
THTHINK THAT A UNEI IN UT NU OOK AT THE
US 20180082077A1

(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0082077 A1

Schentrup et al . (43) Pub . Date : Mar . 22 , 2018

(54) CREATING DISTINCT USER SPACES
THROUGH USER IDENTIFIERS

(71) Applicant : OpenPeak LLC , Plano , TX (US)
(72) Inventors : Philip Schentrup , Parkland , FL (US) ;

Michael Kelly , Deerfield Beach , FL
(US) ; Eoin Hyden , Atherton (AU)

Publication Classification
(51) Int . CI .

GO6F 21 / 62 (2013 . 01)
G06F 21 / 60 (2013 . 01)
H04L 29 / 06 (2006 . 01)
H04W 12 / 08 (2009 . 01)
G06F 21 / 31 (2013 . 01)
H04W 12 / 06 (2009 . 01)

(52) U . S . CI .
CPC GO6F 21 / 6218 (2013 . 01) ; G06F 21 / 602

(2013 . 01) ; G06F 21 / 62 (2013 . 01) ; H04L
63 / 104 (2013 . 01) ; G06F 2221 / 2141 (2013 . 01) ;

G06F 21 / 31 (2013 . 01) ; G06F 2221 / 2117
(2013 . 01) ; GOOF 2221 / 2149 (2013 . 01) ; H04W

12 / 06 (2013 . 01) ; H04W 12 / 08 (2013 . 01)

(21) Appl . No . : 15 / 820 , 381
(22) Filed : Nov . 21 , 2017

Related U . S . Application Data
(63) Continuation of application No . 14 / 841 , 353 , filed on

Aug . 31 , 2015 , now Pat . No . 9 , 836 , 616 , which is a
continuation of application No . 14 / 476 , 233 , filed on
Sep . 3 , 2014 , now Pat . No . 9 , 122 , 885 , which is a
continuation of application No . 14 / 172 , 634 , filed on
Feb . 4 , 2014 , now Pat . No . 8 , 856 , 959 , which is a
continuation of application No . 13 / 252 , 947 , filed on
Oct . 4 , 2011 , now Pat . No . 8 , 650 , 658 .

(60) Provisional application No . 61 / 406 , 328 , filed on Oct .
25 , 2010 .

(57) ABSTRACT
A method of , and a processing system for , creating distinct
user spaces . In a platform originally intended to be a single
user platform , for each of a plurality of users , a first
application used by the user can be assigned a user identifier
(UID) unique to the user and the first application . The first
UID can be associated with user data exclusively associated
with the user and the first application to create a multi - user
platform .

400
Provide a single user platform

402

- - - - - - - - - -

Allocate for each of a plurality of users a range of UIDS
4041

- - - - - - - - - - - - - - - w p - - - - - - - - - - - - - -

-
1 Allocate for shared usage among a plurality of users a range of UIDs

4061
-

Allocate for system or administrative use a range of UIDs
408

Assign to a first application used by a user a first UID exclusively unique to the
user and the first application , and associate the first VID with user data

exclusively associated with the first user and the first application such that the
user data is isolated from application data of other users to create a multi - user

platform
410

Assign to a second application used by the user a second UID exclusively unique
to the user and the second application , and associate the second UID with user
data exclusively associated with the first user and the second application such

that the user data is isolated from application data of other users
412

Receive from a process a request to access the user data , the request indicating
the first UID exclusively unique to the user and the first application

414

Allow the process to access the user data corresponding to the user and the first
application

416

When at least one of the applications is removed from the platform , return a
corresponding OID to a pool of available UIDs

418 8

100

102
-

M

Patent Application Publication

125

-

Data Storage Elementi 120

Data Storage Element2 120

Data Storage Elemento
22

- -

120

Data Storage Elementi 122
*

* *

*

*

-

1

med
WAY

- -

www .

-

Processor 105

Interface 140

Data Storage Elementa
- -

122

- - -

An Gwen

-

-

-

-

1

- -

Mar . 22 , 2018 Sheet 1 of 4

- -

*

Encryption Engine 130

2

-

-

-

S

*

-

-

-

LS
Data Storage Element 122

-

-

1 / 0 Mechanism 115

Display 110

Authentication Module
-

-

135

- -

- - LP

-

R

P

.

Wir

w

w

'

de
-

-

-

-

-

*

w

-

-

-

-

US 2018 / 0082077 A1

200

300

205 - 1

Patent Application Publication

User 1

User 1 / App 1

205 - 2

www

.

User 2

User 2 / App 1

205 - 3

User 3

User 3 / App 2

205 . 4

User 4

Common

210

Common

Mar . 22 , 2018 Sheet 2 of 4

-

User N

N

User N / App N

FIG . 2

FIG . 3

US 2018 / 0082077 A1

Patent Application Publication Mar . 22 , 2018 Sheet 3 of 4 US 2018 / 0082077 A1

400

Provide a single user platform
402

- in - - - - we - - - . .

Allocate for each of a plurality of users a range of UIDs - ~
4041

-

- - - - - - - - - - . . * amci med . - - - . . . an . com www . sak . - - - - - . Het * - - a . - - - - . . - 1 i Allocate for shared usage among a plurality of users a range of UIDS
4061

www - - - - - - - - - www . - - - - - - -

Allocate for system or administrative use a range of UIDs
408

Assign to a first application used by a user a first UID exclusively unique to the
user and the first application , and associate the first UID with user data

exclusively associated with the first user and the first application such that the
user data is isolated from application data of other users to create a multi - user

platform
410

Assign to a second application used by the user a second UID exclusively unique
to the user and the second application , and associate the second UID with user
data exclusively associated with the first user and the second application such

that the user data is isolated from application data of other users
412

Receive from a process a request to access the user data , the request indicating
the first UID exclusively unique to the user and the first application

414

Allow the process to access the user data corresponding to the user and the first
application

416

When at least one of the applications is removed from the platform , return a
corresponding UID to a pool of available UIDs

4181

FIG . 4

Patent Application Publication Mar . 22 , 2018 Sheet 4 of 4 US 2018 / 0082077 A1

500

Provide a single user platform

Assign a first UID to a first application used by a first user
504

Associate the first UID with user data exclusively associated with the first user
and the first application such that the user data is isolated from application data

of other users to create a multi - user platform
506

Assign additional UIDs to corresponding applications used by the first user in a
serially incrementing manner

508

Associate the additional UIDs with user data exclusively associated with the first
user and the respective applications such that the user data is isolated from

application data of other users
5101

w

Receive from a process a request to access the user data , the request indicating
the first UID exclusively unique to the first user and the first application

512

Allow the process to access the user data corresponding to the user and the first
application

houd A

When at least one of the user ' s applications is removed from the platform , return
a corresponding UID to a pool of available UIDs

516

FIG . 5

US 2018 / 0082077 A1 Mar . 22 , 2018

CREATING DISTINCT USER SPACES
THROUGH USER IDENTIFIERS

CROSS REFERENCES TO RELATED
APPLICATIONS

[0001] This application is a continuation of U . S . patent
application Ser . No . 14 / 476 , 233 , filed on Sep . 3 , 2014 , which
is a continuation of U . S . patent application Ser . No . 14 / 172 ,
634 , filed on Feb . 4 , 2014 , now U . S . Pat . No . 8 , 856 , 959 ,
issued on Oct . 7 , 2014 , which is a continuation of U . S . patent
application Ser . No . 13 / 252 , 947 , filed on Oct . 4 , 2011 , now
U . S . Pat . No . 8 , 650 , 658 , issued on Feb . 11 , 2014 , which
claims priority to U . S . Provisional Patent Application No .
61 / 406 , 328 , filed on Oct . 25 , 2010 , each of which is herein
incorporated by reference .

BACKGROUND OF THE INVENTION
Field of Technology

[0002] The present description generally relates to oper
ating systems and , more particularly , to multi - user accounts
in operating systems with access restrictions .

Background
[0003] AndroidTM is a software stack for mobile devices
based on the LinuxTM platform , and currently is developed
by Google , Inc . of Mountain View , Calif . Although LinuxTM
supports multiple users , AndroidTM is designed to be a single
user platform . In this regard , the AndroidTM system effec
tively disables the multi - user aspect of the LinuxTM kernel
by assigning unique user identifiers (UIDs) to each
AndroidTM application . In particular , when an AndroidTM
application reads or writes data , the application only can
access the data with its unique UID . Thus , such an appli
cation can only read or modify data that the application itself
creates . This feature is necessary to prevent potentially
unscrupulous applications from accessing sensitive informa
tion generated by other applications .

UIDs can be assigned to applications used by the plurality of
users , wherein the UIDs are assigned to the applications in
an interleaved manner . Further , a range of UIDs can be
allocated for system or administrative use .
[0007] The method further can include receiving from a
process a request to access the user data , the request indi
cating the first UID exclusively unique to the user and the
first application . The process can be allowed to access the
user data corresponding to the user and the first application .
[0008] The method further can include providing user
level - servicing using a loop device - based file system to
enable the single user platform to accommodate multiple
users . The method also can include providing a new filing
system for the single user platform by writing a list of
functions configured to support and adding an entry into a
Virtual Filesystem Switch (VFS) table to enable the single
user platform to accommodate multiple users .
[0009] Arrangements described herein also relate to a
processing system . The processing system can include a
processor configured to , in a platform originally intended to
be a single user platform , for each of a plurality of users ,
assign to a first application used by the user a first user
identifier (UID) unique to the user and the first application
and associate the first UID with user data exclusively
associated with the user and the first application to create a
multi - user platform .
[0010] The processor further can be configured to assign
to a second application used by the user a second UID
unique to the user and the second application and associate
the second UID with user data exclusively associated with
the user and the second application . A range of UIDs can be
allocated to the user , wherein the first UID is selected from
the range of UIDs . The UIDs from the range of UIDs can be
assigned to applications used by the user in a serially
incrementing manner . When at least one of the applications
used by the user is removed from the single user platform ,
a corresponding UID can be returned to a pool of available
UIDs .

[0011] The processor further can be configured to allocate
for shared usage among the plurality of users a range of
UIDs . UIDs can be assigned to applications used by the
plurality of users , wherein the UIDs are assigned to the
applications in an interleaved manner . Further , a range of
UIDs can be allocated for system or administrative use .
[0012] . The processor further can be configured to receive
from a process a request to access the user data , the request
indicating the first UID exclusively unique to the user and
the first application and allow the process to access the user
data corresponding to the user and the first application .
[0013] The processor further can be configured to provide
user level - servicing using a loop device - based file system to
enable the single user platform to accommodate multiple
users . The processor also can be configured to provide a new
filing system for the single user platform by writing a list of
functions configured to support and add an entry into a
Virtual Filesystem Switch (VFS) table to enable the single
user platform to accommodate multiple users .
[0014] Another embodiment can include a computer pro
gram product including a computer - readable storage
medium . The computer - readable storage medium can
include computer - usable program code stored thereon to
perform the various steps and / or functions disclosed within
this specification .

SUMMARY
[0004] Arrangements described herein relate to a method
of creating distinct user spaces . The method can include , in
a platform originally intended to be a single user platform ,
for each of a plurality of users , via a processor , assigning to
a first application used by the user a user identifier (UID)
unique to the user and the first application and associating
the first UID with user data exclusively associated with the
user and the first application to create a multi - user platform .
The method further can include assigning to a second
application used by the user a second UID unique to the user
and the second application , and associating the second UID
with user data exclusively associated with the user and the
second application .
[0005] The method also can include allocating to the user
a range of UIDs , wherein the first UID is selected from the
range of UIDs . Applications used by the user can be
assigned the UIDs from the range of UIDs in a serially
incrementing manner . When at least one of the applications
used by the user is removed from the single user platform ,
a corresponding UID can be returned to a pool of available
UIDs .
[0006] The method further can include allocating for
shared usage among the plurality of users a range of UIDs .

US 2018 / 0082077 A1 Mar . 22 , 2018

BRIEF DESCRIPTION OF THE DRAWINGS
[0015] Embodiments will be described below in more
detail , with reference to the accompanying drawings , in
which :
[0016] FIG . 1 is a block diagram illustrating a system in
accordance with one embodiment of the present invention ;
[0017] FIG . 2 depicts user ranges in accordance with one
embodiment of the present invention ;
[0018] FIG . 3 depicts user ranges in accordance with
another embodiment of the present invention ;
[0019] FIG . 4 is a flowchart illustrating a method for
creating multiple independent user spaces in accordance
with one embodiment of the present invention ; and
[0020] FIG . 5 is a flowchart illustrating a method for
creating multiple independent user spaces in accordance
with another embodiment of the present invention .

DETAILED DESCRIPTION
[0021] While the specification concludes with claims
defining features that are regarded as novel , it is believed
that the claims will be better understood from a consider
ation of the description in conjunction with the drawings . As
required , detailed embodiments are disclosed herein ; how
ever , it is to be understood that the disclosed embodiments
are merely exemplary and can be embodied in various
forms . Therefore , specific structural and functional details
disclosed herein are not to be interpreted as limiting , but
merely as a basis for the claims and as a representative basis
for teaching one skilled in the art to variously employ
virtually any appropriately detailed structure . Further , the
terms and phrases used herein are not intended to be limiting
but rather to provide an understandable description .
[0022] Several definitions that apply throughout this docu
ment will now be presented . The term " current user ” is
defined as a user of the plurality of users who currently has
access to the programs and / or features of a computing
device . A “ user space ” is defined as an environment reserved
for a particular user where that user may access various
types of data and perform other computing or communica
tion operations . A “ platform ” is defined as an operating
environment composed of hardware and / or software com
ponents that serve as interfaces or specifications for inter
actions within a processing device . A “ single user platform "
is defined as a platform that is designed to accommodate a
single user space and possibly an administrator with default
control over the platform . A " multiple user platform ” is
defined as a platform that is designed to accommodate a
more than one user space and possibly an administrator with
default control over the platform . The phrase " originally
designed as a single user platform ” is defined as a platform
that is or was intended to be a single user platform but that
has or will be altered or modified in some way to accom
modate more than one user space . The phrase " collectively
store data ” is defined as a process in which multiple portions
of data are stored across multiple storage elements or across
a single storage element .
10023] The term " computing device " is defined as an
electronic device configured to conduct various operations
that manipulate or process data . A network ” is defined as a
collection of two or more components in which the com
ponents are permitted to at least exchange signals with one
another . The word " data " is defined as all forms of infor

mation that are capable of being generated and at least
temporarily stored . The word " plurality ” means a number
that is greater than one .
[0024] A processor ” is defined as a component or a group
of components that execute (s) sets of instructions . A “ com
puter - readable - storage medium ” is defined as a non - transi
tory storage device that can contain , or store , a program for
use by or in connection with an instruction execution
system , apparatus or device . Examples of a computer
readable - storage medium include , but are not limited to , a
hard disk drive (HDD) , a solid state drive (SSD) , a read - only
memory (ROM) , an erasable programmable read - only
memory (EPROM or Flash memory) , a portable compact
disc read - only memory (CD - ROM) , a digital versatile disk
(DVD) and a floppy disk . A “ program product ” is defined as
a device comprising a computer - readable - storage medium
having stored thereon computer - usable program code .
[0025] An “ interface ” is defined as a component or a
group of components that connect (s) two or more separate
systems or elements such that signals can be exchanged
between or among them . A " directory ” is defined as a digital
file system structure that includes files and folders and that
organizes the files and folders into a hierarchical organiza
tion . The word " link ” is defined as an object that specifies
the location of another object . A " symbolic link ” is defined
as a file system construct that contains a reference to another
file or directory in the form of an absolute or relative path
and that affects pathname resolution .
[0026] A ' data storage element ” is defined as a component
or a group of interconnected components that are configured
to retain data subject to retrieval . The term “ non - volatile
data storage element ” means a data storage element , such as
a computer - readable storage medium , that is configured to
retain data irrespective of whether the data storage element
is receiving power . The term “ volatile data storage element "
means a data storage element that requires power during at
least some interval to retain data . An example of volatile
data storage is random access memory (RAM) .
[0027] The term “ fixed allocation ” is defined as an allo
cation of memory / storage that is assigned prior to the
execution of any programs or operations that may utilize the
allocation and stays static during such execution of the
programs or operations . In contrast , a " dynamic allocation ”
is defined as an allocation of memory / storage that may or
may not be assigned prior to the execution of any programs
or operations that may utilize the allocation and is adjustable
prior to , during or following such execution of the programs
or operations . The terms " encrypt " or " encrypting " are
defined as altering or translating data to restrict access to the
data , while the terms “ decrypt ” or “ decrypting ” are defined
as decoding data that has been encrypted . The word
“ orthogonal ” is defined as a state in which two or more
pieces of information or data are separated from one another
and there is no overlap between (or among) them .
[0028] As noted , the AndroidTM system relies on user
identifiers (UIDs) to isolate application data . All applica
tions or application suites may have unique UIDs that are
typically generated at installation . Generally , only applica
tions that create a file are able to access that file because the
Linux file permissions do not allow global access to appli
cation data . The data normally only can be accessed by a
process with the same UID of the application , and all
applications typically have unique UIDs . This data protec
tion mechanism can be extended not only to isolate data

US 2018 / 0082077 A1 Mar . 22 , 2018

from different applications , but also to segregate data from
the same application created by different users . In general ,
the association of a unique UID based on , for example , both
user and application type can be used to prevent users from
accessing any data but their own by making all UIDs for a
particular user orthogonal to the UIDs for all other users .
10029] Additionally , system file I / O functions can be
modified to read and write common file names differentiated
by UID . For example , if an application with UID
Ox1234attempts to write a file foo . txt , the modified file I / O
functions can append the UID of the application to the file
name . In this example , the name of the file in the file system
would be foo . txt - 1234 , but the application need not read and
write to the file as foo . txt . This would allow applications
common to multiple users to persist data to a data storage
element without their data colliding . Additionally , the modi
fied file I / O read functions can be configured to first look for
the file name specified with the appropriate suffix . If this file
does not exist , then the I / O read functions can attempt to find
a file with the corresponding file name not having a suffix .
This process can be implemented so that applications could
find pre - existing system files which would be common to all
users . This process can be implemented for each directory or
file element in a file path .
[0030] FIG . 1 is a block diagram illustrating a system 100
in accordance with one embodiment of the present inven
tion . The system 100 can include a processing device 102 .
The processing device 102 can be a computer (e . g . , a
desktop computer , a laptop computer , a notebook computer ,
a tablet computer , or the like) , a personal digital assistant
(PDA) , a mobile telephone (e . g . , a smart phone) , an enter
tainment device , or any other device suitable for processing
data .
[0031] The processing device 102 can include a processor
105 , which may comprise , for example , one or more central
processing units (CPUs) , one or more digital signal proces
sors (DSPs) , one or more application specific integrated
circuits (ASICs) , one or more programmable logic devices
(PLDs) , a plurality of discrete components that can coop
erate to process data , and / or any other suitable processing
device . In an arrangement in which a plurality of such
components are provided , the components can be coupled
together to perform various processing functions as
described herein .
[0032] In one arrangement , the processing device 102 also
can include one or more input / output (1 / 0) devices , for
example a display 110 . In one arrangement , the display 110
can be a touch screen display , though the invention is not
limited in this regard . Another example of an I / O device can
include an I / O mechanism 115 , such as a keyboard , a mouse ,
or the like . Of course , the display 110 , if built as a touch
screen display , may serve as the I / O mechanism 115 . It
should be noted , however , that the processing device 102 is
not necessarily limited to these types of user interface
elements , as other forms of such components may be imple
mented into the processing device 102 .
[0033] The I / O devices can be coupled to the processor
105 either directly or through intervening I / O controllers .
One or more interfaces 140 also can be coupled to the
processor 105 to enable the processing device 102 to
become coupled to other systems , computer systems , remote
printers , and / or remote storage devices through intervening
private or public networks . Modems , cable modems , Ether -
net cards and communication ports are examples of different

types of interfaces 140 that can be used with the processing
device 102 . Examples of communication ports include , but
are not limited to , serial ports , parallel ports , universal serial
bus (USB) ports , IEEE - 1394 (FireWire) ports , serial ATA
(SATA) ports , external SATA (ESATA) ports , and the like .
10034] The processing device 102 also can include one or
more data storage elements 120 , 122 , which can be used to
store various forms of data . The data storage elements 120 ,
122 can be volatile data storage elements or non - volatile
data storage elements . The data storage elements 120 can be
integrated within (permanently or temporarily) the process
ing device 102 . As such , the data storage elements 120 can
be referred to as local data storage elements . The data
storage elements 120 can be coupled to the processor 105
either directly or through intervening I / O controllers .
[0035] The data storage elements 122 can be communi
catively linked to the processing device 102 via the com
munication network 125 , via a communication port , or in
any other suitable manner . As such , the data storage ele
ments 122 can be referred to as remote data storage ele
ments . The communication network 125 can comprise a
wide area network (WAN) , such as the Internet , a local area
network (LAN) , a personal area network (PAN) (e . g . , Blu
etooth®) , and / or any other suitable communication systems .
In this regard , the communication network 125 can include
wired and / or wireless communication links .
[0036] An operating system and / or one or more applica
tions can be stored to one or more of the data storage
elements 120 , 122 , and executed by the processor 105 to
implement the methods and processes described herein .
Although there are references to LinuxTM and AndroidTM
operating systems , it should be noted that the description
contained herein is applicable to any operating system ,
kernel or software platform where support for multiple - user
accounts is not provided or available .
0037] In one arrangement , the processing device 102 can
also include an encryption engine 130 , which can be used to
selectively encrypt and / or decrypt data . Any suitable type
and number of encryption and decryption techniques can be
employed to ensure secure and efficient retrieval of data . As
another option , the processing device 102 can include an
authentication module 135 for authenticating one or more
users of the processing device 102 . The authentication
module 135 can perform authentications on its own or in
conjunction with one or more other elements , as will be
described herein .
[0038] If desired , the encryption engine 130 and the
authentication module 135 can be directly and communica
tively coupled to the interface 140 for exchanging signals
with the communication network 125 or other external
elements . In one arrangement , the encryption engine 130
and the authentication module 135 can be embodied as
application specific devices coupled to the processor 105
either directly or through intervening I / O controllers . In
another arrangement , the encryption engine 130 and the
authentication module 135 can be embodied as applications
executable by the processor 105 . In this regard , the encryp
tion engine 130 and the authentication module 135 can be
stored on one or more data storage elements communica
tively linked to the processor 105 .
[0039] In accordance with the description herein , the pro
cessing device 102 can be configured to accommodate
multiple users . This feature is possible even if the processing
device 102 is equipped with a platform that was originally

US 2018 / 0082077 A1 Mar . 22 , 2018

intended for use by a single individual . In particular , each
user can operate the processing device 102 and can generate ,
store and retrieve data on the processing device 102 . This
data can be stored on any number or type of the data storage
elements 120 , 122 including those that are communicatively
linked to the processing device 102 via the communication
network 125 . In addition , a particular user ' s data can be
protected from unauthorized access by any of the other users
of the processing device 102 . These processes can be
achieved with minimal affect on the original single user
platform of the processing device 102 .
[0040] To configure the processing device , an operating
system , for example LinuxTM or AndroidTM , can be executed
by the processor 105 . Additional software and / or applica
tions also may be executed by the processor 105 . In one
arrangement , user - level servicing using a loop device - based
file system , such as Filesystem in Userspace (FUSE) or
vnode disk (vnd) , can be provided as additional software that
executes on top of the operating system to enable the
platform of the processing device 102 to accommodate
multiple users , thereby facilitating creation of a multi - user
platform . In another arrangement , a FUSE kernel module
and FUSE library can be integrated into to the operating
system .
[0041] In another aspect of the present arrangements , for
example within the LinuxTM or AndroidTM operating system ,
a new filing system for the platform can be created by
writing a list of functions configured to support , and an entry
can be added into a Virtual Filesystem Switch (VFS) table .
A VFS is a kernel data structure that contains an entry for
each type of filing system that the kernel has knowledge .
Examples of such filing systems include , but are not limited
to , ext3 , msdos , procfs and sysfs . Each entry in a VFS can
include a list of functions that implement file - related system
calls (e . g . , mount , open , read , write , stat , etc) for a particular
type of filing system . The functions in the new filing system
can be configured to call such functions in one or more other
filing systems . In this regard , semantics for the new file
system can be layered onto an existing file system ' s data
layout (e . g . , ext3 or msdos) .
(0042] User data can be stored on any suitable number /
combination of data storage elements 120 , 122 . There are
several techniques for realizing isolation of the user data . In
particular , a predetermined number of user ranges can be
generated with each range being associated with all or at
least some of the users of a computing device . Referring to
FIG . 2 , an arrangement 200 of numerous user ranges 205 - 1 ,
205 - 2 , 205 - 3 , 205 - 4 is shown . As an example , each user
range 205 can represent a range of UIDs that may be
allocated to a particular user . In this regard , each user range
205 can comprise a portion of the total number of available
UIDs .
[0043] In one embodiment , the UID can be an unsigned
integer value , and the number of available UIDs can depend
on the operating system and other relevant restrictions . In
illustration , some systems support 16 bit UIDs . In such
cases , slightly over 65 , 000 UIDs may be available . Other
systems may support 32 bit UIDs , which may increase the
number of available UIDs to over four billion . In any event ,
the number of available UIDs can be allocated among (or
between the multiple users in any suitable manner .
[0044] One specific (but non - limiting) example will be
presented . Assume that the system supports a 16 bit UID .
The UID space can be segmented into sixty - five possible

user accounts , with each being assigned one thousand UIDs .
User 1 can be allocated the range 0 - 999 (or 1 - 999) , user 2
can be allocated the range 1 , 000 - 1 , 999 and user 3 can be
allocated the range 2 , 000 - 2 , 999 . The remaining user
accounts can be assigned ranges in accordance with this
particular allocation . Whenever a UID is assigned for an
application used by a particular user , the UID can be
assigned from that particular user ' s allocated range . Once
allocated , the UID can be unique to the user and the
application , at least until the UID is returned to the pool of
available UIDs , for example when the application is
removed from the platform .
[0045] In another example , a range of UIDs can be allo
cated to a plurality of users . Whenever a UID is assigned for
an application used by a particular user , the UID can be
assigned from the allocated range . Again , once allocated , the
UID can be unique to the user and the application , at least
until the UID is returned to the pool of available UIDs , for
example when the application is removed from the platform .
[0046] There are several other issues to consider in this
technique . Specifically , this assignment of ranges can apply
to any type of UID . Moreover , any number of user accounts
may be created , and an equivalent number of UIDs may be
assigned to each range . It is understood , however , that the
assignment of UIDs is not necessarily limited to an equal
weighted fashion , as some ranges may contain a greater or
fewer number of UIDs in comparison to other ranges . Also ,
some of the ranges may be reserved for system or admin
istrative use . In another arrangement , one or more common
user ranges 210 may be generated . The UIDs in a common
user range 210 may be common to all or at least a plurality
of users . Here , an application may be assigned a common
UID from this range 210 , and these common users may be
able to access the data for the application and can share the
data . That is , users are able to create shared resources by
having common UIDs for applications .
[0047] In an alternative embodiment , UIDs can be
assigned in a serially incrementing manner . For example ,
each application can have a UID assigned to it at install time ,
which can be a higher integer value than the last application
installed by any user . Although not necessarily limiting , the
UIDs can be serially incremented by a value of one . An
exemplary illustration is presented in FIG . 3 . There , an
arrangement 300 is shown in which the first entry relates to
a first application restricted to user 1 , which has a UID of 1 .
As an example , a second user (user 2) may install the same
application (which can be restricted to user 2) , and the UID
can be incremented by one to a value of 2 . As another
example , a third user (user 3) can install a second application
(which can be restricted to user 3) , and the UID can be
incremented to a value of three . Like the previous embodi
ment , common UIDs can be used to allow for multiple (or
even all) users to access and share data and share , and these
UID values can be incremented in a fashion similar to that
described here .
[0048] In this way , applications can be assured a unique
UID , but it is not necessary to have a clear segmentation of
UIDs . This particular mapping of UIDs can be saved to
persistent storage to provide explicit information on the UID
subsets for the users . This process can also allow for an
uneven distribution of UIDs among (or between) the users .
In addition , the UIDs can be re - mined as time goes on and
previously installed applications are removed . Although the

US 2018 / 0082077 A1 Mar . 22 , 2018

incrementing value of one is presented , it is understood that
the UIDs can be incremented in accordance with any other
suitable value .

[0049] In either of the techniques described here , common
group identifications (GID) can be used to allow groups of
users to access common data . If a common UID is associated
with all users to thereby permit all users to access applica
tion data , a common GID can allow more than one user but
less than all users to access and share application data .
Several exemplary types of data include application data ,
cache data , media data and system configuration data . The
term “ application data ” is defined as data that is associated
with programs designed for direct interaction with an end
user . In addition , the term “ cache data ” is defined as data that
is or will be temporarily stored in a storage mechanism . The
term “ media data ” is defined as data that is associated with
the presentation of entertainment to a user . The term “ system
configuration data ” is defined as data that is used to config
ure a platform , application , or other software for operation
on a device or system . The examples presented here , how
ever , are not intended to be limiting . Referring again to FIG .
1 , in one particular arrangement , the application data can be
stored in one data storage elements 120 , 122 , while the cache
data associated with the users can be stored at a different
location of the data storage elements 120 , 122 or on a
different data storage element 120 , 122 .
[0050] FIG . 4 is a flowchart illustrating a method 400 for
creating multiple independent user spaces in accordance
with one embodiment of the present invention . The method
400 is not necessarily limited to the chronological order
presented in FIG . 4 , as these steps can be executed in
accordance with any suitable sequence . Also , the method
400 may be adjusted to include other processes or operations
not recited here or to remove some of the steps illustrated in
FIG . 4 .
[0051] At step 402 , a single user platform can be provided
on a processing device . At step 404 , a range of user
identifiers (UIDs) can be allocated to each of a plurality of
UIDs . At step 406 , a range of UIDs can be allocated for
shared usage among a plurality of users . Step 406 can be
performed in addition to , or in lieu of , step 404 . In one
arrangement , for example , each user can be allocated a range
of UIDs exclusive to the respective users , and another range
of UIDs can be allocated for use by a plurality of users . At
step 408 , a range of UIDs can be allocated for system or
administrative use .
[0052] At step 410 , a first UID can be assigned to a first
application used by the user . The first UID can be selected
from the range of UIDs exclusively allocated to the user , or
selected from the range of UIDs allocated for shared usage
among the plurality of users . In either arrangement , once
assigned , the first UID can be unique to the first user and the
first application , at least until the first UID is returned to the
pool of UIDs from which the first UID was assigned . UIDs
assigned from the shared range of UIDs can be assigned to
applications used by the respective users as needed in a
serially incrementing manner . In this regard , the UIDs can
be assigned to applications used by the plurality of users in
an interleaved manner . For example , a first UID can be
assigned to a first application used by a first user , a second
UID can be assigned to an application used by a second user ,
and a third UID can be assigned to a second application used
by the first user .

[0053] At step 412 , a second UID can be assigned to a
second application used by user . The second UID can be
selected from the range of UIDs allocated to the user , or
selected from the range of UIDs allocated for shared usage
among the plurality of users . In either arrangement , once
assigned , the second UID can be unique to the first user and
the second application , at least until the second UID is
returned to the pool of UIDs from which the second UID
was assigned . User identifiers also can be assigned to
applications used by other users as described above .
[0054] At step 414 , a request to access the user data can be
received from a process , the request indicating the first UID
exclusively unique to the user and the first application . At
step 416 , the process can be allowed to access the user data
corresponding to the user and the first application . Further ,
additional requests from the process , or other processes ,
indicating other UIDs exclusively unique to users and appli
cations , and such processes can be allowed to access cor
responding user data . At step 418 , when at least one of the
applications is removed from the platform , a corresponding
UID can be returned to a pool of available UIDs from which
the UID was assigned . Accordingly , the UID can be made
available to be reassigned to the first application or another
application when needed .
[0055] FIG . 5 is a flowchart illustrating a method 500 for
creating multiple independent user spaces in accordance
with another embodiment of the present invention . The
method 500 is not necessarily limited to the chronological
order presented in FIG . 5 , as these steps can be executed in
accordance with any suitable sequence . Also , the method
500 may be adjusted to include other processes or operations
not recited here or to remove some of the steps illustrated in
FIG . 5 .
[0056] At step 502 , a single user platform can be provided
on a processing device . At step 504 , a first UID can be
assigned to a first application used by the first user . At step
506 , additional UIDs can be assigned to additional applica
tions used by the first user in a serially incrementing manner .
Further , UIDs can be assigned for shared usage among a
plurality of users and UIDs can be assigned for system or
administrative use in a serially incrementing manner .
[0057] At step 508 , a request to access the user data can be
received from a process , the request indicating the first UID
exclusively unique to the first user and the first application .
At step 510 , the process can be allowed to access the user
data corresponding to the user and the first application .
Further , additional requests from the process , or other pro
cesses , indicating other UIDs exclusively unique to users
and applications , and such processes can be allowed to
access corresponding user data . At step 512 , when at least
one of the applications used by the user is removed from the
platform , a corresponding UID can be returned to a pool of
available UIDs .
10058] The flowchart and block diagram in the figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods and computer
program products according to various embodiments . In this
regard , each block in the flowchart or block diagram may
represent a module , segment , or portion of code , which
comprises one or more executable instructions for imple
menting the specified logical function (s) . It should also be
noted that , in some alternative implementations , the func
tions noted in the block may occur out of the order noted in
the figures . For example , two blocks shown in succession

US 2018 / 0082077 A1 Mar . 22 , 2018

may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order ,
depending upon the functionality involved .
[0059] The systems , components and / or processes
described above can be realized in hardware or a combina
tion of hardware and software and can be realized in a
centralized fashion in one processing system or in a distrib
uted fashion where different elements are spread across
several interconnected processing systems . Any kind of
processing system or other apparatus adapted for carrying
out the methods described herein is suited . A typical com
bination of hardware and software can be a processing
system with computer - usable or computer - readable program
code that , when being loaded and executed , controls the
processing system such that it carries out the methods
described herein . The systems , components and / or processes
also can be embedded in a non - transitory computer - readable
storage medium , such as a computer - readable storage
medium of a computer program product or other data
programs storage device , readable by a machine , tangibly
embodying a program of instructions executable by the
machine to perform methods and processes described
herein . These elements also can be embedded in a computer
program product which comprises all the features enabling
the implementation of the methods described herein and ,
which when loaded in a processing system , is able to carry
out these methods .
[0060] The terms " computer program , " " software , ”
" application , " variants and / or combinations thereof , in the
present context , mean any expression , in any language , code
or notation , of a set of instructions intended to cause a
system having an information processing capability to per
form a particular function either directly or after either or
both of the following : a) conversion to another language ,
code or notation ; b) reproduction in a different material
form . For example , an application can include , but is not
limited to , a script , a subroutine , a function , a procedure , an
object method , an object implementation , an executable
application , an applet , a servlet , a MIDlet , a source code , an
object code , a shared library / dynamic load library and / or
other sequence of instructions designed for execution on a
processing system .
[0061] The terms “ a ” and “ an , ” as used herein , are defined
as one or more than one . The term " plurality , " as used
herein , is defined as two or more than two . The term
" another , " as used herein , is defined as at least a second or
more . The terms “ including ” and / or “ having , " as used
herein , are defined as comprising (i . e . open language) .
0062] Moreover , as used herein , ordinal terms (e . g . first ,
second , third , fourth , fifth , sixth , seventh , eighth , ninth ,
tenth , and so on) distinguish one message , signal , item ,
object , device , system , apparatus , step , process , or the like
from another message , signal , item , object , device , system ,
apparatus , step , process , or the like . Thus , an ordinal term
used herein need not indicate a specific position in an ordinal
series . For example , a process identified as a “ second
process ” may occur before a process identified as a “ first
process . ” Further , one or more processes may occur between
a first process and a second process .
[0063] The present arrangements can be embodied in other
forms without departing from the spirit or essential attributes
thereof . Accordingly , reference should be made to the fol
lowing claims , rather than to the foregoing specification , as
indicating the scope of the invention .

1 . A non - transitory computer readable medium storing a
program for creating distinct user accounts , the program
comprising instructions operable to cause a processor in a
computing device to perform a method comprising :

establishing multiple user accounts on the computing
device that are isolated from one another or are
orthogonal to one another , wherein establishing the
multiple user accounts comprises :
assigning to a first application associated with a first

user account a first user identifier (UID) unique to
the first user account and the first application ;

assigning to a second application associated with a
second user account a second UID unique to the
second user account and the second application ;

assigning a first range of unique UIDs to the first user
account , wherein the first unique UID assigned to the
first user account and the first application is from the
first range of unique UIDs ; and

assigning a second range of unique UIDs to the second
user account , wherein the second unique UID
assigned to the second user account and the second
application is from the second range of unique UIDs .

2 . The non - transitory computer readable medium accord
ing to claim 1 ,
wherein the first application comprises a first AndroidTM

application and the second application comprises a
second AndroidTM application , and

wherein the computing device comprises a mobile com
puting device .

3 . The non - transitory computer readable medium accord
ing to claim 1 , wherein the method further comprises
differentiating system functions by the unique UIDs
assigned to the first application and the second application ,
and

wherein differentiating the system functions by the unique
UIDs assigned to the first application and the second
application comprises appending the unique UIDs to
the system functions .

4 . The non - transitory computer readable medium accord
ing to claim 3 , wherein the first application and the second
application are common to both the first user account and the
second user account and the differentiated system functions
enable the data associated with the first application and the
first user account to persist in storage on the computing
device without colliding with data associated with the sec
ond application and the second user account that is also
persisted on the computing device .

5 . The non - transitory computer readable medium of claim
1 , wherein assigning the first unique UID to the first appli
cation and the first user account and assigning the second
unique UID to the second application and the second user
account are performed in a serially incrementing manner .

6 . The non - transitory computer readable medium accord
ing to claim 1 , wherein the first range of unique UIDs is a
portion of a total number of available unique UIDs for the
computing device and the second range of unique UIDs is
another portion of the total number of available unique UIDs
for the computing device .

7 . The non - transitory computer readable medium accord
ing to claim 1 , wherein establishing the multiple user
accounts further comprises allocating a third range of unique
UIDs for system or administrative use .

8 . The non - transitory computer readable medium accord
ing to claim 1 , wherein the method further comprises :

US 2018 / 0082077 A1 Mar . 22 , 2018
7

removing the first application or the second application
from the computing device ; and

returning the unique UID assigned to the first application
or the unique UID assigned to the second application to
a pool of available UIDs that is associated with the
computing device .

9 . The non - transitory computer readable medium accord
ing to claim 1 , wherein the method further comprises
encrypting data that is associated with the second applica
tion when such data is persistently stored .

10 . The non - transitory computer readable medium
according to claim 1 , wherein the method further comprises
authenticating a user before permitting the user to access the
second user account .

11 . The non - transitory computer readable medium
according to claim 1 , wherein establishing the multiple user
accounts further comprises establishing a new file system by
writing a list of support functions and adding an entry to a
virtual filesystem switch (VFS) table .

12 . A mobile computing device , comprising :
one or more persistent data storage elements ;
an operating system stored on the one or more persistent

data storage elements , the operating system associating
unique user identifiers (UIDs) with applications so that
an application is restricted to reading or modifying data
created by the application ; and

a processor configured to cause application data to be
stored to the one or more persistent data storage ele
ments , wherein the processor is further configured to :
cause a first range of unique UIDs to be assigned to a

first user account of the mobile computing device ;
cause a first application associated with the first user

account to be assigned a first UID unique to the first
user account and the first application , wherein the
first unique UID is from the first range of unique
UIDs assigned to the first user account ;

cause a second range of unique UIDs to be assigned to
a second user account of the mobile computing
device ; and

cause a second application associated with the second
user account to be assigned a second UID unique to
the second user account and the second application ,
wherein the second unique UID is from the second
range of unique UIDs assigned to the second user
account ;

wherein assignment of the first and second range of
unique UIDs enables application data associated with
the first user account that is stored on the one or more
persistent data storage elements to be isolated from
application data associated with the second user
account that is stored on the one or more persistent data
storage elements .

13 . The mobile computing device according to claim 12 ,
further comprising an encryption engine that is configured to
selectively encrypt the application data associated with the
second user account .

14 . The mobile computing device according to claim 12 ,
wherein the processor is further configured to execute an
authentication module to cause an authentication to be
performed with respect to a user of the second user account .

15 . The mobile computing device according to claim 12 ,
wherein the processor is further configured to cause a
differentiation of system functions based on the unique UIDs
assigned to the first and second applications .

16 . The mobile computing device according to claim 15 ,
wherein the processor is further configured to cause the
differentiation of system functions based on the unique UIDs
assigned to the first and second applications by appending
the unique UIDs of the first and second applications to
system functions respectively associated with the first and
second applications .

17 . The mobile computing device according to claim 12 ,
wherein the operating system comprises the AndroidTM
mobile operating system .

18 . A mobile computing device , comprising :
one or more persistent data storage elements ; and
a processor configured to cause application data to be

stored to the one or more persistent data storage ele
ments , wherein the processor is further configured to :
cause a first range of unique user identifiers (UIDs) to
be assigned to a first user account of the mobile
computing device ;

cause a first AndroidTM application associated with the
first user account to be assigned a first UID unique to
the first user account and the first AndroidTM appli
cation , wherein the first unique UID is from the first
range of unique UIDs assigned to the first user
account ;

cause a second range of unique UIDs to be assigned to
a second user account of the mobile computing
device ; and

cause a second AndroidTM application associated with the
second user account to be assigned a second UID
unique to the second user account and the second
AndroidTM application , wherein the second unique UID
is from the second range of unique UIDs assigned to the
second user account ;

wherein assignment of the first and second range of
unique UIDs enables application data associated with
the first user account that is stored on the one or more
persistent data storage elements to be isolated from
application data associated with the second user
account that is stored on the one or more persistent data
storage elements .

19 . The non - transitory computer readable medium
according to claim 1 , wherein the program is compatible
with the AndroidTM mobile operating system .

20 . The non - transitory computer readable medium
according to claim 1 , wherein the method further comprises
executing the AndroidTM operating system .

* * * *

