(51) International Patent Classification: G06F
(21) International Application Number: PCT/US03/13866
(22) International Filing Date: 2 May 2003 (02.05.2003)
(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:
60/377,589 6 May 2002 (06.05.2002) US
(71) Applicant: OUTSIDE NETWORKS, INC. [US/US]; 4575 Progress Road, Suite C, Norfolk, VA 23502 (US).
(72) Inventors: ALLEN, Marc, L.; 1022 Shoo Creek Trail, Chesapeake, VA 23320 (US); BAKKER, Anton; 1054 West Ocean View Avenue, Norfolk, VA 23503 (US).
(74) Agent: VICK, Jason, H.; Nixon Peabody LLP, 8180 Greensboro Drive, Suite 800, McLean, VA 22102 (US).
(54) Title: SELF CONTAINED ELECTRONIC LOYALTY SYSTEM

Published: without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(57) Abstract: Through the use of a tag that stores information including transaction information, loyalty reward information and trigger information, a loyalty system can avoid the necessity of contacting a central server to determine loyalty rewards. Furthermore, the tag can act as an electronic storehouse maintaining transaction information to facilitate, for example, record keeping, returns, saving paper, protecting privacy, and the like.
SELF CONTAINED ELECTRONIC LOYALTY SYSTEM

RELATED APPLICATION DATA

BACKGROUND OF THE INVENTION

Field of the Invention

[0002] This invention generally relates to loyalty systems. In particular, this invention relates to systems and methods for a self contained loyalty system and related components.

Description of Related Art

[0003] Loyalty systems reward a customer for frequent use of a company’s services, frequent purchasing of a company’s goods, or the like. For example, frequent flyer miles are a prime example of how airlines reward passengers for traveling on their particular airline. The reward, based on a number of “miles” accumulated can vary from discounts on future airline tickets, to seat upgrades, to free tickets, or the like.

[0004] Loyalty systems are becoming more popular as a retail mechanism for obtaining, retaining and rewarding customers. Before employing a loyalty system, a retailer must decide if the benefits outweigh the costs. Loyalty systems have existed in many forms, from simple punch card applications to large-scale electronic systems.
designed to interface with, for example, grocery store systems.

SUMMARY OF THE INVENTION

[0005] However, current loyalty systems are generally price dependent and vary greatly in terms of their data gathering capabilities. For example, inexpensive systems typically use a manual entry device to enter specific data required to issue loyalty points or rewards. Such devices are typically limited to transaction or quantity totals, but provide little additional functionality. Furthermore, these systems are incapable of assisting the retailer in determining how well the actual loyalty system is performing, or which types of consumers are purchasing which types of products.

[0006] Alternative systems provide excellent data gathering capabilities, however only operate in conjunction with a small set of, for example, point-of-sale register systems. Thus, retailers with multiple locations using different register systems, such as gas stations, are often unable to use a single loyalty system for all stations. For other systems, it is difficult to integrate the new loyalty system with perhaps older cash register or point-of-sale systems. Thus, it is not only necessary to purchase a loyalty system, but also a new cash register system to install many current loyalty systems.

[0007] The exemplary systems and methods of this invention can be adapted to, for example, work in conjunction with existing loyalty systems, or as the bases of a new loyalty system. Specifically, the systems and methods provide a loyalty module that is retrofitted between a point-of-sale, cash register, or similar device, and the associated receipt printer. This allows the loyalty device to intercept information destined for printing at the receipt printer. With the receipt data, the loyalty module is able to determine which items have been purchased, the price of the item(s), purchaser information, payment type, and the like. Using this information, for example, loyalty points or rewards can be issued based on various parameters. Then, a consumer can receive earned points or rewards, if any, by simply associating a tag with the loyalty module.
[0008] The loyalty module is further capable of reading consumer information from the tag, such as current loyalty points status, earned rewards, and a consumer identification. The loyalty module is then able to store updated status reward information on the tag. The loyalty module is also able to issue loyalty rewards in the form of printed data, such as coupons or receipts, by sending data to either the cash register printer or another printer.

[0009] Aspects of this invention relate to a loyalty system.

[0010] Aspects of the invention also related to providing a self contained electronic loyalty system.

[0011] Aspects of the invention further relate to storing a plurality of types of information on a tag that allows a loyalty system, based on the information, to determine various rewards and/or points.

[0012] Aspects of the invention additionally relate to providing a tag that is capable of storing transaction information.

[0013] Aspects of the invention further relate to providing a tag that is modifiable and accessible to manage transaction information and loyalty information stored therein.

[0014] These and other features and advantages of this invention are described in, or are apparent from, the following detailed description of the embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The embodiments of the invention will be described in detail, with reference to the following figures, wherein:

[0016] Fig. 1 is a functional block diagram illustrating an exemplary loyalty system according to this invention;

[0017] Fig. 2 is a detailed functional block diagram of an exemplary tag according to this invention;
[0018] Fig. 3 is a detailed block diagram of an exemplary loyalty module according to this invention;

[0019] Fig. 4 is a flowchart illustrating the exemplary operation of the loyalty module according to this invention; and

[0020] Fig. 5 is a functional block diagram illustrating the exemplary operation of a tag according to this invention.

DETAILED DESCRIPTION OF THE INVENTION

[0021] The exemplary systems and the methods of this invention will be described in relation to a loyalty system. However, to avoid unnecessarily obscuring the present invention, the following description omits well-known structures and devices that may be shown in block diagram form or otherwise summarized. For the purpose of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It should be appreciated however that the present invention may be practiced in variety of ways beyond the specific details set forth herein. For example, the systems and methods of this invention can be scaled to any level and are capable of working in conjunction with various types of customer and already existing systems.

[0022] Furthermore, while the exemplary embodiments illustrated herein show the various components of the loyalty system collocated, it is to be appreciated that the various components of the system can be located at distant portions of a distributed network, such as a WAN and/or the Internet, or within a dedicated loyalty system. Thus, it should be appreciated that the components of the loyalty system can be combined into one or more devices or collocated on a particular node of a distributed network, such as a communications network. It will be appreciated from the following description, and for reasons of computational efficiency, that the components of the loyalty system can be arranged at any location within a distributed network without affecting the operation of the system.

[0023] Additionally, it should be appreciated that the various links connecting
the elements can be wired or wireless links, or any combination thereof, or any other known or later developed element(s) that is capable of supplying and/or communicating data to and from the connected elements. Additionally, the term module as used herein can refer to any known or later developed hardware, software, or combination of hardware and software that is capable of performing the functionality associated with that element. Likewise, for example, to facilitate scaling of the system, one or more components of the loyalty system can be mirrored and supplemented with, for example, load sharing functionality if desired.

[0024] Fig. 1 illustrates an exemplary loyalty system 10. The loyalty system 10 comprises a tag 100, a loyalty module 200, a loyalty server 300, a point-of-sale device 400, such as a cash register and a receipt device 500, all interconnected by links 5 and optionally network 15. Furthermore, the loyalty system 10 can optionally include a computer 600 and printer 700.

[0025] In operation, the loyalty module 200 is adapted to monitor communications between the point-of-sale 400 and the receipt device 500. In particular, the loyalty module 200 can act in an active or passive fashion depending on, for example, rules specified in a profile associated with the tag 100 as discussed hereinafter. For example, in the passive mode, the loyalty module 200 can “listen” to communications between the point-of-sale 400 and the receipt device 500. Thus, the loyalty module 200 would at least have the information regarding the transaction that was passed to the receipt device 500. Based on this information, and a subsequent interaction with one or more of the tag 100 and the loyalty server 300, the loyalty module could allow the issuance of loyalty rewards based on this information.

[0026] Alternatively, in an active mode, the loyalty module 200 could intercept communications between the point-of-sale 400 and the receipt device 500. Then, based on an interaction with the tag 100, the loyalty module 200 could print one or more of a receipt, a loyalty reward, or the like at, for example, the receipt device 500.

[0027] Having the loyalty module 200 communicating with one or more of the
point-of-sale 400 and the receipt device 500, the loyalty module 200 waits for a tag 100 to be placed in the sensible area of the loyalty module 200. For example, the loyalty module 200 can be equipped with an electrical, electro-mechanical, magnetic, inductive, capacitive, and/or optical detector, a credit card reader, a radio frequency identification (RFID) device, or in general any device that is capable of communicating and exchanging information with a comparably equipped readable/writable technology in the tag. This information can include, for example, profile information and loyalty information that is stored on the tag.

Thus, when the tag 100 is place in the sensible area of the loyalty module 200, the loyalty module can determine, based on the information in the tag in combination with current transaction information, if a loyalty reward is appropriate. If a loyalty reward is appropriate, the loyalty module 200 can cooperate with the tag 100 and update the loyalty information stored therein. Thus, it is not always necessary for the loyalty module 200 to communicate with the loyalty server 300 to be able to determine current loyalty rewards. While this communication is not precluded and, for example, based on information stored in a profile on the tag 100, this could be an alternative form of operation, it is not necessary.

For example, a profile stored on the tag 100 could specify that if the tag 100 is placed in the sensible area of the loyalty module 200, and a loyalty reward is appropriate, the profile could specify that information relating to the loyalty reward be forwarded to the loyalty server 300 and then, for example, e-mailed to an address specified in the profile. A user could then receive this loyalty information and, for example, print it out at their convenience. This would allow, for example, the loyalty module 200 to process loyalty rewards in a batch-processing type of environment, and thus could help eliminate communication bottlenecks that may occur over the network 15 and at the loyalty server 300. Alternatively, a tag reader/writer interface (not shown) could be connected to the computer 600 such that a user, upon receipt of the e-mail indicating a reward has been earned, could place the tag 100 in the sensible area of the tag reader/writer to update the tag with the reward information. This reward information could then be used, for example, for subsequent purchases at a
point-of-sale 400.

[0030] Additionally, the profile may, for example, specify that transaction information should not be printed at the receipt device 500 at the time the transaction occurs, but rather stored in the tag and, for example, printed at a later time when the tag is placed in communication with the computer 600 and accompanying printer 700.

[0031] Fig. 2 illustrates in greater detail the components associated with the tag 100. In particular, the tag 100 comprises a profile storage 110, a loyalty information storage 120, a communication module 130, a memory 140, a controller 150 and an I/O interface 160. As well be appreciated, the tag 100 can further include a power source, such as a battery, rechargeable battery, solar panel, or the like, which are not shown but could also be included in the tag 100.

[0032] In operation, and upon being place in service, the tag 100 is initialized by, for example, establishing a profile in the profile storage 100. A “basic” or stock profile could be included in the profile storage 110 and upon receipt, through a user interface, such as a graphical user interface on a personal computer, PDA, or the like, a user would be able to customize the settings in the profile. Alternatively, the tag 100 can be shipped or given to a user with no profile thus allowing the user to completely configure and customize the profile based on their particular desires. As briefly discussed above, the profile could at least control how information associated with a current transaction is handled. For example, the following exemplary rules can be established that tailor the handling of information based on various factors.

Exemplary Profile A

1. Do not print receipts at receipt device
2. Store transaction information on tag
3. Send e-mail notification if reward earned
4. Use reward to pay or partially pay for transaction if reward available

Exemplary Profile B

1. Print receipts at receipt device
2. Store transaction information on tag
3. Print coupon at receipt device if reward earned
4. Automatically transfer transaction information to financial management software when tag associated with computer

Exemplary Profile C

1. Do not print receipts at receipt device
2. Do not store transaction information on tag
3. Print coupon at receipt device if reward earned
4. Use credit card information associated with tag to pay for transaction

Exemplary Profile D

If at any gas station:
1. Do not print receipts at receipt device
2. Store transaction information on tag
3. Print coupon at receipt device if reward earned
4. Use credit card information associated with tag to pay for transaction

Exemplary Profile E

If at store X:
1. Do not print receipts at receipt device
2. Store transaction information on tag
3. Print coupon at receipt device if reward earned
4. Use credit card information associated with tag to pay for transaction
5. Automatically transfer transaction information to financial management software when tag associated with computer

[0033] Associated with a profile is also an identifier that identifies a user associated with the tag 100. This identification can be shared with the loyalty server 300 such that when, for example, a profile specifies the handling of transaction information that includes the interaction of the loyalty server 300, the loyalty server 300 knows how to process the information based on the identification.

[0034] Loyalty information is stored in the loyalty information storage module 120. Specifically, when the tag 100 is placed in the sensible area of the loyalty
module 200, and in cooperation with the communication module 130, the memory 140, the controller 150 and the I/O interface 160, the loyalty information storage is able to obtain information about a particular transaction that occurred at the point-of-sale 400. Then, based on information in the profile, the information regarding the transaction is processed in accordance with those rules. For example, the profile may specify that the transaction information is not to be printed on the receipt device 500, but rather stored in the loyalty information storage 120. For example, this information can include the time and date of the transaction, the store, the items purchased, the amount paid and/or any other information that could be available about the particular transaction. Furthermore, the stored transaction information can be maintained in the loyalty information storage 100 to facilitate the returning of items to a store by, for example, placing the tag 100 in the sensible area of the loyalty module 200 and specifying that a particular receipt(s) is to be printed. For example, to facilitate this type of activity, a user interface can be provided at a store that would allow the user to access information within the tag 100.

[0035] In addition to being capable of storing information regarding the current transaction, the loyalty module 200 is able to obtain historical transition information from the loyalty information storage 120 to aid in facilitating whether a loyalty reward is appropriate. For example, the loyalty information storage 120 may have various portions. One portion may store transaction information, another portion may store reward points, another portion frequent flyer miles, another portion user information, such as credit card number(s), and the like. By separating the various portions, a consumers information and consumers privacy can be protected. For example, there may be another rule in the profile storage 110 that specifies, for example, when the tag 100 is in communication with the loyalty module 200, only historical information relating to the particular store or, chain of stores, the user is currently at will be shared with the loyalty module 200.

[0036] Having determined whether any loyalty reward is appropriate, the loyalty module 200 can return to the tag 100, via the communication module 130, the memory 140, the controller 150 and the I/O interface 160, any updated loyalty reward
information as appropriate. This loyalty reward information can then be stored in the loyalty information storage 120. Again, and for example as specified by the profile, a user can establish rules defining how the user is to be kept informed about loyalty information and how loyalty rewards will be processed. For example, a new user could specify that when a loyalty reward is available, a light or audible sound (not shown) could be activated on one or more of the tag 100 and the loyalty module 200. This would notify the user that a reward is available and then allow, for example, the user to reintroduce the tag 100 into the sensible area 200 of the loyalty module and through this pattern of behavior direct the loyalty module 200 to print the loyalty reward at the receipt device 500. Alternatively, for example, a user may take the tag 100 to a location, such as a personal computer in the home, and “synchronize” the tag with the computer 600. This synchronization could be via a wired or wireless connection, such as a USB or optical connection. A user could then be presented with a user interface that would allow the user to interact with information in the tag 100 and, for example, specify various portions of information to be printed, such as earned loyalty rewards, transaction information, or the like. Furthermore, the user interface could allow the user to export transaction information stored on the tag into, for example, a banking program in order to facilitate, for example, maintaining for the consumers checking account.

[0037] The awarding of loyalty rewards can be governed by at least two mechanisms. First, triggering events, such as frequent flyer miles, dollars spent on purchases, or the like can be stored in the loyalty information storage 120. Thus, when the tag 100 is introduced into the sensible area of the loyalty module 200, the loyalty module 200 has all the necessary information to determine whether a loyalty reward is appropriate. Alternatively, the loyalty module 200 can communicate with a loyalty server 300, this loyalty server 300 could act as a central host system that would allow the uploading and gathering of data, such as consumer activity, number of transactions, transaction breakdown, loyalty points, were awards earned or redeemed, cash register activity, non-loyalty transaction information, and the like. The loyalty server 300 could also download new loyalty parameters, i.e., triggers, such as new or changed reward levels, specials, or the like to the loyalty module 200.
Therefore, for example, since the loyalty information and trigger are stored on either the tag 100 or the loyalty module 200, real-time communication with the loyalty server 300 is not mandatory. Furthermore, by using the loyalty server 300, the store-centric limitations of previous systems are overcome. Additionally, the loyalty server 300 could at predetermined intervals forward updated “trigger” information to the loyalty module such that when the tag 100 is next placed in the sensible area of the loyalty module 200 the triggers on the tag could be updated. An indication of a successful update could then be forwarded back to the loyalty server 300 to, for example, aid with the monitoring of the status of the tags in service.

[0038] Furthermore, it should be appreciated that that the tag, itself, could contain programming, or a program configuration which limits the necessity for communicating with the loyalty server 300. This information could be above and beyond that which is discussed above in relation to triggering. For instance, rules regarding reward scheduling, e.g., when a reward is active, or rules governing combinations of items purchased (or not) in association with rewards or point issuance. In short, as technology improves, aside from periodically updating information in the loyalty module, the tag could also become the repository for additional functional rules and data. A more complex version of the tag could contain additional memory and processing logic which would not pass-through the communications to the printer, but would store the communications until a signal, for example, activated by a button, is received instruction all or a portion of the communications to be sent to the printer. Alternatively still, the dongle and printer could be replaced with a dedicated printer, or the printer optionally incorporated in to the tag, for example if the tag is adapted to work with or integrated within PDA.

[0039] Likewise, the above configuration at least allows the tag 100 to be used at a variety of locations, such as grocery stores, gas stations, retail stores, airlines, or the like, that may use the same loyalty program as well as at locations that are on different or may use multiple loyalty programs.

[0040] Figure 3 illustrates an exemplary detailed view of the loyalty module 200. The loyalty module 200 comprises an information gathering module 210, a
sensing device 220, a loyalty management module 230, a memory 240, a controller 250 and an I/O interface 260. The information gathering module 210 actively or passively intercepts or obtains, respectively, transaction information associated with a transaction at the point-of-sale 400. For example, as previously discussed, the type of interaction the loyalty module 200 may have with the transaction information could be depended on information stored in the profile associated with the tag 100. For example, the loyalty module 200 could, as a normal course of operation, intercept the transaction information and store it in the memory 240 prior to sending it to the receipt device 500. Then, upon having sensed the tag 100, process the transaction information accordingly. In this manor, paper could be saved in that unnecessary receipts are not printed and consumer information is protected.

[0041] For example, for passive operation, a “dongle” can be inserted such that the cable goes from the point-of-sale into the dongle and add another straight-through cable from the other side of the dongle to the printer. Thus, the original circuit can be maintained. Passive circuitry senses the communication signals and passes them to a third cable which is connected to the loyalty module. Power can optionally be provided from the loyalty module over the third cable, although it should be appreciated that power could be obtained from various printer signals or an external power supply, or the like.

[0042] The sensing device 220, in cooperation with the memory 240, controller 250 and I/O interface 260, communicates with the tag 100 when the tag 100 is placed in the sensible area of the loyalty module 200. For example, as previously discussed, the sensing device 220 can be based on an electrical, electro-mechanical, optical, inductive, capacitive, or other configuration that allows the communication of information between the tag and the loyalty module 200.

[0043] The loyalty management module 230 reconciles the transaction information with the loyalty information stored on the tag 100 and determines if a loyalty reward is appropriate. As previously discussed, the triggers that determine when a loyalty reward is appropriate can be received from one or more of the loyalty server 300 and the tag 100.
[0044] Fig. 4 outlines the exemplary operation of the loyalty system. In particular, control begins at step S100 and continues to step S110. In step S110, transaction data is obtained. Next, in step S120, a determination is made whether a tag has been placed in the sensible area. If the tag has been sensed, control continues to step S130. Otherwise, control jumps to step S190.

[0045] In step S130, profile information is read from the tag. Next, in step S140, the tag information is reconciled with current transaction information. Then, in step S150, the loyalty system optionally determines if communications with the loyalty server are needed. If communications are needed, control continues to step S160 where one or more of transaction and tag information are reconciled with the loyalty server. Otherwise, control jumps to step S170.

[0046] In step S170, a determination is made whether any loyalty rewards have been earned. Control then continues to step S160.

[0047] In step S180 a determination is made whether printing is requested. If printing is requested, control continues to step S190 where the requested information is print. Otherwise, control jumps to step S200. In step S200, the tag is updated with any appropriate transaction information and/or loyalty rewards as appropriate. Control then continues to step S210.

[0048] In step S210, a determination is made whether a communication with the loyalty server is needed. If a communication with the loyalty server is needed, control continues to step S220. Otherwise, control jumps to step S230 where the control sequence ends.

[0049] In step S220, one or more of transaction, tag information and loyalty reward information is reconciled, sent to or received from the loyalty server as appropriate. Control then continues to step S230 where the control sequence ends.

[0050] Fig. 5 outlines the exemplary operation of a tag. In particular, control begins in step S500 and continues to step S510. In step S510, a determination is made whether the tag has been introduced into the sensible area of the loyalty module. If
the tag is in the sensible area control continues to step S520. Otherwise, control jumps to step S540.

[0051] In step S520, and based on the profile, various information is forwarded to and/or received from the loyalty module. For example, as previously discussed, instructions for processing transaction data, how to process loyalty rewards, and historical information can be exchanged between the loyalty module and the tag. Then, if necessary, in step S530 the tag is updated with any appropriate information. Control then continues to step S540.

[0052] In step S540, a determination is made whether the tag has been connected to an interface device, such as a computer. If the tag is connected to an interface device, control continues to step S550. Otherwise, control jumps to step S640 where the control sequence ends.

[0053] In step S550, a determination is made whether a loyalty reward status report is requested. If a loyalty reward status report is requested, control continues to step S560 where the loyalty reward report is created. Control then continues to step S570.

[0054] In step S570, a determination is made whether the profile is to be modified. If the profile is to be modified, control jumps to step S580. Otherwise, control jumps to step S600.

[0055] In step S580, the profile is modified. Then, in step S590, the updated profile is stored. Control then continues to step S600.

[0056] In step S600, a determination is made whether to review and/or modify transaction history information. If a review or modification of the history information is required, control continues to step S610. Otherwise, control jumps to step S620.

[0057] In step S610, the user is allowed to modify and/or review history information via, for example, a user interface as discussed above. Control then continues to step S620.
[0058] In step S620, a determination is made whether a portion of the history is to be printed. If a portion of the history is to be printed control continues to step S630 where the portion is printed. Otherwise, control jumps to step S640.

[0059] In step S640, a determination is made if a communication with the loyalty server is needed. If communication with the loyalty server, is needed, control continues to step S650. Otherwise, control jumps to step S660 where the control sequence ends.

[0060] In step S650, the tag, via the interface device, communicates with the loyalty device to, for example, backup changes, provide additional information, store updated profile information, or the like. Control then continues to step S660 where the control sequence ends.

[0061] The above-described systems and methods can be implemented on a loyalty system, marketing system, advertising system, or the like, or on a separate programmed general purpose computer having loyalty capabilities. Additionally, the systems and methods of this invention can be implemented on a special purpose computer, a programmed microprocessor or microcontroller and peripheral integrated circuit element(s), an ASIC or other integrated circuit, a digital signal processor, a hard-wired electronic or logic circuit such as discrete element circuit, a programmable logic device such as PLD, PLA, FPGA, PAL, stored as instructions on a recordable media, or the like. In general, any device capable of implementing a state machine that is in turn capable of implementing the flowcharts illustrated herein can be used to implement the system according to this invention.

[0062] Furthermore, the disclosed methods may be readily implemented in software using object or object-oriented software development environments that provide portable source code that can be used on a variety of computer or workstation platforms. Alternatively, the disclosed system may be implemented partially or fully in hardware using standard logic circuits or VLSI design. Whether software or hardware is used to implement the systems in accordance with this invention is dependent on the speed and/or efficiency requirements of the system, the
particular function, and the particular software or hardware systems or microprocessor or microcomputer systems being utilized. The systems and methods illustrated herein however can be readily implemented in hardware and/or software using any known or later developed systems or structures, devices and/or software by those of ordinary skill in the applicable art from the functional description provided herein and with a general basic knowledge of the computer and loyalty system arts.

[0063] Moreover, the disclosed methods may be readily implemented in software executed on programmed general purpose computer, a special purpose computer, a microprocessor, or the like. In these instances, the systems and methods of this invention can be implemented as program embedded on personal computer such as JAVA® or CGI script, as a resource residing on a server or graphics workstation, as a routine embedded in a loyalty system, or the like. The system can also be implemented by physically incorporating the system and method into a software and/or hardware system, such as the hardware and software systems of a loyalty reward system.

[0064] It is, therefore, apparent that there has been provided, in accordance with the present invention, systems and methods for a loyalty reward system. While this invention has been described in conjunction with a number of embodiments, it is evident that many alternatives, modifications and variations would be or are apparent to those of ordinary skill in the applicable arts. Accordingly, it is intended to embrace all such alternatives, modifications, equivalents and variations that are within the spirit and scope of this invention.
Claims:

1. A loyalty system comprising:
 a tag comprising a profile storage device and a loyalty information
 storage device, the tag at least storing profile information and loyalty information; and
 a loyalty module adapted to interface with a purchase system, the
 loyalty module cooperating with the tag to monitor loyalty rewards, wherein the tag at
 least comprises information sufficient to determine a loyalty reward.

2. The loyalty system of claim 1, further comprising an interface system
 that allows access to the profile information and the loyalty information.

3. The loyalty system of claim 1, wherein the tag further stores
 transaction information received from the purchase system.

4. The loyalty system of claim 1, wherein the tag dynamically interacts
 with the purchase system.

5. The loyalty system of claim 4, wherein the dynamic interaction
 includes the routing and storage of transaction information.

6. The loyalty system of claim 1, wherein the tag further comprises
 information that allows the purchasing of at least one of goods and services from the
 purchase system.

7. A method of monitoring loyalty information comprising:
 receiving transaction information;
 sensing a loyalty tag;
 reconciling information stored in the loyalty tag with the transaction
 information;
 determining a loyalty reward; and
 updating the loyalty tag.
8. The method of claim 7, further comprising communicating with a loyalty server.

9. The method of claim 7, further comprising printing one or more of transaction information and loyalty reward information.

10. The method of claim 7, further comprising associating the loyalty tag with an interface device to allow at least one of access to and updating of information stored on the loyalty tag.

11. The method of claim 7, wherein a profile regulates the handling of the transaction information.

12. The method of claim 7, wherein the loyalty tag at least comprises information sufficient to determine a loyalty reward.

13. The method of claim 7, wherein a profile dynamically regulates the handling of the transaction information.

14. The method of claim 7, wherein the loyalty tag allows the purchasing of one or more of goods and services.

15. The method of claim 7, further comprising notifying a user that the loyalty reward is available.

16. The method of claim 7, further comprising notifying a user that the loyalty reward has been earned.

17. The method of claim 7, reconciling the transaction information with a financial management program.
18. The method of claim 7, wherein the loyalty tag comprises triggers that specify when the loyalty reward has been earned.

19. A system for monitoring loyalty information comprising:
 means for receiving transaction information;
 means for sensing a loyalty tag;
 means for reconciling information stored in the loyalty tag with the transaction information;
 means for determining a loyalty reward; and
 means for updating the loyalty tag.

20. An information storage media comprising information that monitors loyalty information comprising:
 information that receives transaction information;
 information that senses a loyalty tag;
 information that reconciles information stored in the loyalty tag with the transaction information;
 information that determines a loyalty reward; and
 information that updates the loyalty tag.