087003699 A 1| I 000 OO OO R0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
10 January 2008 (10.01.2008)

PO 010 0 A

(10) International Publication Number

WO 2008/003699 Al

(51) International Patent Classification:
GOG6F 17/30 (2006.01)

(21) International Application Number:

PCT/EP2007/056678
(22) International Filing Date: 3 July 2007 (03.07.2007)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
11/482,377 7 July 2006 (07.07.2006) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, New York
10504 (US).

(71) Applicant (for MG only): IBM UNITED KINGDOM
LIMITED [GB/GB]; PO Box 41, North Harbour,
Portsmouth Hampshire PO6 3AU (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CURTIS, Bryce
Allen [US/US]; 4105 Vista Isle Drive, Round Rock, Texas
78681 (US). NICKOLAS, Stewart [US/US]; 16608
Pocono Drive, Austin, Texas 78717 (US). VICKNAIR,
Wayne Elmo [US/US]; 6300 Shoal Creek Boulevard,
Austin, Texas 78757 (US).

(74) Agent: ROBERTS, Scott; IBM United Kingdom Lim-
ited, Intellectual Property Law, Hursley Park, Winchester
Hampshire SO21 2IN (GB).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH,
CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG,
ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, 1L,
IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL,
PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
M, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL,
PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

[Continued on next page]

(54) Title: METHOD FOR INHERITING A WIKI PAGE LAYOUT FOR A WIKI PAGE

506" HTTP://SERVER/WIKI//SHOW/PG/HOME/...
|

544

WIKI COMMAND
00+ | 502 P FRAGMENT
0B 546 548 554 556
504 VARS
| 08a vas [conTen| [0B vARS [conTenT |
WIKI CONTROLLER
508 552
WIKI OBJECT PAGE 534 550
=
s S st6 0BJ VARS LAYOUT 542
510 CHECK
DATABASE 530 SCRIPTS
0BJ 538 ["\526
— & st 0| <
VARIABLES PROCESS
4 N
532
599 512 520 558

& (57) Abstract: A method for inheriting a page layout for a page is provided. In response to receiving a request to show a current
page from a client browser, a determination is made as to whether the current page has a set of ancestor pages. The set of ancestor
pages are arranged such that a closest ancestor page in the set of ancestor pages appears first in a list of ancestor pages. A layout page
associated with an ancestor page of the set of ancestor pages is identified. The identified layout page is combined with the current
page to form a combined page. The combined page is sent to the client browser.

WO 2008/003699 A1 {000 0000000 0 0000 00

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

METHOD FOR INHERITING A WIKI PAGE LAYOUT FOR A WIKI PAGE

BACKGROUND
Technical Field

The present invention relates generally to an improved data processing system and in
particular to a method and apparatus for a programming model. Still more particularly, the
present invention relates to a computer implemented method, apparatus, and computer usable

program code for manipulating content using a browser.

Description of the Related Art

The Internet is a global network of computers and networks joined together by
gateways that handle data transfer in the conversion of messages from a protocol of the
sending network to a protocol of the receiving network. On the Internet, any computer may
communicate with any other computer in which information travels over the Internet through
a variety of languages referred to as protocols. The set of protocols most commonly used on

the Internet is called transmission control protocol/Internet protocol (TCP/IP).

The Internet has revolutionized communications and commerce as well as being a
source of both information and entertainment. One type of software that has become more
frequently used is Wiki software. Wiki software is a type of collaborative software that runs a
Wiki environment. This software is provided in a shared environment that may be accessed
through an interface by a group of users. A Wiki application is a type of website that allows
users to manipulate content. Users may add, remove, or otherwise edit and change content
very quickly and easily. Wiki applications are often used as an effective tool for collaborative
writing. The current use of Wiki applications is directed towards collaborative content
creation, such as online encyclopedias or other knowledge bases. Users typically can create
content in a shared environment. In this environment, revisions of pages are saved to allow
previous versions to be restored. Further, mark-up shortcuts are provided for creating
inter-page links. Further, a “what you see is what you get” (WYSIWYG) editing mode/editor

is often utilized.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

BRIEF SUMMARY

Exemplary embodiments describe a computer implemented method, a computer
program product and a data processing system for inheriting a page layout for a page. In
response to receiving a request to show a current page from a client browser, a determination
is made as to whether the current page has a set of ancestor pages. The set of ancestor pages
are arranged such that a closest ancestor page in the set of ancestor pages appears first in a list
of ancestor pages. A layout page associated with an ancestor page of the set of ancestor
pages is identified. The identified layout page is combined with the current page to form a

combined page. The combined page is sent to the client browser.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the present invention will be described, by way of example
only, with reference to the following drawings in which:

Figure 1 is a pictorial representation of a network of data processing systems in which
illustrative embodiments of the present invention may be implemented;

Figure 2 is a block diagram of a data processing system in which illustrative
embodiments of the present invention may be implemented;

Figure 3 is a diagram illustrating components for use in generating and using Wiki
applications in accordance with an illustrative embodiment of the present invention;

Figure 4 is a diagram illustrating a Wiki architecture in accordance with an illustrative
embodiment of the present invention;

Figure 5 is a diagram illustrating dataflow in rendering a page in accordance with an
illustrative embodiment of the present invention;

Figure 6 is a diagram illustrating components on a client and server for a Wiki
application in accordance with an illustrative embodiment of the present invention;

Figure 7 is an exemplary screen of display for dragging live content in accordance
with an illustrative embodiment of the present invention;

Figure 8 is a screen of display for editing properties of a command in accordance with

an illustrative embodiment of the present invention;

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

Figure 9 is a page tree view in accordance with an illustrative embodiment of the
present invention;

Figure 10 is a screen of display for a Wiki page in accordance with an illustrative
embodiment of the present invention;

Figure 11 is a block diagram of an abstract syntax tree in accordance with an
illustrative embodiment of the present invention;

Figure 12 is a block diagram of commands in accordance with an illustrative
embodiment of the present invention;

Figure 13 is a diagram showing property editing components in accordance with an
illustrative embodiment of the present invention;

Figure 14 is a diagram illustrating a data flow between commands on a client and
server for a Wiki application in accordance with an illustrative embodiment of the present
invention;

Figure 15 is a diagram illustrating a data flow between commands on a server during
an initial page render process in accordance with an illustrative embodiment of the present
invention;

Figure 16 is a diagram illustrating a Wiki page generated in response to a page request
from a user in accordance with an illustrative embodiment of the present invention;

Figure 17 is a diagram illustrating a rendered page displayed at a client browser in
accordance with an illustrative embodiment of the present invention;

Figure 18 is a diagram illustrating a data flow between components on a client-side
data hub after a new page is loaded and displayed at a client browser in accordance with an
illustrative embodiment of the present invention;

Figures 19A and 19B are diagrams illustrating a data flow between a client-side data
hub and a server-side data hub during a page update in accordance with an illustrative
embodiment of the present invention;

Figure 20 is a diagram illustrating a message flow between a server-side data hub and
a client-side data hub during a page update in accordance with an illustrative embodiment of
the present invention;

Figure 21 is a diagram illustrating a server-side data hub object in accordance with an

illustrative embodiment of the present invention;

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

Figure 22 is a diagram illustrating a client-side data hub object in accordance with an
illustrative embodiment of the present invention;

Figure 23 is a block diagram illustrating the process of embedding Wiki page content
into the body of a Wiki layout page in accordance with an illustrative embodiment of the
present invention;

Figure 24 is a block diagram depicting checkboxes for determining visibility of content
of page components in accordance with an illustrative embodiment of the present invention;

Figure 25 is a flowchart of a process for creating a Wiki page in accordance with an
illustrative embodiment of the present invention;

Figure 26 is a flowchart of a process for displaying a page in accordance with an
illustrative embodiment of the present invention;

Figure 27 is a flowchart of a process for generating a page tree view in accordance
with an illustrative embodiment of the present invention;

Figure 28 is a flowchart of a process for dragging live content in accordance with an
illustrative embodiment of the present invention;

Figure 29 is a flowchart of a process for combining content of Wiki pages in
accordance with an illustrative embodiment of the present invention;

Figure 30 is a flowchart of a process for editing a command in accordance with an
illustrative embodiment of the present invention;

Figure 31 is a flowchart of a process for rendering a Wiki command in accordance
with an illustrative embodiment of the present invention;

Figure 32 is a flowchart of a preliminary process for property editing in accordance
with an illustrative embodiment of the present invention;

Figure 33 is a flowchart of a process for property editing in accordance with an
illustrative embodiment of the present invention;

Figure 34 is a flowchart of a process selecting a property editor in accordance with an
illustrative embodiment of the present invention;

Figure 35 is a flowchart of a process for deleting a page in accordance with an
illustrative embodiment of the present invention;

Figure 36 is a flowchart of a process for revising a page in accordance with an

illustrative embodiment of the present invention;

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

Figure 37 is a flowchart of a process for copying a page in accordance with an
illustrative embodiment of the present invention;

Figure 38 is a flowchart of a process for renaming a page in accordance with an
illustrative embodiment of the present invention;

Figure 39 is a flowchart of a process for undeleting a page in accordance with an
illustrative embodiment of the present invention;

Figure 40 is a flowchart of a process for palette construction in accordance with an
illustrative embodiment of the present invention;

Figure 41 is a flowchart of a process for configuration in accordance with an
illustrative embodiment of the present invention;

Figure 42 is a flowchart of a process for export in accordance with an illustrative
embodiment of the present invention;

Figure 43 is a flowchart of a process for import in accordance with an illustrative
embodiment of the present invention;

Figure 44 is a flowchart of a process for retrieving and parsing a tree in accordance
with an illustrative embodiment of the present invention;

Figure 45 is a process for processing a web page for display in a Wiki in accordance
with an illustrative embodiment of the present invention;

Figure 46 is a flowchart of processing events in accordance with an illustrative
embodiment of the present invention

Figure 47 is a flowchart of an operation occurring when a server-side data hub object is
instantiated in accordance with an illustrative embodiment of the present invention;

Figure 48 is a flowchart of an operation occurring when a client-side data hub object is
instantiated in accordance with an illustrative embodiment of the present invention;

Figure 49 is a flowchart of an operation occurring when a server-side data hub receives
a request to process an event from a client-side data hub in accordance with an illustrative
embodiment of the present invention;

Figure 50 is a flowchart of an operation occurring when a producer command processes
an event in accordance with an illustrative embodiment of the present invention;

Figure 51 is a flowchart outlining an operation occurring when a consumer command

processes an event in accordance with an illustrative embodiment of the present invention;

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

Figure 52 is a flowchart of an operation occurring when a client-side data hub receives
an event in accordance with an illustrative embodiment of the present invention;

Figure 53 is a flowchart of an operation occurring when a server-side data hub
processes an event in accordance with an illustrative embodiment of the present invention;

Figure 54 is a flowchart of an operation occurring when a client-side data hub
determines whether to send an event to a server for processing in accordance with an illustrative
embodiment of the present invention;

Figure 55 is a flowchart of an operation occurring when a server-side data hub receives
an event from a client-side data hub as a result of a processClientEvent method call in
accordance with an illustrative embodiment of the present invention;

Figure 56 is a flowchart of an operation occurring when a Wiki argument object
performs a minimum sufficient argument process in accordance with an illustrative embodiment
of the present invention;

Figure 57 is a flowchart illustrating an operation ocurring when a Wiki argument
object determines if the minimum required arguments of a command are set in accordance
with an illustrative embodiment of the present invention;

Figure 58 is a flowchart illustrating a setCheckArguments method for detecting if an
argument/available event should be fired in accordance with an illustrative embodiment of the
present invention;

Figure 59 is a flowchart illustrating the operation of defining a Wiki page layout with a
Wiki page in accordance with an illustrative embodiment of the present invention;

Figure 60 is a flowchart of the operation of rendering a Wiki page in accordance with
an illustrative embodiment of the present invention;

Figure 61 is an illustration of class definition for a server-side data hub object class in
accordance with an illustrative embodiment of the present invention;

Figure 62 is an illustration of a set of method interfaces for a class of data hub
management methods in accordance with an illustrative embodiment of the present invention;

Figure 63A is an illustration of a set of method interfaces for a class of producer and
consumer methods in accordance with an illustrative embodiment of the present invention;

Figure 63B is an illustration of a set of method interfaces for a class of topic methods

in accordance with an illustrative embodiment of the present invention;

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

Figure 64 is an illustration of a set of method interfaces for a class of event processing
methods in accordance with an illustrative embodiment of the present invention;

Figure 65 is an illustration of a set of method interfaces for a class of command
management methods in accordance with an illustrative embodiment of the present invention;

Figure 66 is an illustration of a class definition for a client-side data hub object class in
accordance with an illustrative embodiment of the present invention;

Figure 67 is an illustration of a set of method interfaces for a class of producer and
consumer methods in accordance with an illustrative embodiment of the present invention;

Figure 68 is an illustration of a set of method interfaces for topic methods in
accordance with an illustrative embodiment of the present invention;

Figure 69 is an illustration of a set of method interfaces for event processing methods
in accordance with an illustrative embodiment of the present invention;

Figure 70 is an illustration of a set of method interfaces for command management
methods in accordance with an illustrative embodiment of the present invention;

Figure 71 is an illustration of a class definition and method interfaces for a class of
data hub topic objects in accordance with an illustrative embodiment of the present invention;

Figure 72 is an illustration of a class definition and method interfaces for a class of
data hub event objects in accordance with an illustrative embodiment of the present invention;

Figure 73 is an illustration of a class definition for a Wiki argument object class in
accordance with an illustrative embodiment of the present invention; and

Figure 74 is an illustration of pseudocode of an algorithm to detect whether to fire an
argument/available event in accordance with an illustrative embodiment of the present

invention.

DETAILED DESCRIPTION OF AN ILLUSTRATIVE EMBODIMENT

With reference now to the figures and in particular with reference to Figures 1-2, a
description of corresponding diagrams of data processing environments is provided in which
illustrative embodiments of the present invention may be implemented. It should be
appreciated that Figures 1-2 are only exemplary and are not intended to assert or imply any
limitation with regard to the environments in which different embodiments may be

implemented. Many modifications to the depicted environments may be made.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

With reference now to the figures, Figure 1 depicts a pictorial representation of a
network of data processing systems in which illustrative embodiments of the present invention
may be implemented. Network data processing system 100 is a network of computers in which
embodiments may be implemented. Network data processing system 100 contains network
102, which is the medium used to provide communications links between various devices and
computers connected together within network data processing system 100. Network 102 may

include connections, such as wire, wireless communication links, or fiber optic cables.

In the depicted example, server 104 and server 106 connect to network 102 along with
storage unit 108. In addition, clients 110, 112, and 114 connect to network 102. These
clients 110, 112, and 114 may be, for example, personal computers or network computers. In
the depicted example, server 104 provides data, such as boot files, operating system images,
and applications to clients 110, 112, and 114. Clients 110, 112, and 114 are clients to server
104 in this example. Network data processing system 100 may include additional servers,

clients, and other devices not shown.

In the depicted example, network data processing system 100 is the Internet with
network 102 representing a worldwide collection of networks and gateways that use the
Transmission Control Protocol/Internet Protocol (TCP/IP) suite of protocols to communicate
with one another. At the heart of the Internet is a backbone of high-speed data
communication lines between major nodes or host computers, consisting of thousands of
commercial, governmental, educational and other computer systems that route data and
messages. Of course, network data processing system 100 also may be implemented as a
number of different types of networks, such as for example, an intranet, a local area network
(LAN), or a wide area network (WAN). Figure 1 is intended as an example, and not as an

architectural limitation for different embodiments.

With reference now to Figure 2, a block diagram of a data processing system is shown
in which illustrative embodiments of the present invention may be implemented. Data
processing system 200 is an example of a computer, such as server 104 or client 110 in Figure
1, in which computer usable code or instructions implementing processes of the various

illustrative embodiments of the present invention may be located.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

In the depicted example, data processing system 200 employs a hub architecture
including a north bridge and memory controller hub (MCH) 202 and a south bridge and
input/output (I/0) controller hub (ICH) 204. Processor 206, main memory 208, and graphics
processor 210 are coupled to north bridge and memory controller hub 202. Graphics
processor 210 may be coupled to the MCH through an accelerated graphics port (AGP), for

example.

In the depicted example, local area network (LAN) adapter 212 is coupled to south
bridge and I/O controller hub 204, audio adapter 216, keyboard and mouse adapter 220,
modem 222, read only memory (ROM) 224, universal serial bus (USB) ports and other
communications ports 232, and PCI/PCle devices 234 are coupled to south bridge and I/O
controller hub 204 through bus 238, and hard disk drive (HDD) 226 and CD-ROM drive 230
are coupled to south bridge and 1/O controller hub 204 through bus 240. PCI/PCle devices
may include, for example, Ethernet adapters, add-in cards, and PC cards for notebook
computers. ROM 224 may be, for example, a flash binary input/output system (BIOS). Hard
disk drive 226 and CD-ROM drive 230 may use, for example, an integrated drive electronics
(IDE) or serial advanced technology attachment (SATA) interface. A super I/O (SIO) device
236 may also be coupled to south bridge and I/O controller hub 204 through bus 238 as

shown.

In the illustrative embodiment of Figure 2, an operating system runs on processor 206
and coordinates and provides control of various components within data processing system
200. The operating system may be a commercially available operating system such as
Microsoft® Windows® XP (Microsoft and Windows are trademarks of Microsoft Corporation
in the United States, other countries, or both). An object oriented programming system, such
as the Java™ programming system, may run in conjunction with the operating system and
provides calls to the operating system from Java programs or applications executing on data
processing system 200 (Java and all Java-based trademarks are trademarks of Sun

Microsystems, Inc. in the United States, other countries, or both).

Instructions for the operating system, the object-oriented programming system, and

applications or programs are located on storage devices, such as hard disk drive 226, and may

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
10

be loaded into main memory 208 for execution by processor 206. The processes of the
illustrative embodiments may be performed by processor 206 using computer-executable
instructions, which may be located in a memory such as, for example, main memory 208, read

only memory 224, or in one or more peripheral devices.

The hardware in Figures 1-2 may vary depending on the implementation. Other
internal hardware or peripheral devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in addition to or in place of the
hardware depicted in Figures 1-2. Also, the processes of the illustrative embodiments may be

applied to a multiprocessor data processing system.

In some illustrative examples, data processing system 200 may be a personal digital
assistant (PDA), which is generally configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-generated data. A bus system, such as
bus 238 and 240, may be comprised of one or more buses, such as a system bus, an 1/0 bus
and a PCI bus. Of course the bus system may be implemented using any type of
communications fabric or architecture that provides for a transfer of data between different
components or devices attached to the fabric or architecture. A communications unit may
include one or more devices used to transmit and receive data, such as a modem or a network
adapter. A memory may be, for example, main memory 208 or a cache such as found in north
bridge and memory controller hub 202. A processing unit may include one or more processors
or CPUs. The depicted examples in Figures 1-2 and above-described examples are not meant
to imply architectural limitations. For example, data processing system 200 also may be a
tablet computer, laptop computer, or telephone device in addition to taking the form of a

PDA.

In the illustrative examples, server 104 may host a Wiki application. The environment
at server 104 allows clients, such as clients 110, 112, and 114 to collaborate and develop
applications in accordance with an illustrative embodiment. These applications may include,
for example, weather related applications, registrations and rosters for schools, e-mail

applications, and other types of business oriented applications. The different embodiments

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
11

may include processes at the server side, client side, or both in providing a collaborative

environment to develop Wiki applications in accordance with an illustrative embodiment.

The illustrative embodiments recognize that current Wiki applications are not suited
for collaborative development of applications beyond collaboration of text and files as a

knowledgebase or document.

Turning now to Figure 3, a diagram illustrating components for use in generating and
using Wiki applications is depicted in accordance with an illustrative embodiment of the
present invention. In this example, a user may interact with client environment 300 to
generate and use applications supported by Wiki environment 302. Client environment 300 is
a software application or environment executing on a client, such as client 110 in Figure 1.

Wiki environment 302 executes on a data processing system, such as server 104 in Figure 1.

In these examples, a user at client environment 300 may send a request to Wiki
environment 302 for a page. The user makes the request through a browser within client
environment 300 in these examples. Wiki environment 302 returns the page to the user. In
these illustrative examples, the page includes JavaScript that enables the user to manipulate
and select content for a page to be generated. In the illustrative embodiments, these pages are
collaborative Web pages that provide user access to applications. These applications are

collaborative applications that may be used and modified by users at client computers.

In particular, the different illustrative embodiments provide a method and apparatus for

a user to generate an application with functionality beyond that of a collaborative writing tool.

Many of the features in these examples are provided through PHP: Hypertext
Preprocessor (PHP). PHP is a programming language for creating web applications that
execute on Wiki environment 302. PHP is an open source, hypertext markup language
embedded scripting language designed as a high-level tool for generating dynamic web

content.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
12

Depending on the particular implementation, the different features provided in the
illustrative embodiments may be facilitated through the use of a virtual machine, such as a Java
virtual machine (JVM). Also, other scripting languages other that JavaScript may be used to

implement these processes, depending on the particular embodiment.

Turning now to Figure 4, a diagram illustrating a Wiki architecture is depicted in
accordance with an illustrative embodiment of the present invention. In these particular
examples, this architecture is a quite easily done (QED) Wiki architecture. As illustrated, Wiki
environment 400 contains Wiki engine 402. This engine includes request handler 404,
command processor 406, and page composer 408. Request handler 404 receives requests

from clients.

For example, a user may send a universal resource identifier (URI) in the form of a
universal resource locator (URL) to Wiki environment 400. This request is received by
request handler 404 for processing. In these examples, one page is generated for each request
handled by request handler 404. Request handler 404 also generates “page fragments” for
handling AJAX based interactions which are hypertext markup language source fragments
rather than complete hypertext markup pages.

Command processor 406 processes different commands to build a page or page
fragment in response to a request received by request handler 404. Additionally, command
processor 406 renders a page when processing of commands and text fragments has
completed. Page composer 408 is also involved in generating the page request by the user. In
these examples, page composer 408 is employed in layouts, page body content, and script

collection for a page.

Wiki environment 400 also includes ancillary functions 410. In this example, ancillary
functions 410 include lists 412, comments 414, ecmail 416, and attachments 418. With lists
412, a user may generate lists for other users to see. Further, using comments 414, the user
may add commentary or other text to different pages. Attachments 418 allows a user to
attach files to a particular page. Email 416 allows for users to be notified when pages have

been updated or modified, or for a user to send an email to a page as an attachment. Email

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
13

416 also allows one or more users to receive messages regarding changes to a specified page.
Users may subscribe to a rich site summary (RSS) feed of the Wiki to determine when pages

of the Wiki change.

Additionally, Wiki environment 400 contains Wiki commands 420. Wiki commands
420 within the illustrated embodiment contain two types of commands, built-in commands 422
and custom commands 424. Built-in commands 422 are commands or services that are
present within Wiki environment 400. Custom commands 424 reference commands that are
provided through external sources. Basically, these commands allow a user to include and

process data for a page.

In one ore more embodiments, Wiki commands 420 involve the use of a service
oriented architecture (SOA). Such SOA commands allow a user to include services with a
page. In these examples, commands may reference services with well defined interfaces that

are independent of the applications and the competing platforms in which they run.

In the depicted examples, services are software modules. These types of services are
typically based on a standard-compliant interface, such as web service description language
(WSDL). Of course, the services referenced by Wiki commands 420 may involve any type of
interface. These commands may take various forms. For example, the commands may be for
financial, weather, mapping, news and events, searching, government, or international

information,

Database 426, contains information, such as the pages requested and created by users.
Further, revisions of pages, attachments, comments, and other information are stored within
database 426. Information is typically stored in the form of tables 428 within database 426 in

the illustrative embodiments.

Turning now to Figure 5, a diagram illustrating dataflow in rendering a page is
depicted in accordance with an illustrative embodiment of the present invention. In these

examples, a page is rendered on a server when processing of the page is completed and the

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
14

page is ready for transmission to a client. The different components illustrated in Figure 5 are

manipulated through a Wiki engine, such as Wiki engine 402 in Figure 4.

The programming architecture and model illustrated in these illustrative embodiments
allow for visual assembly of Wiki content using a browser on a client. Everything requested
by the client is conceptually a page. For example, a variable is referenced using a universal
resource identifier model, such as a page and variable name. Further, pages are used as data
structures in these examples. Variables are stored for later use. These variables include

session variables, request variables, and persistent variables.

In the illustrative examples, users create structured data though lists. These lists may
be queried, searched, and/or combined. In manipulating lists, the users employ a create,

retrieve, update, and delete (CRUD) process.

Wiki controller 500 receives universal resource identifier 506 from a user. Wiki
controller 500 contains router 502 and object variables 504. Router 502 delegates request
processing to the appropriate request handler. Object variables 504 provide interconnection
between the processing components. For example, Wiki controller 500 has object variables
504 “Wiki” which is a pointer to Wiki object 508. Each object in Figure 5 has object
variables that are references to other resources required for object interaction. Wiki controller

500 is handled by a request handler, such as request handler 404 in Figure 4.

In response to receiving universal resource identifier 506, Wiki controller 500
instantiates an instance of Wiki object 508. As illustrated, Wiki object 508 contains object
variables 510, variables 512, PHP security 514, email check 516, user 518 and page 520.
Wiki object 508 is an instance that is instantiated whenever a request is received and which

acts as a repository for all of the objects used to generate content for page 520.

In these examples, object variables 510 contains the information needed to process
page 520. Variables 512 contain session information stored in session 522. This session
information is information used during user interaction with a page or during the generation of

a page in these examples. More persistent data in object variables 510 are stored in database

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
15

524. Database 524 stores any information that may be used to generate the page or to store

changes made by a user in the depicted examples.

PHP security 514 is a function used to determine whether code identified by a client
may be run as well as to initiate execution of the code. PHP is an open source programming
language that is mainly employed on server side applications. In these illustrative examples,
PHP code may be executed by different objects within a Wiki environment. In these examples,
a user may run PHP code from the client-side, as well as the server-side. Email check 516 is
provided in Wiki object 508 to check for email messages that may be displayed on page 520
when page 520 is rendered and sent to a user. User 518 contains information about the user,

such as user privilege levels, identifiers, and session logs.

Page 526 is a more detailed example of page 520 contained within Wiki object 508. In
this example, page 526 contains object variables 528, attachments 530, process 532, access

534, layout 536, scripts 538 and content 540.

In these examples, object variables 528 contain an instance of variables for page data
structures. For example, a section array may be present to provide for layout information. A
context pointer may reference a root Wiki command. An instance ID may be present in object
variables 528 to reference an internal page ID. These different variables contain information

needed to render a page, such as page 526, to be sent to a user.

Attachments 530 are identifications of attachments that may be presented on a page. If
a user selects an attachment, the attachment can then be downloaded to the user at that time.
Process 532 contains the code used to generate a page to be delivered to the user. In these
illustrative examples, a process is a method, for example, to identify content for the page,
identify any attachments and identify any scripts that may be included in the page to be sent to

the user.

Access 534 is used to determine what access privileges the user has with respect to
content to be placed on the page. Such access privileges are identified in one embodiment

utilizing access control lists (ACLs) 542. Content to be included may vary for page 526

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
16

depending on the access that a particular user, requesting the page, has. This user is the user
requesting page 526. In generating content for page 526, object variables 528 references Wiki
command context 544. This command context contains object variables 546 and content 548.
Object variables 546 represent an in-memory version of a page’s contents. These variables
include a list of the commands and a list of text fragments that comprise the current page.

Content 548 represents the object methods used to manipulate the page content.

In executing process 532 in page 526, a set of commands from commands 550 are
identified through Wiki command context 544. Wiki command context 544 generates a set of
command instances from commands 550. Wiki command context 544 parses content 540 and
loads the commands to create a tree structure of fragments, such as fragment 552. Fragment
552 also contains object variables 554 and content 556. Fragment 552 is a portion of page
526 in un-rendered form. In this example, Wiki command context 544 contains fragments that
represent the structure of the commands that are to be included in the page. These are
commands that may be user-manipulated. When process 532 is complete, page 526 is sent
down to a requesting user. Data hub 558 is saved for later use in the interaction. Also, in this
example, data hub 558 is restored when a user interacts with a component within page 526
and contians processes and a data structure. The processes within data hub 558 are used to
identify what commands for a page within fragment 552 are consumers of any data or
commands that may be received by data hub 558. Additionally, data hub 558 will return

results to the client. These results are sent to a data hub located on the client.

Turning now to Figure 6, a diagram illustrating components on a client and server for
a Wiki application is depicted in accordance with an illustrative embodiment of the present
invention. In this example, client environment 600 is a more detailed illustration of client
environment 300 in Figure 3. Client environment 600 in these illustrative embodiments may
take the form of a client web browser or some other application that has connectivity to a
network, such as the Internet. Wiki environment 601 executes on a data processing system,

such as server 104 in Figure 1.

In this example, client environment 600 receives page 602. Page 602 includes a

plurality of components, such as header 604, footer 606, left margin 608, right margin 610,

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
17

menu 612, and body 614. Header 604, footer, 606, left margin 608, and right margin 610 are
page components for laying out pages. These components include various content, such as

hypertext markup language (HTML) content.

Menu 612 provides access to actions or functions that a user can perform on page 602
or in conjunction with page 602. For example, menu 612 can include a menu item to send a
request to the server that, when granted, would permit the user to edit page content in a

WYSIWYG editor.

In this example, different types of content are found within body 614. In this example,
body 614 contains HTML content 616, date information 618, and variable 620. Body 614 also
contains commands 622, 624, 626, 628, 630, and 632. Commands 622, 624, 626, 628, 630,
and 632 are Wiki commands, such as Wiki commands 420 in Figure 4. These commands are
commands for a Wiki application presented though page 602. Commands 622, 624, 626, 628,
630, and 632 along with data hub 634 provide for dynamic content within page 602.

Data hub 634 is a data hub object in a Wiki environment, similar to data hub 558 in
Figure 5. However, data hub 634 is a client-side data hub. Data hub 634 includes attributes
and a set of methods for sending and receiving event objects between the commands in page
602 and those in Wiki environment 601. Data hub 634 includes attributes and a set of methods
for sending and receiving events and/or data between the commands in page 602 and those

within Wiki environment 601.

An event object is a data object that defines an event that is transmitted between
commands associated with a Wiki page, such as page 602. An event object can include, but is
not required to include, event data. In these examples, an event is a message indicating that
something has happened, such as an occurrence or happening of significance to a task,
program, or command. For example, an event can include receiving user input, gathering a
minimum required set of arguments, completion of a command operation, a given time

occurring, or any other activity, receipt of input or data, occurrence, happening, or activity.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
18

The illustration of the different types of content within page 602 is presented for
purposes of depicting the manner in which a Wiki application may be presented to a user.
This illustration, however, is not meant to imply limitations as to the type and scope of content
that may be used in a Wiki application. For example, page 602 may include other additional
content, commands, and/or components not illustrated in Figure 6 without departing from the

scope of the illustrative embodiments of the present invention.

A user may manipulate content within page 602 to use the Wiki application and/or
change the manner in which the Wiki application performs. In other words, the user may add
content or remove content, such as commands, from page 602 though manipulating a
graphical representation of these commands to generate or modify content and/or functionality

for page 602.

In this example, Wiki environment 601 is a Wiki environment, such as Wiki
environment 302 in Figure 3 and Wiki environment 400 in Figure 4. Wiki environment 601
includes commands 640-650 in the form of command trees or abstract syntax trees.
Commands 640-650 are updated in the Wiki environment. Commands 640-650 and
commands 624-632 differ in implementation but refer to similar command. For example,
command 632 is associated with a client environment and is updated in client environment 600
by a user. Corresponding command 650 is updated in Wiki environment 601 by means of
asynchronous JavaScript and extensible markup language using AJAX 636 over a network

connection.

AJAX 636 is a web development technique for creating interactive web applications,
such as Wiki pages. AJAX 636 exchanges small amounts of data with an associated host
server behind the scenes so that an entire page is not reloaded each time a user makes a
change to a requested page. AJAX 636 is meant to increase the interactivity, speed,
responsiveness, and usability of a page, such as page 602. Although the illustrative
embodiments depict exchanging data via AJAX or JSON, any communication protocol agreed
upon between a given set of components may be used to exchange data in accordance with the

illustrative embodiments of the present invention.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
19

Commands 640, 642, 644, 646, 648, and 650 in Wiki environment 601 interact with
data hub 638. Data hub 638 is a server-side data hub, such as data hub 558 in Figure 5. In
this illustrative example, data hub 634 of client environment 600 and data hub 638 exchange
events and/or data via AJAX 640. AJAX 636 and 640 may communicate using extensible
markup language (XML) as the format for transferring data between client environment 600
and Wiki environment 601, although any format will work, including preformatted hypertext
mark-up language (HTML), plain text, and JavaScript object notation (JSON). JavaScript
object notation is a lightweight computer data interchange format. JSON is a subset of the

object literal notation of JavaScript but its use does not require JavaScript.

The illustrative embodiments provide a computer implemented method, apparatus, and
computer usable program code for an application Wiki. A Wiki application is a collaborative
web environment that allows single or multiple users to efficiently integrate static and
interactive content. A Wiki page is a page within the Wiki application. The illustrative
embodiments of the present invention allow a user to easily create and manage Wiki pages.
The user may edit a Wiki page by dragging and dropping live content. Live content is
dynamic content that is being updated based on changing information. For example, live
content may include a weather graphic for a specified geographic location that is updated by a

server linked to a weather radar station.

Wiki pages are saved in a page tree view. The page tree view is a content hierarchy
that includes pages and sub-pages. The page tree view may be referred to as a Wikispace,
page space, tree, or other content hierarchy. Each page within the present description may be
both a content provider and container for other sub-pages as required. The page tree view
differs from other file structures because all of the pages may include content and
simultaneously be viewed as containers. The pages in the page tree view are distinguished by
the name assigned to each page. The pages include nodes and leaf nodes. Nodes may display
content and function as folders or containers for other Wiki pages. Leaf nodes strictly provide

content.

Turning now to Figure 7, an exemplary screen of display for dragging live content is

depicted in accordance with an illustrative embodiment of the present invention. Wiki page

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
20

700 is a page, such as page 602 in Figure 6. Wiki page 700 may be specifically edited in a
design mode. For example, a user may check a quite easily done (QED) check box indicating
that the Wiki page is being edited. In design mode, Wiki page 700 may display palette 702.
Palette 702 is a toolbar or a set of tools used to collaboratively manipulate a web page. For
example, the user may use palette 702 to select live content for display in body 704 of Wiki
page 700. Body 704 is the portion of Wiki page 700 that may be customized and edited to

display user-specified content.

Palette 702 may include any number of icons 706, 708, and 710. Each iconis a
graphical representation of an available command. Palette 702 may be used to display content
which may include commands, data, page content, Wiki utilities, data services, customized

lists, and any number of other features.

Icon 706 may be, for example, a live link to a Google™ search tool in the form of an
icon. Icon 708 may be a live link to Google™ maps (Google, Google Search, and Google
Maps are trademarks of Google Corporation in the United States, other countries, or both).
Icon 710 may be a rich site summary or really simple syndication (RSS) feed. Rich site
summary is a protocol and application of extensible markup language (XML) that provides an
open method of syndicating and aggregating web content. Using rich site summary, a user
may create a data feed that supplies headlines, links, and article summaries from a web site.
Users may have constantly updated content from web sites delivered to Wiki page 700 via a
news aggregator in body 704. A news aggregator is a piece of software specifically tailored to

receive these types of feeds.

In one example, a user may display a Google® map in body 704 by dragging icon 708
from palette 702 onto body 704. The user may further customize the content displayed by a
Wiki command using a property editor as will be described in Figure 8. Existing Wiki
commands in the page content display eye-catchers, such as eyecatcher 712, that indicate

properties of the existing Wiki command may be edited.

Turning now to Figure 8, a screen of display for editing properties of a command is

shown in accordance with an illustrative embodiment of the present invention. A modern

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
21

application Wiki needs a visual means of editing Wiki “markdown" command attributes that
does not require the user to edit the page, allowing the user to modify command settings

without a jarring page refresh and conceptual context switch.

An application Wiki reduces the burden of a user having to know or learn hypertext
markup language markup. In these examples, an application Wiki introduces shorthand syntax
for creating lists and tables and other hypertext markup language constructs which uses a
combination of short character sequences, line position, and white space. For example, a list
item is defined by a single asterisk (*) in the first column of a line, followed by a single space
versus the tags required in hypertext markup language. The
shorthand syntax introduced by the application Wiki is called “markdown” to emphasize the
difference between creating content with hypertext markup language and in a Wiki
environment. Wiki command classes support the generation of a visual property editor for

editing “markdown” commands.

Wiki page 800 is a partial view of a Wiki page, such as Wiki page 700 in Figure 7.
Palette 802 is similar to palette 702 in Figure 7. Wiki page 800 contains Wiki commands
which display eye-catchers 804 and 806, named stores and list.

Properties of Wiki commands displaying eye-catchers 804 and 806 may be edited using
property editor 808. Properties are the attributes, data, fields and other information used by
the command represented by the eye-catcher to display content on Wiki page 700 in Figure 7.

Property editor 808 allows a user to customize the information displayed by the live content.
Property editor 808 is comprised of hypertext markup language and JavaScript which is
downloaded, along with Wiki page content to the browser client. For example, a user may
specify a specific address for displaying a Google® map. Similarly, the user may make queries

and limit the information displayed in Wiki page 800.

The user may use property editor 808 to enter width and height values for Wiki
commands that allow their visual representation to be sized. Additionally, property editor 808

may be used to enter scaling factors, names of data sources, and maximum and minimum

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
22

values are some other examples. Property editor 808 is used to surface points of variability of

a Wiki command to the user.

For example, process 532 in Figure 5 may generate a default property editor for each
command as necessary. Each Wiki command may contribute a custom property editor to
surface the unique points of variability for the Wiki command. Selecting eye-catchers 804 or

806 for a command causes the property editor for the associated command to be displayed.

Turning now to Figure 9, a page tree view is depicted in accordance with an
illustrative embodiment of the present invention. Page tree view 900 is a visual storage
structure for visually displaying the organization of Wiki pages to a user. Page tree view 900
shows the names or tags of Wiki pages within the Wiki application. Tags are user-assigned
labels that are used to categorize content of a Wiki. Each page in these examples is a node or

leaf node.

Wikispace 902 is the base page of page tree view 900 and may also be used to refer to
the content of page tree view 900. Page tree view 900 is different from other file systems and
data structures because Wikispace 902 and the other base pages or nodes including test 904,
testing 906, toplevel 908, and Wiki 910 may both display content and function as folders or
containers for other Wiki pages. A graphical indicator, such as a “+” sign, may indicate a
Wiki page is a node. Wikispace 902 uses a flat hierarchy where each page represented by a
node may be a container and content provider. For example, Wikispace 902 includes content
but may also be used to link to Wiki sub-pages or leaf nodes including helloworld 912,
homepage 914, and menutest 916. The base pages in page tree view 900 may be displayed as

both content providers and page containers in these examples.

The user may use page tree view 900 to navigate the Wiki pages. For example, by
clicking on a Wiki page, the contents and/or sub-pages of the Wiki page are displayed. As a

result, the user may easily navigate the Wiki by selecting the page name.

Turning now to Figure 10, a screen of display for a Wiki page is shown in accordance

with an illustrative embodiment of the present invention. Wiki page 1000 is a page, such as

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
23

Wiki page 602 in Figure 6. A user may have used an eye-catcher in a palette, such as

eye-catcher 708 and palette 702 in Figure 7 to drag live content into Wiki page 1000.

For example, a business traveler may have previously modified Wiki page 1000 to
display list of destinations 1002 for an upcoming business trip. By clicking on each location
within list of destinations 1002, the Wiki page displays national map 1004 for the address,
weather forecast 1006, as well as local alerts 1008. The customized information allows the
user to plan for weather and other circumstances of the business trip as well as visually picture
the location of each meeting. Local alerts 1008 may include links to ongoing events and new
stores for the specified geographic location, informing the user of local events that may be

relevant to the business meeting.

The illustrative embodiments further provide a computer implemented method,
apparatus, and computer usable program code for processing a web page for display in a Wiki
environment. Added components are able to interact with other components before rendering
the final views. Components are enabled to discover new attributes and parameter settings
from the page serve context. A validation mechanism is used for components to validate
inputs and report errors before rendering final views. Targeted events are processed within
the lifecycle of the page serve sequence. Multiple versions of the same component are

managed on a single server.

Turning now to Figure 11, a block diagram of an abstract syntax tree is shown in
accordance with an illustrative embodiment of the present invention. Abstract syntax tree
environment 1100 includes various components used to form and process abstract syntax tree

1102.

Wiki command context (WCC) 1104 is an object that creates abstract syntax tree 1102
from the markup language of a Wiki page, such as page 602 in Figure 6. Wiki command
context 1104 is the parent of the abstract syntax tree of commands. Wiki command context
1104 is responsible for loading the commands for a page or source fragment. Abstract syntax
tree 1102 is composed of commands, such as commands 640, 642, 644, 646, 648, and 650 in

Figure 6 for the Wiki source. A tree is a data structure including a source or base branching

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
24

out to include leafs or nodes. The interconnecting nodes in the tree represent commands that
are dependent on other interconnected nodes. Nodes, such as nodes 1106-1110, represent

different commands in abstract syntax tree 1102.

For example, node 1106 is named Accordion and performs the step necessary to
internalize the attributes and variables assigned by the user to the accordion and emit the
hypertext markup language fragment for the accordion targeting the client browser
environment. Node 1108 is named Template and is a child of node 1106, named Accordion.
Node 1106 provides the name of a tab within the Accordion to display on the client browser
environment. Node 1110 is named Forecast and is a command for inserting a weather forecast

in the Wiki page.

Data hub 1112 is a data hub, such as data hub 638 in Figure 6. Data hub 1112
processes abstract syntax tree 1102 by walking abstract syntax tree 1102 in a pre-order
traversal and invoking the particular function at each node. For example, node 1114 has a
function for providing a latitude and longitude. Node 1114 may be a Google® map command
that provides the latitude and longitude for a specified address.

Depending upon the complexity of the page, abstract syntax tree 1102 represented by
Wiki command context (WCC) 1104 may contain two types of child nodes: first, those
previously described and second, other abstract syntax trees whose root is another Wiki
command context. Another Wiki command context is used when processing uniform resource

indicator requests that generate other Wiki source fragments that also need to be processed.

The illustrative embodiments of the present invention further provide a computer
implemented method, apparatus, and computer usable program code for extending the
capabilities of a Wiki environment. A Wiki is a collaborative web page that allows single or
multiple users to efficiently integrate static and interactive content. An object-oriented
framework is used to define how objects are extended for easily creating collaborative
environments. Wiki environments need to support a fundamental mechanism to extend the

core environment without requiring changes to the core runtime components.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
25

The illustrative embodiments include client and server side elements that process the
Wiki commands to manage a deployed environment including any number of Wiki commands.
An abstract set of base classes and a core processing engine within the Wiki environment is
used for processing concrete implementations of the Wiki command classes as further
described. The core processing engine supports the processing and lifecycle management of
the core runtime components for extending the capabilities of the Wiki environment. The core

processing engine is an engine, such as Wiki engine 402 in Figure 4.

Turning now to Figure 12, a block diagram of commands is depicted in accordance
with an illustrative embodiment of the present invention. Wiki commands are commands used
to implement the functions and processes of the Wiki, such as Wiki environment 302 in
Figure 3. Figure 12 describes a Wiki command metadata interface and associated commands
1200. Commands 1200 are commands, such as command 550 in Figure 5.

[0002] Commands 1200 include various command categories which may include catalog
1202, lifecycle 1204, property edit 1206, and page processing 1208. Only a few examples are
shown in commands 1200. For example, commands include Get/setCategory 1210, getName
1212, and getDescription 1214. Get/setCategory 1210 describes the category the Wiki
command belongs to. getName 1212 is the simplified name of the component. getDescription
1214 is the textual description of the Wiki command intended to help the user understand the

command.

Catalog 1202 may also include other commands such as:

getHelp is help text presented when the user hovers over the Wiki command in the
page or palette,

getSample returns a sample Wiki command source used to insert the command,

getlcon returns the icons to be displayed for the Wiki command in the palette,

getDragContent returns the Wiki source fragment used during the initial drag off the
palette for the Wiki command, and

getDropContent returns the Wiki source fragment inserted when the Wiki command is

dropped on the initial placement.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
26

LifeCycle 1204 may include commands, such as wasSaved 1216, wasDeleted 1218,
and wasCopied 1220. wasSaved 1216 is called after the command was saved in the server
environment. In these examples, wasDeleted 1218 is called when the command has been
removed from the server page environment. wasDeleted 1218 provides a means for Wiki
commands to clean up persistent resources associated with the Wiki command on the given
page. wasCopied 1220 is called when a page containing a given Wiki command has been
copied to another name. wasCopied 1220 provides a means for Wiki commands to apply any

persistent changes necessary on the newly copied page.

Lifecycle 1204 may also include other commands such as:

getVersion returns the version of the Wiki command,

getParameters returns the list of parameters associated with the Wiki command,

aboutToSave is called when the command is about to be saved to the server
environment, providing the command an opportunity to carry out any activities necessary to
persist the command,

configure is called when the command needs to be configured,

get/setPluginData saves/gets data associated with the Wiki command during the
configure command,

wasUndelete is called when the command has been placed back on a given page after
previously being deleted from the page,

wasRenamed is called when the page containing the Wiki command has been renamed,

aboutToExport is called just before the Wiki command is exported to the saved format
of the Wiki, and

waslmported is called just after the Wiki command is imported from the Wiki save

format.

Property edit 1206 may include commands, such as generatePropertyEditor 1222 and
allowEdit 1224. In the illustrative embodiment, generatePropertyEditor 1222 is called by the
core engine to permit the command to generate a client side editing visual. If
generatePropertyEditor 1222 is not implemented, a default property editor is generated for

editing the Wiki command’s parameters. A property editor is an interface that allows a user to

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
27

enter parameters, values, text, variables, and other data for the Wiki command. allowEdit

1224 determines if the Wiki command is permitted to be edited.

Page processing 1208 may include commands, such as render 1226, drawEyeCatcher
1228, refreshOnUpdate 1230, and getTargetDIV 1232. render 1226 is called when the Wiki
command needs to display itself in the output stream for hypertext markup language.
drawEyeCatcher 1228 is called when the command is drawn on the page to provide the
content which can be clicked to manipulate the Wiki command on the client, usually invoking
the property editor on the selected command. The eye catchers are used to track a singleton
editing capability. refreshOnUpdate 1230 is called to determine if the whole page should be
refreshed after the command’s arguments have been updated using the property editor.
getTargetDIV 1232 returns the name of the hypertext markup language DIV to be updated.
DIV represents a division/section in a hypertext markup language file. Each command is
displayed within a DIV on the client browser. A DIV has an associated identification which
the Wiki engine will generate automatically or the command may provide one by implementing

the getTargetDIV protocol.

Page processing 1208 may also include other commands such as:

getDestinationDiv returns the name identification of the hypertext markup
language/DIV to be updated when the command is re-rendered on the page. Rendering a
command is reproducing or displaying encoded data in a specified manner. For example, the
eye-catcher is rendered by generating the hypertext markup language rendered in the Wiki
page to display the eye-catcher.

getArguments returns the list of actual arguments passed to the command for
processing. Arguments contain the 'real’ values of the parameters returned by the
getParameters call, which returns the formal argument list of the command.

refreshOnlnsert is called to determine if the whole page should be refreshed after the
command has been placed on the Wiki page.

areArgumentsSet returns a value specifying whether all the input arguments for the
Wiki command have been satisfied so that the command may 'fire’ its invoke method to
performs model actions.

it is called to initialize the internal Wiki command.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
28

The methods and commands described above are used to provide the processes in

Figures 31-43.

Turning now to Figure 13, a diagram showing property editing components is
depicted in accordance with an illustrative embodiment of the present invention. Property
editing system 1300 includes eye-catcher 1302, property editor 1304, and selector editor
1306.

Eye-catcher 1302 is a graphical representation of a selected command. For example,
eye-catcher 1302 may represent a Google™ Map command for displaying a map of a specified
address. Eye-catcher 1302 may be clicked on in an icon form to invoke property editor 1304

allowing a user to edit a selected command.

Property editor 1304 is used to establish attributes of the command. For example, the
attributes may specify the type of information, properties, parameters, binding information for
the attribute, and default and allowable values. For example, property editor 1304 may allow
a user to specify an address for the Google™ Map to generate the requested map. Selector
editor 1306 is a specialized property editor that allows a user to establish specific attribute
metadata. For example, a user may be able to specify an editing address using selector editor
1306. While establishing attributes in property editor 1304 a specific attribute may
automatically open selector editor 1306 to enter more specific information for an attribute or

field in property editor 1304.

The illustrative embodiments of the present invention further provide a computer
implemented method, apparatus, and computer usable program code for processing a request
for a Wiki page received from a client-side data hub on a remote data processing system at a
server-side data hub. A server-side data hub is a data hub object instance on the server that is
instantiated when the page request is received by the server. The server-side data hub is
associated with a particular page instance. Thus, each time the server receives a request from
the client associated with the page, such as to modify or update the page, the instance of the
server-side data hub associated with the particular page can be retrieved and loaded to process

the request.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
29

The server-side data hub includes attributes and a set of methods. This set of methods
is one or more methods on the data hub, which are used to send events from a producer
command on the server to a set of consumer commands associated with the instance of the
collaborative application. The set of consumer commands may be located either on the

server-side, on the client-side, or both in these examples.

A consumer command is a command that needs to receive or wants to receive an event
and/or data for processing and/or performing a function of the command. A consumer

command registers with the data hub to receive event objects associated with a given topic.

For example, a search component needs or wants to receive search input terms to
perform the search-function of the search component. Therefore, the search component is a
consumer of search input terms. The search command is therefore a consumer of events

related to search terms and available topics.

A consumer command can also be referred to as a listener command because the
consumer command is listening or waiting for events related to one or more specific topics. In
the above example, the search component is listening for topics related to available search

terms.

In these examples, a set of consumers includes a single consumer as well as two or

more consumers.

The client-side data hub is created at the client when the requested page is received at
the client. This client-side data hub is associated with an instance of a collaborative

application, such as a Wiki application.

The utilization of server-side data hub and a corresponding client-side data hub enable
the Wiki commands associated with the requested page to interact with greater ease during
processing of the page request by routing events transmitted between commands through the

server-side data hub and/or the client-side data hub.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
30

In accordance with the illustrative embodiments of the present invention, a server-side
data hub and/or a client-side data hub can be utilized to route events between commands in
any application using an eventing mechanism. An eventing mechanism is a mechanism that
permits modules in an application, such as Wiki commands, to communicate with other
modules in the application. For example, a web browser uses an eventing mechanism. In
addition, web applications, such as email components and newsreaders, also utilize an eventing

mechanism.

Turning now to Figure 14, a diagram illustrating a data flow between commands on a
client and server for a Wiki application is depicted in accordance with an illustrative
embodiment of the present invention. Server 1400 is a server, such as server 104 and 106 in
Figure 1. Server 1400 is part of a Wiki environment, such as Wiki environment 302 in

Figure 3, Wiki environment 400 in Figure 4, and Wiki environment 601 in Figure 6.

Data hub 1402 is a server-side data hub, such as data hub 558 in Figure 5 and data
hub 638 in Figure 6. Data hub 1402 is created on server 1400 when a request for a page is
received from client 1408. Thus, server-side data hub 1402 is instantiated upon receiving a
request from a client-side data hub. Server-side data hub 1402 is an instance of a data hub
object having attributes and methods to propagate or route events between commands in the
Wiki environment. The set of methods on server-side data hub 1402 are used to process

events and commands associated with the page request received from the user on client 1408.

Wiki command 1404 is a Wiki command object present within the Wiki system, such
as commands 422 in Figure 4, command 550 in Figure 5, and commands 640-650 in Figure
6. Wiki command 1404 allows a user to include data in a page and/or process data for a page,
or any other functionality associated with the requested Wiki page. In this example, Wiki
command 1404 is processed by a page process loop of a Wiki page object, such as Wiki page
object 526 in Figure 5.

Data hub 1402 determines if all the required data and/or input values required by the
argument parameters of Wiki command 1404 are present. If all the required data and/or input

values are present, data hub 1402 triggers an invoke method on Wiki command 1404. The

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
31

invoke method triggers Wiki command 1404 to fire event 1406 to server-side data hub 1402.

Event 1406 is an event object defining an event.

In this illustrative example, event 1406 is fired by Wiki command 1404 on server 1400.
However, in accordance with the illustrative embodiments of the present invention, event 1406
can also include an event received by server-side data hub 1402 from client-side data hub
1410. In such a case, event 1406 would be an event fired by a command on the client, such as
event 1407, which is an event object fired by client-side Wiki command 1412. In accordance
with another illustrative example, event 1407 can include an event generated by client-side
Wiki command 1412 and sent to client-side data hub 1410 for processing on the client or

routing to server-side data hub for processing on server 1400.

Upon receiving event 1406 from Wiki command 1404, data hub 1402 sends event
1406 to an event queue for processing. An event queue is a buffer or data structure for

storing event objects until the event object is processed.

During a process events phase, server-side data hub 1402 processes event 1406.
During the processing of event 1406, server-side data hub 1402 determines if any commands,
such as Wiki command 1404, are registered as consumer commands of event 1406. A
consumer command is a command that requires an event associated with a given event topic.
An event topic is a subject matter or theme associated with an event object. For example, an
event object fired as a result of a user entering a search term would have a “search” or “search

available” event topic.

The consumer command registers with a data hub as a consumer command for the
given topic. Thus, when an event object for the given topic is received by the data hub, the
data hub is able to send the event to the set of registered consumer commands for the given

event topic.

A registered consumer command is a command that has registered as a consumer of
events of a given topic. For example, a display command aggregates sets of data for a topic

such as accident. This command reports to display on a map display, will register with the

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
32

data hub as a consumer command for the topic accidents. When the data hub receives an
event for accidents, the accidents event object will be sent to all consumer commands
registered for the topic accidents, including the display command. Once the display command
receives the accidents topic event, the display command will consume or use the data to
generate a map display showing the accident data or update a previously displayed map to

show the new accident data.

Data hub 1410 sends event 1406 to Wiki command 1412 for processing. Data hub
1410 determines if all of the required data and/or input values for a given argument/parameter
required by Wiki command 1412 to fire are present in Wiki command 1412. If all of the
required data and/or input values are present, data hub 1410 triggers an invoke method on
Wiki command 1412. In response to data hub 1410 calling the invoke method on Wiki
command 1412, Wiki command 1412 sends or fires event 1407 to data hub 1410 for
processing. When event 1407 is completely processed, data hub 1410 will send event 1406 to
a browser or client for display. An event is completely processed when the event is in a

proper format for display at a browser, such as hypertext markup language code.

Thus, the illustrative embodiments provide a computer implemented method,
apparatus, and computer usable program code to process a request for a page. A server-side
data hub receives the request for the page from a client-side data hub on a remote data
processing system. The client-side data hub is associated with an instance of a collaborative
application. The server-side data hub processes the request during the initial page render
process using a set of methods. The set of methods is used to send events from a producer
command on a server to a set of consumer commands associated with the collaborative

application.

Turning now to Figure 15, a diagram illustrating a data flow between commands on a
server during an initial page render process is depicted in accordance with an illustrative
embodiment of the present invention. Data hub 1500 is a server-side data hub, such as data
hub 558 in Figure 5 and data hub 638 in Figure 6. In this illustrative example, data hub 1500
is implemented in PHP: Hypertext Preprocessor (PHP). Wiki command producer 1502 is a

command associated with the server. A producer is a Wiki command component that

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
33

provides data that can be used or consumed by another Wiki component. In this illustrative
example, Wiki command producer 1502 registers as a producer of an event for the topic
“cars”. To register Wiki command producer 1502 as a producer of topic “cars,” data hub
1500 adds an identifier for Wiki command producer 1502 to an object variable for producer

identifiers associated with the topic “cars.”

Wiki command consumer 1506 is a command associated with the server. Wiki
command consumer 1506 registers as a consumer for topic “cars” 1508 with data hub 1500.
To register Wiki command consumer 1506 as a consumer of topic “cars,” data hub 1500 adds
an identifier for Wiki command consumer 1506 to an array of consumer command identifiers

in a consumer object variable on data hub 1500.

Wiki page 1510 is an object having a process loop associated with a given requested
page being loaded in the Wiki environment. During the init phase, the server calls an init
method to initialize all commands associated with the given requested page, such as Wiki
command producer 1502. Upon initialization, the commands register with the data hub as
producer commands, such as Wiki command producer 1504, or consumer commands, such as

Wiki command consumer 1506.

Wiki command producer 1502 retrieves data and fires an event with the topic
“cars/available” when WikiCommand producer 1502 has data and/or an event ready to fire.
When Wiki command producer 1502 fires the event topic “cars/available” event 1512, the
event is sent to data hub 1500. Data hub 1500 adds the topic “cars/available” event to an
event queue 1514 in data hub 1500. After processing the topic “cars/available” event from the
event queue, the topic “cars/available” event is sent to all consumers that registered for the

event topic “cars.”

The Wiki page process loop of the Wiki page object calls the first processEvents
method. During this process events phase, the data hub processes events in the event queue on
server-side data hub, including the “cars/available” event object fired by Wiki command
producer 1502. Data hub 1500 retrieves event “cars/available” from the event queue. Data

hub 1500 calls a callback method on each command registered as a consumer for the event

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
34

topic “cars” 1518, including Wiki command consumer 1506. The event is passed to Wiki
command consumer 1506 as an argument/parameter to the callback method. The consumer

callback method processes the event object by executing code inside the callback method.

If additional processing is present to be performed after initializing all components, but
before rendering the requested page, each command has an opportunity to execute code by
calling a discover method. The second processEvents phase 1520 is called to process any

events that may have fired during the discover phase.

Finally, Wiki page object 1510 calls the render phase on all commands. During the
render phase, all commands should have all of their data available so that the hypertext
markup language code can be generated and sent to the client for rendering as the requested
page at a client browser. If WikiConsumer 1506 is a table display of “cars” data generated by

producer, the render phase could generate a table of cars as shown in Figure 16.

Referring now to Figure 16, a diagram illustrating Wiki page 1600 generated in
response to a page request from a user is shown in accordance with an illustrative embodiment
of the present invention. As discussed above, all commands associated with a page can
register as producers and consumers with a data hub. As events are produced by the
producers, the events are used by the consumers to render hypertext markup language or
JavaScript for rendering an entire page or page fragments. The hypertext markup language or

JavaScript is sent to the client browser for display.

Thus, all interactions ripple through the data hub during a Wiki page process loop. As
a result of these interactions, all events are handled at render time. Therefore, the initial
rendered page, such as page 1600, fully depicts the correct view of the Wiki page. In other
words, the client does not have to fire events to modify the initial rendered page to make the
page view correct because all events associated with loading a new page from the server are

processed through the server-side data hub.

When an initial request for a page is processed at a server, the server generates

hypertext markup language code and/or JavaScript for the requested page. When the

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
35

hypertext markup language code and/or JavaScript is received at the client, the new page is

loaded at the client for display in the client browser.

During the page load process, the hypertext markup language code and/or JavaScript
code for the page creates a client-side data hub object. The client-side data hub object
registers all commands on the client with the client-side data hub as producer commands and
consumer commands, just as the commands on the server registered with the server-side data

hub during the initial page process loop at the server.

If a command interaction occurring at the client after the initial page is loaded can be
completely contained and processed on the client, the command interaction is not sent to the
server in these examples. In other words, Wiki commands interact on the client to modify the
displayed page to reflect additional input or events triggered by user actions or other
occurrences at the client. If a component interaction can be completely processed on the
client, the client generated event is not sent to the server. This event may be capable of
processing entirely at the client. If this is the case, then the server does not have to be
involved in the processing of the event in any way. In the depicted embodiments, the term
modify includes updating a page or otherwise altering a page to reflect new data and/or new

page content.

Thus, the illustrative embodiments of the present invention provide a computer
implemented method, apparatus, and computer usable program code for a client-side data hub
for processing events. The client-side data hub receives an event for a given topic. The event
is generated by a producer command associated with the client. The client-side data hub
processes the event to identify a set of consumer commands for the given topic. The
client-side data hub sends the event to a set of consumers for the given topic. The client-side
data hub receives new page content from one or more consumers in the set of consumers,

wherein the displayed page is updated with the new page content to form an updated page.

Turning now to Figure 17, a diagram illustrating a rendered page displayed at a client
browser is depicted in accordance with an illustrative embodiment of the present invention.

On rendered page 1700, search input from component 1702 has registered as a producer of

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
36

the event topic “search/available” with the client-side data hub. An echo consumer component
1704 has registered as a consumer of the topic event “search/available” with the client-side
data hub. Consumer component 1704 functions to echo what a user types into search

component 1702 when the search component fires a “search/available” event.

Figure 18 is a diagram illustrating a data flow between components on a client-side
data hub after a new page is loaded and displayed at a client browser in accordance with an
illustrative embodiment of the present invention. Data hub 1800 is a client-side data hub, such
as data hub 634 in Figure 6, and data hub 1410 in Figure 14. Data hub 1800 is created on
the client during a page load. In this illustrative example, client-side data hub 1800 is

implemented in JavaScript and hypertext markup language.

Wiki command producer 1802 is a command on the client that provides data that can
be consumed by another Wiki command or wants to notify another component that a
particular event has occurred. Wiki command producer 1802 registers 1804 with data hub
1800 as a producer for the topic “search/available.” In this example, Wiki command producer

1802 is search component 1702 in Figure 17.

Wiki command consumer 1806 is a command on the client that consumes an event
object, consumes data, or wants to be notified of an event. Wiki command consumer 1806
registers as a consumer for the event topic “search/available” 1808 with client-side data hub
1800. In this example, Wiki command consumer 1806 is echo consumer component 1704 in
Figure 17. Wiki command consumer 1806 is a client version of a corresponding Wiki
command object on the server. Wiki command consumer 1806 on the client includes all the
data of the Wiki command object on the server, but it does not contain all of the methods

found in the corresponding Wiki command on the server.

Wiki command producer 1802 fires the “search/available” event when a user presses
the “go” button after entering a search term, such as “Wiki” search term shown in Figure 17.
Wiki command producer 1802 creates an event object, attaches data to the event object, then
fires the event object by calling a fireEvent method 1810 on data hub 1800 to send the event

to data hub 1800. Unlike the server-side data hub which queues events at the data hub and

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
37

processes the events during a processEvents phase, client-side data hub 1800 does not send
the event to an event queue. Instead, client-side data hub 1800 immediately processes the

event and sends the event to a set of consumers registered for the event.

In this illustrative example, the echo component callback 1812 is called by data hub
1800. Wiki command consumer 1806 modifies the rendered page, such as page 1700 in
Figure 17, using JavaScript to insert the text “Search term: Wiki” into the displayed page. An
exemplary illustration of JavaScript used to dynamically update the content of the rendered
page by Wiki command consumer 1806 includes as follows:

var divld = document.getElementByld('echoDivld');

divld.innerHTML = "Search term:

"+event.getValue();

However, in accordance with an illustrative embodiment of the present invention, the
rendered page can be modified by Wiki command consumer 1806 using any known or
available method for modifying a page, including, but not limited to, document object model

(DOM) manipulation.

However, if the interaction requires the server to be involved in the processing of the
event, the event is sent to the server. It is likely that an event fired on the client will require
the event to be sent to the server data hub, because the data either lives on the server or is

retrieved by the server.

In other words, after a page is displayed at the client, a new event or new data is
received from a user. This event may require processing in whole or in part at the server. If

this is the case, then the client sends the event to the server prior to updating the displayed

page.

Data hub objects on the client and server enable Wiki components and commands to
interact on the client, interact on the server, and use topic based eventing mechanisms to

effectively wire/connect the components. When the result of a user interaction requires the

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
38

server to be accessed to perform some operation or process not possible on the client, the

client-side data hub sends the event to the server-side data hub.

For example, if the server owns or has access to data required for a given user
interaction, such as a database table, that the client does not own or have access to, the event
is sent to the server. In addition, if the server is needed to retrieve data needed for a user
interaction, such as a data feed, the cvent is sent to the server. In these cases, the event is sent
to the server for handling/processing. Once handling/processing of the event on the server is
complete, the server sends updated page content to the client for modifying the displayed page

at the client.

For example, a search component is a component that accepts input from a user.
Based upon the text entered by the user, the search text is sent to the server. The server
performs the search. The server renders the results of the search using a table component.
The rendered table generated by the table component on the server is returned to the client for

display.

The illustrative embodiment of the present invention also provide a computer
implemented method, apparatus, and computer usable program code for data hub processing
of events. A client-side data hub receives an event for a given topic associated with a
currently displayed page. The client-side data hub sends the event data to a server-side data

hub for processing of the event on the server.

The server-side data hub adds an event for the given topic to an event queue on the
server-side data hub in response to receiving an event associated with a page. The server-side
data hub processes the event in the event queue. A set of consumer commands for a given
topic associated with the event are identified. A consumer command is a command that
receives events for a given topic. The server-side data hub sends the event to the set of
consumer commands for the given topic. One or more consumers in the set of consumer
commands process the event to render page content for the page. The server-side data hub

then sends the results of processing the event back to the client-side data hub.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
39

The client-side data hub receives the results of event processing from the server-side
data hub. The result of processing the event includes new page content. The currently

displayed page is updated with the new page content at the client browser to form an updated

page.

With reference next to Figures 19A and 19B, diagrams illustrating a data flow
between a client-side data hub and a server-side data hub during a page update are shown in
accordance with an illustrative embodiment of the present invention. When the Wiki page is
first loaded, the server-side commands are processed to generate the initial page render that is
sent to the client for display to the user, as shown in Figures 8-9. In this illustrative example,
server-side data hub 1900 is created when the page is first loaded. Wiki command producer

1902 is a search component.

During the init phase, Wiki command producer 1902 initializes and registers 1904 with
data hub 1900 as a producer of event topic “search/available” and “search/clicked.” Wiki
command producer 1902 search component also registers as a consumer for “search/clicked”
event topic, which is generated by the client. In this manner, client representation of the Wiki
component can communicate with the server-side component or call a method on the

server-side component.

Wiki command consumer 1906 is a list component. Wiki command consumer 1906
initializes and registers 1908 with data hub 1900 as a consumer of the “search/available” event
topic. The processEvents method is called on the server-side data hub during the first
processEvents phase. Data hub 1900 calls the invoke method on Wiki command producer
1902. In response, Wiki command producer 1902 performs a search and generates data which
is included in a “search/available” event object. Wiki command producer 1902 fires the event

object “search/available” to indicate that the search data is ready.

Data hub 1900 calls a callback method on Wiki command consumer 1906 list
component to send the “search/available” event object to Wiki command consumer 1906. The
discover and secondary processEvents phase are then performed. Finally, during the render

phase, data hub 1900 calls render on all commands associated with the requested page. Wiki

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
40

command producer 1902 renders the hypertext markup language and JavaScript to display the
search form. Wiki command consumer 1906 list component, which is now a producer
component, renders the hypertext markup language and JavaScript to display the table. The
results of the rendered components are combined with the rest of the hypertext markup
language page and sent to the client for display. While the page is being loaded by the
browser, the JavaScript code creates client-side data hub 1910 and registers all producers

1912 and all consumers 1914 with client-side data hub 1910. This is the initial page render.

Once the page has been initially displayed, a user interaction may cause changes to the
rendering of one or more components. For example, when a user enters a search term and
presses “go”, a user interaction changing data occurs. The client-side search component Wiki
command producer 1916 fires an event with topic “search/clicked” 1918. The search phrase is
attached to the event object as data. Client-side data hub 1910 receives the event object and
sends it to any listeners on the client registered as consumers for the event topic “search.”
Unlike in the server-side data hub, the client-side data hub does not queue events in an event

queue.

Client-side data hub 1910 determines if the event should be sent to a consumer
command on the server associated with the server-side data hub. If the event should be sent
to a consumer command on the server, client-side data hub sends the event to the server by
calling processClientEvent method 1920 via AJAX, JSON, or any other known or available

remote method invocation methodology.

Server-side data hub 1900 adds the received event to an event queue 1922.
Server-side data hub 1900 processes events in the event queue, one of which is the
“search/clicked” event received from the client. Server-side data hub 1900 sends the
“search/clicked” event to Wiki command producer 1902 search component which is registered
as a consumer for the event topic “search/clicked” 1924. Wiki command producer 1902
search component performs the search and generates/producer search data. Wiki command
producer 1902 creates an event object with topic “search/available” and attaches the generated

search data to the event object.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
41

Server-side data hub 1900 adds the “search/available” event object to the event queue.
Because server-side data hub 1900 is still processing events in a processEvents phase, the
“search/available” event object is immediately removed from the event queue and processed by
server-side data hub 1900. Server-side data hub 1900 then sends the “search/available” event
object to Wiki command consumer 1906 because Wiki command consumer 1906 is registered

as a consumer for the “search/available” topic 1926.

Wiki command consumer 1906 saves off the new data from the “search/available”
event object. Server-side data hub 1900 calls render method 1928 on all components that
were involved in the processing of the original event “search/clicked” received from client-side
data hub 1910. Wiki command consumer 1906 list component render method builds a new list
using hypertext markup language and JavaScript. Wiki command consumer 1906 returns the
new list content to server-side data hub 1900. Server-side data hub 1900 collects the new
renderings from all components/commands involved, including Wiki command consumer
1906, and bundles the new renderings for return to client-side data hub 1910. Client-side data
hub receives the results of processClientEvent method 1930 and updates command rendering

on the client with new page content 1932.

Next, Figure 20 is a diagram illustrating a message flow between a server-side data
hub and a client-side data hub during a page update in accordance with an illustrative
embodiment of the present invention. The message flow begins when a client-side producer
component fires an event with topic “clicked” concatenated with the name of the event at
(message 1). At message 2.1 the client side Data hub receives the event and sends it to any

listeners on the client.

The client-side Data hub determines if the event should be sent to a listener on the
server (message 2.2). In these illustrative examples, a listener is a command or component
registered as a consumer for a given event topic. If the event should be sent to a listener on
the server, the client-side data hub sends the event to the server by calling processClientEvent
or by another remote method invocation methodology (message 2.3). The server-side data

hub adds the received event to the event queue (message 3).

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
42

At message 4.1 the server-side data hub processes the events in the queue, one of
which is the event from the client. The server-side data hub sends the “clicked” event to the

corresponding consumers that are registered as listeners (message 4.2).

The component performs the action desired by the event (message 5.1). All events are
treated the same by the server-side data hub, regardless of whether the event is received from
the client or from the server. The component creates a new “available” event indicating that
its results are available (message 5.2). The server data hub adds the “available” event to the

queue (message 6).

The server-side data hub processes the “available” event and sends the event to a set of
consumers on the server (message 7). The consumer component uses the data from the
“available” event object. The server-side data hub calls a render method on all components
(message 8.1). All components return new renderings in hypertext markup language and
JavaScript to the server-side data hub (message 8.2). The server-side data hub returns the
collected renderings from all involved components to client data hub (message 9). The
client-side data hub receives the result of the server processing of the event. The client sends
the results to listeners on the client (message 10) for rendering page updates on the client

browser.

In an alternative embodiment, processing page requests and enabling interaction
between commands can also be enabled in a system in which a server-side data hub operates in
accordance with the illustrative embodiments of the present invention without ever receiving
events from a client-side data hub. In other examples, processing page request may be
implemented, in a system in which the client is a PDA, cell phone, GPS navigator, or any other

client device that does not support JavaScript.

Figure 21 is a diagram illustrating a server-side data hub object in accordance with an
illustrative embodiment of the present invention. In the depicted example, data hub 2100 is a
data hub object, such as data hub 558 in Figure 5, data hub 638 in Figure 6, and data hub 702
in Figure 7. In this illustrative example, data hub 2100 is a data hub object implemented in

PHP.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
43

A data hub, such as data hub 2100, is created for each instance of a Wiki page
requested by a user. A page instance is used to reference a particular page view and the
page’s associated data hub instance. When a request or event on the client associated with a
given page is sent to the server, the server loads the specified data hub instance associated

with the given page.

In other words, an instance of a data hub is created on the server for each instance of a

Wiki page requested by the client. After the page instance is loaded and displayed on the
client, the data hub instance for that page on the client is no longer needed. The data hub
instance is saved in a memory storage device, such as storage 108 in Figure 1. When a user
enters new input or requests an action with respect to the page, the Wiki environment for the
particular page view is recreated on the server by reloading the previously serialized instance
of the data hub associated with the particular page view. The saved and reloaded instance of
the data hub reflects the current state of the particular page on the client browser. Data hub

2100 includes attributes/object variables and a set of methods.

The set of methods includes five categories or classifications of methods. The
categories of methods are as follows; data hub management 2102, producers and consumers
2104, topics 2106, event processing 2108, and command management 2110. In these
illustrative examples, a method is a procedure, function, or routine for performing an action or

process associated with one or more objects, such as data hub 2100.

The set of methods for data hub 2100 include method interfaces for methods to
perform various functions, such as, saving the data hub instance, retrieving/reloading the data
hub instance, adding commands, adding producers, removing producers, etc. For example,
data hub management 2102 set of method interfaces includes a method interface “public static
function init (page instance)” for a method to retrieve a stored instance of a data hub from

data storage, such as storage 108 in Figure 1.

Data hub 2100 also calls methods on data hub topic object 2112 and data hub event
object 2114 in order to enable transfer of events between commands in the Wiki environment

and client environment. Data hub topic object 2112 is primarily a data object that defines a

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
44

topic that a consumer command can subscribe to. In these illustrative examples, a consumer is
a command, component, or object that requires and/or requests data, an event, or input from a
user, another command, another component, and/or another object in order to carry out a
particular function of the command/component. In these illustrative examples, a producer is a
command, component, or object that provides data, an event, or output from a user, another

command, another component, and/or another object.

Data hub event object 2114 is a data object that defines a data hub event that is created
by a producer and sent to a consumer for the given event topic associated with the event

object.

Figure 22 is a diagram illustrating a client-side data hub object depicted in accordance
with an illustrative embodiment of the present invention. Data hub 2200 is a data hub object,
such as data hub 634 in Figure 6 and data hub 1410 in Figure 14. In this illustrative example,

data hub 2200 is a client-side data hub object implemented in JavaScript.

Data hub 2200 is a client data hub that enables Wiki components to interact with other
Wiki components on the server and other Wiki components on the client. Data hub 2200 also

enables Wiki components to send events generated on the client to the server for processing.

Data hub 2200 includes attributes and a set of methods. In this illustrative example,
the set of methods includes four categories of methods. The categories of methods are as
follows; producers and consumers 2202, topics 2204, event processing 2206, and command

management 2208.

Client-side data hub 2200 also calls methods on client-side data hub topic object 2210
and client-side data hub event object 2212 in order to enable transfer of events between
commands in the Wiki environment and client environment. Data hub topic object 2210 is a
data hub topic object, such as data hub topic object 2112 in Figure 21. Data hub event object
2212 is a data hub event object, such as data hub event object 2114 in Figure 21.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
45

Wiki page layouts are often static in one or more embodiments of the present
invention. Furthermore, the static nature of Wiki page layouts and the requirement to have to
individually alter the layout of each page of a set of pages makes it very time consuming to
edit the layouts of a Wiki page or a set of Wiki sub-pages in order that they all share the same
specific layout. A Wiki page layout is a page that shows the assembly of page components
used to compose a complete Wiki page with all components in place. With reference back to
Figure 6, page 600 shows examples of page components, such as header 604, footer 606, left
margin 608, right margin 610, menu 612, and body 614. A Wiki page is a page within a Wiki
application. Therefore, it would be desirable to have the Wiki page layouts be dynamically
configurable and defined in a Wiki page such that users can create new Wiki page layouts as
simply as creating new Wiki pages. It would also be desirable to have collections of related

Wiki pages share the same Wiki layout page.

Ilustrative embodiments of the present invention provide for embedding Wiki page
content into the body of a Wiki layout page. A Wiki layout page is a Wiki page that defines
the page layout for a Wiki page. Additionally, a specific layout may be associated with a Wiki
page. A user may create a new Wiki layout page by simply creating a new Wiki page and
editing the content of the newly created Wiki page. The default content of each page
component of the newly created Wiki page is provided by Wiki commands that are named
after the page component for which the commands provide content. A Wiki command is a
command used to implement a function and/or process of a Wiki application. For example, in
an illustrative embodiment of the present invention, the Wiki commands are named header,

footer, menu, left margin and right margin.

Users may include the content from these Wiki commands in any position on the Wiki
page that a user wants by using HTML page flow. HTML page flow is how the browser
positions the contents of a Web page in reaction to HTML tags that comprise the page source.
For example, an HTML <TABLE> tag in the source of a Web page causes the browser to
render a tabular display divided into rows and columns which flow vertically from top to
bottom. Thus, users can employ the same approach to editing Wiki layout pages as is used for
any other Wiki page. A user may include other static HTML content and other dynamic Wiki

commands within the newly created Wiki page as the user sees fit. Thus, illustrative

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
46

embodiments of the present invention allow users to create pages that share a common look
and layout, such as what content appears in the header, for example, a company logo or
image, and where the menu appears. Additionally, illustrative embodiments of the present
invention allow users to create this common look in a simple way consistent with what the

user is familiar with doing, namely creating and editing Wiki pages.

Whenever a user requests a Wiki page, by typing a universal resource locator, Wiki
page tables are checked to determine whether a layout page name associated with the page, or
set of sub-pages is present. If a layout page is associated with the requested Wiki page, the
Wiki page is rendered with the layout information being added and wrapped around the

requested Wiki page, forming a combined page.

In an illustrative embodiment of the present invention, a special template variable is
included in the Wiki layout page. The special template variable is replaced by the content of
the target Wiki page when the new Wiki layout page is used. In these examples, the template
variable is a string variable. When naming this special template variable, the user wants to
avoid as much collision with the other text on the newly requested page as possible.

Therefore, the name of the special template variable is typically a pattern that is unlikely to
occur naturally. In an illustrative embodiment of the present invention, the special template
variable is called % BODY __ %. The special template variable is located in the body field of
the Wiki layout page. A body field is an object variable of the Wiki layout page object, such
as object variable 528 in Figure 5. The body field contains the raw, un-rendered content of a

Wiki page.

[llustrative embodiments of the present invention provide for a Wiki page to inherit the
layout of the Wiki page from ancestor Wiki pages. Each Wiki page has a list of Wiki pages
associated with the Wiki page that are ancestor Wiki pages for the Wiki page. Ancestor Wiki
pages are those Wiki pages that occur at a higher level in the page naming hierarchy. For
example, if a Wiki page is named “LevelOne/Level Two” and a Wiki page named “LevelOne”
exists, the Wiki page named “LevelOne” is considered an ancestor of the Wiki page
“LevelOne/Level Two”. The list of the set of ancestor Wiki pages is stored in a field in a Wiki

page object. A set of ancestor Wiki pages may comprise one or more ancestor Wiki pages. In

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
47

an illustrative embodiment of the present invention, the field is called a path field. A query is
used which finds the first Wiki page in a reverse hierarchical order in the list of ancestor Wiki
pages that contains a Wiki page layout specifier. In an illustrative embodiment of the present
invention, the list of ancestor pages is checked against a Wiki_pages table in a database, such
as database 524 in Figure 5. The Wiki_pages table contains a list of entries. Each entry
comprises a Wiki page and any Wiki layout page associated with that specific Wiki page.
Each Wiki page in the list of ancestor Wiki pages is compared to the entries in the Wiki_pages
table. Once an entry matching a Wiki page in the list of ancestor Wiki pages is found that has
an associated Wiki layout page, the specified layout page is then selected for the target Wiki

page to inherit.

Next, Figure 23 is a block diagram illustrating the process of embedding Wiki page
content into the body of a Wiki layout page in accordance with an illustrative embodiment of
the present invention. This process in Figure 23 may be implemented by a Wiki engine, such
as Wiki engine 402 in Figure 4. Current page object 2302 is a Wiki page object, such as Wiki
page 526 in Figure 5. Body 2310 is the body field of the Wiki page, which is an object
variable of the Wiki page object, such as object variable 528 in Figure 5. Layout page object
2304 includes page components header 2322, menu 2324, right margin 2326, left margin
2328, footer 2330, and body 2320. The page components in layout page object 2304 are
contained in the body field of layout page object 2304, which is an object variable of the
layout page object, such as object variable 528 in Figure 5. The content of the body field of
current page object 2302, body 2310 is placed into the body component of layout page object
2304, body 2320. Then, the content of the body field of layout page object 2304, which
includes page components header 2322, menu 2324, right margin 2326, left margin 2328,
footer 2330, and body 2320, is placed into the body field of current page object 2302, body
2310.

Current page object 2302 is then rendered as combined page 2306. Combined page
2306 is the result of combining current page object 2302 and layout page object 2304.
Combined page 2306 includes layout page components header 2322, menu 2324, right margin
2326, left margin 2328 and footer 2330, from layout page object 2304 as well as the content
of the body field of current page object 2302, which is represented by body 2310.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
48

In conventional Wiki applications, there currently exists no method to have a Wiki
layout page be dynamically configurable in such a way that specific page components of the
Wiki page layout can be conditionally shown or hidden. A Wiki page layout is a page that
shows the assembly of page components used to compose a complete Wiki page with all

components in place. A Wiki page is a page within the Wiki application.

[lustrative embodiments of the present invention provide for programmatically hiding
and showing Wiki page layout components. The Wiki layout page is divided into a set of page
components. The page components are called the header, menu, left, right, body, and footer
components. Figure 6 shows examples of page layout components, such as header 604,
footer 606, left margin 608, right margin 610, menu 612, and body 614. The content of each
component is generated by a Wiki command. A Wiki command is a command used to
implement a function and/or process of a Wiki application. In an illustrative embodiment of
the present invention, the Wiki commands have the same name as the page components for
which they generate content. A Wiki page layout contains simple HTML markup with
embedded Wiki command markup. When the page is rendered, the Wiki commands
interrogate Wiki page settings that control whether or not the page components should display

the content generated by the Wiki commands.

In an illustrative embodiment of the present invention, Wiki page settings are
implemented as checkboxes that are editable by a user, when the user edits a Wiki page. By
checking and un-checking the checkboxes, the user controls the visibility of the various page
components, as well as, page comments, attachments and emails. The settings are saved in the
Wiki pages table, which is part of a database, such as database 524 in Figure 5, in the
“components” column as a bit-mask against which display logic can check. An entry within
the page table comprises fields of an identity (ID), account, tag, time, body, owner identity
(ownerID), modified by, isLatest, layout, isLayout, isEditing, commentOn, sections, path,
attributes (attrib), and errors. A bit mask is a binary number wherein each bit represents a yes
or no value (1 or 0) for a distinct variable. By using fast bitwise operations, the value of a
specific variable can be determined or changed. Thus, a bit mask is a compact and efficient

means of storing such variables.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
49

Turning now to Figure 24, a block diagram depicting checkboxes for determining
visibility of content of page components is depicted in accordance with an illustrative
embodiment of the present invention. Visibility settings 2402 is a display area through which a
user can control the visibility of various page layout components. Visibility settings 2402 may
be implemented as part of the content of a Wiki page. In an alternative illustrative
embodiment of the present invention, visibility settings 2402 is implemented as a menu option
on a client browser. Body 2406 includes checkboxes 2408. Checkboxes 2408 include
checkboxes for the header, menu, left, right, and footer layout page components, as well as
checkboxes for comments, attachments, and e-mails. By checking or un-checking checkboxes
2408, a user can control the visibility of the content of the named layout page components as
well as the page comments, attachments and e-mails. In an illustrative embodiment of the
present invention, checking the boxes causes the content of the named layout page
components as well as the page comments, attachments and e-mails to be displayed in the
client browser. In such an implementation, the top portion of visibility settings 2402 would
include the word show or visible, or some other term of equivalent meaning. In Figure 24,
top 2404 includes the word show, indicating that checking a checkbox would cause the

content belonging to the layout page section to be shown in the client browser.

In an alternative illustrative embodiment of the present invention, checking a checkbox
in visibility settings 2402 causes the content of the corresponding layout page component to
be hidden in the client browser. In such an implementation, the top area, top 2404, would

contain a term indicating this implementation, such as hide, for example.

In an illustrative embodiment of the present invention, the result of the checking and
un-checking of checkboxes 2408 is stored in a database as a bit mask. During the process of
rendering a page for display, the display logic checks the bit mask to determine which content

is to be displayed in the client browser.

Turning now to Figure 25, a flowchart of a process for creating a Wiki page is
depicted in accordance with an illustrative embodiment of the present invention. The process
in Figure 25 is for creating a Wiki page, such as Wiki page 602 in Figure 6. The process in

Figure 25 begins by receiving user input to create a new Wiki page (process block 2502).

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
50

The user may use a client browser to select a new page command from a menu to provide the

user input in process block 2502.

Next, the process prompts the user to enter a name for the new Wiki page (process
block 2504). In one example, the page name may contain alphabetic and numeric characters
which follows the CamelCase rules. The page name of the Wiki may also contain “/’
characters indicating divisions or levels in the hierarchy. For example, the new Wiki page may

be test 904 in Figure 9.

Next, the process builds an edit request uniform resource locator (URL) and sends a
corresponding hypertext transfer protocol (HTTP) request to the server (process block 2506).
The edit request may be built by a JavaScript function on the client browser and may specify

the new page action and the new page name.

Next, the process loads the appropriate editor and serves the page to the client
browser in a hypertext transfer protocol response (process block 2508). Process block 2508

may be implemented by Wiki controller 500 in Figure 5.

Next, the process receives user changes and submits a hypertext transfer protocol form
submission to the server (process block 2510). Process block 2510 may occur in response to

the user editing the Wiki page in the client browser and submitting the content to be saved.

Next, the process creates and saves the Wiki page with the submitted content (process
block 2512) with the process terminating thereafter. In process block 2512, the Wiki
controller handles the page hypertext transfer protocol request and may use a createPage and
save method to instantiate the Wiki page object and then save the Wiki page object. The Wiki
page object, such as Wiki object S08 in Figure 5, creates a row in the Wiki pages database

table, such as database 524 in Figure 5 to represent the new Wiki page.

Turning now to Figure 26, a flowchart of process for displaying a page is depicted in
accordance with an illustrative embodiment of the present invention. The process begins by

receiving a user specified uniform resource locator (URL) of a Wiki page and sending a

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
51

hypertext transfer protocol request to the server (process block 2602). Process block 2602

may be received by a client browser in client environment 300 in Figure 3.

Next, the process handles the request, instantiates objects on the Wiki page, processes
the Wiki page, and renders the content of the Wiki page to the client browser as a hypertext
transfer protocol response (process block 2604) with the process terminating thereafter.
Process block 2604 may be implemented by Wiki controller 500 in Figure 5. The Wiki
controller may call the showPage method on the Wiki object. The showPage method
instantiates a Wiki page object that maintains the Wiki page contents of the specific row in the
Wiki pages database table. The Wiki controller then calls the process method on the Wiki
page object which processes the Wiki page and renders the content of the page to the client

browser.

Turning now to Figure 27, a flowchart of a process for generating a page tree view is
depicted in accordance with an illustrative embodiment of the present invention. The process
in Figure 27 may be used to create page tree view 900 in Figure 9. The process in Figure 27

may be implemented by a PageTreeCommand within command 550 in Figure 5.

The process begins with the PageTreeCommand reading all the rows in the Wiki pages
database table and extracting the page name column values (process block 2702). The page
name may also be a tag. A tag is the page name or label that is used to categorize content of a

Wiki page. The database may be a database, such as database 524 in Figure 5.

Next, the PageTreeCommand iterates over the page name values to build the page tree
view (process block 2704). During process block 2704, the hierarchy of pages is grouped into
nodes and leaf nodes to form a visual tree structure. The nodes are both container and content
providers, and the leaf nodes are solely content providers. For example, if a page name ends
with a /> character, the page is treated as a container and content provider and is represented
with an appropriate icon representing containment, such as test 904 in Figure 9. All Wiki
page names begin with that name including the ‘/* are considered descendents of that page. If
the remaining portion of the Wiki page name contains °/°, the Wiki page is also considered a

container and content provider. If the remaining portion of the Wiki page name does not

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
52

contain a ‘/°, the Wiki page is considered a leaf node and is represented with an appropriate
icon such as helloworld 912 in Figure 9. Any number of different page indicators, such as ‘/°,

may be used to specify that a page is a node or leaf node.

Next, the PageTreeCommand returns the hypertext markup language representation of
the page tree view (process block 2706) with the process terminating thereafter. The
hypertext markup language representation of the page tree view is displayed on the client

browser for the user to use in navigating the Wiki pages.

Turning now to Figure 28, a flowchart of a process for dragging live content is shown
in accordance with an illustrative embodiment of the present invention. The illustrative
embodiments of the present invention allows dynamic content to be dragged onto a Wiki page
and provides a sample of the content as the dynamic content is dragged onto the page. Using
an XMLHttpRequest, the Wiki component is remotely invoked and the content returned in an
XMLHttpResponse as the drag visual. A request is data sent from a browser client to a Web
server. A response is the data sent from a Web server to a browser client as a reaction (in
response) to the received request data. The hypertext transfer protocol is an international
standard defining specific format and content for requests and responses sent to and from a
Web server. An XMLHttpRequest/Response is a further specialization of a hypertext transfer
protocol request/response that supports extensible markup language data content and specific
response formats. The process in Figure 28 may be implemented using Wiki page 700 in

Figure 7.

The process begins by receiving user input to perform a drag and drop operation and
invoking a JavaScript function that sends an XMLHttpRequest to the server requesting the
sample output of the selected Wiki component (process block 2802). The user input of
process block 2802 may be generated by a user dragging an icon, such as eye-catcher 708
from palette 702 onto body 704 of Wiki page 700, all in Figure 7. The process of process

block 2802 may be received by a client browser in client environment 300 in Figure 3.

Next, the process handles the XMLHttpRequest, creates an instance of the Wiki

command subclass for the selected Wiki component, and calls a method for retrieving the

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
53

dragged content (process block 2804). During process block 2804, Wiki controller 500 in
Figure 5 may handle the XMLHttpRequest and route the request to an AJAX formatter which
creates an instance of the Wiki command subclass before calling a method, such as
getDragContent on the Wiki command object instance. The AJAX formatter is a part of a
request handler, such as request handler 404 in Figure 4 and is considered an extension of
Wiki controller 500 in Figure 5. As previously described, router 502 in Figure 5 decodes
incoming requests and routes the request to the correct request handler. The AJAX formatter

is one of the request handlers.

Next, the process retrieves the current Wiki page instance from the Wiki object and
calls a render method before returning the rendered output in the XMLHttpResponse to the
client browser (process block 2806). The process of process block 2806 may be performed by
the AJAX formatter and may pass the result of the getDragContent call to a method, such as

renderFragment.

Next, the process processes the XMLHttpResponse and extracts and displays the
hypertext markup language drag content (process block 2808) with the process terminating
thereafter. The process of process block 2808 is performed by asynchronous JavaScript code
on the client browser. The JavaScript code may use a cascading style sheet (CSS) style which
makes the drag content appear semi-transparent. Once the response is processed, extracted,

and displayed, control of the process may be handed to drag support.

The drag support consists of event-driven JavaScript code which responds to mouse
move events. While the user has a mouse button depressed and moves the mouse, the
browser JavaScript runtime fires a mouse move event. The drag support implements a mouse
move event handler JavaScript function which gets invoked to handle the mouse move event.
The drag support uses the JavaScript document object model (DOM) application
programming interface (API) functions of the browser to determine the current position of the
mouse cursor. The drag support then uses the document object model application
programming interface functions to set the position of the drag content, such as a
semi-transparent visual returned from the AJAX request to getDragContent. The process is

then repeated as long as the user keeps the mouse button depressed and continues to move the

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
54

mouse. When the user releases the mouse button, a mouse up event is fired by the browser’s
JavaScript runtime. The drop support implements a mouse up event handler JavaScript
function which is invoked to handle the mouse up event. The drop support uses the
JavaScript document object model application programming interface functions of the browser
to determine the current position of the mouse cursor. The drop support then sends an

XMLHttpRequest to the server to have the content inserted into the Wiki page.

Turning now to Figure 29, a flowchart of a process for combining content of Wiki
pages is shown in accordance with an illustrative embodiment of the present invention. The
application Wiki of the illustrative embodiments of the present invention needs a powerful,
consistent way to composite content created on various pages. Wiki components are included
in Wiki page sources via a “markdown" syntax that consists of two '{' characters, followed
immediately by a Wiki component name, followed by white space, followed by optional space
separated arguments in 'name="value" syntax. For example, {{ImportPage
page="HomePage"/}} where TmportPage’ is the name of a Wiki component. The contents of
any Wiki page may be included within another page using the same Wiki “markdown" syntax
as Wiki components. To include the contents of the Wiki page named “HomePage" into the
current page, the Wiki user needs to only type {{HomePage/}} and the HomePage contents

will be expanded in-line.

The process in Figure 29 may be implemented on composite content, such as Wiki
page 1000 in Figure 10. The process begins by parsing the Wiki page source into parse
fragment objects representing static textual content and Wiki components (process block
2902). The process of process block 2902 is implemented by a Wiki command context object,
such as Wiki command context 544 in Figure 5. During process block 2902, the page is
parsed into parse fragments which are organized in a tree structure called an abstract syntax
tree (AST), which is the internal representation in memory of the Wiki page content.
Operations in future steps may now manipulate the page contents by traversing the tree and

performing operations on tree nodes.

Next, the process calls a load plugin method which iterates over the list of Wiki

components on the Wiki page (process block 2904). A method, such as loadPlugins, is called

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
55

for each Wiki component to instantiate the appropriate Wiki command subclass which
implements the functionality of each Wiki component. Process block 2904 is a further
refinement of the creation of the in-memory representation of the page content and is a

transitional process.

Next, the process calls a load command method of the Wiki object to perform the Wiki
command class loading. If the load command method fails to find the appropriate Wiki
command class, the method throws an exception (process block 2906). The load plugin
method of process block 2906 may be loadPlugin. Process block 2906 completes the creation
of the in-memory representation of the Wiki page by associating supporting command objects

with the Wiki component parse fragments.

Next, the process catches the exception and calls a page exists method of the Wiki
object to determine if the named Wiki component is actually a Wiki page. Valid page names
are loaded into the import page component (process block 2908). In process block 2908, if a
method, such as pageExists, returns a valid page, the Wiki command context calls the
loadPlugin method to load the import page component passing in the Wiki page name. The

import page component functions to embed the content of a named page.

Next, the process adds the import page component to a list of the Wiki command
context components (process block 2910). Next, the process expands the import page
component to the contents of the named Wiki page during rendering (process block 2912)
with the process terminating thereafter. In process block 2912, the process adds the

importPage command instance to the list of components.

Turning now to Figure 30, a flowchart of a process for editing a command is shown in
accordance with an illustrative embodiment of the present invention. The process in Figure
30 may be implemented on a page, such as Wiki page 800 in Figure 8. The process begins by
displaying a palette of Wiki components in response to receiving user input to edit a Wiki page
(process block 3002). In process block 3002, the user may provide user input by selecting a
quite easily done check box. The palette is a palette, such as palette 802 in Figure 8. The

page, such as Wiki page 800 may include any number of eye-catchers that give the user a

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
56

visual cue that the component may be selected and edited. Process block 3002 may be

received by a client browser in client environment 300 in Figure 3.

Next, the process invokes a JavaScript function that sends an XMLHttpRequest to the
server to retrieve the property editor for the selected Wiki component in response to the user
selecting an eye-catcher (process block 3004). The eye-catcher may be a Google® maps icon,

such as eye-catcher 708 in Figure 7.

Next, the process handles the request and delegates processing to the AJAX formatter.
The AJAX formatter creates a Wiki Command Context object and calls the associated load
plugin method requesting that the property editor Wiki component be loaded (process block
3006). Process block 3006 is performed by Wiki controller 500 in Figure 5.

Next, the process calls the draw method of the property editor component passing in
the selected Wiki component name. The results of the draw method are returned to the client

in an XMLHttpResponse (process block 3008).

Next, the process processes the XMLHttpResponse which contains the hypertext
markup language and JavaScript of the property editor for the selected component and makes
the property editor visible (process block 3010). The processing is done asynchronously and
the property editor may be made visible using cascading style sheet (CSS). The process of
process block 3010 may be implemented by the AJAX formatter in Wiki controller 500 in
Figure 5.

Next, the process receives user input in the property editor and issues an
XMLHttpRequest to the server to update the properties of the selected Wiki component
(process block 3012). Process block 3012 is performed by the property editor and

corresponding client browser.

Next, the process handles the request and delegates processing to the AJAX formatter.
The AJAX formatter creates a Wiki command context object and calls the associated load

plugin method requesting that the update command Wiki component be loaded (process block

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
57

3014). Next, the process calls the draw method of the update command component passing
in the selected Wiki component name. The update command component updates the Wiki
component source “markdown” on the server and returns an XMLHttpResponse indicating
success or failure (process block 3016) with the process terminating thereafter. The process
of process block 3016 may be implemented by the AJAX formatter in Wiki controller 500 in
Figure 5.

Thus, illustrative embodiments of the present invention provide a computer
implemented method, apparatus, and computer usable program code for an application Wiki.
The illustrative embodiments of the present invention allow a user to easily create and manage
Wiki pages. The user may edit a Wiki page by dragging and dropping live content. Wiki
pages may be combined as requested by the user and may be edited using a property editor.
Wiki pages are saved in a page tree view including nodes and leaf nodes for navigating the

Wiki.

Turning now to Figure 31, a flowchart of a process for rendering a Wiki command is
depicted in accordance with an illustrative embodiment of the present invention. The process
in Figure 31 may be implemented in Wiki engine 404 in Figure 4. The Wiki page may include
several Wiki commands. Each Wiki command may contain other Wiki commands as well.

The process in Figure 31 begins with the Wiki engine invoking the render method on a Wiki
command (process block 3102). The Wiki engine may be an engine, such as Wiki engine 402
in Figure 4. The render method may be a page processing method, such as render 1226 in

Figure 12.

Next, the process calls the open method (process block 3104). The open method of
process block 3104 provides a mechanism for the Wiki command to begin displaying rendered
content. For example, a command may generate an ‘opening’ fragment of hypertext markup
language, such as ‘Forecast Command. The closing fragment of the SPAN will be
generated using the close method. Next, the process makes a determination as to whether the
Wiki command permits editing (process block 3106). A Wiki command overrides the setting

of allowEdit to determine if the command permits editing content of the command. A value of

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
58

true indicates a command can be edited. If the Wiki command permits editing, the process

generates an eye-catcher (process block 3108).

If the Wiki command does not permit editing, the process calls renderBody (process
block 3110). renderBody provides the opportunity for the command to render or emit the
corresponding hypertext markup language content. Next, renderBody displays the eye-catcher
and then calls render on each of any existing children (process block 3112). For example, in
process block 3112, the eye-catcher may be displayed using a draw method. The Wiki
command may form a hierarchy, that is, Wiki commands may contain other Wiki commands.
As a result, the Wiki commands form a tree of commands. Children are the first generation of
contained or embedded Wiki commands. Next, the process invokes a close method (process

block 3114) with the process terminating thereafter.

Turning now to Figure 32, a flowchart of a preliminary process for property editing is
depicted in accordance with an illustrative embodiment of the present invention. The process
in Figure 32 is for editing properties of Wiki commands. The process begins by rendering the
command (process block 3202). The command is rendered in a rendering process, such as the
process in Figure 31. Next, the process generates the default property editor and hides the
property editor on the generated page (process block 3204) with the process terminating
thereafter. Most of the time, the user will not interact with the property editor, so the default
state of the property editor is hidden until needed by the user. A default property editor is
generated in process block 3204 if the command chooses not to implement itself. A command

may implement a property editor by overriding a generatePropertyEditor protocol.

Turning now to Figure 33, a flowchart of a process for property editing is depicted in
accordance with an illustrative embodiment of the present invention. The process in Figure
33 may occur after the process in Figure 32. First, the process receives a signal from a user
to trigger the property editor to be invoked on a selected command (process block 3302). For
example, in process block 3302, the user may click on the eye-catcher of the Wiki command

which triggers the property editor.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
59

Next, the process identifies the selected command to the client-side property editor
subsystem (process block 3304). The Wiki environment includes a JavaScript base subsystem
that tracks the selected component by tracking mouse clicks on the eye-catchers generated.
The action of clicking on an eye-catcher identifies the selected command. Process block 3304

may be performed by an eye-catcher, such as eye-catcher 1302 in Figure 13.

Next, the process generates an AJAX invocation to ask the server side command
representative to render the client-side property editor (process block 3306). Process block
3306 may be performed by a property editor, such as property editor 1304 in Figure 13.
During the execution of process block 3306, the AJAX call invokes the server uniform
resource indicator of the Wiki command processor which loaded the pages into the server
identified in the object variables of the request. The uniform resource indicator also contains a
set of new object variables that represent the new values of the input values for the Wiki
command. The engine then updates the input values of the Wiki commands and asks the Wiki
command to update the corresponding visual representation based upon the new values.
Process block 3306 may be initiated by a command, such as generatePropertyEditor 1222 in

Figure 12.

Next, the process selects a property editor (process block 3308). In process block
3308, the selected Wiki command may choose to provide a specialized property editor by
overriding the generatePropertyEditor method or may inherit the default implementation.
Alternatively, the Wiki command may provide its own property editor which consists of the
hypertext markup language necessary to edit the parameters, properties, and attributes of the
Wiki command. The property editor may be selected in process block 3308 based on the

attributes of a selected command.

The property editor then receives user interactions and then submits an update to the
parameters of the Wiki command (process block 3310). Next, the property editor generates
an AJAX based request which instructs the server page processor to update the list of
parameters for the selected Wiki command on a given page (process block 3312). Next, the
command processor locates the command, instantiates the command, and sets the values of

the command to the new values passed from the client (process block 3314). Next, the

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
60

command processor asks the commands if the whole page should be updated by invoking the
refreshOnUpdate method (process block 3316). Process block 3316 is implemented by
command processor 406 in Figure 4. If the commands indicate the whole page should be
updated, the whole page is redisplayed on the client (process block 3318) with the process
terminating thereafter. If the commands indicate the whole page does not need to be updated,
the command renders itself and the new content is displayed in the getTargetDIV area on the
client hypertext markup language document (process block 3320) with the process terminating

thereafter.

As an example of process block 3320, the user may use the property editor to update a
property value of a Forecast Wiki command which may implement the process as described in
the following example. The user updates the zip code property using the property editor. The
property editor generates an update command request and sends the command to the server.
The server receives the requests, loads the page containing the Forecast command, places the
new zip code into the page, saves the updated page, and asks the Forecast command if the
command needs to refresh the page. The Forecast command answers no, so the server asks
the Forecast command to render itself using the new values of the input values sent from the
property editor. The hypertext markup language fragment that is generated is sent back to the
client and placed in the hypertext markup language element identified by the getTargetDIV

protocol. The command may render itself in a process, such as the process in Figure 31.

Turning now to Figure 34, a flowchart of a process selecting a property editor is
shown in accordance with an illustrative embodiment of the present invention. The process in
Figure 34 is a more detailed description of process block 3308 in Figure 33. The process
begins with the default property editor calling the getParameters to determine the list and type
of parameters associated with the selected command (process block 3402). Next, the process
generates the client-side editors for each parameter returned (process block 3404). The

parameter lists provide names, help strings, and possible values for parameters returned.

Next, the process delivers the aggregated content to the client for rendering in the
client property editor (process block 3406) with the process terminating thereafter.

Aggregated content is information received from the property editor for the specific

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
61

command. For example, the aggregated content includes each piece of metadata and
parameters obtained in process blocks 3402 and 3404 for the command displayed to show the
property editor. The aggregated content may be rendered in the client property editor defined
during a step, such as process block 3306 in Figure 33.

Figures 35-36 arc page lifecycle processes used during the lifecycle of a Wiki page.
Turning now to Figure 35, a flowchart of a process for deleting a page is shown in
accordance with an illustrative embodiment of the present invention. The process begins with
the page being marked for deletion (process block 3502). A user may mark the page because
of old content, irrelevance, or for any other reason. In process block 3502, the page is marked
as deleted. The page is not actually removed from the database. Next, each command on the
page is informed that the command’s owning page has been removed (process block 3504)
with the process terminating thereafter. Each command may be informed using a method,
such as wasDeleted 1218 in Figure 12. Process block 3504 is used to clean up persistent

resources associated with the Wiki command on the given page.

Turning now to Figure 36, a flowchart of a process for revising a page is depicted in
accordance with an illustrative embodiment of the present invention. The process begins by
creating a new empty page (process block 3602). Next, the process clones the existing page
into the new page (process block 3604). Next, the process informs each command on the
page that it is aboutToSave (process block 3606). aboutToSave may be a lifecycle command,

such as lifecycle 1204 in Figure 12.

Next, the page is saved to the database (process block 3608). Next, the process calls
the wasDeleted method to inform the page that it has been deleted from the page by no longer
being part of the page (process block 3610). Process block 3610 is performed for each
command that is no longer part of the page. Next, the process informs each command on the
page that the page wasSaved (process block 3612) with the process terminating thereafter.

Process block 3612 may use a method, such as wasSaved 1216 in Figure 12.

Turning now to Figure 37, a flowchart of a process for copying a page is depicted in

accordance with an illustrative embodiment of the present invention. The process may begin

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
62

by creating a new empty page (process block 3702). Next, the process clones the existing
page into the new page (process block 3704). Next, the process calls the wasCopied method
for each command on the page (process block 3706). Process block 3706 may use a method,
such as wasCopied 1220 in Figure 12.

Next, the process saves the cloned page, invoking wasSaved on each command on the

page (process block 3708) with the process terminating thereafter.

Turning now to Figure 38, a flowchart of a process for renaming a page is depicted in
accordance with an illustrative embodiment of the present invention. The process in Figure
38 begins by loading the original page (process block 3802). Next, the process updates the
tag names of the page to reflect the new name of the page for all child pages contained by the
page (process block 3804). Next, the process calls wasRenamed to inform the Wiki command
it has been renamed for each Wiki command on the page (process block 3806) with the

process terminating thereafter.

Turning now to Figure 39, a flowchart of a process for undeleting a page is depicted
in accordance with an illustrative embodiment of the present invention. The process in Figure
39 begins by removing the page from the stale state to active by setting the isLatest flag to
true (process block 3902). Next, the process informs each command on the page that the
page wasUndeleted (process block 3904) with the process terminating thereafter.
wasUndeleted is called when the command has been placed back on a given page after

previously being deleted from the page.

Turning now to Figure 40, a flowchart of a process for palette construction is shown
in accordance with an illustrative embodiment of the present invention. The Wiki environment
provides a palette of available commands installed in the Wiki. The palette provides a visible
mechanism for displaying the Wiki command available within the Wiki environment. The
palette is defined into categories which are defined by a getCategory protocol. The palette is

generated for each command in the Wiki using the process in Figure 40.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
63

First, the process determines if the command supports editing (process block 4002). If
the Wiki supports editing, the process invokes the getDropContent which returns the default
Wiki markup to be inserted into the page associated with the given Wiki command (process
block 4004) with the process terminating thereafter. Process block 4004 may be performed in
response to a Wiki command being dragged out of the palette and placed onto the page.

If the process determines the command does not support editing in process block
4002, the process retrieves the category of the command (process block 4006). Categories
are defined by the command within the Wiki environment. Some exemplary categories include
‘Data Services’, and ‘Page Content.” Each command in the same category is displayed in the
same tab on the palette view. Next, the process retrieves the name (process block 4008). The
name may be retrieved using a method, such as getName 1212 in Figure 12. Next, the
process retrieves the description (process block 4010). The description may be retrieved using
a method, such as getDescription 1214 in Figure 12. Next, the process retrieves the icon
(process block 4012). The icon may be retrieved using a method, such as getlcon. Next, the
process retrieves the drag content and places the elements on the palette for each command
(process block 4014). The drag content may be retrieved using a method, such as

getDragContent.

Commands may display a unique icon or eye-catcher that conveys the use of the
command. The getlcon protocol is used to retrieve the hypertext markup language fragment
which displays the icon of the command when rendered. Many times, a command may want
to provide the user with a different piece of hypertext markup language content to drag off the
palette that is placed into the page when the component is first dropped onto the page for
inserting a new command into the page. The content that is actually dragged from the palette

may be specified by overriding the getDragContent method.

Next, the process returns to process block 4004 and invokes the getDropContent
which returns the default Wiki markup to be inserted into the page associated with the given

Wiki command with the process terminating thereafter.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
64

Turning now to Figure 41, a flowchart of a process for configuration in accordance
with an illustrative embodiment of the present invention. Wiki commands that reside within
the Wiki environment sometimes require configuration. For example, a GoogleMap command

requires a key for use with the application program interface.

The process in Figure 41 is used to enable commands to configure themselves and
maintain a set of configuration data associated with a particular Wiki command. The process
in Figure 41 begins by displaying the general cataloging information (process block 4102).
Next, the process invokes the configure method (process block 4104). The configure method
allows commands to generate a hypertext markup language view for editing data associated
with the Wiki command within the Wiki. Next, the process invokes the get/setPluginData
methods (process block 4106) with the process terminating thereafter. The get/setPluginData
method is used to retrieve and store Wiki command data that affects the Wiki site. For
example, command data includes initialization data needed to invoke the command, such as a

registration key.

Turning now to Figure 42, a flowchart of a process for export is depicted in
accordance with an illustrative embodiment of the present invention. The Wiki supports
importing and exporting of the complete Wiki or a subset of the Wiki. The exports format
contains the list of pages exported and the page contents, including commands and
attachments. The Wiki engine invokes the process in Figure 42 to assist in the export of a set

of pages. A set of pages is one or more Wiki pages.

The process in Figure 42 begins by exporting the general page information including
the name of the page (process block 4202). Next, the process invokes aboutToExport for
each Wiki command on the page (process block 4204). Next, the process calls getVersion
method and stores that as part of the output (process block 4206). If the aboutToExport
called in process block 4204 returns a datum, the data is saved as a serialized PHP object

within the output stream in process block 4206.

Next, the process exports the commands associated with the page (process block

4208) with the process terminating thereafter. Comments may be attached to each Wiki page

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
65

which represents user commentary for each page. The comments are used as a mechanism to
collaborate within the Wiki. For example, a patent attorney may ask an inventor how

comments are used on a Wiki page.

Turning now to Figure 43, a flowchart of a process for import is depicted in
accordance with an illustrative embodiment of the present invention. The Wiki engine invokes

the process in Figure 43 to import each Wiki command on a page.

The process in Figure 43 begins by importing the general page information including
the name of the page (process block 4302). Next, the process determines if the command
saved data (process block 4304). For example, the process determines if the command saved
data in a step, such as process block 4206 in Figure 42. If the command saved data, the
process unserializes the datum (process block 4306). The default implementation ensures the
saved version name matches that of the current installed Wiki command version. Next, the
process invokes wasImported with the unserialized datum (process block 4308) with the
process terminating thereafter. If the data was not saved in process block 4304, the process

returns the new page (process block 4310) with the process terminating thereafter.

Thus, the illustrative embodiments of the present invention further provide a computer
implemented method, apparatus, and computer usable program code for extending the
capabilities of a Wiki environment. An object-oriented framework is used to define how
objects are extended for easily creating collaborative environments. Wiki command classes
are processed to effectively managed a deployed environment facilitating reusability,

adaptability, and ease of use.

Turning now to Figure 44, a flowchart of a process for retrieving and parsing a tree is
depicted in accordance with an illustrative embodiment of the present invention. The tree is
the core process data structure used by the illustrative embodiments. The tree may be an
abstract syntax tree, such as abstract syntax tree 1102 in Figure 11. The process in Figure 44
is implemented by a Wiki command context, such as Wiki command context 1104 in Figure

11. The Wiki command context retrieves and parses a page into an abstract syntax tree

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
66

(process block 4402) with the process terminating thereafter. A Wiki page is loaded by the
Wiki. The Wiki page instantiates a Wiki command context that creates the tree.

Turning now to Figure 45, a process for processing a web page for display in a Wiki is
depicted in accordance with an illustrative embodiment of the present invention. The process
in Figure 45 may be implemented by a Wiki engine and more specifically a command
processor, such as Wiki Engine 402 and command processor 406 in Figure 4. The process in
Figure 45 begins with the process engine visiting each node in the abstract syntax tree
invoking the initiation method on the commands present in the abstract syntax tree (process
block 4502). The initiation method may be named init. Init finds commands within each node
of the abstract syntax tree and makes the commands available to other commands. As a result,
the commands may communicate with other commands including other identical commands.
During process block 4502, the commands have the responsibility to initialize internal data
structures of the commands, publish the topics provided, and subscribe to topics of interest on
the data hub. Topics represent area of interest between publishers and subscribers. For
example, one important topic in the publisher/subscriber environment is ‘data/available’.

Other examples of topics include ‘address’ and ‘latlong.” During process block 4502, the
commands may place events that will need to be processed after all commands have been
invoked using the init method in a queue. Events communicate state changes from one state

to another. The event stimulates the communication for implementing the state change.

Queuing events is performed so that events can be processed in an orderly sequential
manner and are not lost in a single threaded execution environment, such as the JavaScript
client. Queuing events enable the core execution environment to ensure all components are
properly initialized and ready to process events before events are dispatched. The commands
may perform every phase of the illustrative embodiments of the present invention and may

override the default implementation.

Next, the command processor invokes processEvents on the data hub to deliver any
queued events (process block 4504). The publish and subscribe model dictates that a
subscriber registers with the data hub for events of interest in order to be received from the

data hub. The publisher triggers events which are queued on the data hub. During the

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
67

processEvents phase, the data hub processes each queued event and determines the interested
subscriber and invokes the subscriber in order to deliver the event. The queued events are
events that were placed in the queue in process block 4502. Next, the command processor
visits each node in the abstract syntax tree invoking the discover method on the commands

present in the abstract syntax tree (process block 4506).

The discover method locates command related information sources for more detailed
interaction between commands. During process block 4506, the producer, consumer, or
controller commands may locate each other using the data hub and establish a direct event
connection to each other instead of the data hub. Commands may choose to interact indirectly
through the data hub as described above or locate other commands during the discovery
phase. During the discovery phase of processing, a command may interrogate the data hub for
publishers, subscribers, and topics. Commands may also communicate directly if needed,
bypassing the indirect communication method established above. This capability enables a
more efficient process of events and eliminates the need for the data hub as a communication
interface. Additionally, commands may remove themselves from the data hub. The
commands may enqueue or place in queue, events that will need to be processed after all

commands have been invoked using the initiation method.

Next, the command processor invokes processEvents on the data hub to deliver any
queued events (process block 4508). The queued events are events that were enqueued in
process block 4506. Next, the command processor visits each node in the abstract syntax tree
invoking the render methods on the commands present in the abstract syntax tree (process
block 4510) with the process terminating thereafter. During process block 4510, commands
render both visual and non-visual content for the page. For example, visual content may
include a table display of list data. Non-visual content may include the SearchList command
which searches a list of data and has no visual content. The non-command nodes, such as text
fragments of the page are also rendered during process block 4510. During any of the steps in
Figure 45, commands may additionally process other pieces of page source fragments by
invoking the process in Figure 45 recursively on the page source fragment. Page source
fragments are all non-command content. Page source fragments capture all non-command

content between commands on the page.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
68

Turning now to Figure 46, a flowchart of processing events is depicted in accordance
with an illustrative embodiment of the present invention. The processing steps in Figure 46
are performed by a data hub, such as data hub 1112 in Figure 11. Figure 46 is a more
detailed explanation of process block 4504 in Figure 45.

The process begins with the data hub removing the events from the queue (process
block 4602). Next, the data hub delivers the events to registered subscribers (process block
4604). Registered subscribers are generally commands but may alternatively be stand-alone
functional units. Registered subscribers are registered during initiation during which
commands publish, subscribe, or register interests to all other commands. Next, the data hub
places in queue any resulting events delivered to registered subscribers (process block 4606).
The events of process block 4606 are those that were delivered to registered subscribers in

process block 4604.

Next, the data hub triggers the invoke method on commands whose input values have
been fulfilled by the data delivery mechanism of the data hub (process block 4608) with the
process terminating thereafter. Commands provide a set of input values to execute their
functions. Input values may be static or dynamic. When input values are dynamic, the Wiki
engine tracks when data becomes available that is used as an input to the commands. When

input becomes available, it is delivered to the command and has thus become ‘fulfilled.’

Thus, the illustrative embodiments of the present invention further provide a computer
implemented method, apparatus, and computer usable program code for processing a web
page for display in a Wiki environment. Newly added components are able to interact with
other components in the form of an abstract syntax tree before the final views are rendered.
Components are enabled to discover new attribute and parameter settings from the page serve
context in the form of nodes of the abstract syntax tree. A processing and validation
mechanism is used for components to validate inputs and report errors before rendering final
views. Targeted events are processed within the lifecycle of the page serve sequence.

Multiple versions of the same component are managed on a single server.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
69

Turning now to Figure 47, a flowchart of an operation occurring when a server-side
data hub object is instantiated is shown in accordance with an illustrative embodiment of the

present invention. The process is implemented by Wiki Engine 402 in Figure 4.

The process begins by receiving a request to load a new page from the client (process
block 4702). When the request to load a new page is received by the server, the process
creates an instance of a client-side data hub object (process block 4704) associated with the
requested new page in accordance with attributes and methods specified by a server-side Wiki
data hub class variables and methods. The process registers all components on the server with

the server-side data hub object (process block 4706) with the process terminating thereafter.

Turning now to Figure 48, a flowchart of an operation occurring when a client-side
data hub object is instantiated is shown in accordance with an illustrative embodiment of the
present invention. The process is implemented by a processing unit on a client, such as

processing unit 206 in client 200 in Figure 2.

The process begins by loading a new page received from the server (process block
4802). When the processing unit on the client loads the hypertext markup language or the
JavaScript for the page, the process creates an instance of a client-side data hub object
(process block 4804) associated with the requested new page in accordance with attributes
and methods specified by a client-side Wiki data hub class variables and methods. The process
registers all components on the client with the client-side data hub object (process block 4806)

with the process terminating thereafter.

Turning now to Figure 49, a flowchart of an operation occurring when a server-side
data hub receives a request to process an event from a client-side data hub is shown in
accordance with an illustrative embodiment of the present invention. The data hub is
implemented by a data hub on a server, such as data hub 558 in Figure 5 and data hub 638 in

Figure 6.

The data hub object begins by receiving a page request and/or an event from a

client-side data hub (process block 4902). The data hub object processes the request/event

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
70

using a set of methods (process block 4904). The request/event is generated by a producer
command associated with the client. The set of methods can be a set of methods of the data
hub object, a set of methods of a data hub topic object, the data hub event object, or any
combination of methods associated with the data hub object, the data hub topic object, and/or
the data hub event object. The data hub object sends the processed event to a set of consumer

commands (process block 4906) with the process terminating thereafter.

Turning now to Figure 50, a flowchart of an operation occurring when a producer
command processes an event is depicted is shown in accordance with an illustrative embodiment
of the present invention. In this illustrative example, the process is implemented by a command

object, such as Wiki command object 1404 and 1412 in Figure 14.

The process beings when the command initializes as a result of a call on the init method
on the command (process block 5002). The init method to initialize the command is called by
the data hub. The command registers as a producer for a given event topic, such as Topic A,
with the data hub (process block 5004). The command retrieves data (process block 5006). In
this illustrative example, retrieving data can include receiving input from a user, as well as
retrieving data from a database or other data storage device. The command fires an event object

for Topic A (process block 5008) to the data hub with the process terminating thereafter.

Turning now to Figure 51, a flowchart outlining an operation occurring when a
consumer command processes an event is shown in accordance with an illustrative embodiment
of the present invention. In this illustrative example, the process is implemented by a command

object, such as Wiki command object 1404 and 1412 in Figure 14.

The process begins with consumer command initializing in response to a data hub
calling an initialize method on all commands (process block 5102). The command registers
with the data hub as a consumer command for a given event topic, such as Topic A (process
block 5104). The command receives an event for Topic A from the data hub (process block
5106) when the data hub calls a callback method on the consumer command. The command
processes the event (process block 5108). The command renders the results of processing

into hypertext markup language or JavaScript (process block 5110) in response to the data

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
71

hub calling a render method on the command. Finally, the command sends the rendered

results to the data hub (process block 5112) with the process terminating thereafter.

Turning now to Figure 52, a flowchart of an operation occurring when a client-side
data hub receives an event is shown in accordance with an illustrative embodiment of the present
invention. In this illustrative example, the process is implemented by a client-side data hub, such

as data hub 634 in Figure 6, data hub 1412 in Figure 14, and data hub 1910 in Figure 19A.

The process begins when the client-side data hub receives an event from a user and/or
a component, such as a producer component (process block 5202). The client-side data hub
processes the event immediately (process block 5204). In this step, the client-side data hub
determines if one or more commands have registered as consumers for the given topic
associated with the event object. If one or more commands have registered as consumers for
the given topic, the client-side data hub calls a callback method on the set of registered
consumers (process block 5212) to send the event to the registered consumers with the

process terminating thereafter.

Turning now to Figure 53, a flowchart of an operation occurring when a server-side
data hub processes an event is shown in accordance with an illustrative embodiment of the
present invention. In this illustrative example, the process is implemented by a server-side data
hub, such as data hub 638 in Figure 6, data hub 1404 in Figure 14, and data hub 1500 in Figure
15. The process begins when server-side data hub calls an initialize “init()” method on all

commands associated with the server (process block 5302).

The server-side data hub receives registration of commands as consumers for given
topic events (process block 5304). The server-side data hub receives an event for a given
event topic (process block 5306). The event can include data. The event may be received
from a user input or from another command (process block 5308). The server-side data hub

adds the event to an event queue (process block 5310).

The server-side data hub processes events in the event queue during a processEvents

method phase. The server-side data hub calls a callback method on all consumer commands

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
72

registered for the given topic. The server-side data hub calls the callback method to send the
event to registered consumers for the event topic associated with the event (process block

5316).

The server-side data hub makes a determination as to whether a new event is received
for the given event topic being processed (process block 5318). If a new event is received, the
server-side data hub adds the event to the event queue (process block 5310) for processing
during the next processEvent phase. Returning to process block 5318, if no new event data is
received, the server-side data hub calls a render method on all commands involved in
processing the event (process block 5320). The server-side data hub collects the rendered
results received from all commands involved in processing the event and sends the content to
the client for display (process block 5322) with the process terminating thereafter. The
content returned to the client is returned in hypertext markup language or JavaScript for

display at the client browser.

Turning now to Figure 54, a flowchart of an operation occurring when a client-side
data hub determines whether to send an event to a server for processing is shown in accordance
with an illustrative embodiment of the present invention. In this illustrative example, the process
is implemented by a client-side data hub, such as data hub 634 in Figure 6, data hub 1412 in
Figure 14, and data hub 1910 in Figure 19A.

The process begins when a client-side data hub receives an event fired by a producer
command (process block 5402). The client-side data hub sends the event to any command on
the client registered with the data hub as a consumer of the event topic associated with the
event (process block 5404). The client-side data hub makes a determination as to whether the
event should be sent to a server-side data hub (process block 5406). If the client-side data hub
determines that the event should not be sent to a server-side data hub, the client-side data hub
processes the event on the client (process block 5408). If the client-side data hub determines
that the event should be sent to the server, the client-side data hub calls a processClientEvent
method to send the event to the server-side data hub for processing (process block 5410).

The client-side data hub receives the results of the processClientEvent from the server-side

data hub (process block 5412). The client-side data hub updates the displayed Wiki page on

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
73

the client with the new Wiki page content received in the results of the processClientEvent

from the server (process block 5414) with the process terminating thereafter.

Turning now to Figure 55, a flowchart of an operation occurring when a server-side
data hub receives an event from a client-side data hub as a result of a processClientEvent method
call is shown in accordance with an illustrative embodiment of the present invention. In this
illustrative example, the process is implemented by a server-side data hub, such as data hub 638

in Figure 6, data hub 1404 in Figure 14, and data hub 1500 in Figure 15.

The process begins when a server-side data hub receives an event topic for a given
event topic, such as Topic B, from a client-side data hub (process block 5502). The
server-side data hub sends the event for Topic B to the event queue (process block 5504).

The server-side data hub processes the event for Topic B in the event queue during the next
processEvent phase (process block 5506). The server-side data hub sends the event for Topic
B to a set of consumers on the server registered as listeners/consumers for Topic B (process
block 5508). The server-side data hub receives new event data for Topic B from producers on
the server (process block 5510). The producers firing the new event data were one or more of
the consumers that received the event data in process block 5508. The server-side data hub

adds the new event data to the event queue (process block 5512).

The server-side data hub processes the new event for Topic B during the next
processEvent phase (process block 5514). The server-side data hub sends the new event to
consumers on the server registered as listeners/consumers for Topic B (process block 5516).
The server-side data hub calls render method on all commands involved in processing the
event for Topic B (process block 5518). The server-side data hub receives the results of
command processing of the event in the form of renderings in hypertext markup language or
JavaScript (process block 5520). The server-side data hub bundles the renderings from all the
commands and sends the renderings to the client data hub (process block 5522) with the

process terminating thereafter.

The illustrative embodiments of the present invention also provide a computer

implemented method, apparatus, and computer usable program code for argument detection

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
74

for event firing. Event firing refers to the process of sending an event to a data hub for

processing.

The process aggregates argument data from a set of sources to form an aggregate data
set. The process generates a list of minimum sufficient arguments for firing an event to form a
set of minimum arguments. The process compares the aggregate data set to the set of
minimum arguments to determine whether the set of minimum arguments are available. The
process triggers the command to fire the event, in response to determining that the set of

minimum arguments are available.

Turning now to Figure 56, a flowchart of an operation occurring when a Wiki
argument object performs a minimum sufficient argument process is shown in accordance with
an illustrative embodiment of the present invention. In this illustrative example, the process is
implemented by a Wiki command object, such as Wiki command 1404 or Wiki command 1412
in Figure 14.

The process begins when Wiki argument object aggregates argument data from a set of
sources (process block 5602). The Wiki argument object generates a minimum sufficient
argument set based on declared parameters criteria to form an argument set (process block
5604). The Wiki argument object compares aggregate argument data set to minimum
argument set (process block 5606). The Wiki argument object makes a determination as to
whether sufficient arguments are present (process block 5608). If the Wiki argument object
determines that sufficient arguments are present, the Wiki argument object fires a
dataAvailable event indicating that the required data is available to fire the event (process

block 5610) with the process terminating thereafter.

If the Wiki argument object determines that sufficient arguments are not present, the
Wiki argument object makes a determination as to whether new data has been received
(process block 5612). If new data has been received, the process returns to process block
5604 where Wiki argument generates a new aggregate argument data set to determine if
sufficient arguments are now present. If no new data has been received, the process

terminates thereafter.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
75

Turning now to Figure 57, a flowchart of a process for an areArguments set method
that occurs when a Wiki argument object determines if the minimum required arguments of a
command are set is depicted in accordance with an illustrative embodiment of the present
invention. In this illustrative example, the process is implemented by a Wiki command object,

such as Wiki command 1404 or Wiki command 1412 in Figure 14.

The process begins by receiving a call from an object to fire an event that requires a
minimum sufficient set of argument values to be present prior to firing the argument (process
block 5702). The process generates a list of the required arguments into an argument list
(process block 5704). Next, the process makes a determination as to whether more arguments
in the list of arguments are present (process block 5706) that have not yet been checked. In
other words, the process identifies the next argument to be checked or processed by
determining which argument in the argument list is the next argument in the list to be checked.
The process checks the next argument in the list by making a determination as to whether the
argument is available and valid, iteratively until all the arguments in the list have been checked
for availability and validity. If the list does not contain any additional unprocessed or
unchecked arguments, the process returns the Boolean value of “true” to the caller object

(process block 5710) with the process terminating thereafter.

Returning to process block 5706, if the list does contain a next unprocessed or
unchecked argument, the process makes a determination as to whether the next argument in
the argument list is set (process block 5708). The process removes the next argument from
the list of unprocessed arguments (process block 5706). If the process determines the
argument is set at process block 5708, the process returns to process block 5706 to continue
processing the list until all arguments in the list of arguments have been checked. If the
process determines the argument is not set, the method returns the Boolean value of “false” to

the caller (process block 5712), with the process terminating thereafter.

Turning now to Figure 58, a flowchart of a process for a setCheckArguments method
for detecting if the arguments/available event should be fired is shown in accordance with an

illustrative embodiment of the present invention. In this illustrative example, the process is

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
76

implemented by a Wiki command object, such as Wiki command 1404 or Wiki command 1412
in Figure 14.

The process begins by making a determination as to whether an identifier argument is
set (process block 5802). The identifier argument is a default argument belonging to the data
hub command. The identifier argument is used to uniquely identify an event throughout its
existence within the data hub. If the process determines that the identifier argument is not set,

the process terminates thereafter.

Returning to process block 5802, if the identifier argument is set, the process makes a
determination as to whether all arguments required to be present prior to firing an identified
event are available (process block 5806). The process makes this determination by checking a
flag that determines if all arguments in a previously defined set of required arguments are
available. If the process makes a determination that the previously defined arguments in the set
of required arguments are not available, the process calls the areArgumentsSet method
(process block 5808). Ifthe process receives a return value of “false” from the

areArgumentsSet method, the process terminates thereafter.

Returning now to step 5808, if the arguments set process returns a value of true, the
process creates a data available event object (process block 5810). The data available event
object indicates that the all arguments required to be present prior to firing an identified event
are present. The process fires the data available event object to trigger a command associated

with the identified event to fire the identified event(process block 5812).

Returning to process block 5806, if the process determines that the areArgumentsSet
method returns “true” as shown in process block 5708 in Figure 57, the process creates a data
available event object (process block 5810). Next, the process calls the fireEvent method on
the data hub object with the data available event as an argument to the method to fire the
event object (process block 5812). The fireEvent method relays the event to any listening

processes. The process terminates thereafter.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
77

Figure 59 is a flowchart illustrating the operation of defining a Wiki page layout with a
Wiki page in accordance with an illustrative embodiment of the present invention. The
operation of inheriting a Wiki page layout for a Wiki page is particularly highlighted in process
blocks 5912 through 5920. The operation in Figure 59 may be implemented by a Wiki
engine, such as Wiki engine 402 in Figure 4, and more specifically by a Wiki controller, such
as Wiki controller 500 in Figure 5. The operation begins when a Wiki engine receives a
request to show a page (process block 5902). The request is typically an HTTP request issued
by a remote client browser. A Wiki controller object handles the request. The Wiki controller
object begins the process of rendering the requested page combined with a layout page

(process block 5904).

In an illustrative embodiment of the present invention the process of rendering the
requested page is invoked by calling a showPage method of the Wiki object, such as Wiki
object 508 in Figure 5. The showPage method retrieves the requested Wiki page and renders
an HTML version of the requested Wiki page, which can be displayed in a client browser.
The Wiki object acts as a repository for all of the objects and fields used to generate content
for the newly requested Wiki page. As part of the page rendering process, a first sub-process
is invoked (process block 5906). The first sub-process performs the data manipulations
necessary to create a data model of the requested page. In an illustrative embodiment of the
present invention the data model of the requested Wiki page is a Wiki page object, such as
Wiki page 526 in Figure 5. In an illustrative embodiment of the present invention, the first

sub-process is a processPage method, which is called by the showPage method.

The first sub-process invokes a second sub-process (process block 5908). The
purpose of the second sub-process is to load the Wiki layout page associated with the Wiki
page that is the subject of the current request. In an illustrative embodiment of the present

invention, the second sub-process is a loadLayout method.

The second sub-process makes a determination as to whether the layout field of the
data model of the requested Wiki page contains a Wiki layout page name (process block
5910). In an illustrative embodiment of the present invention, the layout field is an object

variable of the Wiki page object, such as object variable 528 of page 526 in Figure 5. If the

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
78

second sub-process determines that the layout field does not contain a Wiki layout page name
for the currently requested Wiki page (a no output to process block 5910), then the second
sub-process makes a determination as to whether the currently requested Wiki page has
ancestor Wiki pages (process block 5912). Ancestor Wiki pages are those Wiki pages that
occur at a higher level in the page naming hierarchy. For example, if a Wiki page is named
“LevelOne/Level Two” and a Wiki page named “LevelOne” exists, the Wiki page named
“LevelOne” is considered an ancestor of the Wiki page “LevelOne/LevelTwo”. In another
illustrative embodiment of the present invention the second sub-process determines if the
currently requested Wiki page has ancestor Wiki pages by checking the path field of the Wiki
page object. The currently requested Wiki page is determined to have ancestor Wiki pages if
the path field contains names of Wiki pages.

If the second sub-process determines that the currently requested Wiki page has
ancestor Wiki pages(a yes output to process block 5912), the second sub-process retrieves
the path, loads the path into an array, and reverses the order of the array such that the closest
ancestor appears first (process block 5914). In a page name hierarchy, the closest ancestor
page is the name segment that occurs immediately prior to the last segment. For example, if a
page is named “LevelOne/LevelTwo/LevelThree”, the closest ancestor page of the page is the
page named “Level Two”. The most remote ancestor page of the page is the page named
“LevelOne”. Next, the second sub-process makes a determination as to whether a row, or
entry, in the Wiki_pages table matches one of the page identities in the path array (process
block 5916). The Wiki_pages table is a table in the database that comprises the object
variables of the Wiki page object. In an illustrative embodiment of the present invention, an
entry, or row, in the page table comprises fields of an identity (ID), account, tag, time, body,
owner identity (ownerID), modified by, isLatest, layout, isLayout, isEditing, commentOn,

path, attributes (attrib), and errors.

If a second sub-process determines that a match exists (a yes output to process block
5916), the second sub-process loads the Wiki layout page returned as a match (process block
5918). The ancestor page that is found to have a matching entry in the Wiki_page table is
referred to as a matched ancestor page. In an illustrative embodiment of the present invention,

the second sub-process loads the Wiki layout page returned as a match from the query by

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
79

invoking a third sub-process which loads the Wiki layout page returned as a match from the
query. In another illustrative embodiment of the present invention, the third sub-process is a

loadPage method of the Wiki object. Then the operation goes to process block 5924,

If the second sub-process determines that a match does not exist (a no output to
process block 5916), the second sub-process loads a default layout page (process block 5920).
In an illustrative embodiment of the present invention a loadPage method of the Wiki object is

called to load the default layout page. Then the operation goes to process block 5924.

If the second sub-process determines that the currently requested Wiki page does not
have ancestor Wiki pages (a no output to process block 5912), the second sub-process loads a
default layout page (process block 5920). In an illustrative embodiment of the present
invention a loadPage method of the Wiki object is called to load the default layout page. Then
the operation goes to process block 5924.

If the second sub-process determines that the layout field is set for the currently
requested Wiki page (a yes output to process block 5910), then the second sub-process loads
the layout page named in the layout field (process block 5922). In an illustrative embodiment
of the present invention a loadPage method of the Wiki object is called to load the named

layout page.

Next, the second sub-process returns the layout Wiki page object to the first
sub-process (process block 5924). In an illustrative embodiment of the present invention, the
second sub-process returns the layout Wiki page object to the first sub-process via the third
sub-process. The first sub-process places the contents of the body field of the Wiki page
object of the currently requested Wiki page into the page component “body,” which is part of
the body field of the Wiki layout page object (process block 5926). The body field is an object
variable of the Wiki page object, such as object variable 528 of page 526 in Figure 5. In an
illustrative embodiment of the present invention the first sub-process places the content of the
body field of the Wiki page object of the currently requested Wiki page into the body field of
the Wiki layout page object by replacing a special template variable in the Wiki layout page
object with the body field of the Wiki page object of the currently requested Wiki page. In an

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
80

illustrative embodiment of the present invention the special template variable is a string
variable. In another illustrative embodiment of the present invention the first sub-process
replaces the special template variable with the body of the currently requested Wiki page

through string substitution.

Next, the body field of the Wiki page object of the currently requested page is replaced
with the body field of the Wiki layout page object (process block 5928). The body field of the
Wiki layout page object includes page components header, menu, right margin, left margin,
footer, and body. Processing to render the page in a client browser continues as normal
(process block 5930), then the operation ends. Thus, when rendered in the client browser, the
currently requested Wiki page comprises the original content of the currently requested Wiki

page, wrapped in the associated Wiki layout page.

Thus, illustrative embodiments of the present invention provide for embedding Wiki
page content into the body of a layout page. Additionally, a specific layout may be associated
with a Wiki page. A user may create a new Wiki layout page by simply creating a new Wiki
page and editing the content of the newly created Wiki page. The default content of each
section of the newly created Wiki page is provided by Wiki commands that are named after
the section for which the commands provide content. Users may include the content from
these Wiki commands in any position on the page that a user wants by using HTML page
flow. The user may include other static HTML content and other dynamic Wiki commands

within the newly created Wiki page as the user sees fit.

Additionally, illustrative embodiments of the present invention provide for a Wiki page
to inherit the layout of the Wiki page from ancestor pages. Each Wiki page has a list of pages
associated with the Wiki page that are ancestor pages for the Wiki page. The list of ancestor
pages is stored in a field in a Wiki object. In an illustrative embodiment of the present
invention, the field is called a path field. A query is used which finds the first Wiki page in a
reverse hierarchical order in the ancestor list that contains a Wiki page layout specifier. The

specified layout page is then selected for the target page to inherit.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
81

Figure 60 is a flowchart of the operation of rendering a Wiki page in accordance with
an illustrative embodiment of the present invention. The operation in Figure 60 may be
implemented by a Wiki engine, such as Wiki engine 402 in Figure 4, and more specifically by
a Wiki controller, such as Wiki controller 500 in Figure 5. The operation begins when a Wiki
engine receives a request to show a Wiki page (process block 6002). The request is typically
an HTTP request issued by a remote client browser. A Wiki controller object handles the
request. The Wiki controller object begins the process of rendering the requested Wiki page

combined with a Wiki layout page (process block 6004).

In an illustrative embodiment of the present invention the process of rendering the
requested Wiki page is invoked by calling a showPage method of the Wiki object, such as
Wiki object 508 in Figure 5. A showPage method retrieves the requested Wiki page and
renders an HTML version of the requested Wiki page, which can be displayed in a client
browser. The Wiki object acts as a repository for all of the objects and fields used to generate
content for the newly requested Wiki page. Next, the Wiki engine tests the bit mask settings of
a bit-mask stored in a field of the requested Wiki page, such as Wiki page 526 in Figure 5,
called the component field (process block 6006). The component field bit-mask includes a bit
corresponding to each page component in the Wiki page, such as the header, menu, footer,
and so forth. If the bit, or setting, for a given page component has the value of 1, the
corresponding page component Wiki command in the layout page is allowed to contribute the
content generated by the Wiki command to the Wiki page. If the bit, or setting, for a given
page component has the value of 0, the corresponding page component Wiki command in the
layout page is not allowed to contribute the content to the Wiki page that the Wiki command

would generate.

Next, the operation combines the requested Wiki page with an associated Wiki layout
page (process block 6008), forming a combined page. In an illustrative embodiment of the
present invention, in order to determine the Wiki layout page associated with the requested
Wiki page, a page table is checked to determine the specific Wiki layout page associated with
the requested Wiki page. In an illustrative embodiment of the present invention, the page table

is called a Wiki_page table. If the requested Wiki page does not have a specific Wiki layout

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
82

page associated with the Wiki page in the page table, a default Wiki layout page is associated
and combined with the requested Wiki page.

Thus, illustrative embodiments of the present invention provide for programmatically
hiding and displaying Wiki page layout sections. Wiki page settings are implemented as
checkboxes that are editable by a user, when the user edits a Wiki page. By checking and
un-checking the checkboxes, the user controls the visibility of the various page components,

as well as, page comments, attachments and emails.

Turning now to Figure 61, an illustration of a class definition for a server-side data
hub object class is depicted in accordance with an illustrative embodiment of the present
invention. A server-side data hub object, such as server-side data hub object 2100 in Figure
21, has attributes and object variables that are defined by a Wiki data hub class definition, such

as the class variable in code 6102.

This illustrative Wiki data hub class definition provides an array of Wiki command
objects 6104, an array of consumer identifiers 6106, and an array of producer identifiers 6108.
Thus, each time a server-side data hub is instantiated for a given page instance, the data hub
attributes for the server-side data hub instance are defined by a Wiki data hub class definition,

such as the Wiki data hub class definition shown above.

Turning now to Figure 62, an illustration of a set of method interfaces for a class of
data hub management methods is depicted in accordance with an illustrative embodiment of
the present invention. The set of data hub management methods 6200 are data hub
management method interfaces associated with a server-side data hub, such as data hub
management 1402 in Figure 14. Code 6202 is an example of a method for restoring a data
hub object saved in a file system or other data storage device, such as storage 108 in Figure 1.

Code 6204 is an example of a method for saving or caching an instance of a data hub object

to a file system.

Turning now to Figure 63A, an illustration of a set of method interfaces for a class of

producer and consumer methods is shown in accordance with an illustrative embodiment of

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
83

the present invention. The set of producer and consumer methods 6300 are data hub method
interfaces associated with a server-side data hub, such as producers and consumers 2104 in
Figure 21. The set of data hub management methods 6200 are data hub management method

interfaces, such as producers and consumers 2104 in Figure 21.

Code 6302 is a method to add a command to the data hub. Code 6304 is a method to
get commands that are members of the data hub. Code 6306 is a method to get a command.
Code 6308 is a method that is called to add a producer command. Code 6310 is a method to
add an editable producer command. An editable producer command provides data that can be

edited for create, update, and delete operations.

Code 6312 is a method to remove a producer command, such as a regular or editable
producer command. Code 6314 is a method to get a list of all producers. Code 6316 is a
method to add a consumer command as a listener for a particular topic. Code 6318 is a
method to remove a consumer command as a listener for a particular topic. Code 6320 is a
method to get a list of consumer commands that are listening to a particular topic. Code 6322

is a method to add a client consumer command as a listener for a particular command.

Code 6324 is a command to add a client JavaScript handler. Code 6326 is a code to
remove a consumer command as a listener for a particular topic. Code 6328 is a method to
get a list of consumer commands that are listening to a particular topic. Code 6330 is a
method to add a client consumer as a listener for a particular topic. Code 6332 is a method to

generate JavaScript code on the client for commands that belong to the client-side data hub.

Turning now to Figure 63B, an illustration of a set of method interfaces for a class of
topic methods is shown in accordance with an illustrative embodiment of the present
invention. The set of topic methods 6340 are method interfaces for topic methods on a
server-side data hub, such as topics 2106 in Figure 21. For example, code 6342 is an example

of'a method for adding an event topic. Code 6344 is a method for removing an event topic.

Turning now to Figure 64, an illustration of a set of method interfaces for a class of

event processing methods in accordance with an illustrative embodiment of the present

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
84

invention. The set of event processing methods 6400 are method interfaces for event
processing methods on a server-side data hub, such as event processing 2108 in Figure 21.
For example, code 6402 is a method to fire an event. Code 6404 is a method to process
events on the server. Code 6406 is a method to process a client event destined for the server.

Multiple events can be sent to the server as a batch.

Turning now to Figure 65, an illustration of a set of method interfaces for a class of
command management methods is shown in accordance with an illustrative embodiment of the
present invention. The set of command management methods 6500 are method interfaces for
command management methods on the server-side data hub, such as command management
2110 in Figure 21. For example, code 6502 is a method to set arguments for command. This
changes the arguments in the source. Code 6504 is a method to delete commands from page

source.

Turning now to Figure 66, an illustration of a class definition for a client-side data hub
object class is depicted in accordance with an illustrative embodiment of the present invention.
The data hub attributes and object variable are defined by a Wiki data hub class definition for a
client-side data hub, as shown in code 6600. Code 6602 is an object variable for consumer
identifiers. Code 6604 is an object variable for topics. Code 6606 is an object variable for

events.

Turning now to Figure 67, an illustration of a set of method interfaces for a class of
producer and consumer methods is shown in accordance with an illustrative embodiment of
the present invention. The set of producer and consumer methods 6700 are producer and
consumer method interfaces on a client-side data hub, such as producers and consumers 2202
in Figure 22. For example, code 6702 is a method for adding a consumer command. Code

6704 is a method for removing a consumer command.

Turning now to Figure 68, an illustration of a set of method interfaces for a class of
topic methods is depicted in accordance with an illustrative embodiment of the present
invention. The set of topic methods 6800 are method interfaces for topic methods on a

client-side data hub, such as topics 2204 in Figure 22. For example, code 6802 is a method

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
85

for adding a topic that is available for other consumer commands. Code 6804 is a method for

getting a list of available topics.

Turning now to Figure 69, an illustration of a set of method interfaces for a class of
event processing methods is shown in accordance with an illustrative embodiment of the
present invention. The set of event processing methods 6900 are method interfaces for event
processing methods on a client-side data hub, such as event processing 2206 in Figure 22.
For example, code 6902 is a method for firing all queued up events. Code 6904 is a method

for firing an event. Code 6906 is a method for sending an event to the server for execution.

Turning now to Figure 70, an illustration of a set of method interfaces for a class of
command management methods is shown in accordance with an illustrative embodiment of the
present invention. The set of command management methods 7000 are method interfaces for
command management methods on a client-side data hub, such as command management
2208 in Figure 22. For example, code 7002 is a method for adding a Wiki command. Code

7004 is a method for deleting a command.

A data hub topic object defines a topic that a consumer can subscribe to, as well as a
topic that a producer command can publish or fire. For example, a search component is a
consumer that subscribes to a search topic. When a user interface receives a search term from
a user, the user interface fires an event for the search topic. In other words, the user interface

is a producer that publishes the topic subscribed to by the consumer search component.

Turning now to Figure 71, an illustration of a set of object variables and method
interfaces for a class of data hub topic objects is depicted in accordance with an illustrative
embodiment of the present invention. The object variable 7100 define the attributes of the
topic object. The set of methods are method interfaces for data hub topic objects on a
client-side data hub or a server-side data hub, such as data hub topic objects 2112 in Figure
21 and data hub topic object 2210 in Figure 22. In this illustrative embodiment of the present
invention, the data hub topic object associated with the server and the data hub topic object

associated with the client have the same object variable and methods.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
86

Turning now to Figure 72, an illustration of class definitions and method interfaces for
a class of data hub event objects is depicted in accordance with an illustrative embodiment of
the present invention. The class definitions 7200 define the attributes of the event object. For
example, code 7202 defines an object variable for a topic. All event objects have a topic value
in the topic object variable. Code 7204 defines an object variable for a value. An event object

may have data stored in the object variable value. However, not all event objects include data.

In this illustrative embodiment of the present invention, the set of methods are method
interfaces for data hub event objects, such as data hub event objects 2114 in Figure 21 and
data hub event object 2212 in Figure 22. The data hub event object associated with the server
and the data hub event object associated with the client has the same object variable and

methods.

A data hub object, data hub topic object, and/or data hub event object can include
additional methods not shown in the illustrative embodiments without departing from the
scope of the illustrative embodiments of the present invention. In addition, one or more of the
methods associated with data hub object, data hub topic object, and/or data hub event object
can be absent from the set of methods for the data hub object, data hub topic object, and/or

data hub event object in accordance with the illustrative embodiments of the present invention.

In an event based Wiki component model, some Wiki components require a minimum
sufficient set of argument values to be present before the component can respond or fire an
event object. These minimum sufficient arguments can come from multiple, disparate sources.
Therefore, the aspects of the illustrative embodiments of the present invention provide a
minimum sufficient argument detection scheme that aggregates argument data from potentially
multiple sources and matches the argument set against declared parameter criteria such that a
“data available” event is only fired if the minimum sufficient arguments to satisfy the

declared/defined parameter criteria are present.

A Wiki argument object is an object associated with a Wiki command, such as Wiki

command 1404 and Wiki command 1412 in Figure 14. The Wiki argument object has an

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
87

“avail” property that indicates whether an argument required for a command to fire has been

set and is valid.

Figure 73 is an illustration of a class definition for a Wiki argument object in
accordance with an illustrative embodiment of the present invention. An algorithm for
detecting whether to fire an argument/available event is performed by Wiki argument object
on a command object, such as Wiki command objects 1404 and 1412 in Figure 14. Code
7302 is an object variable indicating whether the argument object is valid. Code 7304 is an

argument object indicating whether the argument is set and available.

Turning now to Figure 74, an illustration of a pseudocode for an algorithm detecting
whether to fire an argument/available event is shown in accordance with an illustrative

embodiment of the present invention.

In this example, code 7400 is for an algorithm that determines whether each argument
in a minimum required argument set for firing a data hub event object is available. Each
argument is checked at code 7402 to determine if the available variable is null. If the
algorithm indicates that each argument in the set is available, code 7406 makes a
determination as to whether the argument is available and set. If the argument is available and

set, code 7408 fires a new data hub event object associated with the argument set.

Thus, the aspects of the illustrative embodiments provide a server-side data hub object
and a corresponding client-side data hub object to propagate or route event objects between
commands in a Wiki environment and a client environment. The utilization of data hub objects
enables commands to interact with greater ease during processing of events associated with a

given Wiki page.

It should be noted that although the illustrative embodiments of the present invention
detailed above were described in terms of a Wiki application in a Wiki environment, the above
described illustrative embodiments of the present invention are not limited to a Wiki
application in a Wiki environment. The use of the Wiki application in a Wiki environment as

an example in the descriptions was not intended to in anyway limit the scope of the present

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
88

invention. It would be obvious to one of ordinary skill in the art that the above described
illustrative embodiments of the present invention apply equally well to any shared environment
that may be accessed through an interface by a group of users. Furthermore, while certain
aspects of the illustrative embodiments described above were explained in terms of JavaScript
language, the use of the JavaScript language as an example in the descriptions was not
intended to in anyway limit the scope of the present invention. Those of ordinary skill in the
art will realize that the illustrative embodiments described above may be implemented using

any object oriented scripting language.

The flowchart and block diagrams in the figures illustrate the architecture,
functionality, and operation of possible implementations of methods, apparatus, and computer
program products according to various embodiments of the present invention. In this regard,
each block in the flowchart or block diagrams may represent a module, segment, or portion of
code, which comprise one or more executable instructions for implementing the specified
logical function(s). It should also be noted that in some alternative implementations, the
functions noted in the block may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order, depending upon the functionality

involved.

The invention can take the form of an entirely hardware embodiment, an entirely
software embodiment or an embodiment containing both hardware and software elements. In
a preferred embodiment, the invention is implemented in software, which includes but is not

limited to firmware, resident software, microcode, etc.

Furthermore, the invention can take the form of a computer program product
accessible from a computer-usable or computer-readable medium providing program code for
use by or in connection with a computer or any instruction execution system. For the
purposes of this description, a computer-usable or computer readable medium can be any
tangible apparatus that can contain, store, communicate, propagate, or transport the program

for use by or in connection with the instruction execution system, apparatus, or device.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
89

The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system (or apparatus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid state memory, magnetic tape, a
removable computer diskette, a random access memory (RAM), a read-only memory (ROM),
a rigid magnetic disk and an optical disk. Current examples of optical disks include compact

disk — read only memory (CD-ROM), compact disk — read/write (CD-R/W) and DVD.

A data processing system suitable for storing and/or executing program code will
include at least one processor coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory employed during actual
execution of the program code, bulk storage, and cache memories which provide temporary
storage of at least some program code in order to reduce the number of times code must be

retrieved from bulk storage during execution.

Input/output or I/O devices (including but not limited to keyboards, displays, pointing
devices, etc.) can be coupled to the system either directly or through intervening 1/O

controllers.

Network adapters may also be coupled to the system to enable the data processing
system to become coupled to other data processing systems or remote printers or storage
devices through intervening private or public networks. Modems, cable modem and Ethernet

cards are just a few of the currently available types of network adapters.

The description of the present invention has been presented for purposes of illustration
and description, and is not intended to be exhaustive or limited to the invention in the form
disclosed. Many modifications and variations will be apparent to those of ordinary skill in the
art. The embodiment was chosen and described in order to best explain the principles of the
invention, the practical application, and to enable others of ordinary skill in the art to
understand the invention for various embodiments with various modifications as are suited to

the particular use contemplated.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
90

CLAIMS

1. A computer implemented method for inheriting a page layout for a page, the computer
implemented method comprising:

responsive to receiving a request to show a current page from a client browser,
determining whether the current page has a set of ancestor pages;

arranging the set of ancestor pages such that a closest ancestor page in the set of
ancestor pages appears first in a list of ancestor pages;

identifying a layout page associated with an ancestor page of the set of ancestor pages;

combining the identified layout page with the current page to form a combined page;
and

sending the combined page to the client browser.

2. The computer implemented method of claim 1, wherein the page is a page in a
collaborative web environment that allows single or multiple users to efficiently integrate static

and interactive content.

3. The computer implemented method of claim 1, wherein the step of identifying the
layout page associated with an ancestor page of the set of ancestor pages further comprises:

querying a database to find a first row in a page table with an entry that matches an
ancestor page of the set of ancestor pages to form a matched ancestor page; and

determining the layout page associated with the matched ancestor page.

4. The computer implemented method of claim 3, wherein an entry in the page table

comprises a page and a layout page associated with the page.

5. The computer implemented method of claim 3, further comprising:
responsive to not finding a first row in a page table with an entry that matches an
ancestor page of the set of ancestor pages, associating a default layout page with an ancestor

page of the set of ancestor pages.

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678

921
6. The computer implemented method of claim 1, wherein the current page includes a list
of the set of ancestor pages.
7. The computer implemented method of claim 1, wherein the closest ancestor page in

the set of ancestor pages is a page that corresponds to a name segment that occurs
immediately prior to a last name segment, wherein the last name segment corresponds to the

current page.

8. A computer program product comprising a computer usable medium including
computer usable program code for inheriting a page layout for a page, the computer program
product comprising;:

computer usable program code, responsive to receiving a request to show a current
page from a client browser, for determining whether the current page has a set of ancestor
pages;

computer usable program code for arranging the set of ancestor pages such that a
closest ancestor page in the set of ancestor pages appears first in a list of ancestor pages;

computer usable program code for identifying a layout page associated with an
ancestor page of the set of ancestor pages;

computer usable program code for combining the identified layout page with the
current page to form a combined page; and

computer usable program code for sending the combined page to the client browser.

9. The computer program product of claim 8, wherein the page is a page in a collaborative
web environment that allows single or multiple users to efficiently integrate static and

Interactive content.

10. The computer program product of claim 8, wherein the computer usable program code
for identifying the layout page associated with an ancestor page of the set of ancestor pages
further comprises:

computer usable program code for querying a database to find a first row in a page
table with an entry that matches an ancestor page of the set of ancestor pages to form a

matched ancestor page; and

10

15

20

25

30

WO 2008/003699 PCT/EP2007/056678
92

computer usable program code for determining the layout page associated with the

matched ancestor page.

1. The computer program product of claim 9, wherein an entry in the page table

comprises a page and a layout page associated with the page.

12. The computer program product of claim 9, further comprising:
computer usable program code, responsive to not finding a first row in a page table
with an entry that matches an ancestor page of the set of ancestor pages, for associating a

default layout page with an ancestor page of the set of ancestor pages.

13. The computer program product of claim 8, wherein the current page includes a list of

the set of ancestor pages.

14. The computer program product of claim 8, wherein the closest ancestor page in the set
of ancestor pages is a page that corresponds to a name segment that occurs immediately prior

to a last name segment, wherein the last name segment corresponds to the current page.

15. A data processing system for inheriting a page layout for a page, the data processing
system comprising:

a storage device, wherein the storage device stores computer usable program code;
and

a processor, wherein the processor executes the computer usable program code,
responsive to receiving a request to show a current page from a client browser, to determine
whether the current page has a set of ancestor pages; arrange the set of ancestor pages such
that a closest ancestor page in the set of ancestor pages appears first in a list of ancestor
pages; identify a layout page associated with an ancestor page of the set of ancestor pages;
combine the identified layout page with the current page to form a combined page; and send

the combined page to the client browser.

10

15

20

25

WO 2008/003699 PCT/EP2007/056678
93

16. The data processing system of claim 15, wherein the page is a page in a collaborative
web environment that allows single or multiple users to efficiently integrate static and

interactive content,

17. The data processing system of claim 15, wherein executing computer usable program
code to identify the layout page associated with an ancestor page of the set of ancestor pages
further comprises:

executing computer usable program code to query a database to find a first row in a
page table with an entry that matches an ancestor page of the set of ancestor pages to form a

matched ancestor page; and determine the layout page associated with the matched ancestor

page.

18. The data processing system of claim 17, wherein an entry in the page table comprises a

page and a layout page associated with the page.

19. The data processing system of claim 17, further comprising:
executing computer usable program code, responsive to not finding a first row in a
page table with an entry that matches an ancestor page of the set of ancestor pages, to

associate a default layout page with an ancestor page of the set of ancestor pages.

20. The data processing system of claim 15, wherein the current page includes a list of the

set of ancestor pages.

WO 2008/003699

PCT/EP2007/056678

1/42
= FIG. I o
104~
| —
| —)
SERVER 112
E
106~
] L 114
SERVER
FIG. 2
206~ | PROCESSING
™ UUNIT 200
210 202 208 216 236
\ \ / / /
GRAPHICS MAIN AUDIO
PROCESSOR [N NBMCH K= \iEMoRy ADAPTER
204
240 \ 238
BUS
ﬁi@w@ il/il I T
KEYBOARD
USB AND
NETWORK PCI/PCle AND
DISK] | CD-ROMY | A pAPTER S(T):-Erg pevices | | mouse | | MOPEM | | ROM
ADAPTER
/ / / / / \ \ \
226 230 212 232 234 220 222 224

WO 2008/003699

2/42

PCT/EP2007/056678

FIG. 3
CLIENT N WIKI
ENVIRONMENT | | ENVIRONMENT
’ N
300 302
400
FIG. 4 /
WIKI ENGINE
402
404~ REQUEST 406~ COMMAND PAGE | -408
HANDLER PROCESSOR COMPOSER
T
¥__—/
410 DATABASE WIKI COMMANDS
ABSTRACTION 420
~SESSION
M2 T -ggEg/GRoup
414~ COMMENTS _USER DATA custoMm 424
EMAIL -PAGES BUILT-INS
116 LISTS 422
4181 ATTACHMENTS \
428
TABLES
426

524

DATABASE

SESSION

506" HTTP://SERVER/WIKI/SHOW/PG/HOME/ ...

544

522

d

FIG. 5

s
y WIKI COMMAND
OB 546 548 554 556
50471 VARS N Z AN Z
0BJ VARS | CONTENT OBJ VARS | CONTENT
WIKI CONTROLLER ~ |
A \A
508 552 o
N > | COMMAND
A S
WIKI OBJECT PAGE w,ﬁ 550
PHP | ~514 528 ACCESS " ACLs
SECURITY N N
0B VARS J Lavour P36 542
EMAIL | -516
510 CHECK /
530 SCRIPTS
N N-538 [\
N o) » USER N 526
1 VARS 518 ATTACHMENTS CONTENT N_54¢
¥ /
VARIABLES |—»| PAGE > PROCESS " DATA HUB
% S mfwm
512 520
558

4743

669€00/800T OM

8L99€0/L00Tdd/LOd

PCT/EP2007/056678

WO 2008/003699

4/42

0v9

\
HIAYIS Xvrv IN3MD
909 431004
i
BE9] 8NH v1va 99 7E9N] 4NH v1va
A / /
8¥9 XVry
¢v9 ¥Z9
069 019 | 2€9 0€9 809
19 929
9%9 \ 0v9 NIDHYIN 829 ¢29 | NIDYYIN
LHOIY 1437
S33HL ANYIWINOD IMIM gg/ = HYZIWBIOD TNLH< tH> 209
90/02/90 :01eq ¢
ININNOYIANT IMIM 819
{{/0l1sy=aneA 00} =aweu 1eA}}
A 0297
109 009" AQOS 19
b .MVN..& E NNIN
709 43avaH
ININNOHIANT INITD

PCT/EP2007/056678

WO 2008/003699

5/42

N suoq _
|
Spuooes 9/¢y0'} Ul pejoiausd abog QA Ay ¢ T 1B B> 90UDINSU| — OW(]
MIMAI0 Aq palamog
Hpjs saijiaysa] Apq aduspuadapu| ayj sis7 AN
obp unoy | — AIbg pHOmM =
AopanjpS SaljiAlfSa] AD(Q souapuadapu 0°0°1 0071
g M_ ,Fm+_m jo .“.&“m mmczm__% w_n oEoNh" HoIPES 6L Petd SSH 0L/
obp sajnuiw y¢ — wodssaidayy ﬂ ,m_{\
Smau 8oJnog uadp
001 .
s6p] 0'0°)
S8LI0JS SMaN / N.ZL/ JubAsiey sMoN 9|boog
1= = 80,
|IDW3 oAaLjeYy (siiow3 oN) spiow < 00l \oﬂ
sdop 8jboog YydosS B—Q9(0/
8|boog
9]l pussS (| asmo.g JUBLUYODHY PPY (SJUSWUYIDYY ON) SjUsSWYIDWY < @ dw
89]AI8S DJD(
juswwo) ppy (Spuewwod ON) SjusIWo) <
sHun MM
jusjuoy aboy
"+ jusjuod aAl bBuibboiq Jozuobig D10 A/Nom
a3d H SpubWWo?)
09 _ _nseowm x GBH x 18SN) x AOISIH 4 MBIA 4 {IP x 8DbDJ aWoH AN
—— ~———_ NIMAI0=>
[mobo]] [SBURFeS] ujwpy :eip noj poopbeIq /1581 - MIMAN N A/OON
A poopmboiq-jsa) /6d/moys/pjimpab /woa uipwop-n mmm/ /:dyy (Z mmo‘_ng_ @ - @ ~an a>
doff seyiondy of malk p7 2 | £ DA
x[a]= PoomBoiq/isaL + MIMAN

PCT/EP2007/056678

WO 2008/003699

6/42

] _
P c_uooo 0._.o_wc ._.wmom_ h adupJnsu| — ows(
SluDlY Y Aiddy I T
_ _ sbo] g¢ do| 9405
sanpA |~ ﬂ %
Yoz eyy Aopsen] uo ung ||yGG/8¢ X __ﬂ_ oS || L00
AjuoJsnies L'0Q
el oy} kopuo uo sieoys ADIGS/yE & i _ odes fsrioeloid
Wig) ayy Aopung uo pibuige/07 66666 o UL
UiL) 8y} Aopanjoguo 8d)//g7 & oz)s || E
W9l oy} Appuj uo JesiS/y/ g e | _ - 200
G) ou} ADPSINYL o SioMoyS|G/GE & soumee | —[| poicaidlosg stooiuo
Uiyl 8y4 Appssupep uo siemoys Aup3gg/ge ftx _) : E
jsposloy Japio O T
—
Spely [0o07 _ $240}S _ sisi AN
dop |puolpN PLaAH a | _ 90IAI8S DIbQ
0 TR 4%j9WLbJod peoubApY = |~ Sl P
XJ/| L8t XL uysny | py euljaxo] LS} | si0js/opog/"| || o7 fusjuo) sbog N
e Jazjunbig pyo(¢08
X /| o ¥J| O8jop upg 1q ss8y) 1007 kienb ||0S
X /| wo N | umopsiopm | teaus [oussty Glg SeJ0fS :{SI14oI085 | PM Spupwiiod
dz | eois) ssaippy sapiedog 7 20DdSIIM
09 || |:yoroeg JOBH xS0 & SEI\ x WAl oow\m@_Nwwmom SWoH 108 /_ ~_
/ Tsaofs /—=—"pjimain=> 008
[foboj] [SBUIeS] uiwpy :eip noj 808 pais|dwo)/isyieap/a1empieH : HIMAN N
A paysjdwog—Jayoap /6d /moys /1qimpab /wod uipwop-o-mmm/ /:dyy & mmenvi @ ﬂ @ -0 a>
djoff sjoo] syiounjoog o Melf HpT 9 | © O)J.]
x[[al~ poopmboiq/isal & INIMAN

WO 2008/003699
900
\ FIG. 9
WikiSpace

Open All|Close All

0 WikiSpace—— 902
-~ HelloWorld— 912
;L- HomePclgef914
—-E MenuTest— 916

é}_ﬁ Test —— 904

' - Email
B ESPN

i :r— Json

ListWithCamelCase

Part
— SearchShowData

I_ Showltem

-5 ShowltemVar
IL_ Testing ~_ 906
-CI TopLevel ~_ 908
B Wiki~_ 910
L] WikiPages

|
L
I
|
'_
|
|
|
r
|
|
L

7/42

PCT/EP2007/056678

FIG. 12 :/200

COMMANDS

1202~ |

Catalog
Get/setCategory 1210
GetName ——1212

getDescription 1214

1204~ |

LifeCycle
wasSaved ~~ 1216
wasDeleted 1218

wasCopied ~-1220

1206

Property Edit
generatePropertyEditor/ 1222

allowkEdit 1224

1208

Page Processing
render -~ 1226
drawEyeCatcher -~ 1228
freshOnUpdat
refreshOnUp ae\1230

getTargetDIV~ 1939

PCT/EP2007/056678

WO 2008/003699

8/42

0001~

¢001

0l ODIA

1oPPd unaag josay Aiddy
SIUDJYY YHoN
900} 7001~
Yoz ey Aopsen] uo ung ||yGG/8¢ Xx
Wig) eyy Aopuop uo siemoys ALDIGG/¥S &4
W8l ey Aopung uo pibuiigs/07 T
YiLl 8y} Appinjpsuo 8dzy/87 &4 -
2001 9| oy4 Aoplij uo Jes|S/y/ e s
Yig| 8y >ovm5£._. uo m;m;osm—m\mm m.@ c?O.TEbB m’!"
Yty |\oy} Appsaupapy uo sismoys Aup3gG/gs It sololch i
7 1/#20 VIN ‘UMOLIBIRM T isAN |
fspoaloy 19911S [BUSSIY G |9 £ ||| p4poqyspgAn m-L"
SMs|y |Po07 w 3IA0 1
n__UE __UCO_._.DZ U_LQ>_|_ _ 0._.__0._.Um QUE _ _A._W_.v_) EM .m
. = DIo(|EH-+
U 4441 Db b "
pajejdwog 5
. |
X/ | st X1 uysny | py suleo] LOg|| | WOdHODYSPIOUGSDIONIU | BulSDT | € moam_v__sm
X /| worve V| O8jop uog 1Q Ssey) |007| W0O}IDYSPIBUGWIO} | OBIDN UDS | EH
lly esojy||ly ued
dz | epis ko ssaippy oDju0) BuDN 220dg Pl
09 || :4oupeg x GPH x 1S x MOJSIH 4 MO x JIP3 x 9DbDJ SWIOH yaN
~}IMJID=>
[inoboj] [SBUFAS] uiwpy :aup noj paja|duwion/1ayieap/aiempier - IIMAN N
A pajo|dwo)—Jayypap /Bd /moys /1yimpab /wod ujpwop—p mmm/ /:dyy (5 mmenni @. - @ aa a>
djoH sjoo] sjiowxoog 03 MIIA HPT oI
x|cl= poomboiq/isal : MIMAN

WO 2008/003699

1102 -

9/42

FIG. 11

PCT/EP2007/056678

1100

’/

1104 @AND com@

Accordion (e.g.)

Template

TEXT BLOCK

LATITUDE/LONGITUDE

1108
Forecast ; @@
1 GOOGLE MAP
1110 LATITUDE/
LONGITUDE
LATITUDE/LONGITUDE \‘
1114
A
y
DATA HUB

11127

WO 2008/003699 PCT/EP2007/056678

10/42

FIG. 13 1'300

PROPERTY EDITOR INTERACTION

1302 1304
\ /

Properties X
Fe———" =

I ‘test' | id

N test
{{GoogleMap id="test' | |

address="1313.../}} address

bubble

| |
accepllists

E |
zoom

[10 |
showtype

[false |

\)

largecontrol

[false |
width
| 100% |
height
[400px |

fat =

Y

Y
Editing Address &

@ ™~-1306

Done Cancel

WO 2008/003699 PCT/EP2007/056678
11/42
FIG. 14
SERVER CLIENT
1402 AJAX/ 1410
N JSON /
DATA DATA
WIKI WIKI
COMMAND COMMAND
/ N
1404 1412
| |
1400 SERVER CLIENT 1408
COMMAND COMMAND
PERSONAS PERSONAS
1600
FIG. 16 /
Year Model Make
2 | 2005 Heavy s X
C5| 2001 | Racer Heavy I X
2 | 2005 Heavy X
2 | 2005 Heavy X
| 2005 Heavy I X
51 2005 Trucker Heavy / X
2 | 2005 Heavy X
1 | 2005 Heavy X
2 | 2005 Heavy J X
2 | 2005 Heavy X
QA A1 2 3 456 1> Db

PCT/EP2007/056678

WO 2008/003699

12/42

00G1

{
0cS} ()1apual

\ ()sjuaajssanoud
()Jan0asIp

()siuaagssaooud
N

016Gl

{ Ouu
akal { 9lGl } ()ssa00.d
/ (1uaAa)yoeq||e9 18WNSUOD
} [1s1uana yaea Joy 39Vd MIM
} ()siuaa3zssesoid _
.m { |V IN3AT
T e (luand)ppe’[Isiuone |
()anjep1ab-)uana B } (1UBAS)IUBATAI] 379VTIVAY/SHYD 3HI4
} (oeqjles 7 /
7161 | [Isiswnsuod ¢Sl vmmv
379V 1IVAY/SHYD [Is1sonpoid R
01401 HO4 HIWNSNOD > > [Isluana | 30naokd
SV H31SI193H []spuewwo9
el siep [q0 «SHYD. H30NA0Hd
«SHYDw HIWNSNOD ONVININD? DI
ONVININOD IMIM anH v1va /
\ . ¢0S1
90S | Sl DIH

PCT/EP2007/056678

WO 2008/003699

13/42

vO.Ll

DIIM |:youpeg

¢0.1

M ~Nd3IL HOYV3S

7N o]

"90U9) IYIM 28Ul JaA0 padwinl x0) umoliq ¥91nb ay] *a9ua) 8y Jaao padwnl
X0} UMO0IQ X91nb ay] "99us} ay) Jano padwin(X0} umoiq ¥o1nNb ay| 9ousy
ay) Jano padwinl X0 umoiq }oInb ay| ~8oua) ay) Jaao padwin| xo) umolq

. . Biyuoy ebossap C H=
¥o1nb ay| -8ous} sy} 1aA0 padwinl X0} UMOIQ Y2INb 8y "8dud} 8y} J8A0) sgg@g"ﬂ
padwn| xo} umoiq ¥21nb ay] "a9us} 8yl JaAo padwin(xo) umo.qg 3ainb ay| sojuses 9joeIg [}

|
99118S AHpO

MBS AP z_uuun
ELIIVENS :m_mm<_u|._

HEIS)2IND 90AI8G 8Ja !
uoyuljeq so_mm- _u._uum_
VOS j0 80.4 8yl Iy ®sof9|lly uedo
iMIMQZF0 01 aWod|aMm 200dSIMIM
aiv [
09 _ _:Ecmm x MOISIH x M3IA 4 {IP] x 3DD4 3WOH AN

——————=——""1iMa3o=>
DOOMDBRIQ /1581 : MIMAIN A4

[fnoboj] \ [SBuiyes] UJWPY :84D NOL

A || 8bogawoy /6d /moys /ijimpab /woo*upwop-o-mmm/ /:dyy [F mmo.ﬁg_ @ - @ -0 >

dieff sjoo] syiowyoog o Melf HpT 8liT

x[Iol = poomboaq/ise] : MIMAN

LI "DIA

PCT/EP2007/056678

WO 2008/003699

14/42

0081

{ Z Fm 1 m
) (1uaAa)y2eq||e9°J1aWNSuU0d
6
Awmmﬁ\v,%v_wmm_,_mg } [SIoWNSu09 yoea 10} o\:wv v1vd NI
. } (uana)juanzaly 19V TIVAY/HOHY3S J414
71GL | [Isiswnsuod
T18VTIVAY/HOHYIS [Is1a9npoud
01401 HO4 HINNSNOD y o | Lsiwow i N A
SV H3LSI93Y [Ispuewwoo
8081 SIEA 100 v08L] " .Houv3s. u30NA0Hd
HINNSNOD ANVININOD IXIM
ANVININOD MM dnH Y.1va v/
/) 2081
908} 81 DIA

PCT/EP2007/056678

WO 2008/003699
15/42
FIG. 194
CLIENT
1916
\ DATA HUB
WIKI COMMAND Obj Vars
PRODUCER "SEARCH" commands|]
1912 events(]
REGISTER AS N » producers]]
PRODUCER > consumersf]
FIRE SEARCH/ .
CLICKED EVENT \ »fireEvent(event) {
for each consumers]] {
DATA 1918 consumer.callback(event)
}
div = fireClientEvent(event)
WIKI COMMAND update target divs in HTML
CONSUMER }
REGISTER AS N
CONSUMER FOR 1932
TOPIC SEARCH/ N
AVAILABLE 1914 X
1910

callback(event) {
event.getValue()

}...

1920
_/
T0
FIG.
19B
\
1930

for each events[] {

consumer.callback(event)

WO 2008/003699 PCT/EP2007/056678
16/42
FIG. 19B
SERVER
WIKI COMMAND
1902~_,] PRODUCER "SEARCH"
DATA HUB REGISTER AS
PRODUCER
Obj Vars 1924
commands] 1904 /
events(]) REGISTER AS
producers[] <- CONSUMER FOR
consumers(] 3 N TOPIC SEARCH/
1908 CLICKED
1920 1922 callback(event) {
N processClientEvents(event) { / Fire search/available
FROM fireEvent(event) } DATA
FIG. processEvents()
19A render()
t tent
y }re urn newConten WIKI COMMAND
1930 CONSUMER "CARS"
fireEvent(event) { REGISTER AS
events[].add(event) CONSUMER FOR
} TOPIC SEARCH/
AVAILABLE
N
processEvents() { 1926

}

}

1900

1928

callback(event) {
event.getValue()

}...

render() {
draw HTML

}

1906

PCT/EP2007/056678

WO 2008/003699

17/42

_ _ _ _
_ _ _ _
_ — _ _
| | _ | |
_ ‘6
_ : g BN _ _ _
L 8 T | ! | |
L | L
. _
| _Hn J | | | SHANALSIT _
INIAT 3TEVTIVAV. | N3N0 OL INIA3 | | ININ9 |
ININOJIN0D 2°G il | | |
_
IN3AT 40 SLaV ANIAS SANIS | | |
NINGamos 1ol «<8NHYIVa yIndIs ey || | | |
INIA 53553008+ | | |
| 8NH VLV 43IAIS LY | | B |
| | | YIS OLINIAS |
_ .
| ool i “ H2m>mmmoo%_ﬂw_zw\mm% mm_ |
| IN3AT saay ¢ ! | |
| | | SININGIL30 N0 2 || |
| -
| | ™ SYINILSITANY OL - (3l IN3A3
| | | ., = QW INIAT | 3aIS INAND
| | | INIAT ON3S INATO 12 : _
| | | INIMD ' _
SHIONA0Yd gNH YLva 3aIS gNH YLva SHIONA0Yd
HINNSNOD YIAYIS N3N IN3MD 34IS IN3ND
0C DIA

WO 2008/003699

18/42

PCT/EP2007/056678

FIG. 21
TOPICS
DATA HUB - ADD TOPIC()
2112 OBJECT - REMOVE TOPIC()
N - GETTOPIC()
DATA HUB <
TOPIC - 2106
OBJECT DH MANAGEMENT
EVENT PROCESSING
~ PUBLIC STATIC FUNCTION
IN IT (PAGE INSTANCE) - FIRE EVENT()
- PUBLIC FUNCTION SAVE() - PROCESS EVENTS()
. - PROCESS CLIENT EVENTS()
2104
DATA HUB 2102 p 2168 2110
EVENT |« /
OBJECT PRODUCERS AND
CONSUMERS COMMAND MANAGEMENT
/ - ADD COMMAND - SET ARGUMENTS()
2114 _ GET COMMAND _ UPDATE COMMAND()
2100~ | | - ADD PRODUCER() ~ DELETE COMMANDY()
- REMOVE PRODUCER() - RENDER COMMAND()
FIG. 22
2210
N DATA HUB EVENT PROCESSING
DATA HUB OBJECT
TOPIC. el ~ PROCESS EVENTS()
OBJECT PRODUCERS AND - FIRE EVENTS()
CONSUMERS - FIRE SERVER EVENTS()
- ADD CONSUMER() ’ 2908
2o00—~| |~ REMOVE CONSUMER(2206 /
4 2904 COMMAND MANAGEMENT
2202 p,
- ADD COMMANDY()
DATA HUB
EVENTU PN TOPICS - GET COMMAND()
OBJECT - REFRESH CONTENT()
- ADD TOPICS() - SET ARGUMENT()
7 ~ GET TOPICS() - GET ARGUMENTY()

2212

WO 2008/003699

PCT/EP2007/056678

19/42
FIG. 23
____________________ -
LAYOUT PAGE OBJECT | CURRENT PAGE OBJECT
2304 : 2302
N | s
HEADER 2322 :
MENU 2324 :
|
i
] |
LEFT RIGHT
MARGIN BODY MARGIN | | BODY
2320 | 2310
2328 - 2326 ! -
r-J
|
|
|
FOOTER 2330 :
____________________ J l
HEADER 2322
MENU 2324
LEFT RIGHT
MARGIN 2310 MARGIN
2306~ 2328 2326
COMBINED
PAGE
FOOTER 2330

WO 2008/003699 PCT/EP2007/056678

20/42
FIG. 25
FIG. 24 START
\
SHOW TP 2404 2502~ | RECEIVE USER INPUT TO
— CREATE A NEW WIKI PAGE
[[Z] Header y
v 2504~ PROMPT A USER TO ENTER A
Menu NAME FOR THE NEW WIKI PAGE
Left ¥
. BODY BUILD AN EDIT REQUEST URL
2408 - Right 2506~| " AND SEND A CORRESPONDING
CHECK- Footer 2406 HTTP REQUEST TO THE SERVER
BOXES Comments Y
LOAD THE APPROPRIATE EDITOR AND
Attachment
enmens 2508.| SERVE THE PAGE TO THE CLIENT
| [4] Emails BROWSER IN AN HTTP RESPONSE
/ \ i
2402 RECEIVE USER CHANGES
VISBILITY 2510 AND SUBMIT HTTP FORM
SETTINGS SUBMISSION TO THE SERVER
\ i
CREATE AND SAVE THE WIKI PAGE
95121 WITH THE SUBMITTED CONTENT

y

FIG. 26 (_Eno)
(START)

Y

2602 RECEIVE A USER SPECIFIED URL
N OF A WIKI PAGE AND SEND AN
HTTP REQUEST TO THE SERVER

A J

HANDLE THE REQUEST,
INSTANTIATE OBJECTS ON THE WIKI
26041 PAGE, PROCESS THE WIKI PAGE,

AND RENDER THE CONTENT OF THE
WIKI PAGE TO THE CLIENT BROWSER

Y

(END)

WO 2008/003699

FIG. 27
(_START)

Y

2702

READ ALL THE ROWS IN
THE WIKI PAGES DATABASE
TABLE AND EXTRACT THE
COLUMN VALUES

Y

2704

ITERATE OVER THE PAGE
NAME VALUES TO BUILD
THE PAGE TREE VIEW

Y

2706

RETURN THE HTML
REPRESENTATION OF
THE PAGE TREE VIEW

Y

(END)

PCT/EP2007/056678

21/42

FIG. 28
(_START)

Yy

2802~

RECEIVE USER INPUT TO PERFORM A
DRAG AND DROP OPERATION AND INVOKE
A JAVASCRIPT FUNCTION THAT SENDS AN

XMLHttpRequest TO THE SERVER
REQUESTING THE SAMPLE OUTPUT OF
THE SELECTED WIKI COMPONENT

Y

2804~ |

HANDLE THE XMLHttpRequest, CREATE
AN INSTANCE OF THE WIKI COMMAND
SUBCLASS FOR THE SELECTED WIKI
COMPONENT, AND CALL A METHOD FOR
RETRIEVING THE DRAGGED CONTENT

Yy

2806

RETRIEVE THE CURRENT WIKI PAGE
INSTANCE FROM THE WIKI OBJECT AND
CALL A RENDER METHOD BEFORE
RETURNING THE RENDERED QUTPUT IN THE
XMLHttpResponse TO THE CLIENT BROWSER

Yy

2808

PROCESS THE XMLHttpResponse
AND EXTRACT AND DISPLAY THE
HTML DRAG CONTENT

Yy

(END)

WO 2008/003699 PCT/EP2007/056678

22/42

FIG. 29
(START)

Y

2902 PARSE THE WIKI PAGE SOURCE INTO PARSE
| FRAGMENT OBJECTS REPRESENTING STATIC
TEXTUAL CONTENT AND WIKI COMPONENTS

Y

2904 CALL A LOAD PLUGIN METHOD WHICH
N ITERATES OVER THE LIST OF WIKI
COMPONENTS ON THE WIKI PAGE

y
CALL A LOAD COMMAND METHOD OF THE WIKI
2906~ OBJECT TO PERFORM THE WIKI COMMAND
CLASS LOADING. IF THE LOAD COMMAND
METHOD FAILS TO FIND THE APPROPRIATE WIKI
COMMAND CLASS IT THROWS AN EXCEPTION

Y

CATCH THE EXCEPTION AND CALL A PAGE
EXISTS METHOD OF THE WIKI OBJECT TO
29081 DETERMINE IF THE NAMED WIKI COMPONENT IS
ACTUALLY A WIKI PAGE. VALID PAGE NAMES ARE
LOADED INTO THE IMPORT PAGE COMPONENT

y
ADD THE IMPORT PAGE COMPONENT TO A LIST
2910-"| OF THE WIKI COMMAND CONTEXT COMPONENTS

Y

EXPAND THE IMPORT PAGE
2912 COMPONENT TO THE CONTENTS OF THE
NAMED WIKI PAGE DURING RENDERING

y

(END)

WO 2008/003699 PCT/EP2007/056678

23/42
FIG. 30 (sTART)
Yy
3002~ DISPLAY A PALETTE OF WIKI COMPONENTS IN RESPONSE

TO RECEIVING USER INPUT TO EDIT A WIKI PAGE

|
INVOKE A JAVASCRIPT FUNCTION THAT SENDS AN
3004 ~ XMLHttpRequest TO THE SERVER TO RETRIEVE THE
PROPERTY EDITOR FOR THE SELECTED WIKI COMPONENT
IN RESPONSE TO THE USER SELECTING AN EYE-CATCHER

y
HANDLE THE REQUEST AND DELEGATE PROCESSING TO THE AJAX
3006 ~| FORMATTER. THE AJAX FORMATTER CREATES A WIKI COMMAND
CONTEXT OBJECT AND CALLS A LOAD PLUGIN METHOD REQUESTING
THAT THE PROPERTY EDITOR WIKI COMPONENT BE LOADED

|
CALL THE DRAW METHOD OF THE PROPERTY EDITOR
3008 ~_ COMPONENT PASSING IN THE SELECTED WIKI
COMPONENT NAME AND RETURN THE RESULT OF THE
DRAW METHOD TO THE CLIENT IN AN XMLHttpResponse

Y

PROCESS THE XMLHttpResponse WHICH CONTAINS THE HTML AND
A JAVASCRIPT OF THE PROPERTY EDITOR FOR THE SELECTED
3010 COMPONENT AND MAKE THE PROPERTY EDITOR VISIBLE

Y

REGEIVE USER INPUT IN THE PROPERTY EDITOR AND ISSUE
P AN XMLHtipRequest TO THE SERVER TO UPDATE THE
3012 PROPERTIES OF THE SELECTED WIKI COMPONENT

|
HANDLE THE REQUEST AND DELEGATE PROCESSING TO THE AJAX
FORMATTER. THE AJAX FORMATTER CREATES A WIKI COMMAND
3014 —| CONTEXT OBJECT AND CALLS A LOAD PLUGIN METHOD REQUESTING
THAT THE UPDATE COMMAND WIKI COMPONENT BE LOADED

A
CALL THE DRAW METHOD OF THE UPDATE COMMAND
COMPONENT PASSING IN THE SELECTED WIKI COMPONENT NAME.

P THE UPDATE COMMAND COMPONENT UPDATES THE WIK|
3016 COMPONENT SOURCE "MARKDOWN" ON THE SERVER AND
RETURNS AN XMLHttpResponse INDICATING SUCCESS OR FAILURE

Y

(END)

WO 2008/003699

24/42

FIG. 31
(START)

Y

3102~

INVOKE THE RENDER METHOD
ON A WIKI COMMAND

Y

3104~

CALL OPEN METHOD

3106

DOES THE WIKI
COMMAND PERMIT
EDITING?

YES

3110

CALL renderBody

Y

3112

renderBody DISPLAYS THE

EYE-CATCHER AND THEN
CALLS RENDER ON EACH OF

ANY EXISTING CHILDREN

Y

3114

INVOKE CLOSE METHOD

Y

(END)

PCT/EP2007/056678

3108
/

GENERATE THE
EYE-CATCHER

3202~

FIG. 32

RENDER THE COMMAND

y

GENERATE THE DEFAULT
PROPERTY EDITOR AND

3204 | HIDE THE PROPERTY EDITOR

ON THE GENERATED PAGE

y

(END)

WO 2008/003699

25/42

FIG. 33 (start)

PCT/EP2007/056678

RECEIVE A SIGNAL FROM A USER TO

3302~ TRIGGER THE PROPERTY EDITOR TO BE
INVOKED ON A SELECTED COMMAND
Y
3304~ |DENTIFY THE SELECTED COMMAND TO THE

CLIENT-SIDE PROPERTY EDITOR SUBSYSTEM

Yy

GENERATE AN AJAX INVOCATION TO ASK THE
SERVER SIDE COMMAND REPRESENTATIVE TO
RENDER THE CLIENT-SIDE PROPERTY EDITOR

3306~

Yy

3308~ SELECT A PROPERTY EDITOR

Yy

RECEIVE USER INTERACTIONS AND
THEN SUBMIT AN UPDATE TO THE
PARAMETERS OF THE WIKI COMMAND

3310~

A

GENERATE AN AJAX BASED REQUEST WHICH
INSTRUCTS THE SERVER PAGE PROCESSOR TO
UPDATE THE LIST OF PARAMETERS FOR THE
SELECTED WIKI COMMAND ON A GIVEN PAGE

3312

Yy

LOCATE THE COMMAND, INSTANTIATE
THE COMMAND, AND SET THE VALUES

3314 OF THE COMMAND TO THE NEW
VALUES PASSED FROM THE CLIENT
UPDATE RENDER COMMAND AND
WHOLE PAGE BY INVOKING DISPLAY NEW CONTENT IN
THE refreshOnUpdate THE getTargetDiv AREA ON
METHOD? THE CLIENT HTML DOCUMENT
3316 N
3320
3318 WHOLE PAGE IS REDISPLAYED ON THE CLIENT

|

A

(END)

WO 2008/003699 PCT/EP2007/056678

26/42
FIG. 34
(START)
\ A
CALL getParameters TO
3407~ | DETERMINE THE LIST OF
™ AND TYPE OF PARAMETERS
ASSOCIATED WITH THE
SELECTED COMMAND
Y FIG. 36
2404 GENERATE CLIENT-SIDE
| EDITORS FOR EACH START
PARAMETER RETURNED
Y 3602~\]" CREATE A NEW EMPTY PAGE
DELIVER AGGREGATED T
CONTENT TO THE CLIENT
3406-"1 FOR RENDERING IN THE 3604~] CLONE THE EXISTING PAGE
CLIENT PROPERTY EDITOR INTO THE NEW PAGE
Y
CE"\":)D 3606~/ INFORM EACH COMMAND ON THE
PAGE THAT IT IS aboutToSave
\
3608 SAVE THE PAGE TO THE DATABASE
Y
CALL wasDeleted METHOD TO
INFORM THE PAGE THAT IT HAS BEEN
3610-~7] DELETED FROM THE PAGE BY NO
LONGER BEING PART OF THE PAGE
\
FIG. 35 INFORM EACH COMMAND ON THE
START 3612”1 PAGE THAT THE PAGE wasSaved
A
\ i
END
3502~ \1ARK PAGE DELETED (&)

\ i
EACH COMMAND ON THE
PAGE IS INFORMED THAT THE
3504-"] COMMAND'S OWNING PAGE

HAS BEEN REMOVED

Y

(END)

WO 2008/003699 PCT/EP2007/056678

FIG. 37 27/42

(START)

Y
CREATE A NEW EMPTY PAGE

3702~

Y
3704~ CLONE THE EXISTING PAGE
INTO THE NEW PAGE

Y
CALL wasCopied METHOD FOR
3706-"| EACH COMMAND ON THE PAGE

Y

SAVE THE CLONED PAGE, FIG. 39
1 INVOKING wasSaved ON EACH
3708 COMMAND ON THE PAGE START
END REMOVE THE PAGE FROM THE
D) 3902~ " STALE STATE TO ACTIVE BY

SETTING isLatest FLAG TO TRUE

Y

INFORM EACH COMMAND
3904 -1 ON THE PAGE THAT THE
PAGE wasUndeleted

Y

FIG. 38
C_END)
(START)

Y
LOAD THE ORIGINAL PAGE

3802 |

Y
UPDATE THE TAG NAMES OF THE
3804~ PAGE TO REFLECT THE NEW NAME
OF THE PAGE FOR ALL CHILD
PAGES CONTAINED BY THE PAGE

Y
CALL wasRenamed TO INFORM
THE WIKI COMMAND IT HAS BEEN
3806 RENAMED FOR EACH WIKI
COMMAND ON THE PAGE

Y

(END)

WO 2008/003699

28/42

FIG. 40

DOES
THE COMMAND SUPPORT
EDITING?

YES

PCT/EP2007/056678

4006 ~ RETRIEVE THE CATEGORY
OF THE COMMAND
Y
4008 ~ RETRIEVE THE NAME
Y
4010~ RETRIEVE THE DESCRIPTION
\ i
4012~ RETRIEVE THE ICON
Y
RETRIEVE THE DRAG CONTENT AND
40141 PLACE THE ELEMENTS ON THE
PALETTE FOR EACH COMMAND
v
INVOKE getDropContent WHICH
RETURNS THE DEFAULT WIKI
4004~ MARKUP TO BE INSERTED INTO
THE PAGE ASSOCIATED WITH FIG. 41
THE GIVEN WIKI COMMAND .
v START
(END)
4102~ DISPLAY THE GENERAL
CATALOGING INFORMATION
y
4104~ INVOKE CONFIGURE METHOD
y
41061 INVOKE get/setPluginData METHODS

y

(END)

WO 2008/003699

FIG. 42
(START)

Y

4202 ~_

EXPORT THE GENERAL PAGE
INFORMATION INCLUDING
THE NAME OF THE PAGE

Y

INVOKE aboutToExport FOR EACH

4204 Wik COMMAND ON THE PAGE
Y
CALL getVersion METHOD
AND STORE THAT AS
4206"| PART OF THE OUTPUT
Y
EXPORT THE COMMANDS
4208-"| ASSOCIATED WITH THE PAGE

Y

(END)

29/42

PCT/EP2007/056678

FIG. 44

4402 ~| RETRIEVE AND PARSE

ABSTRACT SYNTAX TREE

A PAGE INTO AN

FIG. 43
(START)

y

4302~ IMPORT THE GENERAL PAGE

INFORMATION INCLUDING
THE NAME OF THE PAGE

v
END

y

43061

UNSERIALIZE THE DATUM

y

INVOKE waslmported WITH

4308—"| THE UNSERIALIZED DATUM

RETURN THE
NEW PAGE [™4310

X

A

(END)

WO 2008/003699 PCT/EP2007/056678

30/42

FIG. 46
(_ BEGIN)
FIG. 45 1602 Y
™ DEQUEUE EVENTS
BEGIN Q
v Y
O e s
4502 ABSTRACT SYNTAX TREE
™ INVOKING THE init METHOD ON v
THE COMMANDS PRESENT IN 4606 ~_ ENQUEUE ANY
THE ABSTRACT SYNTAX TREE RESULTING EVENTS
Y \
INVOKE processEvents ON TRIGGER THE invoke
4504~] THE DATA HUB TO DELIVER METHOD COMMANDS
ANY QUEUED EVENTS WHOSE INPUT VALUES
4608 -"| HAVE BEEN FULFILLED BY
y THE DATA HUB'S DATA
VISIT EACH NODE IN THE DELIVERY MECHANISM
4506~ ABSTRACT SYNTAX TREE T
INVOKING THE discover METHOD
ON THE COMMANDS PRESENT @
IN THE ABSTRACT SYNTAX TREE
Y
INVOKE processEvents ON
_{ THE DATA HUB TO DELIVER
4508 ANY QUEUED EVENTS
VISIT EACH NODE IN THE
ABSTRACT SYNTAX TREE
45101 INVOKING THE render METHOD FIG. 47
ON THE COMMANDS PRESENT
IN THE ABSTRACT SYNTAX TREE START
@ 4702~ RECEIVE PAGE REQUEST

Y

4704~ CREATE SERVER DATA HUB

y

REGISTER COMMANDS
4706~ WITH SERVER DATA HUB

Y

(END)

WO 2008/003699

FIG. 48
(START)

Y

4802~ | oaD NEW PAGE

A

4804~ CREATE GLIENT DATA HUB

Y

REGISTER COMMAND
4806—"| WITH CLIENT DATA HUB

Y

(END)

FIG. 50
(_START)

\
5002~ \NmIALIZE

Y

REGISTER AS
5004~ PRODUCER
FOR TOPIC A

|
50061 RETRIEVE DATA

Y
FIRE EVENT
50087 FORTOPIC A

Y

(END)

31/42

PCT/EP2007/056678

FIG. 49
(START)

Y

4902~

RECEIVE A PAGE REQUEST

Yy

49041

PROCESS REQUEST USING
A SET OF METHODS

y

4906

SEND PROCESSED EVENT TO A
SET OF CONSUMER COMMANDS

y

(END)

FIG. 51
(START)

Y

5102~

INITIALIZE

Y

5104~

REGISTER AS CONSUMER
FOR TOPIC A

Y

5106~

RECEIVE AN EVENT
FOR TOPIC A

Y

51081

PROCESS EVENT

A J

5110

RENDER RESULTS
HTML OR JAVASCRIPT

Y

SEND RESULTS

9112

TO DATAHUB

Y

(END)

WO 2008/003699 PCT/EP2007/056678

32/42

FIG. 53
(START)

Y
5302~ CALL init() ON ALL COMMANDS

Y

RECEIVE REGISTRATION
5304~ OF PRODUCER COMMANDS
AS PRODUCER COMMANDS
)
RECEIVE REGISTRATION
FIG. 52 5306 ~ OF COMMANDS AS
START CONSUMER COMMANDS
\

RECEIVE AN EVENT |~ 9202 5308 ~{ RECEIVE EVENT FOR EVENT TOPIC

Y Yy

PROCESS EVENT 5204 5310 ~J ADD EVENT DATA TO EVENT QUEUE

IMMEDIATELY -
2
\ A
CALL CALLBACK METHOD 5312 —1 PROCESS EVENTS IN EVENT QUEUE
TOFIREEVENTTOALL [~- 5210)
CONSUMERS OF THE EVENT CALL ON REGISTERED CONSUMER
T 5314~ COMMANDS CALLBACK METHOD

(END)

ANY
MORE EVENTS IN
QUEUE?

5320 — CALL render () ON ALL COMMANDS

Y
RETURN CONTENT TO
5322 - CLIENT FOR DISPLAY

(El‘\;D)

WO 2008/003699 PCT/EP2007/056678

33/42 FIG. 55

FIG. 54 5502 ~] RECEIVE EVENT FOR TOPIC B

@ FROM fLIENT

Y

SEND EVENT FOR TOPIC B TO
5402 ~ | _ RECEIVE EVENT 2204 EVENT QUEUE
FIRED BY PRODUCER
ON CLIENT v
5506 ~] PROCESS EVENT FOR
v TOPIC B IN EVENT QUEUE
5404~ | SENDEVENTTO T
%N,\T TCHOEN(_?HE"NETR 5508 SEND EVENT FOR TOPIC B
™ TO CONSUMER
COMMANDS ON SERVER
5406 T
SEND

EVENT TO 5510~| RECEIVENEW EVENT FOR
SFRVER-SIDE DATA TOPIC B FROM PRODUCER
HUB COMMANDS ON SERVER
? !
5512~ ADD NEW EVENT FOR TOPIC
v B TO EVENT QUEUE
CALL PROCESS CLIENT | | PROCESS I
EVENT METHOD TO EVENT ON
PROCESS NEW
1 SEND EVENT TO
5410 SERVER DATA HUB CL'ENT\ 5514 1 EVENT FOR TOPIC B
RECENE‘;ESULTS 5408 SEND NEW EVEN¢T TO CONSUMER
1 COMMANDS ON SERVER
OF PROCESS CLIENT 5516
5412~ EVENT FROM !
SERVER DATA HUB CALL RENDER () ON ALL
- | COMMANDS INVOLVED IN
v 9518 = | PROCESSING EVENT FOR TOPIC B
UPDATE WIKI PAGE T
DISPLAYED ON
RECEIVE RENDERINGS
5414~ CLIENT WITH NEW 5500 FFOM COMMANDS
WIKI PAGE CONTENT i
Y BUNDLE RENDERINGS FROM ALL
(CEnn) | COMMANDS AND SEND TO
5522 CLIENT DATA HUB

END

WO 2008/003699 PCT/EP2007/056678

34/42

FIG. 56
(START)

y
5602 ~| AGGREGATE ARGUMENT DATA
FROM A SET OF SOURCES

<
d

Y
GENERATE A MINIMUM
SUFFICIENT ARGUMENT
5604 ~| SET BASED ON DECLARED
PARAMETERS CRITERIA TO
FORM A MINIMUM
ARGUMENT SET

Y

5606 COMPARE AGGREGATE

™ ARGUMENT DATA SET
TO ARGUMENT SET

ARE
SUFFICIENT
ARGUMENTS

PRESENT
?

RECEIVE

NEW DATA
?

2608

YES

FIRE DATA AVAILABLE EVENT

5610 1

2

\

(END)

WO 2008/003699

RECEIVE
CALL TO FIRE
AN EVENT

Y

5704 ~| CREATE LIST OF
ARGUMENTS

35/42

5702~ FIG. 57

Y

9706

MORE

ARGUMENTS
2

YES
5708

YES

1S
ARGUMENT

SET?

RETURN TRUE RETURN FALSE
TO CALLER TO CALLER

i)
(:EEE::) 5712

5710

FIG. 60

WIKI ENGINE RECEIVES
REQUEST TO SHOW A PAGE

v
WIKI CONTROLLER BEGINS PROCESS
OF RENDERING THE REQUESTED PAGE

v

6006~ WIKI ENGINE TESTS A BIT-MASK STORED
IN A FIELD OF THE REQUESTED WIKI

PAGE CALLED THE COMPONENT FIELD

v
COMBINE THE REQUESTED
PAGE WITH A LAYOUT PAGE

6002~

6004~

6008

END

PCT/EP2007/056678

FIG. 58

5802

IS id
ARGUMENT
SET?

2806

ARE
ARGUMENTS

AVAILABLE
?

ARE
ARGUMENTS
SET TRUE

5808 {Es

K

CREATE DATA
_~1 AVAILABLE EVENT
5610 OBJECT

y

FIRE EVENT

5812

2

\

(END)

WO 2008/003699

FIG. 59
5902

WIKI ENGINE RECEIVES A
PAGE SHOW REQUEST

v
WIKI CONTROLLER OBJECT
BEGINS PROCESS OF
RENDERING REQUESTED
PAGE COMBINED WITH
A LAYOUT PAGE

v

A FIRST SUB-PROCESS IS
INVOKED THAT PERFORMS
DATA MANIPULATIONS TO
CREATE DATA MODEL OF THE
REQUESTED PAGE

v
5908~ | FIRST SUB-PROCESS INVOKES
A SECOND SUB-PROCESS

5904~ |

9906~

9910

DETERMINE
WHETHER LAYOUT
FIELD OF THE CURRENTLY
REQUESTED WIKI PAGE OBJECT
CONTAINS A WIKI
LAYOUT PAGE
NAME?

YES

5912

36/42

PCT/EP2007/056678

v

RETRIEVE THE PATH, LOAD THE PATH
INTO AN ARRAY, AND REVERSE THE
ORDER OF THE ARRAY SUCH THAT THE
CLOSEST ANCESTOR APPEARS FIRST

5918~

’
9914

DETERMINE
WHETHER THE
FIRST ROW IN THE
wiki_pages TABLE HAS AN ENTRY
THAT MATCHES ONE OF
THE PAGE IDENTITIES
IN THE PATH
ARRAY

5916

LOAD THE WIKI LAYOUT
PAGE RETURNED AS A
MATCH FROM THE QUERY

5924\ SECOND SUB-PROCESS RETURNS

5926 WIKI PAGE INTO THE BODY FIELD

Yy

THE LAYOUT WIKI PAGE OBJECT
TO THE FIRST SUB-PROCESS

v
PLACE CONTENT OF THE BODY
FIELD OF THE WIKI PAGE OBJECT
OF THE CURRENTLY REQUESTED

OF THE WIKI LAYOUT PAGE OBJECT

DETERMINE T
WHETHER THE
BODY FIELD OF THE WIKI
CURRENTLY REQUESTED WIKI SAGE OBJECT OF THE
O A P ISTOR CURRENTLY REQUESTED WIKI
PAGES 598~/| PAGE IS REPLACED WITH THE
- BODY FIELD OF THE WIKI
5920 NOY LAYOUT PAGE OBJECT
N Y v
LOAD A DEFAULT LAYOUT PAGE PROCESSING TO RENDER THE
| . PAGE IN A CLIENT BROWSER
g CONTINUES AS NORMAL
LOAD THE LAYOUT <
PAGE NAMED IN THE LAYOUT FIELD |~_5922 END 5930

WO 2008/003699 PCT/EP2007/056678

37/42

FIG. 61

class WikiDataHub {
public $pagelnstance = null; // Page instance
commands = array(); // Array of wiki command objects -~
consumers = array(); // Array of consumer ids ~_
6102 producers = array(); // Array of producer ids 6106
topics = array();
events = array(); 6108
clientHandlers = array();

6104

FIG. 62

public static function init($pagelnstance)

6200 6202 // Restore WikiDataHub object from file system.
6204{ public function save()
// Cache serialized WikiDataHub object to file system.

FIG. 64
public function fireEvent(DataHubEvent $event)
6402 //Fire an event

public function processEvents()
6400 6404{ //Process events on the server.
public function processClientEvent($events)
6406 <H //Process a client events destined for the server.
Multiple events can be sent as a batch.

WO 2008/003699 PCT/EP2007/056678

38/42

FIG. 634

-

6300

6340 -

[6342

public function addCommand(WikiCommand $command)/6302

public function getCommands() —_—"6304
public function getCommand($commandld) _—6306
public function addProducer(WikiCommand $producer,—— 6308
$type=self: :DEFAULT PRODUCER)
public function addEditableProducer(WikiCommand $producer) ~_ 6310
public function removeProducer($producerlD) ~_ 6312
public function getProducers() —— 6314
public function addConsumer($consumerld, $topic, —— 6316
$callback, $arg=null, $client=false, $server=false)
public function removeConsumer($consumerld, $topic) -~6318
public function getConsumers($topic="'") —— 6320
public function addClientConsumer($consumerlD, $topic, $callback, ~-6322
$arg="", $client=true, $server=false)
public function addClientHandler($consumerld, $method, $code) ~-6324
public function getClientHandlers()
//Get client handlers.
public function removeProducer($producerld)
//Remove producer (regular or editable producer)
public function getProducers()
//Get list of all producers
public function addConsumer($consumerld, $topic,
$callback, $arg=null, $client=false, $server=false)
//Add consumer as a listener for a particular topic
public function removeConsumer($consumerld, $topic) —~6326
public function get Consumers($topic='") ——" 6328
public function addClientConsumer($consumerld, $topic, $callback, — 6330
$arg="", $client=true, $server=false)
public function addClientHandler($consumerld, $method, $code)
//Add client javascript handler.
public function getClientHandlers()
//Get client handlers.

public function generate client() ~~§332

FIG. 63B

public function addTopic($topic)
//Add event topic this command produces.
6344{ public function removeTopic($topic)
//Remove event topic.
public function getTopics($mask=">/*/*")
//Get the event topics produced.

WO 2008/003699 PCT/EP2007/056678

39/42
FIG. 65

[public function setArguments($cmdid, $args)
6502{ //Set arguments for command. This changes the
arguments in the source if $update=T.
public function updateCommand($cmdld, $args)
//Update arguments for command. This changes the
arguments in the source if $update=T.
public function deleteCommand($cmdld)
6504{ //Delete command from page source.
public function renderCommandSample($cmdid)
//Render sample for command and return result.
public function renderCodeSample($code)
//Render sample wiki markup code and return result.
public function addNewCommand($cmdld, $target, $position)
//Add new command to wiki page.
public function addNewCode($code, $target, $position)
//Add new wiki markup to wiki page.
public function moveCommand($cmdld, $target, $position)
//Move command on the page.

6500

FIG. 66

Class DataHub {
this.consumers = []; _~6602

this.topics = []; —— 6604
this.draggable = [];
this.data = [];

6600 this.events = [];/6606
this.commands = [];
this.pageName = null;
this.pageld = null;

FIG. 67

6702 // Add consumer
addConsumer: function(consumerld, topic, callback, arg, client, server)
6700
6704 // Remove consumer . _
removeConsumer: function(consumerld, topic)

WO 2008/003699 PCT/EP2007/056678

40/42

FIG. 68

6802 // Add topic that is available for other consumers
addTopic: function(topic)

6800
6804 // Get list of available topics

getTopics: function()

FIG. 70

// Add wiki command
addCommand: function(cmd) 7002

// Get wiki command
getCommand: function(cmd)

// Refresh content of div
refreshContent: function(divToUpdate, value)

setServerArguments: function(cmd, args)
updateCommand: function(cmd, args)
deleteCommand: function(cmd) ~_ 7004

7000 1 renderCommandSample: function(cmd)
renderCodeSample: function(fragment)
addNewCommand: function(cmd, target, position)
addNewCode: function{(cmd, target, position)
moveCommand: function(cmd, target, position)

// Set argument
setArgument: function(cmd, name, value)

// Get argument
| getArgument: function(cmd, name)

WO 2008/003699 PCT/EP2007/056678

69007 6904 4

7100 s

6902 {

6906 §

41/42

FIG. 69

// Fire all queued up events (done onLoad)
processEvents: function()

// Fire an event
fireEvent: function(event)

// Send an event to the server to be executed
fireServerEvent: function(event)

FIG. 71
class DataHubTopic {

[const DEFAULT TOPIC = 'string';

const URL = 'url’;
public $topic;
public $name;
public $action;
public $item;

| public $type;

public function isEqual(DataHubTopic $topic)
... getter and setter methods for each object variable

}

Topics are specified as

name/action/item

where
- name is the name of the topic. This is usually the name of the producer,
but can be any string.
- action represents the topic action verb, such as available, clicked,
updated, etc.
- item further qualifies the name of the topic and is optional. It usually
identifies the column or element that the data in the event represents.

As an example, consider a table display component with id "list":
list/selected/address

indicates that the address column of the selected row was clicked on.

WO 2008/003699 PCT/EP2007/056678

42/42
FIG. 73
[class WikiArgument { public $name; // parameter name
public $value; // current value

public $initvalue; //initial value
public $rawValue; // raw current value

7300 - public $modified; ~ // modified
public $valid; // is valid -~ 7302
public $avail; // bound argument has been set and is available ~_7304

public $parameter; // Parameter object

...getter/setter methods for all properties...

FIG. 72

class DataHubEvent {

public $topic; ~_7202

public $producer;
7200 < public $va|ue;\7204

public $index;

public $arg;

... getter and setter methods for each object variable

}
FIG. 74

function areArgumentsSet()

foreach argument

if argument.avail is null
7402 return false

74004 7404 <H end if

end foreach

return true
end function

function setCheckArguments
[id = getArgument('id')
if id is not null then
if argsAvail is not null OR argumentsAreSet(arguments available)
J is true then
74069 7408 event = new DataHubEvent()
datahub.fireEvent(event)
end if
end if
end function

INTERNATIONAL SEARCH REPORT

International application No

PCT/EP2007/056678

CLASSIFICATION OF SUBJECT MATTER

A.
INV. GO6F17/30

According to International Patent Classification (IPC) or o both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (nhame of data base and, where practical, search terms used)

EPO-Internal, WPI Data, COMPENDEX, IBM-TDB, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Gitation of document, with indication, where appropriate, of the relevant passages

management environment”
vol. 176, no. 6,
XP005234224

ISSN: 0020-0255

figure 1

section "3. Examples”

abstract

INFORMATION SCIENCES, AMSTERDAM, NL,
22 March 2006 (2006-03-22), pages 628-639,

section "2.2 Component storage (CS)"

A CHEN ET AL: "Component-based Web page 1-20

A US 2002/103856 Al (HEWETT DELANE ROBERT 1-20
[US] ET AL) 1 August 2002 (2002-08-01)

D Further documents are listed in the continuation of Box C.

E See patent family annex.

* Special categories of cited documents :

*A" document defining the general state of the art which is not
considered to be of particular relevance

E earlier document but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

0O document referring to an oral disclosure, use, exhibition or
other means

P document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

X document of particutar relevance; the claimed invention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled
inthe art.

"&" document member of the same patent family

Date of the actual completion of the international search

26 September 2007

Date of mailing of the intemational search report

05/10/2007

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Schmidt, Axel

Form PCT/ISA/210 (second sheet) (April 2005)

Relevant to claim No.

INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/EP2007/056678
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2002103856 Al 01-08-2002 US 2006064471 Al 23-03-2006

Form PCT/ISA/210 (patent family annex) (April 2005)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS
	SEARCH_REPORT

