wo 2011/002656 A1 I 0K 00 OO O OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

2
AIPO:

(10) International Publication Number

WO 2011/002656 A1

(19) World Intellectual Property Organization /’@’—‘?’3\
International Bureau V,&J
Al
(43) International Publication Date \'{_5___,/
6 January 2011 (06.01.2011) PCT
(51) International Patent Classification:
GO6F 11/10 (2006.01) GO6F 11/00 (2006.01)
(21) International Application Number:
PCT/US2010/039699
(22) International Filing Date:
23 June 2010 (23.06.2010)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
12/494,186 29 June 2009 (29.06.2009) US
(71) Applicant (for all designated States except US): SAN-
DISK CORPORATION [US/US]; 601 McCarthy Blvd.,
Milpitas, California 95035-7932 (US).
(72) Inventors; and
(75) Inventors/Applicants (for US only): D'ABREU, Manuel
Antonio [US/US]; 2166 Huntington Circle, El Dorado
Hills, California 95762 (US). SKALA, Stephen
[US/US]; 293 Pagosa Way, Fremont, California 94539
(US).
(74) Agent: TOLER, JEFFREY G.; 8500 Bluffstone Cove,

Suite A201, Austin, Texas 78759 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: SYSTEM AND METHOD OF TRACKING ERROR DATA WITHIN A STORAGE DEVICE

Data
Read

/112

114

100 1
DATA STORAGE DEVICE)— 102 I \)_ 104
CONTROLLER MEMQCRY ARRAY /)— 106
Error 108 !
Detection { l
Module [T+
118 110
Error 122
Location 120
; LOG FILE)— 124
Checksum o[" |
Generator > First Checksum
)— 126
Second Checksum |

(57) Abstract: Systems and methods of tracking error data are disclosed. A method includes receiving a first checksum associated
with error locations of a first error correction code operation and receiving a second checksum associated with error locations of a
second error correction code operation. The first checksum is compared to the second checksum and an action is initiated on a re-
gion of a memory array based on a result of the comparison.

WO 2011/002656 PCT/US2010/039699

2

L%

o]

8

-

SYSTEM AND METHOD OF TRACKING ERROR DATA WITHIN A STORAGE DEVICE

FIELD OF THE DISCLOSURE

The present disclosure pertains to computer memory systems, and mwore specifically, to ervor detection

o

and error location tracking for a data storage device

BACKGROUND

Errvor detection and correction processes help maintain data integrity within memory storage devices and

communication channels. For example, error correcting codes (ECC) are commonly used for fault

detection in computer memaory subsystems. An BCC wcludes redundant data to identify one or more
errors to the stored data in a mereory. For example, “soft” errors are typieally caused by electrical

transrmssion disturbaaces, while “hard” errors may be due to the memory device.

With increasingly shrinking storage device circuitry and lower operating voltages, there is a need for

increased accuracy and efficiency in error identification and correction processes.

SUMMARY

An improved syster and method of identifying and correcting ervors is disclosed. A pumber of error
correction code operations may be executed that each identify a set of ervor locations for a region of &
mernory. The set of ervor focations may be compared to previous ervor locations aud an appropriate
action may be inttiated. The set of ervor locations m encoded in a raanaer (o preserve ervor location
woformation, such as via a checksum. A checksum associated with the set of error locations may be
determined for cach error correction code operation. Two or more checksums may be compared to
identify a trend. An action to address the errors may be initiated based on a result of the checksum

comparison or by evaluating a detocted trend.

For examplm checksums that are the same over time may indicate hard failures of hits that are not
degrading. [fan ervor is determined to move locations over tine, the error & hkely atiributable to
transtmssion disturbauees and not hardware detects. Such errors may be managed so Jong as a tota]l ECC
countt does uot change. A wordline defect, such as a cracked wordline, may be identified if ervors are

focated at an end of a wordhine

BRIEY DESCRIPTION OF THE DRAWINGS

FIG. I is a block diagram of a data storage device that may be used to track error data;

FIG. 2 13 a Block diagram of 2 systewm that may be used to track ercor data associated with a data storage

device;
FIG. 3 illustrates results of a first set of error correction code operations;

1

FIG. 4 illustrates results of 3 second set of ervor correction code operations;

WO 2011/002656 PCT/US2010/039699

10

(a7
LY 41

FIG. 5 lustrates results of a third set of ercor correction code operations;

FIG. 6 illustrates a flow chart of a method of tracking error data;

FIG.

-3

illusteates a flow chart of a method of racking and storing ervor data;

FIG. § illustrates a flow chart of a method of tracking and evaluating error data;

FIG. 9 illustrates a flow chart of a method of identifying and correcting evror data; and

FIG. 10 Hlustrates a flow chart of a method ofidentifying « trend indicated by ervors generated over

roultiple ercor correction code operations.

DETAILED DESCRIPTION

eferring to FIG. 1, an illusirative embodiment of a data storage device that may be used to track error
Referring to FIG. 1, an il 1 b t ot a data storage d that ¢ d totr

lata s depicted and generally designated 100, The data storage device includes a controlier 102

d depacted and g ty designated 100, The data storage d 196 inchud trollier 102
coupled to a memory array 104, The controller 102 {5 counfigured to track aud corpare ercor location data

corresponding to data read from the memory array 104 and may initiate actions based o the corpansons

The memory array 104 may include non-volatile memory, such as flash memory. The memory array 104
includes a representative memory region 106 that includes stored data 110, The memory region 106 may
be a wordline, a memory block, or a memory page. A word line may include a line in a row direction
within the memory array 104, A memory block may include a smallest unit of erasable memory. A
menory page may include a smallest unit of writable memory. The data 110 includes detectable errors

114 associated with respective locations 118 within the stoved data 1140,

The controller 102 may be configured to access the memory atray 104 to read the data 110 via 2 logic
corprmunication link that retwms data 112 read from the roerpory arcay 184, Ag error detection module
108 of the controlier 102 may be configured to detect a number of the errors 114 and to detect error
focations 118 in response to reading the data 110, For example, the error detection module 108 may

include an ervor correct code (ECC) engine.

The controller 102 may additionally 1aclude a checksum generator 120, The checksum generator 120

tnay generate 2 checksum based on the exror location data 118, For example, the checksum generator 120
roay output a first checksum 124 and a second checksum 126 of error location data 118 generated by the
ercor detection module 108 during first and second error correction code (BECT) operations, respectively.
The first checksum 124 and the second checksum 126 may cach be based oo a plurality of locations
associated with each of a plurality of errors for a respective error correction code operation. The
checksum generator 120 may alternatively include a Multiple Input Signature Register (MISR).
Incorporation of an MISR may reduce hardware requirements. Another example of a checlisum generator
120 may inchude a polynomial based civcuit. Polynomial based circuits may include Linear Feedback

Shift Registers (LFSR) or combinational logic. Another example of a checksum generator is a circuit

WO 2011/002656 PCT/US2010/039699

N

[,
1%

20

with an adder and an accuwmulator that fianction as an accumulating adder. The checksum geverator 120

may be part of an ECC engine.

The first checksum 124 and the second checksuny 126 may be stored within a log file 122 of the memory
aray 104, For example, the coutrolier 102 may store geuerated checksums over time for each region of
the memory array 104, The controtler 102 way logically associate each of the first checksum 124 and the
second checksum 126 with a different nme starnp. For example, the tirae stamps may correspond to the

ertor correction code operation during which checksums were generated.

During operation, the controller 102 may retrieve the first checksum 124 and the second checksum 126
from a log file 122 of the memory array 104, The controller 102 may further compare the first checksum
124 1o the second checksun: 126 and may initiate an action associated with the memory region 106 at
least partially based on the comparison of the first checksum 124 to the second checksum 126. Examples

1

of actions ruay inchude woving data, wntiating a read scrub, refreshing data, designatiog a block of data as

bad data, monitoring data, and correcting an ervor of the plurality of errors, s will be described with
respect to FiGs. 3-10.

FIG. 1 thus illustrates a data storage device 100 for generating checksums that are cach based ona
plurality of locations associated with cach of a plurality of errors for a respective error correction code
operation. The first checksum [24 and the second checksum 126 are compared to efficiently track and
correct error data. Although the ervor detection module 108 and the checksum generator 120 are
illustrated as separate elements, the error detection module 108 and checksum generator 120 may be
located at the same element (e.g., an ECC). Further, although the first checksum 124 and the second
checksum 126 are described as bewng retrieved from the log file 122, o other embodiments one or more
of the first checisum 124 and the second checksum 126 may uot be retrieved from the log file 122, as will

be described with respect to FIG. 2.

Referring to FIG. 2, an iilusirative embodiment of a system that may be used to track error data associated

1

with a storage device is depicted and generally designated 200. The system 200 may include a controller
202 coupled to a memory array 204. The controller 202 is also coupled to a bost computing device 250.
The controller 202 and the memory array 204 may be components of a removable data storage devie

The controller 202 s contigured to track 2 conditon of the memory arvay 204 by companug ercor
loeation wformation resulting from a data read operation as compared to error location nformation saved
from a prior read operation. For example, a log file 216 of the maerory areay 204 may welode a

checksur history 218,

The memory array 204 includes a first memory region 206 and a second memory region 208. The first

memory region 206 may represent a page or block of the memory array 204,

The controller 282 inchides an error detection randule 220, The ervor detection module 220 may be
configured to detect 3 mumber of errors 214 and ervor locations 222 in respouse 1o data 212 read from the

raernory areay 204, The error detection module 220 way include an ECC engioe.

WO 2011/002656 PCT/US2010/039699

1

o]

0

L

L%

o]

The controller 202 also includes a checksum generator 224 configured to receive the ervor locations 222

and to generate a checksum 226, The checksum generator 224 may include an MISE or another
polvnomial based circuit. For example, a polynomial based circuit may be implemented using LFSR or
combinational logic. During multiple ervor correction code operations, the checksum generator 224 may
generate multiple checksums corresponding to a particular region of the memory array 204. The
checksum output may be stored in the checksum history 218 of the log file 216 and later vetrieved a8 one
or more prior checksums. Each checksom, {e.g., the checksum 226 and the prior checksum 234 ruay be
hased on a plurality of locations associated with each of a phurality of erroxs for a respective error

correction eode operation.

The controller 202 also includes a processor 240 coupled to the error detection module 220. The
processor 240 may initiate storage of the checksum 226 to the log file 216 within the memory array 204
and may initiate the retrieval of the prior checksum 234 from the log file 216 within the memory array

204.

The processor 240 wcludes a checksum analysis module 228 that is configured to compare the checksum

\
A

226 1w the paor checksum 234, The processor 240 also weludes an action selection module 230, The
action selection module 230 1s configured to automatically initiate a phurality of available actions 232
based on the comparison of the checksum 226 to the prior checksum 234, Exampies of actions include
moving data, initiating a read scrub, refreshing data, designating a block of data as bad data, monitoring
data, and correcting one or more errors. As an example, the checksum analysis module 228 may be
executed by the processor 240 to retrieve and compare the checksum 226 and the prior checksum 234,
The checksum analysis module 2258 may also be configured to identify a result based on the comparison.
For example, the checksum analysis module 228 may identrfy from the comparison that errors are

uncorrelated, raundom and attributable to disturbance. o auother example, the checksom aualysis module

228 may tdentify that the ervors are at ssmilar locatious and are likely hard ervors. The action selection

module 230 ray be executed by the processor 240 to receive the result from the checksum analysis

module 222 and to selectively wntiate an action.

FIG. 2 thus illustrates a system: 200 for tracking and selectively taking actions regarding errors associated

with a storage device. The systemn 200 enables efficient and accurate error tracking and correction.

FIG. 3 illustrates an example of resuits of first and second error eorection eode operations lmiu,ah*}g @
bad storage eloment. The error correction code operations may be performed at different thnes on 2
wordline or another data read from memory, such as the data 110 of FIG. 1. Data 302 is an exarople of

ercor locaton data that may be evaluated during a fivst etro ection code oper

tian. For example, the
data 302 may be the error location information |18 generated by the ervor detection module 108 of FIG. |
or the error location information 222 generated by the error detection module 220 of FIG. 2. The data
302 includes memory clement locations 306, 308, 318, 312, 314, 316, 318, 320, and 322 corresponding to
storage elements in the memory. As an example, error 350 is associated with location 308, and error 352

is associated with location 316,

WO 2011/002656 PCT/US2010/039699

N

[,
1%

20

The data 302 may be received by a checksum generator 342, such as the checksum generator 120 of FIG.
1. The checksum generator 342 may generate a checksum 344, such as the first checksum 124 of FIG. 1,
based on the locations 308, 316 associated with the ervors 350, 352, As illustrated, the checksum 344

equals binary “1011,” which equals decimal “117,

[rata 304 may be evaluated during a secoud ervor correction code operation. The data 304 inchudes bit
locations 324, 326, 328, 330, 332, 334, 336, 338, and 340, An error 354 {8 associated with loeation 326,
and an error 356 18 associated with Jocation 334,

The data 304 may be received by a checksum generator 346, such as the checksum generator 120 of FIG.
1. The checksum generator 346 may generate a checksum 348, such as the first checksum 124 of FIG. 1,

based on the locations 328, 334 associated with the errors 354, 356. As ilhustrated, the checksum 348

equals binary “1011,” which equals decimal “11™

At 378, the checksums 344, 348 may be compared to identify a bad storage element because the ervors 1o
the data 302 and the data 304 are in the same locations. Bad storage elements reay be indicated by the
checksum 342 cqualing the checksum 346. For example, the errors 350, 352, 354, 356 may be

determined to be hard errors based upon the errors 350, 352, 354, 356 having the same relative locations

308, 316, 326, 334 within the data 302, 304 of the first and second error correction code operations.

FIG. 3 thus tllustrates fivst and second error correction code operations used to determine errors 350, 352,

A
A

354, 356 and associated locations 308, 316, 326, 334, Checksums 344, 348 calculated based on the ervor
focations 308, 316, 326, 334 may be compared to deterimue that the locations of the ervors 308, 316, 326,
334 are the same in both error correction code operatons. The same relative Jocations 308, 316, 326, 334

s

of the exrors 354, 352, 354, 356 may indicate the presence of hard ervors.

4

FIG. 4 itlustrates an example of resuits of first and second errvor correction code operations indicating
random errors. The ervor correction code operations may be performed at different imes on a data
clement, such as the data 110 of FIG. 1. Data 402 may be evaluated during a first error correction code
operation. For example, the data 402 may be the ervor location information 118 generated by the ervor
detection module 108 of FIG. 1 or the exror location information 222 generated by the ervor detection
madule 220 of FIG. 2. The data 402 tnctudes bit focations 406, 408, 410, 412, 414, 416, 418, 428, and
422 corresponding to storage clements in the memory. Ag error 458 {5 associated with location 408, an

error 452 is associated with location 410, and an error 454 is associated with location 416.

CLA
o
®
()
=
[¢]
&
7
%]

The data 402 may be rece by ccksum generator 442, such as the checksum generator 120 of FIG.
1. The checlsum generator 442 may generate a checksum 444, such as the first checksum 124 of FIG. 1,
416 associated with the errors 450, 452, and 454, As illustrated, the

checksum 444 has a binmy value of “1100,” which corresponds to a decimal value of “127.

WO 2011/002656 PCT/US2010/039699

N

[,
1%

20

e

Data 404 may be evaluated during a second error correction code operation. The data 404 nctudes bu
locations 424, 426, 428, 430, 432, 434, 436, 438, and 440. An error 456 is associated with location 424,

and an error 458 is associated with location 430.

The data 404 may be received by a checksum generator 446, such as the checksum generator 120 of FIG.
1. The checksumn generator 446 may generate 2 checksum 448, such as the first checksum 124 of FIG. 1,
based on the locations 424, 430 associated with the errors 456, 438, As iltustrated, the checksum 448 has
a binary value of “0100,” which corresponds to a decimal value of “47.

At 470, the checksums 444, 448 may be compared to identify the errors as random. The discrepancy
between the decimal value, “12” of the checksum 444 and the decimal vahie, “4” of the checksum 448
may indicate uncorrelated, randon errors. The errors 450, 452, 454, 456 may be determined to be
random errors based upon the ervors 450, 452, 454, 456 having different relative locations 408, 416, 426
434 within the data 402, 404 of both the Brst and secound ervor correction code operations, Also, a
difference between checlsum 444 and checksurm 4458 may be compared to a threshold to identify that the

ercor locations are different.

FIG. 4 thus illustrates first and second error correction code operations used to determine arrors 450, 432,
454, 456 and associated locations 408, 416, 426, 434, Checksums 444, 448 calculated based on the error
focations 408, 416, 426, 434 may be compared to determine that the locations of the crrors 408, 416, 426,

434 are different in both error correction code operations.

FIG. 5 iHustrates an example of results of first and second error correction code operations. The first and

second error eowrection operatons indicate that locations of ervors 550, 552, 554 near an end portion of

o]

data 502 are similarly distabuted to ervors 538, 560, 538, which are located near an end portion of data
504. The ervor corection code operations maay be performed at different times on a wordline or other

data read from memory, such as the data 110 of FIG. 1. Data 502 may be evaluated during a first error
correction code operation. For example, the data 502 may be the error location information 118 generated
by the error detection module 108 of FIG. 1 or the ervor location inforniation 222 generated by the error
detection module 220 of FIG. 2. The data 302 includes memory element locations 506, 308, 510, 512,
514, 516, 518, 320, and 522 corresponding to storage elements in the memory. An error 550 is associated
with location 506, and an ervor 552 s associated with location 308, A thied ervor 554 18 at location $12

and a fourth exror 556 is at location 516,

The data 502 may be recerved by a checksurn generator 542, such as the checksum generator 120 of FIG.
i. The checksum generator 542 may generate a checksum 544, such as the first checksum 124 of FIG. |,
based on the locations 506, 308, 512, and 516 associated with the ervors 550, 532, 554, and 556. As
illustrated, the checksum 544 includes a binary value of “1110,” which corresponds to a decimal value of

“147,

[rata 504 may be evaluated during a secoud ervor correction code operation. The data 504 inchudes bit

locations 524, 526, 528, 530, 532, 534, 536, 538, and 540, An error 558 is associated with a location 524,

WO 2011/002656 PCT/US2010/039699

2

N

<>

1%

8

-7

and an error 560 is associated with a location 526. An ervor 562 1s associated with a locatnon $30, and an

error 564 1s associated with a location 540.

The data 504 may be received by a checksum generator 546, such as the checksum generator 120 of FIG.
1. The checksur generator 346 may generate a checksum 548, such as the first checksum 124 of FIG, 1,
based on the locations 524, 526, 530, and 548 assocrated with the errors 558, 560, 562, and 564.

hustrated, the checksum 548 inchudes a brnary value of “11017, which corresponds to a decimal value of

ccisaa

At 570, the checksums 544, 548 may be compared to identify a bad wordline. Both checksums 544, 548

[

nclude relatively large values. Most errors are present on the same end of the wordline. The errvors 550,
552, 354 ot the data 502 may be determined to be associated with a bad wordline based upon the similarly
located errors 558, 560, 562 of the data 504, as evaluated during both the first and second error correction

code operations.

FIG. 5 thus ilusteates first and second error correction code operations used to deterroine exrors 350, 552,
554, 556, 538, 5360, 562 and 564 and associated locations 506, 508, $12, 516, 524, 526, 530, and 540,
The checksums 344, 348 are calculated based on the crror locations 506, 508, 512, 516, 524, 526, 530,
and 340 and may be compared to determine that the locations of the errors 530, 552, 554, 558, 560, and
562 are concentrated in similar portions of the data 502, 504 in both error correction code operations. The

same relative locations 500, 508, 512, 524, 526, and 530 of the errors 350, 552, 554, 558, 560, and 562

may indicate the presence of hard errors vesulting from a bad wordline.

One of skall in the art will recognize that FIGs. 3-5 are simplified for ease of explanation. FlGs. 3-5 do
not necessarily show accurate values or data word sizes, aroag other parameters. Ernbodiments are

consequently not hmited 1o these lustrative exarples.

FIG. 6 illustrates a flow chart of a method 600 of tracking error data. The method 600 of FIG. 6 may be
performed by a computing system that accesses a memory, such as the controfler 102 of FIG. 1 or the
controller 202 of FIG. 2. Ax error correstion code operation ray be performed to identify a plurality of
ervors aud a plurality of locatious respectively associated with each of the plurality of errors, at 602, For
exaraple, the controller 102 of FIG. t may retdeve data 110 from the memory array 104, The data 116
may be pravided to the error detection reodule {08, Control signals may be generated to cause the error
detection module 198 perform a first error detection operation at a first tirae to idenify ervors 114

respectively associated with locations.

A checksum may be generated based on the plurality of locations associated with each of the plurality of
errors, at 604, To tllustrate, the checksun generator 120 of FIG. T may recetve error location data 118

and generate the first checksum 124 based ou locations assoctated with the detected ervors 114,

WO 2011/002656 PCT/US2010/039699

N

[,
1%

20

.8 .-

A second checksum may be retrieved from a memory array, at 606. To illusirate, the second checksum

may be the prior checksum 234 of FIG. 2. The sccond checksum may correspond to a prior data read

operation from the same memory region as the first checksum.

The first checksum and the second checksum raay be corupared, at 608, For iustance, the coutrolier 102
of F1G. 1 may cowmpare the first checksum 124 to the second checksum 126, In another example, the

chiecksunm analysis module 228 of FIG. 2 may cormpare the checksum 226 to the prior checksum 234,

At 610, a determination may be made as to whether a difference between the first checksum and the

second checksum is small. For example, the controller 102 of FIG. 1 may determine if a difference

bhetween the first checksum 124 and the second checksum 126 is small.

When the determined difference hetween the first checkeum and the second checksun 1s small, at 610,
location wformation may be evahuated. For example, the controtler 102 of FIG. 1 may determmine a
difference between the first checksum 124 and the second checksurn 126 based on 2 location of an ervor.
As shown in FIG. 3, 2 locanon 308 of an error 350 in a first exror code operation may be the same as a
focation 326 of an error 354 in a second errvor code operation. Alternatively, as shown in FIG. 4, 2
iocation 408 of an error 450 in a first error code operation may differ from a location 424 of an error 456
in & second error code operation. Determining whether the difference between the first checksum and the

1

second checksum is small may include comparing the difference to a threshold value. The threshold

‘

value may be set based on location-encoding properties of the particular checksum gencration type.

The location information may be evaluated to identfy a potentially bad wordhue, at 612, For instance, it
roay be determined that a concentration of errors ea)nsistenﬂy occur near an end of a wordline. Using
FIG. 5 to illusteate, locations 506, 508, 512 of errors 556, 552, 554 in a first error code operation may be
sunilar to locations 524, 326, 530 associated with ervors 358, 568, 562 1o a secoud ervor code operation.

Errors repeatedly occurring at one end of a wordline may indicate a bad wordiine.

A memory region may be identified as having defective storage elements, at 614, For instance, the
contreller 102 of FIG. 1 may 1dentity a memory region 106 as haviug a defective cell within a stoved data
string. As illustrated 1 FIG. 3, ewrors repeatedly oceurting at a patticular memory location may indicate &

had memory cell.

The location(s) within the data may be monttored, at 616, For example, the controller 102 of FIG. 1 may

monitor a location corresponding to a detected error 114 for future error occurrences.

A determination may be made as to whether a difference between the first checksun and the second
checksum ts large, at 618, For example, the controlier 102 of FIG, 1 may determine if 2 difference
hetween the first checksum 124 and the second checksum 12618 large. Determining whether the
difference is large may inclhude corapariog the difference to a threshold value. The threshiold value way

be set based on location-encoding properties of the particular checksum generation type.

WO 2011/002656 PCT/US2010/039699

N

[,
1%

20

-9

When the determined difference between the first checksum and the second checksum is large, at 618,
location information may be evaluated to determine if an error of the plurality of ervors is random, at 620.
For instance, the controller 102 of FIG. 1 may determine that detected errors 114 are random based on

ifferences between the first checksum 124 and the second checksum 126.

No action may be inttwated in respouse to the determination that the ervors are random, at 622, At 624, the

first chiecksum may be stored. For examiple, the controller 102 of FIG. 2 may store the first checksom 124

within the log file 122 of the memory array 104,

FIG. 6 thus illustrates a method 600 used to track error data. A first checksum and a second checksun are
generated and compared. The checksum is generated based on a location of detected errors within a
wordline or other data siring. The checksum comparison may determine whether the difference between
the checksums is large or small. A small difference may indicate a defective storage element while a
large difference may indicate randorm errors. If detected errors are deternined to be random, &

determination may he made to take no action.

FIG. 7 illustrates a flow chart of a method 700 of tracking and storing error data. The method 700 of FIG.

7 may be performed by a computing system that accesses a memory, such as the controlier 162 of FIG. |

or the controlier 262 of FIG. 2. A first error correction code operation may be performed at a first time to
identify a first plurality of errors respectively associated with a first plurality of locations, at 702, For

example, a location of the first plurality of locations includes a bit position of a page or a block within the
non-volatile data storage device. The first error correction code operation may be performed ata
contrelier within a nou-volatile data storage device. For example, the controller 202 of F1G. 2 may
retrieve data 212 from the memory array 204, The data 212 way be provided to the ervor detection
roodule 220, Control signals may be generated to cause the error detection roodule 220 to perform a first
ercor detection operation at 2 first e to identily errors 214 respectively associated with a first plurality

of locations.

A second error correction code operation may be performed at a second time to identify a second plurality
of errors respectively associated with a second plurality of locations, at 704, To illustrate, the controller
202 of F1G. 2 may again retrieve data from the mermory arcay 204, The data muay be provided to the ervor
detection module 220, Coutrol signals may be generated to cause the error detection modale 220 to
perform a second ervor detection operation at a second time to identify ervors respectively associated with

a second plurality of locations.

First data correlated to the first plurality of locations and second data correlated to the second plurality of
focations may be stored into a log file of 2 memory array within a non-volatile data storage device, at
706. The first data may include a first checksum of the first plurality of locations and the second data

may include a second checksum of the second plurality of locations. For example, the controller 202 of

FIG. 2 may store checksum history data 218 within the log file 216 of the memory arvay 204,

1y

WO 2011/002656 PCT/US2010/039699

1

2

N

0

1%

8

10 -

FIG. 7 thus iltusteates a method 700 that performs a first ervor correction eode operation and a second
error correction code operation. Each operation may identify errors associated with locations. Data
correlated to the locations may be stored within a memory for use in efficiently identifving errors for

correction.

FIG. 8 illustrates a flow chart of a method 800 of tracking aud evaluating ewror data. The method 800 of
FIG. 8 may be performed by a computing system, such as the coutrolier 102 of FIG. 1 or the controller
202 of FIG. 2. A first checksum assoclated with a fiest plurality of ervor locations of a first evror
correction code operanon may be recaived, at 802, The first ervor correction code operation may be
assoctated with correcting an error within a region of a mermory array. A second checksur associated
with a second plurality of error locations of a second error correction code operation may also be
received. For instance, the coniroiler 202 of FIG. 2 may receive the first checksum 226 and the prior
checksum 234 from the log file 216 of the memory array 204.

The first checksum may be compared to the second checksum, at 804, For example, the checksum

analysis module 228 of FIG. 2 may compare the checksurm 226 to the pror checksum 234,

A determination may be made as to whether an error within the region of the memory array is random, at

806. To illustrate, the checksum analysis module 228 of FIG. 2 may evaluate the checksum data 226 to

determine if the errors are random.

AL 808, no action may be initiated 1u response to determuing that errors are random. An action ou 2
region of & memory artay may be inttated based on a result of the comparison, at 816, One of a plurality
of available actions based on the comparison of the first checksum to the second checksum may be
performed. For examuple, the action selection module 230 of FIG. 2 may wove data 212, iniiate a read
serub, refresh data, designate a block of data 212 as betng bad, mouvitor the data 212, or initiate au action

to correct an error 214,

FIG. & thus illustrates a flowchart of 3 method 800 that includes receiving checksums associated with
error locations of first and second ewor correction code operations. The checksums may be compared to

determine if an ervor {8 random. Where an ervor 18 pot random, a corrective action reay be intated.

FIG. 9 lustrates a flow chart of a method 900 of tracking and addressing ervor data. The method 300 of
FIG. 9 may be perforrned by a computing system, such as the controlier 102 of FIG. 1 or the controller
202 of FIG. 2. At 902, a first checksum may be retrieved frony memory. The first checksum may be
associated with a first set of error locations of a memory region. An error location of the first set of error
locations may include a bit position of'a page or a block within the non-volatile data storage device. For
nstanee, the controller 102 of FIG. 1 may retrieve the first checksum 124 from the log file 122 of the
memory array |14, The first checksum 124 may be associated with errors locations of the memory region

106.

WO 2011/002656 PCT/US2010/039699

N

16

[,
1%

20

S3t-

The first checksum may be compared to a second checksum associated with a second set of error
ocations of the memory region, at 904. For instance, the checksum analysiz module 228 of FIG. 2 may

compare the checksum 226 to the prior checksum 234,

An action tay be juitisted with respect to the memory region based on a result of the companson, at 906.
For example, the action selection module 230 of FIG. 2 may imtiate an action based on a result of the
data. A first action may be initiated when a determined difference between the first checksum and the
second checksum s small. To illustrate, a2 small determined difference may indicate sumilar exvor

locations. A second action may be initiated when the determined difference between the first checksum

One of a plurality of available actions may be performed, at 908. For instance, the action selection
module 230 of FIG. 2 may 1uitiate an action that causes the coutrolier 202 to move the data 212, desigunate
2 block of data 212 as being bad, monitor the data 212, perform a read seruh, refresh data, or execute a

process to facilitate the correction of an ervor 214,

FIG. 9 illustrates a flowchart of a method 900 of identifving and correcting errors. Checksums associated
with error locations retrieved and compared. An action to correct the errors may be initiated based on a

result of the comparison.

FIG3. 10 illosteates a flow chart of a maethod 1000 of tracking and addressing ewror data. The method 1808
of F1G. 10 may be performed by a computing systen, such as the controller 102 of FIG. 1 or the
controlier 202 of FIG. 2. A first checksum associated with a first plurality of error locations of a first
ercor correction code operation may be received, at 1002, For example, the checksum analysis module

28 of F1G. 2 may receive the checksurn 226 from the checksum generator 224,

A

A second checlosum associated with a second plurality of error locations of a second error correction code
operation may also be received, at 1004, For instance, the controller 202 of FIG. 2 may retrieve the prior

checksum 234 from the log file 216 of the memory array 204,

The first checksum may be compared to the second checksum, at 1006, For example, the checksum

analysis module 228 of FIG. 2 may compare the checksum 226 to the prior checksum 234,
An action may be initiated with respect to the memory region based on a result of the conyparison, at
1008, For example, the action selection module 230 of FIG. 2 may initiate an action based on a result of

the data.

A third checksum associated with a third plurality of error locations of a third ervor correction code
operation may be received, at 1010, A fourth checksunm associated with a fourth pharality of ervor

locations of a fourth error correction code operation may also be received. For example, the checksum

WO 2011/002656 PCT/US2010/039699

N

[y
o]

28

Sin.

aualysis woodule 228 of FIG. 2 may receive thivd and fourth checksums from the checksum bistory 218 of

the log file 216 of the memory array 204.

The first checksum, the second checksum, the third checksum, and the fourth checksum may be used to

wdentty atrend, at 1012, To tllustrate, the checksun analysis modole 228 of FIG. 2 may the checksums
retrieved from the checksun history 218 to ideutify a trend. For exampie, the checksum analysis wodule
240 may determine that & nanber of ervor consistently occur or are concentrated at the same relative

focation.

At 1014, an action may be initiated based on the trend. For example, the action selection module 230 of
FIG. 2 may move data, initiate a read scrub, designate a block of data as being bad, monitor the data, or

initiate an action to COrrect an error.

FIG3. 10 illustrates a flowchart of a method 1000 of idenufying a trend indicated by ervors generated over
a series of error correction code operations. The identified trend wmay be used 1o witiate an appropuate

corrective action.

Aspects of the disclosed embodiments may increase error identification accuracy by evaluating the

focations of errors, rather than just a total number of errors. Processes may thus identify errors that move

[

oeations, even when the total number of errors remains constant.

{rther aspects of the disclosed embodiments may track ervors using data based on ECC corrections that
occur with each read operation. Tracked error data may welude both ervor focations and a nummber of

ercors. The tracked nuuber of ervors may be used to mounitor wear out and defects, while the ervor

1

location data may facilitate disturbance detection.

1

Other aspects of the disclosed embodiments may generate multiple checksums based on one or more error
focations, For example, four checksums may be collected for sach page @ a memory. The checksurms

raay be determined and ineluded within a tracking log file.

Although various components depicted herein are Ulusirated as block components and described in
zeneral terms, such components may include one or more microprocessors, state machines, or other
circuits configured to enable the data error detection module 108 and the checksum generator 120 of FIG.
1 and the error detection module 220, the checksum generator 224, the checksum analysis module 228,

4

and the action selection module 230 of FIG. 2 to perform the particular functions attributed to such
components, or any combination thereof. For example, the error detection module 108, the checksum
generator 128, or both, of FIG, 1 may represent physical components, such as hardware coutrollers, state
machines, lngic cirenits, or other struchures to enable the data storage device 100 of F1G. 1 1o track ervor

data.

The data storage device 100 may be a portable device configured to be selectively coupled to one or more

external devices. However, in other embodiments, the data storage device 100 may be attached or

WO 2011/002656 PCT/US2010/039699

o]

16

213 -

embedded within one or more host devices, such as within a housing of a portable comumumeation device.
For example, the data storage device 100 may be within a packaged apparatus such as a wireless
telephone, a personal digital assistant (PDA), a gaming device or console, a portable navigation device, or
other device that uses internal non-volatile memory. In a particular embodiment, the data storage device
100 includes a non-volatile memory, such as a flash memory {e.g., NAND, NOR, Multi-Level Cell
(MLQ), Divided bit-line NOR {BINGR}, AND, high capacitive coupling ratio {HICR), asymmetrical
corttactiess trausistor (ACT), or other flash memories), an erasable programmable read-only remory
(EPROM), an electricatly-erasable prograrumable read-only memory (EEPROM), 2 read-only memory

{(ROM), a ous-time programmable wewmory (OTF), or any other type of memory.

The illustrations of the embodiments described herein are intended to provide a general understanding of
the various embodiments. Other embediments may be utilized and derived from the disclosure, such that
structural and logical substitutions and changes may be made without departing from the scope of the
disclosure. This disclosure is intended to cover any and all subsequent adaptations or variations of
various embodiments. Accordingly, the disclosure and the figures are to be regarded as illustrative rather

than restrictive.

The above-disclosed subject matier 15 to be considered ilhustrative, and not restrictive, and the appended
claims are intended to cover all such modifications, enhancements, and other embodiments, which fall

within the scope of the present disclosure. Thus, to the maximum extent aliowed by law, the scope of the

present invention is to be determined by the broadest permissible interpretation of the following claims

and their equivalents, and shall not be resiricted or imited by the foregoing detailed description.

WO 2011/002656 PCT/US2010/039699

1%

10

35

WHAT IS CLAIMED IS

1. A method of tracking ervor data, the method comprising:

receiving data read from a memory array;

performing an error detection operation on the received data to identify a plurality of errors and a plurality
of locations, wherein each error of the plurality of errors is associated with a corresponding location of the
plurality of locations;

generating a checksum based on the plurality of locations associated with each of the plurality of errvors;
and

storing the checksum in the memory aray.

The method of claim 1, further corapristog storng a first checksum based on a first ervor detection
operation performed at a first e and storing a second checksum based on a second ervor detection

operation parformed at a second time.

3. The method of claim 2, wherein the first error detection operation is a first error correction code

operation and the second error detection operation is a second error correction code operation.

S

The method of claim 2, further compristug compariog the first checksum to the second checksum.

¥

The method of claim 4, further comprisiag comparing one of a plurality of available actious based on

the cornpanison of the first chiecksum to the second checksum.

6. The method of claim 5, wheretn the plurality of available actions inchudes at least one of moving data,
initiating a read scrub, refreshing data, designating a block of data as bad data, monitoring data, and

initiating an action to correct an error of the plurality of errors.

. The method of claim 4, further comprising initiating a first action when a determined difference
between the first checksum and the second checksum is small and initiating a second action when the

determined difference between the first checksum and the second checksum is large.

8. The method of claim 4, further comprisiug evaluating location information represented by at least one

of the first checksum and the second checksum when a determined difference between the first checksum

and the second checksum is small to identity a potestially bad wordline 1u the memory arvay

9. The method of claim 8, wherein the potentially bad wordline is identified based on the location
information indicating substantially all of the plurality of errors oceurring at one end of the potentially

bhad wordline.

WO 2011/002656 PCT/US2010/039699

o]

10

15

[}
v

-1

L

10. The method of claim 4, further corapristog, in response o determining that a difference between the
first checksum and the second checksum is large, determining whether an errvor of the plurality of errors s

randon.

11. The method of claim 10, further comprising initiating nio action in response to determining that the

error is random.

12, The method of claim 1, wherein a loeation of the plurality of locations comprises a region of the

MEMOTY T4y,

13. The method of claim 1, whereln the region of the memory array cornprises a bit position of a page or

a block.

i4. A method of tracking error data, the method comprising:

performing a first error correction code operation at a first time to identify a first plurality of errors
associated with a first phurality of locations;

performing a second ervor correction code operation at a second time to identify a second plurality of
ervors associated with a second plurality of locations; and

storing first data correlated to the fivst plurality of locations and storing secoud data corvelated to the

second plurality of locations into a log file of a memory awmay within a data storage device.

15. The method of clanm 14, wherein a location of the first plurality of locations comprises a bit position

of a page or a block within the daia storage device.

16. The method of claim 14, wherein the first error correction code operation is performed at a controlier

1

within the data storage device.

17. The method of claim 14, wherewn the st data comprises a first checksum of the first plurality of

lncations and the second data comprises a secoud checksum of the second plurality oflocations.

18. A method of tracking ervor data compnsing
recetving a first checksum associated with 2 first plurality of ervor locations of a first ervor correction code
operation;
receiving a second checksum associated with a second plurality of error locations of a second error
correction code operation;

comparing the first checksum to the second checksum; and

irdtiating an action on a region of a memory array based on a result of the conmparison,

19. The method of claim 18, wherein the first ervor correction code operanon is associated with

correcting an ercor withio the region of the memory array.

WO 2011/002656 PCT/US2010/039699

o]

10

15

[}
v

_i6-

20. The method of claim {8, further comprising perfornning one of a phurality of available acuons based

on the comparison of the first checksum to the second checksum.

21. The method of claim 20, wherein the plurality of available actions includes at least one off moving

daia, performing a read scrub, refreshing data, designating a block of data as bad data, monitoring data,

and initiating an action to correct an error of the plurality of errors.

22, The method of claim 18, further comprising itiating no action 1o vesponse to determiniug that an

ervor withau the region of the memory array s random.

23, The maethod of claim 18, further comprisiug receiving a third checksum assoctated with a third
phurality of error locations of a third error correction code operation and a fourth checksum associated
with a fourth plurality of error locations of & fourth error correction code operation and using the first

checksuim, the second checksum, the third checksum, and the fourth checksum to identify a trend.

24. The method of claim 23, further comprising initiating an action based on the irend.

25. A method of tracking ervor data, the method comprising:

sociated with a fiest set of ervor {ocations

retaeving a first checksum from a memory, the first checksum a;
of a memory region;

comparing the fiest checksum to a second checksum, the second checksum associated with a second set of
error locations of the memory region; and

1 4

initiating an action with respect to the memory region based on a result of the comparison.

26, The method of claim 25, wherein the action includes at [east one oft moving data, designating a block
of data as bad data, performing a read scrub, refreshing data, monitoring data, and correcting an error of

the plurality of errors,

The reethod of claim 25, further comprising inlbating a first action when a deternined difference
hetween the first checksum and the second chiecksum 1s small and inttiating a second action when the

determined difference between the first checksum and the second checksum is large.

28. The method of claim 23, wherein an error location of the first set of error locations comprises a bit

position of a page or a block within the memory region of a data storage device.

WO 2011/002656 PCT/US2010/039699

o]

10

15

[}
v

29. An apparatus, comprising:

a memory aray;

an error detection module coupled to the memory array, wherein a plurality of locations and a plurality of
errors are detected by the error detection module in response to data read from the memory array; and

a processor configured to compare a checksum based on 3 plurality of locations associated with each of a
phurality of errors to a prior checksum, wherein the processor is further configured to initiate at [east one

of a plurality of available actions based ou the comparison of the checksum to the prior checksum.

30. The apparatus of claim 29, wherein the processor is further configured to inttate the storage of the

checksurm 1u the memory arvay

31. The apparatus of claim 29, wherein the error detection module includes an error correcting code

(ECC) engine at a controller coupled to the memory arn

r, wherein the controiler and the memory array

are components of a removable data storage device.

32. The apparatus of claim 31, wherein the controiler includes the processor coupled to the ECC engine.

The apparatus of clawm 31, wherein the checksum is generated by at teast one of the ECC engloe, a

1i

roultiple input signature register, an accvmudating adder, and a polyuomial based cirouit,

34. An apparatus, comprising:

a mernory inchuding a memory region of a memory array; and

a controller configured to access the memory and to retrieve a first checksum associated with a first
plurality of error locations of a first error correction code operation on first data read from at least one of

the plurality of memory regions and a second checksum associated with & second plurality of error

[

ocations of 3 second ervor correction code operation on second data read from the at least one of the
plurality of memory regions, to compare the first checksum to the second checksum, and to initiate &
action associated with the at least one of the plurality of memory regious at least partially based on the

comparison of the first checksur to the second checksum.

35. The apparatus of claim 34, wherein the memory comprises a non-volatile memory.

36. The apparatus of claim 34, wherein the memory comprises a flash memory.

L)
~3

. The apparatus of claim 34, wherein the controller is further configured to siore the first checksum and

iy

~

he second checksum within the memory array.

PCT/US2010/039699

WO 2011/002656

1/8

} 'Old

WINS}08yD puooag

oL S

wnsyo8y 18414

¢

lojeisusn)

¢§|\

31714 ©071

zeh S

s

oLl

1l)

winsyo8yo

oz S

uoneoo
Joug

w:\I\ *

a0,

\ AVHIY AHJON3IN

o |]

9INPON
> o993
oL S| o3
Y3 TIONLNOD

col I\m_o_>m_m_ JOVHO1S v1vd

\

149

\ oo
Ll

pesy
ejeg

PCT/US2010/039699

WO 2011/002656

2/8

¢ Old

AOISIH wnsyoayd

8lc 3|14 6o

SN\

uoibay puooss

802 e

uoibay 18114

ZIe
S

e
|

@ONL\ / \ AVHHY AHOWIN

¥0Z L\ é

vic
oowl\

ozz S

S

— 0¢¢
[4%4 uon99|eg
uonov uonoy
* ace
= o 8¢¢C kl
winsy29yn 1 sisAleuy <
Joud WNsyo9yn WNso9yD
0v2 (| ¥oss3ooud
| CM__ﬂobmwM/_o uoneso JojeJsuan)
o Jou3 wiNs}99yd

v2e i

d3T1041NOD

202 e

0S¢

JSOH

PCT/US2010/039699

WO 2011/002656

3/8

09G
LOLL —— JOjelausn) ————— puz
« wnsX994yo .\‘ ’{wmm
g oG < e T T
SUIIPJOM PEY MBI 8vs 0vS” 868" 9€S” ¥ES” 2€S” 0€S” 828 928 v2s o
vGs — s ¢
0.6 - » oL |« Jo1eI8U9D A|1 — 7 N\ S|
wnsped | oo o O 0e. .
g < T T J J J.J J_J_J
005 — v rra cvs 228 028 8167 916" ¥1S” ZLS 0LS” 808 908
¥ 'Old . e h_\ow\\\wwwﬁ
_ > i T T T 7.7 \‘ T 7 \.,{@ﬁ
Wopuey Se Aunuep] 8vy oy OvY 8€V” 98V ¥EY 2€¥” OV 82F 92V vev
. o 0 \\\H\l%
0Ly » <— Jojesousn) |[E— ‘ ‘ ., Is|
0011 wnsxoaydn —~——0%+
v T .7 J 7 J. 7 J_J_
00¥ vry cry ZZy 0Ty 8LY 9L¥ ¥Lv ZL¥ OLY 80¥ 90V
ﬂ .0—& <« JoeiBUeD | = 3 puz
Y o WNSAOOUO | g L ’/'vmm
< < T J_ T J_ J_ J T _J _J
Juswe|3 8beso)s sve e ove” 8e€” 9eg” e¢” zee” 0eg” 8z 9zE ¥ze
Ejea peq Ajuspl — 20€
WNSAOOUO | zge L ’/'omm
Ve e < T _ 7T J 7 J.J_ J_J_J

00€ —v

¢c¢e 0¢€ 8lE 9lE vIEC ¢lE 0lE 80€ 90¢

WO 2011/002656

4/8

PCT/US2010/039699

{_ 600
; 602

Perform an error correction code operation to identify a plurality of errors and a
plurality of locations respectively associated with each of the plurality of errors

!

; 604

Generate a first checksum based on the plurality of locations associated with each of
the plurality of errors

!

; 606

Retrieve a second checksum from the memory array

!

; 608

Compare the first checksum to the second checksum

610

;612

Small
difference between first and
second checksum?

Yes

Evaluate location information to
identify a potentially bad
wordline (e.g. all errors at one
end of wordline)

¢ PxX

616‘K

Identify memory region as
having defective storage
elements (e.g. bad memory
cell)

Monitor the location within the data -

618

; 620

Large
difference between first and
second checksum?

Yes

Evaluate location information to
determine if an error of the
plurality of errors is random

l ; 622

624 “\

Initiate no action if the error is
random

Store the first checksum ¢

FIG. 6

WO 2011/002656 PCT/US2010/039699

5/8

{_ 700

Perform a first error correction code operation at a first time to identify a
first plurality of errors respectively associated with a first plurality of
locations

)‘ 702

'

Perform a second error correction code operation at a second time
to identify a second plurality of errors respectively associated with
a second plurality of locations

)_ 704

'

Store first data correlated to the first plurality of locations and store
second data correlated to the second plurality of locations into a log file of
a memory array within a non-volatile data storage device

)_ 706

FIG. 7

WO 2011/002656 PCT/US2010/039699

6/8

{_ 800

Receive a first checksum associated with a first plurality of error locations 802
of a first error correction code operation and a second checksum)_
associated with a second plurality of error locations of a second error
correction code operation

'

)— 804
Compare the first checksum to the second checksum

Is error random?

Yes

808
Initiate no action /f_

No 806

)— 810
Initiate an action based on a result of the comparison

FIG. 8

WO 2011/002656 PCT/US2010/039699

7/8

{_ 900

, 2
Retrieve a first checksum from a memory, the first checksum associated)— %0
with a first set of error locations of a memory region

'

Compare the first checksum to a second checksum, the second)— 904
checksum associated with a second set of error locations of
the memory region

'

Initiate an action with respect to the memory region)— 906
based on a result of the comparison

'

Perform one of a plurality of available actions (e.g. moving data,)— 908
designating a block as bad data, monitoring data, correcting data errors)

FIG. 9

WO 2011/002656 PCT/US2010/039699

8/8

{_ 1000

Receive a first checksum associated with a first plurality of error locations
of a first error correction code operation

)— 1002

'

Receive a second checksum associated with a second plurailty of error
locations of a second error correction code operation

)— 1004

'

Compare the first checksum to the second checksum

; 1006

'

Initiate an action on a region of a memory array based on a result of the
comparison

; 1008

!

Receive a third checksum associated with a third plurailty of error
locations of a third error correction code operation and a fourth checksum
associated with a fourth plurality of error locations of a fourth error
correction code operation

)—’IO’IO

!

Use the first checksum, second checksum, third checksum, and fourth
checksum to identify a trend

)—1012

'

Initiate an action based on the trend

)—1014

FIG. 10

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/039699

A. CLASSIFICATION OF SUBJECT MATTER

INV. CGO6F11/10 GO6F11/00
ADD. '

According to Intermnational Patent Classification (IPC) or to both national classification and iPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbois)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, IBM-TDB, INSPEC, COMPENDEX

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

A US 2003/217323 Al (GUTERMAN DANIEL C [US]
ET AL) 20 November 2003 (2003-11-20)
paragraphs [0012], [0015], [0018],
[0027], 1[00311, [0045] - [0054], [0062]
- [0075]

figures 1,2a,2b,3,5

A WO 99/36913 Al (HEWLETT PACKARD CO [US];
SONY CORP [JP]; MORLEY STEPHEN [GBJ;
WILLIAMS) 22 July 1999 (1999-07-22)

page 2, line 27 - page 9, line 4

page 10, line 19 - page 11, 1ine 15

page 13, line 18 - page 14, 1ine 13

page 21, line 18 - page 23, line 2

claims 1,2

figures 1,3,6

1-37

1-13

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents :

"T* later document published after the international filing date
or priority date and not in conflict with the application but

"A" document defining the general state of the art which is not ; g ;
considered 10 be of particular relevance %tveedni% :]mderstand the principle or theory underlying the
"E" earlier document but published on or after the international "X* document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to
"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another Y document of particular relevance; the ctaimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
"O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu—
other means ments, such combination being obvious to a person skilled
"P* document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
22 September 2010 01/10/2010
Name and mailing address of the [SA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL — 2280 HV Rijswijk
Tel. (+31~70) 340-2040,
Fax: (+31-70) 340-3016 Johansson, UIf

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2010/039699

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to ciaim No.

A

WO 2007/134133 A2 (SANDISK CORP [US];
GOROBETS SERGEY ANATOLIEVICH [GB]; CONLEY
KEVIN M [) 22 November 2007 (2007-11-22)
paragraphs [0004], [0005], [0007] -
(o010}, [0025], [0027], [0030],

[0031], [0033] - [0036]1, [0041], [0044]
- [0049]

figures la,1b,2

US 2005/055621 A1l (ADELMANN TODD
CHRISTOPHER [US] ET AL)

10 March 2005 (2005-03-10)

paragraphs [0012], [0023] - [0027],
[0051], [0052], [0057], [0058], [0068]
- [0077], [0087]1 - [0094], [0108]
figures 1,5-7

14-17

18-37

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

International application No.
INTERNATIONAL SEARCH REPORT PCT/UIS2010/039699
Box No.ll Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. D Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. D Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such
an extent that no meaningful international search can be carried out, specifically:

3. D Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. Il Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

see additional sheet

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.

2. I:‘ As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of
additional fees.

3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:

4. D No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest The additional search fees were accompanied by the applicant’s protest and, where applicable, the
payment of a protest fee.

The additional search fees were accompanied by the applicant's protest but the applicable protest
fee was not paid within the time limit specified in the invitation.

[, No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (April 2005)

International Application No. PCT/US2010 /039699

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of)
inventions in this international application, as follows:

1. claims: 1-13

Tracking error data comprising receiving data read from a
memory array; performing an error detection operation on the
received data to identity a plurality of errors and a
plurality of locations, wherein each error of the plurality
of errors is associated with a corresponding location of the
plurality of locations, generating a checksum based on the
plurality of locations associated with each of the plurality
of errors, and storing the checksum in the memory array.

2. claims: 14-17

Tracking error data comprising performing a first error
correction code operation at a first time to identify a
first plurality of errors associated with a first plurality
of locations, performing a second error correction code
operation at a second time to identify a second plurality of
errors associated with a second plurality of locations, and
storing first data correlated to the first plurality of
locations and storing second data correlated to the second
plurality of Tocations into a log file of a memory array
within a data storage device.

3. claims: 18-37

Tacking error data comprising comparing a first checksum
associated with a first plurality of error locations of a
first error correction code operation to a second checksum
associated with a second plurality of error locations of a
second error correction code operation and initiating an
action on a region of a memory array based on a result of
the comparison.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2010/039699
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2003217323 Al 20-11-2003 AU 2003241428 Al 12-12-2003
CN 1653554 A 10-08-2005
EP 1506552 Al 16-02-2005
JP 2005527062 T 08-09-2005
KR 20050027216 A 18-03-2005
W 277099 B 21-03-2007
WO 03100791 Al 04-12-2003
US 2004225947 Al 11-11-2004
WO 9936913 Al 22-07-1999 AU 5565998 A 02-08-1999
DE 69814465 D1 12-06-2003
DE 69814465 T2 01-04-2004
EP 1048034 Al 02-11-2000
JP 4290881 B2 08-07-2009
JP 2002509331 T 26-03-2002
us 6631485 B1 07-10-2003
WO 2007134133 A2 22-11-2007 EP 2024839 A2 18-02-2009
JP 2009537904 T 29-10-2009
US 2005055621 Al 10-03-2005 DE 102004023821 Al 04-05-2005
JP 2005085464 A 31-03-2005

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - claims
	Page 16 - claims
	Page 17 - claims
	Page 18 - claims
	Page 19 - drawings
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - drawings
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - wo-search-report
	Page 28 - wo-search-report
	Page 29 - wo-search-report
	Page 30 - wo-search-report
	Page 31 - wo-search-report

