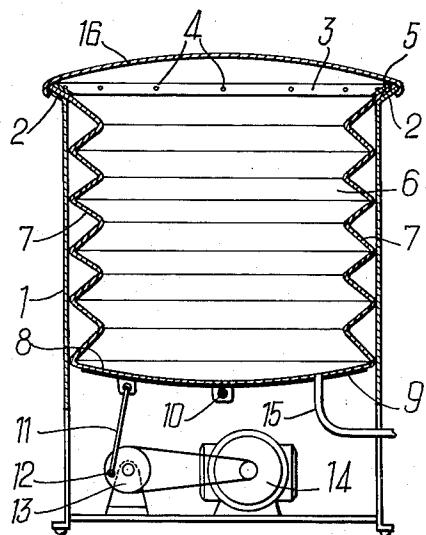
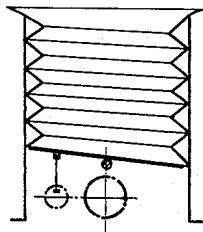


Aug. 29, 1961

J. DUARRY SERRA


2,997,870

WASHING MACHINES


Filed Jan. 3, 1958

3 Sheets-Sheet 1

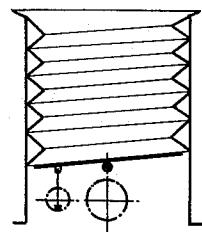
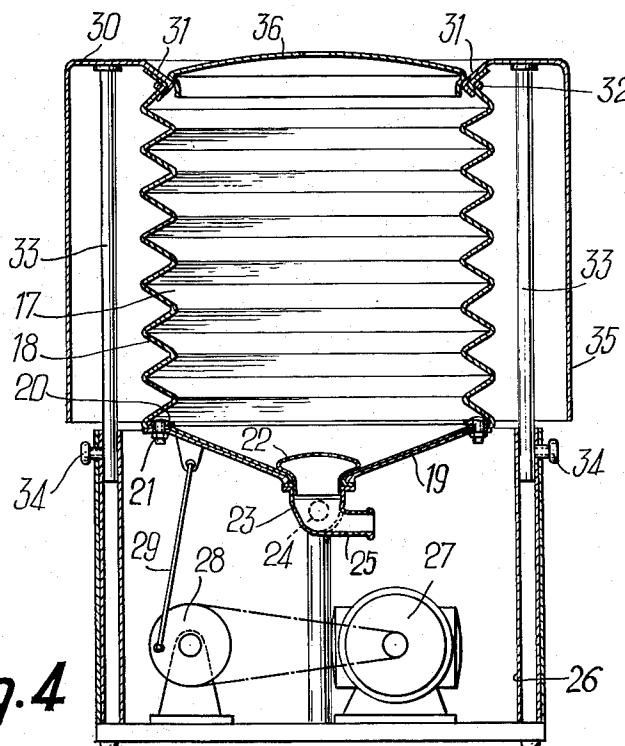

Fig. 1

Fig. 2

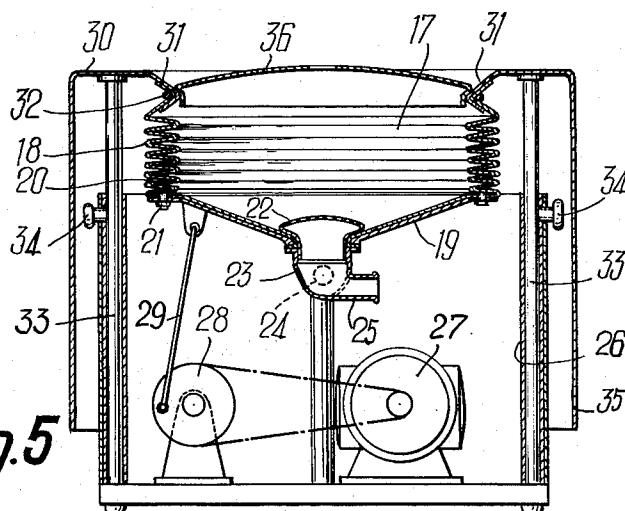
Fig. 3

INVENTOR.
Juan Duarry Serra

Aug. 29, 1961


J. DUARRY SERRA

2,997,870


WASHING MACHINES

Filed Jan. 3, 1958

3 Sheets-Sheet 2

Fig. 4

Fig. 5

INVENTOR.
JUAN DUARRY SERRA

Aug. 29, 1961

J. DUARRY SERRA

2,997,870

WASHING MACHINES

Filed Jan. 3, 1958

3 Sheets-Sheet 3

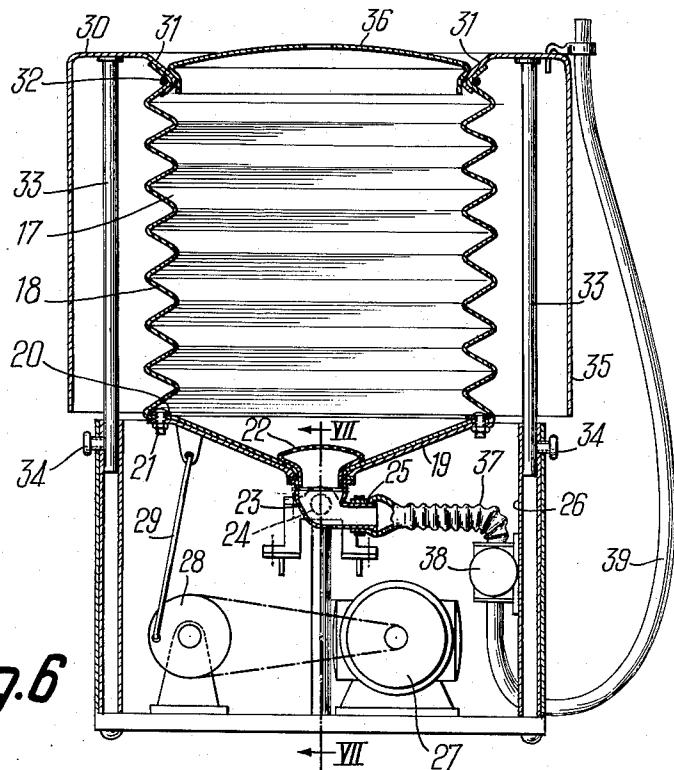


Fig. 6

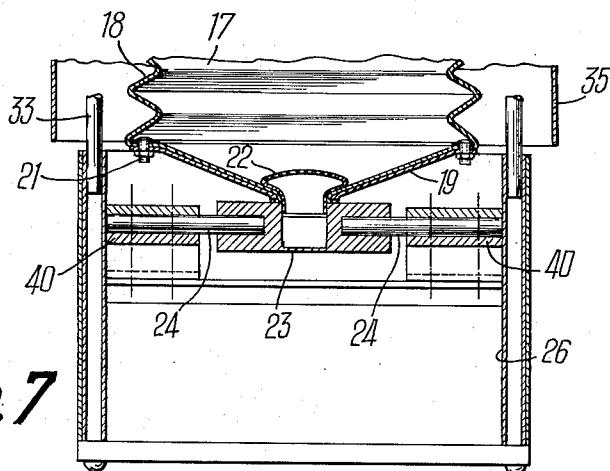


Fig. 7

INVENTOR.

JUAN DUARRY SERRA
BY *Fig. 6. Standard*
At.

1

2,997,870

WASHING MACHINES

Juan Duarry Serra, Calle Rosellon 1, Barcelona, Spain

Filed Jan. 3, 1958, Ser. No. 706,964

Claims priority, application Spain Jan. 9, 1957

3 Claims. (Cl. 68—173)

In known washing machines the agitation of the water contained in the washing vessel is generally produced by means of blades, turbines or similar rotary members, mounted in the interior of the said vessel itself. These rotating members therefore come into direct contact with the garments or fabrics to be washed, which constitutes an obvious disadvantage, since although the configuration of such members has been designed in such a way that the garments or fabrics are not likely to remain entangled by them, this possibility has not been entirely precluded, and the risk of impairing the articles still subsists.

The washing machine to which the present invention relates obviates the said disadvantage, since there is no rotary member in the interior of the washing vessel.

This washing machine is essentially characterized by the feature that the vessel for containing the water and the garments or fabrics to be washed is constituted by a deformable hollow body of resilient material, vulcanized rubber for example, with which are associated external mechanical members by means of which it can be subjected to continual deformation.

The said hollow body is preferably provided with a side wall constructed in the manner of a bellows, and is suspended by its mouth in a rigid member, and is supported at the bottom on a movable platform, mounted for example on a horizontal shaft, and connected by means of a connecting-rod to an eccentric driven by an electric motor, which imparts to it a rocking motion.

The constructing of the washing vessel as a bellows-like resiliently deformable body enables the vessel to be mounted in a frame the height of which is adjustable, for instance by means of telescopic supports, in order that the washing machine, when it is not required for use, may be considerably reduced in height, so that it can be stored under a kitchen table for example, thus facilitating its use in modern dwellings of limited dimensions.

Another feature of the invention consists in the detail that the resiliently deformable vessel designed to contain the water and the articles to be washed is supported by its bottom in a stationary frame, which encloses the motor and the members necessary for impressing upon the said bottom a continuous rocking motion, whereas by its upper part it is suspended in a rigid member supported by the frame of adjustable height and provided with a central aperture.

Preferably the said rigid member, which secures the upper part of the resiliently deformable vessel, is coupled to the aforementioned stationary frame by means of telescopic connecting elements capable of being raised and lowered for the purpose of maintaining the said vessel in an extended operative position or in a folded inoperative position.

Another feature of the invention consists in providing the aforesaid rigid member that secures the upper part of the resiliently deformable vessel, in the zone that bounds its central aperture, with a portion bent downwards and provided with an external groove, in which the portion of the vessel itself adjacent to the mouth is inserted, and is secured by means of a clasp.

In accordance with a further feature of the invention, the movable platform on which the bottom of the resiliently deformable vessel is supported is constituted by a rigid base member, which has in the middle a depression,

2

in which is mounted the oscillation bearing, combined with an outlet for the water.

Other features and advantages of the invention will be gathered from the following description, which is formulated in relation to the accompanying drawings, in which two forms of construction are illustrated by way of example, but not of limitation. In these drawings:

FIGURE 1 shows diagrammatically in sectional elevation a washing machine made in accordance with the invention;

FIGURES 2 and 3 are diagrammatic vertical sections on a smaller scale analogous to that of FIGURE 1, but showing the washing vessel in two different positions;

FIGURE 4 represents in sectional elevation a second form of construction of the washing machine in question, showing it in the operative position;

FIGURE 5 represents the same washing machine as FIGURE 4, likewise in sectional elevation, but in its inoperative position;

FIG. 6 is a sectional elevation similar to FIG. 4 illustrating the drain means, and FIG. 7 is a vertical view taken on line VII—VII of FIG. 6.

Referring in the first place to FIGURES 1 to 3, the washing machine illustrated comprises a frame 1, which may be of any suitable type, and may be supported on feet or on wheels as desired in each case. The upper edge of this frame is bent outwards, as will be seen at 2, there being fixed in this bent portion, by means of a rigid hoop 3 and screws 4, the mouth 5 of a hollow body of resilient material, denoted as a whole by 6. The side wall 7 of this hollow body is constructed in the manner of a bellows, and the same is supported by its bottom 8 on a rockable platform 9. This platform is mounted on a horizontal shaft 10, supported by the actual frame 1, and receives its rocking motion by means of a connecting-rod 11 coupled at 12 to an eccentric 13, actuated by an electric motor 14. By the reference 15 is denoted the draining tube for water, and by 16 the cover of the washing machine.

This machine operates in the manner hereinafter set forth: The water, and the garments or fabrics to be washed, are introduced into the vessel of resilient material 6, 7, 8, the cover 16 is closed as shown in FIGURE 1, and the motor 14 is started. This sets in rotation the eccentric 13, and since this eccentric is coupled to the

rockable platform 9 by means of the connecting-rod 11, this platform is constrained to effect a continuous rocking movement between the extreme inclined positions illustrated in FIGURES 2 and 3, this movement being transmitted to the bottom 8 of the hollow body 6, whereby the lateral wall 7 of the latter, being of bellows-like construction, bends and unbends alternately on one side and the other. This continual rocking movement of the bottom 8, and the bending and unbending of the side wall 7, gives rise to a violent agitation of the water and of the articles contained in the vessel 6, and therefore to an energetic washing action. It has been found possible to confirm that this action is promoted by the release of ozone, which occurs upon the water in contact with the air becoming charged with static electricity by

the continual friction of the india rubber of the said vessel in motion, which greatly contributes to the whitening and disinfecting of the articles, and in consequence results in less soap and lye being required for washing them. Since the articles are in contact only with the vessel 6 of resilient material, all risk of injury to them is completely obviated. The vessel 6, in case of need, can be readily exchanged, thanks to it being mounted in the frame 1 in a readily releasable manner.

The washing machine illustrated in FIGURES 4 to 7 comprises a deformable vessel 17 of resilient material, which, like the one marked 6 in the preceding example,

has a side wall 18 of bellows-like construction. This vessel 17 is supported by its bottom on a rigid base member 19, to which is united by means of a hoop 20 and suitable screws 21, as well as a central drainage piece 22, which encloses the adjacent portion of the bottom of the deformable vessel 17 and of the base member 19 against an oscillation bearing 23, supported by two horizontal half-shafts, as shown at 24 (FIG. 7). This bearing is combined with a pipe 25 for the passage of water, which may be supplemented in a known manner by a pipe 37, water pump 38 and drain pipe 39, for effecting the filling and the emptying of the vessel 17. The half-shafts 24 are supported by means of bearings 40 on a stationary frame 26, which likewise encloses the electric motor 27, which, by means of an eccentric 28 and a connecting-rod 29, enables a continuous rocking motion to be imparted to the base member 19, and therefore to the bottom of the deformable vessel 17.

The said vessel is suspended by its mouth in a rigid member 30, provided with a central aperture, bounded by a downwardly bent portion 31 and provided with an external groove, in which the portion of the vessel 17 adjacent to the said mouth is inserted and secured by means of a clip 32. The member 30 is coupled to the stationary frame 26 of the apparatus by means of telescopic connecting elements 33, capable of being raised and lowered for the purpose of maintaining the deformable vessel 17 either in an extended or operative position, as in FIGURES 4 and 6 or in a folded or inoperative position as in FIGURE 5. The said connecting elements may be immobilized in their raised position by means of suitable set screws 34, and in order that they may not be visible, the rigid securing member 30 may be combined with an external flap, as shown at 35. The reference 36 denotes a cover adapted to be engaged by pressure in the aperture that is bounded by the downwardly bent portion 31 of the securing member 30.

When use is not being made of the machine illustrated in FIGURES 4 to 7, it is stored with the vessel 17 collapsed as shown in FIGURE 5, in which position it occupies a greatly reduced space. To make use of it, the vessel 17 is extended by raising the securing member 30, 31 from the position shown in FIGURE 5 to that of FIGURE 4 or 6, securing the whole in this position by means of the set screws 34 or equivalent members with which the telescopic elements 33 are provided. Thereupon the water and the articles to be washed can be introduced into the vessel 17, which, in a manner known in itself, may be combined with heating means

and a thermostat, for the purpose of maintaining the water at the desired temperature, and the electric motor 27 may then be set in motion. By this means, as already described in connection with FIGURE 1, the eccentric 28 is set in rotation, and this, by means of the connecting-rod 29, imparts a continuous rocking movement to the base member 19 and to the bottom of the deformable vessel 17, whereby the side wall 18 of the latter, constructed as a bellows, bends and unbends on one side and the other alternately, giving rise to a powerful agitation of the water and of the garments or fabrics contained in the said vessel, and therefore to an energetic washing action.

When the washing operation is completed, the water can be drawn out through the pipe 25, the water pump 38 and the drain pipe 39 (FIG. 6), and, when the fixing screws 34 have been loosened, the whole can be folded up again as shown in FIGURE 5.

What I claim is:

- 20 1. A washing machine comprising a housing, an open-end container having foldable accordion walls and a rigid bottom, a movable platform arranged inside said housing and supporting the bottom of said container, a frame secured to the open end of the container, telescoping members secured to said housing and supporting said frame, said telescoping members maintaining said container in fully extended operative position when extended and in inoperative collapsed position when telescoped, means to fix the position of said telescopic members, and means for imparting to said platform a rocking motion.
- 25 2. A washing machine as claimed in claim 1 comprising a horizontal shaft supporting said platform.
- 30 3. A washing machine as claimed in claim 1 comprising a driven pulley, and a rod eccentrically mounted on said pulley and connecting said pulley with said platform.

References Cited in the file of this patent

UNITED STATES PATENTS

40 1,440,140	Emme	-----	Dec. 26, 1922
2,499,162	Rand	-----	Feb. 28, 1950
2,538,095	Goldenberg	-----	Jan. 16, 1954
2,877,700	Keller	-----	Mar. 17, 1959

FOREIGN PATENTS

45 75,697	Netherlands	-----	Aug. 16, 1954
H20,711	Germany	-----	July 12, 1956
182,095	Austria	-----	May 25, 1955