WO 01/67707 A2

(19) World Intellectual Property Organization

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

International Bureau

(43) International Publication Date

(10) International Publication Number

13 September 2001 (13.09.2001) PCT WO 01/67707 A2
(51) International Patent Classification’: HO04L 29/00 (72) Inventors; and
(75) Inventors/Applicants (for US only): COATES, Joshua,
(21) International Application Number: PCT/US01/06707 L. [US/US]; 70 Brookwood Road, Orinda, CA 94563
(US). JONES, F., Alan [US/US]; 415 Pope Street, Menlo
(22) International Filing Date: 2 March 2001 (02.03.2001) Park, CA 94025 (US). RUSSEL, Georgina, L. [US/US];
899 Oak Street #4, San Francisco, CA 94117 (US). GON-
(25) Filing Language: English ZALEZ, Michael [US/US]; 20949 Wilbeam Avenue,
Castro Valley, CA 94546 (US). BOZEMAN, Patrick, E.
(26) Publication Language: English [—/US]; 500 Beale Street #311, San Francisco, CA 94105
(US). GAUTIER, Taylor [US/US]; 708 38th Avenue #3,
(30) Priority Data: San Francisco, CA 94121 (US). PATTERSON, David,
60/186,693 3 March 2000 (03.03.2000) US A. [US/US]; 114 Purdue Avenue, Kensington, CA 94708
60/186,774 3 March 2000 (03.03.2000) US (US).
09/695,499 23 October 2000 (23.10.2000) US
09/753,141 29 December 2000 (29.12.2000) US (74) Agent: STATTLER, John; Stattler Johansen & Adeli
LLP, P.O. Box 51860, Palo Alto, CA 94303-0728 (US).
(71) Applicant (for all designated States except US): SCALE
EIGHT, INC. [US/US]; 625 Second Street, Suite 201, San (81) Designated States (national): AE, AG, AL, AM, AT, AU,

Francisco, CA 94107 (US).

AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

[Continued on next page]

(549

Title: A NETWORK STORAGE SYSTEM

Network Storage System
90

(§7) Abstract: A network storage
system includes a virtual file system
("VES"™), to manage the files of the

network storage system, and a storage
center that stores the files. The VFS
and the storage center are separated,

Virtual File System
(VFS)
50

A

70

Storage Cluster

such that a client accesses the VFS
to conduct file system operations and
the client accesses the storage center
to upload/download files. The client
accesses the network storage system

through one or more storage ports.
The storage center includes a plurality
of distributed object storage managers
(DOSMs) and a storage cluster that
includes a plurality of intelligent
storage nodes. The network storage

Control - Directory

ject Fil
Operations Object File

Requests

system includes additional storage
centers at geographically disparate
locations. The network storage
system uses a multi-cast protocol
to maintain file information at the
DOSMs regarding files stored in the
intelligent storage nodes, including
files stored in disparate storage
centers.

Object
Files

File System
Control
60

Object
Recipient
80

wO 01/67707 A2 D00 OO0 0T AR

CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SL, SK, SL, Published:
TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW. —— without international search report and to be republished
upon receipt of that report

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian For two-letter codes and other abbreviations, refer to the "Guid-
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European ance Notes on Codes and Abbreviations" appearing at the begin-
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 01/67707 PCT/US01/06707

A NETWORK STORAGE SYSTEM

BACKGROUND OF THE INVENTION

Field of the Invention:

The present invention is directed toward the field of storage, and more particularly

toward accessing remote storage through use of a local device.

Art Background:

With the rapid digitization of music, film and photographs, customer demand is
driving the Internet to become the most preferred transport mechanism for all forms of digital
media. Using the Internet, users have instantaneous worldwide access to their favorite
movies, songs, or personal memorabilia. As the producers and owners of media content
increasingly use the Internet as a primary method for worldwide distribution, the aggregate
amount of rich media content available over the Internet is increasing at an extremely rapid
rate.

Not only is the number of rich media objects available over the Internet growing
exponentially, but the size of the media, generally referred to herein as objects, is also
dramatically increasing. A median Web object is 5 kilobytes (KB) in size, while the size of a
rich media object may be 100 to 1 million times larger. For example, high-resolution digital
photographs average 500 KB per picture. Digital music runs 3 to 5 megabytes (“MB”) per
song, and digital movies may reach up to 4 gigabytes (“GB”) in size.

As the number of personal computers, digital camcorders, digital cameras, and
personal digital audio players grow, demand for Internet bandwidth to store, share and
retrieve media files across the Internet also will grow. As the use of high-bandwidth digital
subscriber lines (“DSL”), cable modems, and digital broadcast satellite networks gain in
popularity, which supports the growth of the Internet backbone, the demand for using the
Internet as a primary delivery channel for rich media objects also gains in popularity. This
development causes a virtuous cycle, where the installation of broadband networks drives the
use of rich media devices, which in turn, creates demand for further improvements in network
bandwidth, and so on.

The distribution of rich media objects across the Internet creates the need for

increased storage capacity to store these rich media objects. As the number of personal

10

15

20

25

30

WO 01/67707 PCT/US01/06707

media devices grows, and the network bandwidth expands, the amount of storage media
required to store the various MP3 files, photographs, films, and video clips will also grow.
Also, as more storage becomes readily available, more people will use the Internet to catalog,
store, and access their rich media objects (e.g., digital photographs of family members).

To date, only traditional storage solutions from established enterprise vendors have
been available to a Web site developer implementing rich media repositories. One challenge
with adopting today’s existing storage technology for use with the Internet is meeting current
and future scalability requirements. Today, large scale storage systems only scale to a few
dozen terabytes. This amount of storage space is inadequate for storing substantial amounts
of rich media objects. For example, if just 10 percent of America on line (“AOL”) users
place two 15 minute videos on a personal home page, then one petabyte (i.e., 1000 terabytes)
of storage would be required. Today’s enterprise storage system architectures cannot support
this level of storage capacity.

In the Internet world, in addition to providing mass storage, it is also critically
important to provide universal access to that storage across the wide area network. The
content provider, regardless of the location of their content servers, cache servers, or stream
servers, would ideally like to provide ubiquitous access to an entire store of rich media
objects. Current technology, including storage area networks and network attached storage
technologies, do not provide direct access to the wide area network. Only servers located
within the same metropolitan area can directly access these types of storage systems.

Since Internet users are measured in the tens of thousands or even millions of users,
instead of hundreds of users, another challenge in mass storage is the ability to scale delivery
of media as the demand increases. A true Internet based storage system must be able to
handle peak loads of millions of simultaneous requests from all around the world.
Traditional storage architectures are designed to support a few hundred simultaneous requests
from the fastest possible response time to match the speed of the server CPU. For the
Internet, storage systems must be able to manage literally millions of simultaneous
downloads at the speed of the wide area network. Thus, these traditional storage
architectures are not “impedance matched” with the wide area network because the storage
devices handle far too few simultaneous transactions that far exceed the latency requirements
of the wide area network. In addition, these traditional storage architectures are typically

implemented with expensive disks and expensive connection technologies.

10

15

20

25

30

WO 01/67707 PCT/US01/06707

Another issue regarding storage of rich media objects is the time to market. The time
to market is often a crucial requirement for new rich media Web sites. Growth rates are
measured in terabytes per month. Quickly bringing new capacity online becomes a strategic
advantage in fast-moving markets. Typically, with traditional storage solutions, it takes a
customer two to six months to integrate a fully operational multi-terabytes storage unit with
the content providers site. This start-up time is to slow to meet rapidly increasing business
demands. Pre-building large amounts of excess capacity in anticipation of this demand is one
tactic to deal with unpredictable demand spikes, but this approach is prohibitively expensive.

Traditional storage architectures have been optimized for database and file server
applications. The Internet introduces a whole new set of demands on storage devices,
including scalability, global access, user accounts, and rapid deployment. With the explosive
growth in rich media served over the Internet over the next several years, this is coming to a
head. The coming title wave of rich content will surpass the capabilities of even the most
robust enterprise storage architectures. Accordingly, there is a demand to develop new

paradigms in new ways of designing Internet ready rich media storage systems.

SUMMARY OF THE INVENTION

A network storage system includes a virtual file system (“VFS”) and a storage center.
The VES stores file system information to manage the files of the network storage system.
The storage center stores the files of the network storage system. The VFS and the storage
center are separated, such that a client accesses the VFS to conduct file system operations and
the client accesses the storage center to upload/download files.

In one embodiment, the client accesses the network storage system (e.g., virtual file
system and the storage center) through a storage port. The storage port provides access to a
client's files of the network storage system. In one embodiment, the client mounts the storage
port, through a standard NFS or CIFS operation, and performs file system operations and
accesses by issuing local file system operations to the storage port. In response, the storage
port translates the local file system operations to network storage system operations.
Additional storage ports may be configured at the client to access the network storage system
in the event of a failover condition.

In one embodiment, the storage center includes a plurality of distributed object

storage managers (DOSMs) and a storage cluster that includes a plurality of intelligent

3-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

storage nodes. The DOSMs receive requests to access the storage center. The intelligent
storage nodes store the files of the network storage system and service access requests from
the DOSMs. The network storage system includes additional storage centers at
geographically disparate locations. In one embodiment, the network storage system uses a
multi-cast protocol to maintain file information at the DOSMs regarding files stored in the
intelligent storage nodes, including files stored in disparate storage centers. The storage
center further includes a load balancing fabric. The load balancing fabric selects a DOSM for
an access request based on demand to access the storage center. In addition, the DOSMs
include a data cache for caching at least a subset of files stored in the intelligent storage
nodes. The use of load balancing in the storage center results in caching data for files in high
demand in the data caches of the DOSMs.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram illustrating one embodiment for the storage system of the
present invention.

Figure 2 illustrates one embodiment for use of the network storage system as a media
storage service.

Figure 3 is a block diagram illustrating one embodiment for the storage cluster.

Figure 4 is a flow diagram illustrating one embodiment for the download operation in
the storage cluster.

Figure 5 is a flowchart illustrating one embodiment for authentication in the network
storage system.

Figure 6 illustrates one embodiment of a distributed object storage manager
(“DOSM™).

Figure 7 is a block diagram illustrating one embodiment for an intelligent storage
node.

Figure 8 is a flow diagram illustrating one embodiment for processing upload requests
in the storage cluster.

Figure 9 is a flow diagram illustrating one embodiment for generating unique
fingerprints of object files.

Figure 10 is a block diagram illustrating one embodiment for caching data in the

storage cluster.

10

15

25

30

WO 01/67707 PCT/US01/06707

Figure 11 is a block diagram illustrating one embodiment for implementing a VFS for
use with a network storage system.

Figure 12 illustrates example database tables for implementing the file system with a
database.

Figures 13A and 13B are flow diagrams illustrating one embodiment for performing
directory operations in the VFS.

Figure 14 is a flow diagram illustrating one embodiment for the delete file operation
for the network storage system.

Figure 15 illustrates geographical replications of storage centers.

Figure 16 is a block diagram illustrating one embodiment for replicating the storage
centers.

Figure 17 illustrates one embodiment for use of the storage center in a content
delivery network.

Figure 18 is a flow diagram illustrating one embodiment for use of the storage center
with a content delivery network.

Figure 19 illustrates one embodiment for use of the storage port in the network
storage system.

Figure 20 is a flow diagram illustrating one embodiment for use of a storage port to
deliver content.

Figure 21a illustrates one hardware configuration for a storage port device.

Figure 21b illustrates embodiments for implementing the storage port in software.

Figure 22 is a block diagram illustrating one embodiment for a storage port.

Figure 23 is a block diagram illustrating one embodiment for file system translation in
the storage port.

Figure 24 is a flow diagram illustrating one embodiment for translating a file system
operation from a local file system to the network storage file system.

Figure 25 is a block diagram illustrating one embodiment for using the storage port to
directly download object files to the end-user.

Figure 26 is a flow diagram illustrating one embodiment for directly downloading
object files to an end-user.

Figure 27 is a block diagram illustrating one embodiment to interface a storage center

to a client’s private file directory system.

10

15

20

25

30

WO 01/67707 PCT/US01/06707

Figure 28 is a flow diagram illustrating one embodiment for accessing object files in a
storage center using a client’s private file system.

Figure 29 is a block diagram illustrating one embodiment for a storage port fail over
configuration.

Figure 30 is a flow diagram illustrating one embodiment for a storage port fail over -
process.

Figure 31 is a flow diagram illustrating one embodiment for using the multicast

protocol after a storage node fail over condition.

DETAILED DESCRIPTION

Network Storage System Overview:

The network storage system is designed to meet the storage requirements of rich
media content owners. Rich media objects typically represent up to 90 percent of the storage
required for a film, music or a photo album associated with a web site. The network storage
system uses distributed systems technology to provide scalability to support petabytes of
storage and to support millions of users. Users only gain access to their media objects, within
the network storage system, using a highly secured “shared secret” authentication certificate
technology. The network storage system also provides immediate expandability for any user
that desires to increase their storage capacity. Also, the network storage system is extremely
cost-effective because, in one embodiment, it consists of standard off the shelf CPUs with the
latest high-density disk technology.

For purposes of nomenclature, the term “client”, as used herein, refers to an entity that
uses the storage system to store object files. For example, a client may consist of a web site
owner that desires to deliver, outside their web server, rich media objects associated with
content on their web site. Also, for purposes of nomenclature, the term “end-user”, as used
herein, refers to a recipient of the object. For example, the end-user may consist of a
computer user that downloads objects from a web site across the Internet using a web
browser. Also, under this definition, the end-user may also be a client.

Figure 1 is a block diagram illustrating one embodiment for the storage system of the
present invention. For the embodiment of Figure 1, the storage system consists of a control
path and a data path. The control path consists of a virtual file system (“VFS”) SOAvand the

data path consists of a distributed storage cluster 70. The control path is used to conduct all

-6-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

directory operations. The VFS includes, in part, client assigned filenames and network
storage system assigned unique file identifiers for each rich media object. The unique file
identifiers are embedded into storage resource locators (“SRLs”).

The distributed storage cluster 70 is used to store the object files for the system (i.e.,
all client data). As shown in Figure 1, the VFS and the storage cluster 70 are coupled to
communicate information so as to coordinate file system information with the physical
storage of the object files.

As shown in Figure 1, file system control 60 issues directory operation requests to the
VFS 50. Asis described more fully below, file system control 60 may comprise software that
uses a library to essentially “translate” file system requests from the client’s local file system
to file system requests compatible with the network storage system. In other embodiments,
file system control 60 consists of a storage port coupled to the client’s system (e.g., the
client’s application or web server). In general, the storage port, implemented in either
hardware or software, translates file system commands from the client’s local file system
(e.g., NFS or CIFS) to file system requests compatible with the network storage system. In
one embodiment, to interface the client’s file system to the network storage system, a client
need only mount the storage port as a network drive. The storage port then provides
complete access to the network storage system. A detailed discussion of the storage port is
set forth below.

As shown in Figure 1, object recipient 80 receives, in response to object requests,
objects downloaded from storage cluster 70. The object recipient 80 may comprise the client,
or the object recipient 80 may consist of one or more end-users. Embodiments for
transferring objects from the storage cluster 70 to object recipients, including both end-users
and clients, are described more fully below.

The network storage system has applications for use as an Internet based media
storage service. For this application, the network storage system is an integral part of the
Internet infrastructure used by rich media content owners and delivery networks. Figure 2
illustrates one embodiment for use of the network storage system as a media storage service.
In general, the storage service 130 provides a single consistent worldwide image of a client’s
(e.g., a company operating a web site) entire directory of rich objects. For this embodiment,
an end-user 100 is coupled to both the content origin server 120 and storage service 130
through a network. For example, the end-user 100 may be coupled to the content origin

server 120 and storage service 130 via the Internet. The storage service 130 includes

7-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

processing and networking facilities, such as a server 140, and data store 150. The storage
service 130 and content origin server 120 communicate to conduct file directory operations
and object file operations. The data store 150, part of the storage service 130, stores large
data files, such as rich media data files, illustrated as multimedia files 160, 170 and 180 in
Figure 2. In one embodiment, the data store 150 consists of a cluster of intelligent storage
nodes.

In one embodiment, the storage service communicates with web servers (e.g., content
origin server 120) and browsers (e.g., Microsoft Explorer or Netscape Navigator) operating
on end-user computer 100 via the standard Internet hypertext transfer protocol (“HTTP”) and
universal resource locators (“URLs”). Although the use of HTTP is described herein, any
transport protocol may be used without deviating from the spirit or scope of the invention.
For the configuration of Figure 2, the end-user, through end-user computer 100, generates
hyper text transfer protocol (“HTTP”) requests to the content origin server 120 to obtain
hyper text mark-up language (“HTML”) files. In addition, to obtain large data objects
associated with those text files, the end-user, through end user computer 100, generates
HTTP requests to the storage service 130. For example, the end-user may download from the
content origins server 120 a few kilobytes of textual data describing a rich object, such as text
describing an upcoming film. When the user “clicks” on a URL to download a film snippet
from the upcoming film, an HTTP request is generated to the storage service 130, and a
storage service 130 downloads the film snippet to the end-user computer 100. The network
configuration of Figure 2 permits off loading the storage of rich objects from the content
origin server 120 to the storage service 130. This configuration greatly reduces the size and
complexity of content origin servers needed to store, manage and serve rich objects to end-

users.

Distributed Storage Cluster:

In one embodiment, the storage cluster utilizes distributed systems technology that
harnesses the throughput of hundreds of CPUs and the storage of thousands of disk drives.
Figure 3 is a block diagram illustrating one embodiment for the storage cluster. The storage
cluster 300 receives upload, download, and delete operations that include the storage resource
locator (“SRL”). The SRL is then used to uniquely identify a client file. As shown in
Figure 3, the storage cluster consists of distributed object storage managers (“DOSMs”) 320

and intelligent storage nodes 340. There are “n” distributed object storage managers 320,

-8-

10

15

25

30

WO 01/67707 PCT/US01/06707

wherein “n” is any integer value greater than one. Similarly, there are “n” intelligent storage
nodes for the intelligent storage nodes 340 component (i.e., wherein “n” is also any integer
value greater than one).

As shown in Figure 3, file upload and download operations are input to a load
balancing fabric 310. In one embodiment, the load balancing fabric 310 is a layer four (“L4”)
switch. In general, L4 switches are capable of effectively prioritizing TCP and UDP traffic.
In addition, L4 switches, which incorporate load balancing capabilities, distribute requests for
HTTP sessions among a number of resources, such as servers. For this embodiment, the load
balancing fabric 310 distributes upload and download requests to one of a plurality of
DOSMs based on DOSM availability. The load balancing capability in an L4 switch is
currently commercially available.

Each DOSM independently handles hundreds of simultaneous download transactions.
In one embodiment described below, each DOSM has a local high-speed disk cache to store
frequently accessed file objects. Each DOSM has a map, dynamically generated, of the
storage system. The map identifies a correspondence between an intelligent storage node
address and an object finger print. In one embodiment, the DOSMs record all usage and
performance data gathered by a separate accounting system and monitoring system.

The DOSMs 320 communicate with the intelligent storage nodes 340 via an
interconnect fabric 330. The interconnect fabric 330 consists of a high-speed, high
bandwidth fabric to ensure that all the DOSMs 320 communicate with every intelligent
storage node at all times. In one embodiment, the DOSMs 320 communicate with the
intelligent storage node over the interconnect fabric via a protocol, entitled the distributed
object storage protocol (“DOSP”). Effectively, the DOSP links hundreds of intelligent
storage nodes into one large storage cluster. As described more fully below, the DOSP
consist of a multi-cast protocol as well as a point-to-point protocol.

In general, the intelligent storage nodes 340 provide the persistent store for the objects
or files. The intelligent storage nodes contain thousands of high-density disk drives. The
intelligent storage nodes are described more fully below in conjunction with the discussion of
Figure 7.

In one embodiment, the network storage system uses the storage resource locators
(“SRLs”) to process requests. In one embodiment, the network storage system uses the
following format for the SRL:

http://<storage-cluster>/<encoded-request>/<digital-signature>/<arbitrary-customer-uri,

-9-

10

15

WO 01/67707

wherein:

PCT/US01/06707

the "storage-cluster" field includes the name or IP address of a storage center DSM

pool;

the "encoded-request” field comprises a base64 encoded op code and arguments;

the "digital-signature” field consists of a certificate derived from the following

expression: md5(shared-secret + md5(shared-secret + encoded-request)); and

the "arbitrary-customer-uri" field contains arbitrary information added to the SRL by

the network storage system clients.

For example, the arbitrary-customer-uri field may

include the filename and extension of the file being downloaded to enable browsers to send

the content to an appropriate plug-in.

In one embodiment, the "encoded request" field is encoded using base64 encoding.

As shown in Table 1, the encoded request consists of a URL type field, a version field, and

type/version specific payload field.

Table 1
Field Datatype | Comment
Type Numeric | Type of the URL, i.e. Standard, CDN, etc.
Version Numeric | Version of the URL '
Payload NA Payload specific to the Type/Version of the URL.

In one embodiment, the type/version specific payload field consists of a series of ¢/

delimited fields that contain accounting information, an op code, and an op code dependent

argument list. Table 2 shows one embodiment for the type/version specific payload field.

Table 2

Field Datatype Comment

Expires Numeric Number of seconds since the epoc that the link expires. If 0,
the link has an infinite duration and will not be checked for
expiration.

Access Numeric The access method associated with the SRL, i.e. Storage Port,

method end user SRL, CDN, etc.

Client Id Numeric The client id of the client performing the operation.

Op Code Numeric The opcode of the operation to be performed.

Arguments | NA An opcode specific argument list.

-10-

10

15

WO 01/67707 PCT/US01/06707

Table 3 includes two access method types for the access method field.

Table 3
Access method | Encoding Comment
8RL 0x0001 End user SRL request.
MediaPort 0x0002 Internal Storage Port request.

Table 4 includes operational codes for the op code field.

Table 4
Operation Encoding | Arguments
NO_OP 0x0000 None
STORE 0x0010 Pfid — numeric Parent folder id to upload the file to. Other
arguments are mime encoded.
FETCH 0x0020 Md5 — alphanumeric Hexadecimal representation of the

md5 hash of the file to be downloaded.

FETCH_AUTH | 0x0021 Md5 — alphanumeric Hexadecimal representation of the
md5 hash of the file to be downloaded.

Authentication Callback URI — alphanumeric URL encoded
callback URI

DELETE 0x0050 Md5 — alphanumeric Hexadecimal representation of the
md5 hash of the file to be deleted.

CONTROL 0x1000 ControlTicket — alphanumeric Hexadecimal representation
of the digital signature of the XML control document.

Figure 4 is a flow diagram illustrating one embodiment for the download operation in
the storage cluster. For purposes of nomenclature, the “recipient” in a download operation is
the destination of the file for the download operation. The storage cluster receives a
download request, including the unique file identifier (e.g., SRL) (block 400, Figure 4).
When the storage cluster receives a download request, the load balancing fabric 310
(Figure 3), such as an L4 switch, selects an available DOSM (block 410, Figure 4). The
DOSM parses the SRL to extract the certificate and the encoded request (block 415,
Figure 4). From the encoded request, a certificate is calculated, and the calculated certificate
is compared to the SRL certificate. If the SRL does not authenticate, then an error message is

sent to the redipient (blocks 420 and 425, Figure 4). Alternatively, if the SRL does

-11-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

authenticate, then the DOSM determines whether the object identified by the SRL resides in
the corresponding DOSM’s data cache (blocks 420 and 430, Figure 4). If the data object is
cached, then the object is transmitted from the storage cluster to the recipient (e.g., via the
Internet using HTTP protocol) (blocks 430 and 495, Figure 4). If the object is not cached at
the DOSM, then the DOSM attempts to identify the location of the object in one of the
intelligent storage nodes (blocks 430 and 440, Figure 4).

If the DOSM knows the location of the object (e.g., the object file is an entry in the
DOSM look-up table) and the storage node is readable, then the DOSM obtains a connection
with the storage node that stores the object, and transmits the object from the storage cluster
to the recipient (blocks 442, 435 and 495, Figure 4). Alternatively, if the DOSM does not
know the storage location of the object in the intelligent storage nodes, then the DOSM
broadcasts a request to the intelligent storage nodes to locate the object (blocks 440 and 450,
Figure 4). Each intelligent storage node determines whether the object is stored on one of its
disk drives (block 460, Figure 4). If the object file is located in one of the intelligent storage
nodes, then the intelligent storage node, which stores the requested object, broadcasts
identification information to all of the distributed object storage managers (blocks 462 and
470, Figure 4). For example, if intelligent storage node “1” of intelligent storage nodes 340
stores the requested object in disk “3”, then intelligent storage node “1” broadcasts to all “n”
DOSMs that the object file is located in disk “3” of intelligent storage node”1.” All DOSMs
snoop on the bus to obtain file identification information. In response to the intelligent
storage nodes broadcast, each DOSM updates its lookup table or file system directory with
the proper file identification information.

If the DOSM broadcasts a request to the intelligent storage nodes to locate the object
and the object is not located from the request, then the DOSM establishes a point-to-point
connection with an intelligent storage node to individually query the storage node for the
object (blocks 462 and 464, Figure 4). This process is repeated until all intelligent storage
nodes have been queried or the object has been located. If the object is located in one of the
intelligent storage nodes, then the intelligent storage node, which stores the requested object,
broadcasts identification information to all of the distributed object storage managers (blocks
466 and 470, Figure 4). Alternatively, if the object is not located in one of the intelligent
storage nodes, then a failover procedure is executed to locate the object in a different storage

center (blocks 466 and 468, Figure 4)..

-12-

10

15

20

30

WO 01/67707 PCT/US01/06707

When the intelligent storage node is located, the DOSM obtains a connection with th
intelligent storage node, and opens the file with the requested object. If the storage node i
readable (i.e., the DOSM successfully reads the file from the storage node), then the object i
transmitted from the intelligent storage node to the recipient via a network (e.g., using HTT.
protocol over thg Internet). If the object file is not readable, then a failover procedure i
executed to obtain the object in a different storage node and/or storage center, and the DOSN
obtains a connection with the new storage node (blocks 442, 468 and 435, Figure 4
Thereafter, the object is transmitted from the storage cluster to the recipient (block 49:
Figure 4).

In one embodiment, accesses to the network storage system require a vali
authentication certificate. In one embodiment utilizing CDNS, the certificate is based on th
object file’s unique user filename and a secure key assigned to each client account. In othe
embodiments, the network storage system supports full HTTPS and SSL protocols for secur
communications between clients/end-users and the network storage system.

Figure 5 is a flowchart illustrating one embodiment for authentication in the networ
storage system. To authenticate a request, the network storage system decodes the SRL t
extract the client identification, the SRL certificate and the client filename or objec
fingerprint (block 500, Figure 5). The network storage system (i.e., virtual file system o
storage cluster) extracts a “secret” or secure key corresponding to the client identified wit
the request. In general, the “secret” or secure key is a password supplied by the client t
authenticate operations in the network storage system. Using the secure key and objec
fingerprint, the network storage system generates a calculated certificate (block 52(
Figure 5). In one embodiment, the network storage system generates a calculated certificat
for the request in accordance with the following expression:

MD35 Hash (Secure Key + MD5 Hash (Secure Key + Encoded SRL))

As shown above, a first MD5 hash calculation is performed on the object fingerprin
and the secure key to obtain a first result, and a second MD5 hash calculation is performed o:
the first result and the secure key to obtain the calculated certificate. The network storag
system compares the calculated certificate with the SRL certificate (i.e., the certificat
transmitted with the SRL request) (block 530, Figure 5). If the certificates match, then th
SRL is authenticated, and the request is performed (blocks 540 and 560, Figure 5
Alternatively, if the calculated certificate does not match the SRL certificate, then th

-13-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

network storage system generates an error message to the requester (blocks 540 and 550,
Figure 5).

Figure 6 illustrates one embodiment of a distributed object storage manager
(“DOSM”). For this embodiment, the processes and functions of each DOSM are
implemented in software for execution on a computer, such as a server 600. In other
embodiments, the distributed object storage managers 320 may be implemented in a
combination of hardware and software on one or more computers. Each DOSM maintains a
file lookup table to identify the location of object files stored in the intelligent storage nodes
340. Table 610 of Figure 6 illustrates one embodiment for a DOSM file lookup table. For
this embodiment, each entry of the table identifies a corresponding object file stored in an
intelligent storage node. Specifically, each entry includes a file identification, an IP address,
and a disk identification. The file identification, also referred to herein as the object
fingerprint, is derived by performing an MDS3 hash calculation on the contents of the object
file. The result of this MD35 hash calculation is a 128 bit string. For this embodiment, the
DOSM file lookup table stores, in the file identification column, the 128 bit string, with the
file designation “MD5.” The second column of the DOSM file lookup table stores the IP
address of the intelligent storage node that stores the object file (e.g., “10.3.100.1”). The
third column, labeled disk ID, stores an integer value that identifies the specific disk drive on
the intelligent storage node that stores the object file. In one embodiment, when the look-up
table is at full capacity, the DOSM uses a least recently used (“LRU”) caching algorithm to
replace existing entries in the DOSM lookup table with new entries received.

As shown in Figure 6, the DOSM also includes a data cache 620. In general, the data
cache 620 stores objects (i.e., client data) to permit the DOSM to streamline data directly to
the recipient in response to a download request. During a download request, in the event of a
cache miss, when the object is transferred from the intelligent storage node to the recipient,
the object is also stored in the data cache 620. Similar to the DOSM file lookup table, the
data cache 620 uses a least recently used (“LRU”) caching algorithm to replace existing
entries with new data objects when the data cache is full.

The DOSM also maintains a state table 630. In general, the state table 630 provides
the state of the system by storing information on the overall capacity and health of the
intelligent storage nodes 340. In one embodiment, the state tables are built uéing the
multicast protocol to obtain, from the intelligent storage nodes, information about the

corresponding intelligent storage node. The state information indicates whether disks on the

-14-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

intelligent storage nodes are healthy, how much space is on the disks, etc. In one
embodiment, as shown in Figure 6, state table 630 stores: read- write state of the storage
nodes; health of the storage nodes (including an identification of failed nodes); and the
current load of the storage nodes, including available storage capacity and number of
input/output (“I/O”) operations per second. The DOSM uses state information to select, in an
upload operation, the appropriate intelligent storage node for storage of a new object file. For
example, the DOSM uses information on the number of input/output (“I/O”) operations per
second to load balance the storage nodes. The DOSM also uses information on available
storage capacity to select an intelligent storage node to store a new object file.

Figure 7 is a block diagram illustrating one embodiment for an intelligent storage
node. For this embodiment, the intelligent storage node is implemented on a computer,
including software to perform the functions described herein. An intelligent storage node 700
includes a processing core 710 that consists of one or more central processing units
(“CPUs”). In one embodiment, the processing core 710 comprises two CPUs. The
intelligent storage node 700 also includes volatile memory, labeled 730 in Figure 7. The
memory 730 is used to store instructions executed by the processing core 710, as well as data
used by the intelligent storage node. The intelligent storage node 700 further includes a
network interface 720 to interface the intelligent storage node to the plurality of distributed
object storage managers 320 via the interconnect fabric 330. The elements of the intelligent
storage node 700 communicate via a computer transport mechanism 750 (e.g., a peripheral
component interconnect (“PCI”) bus, processor bus, etc.). The computer transport
mechanism 750 is intended to represent a broad category of one or more computer busses,
such as peripheral component interconnect (“PCI”) bus or the industry standard association
(“ISA”) bus.

The intelligent storage node 700 further includes a plurality of disk drives 740 to store
the object files. As shown in Figure 7, the number of disks in an intelligent storage node is
represented as “n”, such that “n” is an integer value greater than one. In one embodiment, the
processing core 710 communicates with the disk drives 740 using the ISA protocol.
However, any protocol used to access the disk drive, including standard computer serial
interface (“SCSI”) protocol, may be used without deviating from the spirit or scope of the
invention.

The intelligent storage node contains information to identify object files that it stores.

In one embodiment, the information to identify object files is stored in the file system

-15-

10

15

20

25

WO 01/67707 PCT/US01/06707

directory of the intelligent storage node. In other embodiments, the information to identify
object files is cached. Table 5 illustrates example entries to cache the identification of object

files in an intelligent storage node.

Table S
FILE ID DISK ID
File1. MD5 1
File6.MD5 2
File4.MD5 2
File5.MD5 “n”

Table 5 includes a file identifier and a disk identifier. The file identifier, or file ID,
stores the unique file handler corresponding to the object file. In one embodiment, the unique
file handler is the object fingerprint obtained from performing an MD35 hash function on the
contents of the object file. For the first example entry in Table 5, the unique file handler is
represented as “file1.MD5.” The second column, labeled disk id, identifies the specific disk
drive on the intelligent storage node that stores the object file. For the second example entry
in Table 5, the object file, “file6.MD5”, is stored on the second disk drive on that intelligent
storage node. On initial start-up of the intelligent storage node, the intelligent storage node
builds the file identification table.

The storage cluster also processes upload requests. Figure 8 is a flow diagram
illustrating one embodiment for processing upload requests in the storage cluster. For
purposes of nomenclature, the “source”, as used herein, refers to the source of the object file
for the upload operation. If the storage cluster receives an upload request, then the load
balancing fabric 320 (Figure 3) selects an available DOSM to process the upload request
(blocks 805 and 810, Figure 8). The VFS creates a file identification (e.g., storage system
node) and the appropriate directory for the new object file (block 805, Figure 8). The
selected DOSM parses the upload request to extract the certificate, object file, as well as
client and directory information (block 820, Figure 8). If the upload request does not
authenticate, then the DOSM transmits an error message to the source (block 835, Figure 8).
Alternatively, if the upload request does authenticate, then the DOSM selects at least one
intelligent storage node to store the object file (block 840, Figure 8). In one embodiment, the

upload operation stores the object file in two storage nodes. The “mirroring” of the object

-16-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

files ensures accessibility to the object in the event a failure occurs in an intelligent storage
node. In one embodiment for “mirroring” the object files, the network storage system stores
the object file at different geographic locations (e.g., different storage centers). If access to
the geographically disparate storage center is unavailable at the time the object file is
uploaded, then an additional copy of the file is stored at the local storage center.

In one embodiment, the DOSM uses a state table (Figure 6) to select the intelligent
storage nodes most appropriate to store the new object. For purposes of discussion, the
selected intelligent storage nodes are referred to herein as the “destination intelligent storage

b

nodes.” The DOSM establishes a connection with the destination intelligent storage node
(block 850, Figure 8). In one embodiment, the DOSM establishes a DOSP point-to-point
connection with the destination source node. The object file is then transferred to the
destination intelligent storage node (block 860, Figure 8). In addition, after transferring the
file to the intelligent storage node, the DOSM receives a status message as part of the DOSP
point-to-point protocol. The status message indicates whether the transfer operation was
successful.

In one embodiment, the destination intelligent storage node generates a unique
fingerprint for the object file (block 870, Figure 8). Specifically, the destination intelligent
storage node computes an MD5 hash of the contents of the object file. The intelligent storage
node also verifies the object file. After receiving the successful status at the DOSM, the
DOSM establishes a connection to the virtual file system (“VFS”). The DOSM
communicates file information (e.g., the 128 bit. MD5 unique object fingerprint, file size,
etc.), directory information (e.g., folder ID, parent folder ID, etc.), as well as client
information and metadata (block 880, Figure 8). The VFS attempts to verify the upload. If
the VFS does not verify the upload, then an error message is sent to the source of the upload
request (blocks 890 and 835, Figure 8). If the VFS does verify the upload, then the
verification is transmitted to the DOSM. In turn, the DOSM verifies the upload to the source
(block 895, Figure 8). Also, the storage system returns, to the source, a file handler that
uniquely identifies the file to the network storage system.

If the source of the upload request is an end-user, then the DOSM re-directs the end-
user to the client. For example, the DOM may redirect the end-user to a predetermined URL
at the client’s web site. In other embodiments, if the source was a storage port, then the

DOSM transmits a storage system node (i.e., handler used only for the storage system) and

the unique object file fingerprint.

-17-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

As discussed above, as part of the upload operation, the network storage system
generates a unique fingerprint of the object file. Figure 9 is a flow diagram illustrating one
embodiment for generating unique fingerprints of object files. First, the destination
intelligent -storage node creates a temporary file with the contents of the object file (block
900, Figure 9). An MDS5 hash calculation is performed on the contents of the temporary file
(block 910, Figure 9). The DOSM determines whether the unique fingerprint, generated from
the MD5 hash operation, currently exists in the network storage system (block 920, Figure 9).
If the fingerprint currently exists, the temporary file, which holds the contents of the object, is
deleted (blocks 930 and 940, Figure 9). Also, a reference count associated with the existing
fingerprint file is incremented (block 950, Figure 9). The use of reference counts is described
more fully below in conjunction with a discussion of the delete operation. If the fingerprint
generated from the temporary file does not exist, then the temporary file is converted to a
permanent file, and the unique fingerprint is used to identify the file in the storage cluster
(block 960, Figure 9).

Virtual File System:

In one embodiment, directory operations are performed in the virtual file system
(“VFS”). Figure 11 is a block diagram illustrating one embodiment for implementing a VFS
for use with a network storage system. In general, the VFS is the control path for
maintaining the network storage system. The VFS maintains, for each object file, the
customer file directory including the customer assigned filenames and the unique network
storage system file identifiers. In one embodiment discussed above, the unique network
storage system file identifiers consist of a 128 bit digital fingerprint obtained from
performing an MDS5 hash calculation on the contents of the object file. As shown in
Figure 11, the VFS consists of distributed directory managers (“DDMs™) 1110 and
distributed directories 1120. There are “n” DDMSs and “n” distributed directories, wherein
“n” represents any integer one or greater. In one embodiment, each client is mapped to a
distributed directory.

The DDMs support common directory operations, such as “open file”, “move file”,
“delete file”, “open folder”, “move folder”, and “create folder.” The arrows of Figure 11
depict multi-directory requests and operations. The requests may originate from the end-user

or the client, via a storage port or a web store. In one implementation, the requests to the

VFS are transported using HTTP requests and encoded using the eXtended markup language

-18-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

(“XML”). Although the VFS is described.using the HTTP protocol with XML encoded
requests, any network protocol with any type of request format may be used without
deviating from the spirit or scope of the invention.

In one embodiment, the VFS employs a database to implement the file system. For
the database implementation, each directory operations request is converted into the database
operation. Alternatively, the VFS may implement the file system using a local file system
(i.e., a file system local to the VFS). For the file system embodiment, files are generated to
store information stored in the database implementation. Also, the DDMs include a lookup
table to locate the files in the distributed directories. The files or database tables are
replicated in a remote storage center.

The network storage file system consists of files arranged in directories or folders
(bereafter referred to as folders). Similar to most file systems, the network storage file
system is a hierarchical file sysfem. In a hierarchical file system, directories or folders are
arranged in levels, starting with a root or base folder. Additional folders or sub folders are
then arranged under the root folder. The file system may comprise any number of levels,
such that additional layers of sub folders fall beneath other sub folders. For purposes of
nomenclature used herein, a parent folder to a folder is the folder arranged above the folder in
the hierarchy of folders or directories.

Figure 12 illustrates example database tables for implementing the file system with a
database. For the database embodiment, the VFS maintains a customer table 1200, folder
table 1210 and file table 1220. The customer table 1200 includes fields for “customer ID”,
“customer name”, and “customer reserved fields.” The customer ID is a network storage
system identifier used to uniquely identify the client. The customer name is the real name
associated with a customer. For the first example entry in the customer table 1200,
“customer A” has a customer ID of “1.” The customer reserved fields provide storage
reserved for use by the client.

The folder table 1210 includes fields for “customer ID”, “folder ID”, “folder parent
ID”, and “metadata.” For this embodiment, each entry in the folder table corresponds to a
folder in the network storage file system. The customer ID, the same customer ID stored in
the customer table, uniquely identifies the client. For the example entries in folder table
1210, the customer ID of “3” identifies that the folders have been assigned to “customer C.”
The folder ID identifies the specific folder for that entry. For example, the first entry in
folder table 1210 is for a folder identified by the identification of “2.” The third column,

-19-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

labeled “folder parent ID”, identifies the parent folder for the folder corresponding to the
database entry or row. For example, the second entry in folder table 1210 is a sub folder to
the first entry of table 1210 (i.e., folder “100” is in the next hierarchical level beneath folder
“2”). Note that the first entry in folder table 1210 does not have a value for the folder parent
ID. This signifies that folder “2” is a root folder.

The file table contains an entry for each object file stored in a network storage file
system. The example file table 1220 includes columns or fields for “customer ID”, “file
handler”, “folder ID”, “folder parent ID”, and “metadata.” Again, the customer ID identifies
the customer that owns the file. The entries shown in file table 1220 are for files stored by
customer C. The file handler field stores the fingerprint that the network file system uses to
uniquely identify the file. Although the network file system stores 32 byte hexadecimal
character sequences to identify files, for purposes of illustration, file handler entries for file
table 1220 are shown as “52.MD5”, “55.MD5”, “99.MD5”, and “67.MD5.” The folder ID
field identifies the folder that contains the file. For example, the first entry in file table 1220,
corresponding to file “55.MD5”, is organized or stored in folder 100. The folder parent ID
identifies the parent folder to the folder that stores the file. The folder 100, which contains
“52.MD5”, has a parent folder of “2.”

Figures 13A and 13B are flow diagrams illustrating one embodiment for performing
directory operations in the VFS. When a DDM receives a directory operation request, the
DDM parses the request to extract the certificate, an operational code, as well as arguments
corresponding to the operational code (blocks 1300 and 1310, Figure 13A). The operational
code specifies the directory operation requested. The DDM, using the certificate and the
information contained in the request, validates the request. If the request does not validate,l
the DDM sends an error message to the requester (blocks 1320 and 1330, Figure 13A).
Alternatively, if the request does validate, the DDM parses the operational code and extracts
the arguments, including the folder to perform the open operation (blocks 1320 and 1330,
Figure 13A).

In general, if the operation is for an “open folder” operation, then the DDM returns all
sub folders and files contained in the folder identified by the argument. Specifically, the
DDM extracts, from the appropriate distributed directory, the file and folder tables that
correspond to the folder identified as an argument in the “open folder” request (blocks 1340
and 1345, Figure 13A). Specifically, the DDM extracts all the files and sub folders that

correspond to the folder identified as an argument with the request. Using the example of

-20-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

Figure 12, if the “open folder” request included the arguments “folder ID = 2” and “customer
ID = 3”, then the DDM extracts, from the folder table in the distributed directory, folder IDs
100 and 251 (i.e., folders 100 and 251 are sub folders of the root folder 2). If the “open
folder” request included the arguments “folder ID = 1007, then the DDM extracts from the
file table file handlers “52.MD5” and “55.MD5.”

If the operational code in a directory request is for an “open file” operation,
subsequent to an “open folder” request, then file information is obtained from the file table
(i.e., file handler) and the client table (i.e., client identification) to construct an authentication
certificate and an SRL for the file. For the above example, if the argument with the “open
file” operation specified the file “52.MD5”, then file and client information are obtained to
construct the SRL for the “52.MD5” file.

If the operational code in a directory request is for a “move folder” operation, then a
database operation is performed to revise the entries in the file and folder tables to reflect the
new location of the folder. The “move folder” operation includes, as an argument, the new
destination for the folder. Using the example of Figure 12, if the “move folder” operation
specified moving folder ID 166 from a sub folder of folder ID 251 to directly beneath the root
folder 2, then the parent folder ID on the fourth entry of folder table 1210 is modified from
“2517 10 “2.” Also, for file table 1220, the parent folder ID for the third and fourth entries are
modified from “251” to “2.”

If the directory operation is a “create folder” operation, then a new entry or row is
generated for the folder table (blocks 1360 and 1365, Figure 13A). The “create folder”
operation includes a parent folder as an argument. As described below, the client’s folder
name is converted to the network storage systems folder identification. Using the example of
Figure 12, if the requester desires to create a new folder under the sub folder 166, then the
DDM assigns a new folder identification for the folder, and enters a new row or entry for the
folder table 1210 with a folder parent ID of 166.

If the directory operation is a “move file” operation, then a database operation is
performed to revise an entry in the file table to reflect the new location of the file (blocks
1370 and 1375, Figure 13A). The “move file” operation includes a new destination for the
file as an argument in the directory request. For the example database tables in Figure 12, if
the “move file” operation specified moving file “52.MD5” from folder 100 to folder 166,
then the folder ID and folder parent ID fields for the first entry of file table 1220 are revised
to “166” and “251”, respectively.

21-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

As shown in block 1390 of Figure 13A, the arguments extracted from the database
tables are returned to the requester. In one embodiment, the response from a DDM includes
XML encoded documents with the list of files (i.e., in the form of a SRL) and/or directories.
For example, in response to the “open folder” request, the VFS returns file and folder Ids for
the files and subfolders arranged under the subject folder.

Figure 13B is a continuation of the flow diagram of Figure 13A illustrating additional
file system operations in the VES. If the operational code is a “delete folder” operation, then
the corresponding folder entry is deleted from the folder table (blocks 1372 and 1374,
Figure 13B). If the operational code designates a “delete file” operation, then the file entry,
identified in the operation, is deleted from its file table (blocks 1376 and 1378, Figure 13B).
For a “create file” operation, the VFS adds an entry for a new file in the file table (blocks
1386 and 1388, Figure 13B). If the operational code specifies an “update folder” operation,
then the client metadata in the corresponding folder table for the folder entry is updated
(blocks 1386 and 1388, Figure 13B). For an “update file” operation, the VFS updates client
metadata in the table for the corresponding file entry (blocks 1392 and 1394, Figure 13B).
After executing the appropriate database operation, the arguments for the operation are
returned to the requester (blocks 1396, Figure 13B).

In one embodiment, the network storage system uses a reference count to manage up

loading and deleting existing files. In general, when a new file is uploaded to the network

storage system or a file request is received to upload an existing file, the reference count is
incremented by one. Conversely, when a file request is received to delete a file, the reference
count is decremented by one. The network storage system uses the reference count to delete
an object file when the reference count is zero. For example, a client may transmit a first
request to upload an object file, entitled “my file.” After the upload operation is complete,
the reference count to “my file” is one. Thereafter, a client may transmit a second request to
upload “my file.” Instead of storing a second copy of “my file”, the network storage system
increments the reference count of “my file” to “2.” For this example, the client may then
transmit a first request to delete “my file.” In response to this request, the network storage
system does not delete “my file.” Instead, the network storage system decrements the
reference count to “1.” Thereafter, if the client transmits a second request to delete “my file”,
the reference count is decremented to “0”, and the network storage system deletes “my file.”
Figure 14 is a flow diagram illustrating one embodiment for the delete file operation

for the network storage system. If the VFS receives a delete request, then a DDM performs a

20

10

15

20

25

30

WO 01/67707 PCT/US01/06707

validation check (blocks 1400 and 1405, Figure 14). If the delete request is not valid, then ai
error message is transmitted to the requester (blocks 1410 and 1415, Figure 14). If the
request is validated, then the DDM extracts a file handler (i.e., MD5 file handler) from th
file table in the database (block 1420, Figure 14). The DDM deletes the file identificatior
from the file table in the database (block 1450, Figure 14). In addition, the DDM constructs :
delete SRL, and transmits the delete SRL to the storage cluster (block 1460, Figure 14). It
response to the delete operation, the storage cluster extracts the reference count for the
corresponding file. If the reference count is greater than 1, the storage cluster decrements the
reference count by one (blocks 1430 and 1440: Figure 14). Alternatively, if the reference
count is one, the storage cluster decrements the reference count to zero, and deletes the file

identified by the SRL, in the appropriate intelligent storage node (block 1470, Figure 14).

Dynamic Data Caching:

Figure 10 is a block diagram illustrating one embodiment for caching data in the
storage cluster. As shown in Figure 10, there are “n” DOSMs. Each DOSM (i.e., DOSM 1
DOSM 2, DOSM 3 ... DOSM “n”) contains a corresponding data cache (i.e., data cache 1
data cache 2, data cache 3 ... data cache “n”). The network storage system file upload anc
download operations are received by the load balancing fabric 310 (also see Figure 3). A
switch, such as an L4 switch, with load balancing capabilities, allocates resources among ¢
pool of resources. For the network storage system, the load balancing fabric 310 efficiently
allocates requests among the “n” DOSMs. In one embodiment, when a DOSM transfers ar
object from the intelligent storage node to a destination, the object is cached in the data cache
of the corresponding DOSM. Objects are deleted from the data cache in order to store
objects more recently requested via a least recently used (“LRU”) caching policy.

Load balancing the DOSMs in the network storage system permits an “automatic’
caching of objects in high demand. In prior art systems, elaborate mechanisms are employec
to identify data in high demand. Based on these decision mechanisms, data is cached in ar
attempt to meet the needs of the ‘high demand. For example, an object may be in high
demand when a movie studio offers, over its web site, a video preview of a newly released o1
upcoming film. For this example, the movie studio uses the network storage system tc
deliver the media rich object, “New Film Preview.” The “New Film Preview” may be
available to the end-user if the end-user “clicks” on a URL in the movie studio’s web site.

For this example, if the movie is very popular, when the movie studio client offers the “New

23-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

Film Preview” through its web site, many end-users may attempt to download the rich object,
“New Film Preview.”

For an initial request to download the object “New Film Preview”, the load balancing
fabric 310 selects a DOSM to manage the request. For this example, the load balancing
fabric 310 selects DOSM 1 to fulfill the request. Assuming the DOSM 1 does not currently
store the object in its data cache, the DOSM 1 acquires the object from the appropriate
intelligent storage node. As the object is delivered to satisfy the initial request, the object is
stored in the DOSM 1 data cache 1. For this example, the storage cluster receives a second
request for the “New Film Preview” object, and the load balancing fabric 310, based on
availability, selects DOSM 3 to process the request. Again, assuming DOSM 3 does not
currently store the object in its data cache, the DOSM 3 obtains the object from the
appropriate intelligent storage node, and transfers the object to the requestor as well as stores
the object in the data cache 3. Similarly, for this example, additional requests are made to the
storage cluster to download the “New Film Preview” object. Based on available resources,
the load balancing fabric 310 selects, for two separate requests, the DOSM 2 and the DOSM
“n” to handle the two requests. Again, assuming DOSM 2 and DOSM “n” do not currently
store the object in their data caches, both DOSMs acquire the “New Film Preview” object
from the appropriate intelligent storage node, transfer the New Film Preview to the requestor,
and store the object and their respective data caches (i.e., data cache 2 and data cache “n”).
As illustrated by the previous example, if an object is in high demand, the storage cluster,
using a load balancing fabric that selects the different DOSMs, fetches, for storage in each of
the DOSM data caches, a copy of the high demand object. Thus, the distribution of DOSM
resources results in fast access to an object highly requested.

As shown in the example of Figure 10, each data cache stores potentially different
objects depending upon requests processed in the respective DOSMs. For example, in
addition to the “New Film Preview” object, data cache 1 stores “Photos Y” and “BLOB X”;
data cache 2 stores “Ad 5” and “Video Snippet 8”; data cache three stores “Photos Z” and
“Advertisement 10”; and data cache “n” stores “BLOB A” and “Video Snippet 2.”

Geographic Replication of Storage Centers:

The network storage system is optimized to supporf a massive number of
simultaneous download transactions. The network storage system relies upon a single virtual

directory of all file objects. From any location on the Internet, clients see the exact same

-24-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

view of their private file system. Thus, the network storage system supports simultaneous
downloads of a single object that appears identical to users worldwide. In one
implementation, the network storage system spans multiple continents with storage
repositories or storage centers. The automatic geographic load balancing between storage
centers ensures that all requests are directed to the nearest storage center. However, to
provide fail over and enhanced performance, the storage center, including the storage cluster
and VFS, are replicated. The physical replication across multiple locations includes a traffic
management service. The traffic management service provides geographic load balancing of
user transactions among geographic locations.

Figure 15 illustrates geographical replications of storage centers. For this example,
there is a North American storage center 1510, an Asian storage center 1530, and a European
storage center 1520. As shown in the example of Figure 15, clients and end-users in North
America have optimal access to the storage center through the North American storage center
1510. Also, clients and end users in Europe have optimal access to European storage center
1520. Similarly, clients and end-users in Asia have optimal access to be Asian storage center
1530. In this configuration, the storage center is coupled to a wide area network to provide
the maximum bandwidth for the delivery of objects. If a particular storage center becomes
overloaded with requests, new requests are automatically diverted to the next closest storage
center. All objects are geographically mirrored to provide one hundred percent disaster
protection. Also, if access to the geographically disparate storage center is unavailable at the
time a file is stored, then an additional copy of the file is stored at the local storage center
(i.e., the object file is mirrored locally).

The components within the network storage system are fully redundant with
automatic recovery. Thus, the system supports extremely high level of service availability.

Download requests to each geographic storage center are continuously distributed
across the DOSMs to deliver the fastest possible response time. In addition, in one
embodiment, a global load balancing system ensures that the worldwide load across all
storage centers is evenly spread to eliminate any “hot spots” and alleviate transitory demand
spikes. The storage system operates far more quickly than the network itself, and thus
introduces negligible delay to the overall file transit time. Thus, the worse case elapsed time
for the individual object download is primarily determined by the speed of the wide area

network used to transfer the object.

25-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

All components within the network storage system are replicated and redundant to
provide complete recoverability in the event of a failure. In one embodiment, each storage
center attaches to multiple network back bone providers to ensure continuous network access.
All files and the control path directory structure are geographically replicated at the time of
upload to prevent any possible loss of data. As is described more fully below, the system
maintains coherency among disparate storage centers through use of the network storage
replication protocol.

Figure 16 is a block diagram illustrating one embodiment for replicating the storage
centers. For this example, two storage centers, labeled 1510 and 1520, are shown. However,
based on the distributed architecture of the network storage system, any number of storage
centers may be replicated. Storage centers 1510 and 1520 both include, for the storage
cluster, load balancing fabric 320, distributed objects storage managers (“DOSMs”) 320,
interconnect fabric 330, and intelligent storage nodes 340. Storage center 1510 stores the
same object files as storage center 1520. For example, if “object file 1” is stored in storage
node 10 storage center 1510, then “object file 1” is stored in storage node “1” in storage
center 1520. For the control path, the storage centers and 1510 and 1520 include the virtual
file system (“VFS™) 50. Similarly, the VFS in storage center 1510 stores the same directory
information as the VFS in storage center 1520. Accordingly, the storage centers are
replicated. Although the VFS and the storage clusters are shown in the same geographic
“storage center”, the VFS and storage cluster may be located at geographically disparate
locations.

For this example, intelligent storage nodes in storage cluster 1510 (i.e., storage node
1, storage node 2, ... storage node “n”) are accessed via Internet protocol (“IP”) addresses IP
addry, IP addr,, and IP addr,, respectively. Thus, when a DOSM communicates with an
intelligent storage; node in storage center 1510, the DOSM uses these IP addresses to access
the specific intelligent storage node. Storage center 1520 includes storage nodes (i.e., storage
node 1, storage node 2, ... storage node “n”) addressed by IP address IP addr/, IP addr,/, and
IP addrn/ , respectively. Thus, in storage center 1520, when a DOSM communicates with the
storage node, the DOSM uses an IP addr across the interconnect fabric 330. Although the
replication of storage centers is described using an IP/TCP network protocol, any network
protocol and corresponding addressing scheme may be used to replicate the storage centers.

As shown in Figure 16, the distributed objects storage managers of storage center

1510 or coupled to the interconnect fabric of storage center 1520. Similarly, the distributed

-26-

10

15

20

25

WO 01/67707 PCT/US01/06707

object storage managers of storage center 1520 are coupled to the interconnect fabric of
storage center 1510. Based on this configuration, the distributed objects storage managers of
storage center 1510 have access to the intelligent storage nodes of storage center 1520.
Likewise, the distributed object storage managers of storage center 1520 have access to the
intelligent storage nodes of storage center 1510. As discussed above, each DOSM maintains
a lookup table that correlates a file to an IP address (See Figure 6). For example, if a file
specified in a download request resides on storage node 1 in storage center 1510, then an
entry of the DOSM lookup table specifies IP addr;. Similarly, in storage center 1520, if a file
resides in storage node 1, an entry for the DOSM lookup table specifies IP addr,’.

The storage center architecture supports a “dynamic” fail over. If a storage node, or a
disk drive on a storage node, renders the access to a file inaccessible, then the DOSM may
obtain the file from the replicated storage center. In one embodiment, to perform “dynamic”
fail over, a mapping is stored between intelligent storage nodes in storage center 1510 and
intelligent storage nodes in storage center 1520. Table 6 below shows a mapping for the

example in configuration of Figure 16.

Table 6
IP Address IP Address’
IP Addr IP Addr,/
IP Addr, IP Addr,’
IP Addr, IP Addr,’

For this example, IP addr; maps to IP addrll. If there is a failure in storage node 1 in
storage center 1510, then DOSMs of storage center 1510 access storage node 1 of storage
center 1520 using IP addr’. In one embodiment, the IP mapping between storage centers is
implemented by modifying only the subnet address portion between the two IP addresses
mapped. For example, if IP addr; is 10.3.100.1, then IP addr is derived by changing, as
appropriate, the subnet portion of the address (e.g., 10.10.100.1).

The directory information stored in the VFS is replicated between storage center 1510
and 1520 in a similar manner. Thus, if a failure occurs in a distributed directory of storage
center 1510, then the distributed directory manager in storage center 1510, using an IP

address mapping, accesses the replicated distributed directory in storage center 1520,

27-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

In one embodiment, to further implement geographic application for a fail over mode,
if one disk fails, then a DOSM attempts to identify the file in the same node at a different
storage center. If a storage node is rendered inoperable, then the DOSM clears the entry in
the DOSM file lookup table, and attempts to locate the file at a remote storage center. For
example, if disk “2” of storage node “1” in storage center 1510 fails, a DOSM 320 attempts
to locate the file in storage node “1”, disk “2”, in storage center 1520. If the file is not
located in storage node “1”, disk 2, of storage center 1520, the DOSM, using the multicast
protocol, attempts to locate the file locally (i.e., in the storage center 1510). If the file is not
located locally, the DOSM, using the multicast protocol, attempts to locate the file at a

remote storage center (e.g., storage center 1520).

Accessing The Network Storage System:

The network storage system has application for use in content delivery networks. In
generalll, content owners and providers often employ the services of a content delivery
network. Content delivery networks attempt to optimize the delivery of commonly accessed
rich media objects. In order to maximize the delivery of the rich media objects, content
delivery networks employ local caches at the edges of the wide area network.

The network storage system has applications to complement content delivery
networks by providing the underlying content for the content origin web site. In one
embodiment, each cache at the content delivery network directly accesses the geographically
closest storage center to locate the desired object to eliminate the need for content delivery
network to access the content owner’s/provider’s web site.

Figure 17 illustrates one embodiment for use of the storage center in a content
delivery network. For the example of Figure 17, the content delivery network 1700 includes
an end-user computer 1740 coupled over a network (e.g., Internet) to a content origin web
server 1720. The content origin web server 1720 implements or hosts a web site. The web
site permits the end-user to select content, such as rich media objects. A content delivery
network includes a (“CDN”) server 1730. The CDN server 1730 delivers content published
on the web site by the content origin web server 1720. Specifically, the end-user computer
1740 is coupled to the CDN server 1730 to maximize the delivery of content, including rich
media objects associated with the web site, to the end-user. The CDN server 1730 caches, at

the CDN, a portion of the content associated with the web site 1730.

98-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

For purposes of illustration, a wide area network 1750 is shown as including satellite
communication networks 1760, wireless communication networks 1770, and fiber-optic
networks 1780. As illustrated in Figure 17, the CDN server 1730 is located close to the edges
of the wide area network 1750. The location of CDN server 1730 close to the wide area
network 1750 optimizes the delivery of objects cached at the CDN server 1730. For this
embodiment, one or more storage center(s) 1710 are coupled to the CDN server 1730. In the
event of a cache miss at the CDN server 1730, the CDN server 1730 obtains the content (e.g.,
object file) from storage center(s) 1710. This configuration allows the CDN server 1730 to
bypass the slower content origin web server 1720 in the event that content, requested by end-
user computer 1740, is not located at the CDN server 1730. According, the storage center(s)
1710 optimize routing of content through the Internet back to the CDN when the desired
content is not located in the local cache.

Figuré 18 is a flow diagram illustrating one embodiment for use of the storage center
with a content delivery network. The end-user, through the end-user computer, generates an
HTTP request to the content origin web server (block 1800, Figure 18). In response to the
user request, the content origin server returns to the end-user computer HTML with
embedded file URLs (block 1810, Figure 18). The embedded file URLSs identify the rich
media objects stored at the CDN server. To obtain the rich media objects, the end-user
computer generates HTTP file requests to the content delivery network (e.g., CDN server
1730) (block 1820, Figure 18). If the file identified by the URL is located in a cache at the
CDN server site, then the CDN server delivers the file to the end-user computer (blocks 1825
and 1850, Figure 18). Alternatively, if the file is not cached at the CDN server site, the CDN
server generates an HTTP file request to the storage center (blocks 1825 and 1830,
Figure 18). In one embodiment, the HTTP file request includes the network storage system’s
SRL, to uniquely identify the file. In response to the CDN server’s request, the storage center
downloads the file to the CDN cache (block 1840, Figure 18). The CDN server delivers the
file to the end-user computer (block 1850, Figure 18).

Accessing The Network Storage System:

There are multiple ways to access the network storage system. In one embodiment,
the client uses a “storage port.” The storage port provides access to the network storage
system through a standard file system interface (e.g., network file system (“NFS”) or

Microsoft NT CIFS). The storage port may be configured by the client in various ways for

29.

10

15

20

25

30

WO 01/67707 PCT/US01/06707

different applications to optimize the delivery of rich media objects. In one embodiment, the
storage port is configured at the client site to provide seamless integration from the client site
to the network storage system. In another embodiment, to further off load rich media object
traffic from a web site, the storage port may be used as a file system manager that downloads
files to the end-user directly from the network storage system. In other embodiments, the
network storage system may be directly interfaced with a private file structure.

1. Storage Port Access:

The storage port device provides a transparent gateway connection into the network
storage system. In one application, the storage port device is installed at the client site, and
interfaces to local web servers via standard NFS or CIFS protocols over a local area network
(“LAN”) connection. Specifically, in one embodiment, the user mounts the storage port as a
storage device on the client network. In this configuration, the storage port effectively
provides the user with a virtual NFS or CIFS file system with storage capacity at the storage
center (ie., provides the user with hundreds of terabytes in storage capacity). In one
embodiment, the storage port device occupies only approximately 1.75 inches of rack height.
As described more fully below, multiple storage ports may be installed at a single client site
to increase aggregate throughput.

Figure 19 illustrates one embodiment for use of the storage port in the network
storage system. An end-user 1900 communicates with a client site 1910 over a wide area
network 1920. The end-user computer 1900 generates requests (e.g., HTTP requests) for
files accessed through the client’s web site. A content web server 1925, located at the client
site 1910, processes requests to the client web site, including requests to download rich media
objects. Content web server 1925 is intended to represent a broad category of computers and
software used to implement a web site, such as multiple web servers and/or application
servers, and any hardware/software configuration may be used without deviating from the
spirit or scope the invention.

The content web server 1925 is coupled to the storage port 1930 over a network, such
as a local area network at the client site 1910. Specifically, the content web server 1925
generates file and directory operation requests in accordance with the format of the “local”
file system. As used herein, a “local” file system connotes one or more file systems or file
structures used at the client site. For example, the content web server 1925 may generate

NFS or Microsoft NT CIFS requests for files and directory operations. To interface the

-30-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

storage port 1930 with the content web server 1925, the storage port 1930 is mounted as a
storage device. In one embodiment, one directory is mounted for object files and a second
directory is mounted for SRLs. As shown in Figure 19, the storage port 1930 communicates
with the storage center 1950 to conduct file and directory operations.

Figure 20 is a flow diagram illustrating one embodiment for use of a storage port to
deliver content. The client site receives a URL file request from an end-user computer (block
2010, Figure 20). The URL identifies an object file associated with the client’s web site. In
response to the end user’s URL file request, the client site (e.g., content web server) generates
a local file system request for the object file (block 2020, Figure 20). The local file system
request is received by the storage port. The storage port includes a cache to store both object
files and directory information. If the object file is stored locally in the storage port, then the
storage port retrieves the object file from the data cache, and returns the object file to the
content web server in response to the local file system request (bloéks 2030, 2040, and 2070,
Figure 20). Alternatively, if the storage port does not store a copy of the object file in its data
cache, then the storage port requests the object file from the storage center (blocks 2030 and
2050, Figure 20). In response to the local file system request, the storage center downloads
the object file to the storage port, and the object file is returned to the content web server
(blocks 2060 and 2070, Figure 20). Thereafter, the content web server delivers the object file
to the end-user in response to the URL file request (block 2080, Figure 20).

The storage port may be implemented in either hardware or software. Figure 21a
illustrates one hardware configuration for a storage port device. As shown in Figure 21a, the
content web server 2100 communicates with the storage port 2110 over a. communications
link 2120, such as a local area network. The storage port 2110 conducts file and directory
operations with storage center 2130.

Figure 21b illustrates embodiments for implementing the storage port in software. In
one embodiment, the network storage system is accessed through library calls or through
application program interface (“API”) calls. For these embodiments, the software provides
translation between the client’s local file system and the network storage file system. As-
discussed above, the storage center 2160 includes software running on computers for
performing the functions of the VFS and intelligent storage clusters. This software includes
entry points (i.e., APIs) to permit interfacing of external software. In part, the APIs on the
storage center software permit the client to conduct file and directory operations as described

herein. As shown in Figure 21b, content web server 2140 runs, in addition to software to

-31-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

operate the client site, software to call APIs in the network storage center. Thus, for this
embodiment, the content web server 2140 executes network storage system file and directory
operations over the wide area network 2180 through remote program calls.

In another embodiment, shown as storage system library calls 2155, a customized
network storage system library includes a collection of file system operations. For example,
one library function may permit software operating at the client (e.g., on content web server
2140) to request an object file download to the storage center through use of the library
function. For this example, to perform the file download operation, the client software calls
the file download function and passes the SRL as an argument to the function call. A library
of functions provides an additional means to interface client software to directly access the
network storage system.

Figure 22 is a block diagram illustrating one embodiment for a storage port. As
shown in Figure 22, a storage port 2200 includes a processing core 2210, memory 2230,
storage port data store 2240, and network interface(s) 2220. These components are coupled
via a bus transport 2250 that may include one or more busses (e.g., ISA, PCI, or
microprocessor buses). Processing core 2210 includes one or more central processing units
(“CPUs”). In one embodimeht, the storage port includes two CPUs. Memory 2330 is used to
store, during operation of the device, software to perform the functions of the storage port
described herein. The storage port data store 2240 contains one or more hard disk drives (i.e.,
“n” hard disk drives, wherein “n” is any number one or greater), used, in part, to cache file
system information (i.e., directory cache) and object files (i.e., data cache). The network
interface(s) 2220, which includes “n” network interface cards, couples the storage port 2200
to client devices (e.g., content web server). In addition, to support a fail over architecture, the
network interface cards are used to connect one or more storage ports together. In one
embodiment, the storage port includes three network interface cards.

~ Figure 23 is a block diagram illustrating one embodiment for file system translation in
the storage port. The network storage system issues “file handlers” unique to the network
storage system. In one embodiment, a network storage system file handler identifies, for a
corresponding file: a) client identification; b) parent directory; c¢) metadata and d) the unique
digital fingerprint (i.e., 128 bit MDS5 identification). In general, the file system translation
software 2300 converts local file system operations to network storage system file system

operations. In one embodiment, to perform this function, the software includes file system

-32-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

translator 2320 and storage system access processes 2330. The file system translator 2320
includes local file system interception 2340 and storage system kernel processes 2350.

In operation, local client file system 2310, which may include operating system
software running at the client’s site, issues local file system operations. For example, the
client software may issue requests, in accordance with UNIX or Microsoft NT to open a file.
The file open operation includes a file descriptor that identifies the file in the local file
system. Typically, file system calls are processed by the operating system kernel (labeled
2360 in Figure 23). The operating system kernel software maintains a mapping between file
descriptors and directories to “inodes.” The inodes provide the system a physical pointer to
the file data in the system (e.g., a pointer to the file stored on a hard disk drive).

For the embodiment of Figure 23, when the local client file system 2310 issues a file
system operation, local file system interception 2340 “traps” or intercepts the call, and passes
the thread of execution to the storage system kernel processes 2350. In one embodiment, the
local file system interception 2340 comprises CODA software, developed at Carnegie Mellon
University. In general, CODA is a type of distributed file system. A portion of the
functionality provided by the CODA software exports an underlying file system. Specifically,
CODA exports file system operations, typically executed in the kernel level, to applications
programs accessible in the user portion of memory. Although file system translation is
described using CODA to intercept local file system operations, any software that intercepts
file system calls may be used without deviating to the spirit or scope of the invention.

In general, the storage system kernel processes 2350 obtains network storage system
file handlers (referred to herein as “storage handlers™) for storage in operating system kernel
2360 to provide a mapping between local file system descriptors and storage handlers. Thus,
the file descriptors provide a handle to identify files and directories in the local file system,
and the storage handlers provide a handie to identify files and directories in the network
storage system.

To maintain the mapping between local file system descriptors and storage handlers,
the storage system kernel processes 2350 obtains network storage file system information
from storage system access processes 2330. Specifically, storage system kernel processes
2350 obtains from storage system access processes 2330 storage handlers and directory
information. As shown in Figure 23, storage system access processes 2330 obtain directory
and storage handler information from directory cache 2370. Alternatively, if directory and

storage handler information is not cached at the storage port, storage system access processes

233.

10

15

20

25

30

WO 01/67707 PCT/US01/06707

2330 query the network storage system (i.e., VEFS) to obtain directory information and storage
handlers. Accordingly, the translation system 2300 provides a mapping between the client’s
local file system and the network storage file system.

Figure 24 is a flow diagram illustrating one embodiment for translating a file system
operation from a local file system to the network storage file system. The process is initiated
by the client issuing a local file system request (block 2400, Figure 24). The local file system
request is received by the operating system kernel, and dispatched to the file system translator
(Figure 23). For example, if the file system operation is an open file operation for the file
“foo.txt”, then the operating system kernel dispatches the open file operation with the file
name “foo.txt” as an argument to the file system translator. If the file system operation is an
“Open Folder” operation for the folder “dirl”, then the operating system kernel dispatches the
open folder operation with the folder name “dirl" as an argument.

The process determines whether there is sufficient directory information in the storage
port directory cache (block 2430, Figure 24). For the “Open Folder” example above, if the
storage handlers for all subfolders and files are not stored in the directory cache, then
additional directory information is required to fulfill the request. For the “Open File”
example, if the storage port has been recently initialized and thus does not contain
information on the file, then additional directory information on the file (e.g., “foo.text™) is
required to open the file.

If there is sufficient directory information in the directory cache, and the file system
operation does not require retrieving data (i.e., the file system operation is not an “open file”
operation) or updating directory information, then the appropriate directory information from
the directory cache is retrieved and returned in response to the local file system operation
(blocks 2430 and 2435, Figure 12) (blocks 2435 and 2437, Figure 24). For the “Open
Folder” example above, storage handlers for all subfolders and files in the subject folder are
retrieved from the directory cache, the storage handlers and corresponding file identifiers are
stored in the operating system kernel, and the file identifiers are returned to local file system.

If additional directory information is required (i.e., the information is not in the
storage port directory cache), then a request is generated to the VFS for the additional
directory information (block 2070, Figure 24). In one embodiment, the storage port generates
an XML encoded request. For the “Open Folder” example, if the storage nodes and
corresponding file identifiers are not stored in the directory cache, then the storage port

generates an XML encoded “Open Folder” request to extract file and folder information for

-34-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

files and subfolders within the subject folders (i.e., the folder that is the subject of the “Open
Folder” request). In one embodiment, in response to a request for folder information, the
VES returns name, folder identification, client metadata, upload SRL, and parent folder
identification. In response to a request for file information, the VFS returns name, file
identification, client metadata, download SRL, and parent folder identification. In one
embodiment, the client metadata fields are used to track and maintain state information used
in the local file system (e.g., information for UNIX, Microsoft Windows or NT, etc.). In
addition to obtaining additional directory information, if the client local file system command
is a directory operation (i.e., “move folder”, “delete folder”, etc.), then an XML request to the
VES is generated to perform the directory operation in the VFS. The directory information is
received and stored in the directory cache (block 2480, Figure 24).

If the file system operation requires file data (e.g., open file, read file etc.), then the
storage port determines whether the file is located in the data cache (block 2440, Figure 12).
If the file is stored in the data cache, then the file, or appropriate portion, is transferred from
the storage port to the client requestor (block 2090, Figure 12). Alternatively, if the file is not
in the data cache, then the storage port generates a file download request to the storage cluster
(block 2050, Figure 24). In response to the storage cluster request, the storage port receives
and subsequently caches the object file in the data cache {(block 2060, Figure 12). The object

is then transferred from the storage port to the client requestor (block 2090, Figure 12).

2. End User Network Storage System Access Method:

In another embodiment, the storage port supports file downloads directly to the end-
user or through a CDN partner. In one embodiment, the SRLs are directly embedded into the
Web page HTML, and are sent to the end-user. This results in transferring objects directly
from the storage center to the end-user browser. Figure 25 is a block diagram illustrating one
embodiment for using the storage port to directly download object files to the end-user. For
this configuration, an end-user computer 2610 communicates with a client site 2620 and the
storage center 2650. The client site 2620 maintains a web site. For this embodiment, the
client site 2620 maintains a web site through a content web server 2630. However, any
configuration of servers, including remote web site hosting, may be used without deviating
the spirit or scope of the invention.

The content web server 2630 communicates with the storage port 2640, and in turn,

the storage port 2640 communicates with the storage center 2650. As illustrated in Figure 25,

-35-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

the end-user, through end-user computer 2610, generates URL requests to the client site
2620, and receives, in return, HTML with one or more embedded SRILs. Using the
embedded SRLs, the end-user computer 2610 generates SRL requests directly to the storage
center 2650 over a wide area network 2660. In response, the storage center 2650 serves
object files directly to the end-user computer 2610.

Figure 26 is a flow diagram illustrating one embodiment for directly downloading
object files to an end-user. The client site (e.g., content web server) generates local file
system requests for SRL(s) corresponding to file(s) (block 2700, Figure 26). The file(s)
contain content that the client desires to embed in the web page. In one embodiment, the
storage port dynamically generates the SRL(s) in response to the request from the content
web server (block 2710, Figure 26). In one embodiment, a time-out parameter is added to the
SRL(s) (block 2720, Figure 26). The time-out parameter permits a client to specify a period
of time that the SRL is valid (i.e., a period of time that the end-user may access the file). In
one implementation, the time-out parameter specifies a period of time with a granularity in
seconds.

The SRL(s) are embedded in the HTML of the client’s web page (block 2730,
Figure 26). The end-user issues web page requests to the client site (block 2740, Figure 26).
The content web server then downloads the requested HTML with the embedded SRIL(s)
(block 2745, Figure 26). With the embedded SRL, the end-user generates HTTP requests to
the storage center (block 2750, Figure 26). If the SRL(s) do not authenticates\ at the storage
center, then the storage center transmits an error message to the end-user (block 2755,
Figure 26). If the SRI(s) do authenticate, then the time-out parameter is checked to
determine whether the file access is valid (block 2760, Figure 26). If the SRL is not valid
(i.e., the time-out parameter is out of range), then the operation is ceased (block 2760,
Figure 26). If the SRL is within the specified time range, then the storage center downloads
the object file to the end-user (block 2770, Figure 26).

The storage port 2640 acts as a file system cache. For this embodiment, the storage
port contains the client’s SRL files stored in a standard NFS or CIFS directory format. Each
NFS or CIFS file contains the corresponding SRLs, and the SRLs contain the unique file
identifier and the SRL authentication certificate.

In one embodiment, to deliver the SRLs to the end-user, the network file system
utilizes a second directory, in addition to the directory for the object files, that shadows the

object file directory. The client uses the second directory to obtain shadow files. A shadow

-36-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

file contains an SRL to identify an object file of the network storage system. In one
embodiment, to embed the SRL into the web page HTML, the client reads the contents of the
shadow file for the corresponding object file. In one embodiment, the shadow file is
generated during an upload operation. The client may access a shadow file by mounting the
second directory. For example, a client may specify, for the file “foo.text”, the following
directory-filename:

storagefilesystem:/export/dir/foo.text.

The client uses this directory and filename to access the contents of the object file, “foo.text.”
To obtain the SRL for the example file “foo.text”, a client mounts a different directory, such
as the following example directory:

storagefilesystem:/SRL/dir/foo.text,

wherein, the SRL file contains a unique file identifier and the SRL authentication certificate
for the file, “foo.text.” To deliver the SRL to the end-user, the client reads the contents of a

shadow file for the corresponding object file, and publishes the SRL to the user.

3. Client Private File System Directory: -

The network storage system of the present invention also supports using an existing
private file directory to access the storage system. For this embodiment, the network storage
system customer (e.g., client) may desire to use their own file structure in conjunction with
the network storage system’s file system. In other embodiments, a client of the network
storage system may wish to develop a file system to track additional information beyond that
information tracked using NES or CIFS.

Figure 27 is a block diagram illustrating one embodiment to interface a storage center
to a client’s private file directory system. In one embodiment, the storage port at the client
site 2820 is replaced with a private file manager 2840. For this embodiment, the private file
manager 2840 generates SRLs for object files .using a unique file identification assigned to
the user file at the time of upload, as well as using a shared secret to authenticate file system
operations. As shown in Figure 27, the content web server 2830, operating at the client site
2820, generates file system requests to the private file manager 2840. In turn, the private file
manager 2840 issues SRLs corresponding to the object files that are the subject of the

request. In one embodiment, the client supplies their own unique ID at the time the client

-37-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

uploads files to the storage center. In another embodiment, the client utilizes, in requests to
download files, the object finger print returned by the storage center.

As shown in Figure 27, the end-user, through end-user computer 2810, generates
URL requests to the client’s web site. In turn, the client site 2820 returns HTML with
embedded SRLs. With the embedded SRLs, the end-user computer 2810 generates SRL
requests, over a wide area network 2860, to the storage center 2850. In turn, the storage
center 2850 serves object files identified by the SRL.

Figure 28 is a flow diagram illustrating one embodiment for accessing object files in a
storage center using a client’s private file system. The end-user issues the URL requests to
the client web site (block 2900, Figure 28). In response, the client (e.g., content web server)
generates file location requests to a file manager (block 2910, Figure 28). In general, the file
manager services requests to issue SRLs corresponding to files in the client’s private file
system. A client may use any type of file system in conjunction with the network storage
system. All that is required is that the client’s private file system issues SRLs for files
managed by the client’s private file system. The file manager retrieves the SRL for the file
associated with the HTML, and delivers the file to the content web server (block 2920,
Figure 28). The content web server then transmits to the end-user HTML with the embedded
SRL (block 2930, Figure 28). Thereafter, the end-user generates HTTP requests to the
storage center with the SRL (block 2940, Figure 28). If the SRL does not authenticate, then
the storage center issues an error message to the user. Alternatively, if the SRL authenticates,
then the storage center generates an MDS5 hash on the client supplied unique file ID to
identify the file (block 2947, Figure 28). The storage center thereafter downloads the object
file to the end-user (block 2950, Figure 28)

For the client’s private file system access method, the client maintains a mapping
between unique filenames and SRLs. In one embodiment, the unique filename is not
obtained from an MDS5 hash operation, but is a unique filename. Thus, the network storage
system utilizes a technique to differentiate between MDS5 file names, derived from the
contents of the object file, and client unique file names. In one embodiment, to differentiate
between these two types of file names, the network storage system assigns different storage
fingerprint identifiers. For a filename generated by an MDS5 hash operation on the contents of
the object file, the file is designated “128bits. MD5.” To identify a customer unique filename,
the file is designated as “MDS5.UFID” (i.e., where “MD5” is the client’s unique file name).

This convention permits the network storage system to differentiate between the twp types of

-38-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

file identifiers, and allows the customer to interface with the network storage system by only

designating unique file names.

Failover Architecture:

In one embodiment, the storage port supports failover or failsafe architectures.
Figure 29 is a block diagram illustrating one embodiment for a storage port fail over
configuration. For purposes of explanation, Figure 29 illustrates a fail over configuration
with two storage ports. However, the storage port fail over configuration may be extended to
any “2N” fail over configuration. For this embodiment, the fail over configuration includes
an active storage port 3010 and a passive storage port 3020. Each storage port includes a
plurality of network interface cards. Both the active storage port 3010 and passive storage
port 3020 communicate to storage center(s) over wide area network 3065, through network
interface cards 3045 and 3025, respectively. The active storage port 3010 and passive storage
port 3020 also communicate to the client site network via network interface cards 3050 and
3035, respectively. As shown in Figure 29, the client accesses the active storage port 3010
over client site network 3060 using IP Addr.

For the embodiment of Figure 29, a third network interface card is contained on both
the active storage port 3010 (3055) and passive storage port 3020 (3030) to communicate
between the devices for fail over monitoring. The active storage port 3010 operates as
current storage port at the client site. The passive storage port 3020 monitors the health of
the active storage port 3010. Specifically, active storage port 3010 includes health
monitoring 3070 that continually executes a process to ascertain the health of the active
storage port 3020 (e.g., health of the CPUs, hard disk drives, etc.). For this embodiment, the
passive storage port 3020 queries the active storage port 3010 for health status. If a condition
occurs in the active storage port 3010 that warrants a fail over condition, then the passive
storage port 3020 becomes the active storage port (i.e., the passive storage port is used to
interface the client site to storage center(s)).

In one embodiment, to support fail over, one IP address is used for the NFS/CIFS
export. For this embodiment, a standard IP switch over scheme may be utilized.
Specifically, when a fail over condition occurs, the passive storage port 3020 assumes the IP
address of the active storage port 3010. The health monitoring 3070 and 3080 include both
active and passive processes, so that if a fail over condition occurs, the passive storage port

may execute the active storage port process.

-39-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

Figure 30 is a flow diagram illustrating one embodiment for a storage port fail over
process. When a storage port fail over occurs, the new storage port does not contain any
directory information in its directory cache or any objects in its data cache. Thus, after a fail
over operation, if a file is open and the storage port receives a read file request, the new
storage port must execute a file open operation (blocks 3130 and 3140, Figure 30). After the
storage port receives the file identification information (e.g., SRL), the storage port generates
a request to the storage center to obtain the object file, in order to transmit a block of object
data in response to the read file request.

After fail over condition, when a file is requested (block 3120, Figure 30) or an open
file operation is necessary, the storage port generates an XML to the VFS to obtain file
identification information (block 3150, Figure 30). In response, the VFS returns file
identification information (block 3160, Figure 30). With the file identification information,
the storage port updates its directory cache (block 3170, Figure 30). With the file
identification information (e.g., SRL), the storage port generates a request to the storage
center for the object file (block 3180, Figure 30). In response, the storage center delivers the
object file, and the storage port updates its data cache (block 3190, Figure 30). If the storage
center download operation was in response to a read request to the storage port, the read

request delivers data as specified in the read request.

Network Storage System Dynamic Failover;

In one embodiment, storage nodes monitor the health of their respective nodes (e.g.,
monitor hard disk drives, processor, network access, etc.). If the health of a storage node
requires that the storage node should cease operation, then the storage cluster executes a fail
over operation. In one embodiment, in a fail over operation, the storage node reports the
failed status to the DOSMs, and the DOSMs update their state table. If this occurs, the
DOSMs attempt to locate the replicated file at a different storage node (i.e., either locally for
remotely).

Figure 31 is a flow diagram illustrating one embodiment for using the multicast
protocol after a storage node fail over condition. If a storage node fails, then the DOSMs
update and their state tables to indicate that the storage node is no longer in use (blocks 3210
and 3220, Figure 31). If the DOSM receives a file request for a file previously stored on the
failed storage node, then the DOSM, which received the download request, issues a multicast

protocol request to storage nodes (blocks 3225 and 3230, Figure 31). In one embodiment, the

-40-

10

15

20

25

WO 01/67707 PCT/US01/06707

DOSM may issue the multicast protocol request to local storage nodes (i.e., storage nodes
located at its storage center).

Each storage node that receives the multicast request determines whether it contains
the requested object file (block 3240, Figure 31). If none of the storage nodes contain the
object file, then the DOSM may issue another multicast protocol request at a remote storage
location (blocks 3245 and 3247, Figure 31). Again, at the remote storage center, each storage
node determines whether it contains the requested object file (block 3240, Figure 31). In
another embodiment, if the DOSM does not locate the file using the multicast protocol, the
DOSM may query each individual storage node using the DOSP point-to-point protocol.

When a storage node locates the requested object file, the storage node broadcasts the
file identification information using the multicast protocol (block 3250, Figure 31). Each
DOSM snoops, using the multicast protocol, to receive the file identification information
(block 3260, Figure 31). As illustrated in the process embodiment of Figure 31, the multicast
protocol may be used to synchronize file location information in the DOSMs in the event of a

fail over condition.

Multi-Cast Protocol:

The multi-cast protocol of the present invention supports the maintenance of file
information in a distributed storage system. Since the network storage system consists of a
plurality of storage nodes, the multicast protocol is used to track file information and
synchronize file information throughout the network storage system. The tracking and
maintaining of file and directory information includes maintaining information throughout
geographically disparate storage centers. In one embodiment, the multi-cast protocol
synchronizes cache information in the DOSMs. For example, if a new object file is loaded,
the multi-cast protocol provides a means for all DOSMs in the network storage system to
obtain information necessary to access the new object file. In addition, some file operations,
including delete file or update file operations, require updating the DOSM lookup tables.
Also, if a storage node fails, and a fail over condition is executed, the multi-cast protocol
provides a means for the DOSMs to locate the file at the storage node the file has been

replicated.

-41-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

The Distributed Object Storage Protocol (DOSP):

In one embodiment, the DOSP includes daemon/master services and multicast-based

monitoring communications. Communication between the daemon and master components is
accomplished through a set of “request packets” and “response packets.” The request packets
consist of three major subcomponents: an opcode that specifies the type of request; a header
implemented via a C++ specific structure that provides information about the data that
follows; and data transmitted, if any.

Each operation has an associated operation code and a pair of structures: one for
issuance of the request, and a second separate structure for return values. Once the receiver
has received and processed the request (sent data, deleted file, etc) it then sends a response
consisting of the appropriate “Out Structure” indicating the status of the request (SUCCESS,
FAILURE, etc) and any required return values. Currently, there are six service operations
supported by the DOSP: null, store file, retrieve file, retrieve file range, delete file, and get
contents.

The null operation provides a framework to develop future modifications of the
protocol and to test basic functionality of the master/daemon request/response interaction.

When a file is ready for storing, the DOSM client sends a request id, followed by a
request header. It then sends the data to the dosd in a series of chunks, each of which is
preceded by a DosdStoreHeader which gives the size of the next chunk to be read, and a field
indicating whether this is the last packet to be sent.

When a file is being retrieved from the Storage Cluster, the DOSM client sends a
request Id, followed by a request structure. The DOSD responds by first sending the size of
the data, the data requested, and finally an Out structure with the return value of the
operation.

The get contents operation is used to acquire the contents of the storage node as a
character based stream. The after the “In Structure” is passed to the dosd, the dosd first
returns the length of the stream of md5 hash/node&disk associations, followed by the stream
of data, with the “Out structure” coming last.

The DOSP provides an extensible framework for any new services or additional
functionality. There are essentially three steps to adding new functionality: defining a new
pair of In/Out structures; assigning a new opcode, implementing a handler in the DOSM

client; and adding a service handler for the dosd.

-42-

10

15

20

25

WO 01/67707 PCT/US01/06707

To facilitate gathering of information about the system, the DOSP provides several
multicast-based services. In one embodiment, these services work in a manner very similar
to the non-multicast aspect of the protocol. Specifically, requests consist of three parts: an
opcode; a request In structure; and any additional data.

Responses consist of a response structure containing a RETURN value and any other
return values required to satisfy the request. If data is streamed, a size field precedes the data,
followed by the data, and then followed by the Out structure.

Since multicast traffic occurs on a completely separate port from point-to-point
dosm/dosd traffic, the multicast In/Out structures are not multicast-specific. This makes it
possible for the DOSM to query the entire dosd storage cluster or to query an individual
machine with the same request/response structures and their associated operational
sequencing.

One of the jobs of the DOSM is to monitor the current state of nodes in the cluster.
There are several tools to facilitate this task. Primarily, the various dos daemons multicast
heartbeats on a specific multicast port and group. The DOSM contains an option to query a
specific disk, or all of the disks on a given a storage node. A “get disk state” function returns
a value, and an array of disk state values (online, offline, down) with one entry per disk. A
“get disk status” function contains an option to query a specific disk, or all of the disks on a
given a node. The “get disk status” contains a RETURN value, and an array of disk
statistics; one array per statistic (bytes free, bytes available, inodes used, inodes available,
number of outstanding ops), with one entry per disk. The DOSP includes a load balancing
function.

The DOSP includes a heartbeat function. This allows querying specific machines for
a heartbeat in addition to providing system-wide tracking functionality via multicast methods.

Although the present invention has been described in terms of specific exemplary
embodiments, it will be appreciated that various modifications and alterations might be made

by those skilled in the art without departing from the spirit and scope of the invention.

10

15

20

25

30

WO 01/67707 PCT/US01/06707

CLAIMS

What is claimed is:

1. A method for downloading a file from a remote storage center to an end-user
computer for content provided from a content server, said method comprising the steps of:

receiving a request from an end-user computer for content at a content server;

transmitting from said content server to said end-user computer, in response to said
end-user request, said content comprising at least one storage resource locator (“SRL”),
wherein said SRL comprises a unique file identifier to identify a file associated with said
content;

transmitting a request for said file from said end-user computer to a remote storage
center, including transmitting said SRL for said file; and

transmitting, from said storage center to said end-user computer, said file identified by
said SRL.

2. The method as set forth in claim 1, further comprising the steps of:

transmitting from said content server to said end-user computer an SRL further
comprising an authentication certificate;

determining, at said storage center, using said authentication certificate, whether said
request is valid; and

transmitting, from said storage center to said end-user computer, said file only if said

request is valid.

3. The method as set forth in claim 1, further comprising the steps of:
transmitting to said end-user computer an SRL further comprising a time-out
parameter; and

determining whether said request is valid through said time-out parameter.
4, The method as set forth in claim 1, further comprising the step of embedding

said SRL into said content after receiving said request from an end-user computer for said

content.

44

10

15

20

25

30

WO 01/67707 PCT/US01/06707

5. The method as set forth in claim 1, wherein:

the step of transmitting content comprises the step of transmitting hyper-text mark-up
language (“HTML”) content; and

the step of embedding said SRL into said content comprises the step of embedding
said SRL into said HTML.

6. The method as set forth in claim 4, wherein the step of embedding said SRL
into said content comprises the steps of:

storing at least one SRL for a file in an SRL file; and

extracting said SRL from said SRL file.

7. The method as set forth in claim 4, wherein the step of embedding said SRL
into said content comprises the steps of:

coupling a local device comprising a cache to said content server;

storing at least one SRL for at least one file in said cache of said local device; and

extracting said SRL from said cache of said local device.

8. The method as set forth in claim 7, further comprising the step of: mounting

said local device as a storage device for said content server for access to said SRLs.

9. The method as set forth in claim 1, further comprising the steps of:

storing at least one SRL for at least one file in an SRL file;

storing said file for access by a file system; and

organizing said SRL files in a file system, accessible to said content server, with a file

structure substantially similar to said file structure for said files.

10. The method as set forth in claim 1, wherein:

the step of transmitting a request for said file from said end-user computer to a remote
storage center comprises the step of transmitting a hyper-text transfer protocol (“HTTP”)
request; and

the step of transmitting said file from said storage center to said end-user computer

comprises the step of transmitting said files using HTTP.

-45-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

11. The method as set forth in claim 10, wherein the step of transmitting, from
said storage center to said end-user computer, said file comprises the step of transferring a

large media object.

12. A system comprising:

content server for receiving a request from an end-user computer for content, and for
transmitting to said end-user computer, in response to said end-user request, said content
comprising at least one storage resource locator (“SRL”), wherein said SRL comprises a
unique file identifier to identify a file associated with said content;

storage center for receiving a request for said file from said end-user computer,
including transmitting said SRL for said file, and for transmitting, from to said end-user

computer, said file identified by said SRL.

13. The system as set forth in claim 12, wherein:

said SRL further comprises an authentication certificate; and

said storage center for determining whether said request is valid using said
authentication certificate, and for and transmitting to said end-user computer said file only if

said request is valid.

14. The system as set forth in claim 12, wherein:
said SRL further comprises a time-out parameter; and
said storage center for determining whether said request is valid through said time-out

parameter.

15. The system as set forth in claim 12, wherein said content server further
comprising processes for embedding said SRL into said content after receiving said request

from an end-user computer for said content.

16. The system as set forth in claim 15, wherein:
said content comprises mark-up language (“HTML”) content; and
said content server further comprising processes for embedding said SRL into said

HTML.

46-

10

15

20

25

30

WO 01/67707 PCT/US01/06707

17. The system as set forth in claim 15, wherein:

said SRL further comprising an SRL file; and

said content server further comprising processes for extracting said SRL from said
SRL file.

18. The system as set forth in claim 12, further comprising a local device, coupled
to said content server, that includes a cache for storing at least one SRL for at least one file in
said cache of said local device, wherein said content server further comprising processes for

extracting said SRL from said cache of said local device.

19. The system as set forth in claim 18, wherein said content server comprises

processes for mounting said local device as a storage device to said SRLs.

20. The system as set forth in claim 19, further comprising a file system,
accessible to said content server, including at least one SRL file for storing at least one SRL,
wherein said file system comprising a file structure substantially similar to a file structure for

said files.

21. A storage center comprising:

storage for storing a plurality of files;

storage control for receiving a request from an end-user computer, remote from said
storage center, for at least one file, and for transmitting said.ﬁle to said end-user computer,
said request comprising at least one storage resource locator (“SRL”) corresponding to said
file, and wherein said SRL comprises a unique file identifier to identify said file associated

with content that said end-user computer downloaded from a content server.

22. The storage center as set forth in claim 21, wherein:

said SRL further comprises an authentication certificate; and

said storage center for determining whether said request is valid using said
authentication certificate, and for transmitting to said end-user computer said file only if said

request is valid.

-47-

WO 01/67707 PCT/US01/06707

23. The storage center as set forth in claim 21, wherein:
said SRL further comprises a time-out parameter; and
said storage center for determining whether said request is valid through said time-out

parameter.

48-

WO 01/67707 PCT/US01/06707

1/32
Network Storage System
90
Virtual File System Storage Cluster
(VFS) P 70
50 '
Control - Directory . . :
; Object File Object
Operations Requests Files
Y Y
File System Object
Control Recipient
60 80

Figure 1

PCT/US01/06707

WO 01/67707

2/32

Z aunbiy4

[0]0] 4
leindwo? Jasn-pug

sai4 102(qQ 04 s\l NLH Jo}

sjsenbay d11H s1s0nboy dLLH
oyl
. o5l J 0000000 ~ noooooo b
Prim w eosEea o000 100
— 1 |]
P =
= =
== =
w—] —

ocl
Jenies uibuo wsuo)

oel
aoi1M8g abeloig

[AY 4

WO 01/67707 PCT/US01/06707

3/32

File Upload/Download
Operations 300

L.oad Balancing Fabric
310

Distributed Object Storage Managers

Y y Y
320
DOSM DOSM DOSM
1 2 ["t

Interconnect Fabric

330
v Y L
340
Storage Node Storage Node Storage Node
1 2 "nll
nRBm

Inteiligent Storage Nodes

Figure 3

WO 01/67707 PCT/US01/06707

4/32

Receive Download
Request (SRL)
?

No

Figure 4

Switching Fabric Selects DOSM
410

Y

Parse SRL to Extract Certificate and
Object Fingerprint
415

420

Error Message Is

-5, Does SRL j
— Sent to Recipient Authenticate?
425 Broadcast Request To
Storage Nodes to Locate
Object
450
440
Does DOS l
Contain Location
of Object Each Storage Node
? Determines Whether It
Stores The Object
Yes 480
) Storage Node
No Readable

DOSM Establishes Point to
Point Communications With
DOSM Obtains Connection Each Storage Node
With Storage Node With 464
Object
435

—

(— 466
Storage Node With Object
Broadcasts Object .
Object Is Transmitted From ldentification Information Object Located
Storage Cluster to Recipient for all DOSMs ?
495 470

I
1 } !
Perform Failover Operation

to Obtain Object
468

(A

End

WO 01/67707

5/32

Decode SRL To Extract Client
Identification, Object Fingerprint And
SRL Certificate
500

'

Extract Secret For The Corresponding
Client
510

Generate Calculated Certificate
520

Compare Calculated Certificate With
SRL Certificate
530

PCT/US01/06707

550

Generate Error Message To Requester

SRL Authenticates
560

End

Figure 5

WO 01/67707 PCT/US01/06707

6/32

DOSM File Look-up Table

610
File Id IP Addr Disk Id
file1.MD5 10.3.100.1 3
file2.MD5 10.3.098.1 1
file3.MD5 10.3.050.1 6
file4.MD5 10.3.100.1 2
file5.MD5 10.3.098.1 1
file6.MD5 10.3.050.1 8
Data Cache
620
Film Snippet
=3
\
~ 0000000 k
DOSM Server
600
Filr;\' Preview
State Table
630
Figure 6 -

Read - Write State of Storage Nodes

Health of Storage Nodes

Load of Storage Nodes
- Storage Capacity
- Number of I/O Operations
Per Second

PCT/US01/06707

WO 01/67707

7132

/J 94nbi4

WU, pLYISIa Z plYsig L pIYSIQ
v
seAuq sia
Y A4 \ 4
0z2
sorpBI|
oLL HOMISN

2109 Buissatoid

|

o
N~

(6574
Klowsy

[0s.

WO 01/67707

8/32

VFS Performs Directory Operations for New
Object File And Transmits Upload Request
To Storage Cluster
805

'

Switching Fabric Selects DOSM
810

v

Parse Request to Extract Certificate, Client,
Directory And Object Information
820

PCT/US01/06707

Authenticate?

'

DOSM Communicates Fingerprint, Folder
1d, Client Information and Meta Data to VFS
880

890

VFS Verifies
Upload?

1

DOSM Selects Destination Storage
Node(s) To Store Object File
840

v

DOSM Obtains Connection With
Destination Storage Node(s)
850

!

Object File Is Transmitted to Destination
Storage Node(s)
860

'

Generate and Verify A Fingerprint for the

End

DOSM Verifies Upload To The Source Object File
895 870
Send Error
) Message to
Source M
835 Figure 8

WO 01/67707

PCT/US01/06707

0/32

Create A Temporary File With The Contents Of
The Object At The Destination Node.,
900

Compute an MD5 Hash On The Contents Of The
Temporary File
910

'

DOSM Determines Whether The MD5 Hash
Fingerprint Currently Exists In The Storage
System
920

/‘ 930

Fingerprint
Currently Exist
?

No Yes

Convert Temporary File To
Permanent File With MD§
Fingerprint ldentification

Delete Temporary File
940

960

Increment The Reference
Count For The Existing
Fingerprint
950

End

Figure 9

PCT/US01/06707

WO 01/67707

10/32

:C- —\/_wOD

+U, S4B Eled

€ INSOd

¢ ayoed ejeq

¢ NSOd

L INSOd

Z ayoen ejeqd

L 8ydeQ eleq

2 1oddiug ospip 0l usWasiLeApY Malnald W4 MaN A S0j0yd
MaINBIH Wi MON ZS0104d 8 19ddiug 0apIA X 90714
v 9014 M3IABId Wi MEN S py M3IASId Wil MBN
ole
olqge Buisueeg peo
0L @4nbi4

suopetadO
peojumod/peojdn ojid

PCT/US01/06707

WO 01/67707

11/32

LL @4nbBi4

WU, Aiojoana painguisia

0Z1 | seuopallq panguisiq

Z Moypsiig pepnguisia

1 Aopoang pamquisia

WU, Jobeuepy Aioyoelqg pangisig

2z Jebeueyy Aiojoaiia peinquisia

0141 s1abeuepy Aro)08ai1g payngsiq

| JeBeuey Aoyt peinguisia

sisenbeay uopeladQ
fioyeuq dLIH

s)senbay uopeiadQ
Kioyang diLH

celil

sisenbay uoneladQ
Aoyeng di1H

Figure 12

WO 01/67707 PCT/US01/06707
12132
Customer Table
Customer Name | Customer Reserved Fields
Customer A [Customer stores data ...] 1200
Customer B [Customer stores data ...] /‘
Customer C [Customer stores data ...]
Customer D [Customer stores data ...]
Folder Table
CustomerId | Folderld | Folder Parent Id Metadata
3 2 - [Reserved] 1210
3 100 2 [Reserved]
3 251 [Reserved]
3 166 251 [Reserved]
File Table
Customer Id | File Handle |Folderld| Folder Parentld | Metadata 1220
3 52.MD5 100 2 [Reserved]
3 55.MD5 100 2 [Reserved]
3 99.MD5 166 251 [Reserved]
3 67.MD5 166 251 [Reserved]

WO 01/67707

Receive
Directory Op
Request
?

Parse Request to Extract Certificate, Client
information, Operation Code and

Arguments
1310

Does Reques

1320

PCT/US01/06707

Send Error
Message To

Validate?

Open Folder?

Move Folder?

Create Folder?

Requester
1325

1370
No

Access File And Folder
Tables To Extract File

Revise Folder Table
Entries To Reflect New

Add Entry For New
Folder In Folder Table

Revise File Table
Entries To Reflect New

Ids And Sub-Folder Ids Location 1365 Location
1345 1355 1375
Y
Return Arguments To Requester

1380

Figure 13A
l
End (To Figure 13B)

WO 01/67707 PCT/US01/06707

14/32

(From Figure 13A)

Delete Folder? Delete File? Create File? Update Folder? Update File?

Delete Folder i Update Client Update Client
Entry From Folder Delete Eile Entry Add Er}try For File Metadata In Folder Metadata In I_:ile
Table From File Table In File Table Table For Folder Table For File
1374 1378 1384 Entry Entry
1388 1394

Y

Return Arguments To Requester
1396

End

Figure 13B

WO 01/67707

15/32

PCT/US01/06707

Perform Validation Using Client Information
and Certificate From The Request
1405

Send Error
Message
1415

1410
r

Request
Validated?

Extract MD5 Handler From Database Entry
1420

R

Delete File Identification in File Table
1450

DDM Constructs A Delete SRL And Transmits
The Delete SRL To The Storage Cluster
1460

1430

Decrement Reference Count By One
1440

Is Reference
Count Greater
Than One?

Yes

Storage Cluster Deletes File From Appropriate
Storage Node
1470

End

Figure 14

WO 01/67707
(1
§3E3
258%
(%2}

c
© O
O OO o
Q8 EN
e

Socaow
SthOT
M)

North American
Storage
Center
1510

16/32

PCT/US01/06707

Figure 15

PCT/US01/06707

WO 01/67707

17132

0¥€ SePON abel0)s Jusblljsiuf

91 aunbi4

0v¢ sapoN 9belolg Juabijeiu

ally Z 1 ol . 4 3
BpPON v 9pON OPON 3PON SPON SPON
abeloig abeloyg sbeioyg obelolg abelo)g obelo)g
A A A A A
u u
4PPY di 1pPY dI
Zippv di “ippy di
_ PPV di _ Hppy di
aee 0ce
qlge- 108uUuo0dI8jU| ouqe4 108uuo31aiu|
f f
-
|t
oze oze
siefeuepy abeloys 10algo panquisia siebeuely abelo)s 10alqO peinguisiq
0s 0S
walshg o)1 [enyIA walshg aji |enuIA
ole oLe
ouqe4 Buiouejeg peoq 2lge Buouejeg peo
A
0cst 0lGL
sisanbay isjue) ebelols s)sonboy sjsanbay sews) ebeiois sjsanbay

peojumog/peoldn uogelado Auojoaig peojumog/peoldn uogeradg Liopeng

PCT/US01/06707

WO 01/67707

18/32

041
18MO] "WIWO0D

Ll 8anbi4

oell

ovlL
Jaindwo)

J8sn-pug

==
==

OLLL
(s)J1s1uan) abeio)g

ocLL
an1eg gapn ubuO Jusiuo)

WO 01/67707

19/32

End-User Computer Generates HTTP Request
To Content Origin Web Server
1800

!

Content Origin Server Returns to End-User
Computer HTML With Embedded File URL
1810

|

End-User Computer Generates HTTP File
Request To Content Delivery Network
1820

e 1826

Yes File In CDN

Cache?

CDN Generates An HTTP File Request to
Storage Center
1830

l

Storage Center Downloads File To CDN Cache
1840

CDN Delivers File To End-User Computer
1850

Figure 18

PCT/US01/06707

WO 01/67707

20/32

d-User
Computer
1900

PCT/US01/06707

Client Site
1910

Content Web Server
1925

Storage Port
1930

A

Storage Center
1950

Figure 19

WO 01/67707

Retrieve Object File
From Data Cache
2040

&

21/32

PCT/US01/06707

Client Receives URL File Request From End-User
2010

'

Client Generates Local File System Request
2020

2030
r

Yes Object File

Local?

Request Object File From Storage Center(s)
2050

Receive Object File From Storage Center(s)
2060

Return Object File In Response To Local File System
Request
2070

Deliver Object File To End-User In Response To URL
File Request
2080

End

Figure 20

PCT/US01/06707

WO 01/67707

22/32

091¢
Jaan sbeioyg

ocle

J9uan) abeiolg

VA] YANN

§GIC —

qiLz ainbiq

08ic

J

suopesadQ 9ji4

ovie
BETNEISNVET VIS [V elg)
‘u [~

suonelado Alopaid

. SjdVy WweisAg abelolg (i8] -

| (sheo
Aieigi] weyshg abeiolg ~

2UEMYOS

_/

0gl¢e

eLz aunbiy

suoneadQ a4

oLic
10d abelolg

-

suonessdg Ai0yaiqg

>

1

00i¢
19MI9S g8 JUSIUOD

ocie

PCT/US01/06707

WO 01/67707

23/32

ze @4nbiq

«Ua BAUE YSIa

L aAug ysid

ovee
aiojsele
Uod abeloyg

N piED
S0BUSIU| HIOMIBN

'

. [A:28]
-| -@deu8lU] IoMIaN

| pied
aoBuBU| YloMiaN

022z

(s)soBpa)U} YIOMISN

;

oiec
a109 Buisseooid

[omNN

0eze
Aowsin

.ooee
Hod abeiolg

WO 01/67707 PCT/US01/06707

24/32
2300

Client Local .

File System Dlrecg% g)ache
2310

Local File System
Operation
: XML Requests
Operating System Kernel Storag; 2)(’:5;86572 s:°«3<=e$$ >
2350 2330 ¢ VFS
Directory
Information
A
File System
s Translator
\ S 2320
Local File System

Interception

2340
: Storage System
Storage System Kemel . Requests

Processes -t ‘

2350

Figure 23

WO 01/67707

. No

Data
> Required
2435

Return Directory
Information

2437

Yes

Is File in Data
Cache?
2440

25/32

Client Issues Local File Open Request
2400

l

Import Local File Request
2410

'

Dispatch File System Request
to File System Translator
2420

PCT/US01/06707

Additional Directory Yes

Information
Required?
2430

L

Generate SRL Request To Download
File From Storage Cluster
' 2450

|

'

Generate Request to VFS for
File and Directory
Information
2470

Receive and Cache Object File
2460

Y

Receive Directory
Information
And Store In Directory Cache
2480

Transfer Object From Storage Port
to Client Requester
2480

Figure 24

WO 01/67707

2600

26/32

URL
Request

HTML With
Embedded S

Client Site 2620

2630

Content Web Server

2640

Storage Port

nd-
Computer
2610

PCT/US01/06707

eI

A

2660

'SRL Obiject File
Request Served
vy
Storage Center
2650

Figure 25

WO 01/67707 PCT/US01/06707

27/32

Content Web Server Generates Local File
System Request for SRL(s) for File(s)
2700

'

Storage Port Generates SRL(s) for File(s)
2710

'

Time Out Parameter Is Added to SRL
2720

:

SRL Is Embedded In HTML Web Page
2730

Y

. - End-User Issues Web Page Request
: 2740

:

. Content Web Server Downloads HTML With
Embedded SRL
2745

v

End-User Generates HTTP Request to' Storage
Center With SRL
2750

SRL
Authenticate
?
2755

Yes

l

Storage Center Downloads Object File To End-
User
2770

Figure 26 n

WO 01/67707 PCT/US01/06707

28/32

N
(o]
o

End-User
Computer

2810

f

URL
Request

HTML With
Embedded S

Client Site 2820

/- 2860
Content Web Server
2830
File -
Location 2’;5
Request

Private File Manager
2840°

A

SRL Object File
Request Served

v

Storage Center
2850

Figure 27

WO 01/67707

29/32

End-User Issues URL Request
2900

Content Web Server Generates A File Location
Request to File Manager
2910

File Manager Retrieves File SRL for Content
Web Server
2920

Content Web Server Transmits To End-User
HTML With Embedded SRL
2930

End-User Generates HTTP Request to Storage
Center With SRL
2940

" 2045

SRL
Authenticate

?

Storage Center Generates MD5 Hash on "SRL"
and Identifies File
2047

'

Storage Center Downloads Object File To End-
User
2950

End

PCT/US01/06707

Figure 28

PCT/US01/06707

WO 01/67707

30/32

090¢€ k

YIOMION
SIS JUalD

62 @4nB14

ippY di

Geoe -) Geoe
0coe aoepau|
soepou .
e Hod ebeioig swoman | €
S . OAIssed
- 080€ T,
Bunojuop
Yjieay
SoEpS)|
yomyap | OE0E
Bupojiuo
Jonojed
- aoepoU|
SHOMIBN | 6508
040g
050¢ Bunoyuopy AL) GH0E
WiesH :
aoepslu] oLoe aoepay|
08
SOMISN Hod sbesoyg siomioN [
SNy
FAN[0}%

WO 01/67707 PCT/US01/06707

31/32

3110
Va

Storage Port
Failover?

3120

- 3130
ua

Read File

852253‘3 Operation
Requested? Requested

Execute Open Filé Operation
3140°

Generate XML Request To VFS for File

ldentification
3150

v

VFS Returns File Identification
3160

!

Storage Port Updates Directory Cache
3170

'

Generate SRL Request To Storage Cluster
3180

!

Receive File and Update Cache
3190

Figure 30

WO 01/67707

PCT/US01/06707

32/32

Fails?

DOSMs Updates State Table For Storage
Node Failover
3220

File
Requested
?

DOSM Issues Multi-cast Protocol Request

To Storage Nodes
3230

.

Each Storage Node Determines Whether It
Contains The Requested File
3240 '

DOSM Selects Different
Storage Center
3247

Storage Node With File Broadcasts File
Identification Information
3250

v

DOSM Snoops, Through Multi-Cast
Protocol, To Update File Information
3260

End

Figure 31

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

