
<td>SE</td>
<td>Suede</td>
</tr>
<tr>
<td>SG</td>
<td>Singapour</td>
<td>SI</td>
<td>Slovénie</td>
</tr>
<tr>
<td>SK</td>
<td>Slovaquie</td>
<td>SN</td>
<td>Sénégal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Tchad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tadjikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turquie</td>
</tr>
<tr>
<td>TT</td>
<td>Trinité-et-Tobago</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>Ukraine</td>
<td>UG</td>
<td>Ouganda</td>
</tr>
<tr>
<td>US</td>
<td>États-Unis d’Amérique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UZ</td>
<td>Ouzbékistan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VN</td>
<td>Viet Nam</td>
<td>YU</td>
<td>Yougoslavie</td>
</tr>
<tr>
<td>ZZ</td>
<td>Zimbabwe</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Machine modulaire de polissage et de planarisation de substrats.

Domaine technique de l’invention

L’invention est relative à une machine de polissage et de planarisation de substrats comprenant :
- au moins un plateau de polissage rotatif sur lequel est poli un substrat,
- une tête de polissage mobile en translation entre une position relevée, et une position abaissée, et pourvue d’un portoir de maintien du substrat,
- un bras de polissage pivotant destiné à déplacer la tête de polissage pour récupérer le substrat à polir sur la palette de chargement, et pour l’acheminer après polissage sur une palette de déchargement,
- au moins un mécanisme pour l’entraînement en rotation du plateau de polissage et du portoir de la tête de polissage, et le déplacement alterné du bras de polissage, et des palettes de chargement et de déchargement,
- et un automate de commande du mécanisme au cours du cycle de polissage.

État de la technique antérieure

Le document EP-A 774 323 décrit une machine de polissage du genre mentionné, faisant usage d’un mécanisme à carrousel pour amener les substrats sur une table de polissage ayant un nombre prédéterminé de postes. Le mécanisme est disposé dans la zone de travail et au-dessus de la table de polissage. Il en résulte des risques de pollution des substrats au
cours du polissage. La production doit être arrêtée totalement lors des opérations d'entretien ou de changement d'outils sur un poste donné. Une telle machine à carrousel n'est pas extensible.

Le document JP 63207559 décrit une machine modulaire pour roder des substrats, lesquels sont rangés dans des cassettes et extraites au moyen d'une unité de chargement qui les envoie vers deux unités de rodage par l'intermédiaire d'une unité de transfert. Après rodage, le substrat est monté sur une table d'une unité de lavage, et est rangé après nettoyage dans des cassettes d'une unité de déchargement.

Le document US-A-4680893 se rapporte à une machine de polissage de substrats semiconducteurs, ayant une structure classique non modulaire, équipée d'un bras pivotant de polissage à débattement angulaire entre une station de chargement, une station de nettoyage, une première station de polissage, une deuxième station de polissage, et une station de déchargement.

Objet de l'invention

Un premier objet de l'invention consiste à réaliser une machine de polissage modulaire, bénéficiant d'un accès facile et en toute sécurité de la zone de travail.

Un deuxième objet de l'invention consiste à élaborer une machine de polissage multipostes évolutive utilisant un maximum d'éléments standards.

La machine de polissage selon l'invention est caractérisée en ce que la machine comporte

- au moins une unité de base en forme de cellule parallépipédique, ayant une première face de chargement et de déchargement, une deuxième face parallèle opposée d'accès à la zone de travail située dans le compartiment
intermédiaire, et des troisième et quatrième faces comprenant des parois pleine transversales s'étendant perpendiculairement aux première et deuxième faces,

- la palette de chargement et la palette de déchargement sont portées respectivement par un bras de chargement et un bras de déchargement à fonctionnements indépendants l'un de l'autre, lesdites palettes étant accessibles toutes les deux du côté de la première face,

- le mécanisme est situé dans le compartiment inférieur sous le compartiment intermédiaire de la cellule, alors que l'automate de l'unité de base est disposé dans le compartiment supérieur, le mécanisme étant accessible du côté de la deuxième face.

Selon une caractéristique de l'invention, le bras de polissage et le bras de déchargement sont montés à pivotement autour d'un premier axe vertical. L'unité de base comporte une tête de conditionnement rotative portée par un bras de conditionnement, lequel est monté à pivotement avec le bras de chargement autour d'un deuxième axe vertical parallèle au premier axe.

Selon un mode de réalisation préférentiel, une station de nettoyage est agencée entre les deux axes verticaux, et entre le plateau de polissage, et la première face de la cellule de manière à définir une position de nettoyage de la tête de polissage, et des positions concentriques des palettes de chargement, de déchargement, et de la tête de polissage lors des manipulations des substrats. Le mécanisme comporte un motoréducteur logé dans le compartiment inférieur, et accouplé à un arbre rotatif s'étendant dans la direction du premier axe, ledit arbre entraînant une poulie et une transmission à courroie logée dans le bras de polissage pour la mise en rotation de la tête de polissage. L'arbre rotatif s'étend à l'intérieur d'une colonne tubulaire solidarisée au bras de polissage et à une bielle de manoeuvre, laquelle est pilotée par un premier vérin pour assurer le pivotement du bras de polissage entre la station de nettoyage, et le plateau de polissage. Le bras de déchargement est solidarisé à une douille montée.
coaxialement autour de la colonne avec interposition d'un fourreau tubulaire, des roulements étant agencés entre la douille et le fourreau pour autoriser un mouvement rotatif du bras de déchargement par rapport au bras de polissage. Un levier de commande piloté par un deuxième vérin est assujetti à la douille pour provoquer le débattement angulaire du bras de déchargement.

Un mécanisme similaire est utilisé pour actionner les bras de conditionnement et de chargement.

10 La machine complète, configurée à la demande de l'utilisateur peut présenter des structures très différentes :
- module de polissage isolé utilisé en chargement manuel.
- module de polissage isolé équipé d'un module de chargement et d'un module de déchargement permettant de travailler en mode automatique sur une cassette de tranche complète.
- deux ou plusieurs modules de polissage juxtaposés avec transfert de tranche entre chaque module, ceci réalisant un procédé de polissage de type série sur les divers postes constituant l'équipement. Cet ensemble peut être équipé des modules de chargement et déchargement vers la cassette pour en faire un système automatique.
- deux ou plusieurs modules juxtaposés avec un système de chargement par robot liant les modules de polissage à un module de chargement/déchargement / transfert centralisé. Cette structure autorise tout type de parcours des pièces entre les différents modules de polissage. Chaque module de polissage est configuré sur un procédé élémentaire donné, le pilotage de la machine organise le parcours des tranches pour respecter les étapes de polissage successives (et de mesure éventuelle) définies par l'utilisateur. La même étape élémentaire de polissage peut être affectée à plusieurs modules de polissage pour optimiser la productivité globale de la machine.
Les modules de polissage sont construits sans aucune mécanique dans la zone de polissage pour limiter tous les risques de pollution.

Description sommaire des dessins

D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre d'un mode de réalisation de l'invention, donné à titre d'exemple non limitatif et représenté aux dessins annexés dans lesquels :

- la figure 1 est une vue schématique en plan d'une unité de base de la machine de polissage selon l'invention;
- la figure 2 montre une vue selon la flèche 2 de la figure 1;
- la figure 3 représente l'unité de base de la figure 1 avec des modules de chargement et de déchargement individuels;
- la figure 4 montre une variante de la figure 3;
- la figure 5 est une vue à échelle agrandie et en coupe selon la ligne 5-5 de la figure 1;
- les figures 6 et 7 montrent un équipement à deux unités de base et à module de transfert, respectivement coulissant et pivotant;
- la figure 8 représente un équipement multipostes à quatre unités en ligne, commandées par un robot;
- la figure 9 est une variante d'équipement de la figure 8;
- la figure 10 est une vue retournée selon la flèche 10 de la figure 8.

Description d'un mode de réalisation préférentiel

Sur les figures 1 et 2, une unité de base 10 d'une machine de polissage et de planarisation de substrats, comporte une cellule 12 parallélépipédique ayant une première face 14 de chargement et de déchargement, une deuxième face 16 opposée parallèle pour l'accès au zones de travail et de commande, et des troisième et quatrième faces 18, 20 formées par des parois pleines non accessibles, perpendiculaires aux première et deuxième faces 14, 16.
L'intérieur d'une cellule 12 est subdivisé en trois compartiments 22, 24, 26 superposés, comprenant un compartiment inférieur 22 de logement des mécanismes d'entraînement 28, 30, un compartiment intermédiaire de travail 24, et un compartiment supérieur 26 renfermant un automate 34 de commande et de contrôle du cycle de fonctionnement de l'unité de base 10.

Le compartiment de travail 24 est accessible depuis la deuxième face 16 par une porte 36, et contient un plateau de polissage 38 rotatif équipé sur sa face supérieure d'un tissu de réception du produit abrasif liquide. Le tissu est à base de polyuréthane, mais tout autre matériau peut être utilisé pour être imbibé par le liquide abrasif. Au-dessus du plateau de polissage 38 de forme circulaire est agencée une tête de polissage 40 dotée d'un portoir 42 destiné à appliquer un substrat sur le plateau de polissage 38. La tête de polissage 40 est portée sur un bras de polissage 44, lequel est monté à pivotement autour d'un premier axe vertical 46 avec un décalage angulaire prédéterminé. Le portoir 42 du substrat est animé d'un mouvement de rotation au moyen d'une transmission à courroie 43 intégrée dans le bras 44, et décrite en détail par la suite en référence à la figure 5.

La tête de polissage 40 peut être actionnée en translation verticale selon la direction de la flèche F1 entre une position relevée et une position abaissée. Dans la position relevée, le substrat n'est pas en contact avec le plateau de polissage 38 (cas de la figure 2).

L'actionnement de la tête de polissage 40 vers la position abaissée intervient au moyen d'une commande pneumatique ou hydraulique (non représentée) pilotée à partir d'un accumulateur d'énergie 32 logé dans le compartiment inférieur 22. Dans cette position abaissée, le substrat vient en appui contre le plateau de polissage 38, et subit le cycle de polissage selon les paramètres enregistrés dans l'automate 34. L'acheminement du substrat vers la tête de polissage 40 intervient au moyen d'une palette de chargement 48 portée par
un bras de chargement 50 mobile, lequel est monté à pivotement autour d'un deuxième axe vertical 52 parallèle au premier axe 46, et séparé de ce dernier par une station de nettoyage 54. Le bras de chargement 50 est susceptible d'occuper une position A de chargement de la palette 48 et une position B de transfert vers la station de nettoyage 54.

Le bras de polissage 44 est également déplaçable vers la position B de la station de nettoyage 54 pour récupérer le substrat acheminé par le bras de chargement 50, et pour ramener le substrat poli en fin de cycle de polissage.

Le substrat poli est ensuite évacué vers une palette de déchargement 56 portée par un bras de déchargement 58, lequel est articulé sur le premier axe vertical 46 entre une position C de déchargement pour la palette 56, et la position B de transfert sur la station de nettoyage 54.

La régénération du tissu sur le plateau de polissage 38 intervient après un ou plusieurs cycles de polissage au moyen d'une tête de conditionnement 60 rotative, portée par un bras de conditionnement 62 mobile, lequel est monté à pivotement autour du deuxième axe vertical 52 entre une position de repos D, et une position de travail E. Dans la position de repos D représentée à la figure 1, la tête de conditionnement 60 est en attente à l'extérieur de la surface de polissage. Le passage vers la position de travail E s'effectue par pivotement du bras de conditionnement 62 dans le sens inverse des aiguilles d'une montre, suivi de la descente de la tête de conditionnement 60 sur le plateau de polissage 38. La rotation de la tête de conditionnement 60 enlève les particules de polissage, lesquelles sont évacuées vers un bac de vidange (non représenté).

L'injection des produits abrasifs liquides s'effectue au-dessus du plateau de polissage 38 au moyen de conduits d'alimentation attachés à la tête de polissage 40 ou au bord de la cuve, et reliés à un récipient dans le compartiment inférieur 22. Des électrovannes et des pompes sont pilotées par
l'automate 34 pour commander la mise en service ou l'arrêt de l'écoulement du liquide abrasif sur le plateau de polissage 38.

Les substrats sont constitués à titre d'exemple par des tranches de semi-conducteurs de formes cylindriques, notamment à base de silicium. Il est clair que l'invention peut s'appliquer à tout autre domaine de polissage mécano chimique.

Le fonctionnement de l'unité de base 10 de polissage est le suivant :

L'opérateur ouvre les portes du côté de la première face 14 pour poser un échantillon sur la palette de chargement 48. La fermeture des portes est ensuite suivie d'un verrouillage de l'échantillon sur la palette de chargement 48, et d'un pivotement du bras de polissage 44 pour amener la tête 40 dans la position B sur la station de nettoyage 54. Le bras de chargement 50 pivote autour de l'axe 52 vers la station de nettoyage 54 pour positionner la palette de chargement 48 sous la tête 40. Après déverrouillage de l'échantillon de la palette de chargement 48, la tête de polissage 40 est actionnée automatiquement vers la position abaissée pour la préhension de l'échantillon. La tête 40 revient ensuite en position relevée, suivi du retour du bras de polissage 44 vers la position de travail sur le plateau de polissage 38. Le polissage de l'échantillon peut ensuite démarrer après injection des produits abrasifs liquides. Le bras de chargement 50 repositionne la palette de chargement 48 dans la position A pour autoriser le chargement de l'échantillon suivant.

À la fin du cycle de polissage du premier échantillon, et du rinçage sur le plateau 38, la tête 40 est déplacée vers la position relevée, suivie du déplacement du bras de polissage 44 vers la position B sur la station de nettoyage 54. Après actionnement de la tête vers la position abaissée, l'ensemble tête de polissage 40 et échantillon poli subit un rinçage par jets d'eau. La tête 40 revient ensuite dans la position relevée, et le bras de
déchargement amène la palette de déchargement 56 dans la position B sous la tête 40. L’échantillon est ensuite déposé et verrouillé sur la palette de déchargement 56, et le bras de déchargement 58 repositionne la palette 56 dans la position C.

La tête de polissage 40 redescend en position abaissée pour être nettoyée dans la station de nettoyage 54, puis revient en position relevée, prête à saisir le deuxième échantillon présenté sur la palette de chargement 48 après pivotement du bras de chargement 50 vers la position B. Le reste du processus est identique à celui décrit précédemment. Le travail de régénération du tissu sur le plateau 38 au moyen de la tête de conditionnement 60 rotative peut intervenir pendant l’opération de polissage, ou lorsque la tête de polissage 40 se trouve dans la station de nettoyage 54. Il suffit de déplacer le bras de conditionnement 62 vers la position E pour procéder à l’enlèvement des particules de polissage sur le plateau 38.

A l’unité de base 10 à chargement manuel décrite en référence aux figures 1 et 2, peuvent être adjoints des modules complémentaires permettant de travailler en mode automatique pour la circulation des substrats ou échantillons. Les différents modules pouvant être associés à une unité de base 10, sont les suivants :
- un module de chargement individuel robotisé,
- un module de déchargement individuel robotisé,
- un module de transfert inter-poste de polissage ;
- un système intégré de chargement / déchargement avec gestion centralisée du flux des substrats.

Sur la figure 3, un module de chargement individuel 64 est juxtaposé à la première face 14 de l’unité de base 10, en regard de la palette de chargement.
Le module 64 comporte une cassette de chargement 66 contenant une pluralité d'échantillons à polir rangés dans les alvéoles individuels. Un système de manipulation 68 est monté sur le support fixe 69 pour extraire les échantillons de la cassette 66, et les transporteurs individuellement sur la palette de chargement 48. Le module de chargement 64 est activé par l'automate 34 suite à une demande d'échantillon émise par la poste de polissage. Les échantillons sont disposés verticalement en s'étendant parallèlement à la face 14 de l'unité de base 10.

Le cycle de fonctionnement du module de chargement 64 comporte les étapes successives suivantes :
- déplacement du système de manipulation 68 vers l'échantillon à polir se trouvant dans une alvéole prédéterminée de la cassette de chargement 66,
- extraction de l'échantillon, et orientation de l'échantillon de manière à positionner la face à polir vers le bas,
- transfert de l'échantillon vers la palette de chargement 48 selon un mouvement de translation perpendiculaire à la face 14,
- dépose de l'échantillon sur la palette de chargement 48,
- retrait du système de manipulation 68 et positionnement vers le prochain échantillon à polir.

Un module de déchargement individuel 70 est placé à côté du module de chargement 64, et en regard de la palette de déchargement 56. Le module de déchargement 70 est identique au module de chargement 64, et comporte une cassette de réception 72 des échantillons après polissage, et un support 74 de cassette permettant de maintenir la cassette immergée. Un système de manipulation 76 identique à celui 68 de module de chargement 64, est susceptible d'extraire les échantillons de la palette de déchargement 56, et de les déposer verticalement dans la cassette de réception 72 dans les alvéoles prédéterminés s'étendant parallèlement à la face 14.
Le cycle de fonctionnement du module de déchargement 70 comprend les étapes successives suivantes :
- déplacement du système de manipulation 76 vers la palette de déchargement 56,
- extraction d'un échantillon poli entreposé sur la palette 56,
- transfert de l'échantillon vers la cassette de réception 72, et dépose dans une alvéole de ladite cassette,
- déplacement du système de manipulation 76 vers une position d'attente.

Dans la variante de la figure 4, les échantillons au lieu d'être disposés verticalement, sont rangés horizontalement dans les cassettes 66, 72 respectives des modules de chargement et de déchargement 64, 70. Le fonctionnement des cycles est identique à celui décrit précédemment en référence à la figure 3.

Sur la figure 5, le mécanisme d'entraînement 28 comprend un motoréducteur logé dans le compartiment inférieur 22 et accouplé mécaniquement à un arbre 78 rotatif s'étendant le long de l'axe vertical 46 à l'intérieur d'une colonne 80 tubulaire solidarisée au bras de polissage 44. Des roulements 82, 84 sont disposés entre l'arbre 78 et la colonne 80, et l'extrémité supérieure cannelée 85 de l'arbre 78 rotatif est fixée à une poulie 86 associée à la transmission à courroie 43 de la tête de polissage 40. La courroie 43 s'étend perpendiculairement à l'axe vertical 46, à l'intérieur du bras de polissage 44, et la colonne 80 tourne autour de l'arbre 78 lors du pivotement du bras de polissage 44 sous l'action d'une bielle de manoeuvre 88 pilotée par un premier vérin (non représenté). Le bras de déchargement 58 est solidarisé à une douille 90 montée coaxialement autour de la colonne 80 avec interposition d'un fourreau 92 tubulaire. Des roulements 94,96 entre la douille 90 et le fourreau 92 permettent un mouvement relatif en pivotement du bras de déchargement 58 par rapport au bras de polissage 44. Le débattement angulaire du bras de déchargement 58 est opéré au moyen d'un levier de commande 98 assujetti à la douille 90, et pouvant être actionné au moyen
d'un deuxième vérin (non représenté). Le réglage en hauteur du bras de polissage 44 est assuré par un dispositif d'ajustage 100 à tirants 102.

Le mécanisme d'entraînement 30 à axe vertical 52 du bras de conditionnement 62 et du bras de chargement 50 est de même type que celui décrit en référence à la figure 5.

En référence à la figure 6, un module de transfert 104 inter-poste coopère avec deux unités de base 10, 10A accolées l'une à l'autre par leurs faces 18, 20 respectives. Un module de chargement 64 est associé à l'unité de base 10, et un module de déchargement 70 est associé à l'autre unité 10A adjacent. Le module de transfert 104 est intercalé entre les deux modules 64, 70, et permet dans la même action de polissage de réaliser une opération en deux étapes. Le module de transfert 104 comporte un coulisseau 105 destiné à se déplacer en translation pour prendre un échantillon sur la palette de déchargement 56 de l'unité 10, et la mettre sur la palette de chargement 48 de l'unité 10A.

La figure 7 montre une autre version du module de transfert 106 utilisant un bras 108 pivotant entre deux positions extrêmes situées à la verticale des palettes 56, 48 respectives des unités 10, 10A.

La figure 8 montre un équipement multipostes, lequel est composé de quatre unités de base 10, 10A, 10B, 10C disposées en ligne, et coopérant avec un robot 110 se déplaçant en translation le long des faces 14 alignées des différentes unités 10, 10A, 10B, 10C. Le robot 110 assure la liaison des unités avec un module de chargement / déchargement 112 centralisé, placé devant l'unité de base 10. Le module de chargement / déchargement 112 permet de travailler avec deux cassettes de chargement et deux cassettes de déchargement. Grâce à des protections d'accès, il est possible de décharger et de changer le jeu de cassettes qui a été poli pendant que le jeu suivant est en cours de travail. Cela évite d'attendre le vidage complet de la machine.
pour relancer sur la production suivante, entraînant de ce fait un gain de productivité.

Le transport des échantillons se fait dans un tunnel 114 humide par projection d'eau pour protéger les échantillons. Chaque unité de base 10, 10A, 10B, 10C est autonome grâce à l'intégration de ses propres éléments de chargement et déchargement. Par l'indépendance de l'unité par rapport au robot de transfert 110, l'unité maximise son temps disponible pour le polissage pour une productivité accrue.

La commande de l'ensemble par un système de supervision (non représenté) permet une configuration souple de la machine. Une liberté totale est laissée dans l'affectation de chaque poste à une opération de polissage donnée, ainsi qu'à la définition de la liste des opérations à réaliser sur chaque échantillon. La reconfiguration est automatique, quand, pour un événement intervenant pendant la production, un poste de polissage devient indisponible. Dans ce cas, la gestion de la machine organise le flux des échantillons pour tenir compte de cette nouvelle situation, et continuer la production dans ce nouveau contexte.

La structure mécanique de chaque poste permet d'accéder dans une unité de base préalablement déclarée indisponible pour des opérations d'entretien sans que cela représente un risque pour l'intervenant. En particulier, il est possible de changer le plateau de polissage 38, ou une tête de polissage 40, ou de conditionnement 60, pendant que la production continue sur le reste de la machine. Il en résulte une augmentation de la productivité globale de l'équipement.

La figure 9 montre une variante d'équipement multipostes dans laquelle les deux unités de base 10B, 10C sont disposés au regard des deux autres unités 10, 10A avec interposition du robot de transfert 110.
Il est clair qu'un nombre différent d'unités de base peut être utilisé en fonction du nombre d'échantillons, et des cycles de polissage souhaités.

La figure 10 représente la vue arrière de l'équipement multipostes de la figure 8. Les unités de base 10, 10A, 10B, 10C ne présentent aucun mécanisme dans le compartiment intermédiaire où intervient le polissage, de manière à éviter tout risque de pollution. L'ensemble de la mécanique et du système pneumatique est intégré dans les compartiments inférieurs 22 des unités. Toutes les faces 16 de manutention sont ainsi accessibles pour le changement des outils, et du tissu consommable des plateaux de polissage 38.
REVENDICATIONS

1. Machine de polissage et de planarisation de substrats, comprenant :
 - au moins un plateau de polissage (38) rotatif sur lequel est poli un substrat,
 - une tête de polissage (40) mobile en translation entre une position relevée, et une position abaissée, et pourvue d'un portoir (42) de maintien du substrat,
 - un bras de polissage (44) pivotant destiné à déplacer la tête de polissage (40) pour récupérer le substrat à polir sur la palette de chargement (48), et pour l'acheminer après polissage sur une palette de déchargement (56),
 - au moins un mécanisme (28, 30) pour l'entraînement en rotation (28) du plateau de polissage (40) et du portoir (42) de la tête de polissage (40), et le déplacement alterné du bras de polissage (44), et des palettes (48, 56) de chargement et de déchargement,
 - et un automate (34) de commande du mécanisme (28, 30) au cours du cycle de polissage,
 caractérisé en ce que
 - la machine comporte au moins une unité de base (10, 10A, 10B, 10C) en forme de cellule (12) parallélépipédique, ayant une première face (14) de chargement et de déchargement, une deuxième face (16) parallèle opposée d'accès à la zone de travail située dans le compartiment intermédiaire (24), et des troisième et quatrième faces (18, 20) comprenant des parois pleines transversales s'étendant perpendiculairement aux première et deuxième faces (14, 16),
 - la palette de chargement (48) et la palette de déchargement (56) sont portées respectivement par un bras de chargement (50) et un bras de déchargement (58) à fonctionnements indépendants l'un de l'autre, lesdites palettes (48, 56) étant accessibles toutes les deux du côté de la première face (14),
 - le mécanisme (28, 30) est situé dans le compartiment inférieur (22) sous le compartiment intermédiaire (24) de la cellule (12), alors que l'automate (34)
de l’unité de base (10) est disposé dans le compartiment supérieur (26), le mécanisme (28, 30) étant accessible du côté de la deuxième face (16).

2. Machine de polissage et de planarisation selon la revendication 1, caractérisée en ce que le bras de polissage (44) et le bras de déchargement (58) sont montés à pivotement autour d’un premier axe vertical (46).

3. Machine de polissage et de planarisation selon la revendication 2, caractérisée en ce que l’unité de base (10, 10A, 10B, 10C) comporte une tête de conditionnement (60) rotative portée par un bras de conditionnement (62), lequel est monté à pivotement avec le bras de chargement (50) autour d’un deuxième axe vertical (52) parallèle au premier axe (46).

4. Machine de polissage et de planarisation selon la revendication 3, caractérisée en ce que une station de nettoyage (54) est agencée entre les deux axes verticaux (46, 52), et entre le plateau de polissage (38) et la première face (14) de la cellule (12), de manière à définir une position de nettoyage de la tête de polissage (40), et des positions concentriques des palettes de chargement (48), de déchargement (56), et de la tête de polissage (40) lors des manipulations des substrats.

5. Machine de polissage et de planarisation selon la revendication 2, caractérisée en ce que le mécanisme (28) comporte un motoréducteur logé dans le compartiment inférieur (22), et accouplé à un arbre (78) rotatif s’étendant dans la direction du premier axe (46), l’arbre (78) entraînant une poulie (86) et une transmission à courroie (43) logée dans le bras de polissage (44) pour la mise en rotation de la tête de polissage (40).

6. Machine de polissage et de planarisation selon la revendication 5, caractérisée en ce que l’arbre (78) rotatif s’étend à l’intérieur d’une colonne (80) tubulaire solidarisée au bras de polissage (44) et à une bielle de manoeuvre (88), laquelle est pilotée par un premier vérin pour assurer le
pivotement du bras de polissage (44) entre la station de nettoyage (54), et le plateau de polissage (38).

7. Machine de polissage et de planarisation selon la revendication 6, caractérisée en ce que le bras de déchargement (58) est solidarisé à une douille (90) montée coaxialement autour de la colonne (80) avec interposition d'un fourreau (92) tubulaire, des roulements (94, 96) étant agencés entre la douille (90) et le fourreau (92) pour autoriser un mouvement rotatif du bras de déchargement (58) par rapport au bras de polissage (44).

8. Machine de polissage et de planarisation selon la revendication 7, caractérisée en ce que un levier de commande (98) piloté par un deuxième vérin est assujetti à la douille (90) pour provoquer le débattement angulaire du bras de déchargement (58).

9. Machine de polissage et de planarisation selon l'une des revendications 1 à 8, caractérisée en ce que un module de chargement individuel (64) est juxtaposé à la première face (14) d'une unité de base (10) en regard de la palette de chargement (48), ledit module ayant une cassette de chargement (66) renfermant une pluralité de substrats rangés horizontalement ou verticalement.

10. Machine de polissage et de planarisation selon l'une des revendications 1 à 9, caractérisée en ce que un module de déchargement individuel (70) est juxtaposé à la première face (14) de l'unité de base (10, 10A) en regard de la palette de déchargement (56), ledit module ayant une cassette de réception (72) des substrats polis, lesquels peuvent être rangés horizontalement ou verticalement.

11. Machine de polissage et de planarisation selon l'une des revendications 1 à 10, caractérisée en ce qu'un module de transfert (104, 106) interpostes
coopère avec deux unités de base (10, 10A) accolées l'une à l'autre par leur faces transversales (18, 20) respectives, pour réaliser une opération de polissage en deux étapes, après acheminement de la palette de déchargement (56) de l'une des unités (10) vers la palette de chargement (48) de l'autre unité (10A).

12. Machine de polissage et de planarisation selon la revendication 11, caractérisée en ce que le module de transfert (104) comporte un coulisseau (105) déplaçable en translation entre les deux unités (10, 10A).

13. Machine de polissage et de planarisation selon la revendication 11, caractérisée en ce que le module de transfert (106) comporte un bras (108) pivotant entre la palette de déchargement (56) de l'unité (10), et la palette de chargement (48) de l'autre unité (10A).

14. Machine de polissage et de planarisation selon la revendication 1, caractérisée en ce que plusieurs unités de base (10, 10A, 10B, 10C) sont associées avec un module de chargement/déchargement (112), et coopèrent avec un robot (110) programmé se déplaçant en translation le long des faces (14) alignées des différentes unités, et à l'intérieur d'un tunnel (114) humide et à projection d'eau.

15. Machine de polissage et de planarisation selon la revendication 14, caractérisée en ce que les unités de base (10, 10A, 10B, 10C) sont disposées en ligne.

16. Machine de polissage et de planarisation selon la revendication 14, caractérisée en ce que les unités de base (10, 10A) sont disposées en tandem avec d'autres unités (10B, 10C) pour définir un couloir intercalaire de passage du robot (110).
FEUILLE DE REMPLACEMENT (REGLE 26)
FEUILLE DE REMPLACEMENT (REGLE 26)
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

<table>
<thead>
<tr>
<th>IPC</th>
<th>B24B37/04</th>
<th>B24B41/02</th>
<th>B24B53/007</th>
<th>H01L21/304</th>
</tr>
</thead>
</table>

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols):

- IPC 6 B24B

Documentation searched other than minimum documentation to the extent that such documents are included in the files searched

Electronic data base consulted during the international search (name of data base and where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 4 680 893 A (CRONKHITE PAUL W ET AL) 21 July 1987 (1987-07-21) cited in the application column 2, line 45 - line 50; figure 1</td>
<td>9-11,14</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 655 954 A (OISHI TOSHIO ET AL) 12 August 1997 (1997-08-12) column 2, line 5 - line 10 column 2, line 52 - line 58; figures 1,2</td>
<td>1-3</td>
</tr>
</tbody>
</table>

Further categories of cited documents:

- **A** document defining the general state of the art which is not considered to be of particular relevance
- **E** earlier document but published on or after the international filing date
- **L** document which may throw doubts on priority claims(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- **O** document referring to an oral disclosure, use, exhibition or other means
- **P** document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"S" document member of the same patent family

Date of the actual completion of the international search: 29 July 1999

Date of mailing of the international search report: 13/08/1999

Name and mailing address of the ISA:
European Patent Office, P.B. 5818 Patentlaan 2 NL-2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016

Authorized officer: Eschbach, D
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>EP 0 648 575 A (EBARA CORP) 19 April 1995 (1995-04-19) page 3, column 2, line 40 - page 4, column 4, line 29</td>
<td>1, 9, 10</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>JP 63207559 A</td>
<td>26-08-1988</td>
<td>NONE</td>
</tr>
<tr>
<td>EP 0216054 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 2572577 B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 62068273 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 8153697 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 5616063 A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US 5885138 A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
RAPPORT DE RECHERCHE INTERNATIONALE

A. CLASSEMENT DE L'OBJET DE LA DEMande

CIB 6 B24B37/04 B24B41/02 B24B53/007 //H01L21/304

Selon la classification internationale des brevets (CIB) ou à la fois selon la classification nationale et la CIB.

B. DOMAINEs SUR LESQUELS LA RECHERCHE A PORTE

Documentation minimale consultée (système de classification suivi des symboles de classement)

CIB 6 B24B

Documentation consultée autre que la documentation minimale dans la mesure où ces documents relèvent des domaines sur lesquels a porté la recherche

Base de données électronique consultée au cours de la recherche internationale (nom de la base de données, et si réalisable, termes de recherche utilisés)

C. DOCUMENTs CONSIDERÉS COMME PERTINENTS

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>abrégé</td>
<td>9-11,14</td>
</tr>
<tr>
<td>Y</td>
<td>US 4 680 893 A (CRONKHITET PAUL W ET AL) 21 juillet 1987 (1987-07-21) cité dans la demande colonne 2, ligne 45 - ligne 50; figure 1</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US 5 655 954 A (OISHI TOSHIRO ET AL) 12 août 1997 (1997-08-12) colonne 2, ligne 5 - ligne 10 colonne 2, ligne 52 - ligne 58; figures 1, 2</td>
<td>1-3</td>
</tr>
</tbody>
</table>

X Voir la suite du cadre C pour la fin de la liste des documents

X Les documents de familles de brevets sont indiqués en annexe

Notes:
- "Y" document particulièrement pertinent; l'invention revendiquée ne peut être considérée comme nouvelle ou comme impliquant une activité inventive par rapport au document considéré isolément
- "A" document pertinent, mais cité pour comprendre le principe de la technique pertinent, mais cité pour comprendre le principe ou la théorie constituant la base de l'invention
- "L" document pouvant être utilisé pour déterminer la date de publication d'une autre citation ou pour une raison spéciale (telle qu'indiquée)
- "O" document se référant à une divulgation orale, à un usage, à une exposition ou tout autre moyen
- "P" document cité avant la date de dépôt international ou après la date de priorité revendiquée
- "F" document qui fait partie de la même famille de brevets

Date à laquelle la recherche internationale a été effectivement achevée: 29 juillet 1999

Date d'expédition du présent rapport de recherche internationale: 13/08/1999

Nom et adresse postale de l'administration chargée de la recherche internationale: Office European des Brevets, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 aep nl, Fax (+31-70) 340-3016

Fonctionnaire autorisé: Eschbach, D
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Identification des documents cités, avec le cas échéant, l'indication des passages pertinents</th>
<th>no. des revendications visées</th>
</tr>
</thead>
<tbody>
<tr>
<td>Document brevet cité</td>
<td>Date de publication</td>
<td>Membre(s) de la famille de brevet(s)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>JP 63207559 A</td>
<td>26-08-1988</td>
<td>AUCUN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0216054 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2572577 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 62068273 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 8153697 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5616063 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5885138 A</td>
</tr>
</tbody>
</table>