A splitter for protecting parts of a gas turbine engine is provided. The splitter segregates the flow of hot and cold gases into the air bleed manifold around the high compressor section to reduce maximum temperatures and minimize the temperature gradients of engine parts, especially inner case flanges. The splitter divides the air bleed manifold into an annular inner cavity and an outer cavity. The splitter directs relatively cold air from the high compressor bleed ducts into the inner cavity and relatively hot air from the aft hub into the outer cavity, away from the inner case flanges.
SPLITTER FOR AIR BLEED MANIFOLD

FIELD OF THE DISCLOSURE

[0001] The subject matter of the present disclosure relates generally to gas turbine engines. More particularly, the subject matter of the present disclosure relates to a splitter that segregates the flow of hot and cold gases in an air bleed manifold to reduce maximum temperatures and minimize the temperature gradients of engine parts, especially engine flanges, thereby prolonging engine part life.

BACKGROUND OF THE DISCLOSURE

[0002] Gas turbine engines, such as those used on jet aircraft, generally comprise an air intake port, a fan mounted on a hub near the air intake port and surrounded by a fan case which is mounted within an engine housing or nacelle, a low pressure compressor (LPC) section, an intermediate section aft of the LPC section, a high pressure compressor (HPC) section, a combustion chamber or combustor, high and low pressure turbines that provide rotational power to the compressor blades and fan respectively, and an exhaust outlet. The HPC section includes a number of stages of circumferentially arrayed, stationary stators and rotating blades. Each stator extends radially outward between a rotary disk stack and the inboard surface of an inner case. The inner case may be circumferentially segmented into multiple inner case segments joined by inner case flanges. These inner case flanges are subjected to significant stress during operation.

[0003] An outer case and the inner case define the outer and inner circumferentially arranged walls of an air bleed manifold surrounding at least a portion of the HPC. The air bleed manifold defines a cavity and is supplied with air from two sources: cold air from the HPC sixth stage bleed ducts and hot air from the diffuser strut flow from the aft hub.

[0004] The cold and hot air mix in the air bleed manifold cavity. The hot air creates maximum temperature and lifting problems due to high temperature gradients and hot air mixing, which raises the steady state temperature of the inner case flanges, even when a heat shield is used. As a result, the hot air can reduce engine part life, including the life of the inner case flanges. The present disclosure is directed at solving this problem.
SUMMARY OF THE DISCLOSURE

According to one embodiment of the disclosure, a splitter for a gas turbine engine is provided. The gas turbine engine comprises a high pressure compressor section including a plurality of stages of circumferentially arrayed stators and rotating blades. Each stator extends radially outward (away from the engine axis) between a rotary disk stack and an inboard surface of an inner case. The inner case is circumferentially segmented into multiple inner case segments joined by inner case flanges. An outer case is substantially concentric with the inner case. The outer case and the inner case form an air bleed manifold. The air bleed manifold defines a cavity supplied with cold air from high compressor bleed ducts and hot air from an aft hub. The splitter is configured to split the air bleed manifold horizontally, directing the cold air into an annular inner cavity between the splitter and the inner case and across the inner case flanges, and the hot air into an outer cavity between the splitter and the outer case.

The splitter defines openings disposed around its aft end through which the cold air can flow. The openings may be circumferentially arranged slits.

The splitter may comprise a body and a circular deflector disposed aft of the body and configured to prevent inflow of hot air into the inner cavity. The deflector may be further configured to direct the cold air into a radially outward flow path.

In another aspect of the disclosure a jet engine is provided. The jet engine comprises a high pressure compressor section, an inner case and an outer case. The high pressure compressor section includes a plurality of stages of circumferentially arrayed stators and rotating blades. Each stator extends radially outward between a rotary disk stack and an inboard surface of the inner case. The inner case is circumferentially segmented into multiple inner case segments joined by inner case flanges. The outer case is substantially concentric with the inner case. The outer case and the inner case form an air bleed manifold. The air bleed manifold defines a cavity supplied with cold air from high compressor bleed ducts and hot air from an aft hub. The jet engine further comprises a splitter configured to direct the cold air into an inner cavity between the splitter and the inner case and across the inner case flanges, and the hot air into an outer cavity between the splitter and the outer case.

In still another aspect of the invention a method of minimizing the temperature gradients of jet engine parts is provided. The jet engine comprises an inner case circumferentially segmented into multiple inner case segments joined by inner case flanges and an outer case substantially concentric with the inner case. The outer case and inner case
define an air bleed manifold in which hot and cold air are mixed. The method comprises the step of: installing a splitter configured to direct the cold air into an inner cavity between the splitter and the inner case and across the inner case flanges and to direct the hot air into an outer cavity between the splitter and the outer case. The cold air may exit the inner cavity through openings disposed in an aft end of the splitter. The method may include the further step of using a circular deflector to deflect the hot air away from the openings. The deflector may also be used to direct the cold air into a radially outward flow path and into the outer cavity.

[001] Although the different examples described herein may have the specific components shown in the illustrations, embodiments of this disclosure are not limited to those particular combinations of components. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.
BRIEF DESCRIPTION OF THE DRAWINGS
[0012] So that the manner in which the concepts of the present disclosure recited herein may be understood in detail, a more detailed description is provided with reference to the embodiments illustrated in the accompanying drawings. It is to be noted, however, that the accompanying drawings illustrate only certain embodiments and are therefore not to be considered limiting of the scope of the disclosure, for the concepts of the present disclosure may admit to other equally effective embodiments. Moreover, the drawings are not necessarily to scale, emphasis generally being placed upon illustrating the principles of certain embodiments.
[0013] Thus, for further understanding of these concepts and embodiments, reference may be made to the following detailed description, read in connection with the drawings in which:
[0014] Figure 1 is a longitudinal sectional view of an exemplary gas turbine engine that may be equipped with a splitter according to the present disclosure; and
[0015] Figure 2 is a longitudinal sectional view of a portion of a high pressure compressor section such as that shown in Figure 1.
DETAILED DESCRIPTION

[0016] In the disclosure that follows certain relative positional terms are used such as "forward", "aft", "upper", "lower", "above", "below", "inner", "outer" and the like. These terms are used with reference to the normal operational attitude of a jet engine and should not be considered otherwise limiting. The forward end of a jet engine generally refers to the air inlet end and the aft end generally refers to the exhaust end. Also, "radially outward" generally refers to a direction away from the engine center line while "radially inward" refers to a direction toward the engine center line.

[0017] A typical turbofan jet engine works by forcing compressed air into a combustion chamber where it is mixed with fuel and ignited so that the exhaust gases exit a downstream nozzle, thereby creating thrust.

[0018] Figure 1 is a longitudinal sectional view of an exemplary turbofan jet engine 10 that may be equipped with a split manifold according to the present disclosure. The engine 10 comprises an air intake port 12, a fan 14 mounted on a hub 16 near the air intake port 12 and surrounded by a fan case 18 which is mounted within an engine housing or nacelle (not shown), a low pressure compressor (LPC) section 20, an intermediate section 22 aft of the LPC section 20, a high pressure compressor (HPC) section 24, a combustion chamber or combustor 26, high and low pressure turbines 28, 30 that provide rotational power to the compressor blades and fan 14 respectively, and an exhaust outlet 32.

[0019] Figure 2 is a longitudinal sectional view of a portion of a high pressure compressor (HPC) section 24 such as might be found in the engine of Figure 1. The HPC section 24 includes a number of stages of circumferentially arrayed stationary vanes or stators 34 and rotating blades (not shown in Figure 2). Each stator 34 extends radially outward between a rotary disk stack 36 and the inboard surface of a shroud or inner case 38. The inner case 38 may be circumferentially segmented into multiple inner case segments 40 joined by inner case flanges 42. These inner case flanges 42 are subjected to significant stress during operation. An outer case 46 and the inner case 38 define the outer and inner circumferential walls of an air bleed manifold 56. The outer case 46 may be substantially concentric with the inner case 38 and is located radially outward from the inner case 38, away from the engine axis A. The air bleed manifold 56 defines a cavity 58 and is supplied with air from two sources: cold air from the sixth stage bleed ducts 62 and hot air from the diffuser strut flow from the aft hub.
The flow 60 of relatively cold compressed air through the HPC passes through the stators 34 in a predominantly horizontal direction, that is, predominantly parallel to engine axis A. A low percentage, perhaps 2% or less, of relatively cold compressed air from the sixth stage of the HPC 24 may be bled off through bleed slots or ducts 62 and into the air bleed manifold cavity 58 to help cool the turbines. At the same time, relatively hot air may flow forward into the air bleed manifold cavity 58. The hot air may be recovered leakage air from some ID leak paths and flows into the air bleed manifold 56 to be reused. The cold and hot air mix in the air bleed manifold cavity 58 and then exit the manifold 56.

The hot air creates maximum temperature and lifting problems due to high temperature gradients and hot air mixing, which raises the steady state temperature of the inner case flanges 42 even when a heat shield is used. As a result, the hot air can reduce engine part life, including the life of the inner case flanges 42.

To address this problem, a splitter 66 is provided that splits the air bleed manifold cavity 58 horizontally - in the longitudinal direction - into an annular inner cavity 68 and an outer cavity 70. The sixth stage bleed air flows underneath the splitter 66 into the inner cavity 68, flowing over the inner cases flanges 42 to help maintain the inner case flanges 42 at a lower temperature. The cold air exits the inner cavity 68 through openings such as circumferential slits 71 located at or near the aft end 72 of the manifold 56.

Meanwhile, the hot air enters the outer cavity 70 of the air bleed manifold 56 and mixes with the cold air exiting the inner cavity 68. As a result, instead of the hot and cold air mixing as they pass over the inner case flanges 42, they mix after only the cold air has passed over the inner case flanges 42. The cold air then mixes with the hot air in the outer cavity 70, that is, on the side of the splitter 66 away from the inner case flanges 42.

The splitter 66 is a substantially cylindrical structure and may be bolted or otherwise affixed to the inner case 38 or other engine structure. The air bleed manifold 56 may comprise at its aft end openings such circumferentially arranged slits through which the cold air can flow. After exiting the slits 71, the cold air impinges on a circular deflector 74 which directs the cold air into a radially outward flow path like that of the hot air. The deflector 74 also helps prevent any inflow of hot air into the inner cavity 68 under the splitter 66. The deflector 74 may be affixed to the splitter 66. The deflector 74 may be an undivided unitary part of the splitter 66. The deflector 74 may form a continuous ring-like structure, or may be formed of segments corresponding to and disposed downstream of the slits 71.
In another aspect of the invention a method of minimizing the temperature gradients of jet engine parts is provided. The jet engine comprises an inner case circumferentially segmented into multiple inner case segments joined by inner case flanges and an outer case substantially concentric with the inner case. The outer case and inner case define an air bleed manifold in which hot and cold air are mixed. The method comprises the step of: installing a splitter configured to direct the cold air into an inner cavity between the splitter and the inner case and across the inner case flanges and to direct the hot air into an outer cavity between the splitter and the outer case. The cold air may exit the inner cavity through openings disposed in an aft end of the splitter. The method may include the further step of using a circular deflector to deflect the hot air away from the openings. The deflector may also be used to direct the cold air into a radially outward flow path and into the outer cavity.

Industrial Applications

The splitter 66 of the present disclosure reduces the maximum temperature and gradients of the inner case flanges 42 while maintaining the same air flow and temperature of the supply air leaving the manifold 56. The splitter 66 also protects the inner case flanges 42 from variations in the aft hub hot air flow due to upstream and downstream changes, such as turbine cooling flow reductions that can force an increase in the aft hub hot air flow. The splitter 66 can help prevent increased manifold temperatures due to increased hot air flow and decreased cold air flow. The splitter 66 eliminates such problems allowing for a more robust system.

The disclosed apparatus is intended for use in jet engines and, more specifically, commercial turbofan jet engines. The disclosed apparatus may be applicable in any situation where it is desired to extend inner case flange life.

While the present disclosure has been shown and described in terms of one or more exemplary embodiments, it will be understood by one skilled in the art that various changes in detail may be effected therein without departing from the spirit and scope of the disclosure as defined by claims that may be supported by the written description and drawings. Further, where these exemplary embodiments (and other related derivations) are described with reference to a certain number of elements it will be understood that other exemplary embodiments may be practiced utilizing either less than or more than the certain number of elements.
What is claimed is:

1. A splitter for a gas turbine engine, the gas turbine engine comprising a high pressure compressor section including a plurality of stages of circumferentially arrayed stators and rotating blades, each stator extending radially outward between a rotary disk stack and an inboard surface of an inner case, the inner case being circumferentially segmented into multiple inner case segments joined by inner case flanges, an outer case substantially concentric with the inner case, the outer case and inner case forming an air bleed manifold, the air bleed manifold defining a cavity supplied with cold air from high compressor bleed ducts and hot air from an aft hub, the splitter configured to direct the cold air into an annular inner cavity between the splitter and the inner case and across the inner case flanges, and the hot air into an outer cavity between the splitter and the outer case.

2. The splitter of claim 1 wherein:
 the splitter has an aft end and defines openings disposed around the aft end through which the cold air can flow.

3. The splitter of claim 2 wherein:
 the openings are circumferentially arranged slits.

4. The splitter of claim 3 further comprising:
 a body; and
 a circular deflector disposed aft of the body and configured to prevent inflow of hot air into the inner cavity.

5. The splitter of claim 4 wherein the deflector is further configured to direct the cold air into a radially outward flow path.

6. A jet engine comprising:
 a high pressure compressor section including a plurality of stages of circumferentially arrayed stators and rotating blades, each stator extending radially outward between a rotary disk stack and an inboard surface of an inner case, the inner case being circumferentially segmented into multiple inner case segments joined by inner case flanges;
an outer case substantially concentric with the inner case, the outer case and inner case defining an air bleed manifold, the air bleed manifold defining a cavity supplied with cold air from high compressor bleed ducts and hot air from an aft hub; and

a splitter configured to direct the cold air into an inner cavity between the splitter and the inner case and across the inner case flanges, and the hot air into an outer cavity between the splitter and the outer case.

7. The jet engine of claim 6 wherein:
the splitter has an aft end and defines openings disposed around the aft end through which the cold air can flow.

8. The jet engine of claim 7 wherein:
the openings are circumferentially arranged slits.

9. The jet engine of claim 6 wherein the splitter comprises a body, the jet engine further comprising:

a circular deflector disposed aft of the splitter body and configured to prevent inflow of hot air into the inner cavity.

10. The jet engine of claim 6 wherein the deflector is affixed to the splitter.

11. The jet engine of claim 6 wherein the deflector is an undivided unitary part of the splitter.

12. The jet engine of claim 6 wherein the deflector is further configured to direct the cold air into a radially outward flow path.

13. A method of minimizing the temperature gradients of jet engine parts, the jet engine comprising an inner case circumferentially segmented into multiple inner case segments joined by inner case flanges, an outer case substantially concentric with the inner case, the outer case and inner case defining an air bleed manifold in which hot and cold air are mixed, the method comprising the step of:
installing a splitter configured to direct the cold air into an inner cavity between the splitter and the inner case and across the inner case flanges and to direct the hot air into an outer cavity between the splitter and the outer case.

14. The method of claim 13 comprising the further step of:
allowing the cold air to exit the inner cavity through openings disposed in an aft end of the splitter.

15. The method of claim 14 comprising the further step of:
using a circular deflector to deflect the hot air away from the openings.

16. The method of claim 15 comprising the further step of:
using the deflector to direct the cold air into a radially outward flow path and into the outer cavity.
A. CLASSIFICATION OF SUBJECT MATTER

F02C 7/12(2006.01)i, F01D 25/12(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

- F02C 7/12; F02C 6/04; F02C 6/08; F01D 25/14; F01D 25/28; F02K 3/06; F04D 29/58; F01D 25/12

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

- Korean utility models and applications for utility models
- Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

- eKOMPASS/KIPO internal & Keywords: gas turbine engine, splitter, high pressure compressor section, stator, inner case, air bleed manifold, bleed duct, and inner case flanges

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US 2006-0193721 AI (ADAM, GERARD LUCIEN HENRI et a l.) 31 August 2006 See paragraphs [0001], [0030H0036] and figure 1.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 2011-0247434 AI (GLAHN, JORN A. et al.) 13 October 2011 See paragraphs [0114H0015], [0020], [0022], [0023], [0026] and figure 1.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 4329114 A (JOHNSTON, RICHARD P. et al.) 11 May 1982 See column 4, lines 24-48 and figure 2.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 4553901 A (LAURELLO, VINCENT P.) 19 November 1985 See column 4, lines 4-35 and figure 2.</td>
<td>1-16</td>
</tr>
<tr>
<td>A</td>
<td>US 4463552 A (MONHARDT, RICHARD J. et al.) 07 August 1984 See column 2, lines 24-33 and figure 1.</td>
<td>1-16</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier application or patent but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

Date of the actual completion of the international search: 17 April 2014 (17.04.2014)

Date of mailing of the international search report: 18 April 2014 (18.04.2014)

Name and mailing address of the ISA/KR

International Application Division
Korean Intellectual Property Office
189 Cheongna-ro, Seo-gu, Daejeon Metropolitan City, 302-701, Republic of Korea
Facsimile No. +82-42-472-7140

Authorized officer

LEE, Jong Kyung
Telephone No. +82-42-481-3360

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CA 2537672 C</td>
<td>08/10/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1698761 A2</td>
<td>06/09/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2882573 Al</td>
<td>01/09/2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2882573 B1</td>
<td>13/04/2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4972323 B2</td>
<td>11/07/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2012-282079 Al</td>
<td>08/11/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8256229 B2</td>
<td>04/09/2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 8459040 B2</td>
<td>11/06/2013</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 1537322 C</td>
<td>21/12/1989</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 56-034931 A</td>
<td>07/04/1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 60-153406 A</td>
<td>12/08/1985</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 6054081 B2</td>
<td>20/07/1994</td>
</tr>
<tr>
<td>US 4463552 A</td>
<td>07/08/1984</td>
<td>JP 1729293 C</td>
<td>29/01/1993</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 4013526 B</td>
<td>10/03/1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 58-106134 A</td>
<td>24/06/1983</td>
</tr>
</tbody>
</table>