Innovation, Science and Economic Development Canada

Canadian Intellectual Property Office

CA 2863035 C 2023/08/29

(11)(21) 2 863 035

(12) BREVET CANADIEN CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2013/01/28

(87) Date publication PCT/PCT Publication Date: 2013/08/01

(45) Date de délivrance/Issue Date: 2023/08/29

(85) Entrée phase nationale/National Entry: 2014/07/28

(86) N° demande PCT/PCT Application No.: US 2013/023471

(87) N° publication PCT/PCT Publication No.: 2013/113012

(30) Priorité/Priority: 2012/01/27 (US61/591,642)

(51) Cl.Int./Int.Cl. C12Q 1/6851 (2018.01), C12Q 1/6813 (2018.01), C12Q 1/6844 (2018.01), C12Q 1/6869 (2018.01), C40B 30/00 (2006.01)

(72) Inventeurs/Inventors:

KOH, LIAN CHYE WINSTON, US; QUAKE, STEPHEN R., US; FAN, HEI-MUN CHRISTINA, US; PAN, WENYING, US

(73) Propriétaire/Owner:

THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, US

(74) Agent: GOWLING WLG (CANADA) LLP

(54) Titre: PROCEDES DE PROFILAGE ET DE QUANTIFICATION D'ARN ACELLULAIRE

(54) Title: METHODS FOR PROFILING AND QUANTITATING CELL-FREE RNA

(57) Abrégé/Abstract:

The invention generally relates to methods for assessing the health of a tissue by characterizing circulating nucleic acids in a biological sample. According to certain embodiments, methods for assessing the health of a tissue include the steps of detecting a sample level of RNA in a biological sample, comparing the sample level of RNA to a reference level of RNA specific to the tissue, determining whether a difference exists between the sample level and the reference level, and characterizing the tissue as abnormal if a difference is detected.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number WO 2013/113012 A2

(51) International Patent Classification: C12Q 1/68 (2006.01)

(21) International Application Number:

PCT/US2013/023471

(22) International Filing Date:

28 January 2013 (28.01.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

27 January 2012 (27.01.2012) 61/591,642

US

(71) Applicant: THE BOARD OF TRUSTEES OF THE LE-LAND STANFORD JUNIOR UNIVERSITY [US/—]; 1705 El Camino Real, Palo Alto, CA 94306-1106 (US).

(72) Inventors: KOH, Lian, Chye Winston; 94 Thoburn Ct., Apt. 115, Stanford, CA 94305 (US). QUAKE, Stephen, R.; 636 Alvarado Row, Stanford, CA 94305 (US).

(74) Agents: MEYERS Thomas, C. et al.; Brown Rudnick LLP, One Financial Center, Boston, MA 02111 (US).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

without international search report and to be republished upon receipt of that report (Rule 48.2(g))

(57) Abstract: The invention generally relates to methods for assessing the health of a tissue by characterizing circulating nucleic acids in a biological sample. According to certain embodiments, methods for assessing the health of a tissue include the steps of detecting a sample level of RNA in a biological sample, comparing the sample level of RNA to a reference level of RNA specific to the tissue, determining whether a difference exists between the sample level and the reference level, and characterizing the tissue as abnormal if a difference is detected.

Methods for Profiling and Quantitating Cell-Free RNA

Technical Field

The present invention relates the field of nucleic acid analysis from a biological sample containing genetic material. Specifically, methods of the invention relate to quantitating tissue-specific nucleic acids in a biological sample.

Background

It is often challenging to gauge the health of organs within an individual's body. Physicians are often forced to use expensive imaging techniques or perform invasive biopsies for cancer screening to identify diagnostic biomarkers and monitor tumor initiation and progression. The invasive nature of biopsies makes them unsuitable for widespread screening of patients. In addition, many diagnostic biomarkers are only identified in cancer cell lines or from biopsy specimens obtained from patients with late-stage disease and metastasis.

The presence of circulating nucleic acids (DNA and RNA) detectable in the plasma and serum of cancer patients has been investigated for its potential use to serve as markers for diagnostic purposes, with the obvious benefit being a non-invasive diagnostic tool. It has been shown that markers within the plasma are identical to the ones found in the carcinogenic tissue of the patient. Circulating RNA is particularly of interest for use in early detection cancer screenings due to RNA markers close association with malignancy.

In addition to cancer detection, the discovery of fetal specific cell-free RNA present in maternal plasma has opened up new horizons on prenatal molecular diagnostics (see e.g., Poon et al., Clinical Chemistry, 46(11): 1832-1834 (2000)). Specifically, analysis of plasma RNA holds promise for noninvasive gene expression profiling of the fetus. However, only a handful of pregnancy specific cell-free RNA transcripts have been characterized to date. A comprehensive profiling of such RNA has not been performed.

A problem with analyzing cell-free RNA in non-maternal and maternal blood is the lack of suitable data to estimate the biological causes of the cell-free RNA present. For example, there lacks a reliable method for determining tissue origins of the cell-free RNA present in blood.

Summary

The present invention provides methods for profiling the origin of the cell-free RNA to assess the health of an organ or tissue. Deviations in normal cell-free transcriptomes are caused when organ/tissue-specific transcripts are released in to the blood in large amounts as those organs/tissue begin to fail or are attacked by the immune system or pathogens. As a result inflammation process can occur as part of body's complex biological response to these harmful stimuli. The invention, according to certain aspects, utilizes tissue-specific RNA transcripts of healthy individuals to deduce the relative optimal contributions of different tissues in the normal cell-free transcriptome, with each tissue-specific RNA transcript of the sample being indicative of the apotopic rate of that tissue. The normal cell-free transcriptome serves as a baseline or reference level to assess tissue health of other individuals. The invention includes a comparative measurement of the cell-free transcriptome of a sample to the normal cell free transcriptome to assess the sample levels of tissue-specific transcripts circulating in plasma and to assess the health of tissues contributing to the cell-free transcriptome.

In addition to normal reference levels, methods of the invention also utilize reference levels for cell-free transcriptomes specific to other patient populations. Using methods of the invention one can determine the relative contribution of tissue-specific transcripts to the cell-free transcriptome of maternal subjects, fetus subjects, and/or subjects having a condition or disease.

By analyzing the health of tissue based on tissue-specific transcripts, methods of the invention advantageously allow one to assess the health of a tissue without relying on disease-related protein biomarkers. In certain aspects, methods of the invention assess the health of a tissue by comparing a sample level of RNA in a biological sample to a reference level of RNA specific to a tissue, determining whether a difference exists between the sample level and the reference level, and characterizing the tissue as abnormal if a difference is detected. For example, if a patient's RNA expression levels for a specific tissue differs from the RNA expression levels for the specific tissue in the normal cell-free transcriptome, this indicates that patient's tissue is not functioning properly.

In certain aspects, methods of the invention involve assessing health of a tissue by characterizing the tissue as abnormal if a specified level of RNA is present in the blood. The method may further include detecting a level of RNA in a blood sample, comparing the sample level of RNA to a reference level of RNA specific to a tissue, determining whether a difference exists between the sample level and the reference level, and characterizing the tissue as abnormal if the sample level and the reference level are the same.

The present invention also provides methods for comprehensively profiling fetal specific cell-free RNA in maternal plasma and deconvoluting the cell-free transcriptome of fetal origin with relative proportion to different fetal tissue types. Methods of the invention involve the use of next-generation sequencing technology and/ or microarrays to characterize the cell-free RNA transcripts that are present in maternal plasma at different stages of pregnancy. Quantification of these transcripts allows one to deduce changes of these genes across different trimesters, and hence provides a way of quantification of temporal changes in transcripts.

Methods of the invention allow diagnosis and identification of the potential for complications during or after pregnancy. Methods also allow the identification of pregnancy-associated transcripts which, in turn, elucidates maternal and fetal developmental programs. Methods of the invention are useful for preterm diagnosis as well as elucidation of transcript profiles associated with fetal developmental pathways generally. Thus, methods of the invention are useful to characterize fetal development and are not limited to characterization only of disease states or complications associated with pregnancy. Exemplary embodiments of the methods are described in the detailed description, claims, and figures provided below.

Brief Description of the Drawings

Figure 1 depicts a listing of the top detected female pregnancy associated differentially expressed transcripts.

Figure 2 shows plots of the two main principal components for cell free RNA transcript levels obtained in Example 1. Each data point is a time point taken from an individual patient. Premature Patient [RED]; Normal Pregnancy [BLACK]; BiLobed Placenta [GREEN]; Non-Pregnant Controls [BLUE].

Figure 3A depicts a heatmap of the top 100 cell free transcript levels exhibiting different temporal levels in preterm and normal pregnancy using microarrays.

Figure 3B depicts heatmap of the top 100 cell free transcript levels exhibiting different temporal levels in preterm and normal pregnancy using RNA-Seq.

Figure 4 depicts a ranking of the top 20 transcripts differentially expressed between preterm and normal pregnancy.

Figure 5 depicts results of a Gene Ontology analysis on the top 20 common RNA transcripts of Figure 4, showing those transcripts enriched for proteins that are attached (integrated or loosely bound) to the plasma membrane or on the membranes of the platelets.

Figure 6 depicts that the gene expression profile for PVALB across the different trimesters shows the premature births [highlighted in blue] has higher levels of cell free RNA transcripts found as compared to normal pregnancy.

Figure 7 outlines exemplary process steps for determining the relative tissue contributions to a cell-free transcriptome of a sample. '

Figure 8 depicts the panel of selected fetal tissue-specific transcripts generated in Example 2.

Figures 9A and 9B depict the raw data of parallel quantification of the fetal tissue-specific transcripts showing changes across maternal time-points (first trimester, second trimester, third trimester, and post partum) using the actual cell free RNA as well as the cDNA library of the same cell free RNA.

Figure 10 illustrates relative expression of placental genes across maternal time points (first trimester, second trimester, third trimester, and post partum). Relative Expression fold changes of each trimester as compared to post-partum for the panel of placental genes. Plotted are the results for two subjects done at two different concentrations each, each point represent one subject sampled at a particular trimester, and the cell free RNA went through the described protocol at two concentration levels. Bottom panel depicts the same results segmented across the two subjects labeled as P53 & P54.

Figure 11 illustrates relative expression of fetal brain genes across maternal time points (first trimester, second trimester, third trimester, and post partum). Relative Expression fold changes of each trimester as compared to post partum for the panel of Fetal Brain genes. Plotted are the results for two subjects done at two different concentrations each, each point represent one subject sampled at a particular trimester, and the cell free RNA went through the described protocol at two concentration levels. Bottom panel depicts the same results segmented across the two subjects labeled as P53 & P54.

Figure 12 illustrates relative expression of fetal liver genes across maternal time points (first trimester, second trimester, third trimester, and post partum). Relative Expression fold changes of each trimester as compared to post-partum for the panel of Fetal Liver genes. Plotted are the results for two subjects done at two different concentrations each, each point represent one subject sampled at a particular trimester, and the cell free RNA went through the described protocol at two concentration levels. Bottom panel depicts the same results segmented across the two subjects labeled as P53 & P54.

Figure 13 illustrates the relative composition of different organs contribution towards a plasma adult cell free transcriptome.

Figure 14 illustrates a decomposition of decomposition of organ contribution towards a plasma adult cell free transcriptome using RNA-seq data.

Figure 15 depicts a panel of 94 tissue-specific genes in Example 3 that were verified with qPCR.

Figure 16 shows a heat map of the tissue specific transcripts of Figure 15, being detectable in the cell free RNA. Heatmap of Delta Ct values as compared to ACTB showing the presence of tissue specific transcripts in Cell-free RNA identified by qPCR.

Figure 17 depicts a flow-diagram of this method according to certain embodiments.

Figure 18 depicts a list of tissue-specific genes for Example 3 that was obtained using raw data from the Human U133A/GNF1H Gene Atlas and RNA-Seq Atlas databases.

Detailed Description

Methods and materials described herein apply a combination of next-generation sequencing and microarray techniques for detecting, quantitating and characterizing RNA sequences present in a biological sample. In certain embodiments, the biological sample contains a mixture of genetic material from different genomic sources, i.e. pregnant female and a fetus.

Unlike other methods of digital analysis in which the nucleic acid in the sample is isolated to a nominal single target molecule in a small reaction volume, methods of the present invention are conducted without diluting or distributing the genetic material in the sample. Methods of the invention allow for simultaneous screening of multiple transcriptomes, and provide informative sequence information for each transcript at the single-nucleotide level, thus providing the capability for non-invasive, high throughput screening for a broad spectrum of diseases or conditions in a subject from a limited amount of biological sample.

In one particular embodiment, methods of the invention involve analysis of mixed fetal and maternal RNA in the maternal blood to identify differentially expressed transcripts throughout different stages of pregnancy that may be indicative of a preterm or pathological pregnancy. Differential detection of transcripts is achieved, in part, by isolating and amplifying plasma RNA from the maternal blood throughout the different stages of pregnancy, and quantitating and characterizing the isolated transcripts via microarray and RNA-Seq.

Methods and materials specific for analyzing a biological sample containing RNA (including non-maternal, maternal, maternal-fetus mixed) as described herein, are merely one example of how methods of the invention can be applied and are not intended to limit the invention. Methods of the invention are also useful to screen for the differential expression of target genes related to cancer diagnosis, progression and/or prognosis using cell-free RNA in blood, stool, sputum, urine, transvaginal fluid, breast nipple aspirate, cerebrospinal fluid, etc.

In certain embodiments, methods of the invention generally include the following steps: obtaining a biological sample containing genetic material from different genomic sources, isolating total RNA from the biological sample containing biological sample containing a mizture of genetic material from different genomic sources, preparing amplified cDNA from

total RNA, sequencing amplified cDNA, and digital counting and analysis, and profiling the amplified cDNA.

Methods of the invention also involve assessing the health of a tissue contributing to the cell-free transcriptome. In certain embodiments, the invention involves assessing the cell-free transcriptome of a biological sample to determine tissue-specific contributions of individual tissues to the cell-free transcriptome. According to certain aspects, the invention assesses the health of a tissue by detecting a sample level of RNA in a biological sample, comparing the sample level of RNA to a reference level of RNA specific to the tissue, and characterizing the tissue as abnormal if a difference is detected. This method is applicable to characterize the health of a tissue in non-maternal subjects, pregnant subjects, and live fetuses. Figure 17 depicts a flow-diagram of this method according to certain embodiments.

In certain aspects, methods of the invention employ a deconvolution of a reference cell-free RNA transcriptome to determine a reference level for a tissue. Preferably, the reference cell-free RNA transcriptome is a normal, healthy transcriptome, and the reference level of a tissue is a relative level of RNA specific to the tissue present in the blood of healthy, normal individuals. Methods of the invention assume that apoptotic cells from different tissue types release their RNA into plasma of a subject. Each of these tissues expresses a specific number of genes unique to the tissue type, and the cell-free RNA transcriptome of a subject is a summation of the different tissue types. Each tissue may express one or more numbers of genes. In certain embodiments, the reference level is a level associated with one of the genes expressed by a certain tissue. In other embodiments, the reference level is a level associated with a plurality of genes expressed by a certain tissue. It should be noted that a reference level or threshold amount for a tissue-specific transcript present in circulating RNA may be zero or a positive number.

For healthy, normal subjects, the relative contributions of circulating RNA from different tissue types are relatively stable, and each tissue-specific RNA transcript of the cell-free RNA transcriptome for normal subjects can serve as a reference level for that tissue. Applying methods of the invention, a tissue is characterized as unhealthy or abnormal if a sample includes a level of RNA that differs from a reference level of RNA specific to the tissue. The tissue of the sample may be characterized as unhealthy if the actual level of RNA is statistically different from the reference level. Statistical significance can be determined by any method known in the

art. These measurements can be used to screen for organ health, as diagnostic tool, and as a tool to measure response to pharmaceuticals or in clinical trials to monitor health.

If a difference is detected between the sample level of RNA and the reference level of RNA, such difference suggests that the associated tissue is not functioning properly. The change in circulating RNA may be the precursor to organ failure or indicate that the tissue is being attacked by the immune system or pathogens. If a tissue is identified as abnormal, the next step(s), according to certain embodiments, may include more extensive testing of the tissue (e.g. invasive biopsy of the tissue), prescribing course of treatment specific to the tissue, and/or routine monitoring of the tissue.

Methods of the invention can be used to infer organ health non-invasively. This non-invasive testing can be used to screen for appendicitis, incipient diabetes and pathological conditions induced by diabetes such as nephropathy, neuropathy, retinopathy etc. In addition, the invention can be used to determine the presence of graft versus host disease in organ transplants, particularly in bone marrow transplant recipients whose new immune system is attacking the skin, GI tract or liver. The invention can also be used to monitor the health of solid organ transplant recipients such as heart, lung and kidney. The methods of the invention can assess likelihood of prematurity, preeclampsia and anomalies in pregnancy and fetal development. In addition, methods of the invention could be used to identify and monitor neurological disorders (e.g. multiple sclerosis and Alzheimer's disease) that involve cell specific death (e.g. of neurons or due to demyelination) or that involve the generation of plaques or protein aggregation.

A cell-free transcriptome for purposes of determining a reference level for tissue-specific transcripts can be the cell-free transcriptome of one or more normal subjects, maternal subjects, subjects having a certain conditions and diseases, or fetus subjects. In the case of certain conditions, the reference level of a tissue is a level of RNA specific to the tissue present in blood of one or more subjects having a certain disease or condition. In such aspect, the method includes detecting a level of RNA in a blood, comparing the sample level of RNA to a reference level of RNA specific to a tissue, determining whether a difference exists between the sample level and the reference level, and characterizing the as abnormal if the sample level and the reference level are the same.

A deconvolution of a cell-free transcriptome is used to determine the relative contribution of each tissue type towards the cell-free RNA transcriptome. The following steps are employed to determine the relative RNA contributions of certain tissues in a sample. First, a panel of tissue-specific transcripts is identified. Second, total RNA in plasma from a sample is determined using methods known in the art. Third, the total RNA is assessed against the panel of tissue-specific transcripts, and the total RNA is considered a summation these different tissue-specific transcripts. Quadratic programming can be used as a constrained optimization method to deduce the relative optimal contributions of different organs/tissues towards the cell-free transcriptome of the sample.

One or more databases of genetic information can be used to identify a panel of tissue-specific transcripts. Accordingly, aspects of the invention provide systems and methods for the use and development of a database. Particularly, methods of the invention utilize databases containing existing data generated across tissue types to identify the tissue-specific genes. Databases utilized for identification of tissue-specific genes include the Human 133A/GNF1H Gene Atlas and RNA-Seq Atlas, although any other database or literature can be used. In order to identify tissue-specific transcripts from one or more databases, certain embodiments employ a template-matching algorithm to the databases. Template matching algorithms used to filter data are known in the art, see e.g., Pavlidis P, Noble WS (2001) Analysis of strain and regional variation in gene expression in mouse brain. *Genome Biol* 2:research0042.1–0042.15.

In certain embodiments, quadratic programming is used as a constrained optimization method to deduce relative optimal contributions of different organs/tissues towards the cell-free transcriptome in a sample. Quadratic programming is known in the art and described in detail in Goldfarb and A. Idnani (1982). Dual and Primal-Dual Methods for Solving Strictly Convex Quadratic Programs. In J. P. Hennart (ed.), Numerical Analysis, Springer-Verlag, Berlin, pages226–239, and D. Goldfarb and A. Idnani (1983). A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27, 1–33.

Figure 7 outlines exemplary process steps for determining the relative tissue contributions to a cell-free transcriptome of a sample. Using information provided by one or more tissue-specific databases, a panel of tissue-specific genes is generated with a template-matching function. A quality control function can be applied to filter the results. A blood sample is then analyzed to determine the relative contribution of each tissue-specific transcript to

the total RNA of the sample. Cell-free RNA is extracted from the sample, and the cell-free RNA extractions are processed using one or more quantification techniques (e.g. standard mircoarrays and RNA-sequence protocols). The obtained gene expression values for the sample are then normalized. This involves rescaling of all gene expression values to the housekeeping genes. Next, the sample's total RNA is assessed against the panel of tissue-specific genes using quadratic programming in order to determine the tissue-specific relative contributions to the sample's cell-free transcriptome. The following constraints are employed to obtain the estimated relative contributions during the quadratic programming analysis: a) the RNA contributions of different tissues are greater than or equal to zero, and b) the sum of all contributions to the cell-free transcriptome equals one.

Method of the invention for determining the relative contributions for each tissue can be used to determine the reference level for the tissue. That is, a certain population of subjects (e.g., maternal, normal, and cancerous) can be subject to the deconvolution process outlined in Figure 7 to obtain reference levels of tissue-specific gene expression for that patient population. When relative tissue contributions are considered individually, quantification of each of these tissue-specific transcripts can be used as a measure for the reference apoptotic rate of that particular tissue for that particular population. For example, blood from one or more healthy, normal individuals can be analyzed to determine the relative RNA contribution of tissues to the cell-free RNA transcriptome for healthy, normal individuals. Each relative RNA contribution of tissue that makes up the normal RNA transcriptome is a reference level for that tissue.

According to certain embodiments, an unknown sample of blood can be subject to process outlined in Figure 7 to determine the relative tissue contributions to the cell-free RNA transcriptome of that sample. The relative tissue contributions of the sample are then compared to one or more reference levels of the relative contributions to a reference cell-free RNA transcriptome. If a specific tissue shows a contribution to the cell-free RNA transcriptome in the sample that is greater or less than the contribution of the specific tissue in reference cell-free RNA transcriptome, then the tissue exhibiting differential contribution may be characterized accordingly. If the reference cell-free transcriptome represents a healthy population, a tissue exhibiting a differential RNA contribution in a sample cell-free transcriptome can be classified as unhealthy.

The biological sample can be blood, saliva, sputum, urine, semen, transvaginal fluid, cerebrospinal fluid, sweat, breast milk, breast fluid (e.g., breast nipple aspirate), stool, a cell or a tissue biopsy. In certain embodiments, the samples of the same biological sample are obtained at multiple different time points in order to analyze differential transcript levels in the biological sample over time. For example, maternal plasma may be analyzed in each trimester. In some embodiments, the biological sample is drawn blood and circulating nucleic acids, such as cell-free RNA. The cell-free RNA may be from different genomic sources is found in the blood or plasma, rather than in cells.

In a particular embodiment, the drawn blood is maternal blood. In order to obtain a sufficient amount of nucleic acids for testing, it is preferred that approximately 10-50 mL of blood be drawn. However, less blood may be drawn for a genetic screen in which less statistical significance is required, or in which the RNA sample is enriched for fetal RNA.

Methods of the invention involve isolating total RNA from a biological sample. Total RNA can be isolated from the biological sample using any methods known in the art. In certain embodiments, total RNA is extracted from plasma. Plasma RNA extraction is described in Enders et al., "The Concentration of Circulating Corticotropin-releasing Hormone mRNA in Maternal Plasma Is Increased in Preeclampsia," Clinical Chemistry 49: 727-731, 2003. As described there, plasma harvested after centrifugation steps is mixed Trizol LS reagent (Invitrogen) and chloroform. The mixture is centrifuged, and the aqueous layer transferred to new tubes. Ethanol is added to the aqueous layer. The mixture is then applied to an RNeasy mini column (Qiagen) and processed according to the manufacturer's recommendations.

In the embodiments where the biological sample is maternal blood, the maternal blood may optionally be processed to enrich the fetal RNA concentration in the total RNA. For example, after extraction, the RNA can be separated by gel electrophoresis and the gel fraction containing circulatory RNA with a size of corresponding to fetal RNA (e.g., <300 bp) is carefully excised. The RNA is extracted from this gel slice and eluted using methods known in the art.

Alternatively, fetal specific RNA may be concentrated by known methods, including centrifugation and various enzyme inhibitors. The RNA is bound to a selective membrane (e.g., silica) to separate it from contaminants. The RNA is preferably enriched for fragments

circulating in the plasma, which are less than less 300 bp. This size selection is done on an RNA size separation medium, such as an electrophoretic gel or chromatography material.

Flow cytometry techniques can also be used to enrich for fetal cells in maternal blood (Herzenberg et al., PNAS 76: 1453-1455 (1979); Bianchi et al., PNAS 87: 3279-3283 (1990); Bruch et al., Prenatal Diagnosis 11: 787-798 (1991)). U.S. Patent No. 5,432,054 also describes a technique for separation of fetal nucleated red blood cells, using a tube having a wide top and a narrow, capillary bottom made of polyethylene. Centrifugation using a variable speed program results in a stacking of red blood cells in the capillary based on the density of the molecules. The density fraction containing low-density red blood cells, including fetal red blood cells, is recovered and then differentially hemolyzed to preferentially destroy maternal red blood cells. A density gradient in a hypertonic medium is used to separate red blood cells, now enriched in the fetal red blood cells from lymphocytes and ruptured maternal cells. The use of a hypertonic solution shrinks the red blood cells, which increases their density, and facilitates purification from the more dense lymphocytes. After the fetal cells have been isolated, fetal RNA can be purified using standard techniques in the art.

Further, an agent that stabilizes cell membranes may be added to the maternal blood to reduce maternal cell lysis including but not limited to aldehydes, urea formaldehyde, phenol formaldehyde, DMAE (dimethylaminoethanol), cholesterol, cholesterol derivatives, high concentrations of magnesium, vitamin E, and vitamin E derivatives, calcium, calcium gluconate, taurine, niacin, hydroxylamine derivatives, bimoclomol, sucrose, astaxanthin, glucose, amitriptyline, isomer A hopane tetral phenylacetate, isomer B hopane tetral phenylacetate, citicoline, inositol, vitamin B, vitamin B complex, cholesterol hemisuccinate, sorbitol, calcium, coenzyme Q, ubiquinone, vitamin K, vitamin K complex, menaquinone, zonegran, zinc, ginkgo biloba extract, diphenylhydantoin, perftoran, polyvinylpyrrolidone, phosphatidylserine, tegretol, PABA, disodium cromglycate, nedocromil sodium, phenyloin, zinc citrate, mexitil, dilantin, sodium hyaluronate, or polaxamer 188.

An example of a protocol for using this agent is as follows: The blood is stored at 4° C. until processing. The tubes are spun at 1000 rpm for ten minutes in a centrifuge with braking power set at zero. The tubes are spun a second time at 1000 rpm for ten minutes. The supernatant (the plasma) of each sample is transferred to a new tube and spun at 3000 rpm for ten minutes with the brake set at zero. The supernatant is transferred to a new tube and stored at -80° C.

Approximately two milliliters of the "buffy coat," which contains maternal cells, is placed into a separate tube and stored at -80° C.

Methods of the invention also involve preparing amplified cDNA from total RNA. cDNA is prepared and indiscriminately amplified without diluting the isolated RNA sample or distributing the mixture of genetic material in the isolated RNA into discrete reaction samples. Preferably, amplification is initiated at the 3' end as well as randomly throughout the whole transcriptome in the sample to allow for amplification of both mRNA and non-polyadenylated transcripts. The double-stranded cDNA amplification products are thus optimized for the generation of sequencing libraries for Next Generation Sequencing platforms. Suitable kits for amplifying cDNA in accordance with the methods of the invention include, for example, the Ovation® RNA-Seq System.

Methods of the invention also involve sequencing the amplified cDNA. While any known sequencing method can be used to sequence the amplified cDNA mixture, single molecule sequencing methods are preferred. Preferably, the amplified cDNA is sequenced by whole transcriptome shotgun sequencing (also referred to herein as ("RNA-Seq"). Whole transcriptome shotgun sequencing (RNA-Seq) can be accomplished using a variety of next-generation sequencing platforms such as the Illumina Genome Analyzer platform, ABI Solid Sequencing platform, or Life Science's 454 Sequencing platform.

Methods of the invention further involve subjecting the cDNA to digital counting and analysis. The number of amplified sequences for each transcript in the amplified sample can be quantitated via sequence reads (one read per amplified strand). Unlike previous methods of digital analysis, sequencing allows for the detection and quantitation at the single nucleotide level for each transcript present in a biological sample containing a genetic material from different genomic sources and therefore multiple transcriptomes.

After digital counting, the ratios of the various amplified transcripts can compared to determine relative amounts of differential transcript in the biological sample. Where multiple biological samples are obtained at different time-points, the differential transcript levels can be characterized over the course of time.

Differential transcript levels within the biological sample can also be analyzed using via microarray techniques. The amplified cDNA can be used to probe a microarray containing gene

transcripts associated with one or conditions or diseases, such as any prenatal condition, or any type of cancer, inflammatory, or autoimmune disease.

It will be understood that methods and any flow diagrams disclosed herein can be implemented by computer program instructions. These program instructions may be provided to a computer processor, such that the instructions, which execute on the processor, create means for implementing the actions specified in the flowchart blocks or described in methods for assessing tissue disclosed herein. The computer program instructions may be executed by a processor to cause a series of operational steps to be performed by the processor to produce a computer implemented process. The computer program instructions may also cause at least some of the operational steps to be performed in parallel. Moreover, some of the steps may also be performed across more than one processor, such as might arise in a multi-processor computer system. In addition, one or more processes may also be performed concurrently with other processes or even in a different sequence than illustrated without departing from the scope or spirit of the invention.

The computer program instructions can be, stored on any suitable computer-readable medium including, but not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by a computing device.

EXAMPLES

Example 1: Profiling Maternal Plasma Cell-Free RNA by RNA Sequencing-A Comprehensive Approach

Overview:

The plasma RNA profiles of 5 pregnant women were collected during the first trimester, second trimester, post-partum, as well as those of 2 non-pregnant female donors and 2 male donors using both microarray and RNA-Seq.

Among these pregnancies, there were 2 pregnancies with clinical complications such as premature birth and one pregnancy with bi-lobed placenta. Comparison of these pregnancies against normal cases reveals genes that exhibit significantly different gene expression pattern

across different temporal stages of pregnancy. Application of such technique to samples associated with complicated pregnancies may help identify transcripts that can be used as molecular markers that are predictive of these pathologies.

Study Design and Methods:

Subjects

Samples were collected from 5 pregnant women were during the first trimester, second trimester, third trimester, and post-partum. As a control, blood plasma samples were also collected from 2 non-pregnant female donors and 2 male donors.

Blood Collection and processing

Blood samples were collected in EDTA tube and centrifuged at 1600g for 10 min at 4°C. Supernatant were placed in 1 ml aliquots in a 1.5 ml microcentrifuge tube which were then centrifuged at 16000 g for 10 min at 4°C to remove residual cells. Supernatants were then stored in 1.5 ml microcentrifuge tubes at -80°C until use.

RNA Extraction and Amplification

The cell-free maternal plasma RNAs was extracted by Trizol LS reagent. The extracted and purified total RNA was converted to cDNA and amplified using the RNA-Seq Ovation Kit (NuGen). (The above steps were the same for both Microarray and RNA-Seq sample preparation).

The cDNA was fragmented using DNase I and labeled with Biotin, following by hybridization to Affymetrix GeneChip ST 1.0 microarrays. The Illumina sequencing platform and standard Illumina library preparation protocols were used for sequencing.

Data Analysis:

Correlation between microarray and RNA-Seq

The RMA algorithm was applied to process the raw microarray data for background correction and normalization. RPKM values of the sequenced transcripts were obtained using the CASAVA 1.7 pipeline for RNA-seq. The RPKM in the RNA-Seq and the probe intensities in the microarray were converted to log2 scale. For the RNA-Seq data, to avoid taking the log of 0,

the gene expressions with RPKM of 0 were set to 0.01 prior to taking logs. Correlation coefficients between these two platforms ranges were then calculated.

Differential Expression of RNA transcripts levels using RNA-seq

Differential gene expression analysis was performed using edgeR, a set of library functions which are specifically written to analyze digital gene expression data. Gene Ontology was then performed using DAVID to identify for significantly enriched GO terms.

Principle Component Analysis & Identification of Significant Time Varying genes

Principle component analysis was carried out using a custom script in R. To identify time varying genes, the time course library of functions in R were used to implement empirical Bayes methods for assessing differential expression in experiments involving time course which in our case are the different trimesters and post-partum for each individual patients.

Results and Discussion

RNA-Seq reveals that pregnancy-associated transcripts are detected at significantly different levels between pregnant and non-pregnant subjects.

A comparison of the transcripts level derived using RNA-Seq and Gene Ontology Analysis between pregnant and non-pregnant subjects revealed that transcripts exhibiting differential transcript levels are significantly associated with female pregnancy, suggesting that RNA-Seq are enabling observation of real differences between these two class of transcriptome due to pregnancy. The top rank significantly expressed gene is PLAC4 which has also been known as a target in previous studies for developing RNA based test for trisomy 21. A listing of the top detected female pregnancy associated differentially expressed transcripts is shown in Figure 1.

Principle Component Analysis (PCA) on plasma cell free RNA transcripts levels in maternal plasma distinguishes between pre-mature and normal pregnancy

Using the plasma cell free transcript level profiles as inputs for Principle Component Analysis, the profile from each patient at different time points clustered into different pathological clusters suggesting that cell free plasma RNA transcript profile in maternal plasma may be used to distinguish between pre-term and non-preterm pregnancy.

Plasma Cell free RNA levels were quantified using both microarray and RNA-Seq. Transcripts expression levels profile from microarray and RNA-Seq from each patient are

correlated with a Pearson correlation of approximately 0.7. Plots of the two main principal components for cell free RNA transcript levels is shown in Figure 2.

Identification of cell free RNA transcripts in maternal plasma exhibiting significantly different time varying trends between pre-term and normal pregnancy across all three trimesters and post-partum

A heatmap of the top 100 cell free transcript levels exhibiting different temporal levels in preterm and normal pregnancy using microarrays is shown in Figure 3A. A heatmap of the top 100 cell free transcript levels exhibiting different temporal levels in preterm and normal pregnancy using RNA-Seq is shown in Figure 3B.

Common cell free RNA transcripts identified by microarray and RNA-Seq which exhibit significantly different time varying trends between pre-term and normal pregnancy across all three trimesters and post-partum

A ranking of the top 20 transcripts differentially expressed between pre-term and normal pregnancy is shown in Figure 4. These top 20 common RNA transcripts were analyzed using Gene Ontology and were shown to be enriched for proteins that are attached (integrated or loosely bound) to the plasma membrane or on the membranes of the platelets (see Figure 5). Gene Expression Profiles for PVALB

The protein encoded by PVALB gene is a high affinity calcium ion-binding protein that is structurally and functionally similar to calmodulin and troponin C. The encoded protein is thought to be involved in muscle relaxation. As shown in Figure 6, the gene expression profile for PVALB across the different trimesters shows the premature births [highlighted in blue] has higher levels of cell free RNA transcripts found as compared to normal pregnancy.

Conclusion:

Results from quantification and characterization of maternal plasma cell-free RNA using RNA-Seq strongly suggest that pregnancy associated transcripts can be detected.

Furthermore, both RNA-Seq and microarray methods can detect considerable gene transcripts whose level showed differential time trends that has a high probability of being associated with premature births.

The methods described herein can be modified to investigate pregnancies of different pathological situations and can also be modified to investigate temporal changes at more frequent time points.

Example 2: Quantification of Tissue-Specific Cell-Free RNA Exhibiting Temporal Variation During Pregnancy

Overview:

Cell-free fetal DNA found in maternal plasma has been exploited extensively for non-invasive diagnostics. In contrast, cell-free fetal RNA which has been shown to be similarly detected in maternal circulation has yet been applied widely as a form of diagnostics. Both fetal cell-free RNA and DNA face similar challenges in distinguishing the fetal from maternal component because in both cases the maternal component dominates. To detect cell-free RNA of fetal origin, focus can be placed on genes that are highly expressed only during fetal development, which are subsequently inferred to be of fetal in origin and easily distinguished from background maternal RNA. Such a perspective is collaborated by studies that has established that cell-free fetal RNA derived from genes that are highly expressed in the placenta are detectable in maternal plasma during pregnancy.

A significant characteristic that set RNA apart from DNA can be attributed to RNA transcripts dynamic nature which is well reflected during fetal development. Life begins as a series of well-orchestrated events that starts with fertilization to form a single-cell zygote and ends with a multi-cellular organism with diverse tissue types. During pregnancy, majority of fetal tissues undergoes extensive remodeling and contain functionally diverse cell types. This underlying diversity can be generated as a result of differential gene expression from the same nuclear repertoire; where the quantity of RNA transcripts dictate that different cell types make different amount of proteins, despite their genomes being identical. The human genome comprises approximately 30,000 genes. Only a small set of genes are being transcribed to RNA within a particular differentiated cell type. These tissue specific RNA transcripts have been identified through many studies and databases involving developing fetuses of classical animal models. Combining known literature available with high throughput data generated from samples

via sequencing, the entire collection of RNA transcripts contained within maternal plasma can be characterized.

Fetal organ formation during pregnancy depends on successive programs of gene expression. Temporal regulation of RNA quantity is necessary to generate this progression of cell differentiation events that accompany fetal organ genesis. To unravel similar temporal dynamics for cell free RNA, the expression profile of maternal plasma cell free RNA, especially the selected fetal tissue specific panel of genes, as a function across all three trimesters during pregnancy and post-partum were analyzed. Leveraging high throughput qPCR and sequencing technologies capability for simultaneous quantification of cell free fetal tissue specific RNA transcripts, a system level view of the spectrum of RNA transcripts with fetal origins in maternal plasma was obtained. In addition, maternal plasma was analyzed to deconvolute the heterogeneous cell free transcriptome of fetal origin a relative proportion of the different fetal tissue types. This approach incorporated physical constraints regarding the fetal contributions in maternal plasma, specifically the fraction of contribution of each fetal tissues were required to be non-negative and sum to one during all three trimesters of the pregnancy. These constraints on the data set enabled the results to be interpreted as relative proportions from different fetal organs. That is, a panel of previously selected fetal tissue-specific RNA transcripts exhibiting temporal variation can be used as a foundation for applying quadratic programing in order to determine the relative tissue-specific RNA contribution in one or more samples.

When considered individually, quantification of each of these fetal tissue specific transcripts within the maternal plasma can be used as a measure for the apoptotic rate of that particular fetal tissue during pregnancy. Normal fetal organ development is tightly regulated by cell division and apoptotic cell death. Developing tissues compete to survive and proliferate, and organ size is the result of a balance between cell proliferation and death. Due to the close association between aberrant cell death and developmental diseases, therapeutic modulation of apoptosis has become an area of intense research, but with this comes the demand for monitoring the apoptosis rate of specific. Quantification of fetal cell-free RNA transcripts provide such prognostic value, especially in premature births where the incidence of apoptosis in various organs of these preterm infants has been have been shown to contribute to neurodevelopmental deficits and cerebral palsy of preterm infants.

Sample Collection and Study Design

Selection of Fetal Tissue Specific Transcript Panel

To detect the presence of these fetal tissue-specific transcripts, a list of known fetal tissue specific genes was prepared from known literature and databases. The specificity for fetal tissues was validated by cross referencing between two main databases: TISGeD (Xiao, S.-J., Zhang, C. & Ji, Z.-L. TiSGeD: a Database for Tissue-Specific Genes. *Bioinformatics (Oxford, England)* **26**, 1273–1275 (2010)) and BioGPS (Wu, C. *et al.* BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. *Genome biology* **10**, R130 (2009); Su, A. I. *et al.* A gene atlas of the mouse and human protein-encoding transcriptomes. *Proceedings of the National Academy of Sciences of the United States of America* **101**, 6062–7 (2004)). Most of these selected transcripts are associated with known fetal developmental processes. This list of genes was overlapped with RNA sequencing and microarray data to generate the panel of selected fetal tissue-specic transcripts shown in Figure 8.

Subjects

Samples of maternal blood were collected from normal pregnant women during the first trimester, second trimester, third trimester, and post-partum. For positive controls, fetal tissue specific RNA from the various fetal tissue types were bought from Agilent. Negative controls for the experiments were performed with the entire process with water, as well as with samples that did not undergoes the reverse transcription process.

Blood Collection and Processing

At each time-point, 7 to 15 mL of peripheral blood was drawn from each subject. Blood was centrifuged at 1600g for 10 mins and transferred to microcentrifuge tubes for further centrifugation at 16000g for 10 mins to remove residual cells. The above steps were carried out within 24 hours of the blood draw. Resulting plasma is stored at -80 Celsius for subsequent RNA extractions.

RNA Extraction

Cell free RNA extractions were carried using Trizol followed by Qiagen's RNeasy Mini Kit. To ensure that there are no contaminating DNA, DNase digestion is performed after RNA elution using RNase free DNase from Qiagen. Resulting cell free RNA from the pregnant subjects was then processed using standard microarrays and Illumina RNA-seq protocols. These steps generate the sequencing library that we used to generate RNA-seq data as well as the microarray expression data. The remaining cell free RNA are then used for parallel qPCR.

Parallel qPCR of Selected Transcripts

Accurate quantification of these fetal tissue specific transcripts was carried out using the Fluidigm BioMark system (See e.g. Spurgeon, S. L., Jones, R. C. & Ramakrishnan, R. High throughput gene expression measurement with real time PCR in a microfluidic dynamic array. PloS one 3, e1662 (2008)). This system allows for simultaneous query of a panel of fetal tissue specific transcripts. Two parallel forms of inquiry were conducted using different starting source of material. One was using the cDNA library from the Illumina sequencing protocol and the other uses the eluted RNA directly. Both sources of material were amplified with evagreen primers targeting the genes of interest. Both sources, RNA and cDNA, were preamplified. cDNA is preamplified using evagreen PCR supermix and primers. RNA source is preamplified using the CellsDirect One-Step qRT-PCR kit from Invitrogen. Modifications were made to the default One-Step qRT-PCR protocol to accommodate a longer incubation time for reverse transcription. 19 cycles of preamplfication were conducted for both sources and the collected PCR products were cleaned up using Exonuclease I Treatment. To increase the dynamic range and the ability to quantify the efficiency of the later qPCR steps, serial dilutions were performed on the PCR products from 5 fold, 10 fold and 10 fold dilutions. Each of the collected maternal plasma from individual pregnant women across the time points went through the same procedures and was loaded onto 48x48 Dynamic Arrary Chips from Fluidigm to perform the qPCR. For positive control, fetal tissue specific RNA from the various fetal tissue types were bought from Agilent. Each of these RNA from fetal tissues went through the same preamplification and clean-up steps. A pool sample with equal proportions of different fetal tissues was created as well for later analysis to deconvolute the relative contribution of each tissue type in the pooled samples. All collected data from the Fluidigm BioMark system were pre-processed using Fluidigm Real Time PCR Analysis software to obtain the respective Ct values for each of the transcript across all samples. Negative controls of the experiments were performed with the entire process with water, as well as with samples that did not undergoes the reverse transcription process.

Data Analysis:

Fetal tissue specific RNA transcripts clear from the maternal peripheral bloodstream within a short period after birth. That is, the post-partum cell-free RNA transcriptome of maternal blood lacks fetal tissue specific RNA transcripts. As a result, it is expected that the

quantity of these fetal tissue-specific transcripts to be higher before than after birth. The data of interest were the relative quantitative changes of the tissue specific transcripts across all three trimesters of pregnancy as compared to this baseline level after the baby is born. As described the methods, the fetal tissue-specific transcripts were quantified in parallel both using the actual cell-free RNA as well as the cDNA library of the same cell-free RNA. An example of the raw data obtained is shown in Figures 9A and 9B. The qPCR system gave a better quality readout using the cell-free RNA as the initial source. Focusing on the qPCR results from the direct cell-free RNA source, the analysis was conducted by comparing the fold changes level of each of these fetal tissue specific transcripts across all three trimesters using the post-partum level as the baseline for comparison. The Delta-Delta Ct method was employed (Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. *Nature Protocols* 3, 1101–1108 (2008)). Each of the transcript expression level was compared to the housekeeping genes to get the delta Ct value. Subsequently, to compare each trimesters to after birth, the delta-delta Ct method was applied using the post-partum data as the baseline.

Results and Discussion:

As shown in Figures 10, 11, and 12, the tissue-specific transcripts are generally found to be at a higher level during the trimesters as compared to after-birth. In particular, the tissue-specific panel of placental, fetal brain and fetal liver specific transcripts showed the same bias, where these transcripts are typically found to exist at higher levels during pregnancy then compared to after birth. Between the different trimesters, a general trend showed that the quantity of these transcripts increase with the progression into pregnancy.

Biological Significance of Quantified Fetal Tissue-Specific RNA: Most of the transcripts in the panel were involved in fetal organ development and many are also found within the amniotic fluid. Once such example is ZNF238. This transcript is specific to fetal brain tissue and is known to be vital for cerebral cortex expansion during embryogenesis when neuronal layers are formed. Loss of ZNF238 in the central nervous system leads to severe disruption of neurogenesis, resulting in a striking postnatal small-brain phenotype. Using methods of the invention, one can determine whether ZNF238 is presenting in healthy, normal levels according to the stage of development.

Known defects due to the loss of ZNF238 include a striking postnatal small-brain phenotype: microcephaly, agenesis of the corpus callosum and cerebellar hypoplasia.

Microcephaly can sometimes be diagnosed before birth by prenatal ultrasound. In many cases, however, it might not be evident by ultrasound until the third trimester. Typically, diagnosis is not made until birth or later in infancy upon finding that the baby's head circumference is much smaller than normal. Microcephaly is a life-long condition and currently untreatable. A child born with microcephaly will require frequent examinations and diagnostic testing by a doctor to monitor the development of the head as he or she grows. Early detection of ZNf238 differential expression using methods of the invention provides for prenatal diagnosis and may hold prognostic value for drug treatments and dosing during course of treatment.

Beyond ZNF238, many of the characterized transcripts may hold diagnostic value in developmental diseases involving apoptosis, i.e., diseases caused by removal of unnecessary neurons during neural development. Seeing that apoptosis of neurons is essential during development, one could extrapolate that similar apoptosis might be activated in neurodegenerative diseases such as Alzheimer's disease, Huntington's disease, and amyotrophic lateral sclerosis. In such a scenario, the methodology described herein will allow for close monitoring for disease progression and possibly an ideal dosage according to the progression.

Deducing relative contributions of different fetal tissue types: Differential rate of apoptosis of specific tissues may directly correlate with certain developmental diseases. That is, certain developmental diseases may increase the levels of a particular specific RNA transcripts being observed in the maternal transcriptome. Knowledge of the relative contribution from various tissue types will allow for observations of these types of changes during the progression of these diseases. The quantified panel of fetal tissue specific transcripts during pregnancy can be considered as a summation of the contributions from the various fetal tissues.

Expressing,

$$Y_i = \sum_i \pi_i \chi_{ij} + \mathcal{E}$$

where Y is the observed transcript quantity in maternal plasma for gene i, X is the known transcript quantity for gene i in known fetal tissue j and ε the normally distributed error. Additional physical constraints includes:

1. Summation of all fraction contributing to the observed quantification is 1, given by the condition: $\sum \pi_i = 1$

2. All the contribution from each tissue type has to greater than or equal zero. There is no physical meaning to having a negative contribution. This is given by $\pi_i \geq 0$, since π is defined as the fractional contribution of each tissue types.

Consequently to obtain the optimal fractional contribution of each tissue type, the least-square error is minimized. The above equations are then solved using quadratic programming in R to obtain the optimal relative contributions of the tissue types towards the maternal cell free RNA transcripts. In the workflow, the quantity of RNA transcripts are given relative to the housekeeping genes in terms of Ct values obtained from qPCR. Therefore, the Ct value can be considered as a proxy of the measured transcript quantity. An increase in Ct value of one is similar to a two-fold change in transcript quantity, i.e. 2 raised to the power of 1. The process beings with normalizing all of the data in CT relative to the housekeeping gene, and is followed by quadratic programming.

As a proof of concept for the above scheme, different fetal tissue types (Brain, Placenta, Liver, Thymus, Lung) were mixed in equal proportions to generate a pool sample. Each fetal tissue types (Brain, Placenta, Liver, Thymus, Lung) along with the pooled sample were quantified using the same Fluidigm Biomark System to obtain the Ct values from qPCR for each fetal tissue specific transcript across all tissues and the pooled sample. These values were used to perform the same deconvolution. The resulting fetal fraction of each of the fetal tissue organs (Brain, Placenta, Liver, Thymus, Lung) was 0.109, 0.206, 0.236, 0.202 & 0.245 respectively.

Conclusion:

In summary, the panel of fetal specific cell free transcripts provides valuable biological information across different fetal tissues at once. Most particularly, the method can deduce the different relative proportions of fetal tissue-specific transcripts to total RNA, and, when considered individually, each transcript can be indicative of the apoptotic rate of the fetal tissue. Such measurements have numerous potential applications for developmental and fetal medicine. Most human fetal development studies have relied mainly on postnatal tissue specimens or aborted fetuses. Methods described herein provide quick and rapid assay of the rate of fetal tissue/organ growth or death on live fetuses with minimal risk to the pregnant mother and fetus. Similar methods may be employed to monitor major adult organ tissue systems that exhibit specific cell free RNA transcripts in the plasma.

Example 3: Deconvolution of Adult Cell-Free Transcriptome

Overview:

The plasma RNA profiles of 4 healthy, normal adults were analyzed. Based on the gene expression profile of different tissue types, the methods described quantify the relative contributions of each tissue type towards the cell-free RNA component in a donor's plasma. For quantification, apoptotic cells from different tissue types are assumed to release their RNA into the plasma. Each of these tissues expressed a specific number of genes unique to the tissue type, and the observed cell-free RNA transcriptome is a summation of these different tissue types.

Study Design and Methods:

To determine the contribution of tissue-specific transcripts to the cell-free adult transriptome, a list of known tissue-specific genes was prepared from known literature and databases. Two database sources were utilized: Human U133A/GNF1H Gene Atlas and RNA-Seq Atlas. Using the raw data from these two database, tissue-specific genes were identified by the following method. A template-matching process was applied to data obtained from the two databases for the purpose of identifying tissue-specific gene. The list of tissue specific genes identified by the method is given in Figure 18. The specificity and sensitivity of the panel is constrained by the number of tissue samples in the database. For example, the Human U133A/GNF1H Gene Atlas dataset includes 84 different tissue samples, and a panel's specificity from that database is constrained by the 84 sample sets. Similarly, for the RNA-seq atlas, there are 11 different tissue samples and specificity is limited to distinguishing between these 11 tissues. After obtaining a list of tissue-specific transcripts from the two databases, the specificity of these transcripts was verified with literature as well as the TisGED database.

The adult cell-free transcriptome can be considered as a summation of the tissue-specific transcripts obtained from the two databases. To quantitatively deduce the relative proportions of the different tissues in an adult cell-free transcriptome, quadratic programming is performed as a constrained optimization method to deduce the relative optimal contributions of different organs/tissues towards the cell free-transcriptome. The specificity and accuracy of this process is dependent on the table of genes provided in Figure X and the extent by which that they are detectable in RNA-seq and microarray.

Subjects: Plasma samples were collected from 4 healthy, normal adults.

Initial Results:

Deconvolution of our adult cell-free RNA transcriptome from microarray using the above methods revealed the relative contributions of the different tissue and organs are tabulated in Figure 13.

Figure 13 shows that the normal cell free transcriptome for adults is consistent across all 4 subjects. The relative contributions between the 4 subjects do not differ greatly, suggesting that the relative contributions from different tissue types are relatively stable between normal adults. Out of the 84 tissue types available, the deduced optimal major contributing tissues are from whole blood and bone marrow.

An interesting tissue type contributing to circulating RNA is the hypothalamus. The hypothalamus is bounded by specialized brain regions that lack an effective blood-brain barrier; the capillary endothelium at these sites is fenestrated to allow free passage of even large proteins and other molecules which in our case we believed that RNA transcripts from apoptotic cells in that region could be released into the plasma cell free RNA component.

The same methods were performed on the subjects using RNA-seq. The results described herein are limited due to the amount of tissue-specific RNA-Seq data available. However, it is understood that tissue-specific data is expanding with the increasing rate of sequencing of various tissue rates, and future analysis will be able to leverage those datasets. For RNA-seq data (as compared to microarray), whole blood nor the bone marrow samples are not available. The cell free transcriptome can only be decomposed to the available 11 different tissue types of RNA-seq data. Of which, only relative contributions from the hypothalamus and spleen were observed, as shown in Figure 14.

A list of 94 tissue-specific genes (as shown in Figure 15) was further selected for verification with qPCR. The Fluidigm BioMark Platform was used to perform the qPCR on RNA derived from the following tissues: Brain, Cerebellum, Heart, Kidney, Liver and Skin. Similar qPCR workflow was applied to the cell free RNA component as well. The delta Ct values by comparing with the housekeeping genes: ACTB was plotted in the heatmap format in Figure 16, which shows that these tissue specific transcripts are detectable in the cell free RNA.

Equivalents

The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The foregoing embodiments are therefore to be considered in all respects illustrative rather than limiting on the invention described herein. Scope of the invention is thus indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims

What is claimed is:

- 1. A method of assessing the health of a tissue, comprising:
 - a) isolating total cell-free messenger RNA from a biological sample, wherein the biological sample is blood, a blood fraction, saliva, sputum, urine, semen, a transvaginal fluid, a cerebrospinal fluid, sweat, or a breast fluid;
 - b) quantifying a relative contribution of tissue-specific messenger RNA in the total cell-free messenger RNA to a cell-free transcriptome of the biological sample;
 - c) comparing the relative contribution of tissue-specific messenger RNA in the total cell-free messenger RNA to that of a reference cell-free transcriptome; and
 - d) determining the health state of the tissue of the subject based on the comparing.
- 2. The method of claim 1, wherein the biological sample is blood from which cells have been removed.
- 3. The method of claim 1, wherein the biological sample is a blood fraction.
- 4. The method of claim 3, wherein the blood fraction is plasma.
- 5. The method of claim 1, wherein quantifying comprises at least one process which is reverse transcription, polynucleotide amplification, sequencing, probe hybridization, or microarray hybridization.
- 6. The method of claim 1, wherein the tissue-specific messenger RNA is a transcript of a gene from Figure 18.
- 7. The method of claim 1, wherein the tissue-specific messenger RNA is not a biomarker of a specific disease.

- 8. The method of claim 1, comprising quantifying the relative contribution of a plurality of tissue-specific messenger RNAs in the biological sample to a cell-free transcriptome of the biological sample.
- 9. The method of claim 1, wherein the quantifying step comprises reverse-transcribing the tissue-specific messenger RNA.
- 10. The method of claim 1, comprising testing the tissue, prescribing a course of treatment specific to the tissue, monitoring of the tissue, or a combination thereof.
- 11. The method of claim 1, wherein the reference cell-free transcriptome comprises tissue-specific messenger RNA in a population of reference subjects.
- 12. The method of claim 11, wherein the population of reference subjects are healthy subjects.
- 13. The method of claim 11, wherein the population of reference subjects are subjects having a disease or condition.
- 14. The method of claim 1, wherein the reference cell-free transcriptome is that of a second biological sample of the subject collected at an earlier time.
- 15. The method of claim 1, wherein the tissue is whole blood, bone marrow, hypothalamus, smooth muscle, lung, thymus, lymph node, thyroid, heart, kidney, brain, cerebellum, liver, or skin.
- 16. The method of claim 1, wherein quantifying the sample level of tissue-specific messenger RNA comprises sequencing the tissue-specific messenger RNA.
- 17. The method of claim 16, wherein the sequencing comprises sequencing a plurality of tissue-specific mRNAs having different sequences in a single reaction.
- 18. The method of claim 16, wherein the sequencing comprises whole transcriptome shotgun sequencing.
- 19. A system for assessing the health of a tissue, the system comprising

a detection unit for detecting a sample level of total cell-free RNA in a biological sample, wherein the biological sample is blood, a blood fraction, saliva, sputum, urine, semen, a transvaginal fluid, a cerebrospinal fluid, sweat, or a breast fluid, wherein the RNA is cell-free RNA specific to the tissue;

a comparison unit for comparing the sample level of total cell-free RNA to a reference level of the total cell-free RNA;

a determination unit for determining whether a difference exists between the sample level and the reference level; and wherein the determination unit determines the health state of the tissue based on whether a difference is detected, wherein the RNA is messenger RNA.

- 20. The system of claim 19, wherein determining the health state of the tissue comprises monitoring the tissue for disease progression.
- 21. The system of claim 19, wherein the reference level corresponds to the state of the tissue at a time-point.
- 22. The system of claim 19, wherein the reference level is a level of RNA specific to the tissue in a healthy state.
- 23. The system of claim 19, wherein the biological sample is a blood fraction.
- 24. The system of claim 19, wherein the biological sample is blood.
- 25. The system of claim 19, wherein the RNA is a transcript of a gene from Figure 18.
- 26. The system of claim 19, wherein detecting is performed via a sequencing technique, a microarray technique, or both.
- 27. The system of claim 26, wherein the sequencing technique is whole transcriptome shotgun sequencing.
- 28. The system of claim 19, wherein said reference level is determined by a computer-generated database.

- 29. The system of claim 19, wherein the tissue is whole blood, bone marrow, hypothalamus, smooth muscle, lung, thymus, lymph node, brain, cerebellum, heart, kidney, liver, skin, or thyroid.
- 30. An *in vitro* method of assessing the health of a tissue, the method comprising: isolating total cell-free messenger RNA from a biological sample of a subject, wherein the biological sample is blood, a blood fraction, saliva, sputum, urine, semen, a transvaginal fluid, a cerebrospinal fluid, sweat, or a breast fluid;

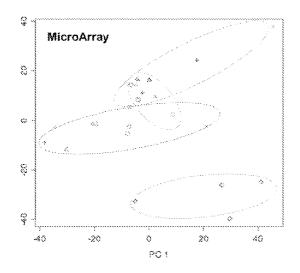
quantifying a sample level of messenger RNA in the biological sample of the subject, wherein the messenger RNA is cell-free messenger RNA specific to a tissue of the subject;

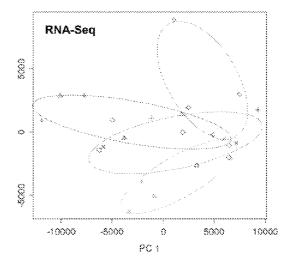
comparing the sample level of messenger RNA to a reference level of the messenger RNA and

determining a health state of the tissue based on the comparing.

- 31. The method of claim 30, further comprising the step of monitoring the tissue for disease progression.
- 32. The method of claim 30, wherein the reference level corresponds to the state of the tissue at a time-point.
- 33. The method of claim 30, wherein the reference level is a level of messenger RNA specific to the tissue in a healthy state.
- 34. The method of claim 30, wherein the tissue is not placental tissue or fetal tissue.
- 35. The method of claim 30, wherein the biological sample is blood.
- 36. The method of claim 30, wherein the biological sample is blood from which cells have been removed.
- 37. The method of claim 30, wherein the quantifying step is performed via a sequencing technique, a microarray technique, or both.

- 38. The method of claim 37, wherein the sequencing technique is whole transcriptome shotgun sequencing.
- 39. The method of claim 30, wherein said reference level is determined by a computer-generated database.
- 40. The method of claim 30, wherein the tissue is whole blood, bone marrow, hypothalamus, smooth muscle, lung, thymus, lymph node, heart, kidney, brain, cerebellum, liver, skin, or thyroid.
- 41. An in vitro method of assessing health of a tissue of a subject, the method comprising quantifying a sample level of the total cell-free messenger RNA in a biological sample of a subject, wherein the biological sample is blood, a blood fraction, saliva, sputum, urine, semen, a transvaginal fluid, a cerebrospinal fluid, sweat, or a breast fluid; comparing the sample level of the total cell-free messenger RNA to a reference level of cell-free messenger RNA specific to the tissue; and determining whether a difference exists between the sample level and the reference level to the tissue as abnormal if a specified level of messenger RNA is present in the biological sample of the subject.
- 42. The method of claim 41, wherein the tissue is whole blood, bone marrow, hypothalamus, smooth muscle, lung, thymus, lymph node, heart, kidney, brain, cerebellum, liver, skin, or thyroid.
- 43. The method of claim 41, further comprising characterizing the tissue as abnormal if the sample level and the reference level are the same, wherein the reference level is indicative of a disease or a condition.
- 44. The method of claim 41, further comprising characterizing the tissue as abnormal if the sample level and the reference level are different, wherein the reference level is indicative of a healthy state.
- 45. The method of claim 41, wherein the quantifying step is performed via a sequencing technique, a microarray technique, or both.


- 46. The method of claim 45, wherein the sequencing technique is whole transcriptome shotgun sequencing.
- 47. The method of claim 41, wherein said reference level is determined by a computer-generated database.
- 48. The method of claim 30 or 41, wherein the cell-free messenger RNA is a transcript of a gene from Figure 18.
- 49. The method of claim 30 or 41, wherein the sample level comprises cell-free messenger RNA levels for a plurality of genes, and the reference level comprises cell-free messenger RNA levels for each of the plurality of genes.
- 50. The method of claim 49, wherein the tissue is a brain tissue, and the plurality of genes are PMCH, PMCHL1, ABHD8, BAD, C12orf43, CAMK1G, CDK5R2, CHST10, CLCN6, FAM108B1, FAM50B, FBXL15, GPR17, GSTT2, ITPKA, KIF5A, KLHL26, NELL1, PIAS4, PPP2R2D, RAB33A, RAC3, RAPGEFL1, THAP10, or TIMM22.
- 51. The method of claim 30 or 41, wherein the reference level is a level indicative of a neurological disorder.
- 52. The method of claim 51, wherein the neurological disorder is multiple sclerosis, Alzheimer's disease, Huntington's disease, or amyotrophic lateral sclerosis.
- 53. A method of assessing the health of a tissue, the method comprising
 - a) detecting a sample level of total cell-free messenger RNA in a biological sample of a subject, wherein the biological sample is blood, a blood fraction, saliva, sputum, urine, semen, a transvaginal fluid, a cerebrospinal fluid, sweat, or a breast fluid;
 - b) comparing the sample level of total cell-free messenger RNA to a reference level of messenger RNA specific to the tissue;
 - c) determining whether a difference exists between the sample level and the reference level; and


- d) characterizing the tissue as abnormal if a difference is detected.
- 54. The method of claim 53, further comprising the step of monitoring the tissue for disease progression.
- 55. The method of claim 53, wherein the reference level corresponds to the state of the tissue at a time-point.
- 56. The method of claim 53, wherein the reference level is a level of messenger RNA specific to the tissue in a healthy state.
- 57. The method of claim 53, wherein the biological sample is blood, or a blood fraction.
- 58. The method of claim 57, wherein the biological sample is blood.
- 59. The method of claim 53, wherein the detecting is performed via a sequencing technique, a microarray technique, or both.
- 60. The method of claim 59, wherein the sequencing technique is whole transcriptome shotgun sequencing.
- 61. The method of claim 53, wherein said reference level is determined by a computer- generated database.
- 62. The method of claim 53, wherein the tissue is whole blood, bone marrow, hypothalamus, smooth muscle, lung, thymus, lymph node, or thyroid.
- 63. A method of assessing health of a tissue, the method comprising
 - detecting a level of total cell-free messenger RNA in a biological sample of a subject, wherein the biological sample is blood, a blood fraction, saliva, sputum, urine, semen, a transvaginal fluid, a cerebrospinal fluid, sweat, or a breast fluid;
 - comparing the sample level of cell-free messenger RNA to a reference level of messenger RNA specific to a tissue;
 - determining whether a difference exists between the sample level and the reference level, and characterizing the tissue as abnormal if the sample level and the reference level are the same.

- 64. The method of claim 63, wherein the tissue is whole blood, bone marrow, hypothalamus, smooth muscle, lung, thymus, lymph node, or thyroid.
- 65. The method of claim 63, wherein the reference level of messenger RNA specific to the tissue is indicative of a disease or a condition.
- 66. The method of claim 63, wherein the detecting is performed via a sequencing technique, a microarray technique, or both.
- 67. The method of claim 66, wherein the sequencing technique is whole transcriptome shotgun sequencing.
- 68. The method of claim 63, wherein said reference level is determined by a computer- generated database.

	Female Prognancy Associated Differential Expressed Transcripts
PAPPA	PAPPA anticense RNA (non-protein coding); pregnancy-associated plasma protein A, pappalysin 1
TEAD3	75A domain family member 3
ADM	adrenamedulin
CSH1	chorionic somatomammotropin hormone 1 (placental luctogen)
CSH2	chorionic somatumammatropin harmone 2
INSL4	insulin-like 4 (pkacentu)
PGF	placental growth factor
PSG1	pregnancy specific beta-1-glycoprotein 1
PSG11	pregnancy specific beto-1-glycoprotein 11
PSG2	pregnuncy specific beta-1-glycoprotein 2
PSG3	pregnancy specific beta-1-glycoprotein 3
PSG5	pregnancy specific beto-1-glycoprotein 5
PSG6	pregnancy specific beta-1-glycoprotein 6
	pragnancy specific bata-1-glycopratein 7; pregnancy specific beta-1-glycopratein 8; pregnancy specific beta-1-
PSG4, PSG8	3 glycoprotein 4
PSG9	pregnancy specific beta-1-glycoprotein 9
PRLR	profuctin receptor
SFRP4	secreted frizzled-reloted protein 4
SPP1	secreted phosphoprotein 1

FIGURE 1

FIGURE 2

WO 2013/113012

FIGURE 3A

WO 2013/113012 PCT/US2013/023471 4/174

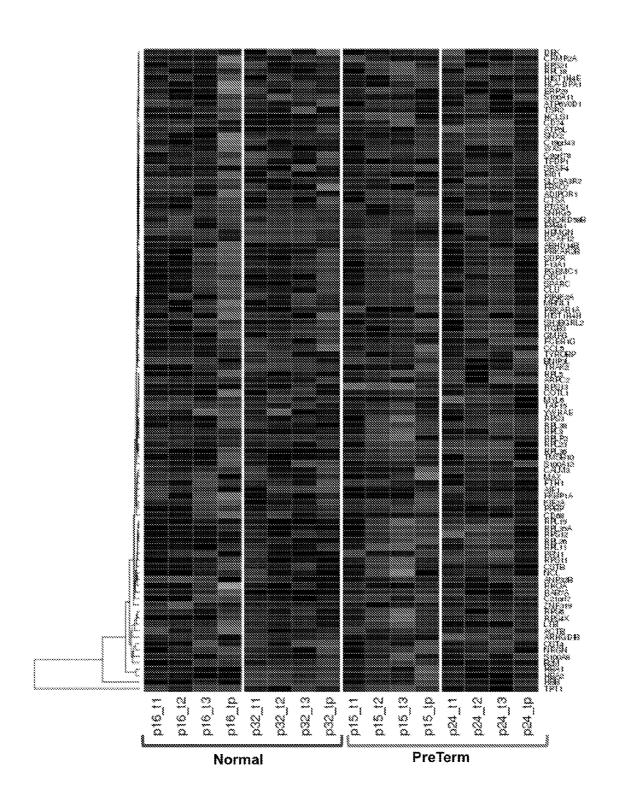


FIGURE 3B

	Carro Nessara
1	PVALB
2	CLCN3
3	ITGA2B
4	LTV1
5	HIST1H4B
6	TREML1
7	NPTN
8.	LSM2
9	SCGB1C1
10	NOP10
11	MFSD1
12	MALAT1
13	GDI1
14	HIST1H1C
15	HIST1H4H
16	CD226
17	ITM2B
18	MLLT6
19	ANO6
20	ITGB3

Figure 4

cell surface	RT		5	26.3	7.6E-4	5.1E-2	
platelet alpha granule	<u>RT</u>		3	15.8	2.2E-3	7.2E-2	
platelet alpha granule membrane	<u>ri</u>	<i></i>	2	10.5	1.2E-2	2.5E-1	
vesicle membrane	<u>rt</u>		3	15.8	1.5E-2	2.3E-1	
secretory granule	<u>RT</u>		3	15.8	2.1E-2	2.5E-1	

Figure 5

WO 2013/113012

7/174

PCT/US2013/023471

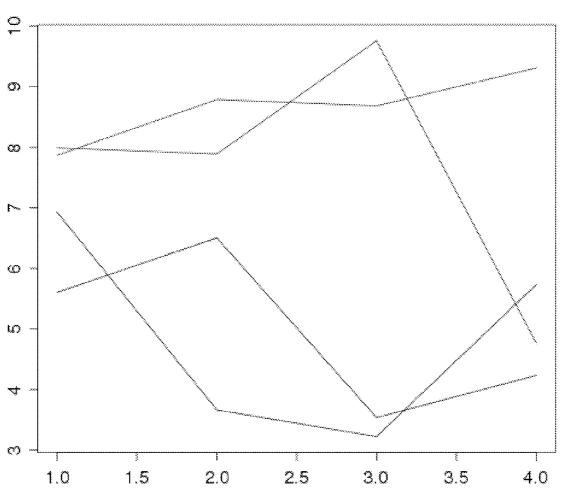


FIGURE 6

WO 2013/113012 PCT/US2013/023471 8/174

A THE SECTION OF THE

REFERENCES:

- 1. Goldfarb and A. Idnani (1982). Dual and Primal-Dual Methods for Solving Strictly Convex Quadratic Programs. In J. P. Hennart (ed.), Numerical Analysis, Springer-Verlag, Berlin, pages 226–239.
- Springer-Verlag, Berlin, pages 226–239.
 2. D. Goldfarb and A. Idnani (1983). A numerically stable dual method for solving strictly convex quadratic programs. Mathematical Programming, 27, 1–33.

FIGURE 7

FIGURE 8: List of selected Fetal Tissue Specific Transcripts

Gene Symbol	Gene Full Name	Tissue
ACTB	actin, beta	Housekeeping
ADAM12	ADAM metallopeptidase domain 12	Placenta
AFP	alpha-fetoprotein	Fetal liver
ALPP	alkaline phosphatase, placental	Placenta
APOA4	apolipoprotein A-IV	Fetal liver
BACE2	beta-site APP-cleaving enzyme 2	Placenta
CALCB	calcitonin-related polypeptide beta	Dorsal root ganglion
CGB	chorionic gonadotropin, beta polypeptide	Placenta
CRP	C-reactive protein, pentraxin-related	Fetal liver
DCX	doublecortin	Fetal brain
DLX2	distal-less homeobox 2	Fetal brain
EPB42	erythrocyte membrane protein band 4.2	BM-CD71+Early erythroid
EPX	eosinophil peroxidase	Fetal liver
EVX1	even-skipped homeobox 1	Fetal liver
FGA	fibrinogen alpha chain	Fetal liver
FOXG1	forkhead box G1	Fetal brain
GAPDH	glyceraldehyde-3-phosphate dehydrogenase	Housekeeping
GH2	growth hormone 2	Placenta
GNAZ	guanine nucleotide binding protein (G protein), alpha z polypeptide	Fetal brain
GPR116	G protein-coupled receptor 116	Fetal lung
GYPE	glycophorin E (MNS blood group)	BM-CD71+Early erythroid
HSD17B1	hydroxysteroid (17-beta) dehydrogenase 1	Placenta
JUP	junction plakoglobin	Bronchial epithelial cells
KRT81	keratin 81	Placenta
MEF2C	myocyte enhancer factor 2C	Fetal brain
MN1	meningioma (disrupted in balanced translocation) 1	Fetal brain
NPY1R	neuropeptide Y receptor Y1	Fetal brain
NTSR1	neurotensin receptor 1 (high affinity)	Fetal brain
OAZ1	ornithine decarboxylase antizyme 1	Housekeeping
PSG7	pregnancy specific beta-1-glycoprotein 7 (gene/pseudogene)	Placenta
PTGER3	prostaglandin E receptor 3 (subtype EP3)	Fetal brain
RHCE	Rh blood group, CcEe antigens	BM-CD71+Early erythroid
SATB2	SATB homeobox 2	Fetal brain
SERPINA7	serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 7	Cervix
SLC4A1	solute carrier family 4, anion exchanger, member 1 (erythrocyte membrane protein band 3, Diego blood group)	BM-CD71+Early erythroid

PCT/US2013/023471

SLITRK3	SLIT and NTRK-like family, member 3	Placenta
VGLL1	vestigial like 1 (Drosophila)	Placenta
ZNF238	zinc finger protein 238	Fetal brain

Figure 9A: Example of raw qPCR data for fetal brain transcript ZNF238 obtained from subject sample P53 shows the changes across the three trimesters & post-partum.

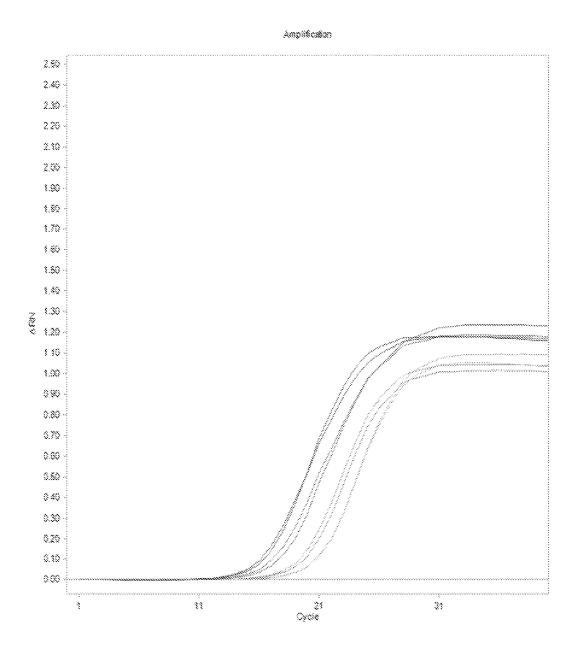
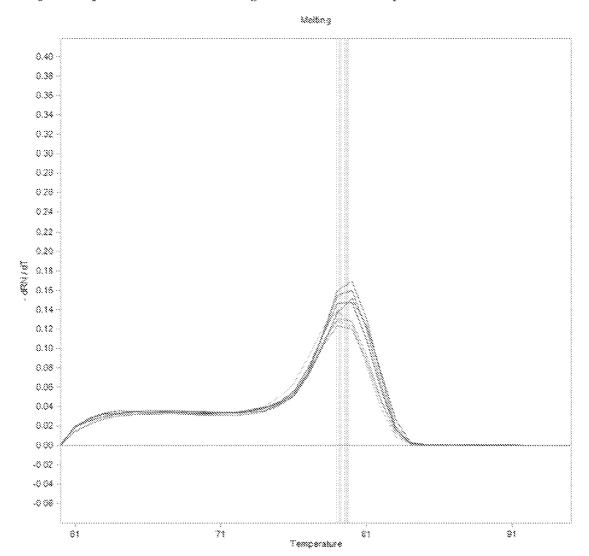



Figure 9B: Example of raw qPCR data for fetal brain transcript ZNF238 obtained from subject sample P53 shows the melting curve of the same experiments of 9A.

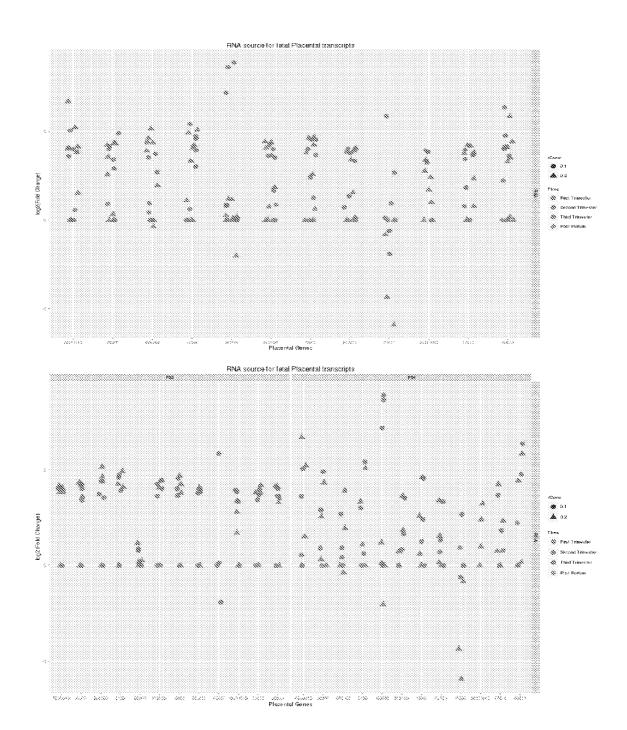


Figure 10

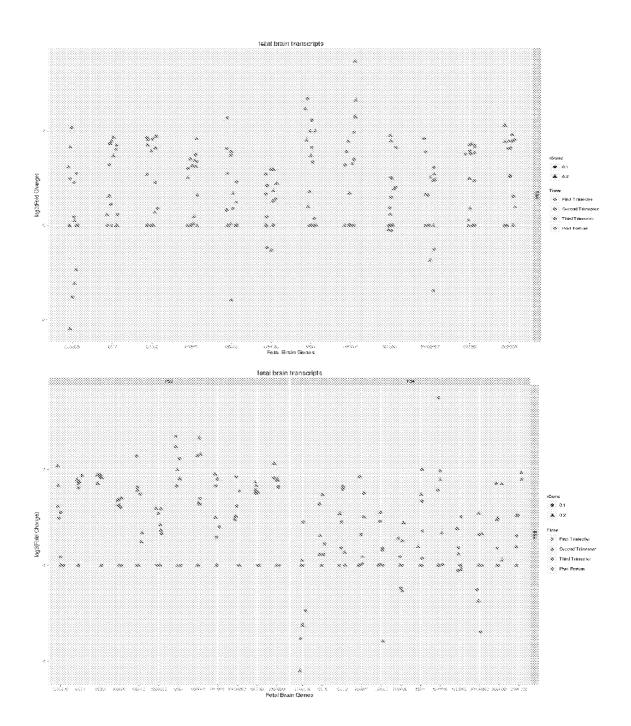


Figure 11

Figure 12

	Whole	Bone	Hypothalamus	Smooth	Lung	Thymus	Lymph	Thyroid
Donors	Blood (%)	marrow (%)	(%)	Muscle (%)	(%)	(%)	node (%)	(%)
d1	38.13	22.94	7.73	6.70	6.27	3.56	12.67	2.00
d2	42.64	13.88	6.10	7.40	6.14	2.85	18.06	2.93
d3	47.61	10.16	7.87	7.43	3.07	4.68	16.18	2.99
d4	43.64	14.30	4.86	6.38	6.70	4.06	16.33	3.73

Figure 13. Relative Composition of different organs contribution towards plasma cell free transcriptome

************	Donors	hypothalamus (%)	spleen (%)
	d1	64.85	35.15
	d2	63.13	36.87
	d3	64.56	35.44
********	d4	65.29	34.71

Figure 14. Decomposition of Organ contribution towards cell free transcriptome using RNA-seq data

FIGURE 15: Gene List of transcripts used for verification with qPCR		
Gene	Tissue	
PMCH	Amygdala	
HAPLN1	Bronchial epithelial cells	
PRDM12	Cardiac myocytes	
ARPP-21	Caudate nucleus	
GPR88	Caudate nucleus	
PDE10A	Caudate nucleus	
CBLN1	Cerebellum	
CDH22	Cerebellum	
DGKG	Cerebellum	
CDR1	Cerebellum	
FAT2	Cerebellum	
GABRA6	Cerebellum	
KCNJ12	Cerebellum	
KIAA0802	Cerebellum	
NEUROD1	Cerebellum	
NRXN3	Cerebellum	
PPFIA4	Cerebellum	
ZIC1	Cerebellum	
SAA4	Cervix	
SERPINC1	Cervix	
CALML4	Colon	
DSC2	Colon	
ACTC1	Heart	
NKX2-5	Heart	

CASQ2	Heart
CKMT2	Heart
HRC	Heart
HSPB3	Heart
HSPB7	Heart
ITGB1BP3	Heart
MYL3	Heart
MYL7	Heart
MYOZ2	Heart
NPPB	Heart
CSRP3	Heart
MYBPC3	Heart
PGAM2	Heart
TNNI3	Heart
SLC4A3	Heart
TNNT2	Heart
SYNPO2L	Heart
AVP	Liver
ACTB	Housekeeping
GAPDH	Housekeeping
MAB21L2	Housekeeping
HCRT	Hypothalamus
OXT	Hypothalamus
BBOX1	Kidney
AQP2	Kidney
KCNJ1	Kidney
FMO1	Kidney
NAT8	Kidney
XPNPEP2	Kidney
PDZK1IP1	Kidney
PTH1R	Kidney
SLC12A1	Kidney
SLC13A3	Kidney
SLC22A6	Kidney
SLC22A8	Kidney
SLC7A9	Kidney

UMOD	Kidney
SLC17A3	Kidney
AKR1C4	Liver
C8G	Liver
APOF	Liver
AQP9	Liver
CYP2A6	Liver
CYP1A2	Liver
CYP2C8	Liver
CYP2D6	Liver
CYP2E1	Liver
ITIH4	Liver
HRG	Liver
FTCD	Liver
IGFALS	Liver
RDH16	Liver
SDS	Liver
SLC22A1 TBX3	Liver
SLC27A5	Liver Liver
SLC27A3	LIVO
KCNK12	Olfactory bulb
MPZ	Olfactory bulb
C21ORF7	Whole blood
FFAR2	Whole blood
FCGR3A	Whole blood
EMR2	Whole blood
FAM5B	Whole blood
FCGR3B	Whole blood
FPR2	Whole blood
MLH3	Whole blood
PF4	Whole blood
PF4V1	Whole blood

PPBP	Whole blood
TLR1	Whole blood
TNFRSF10C	Whole blood
ZDHHC18	Whole blood

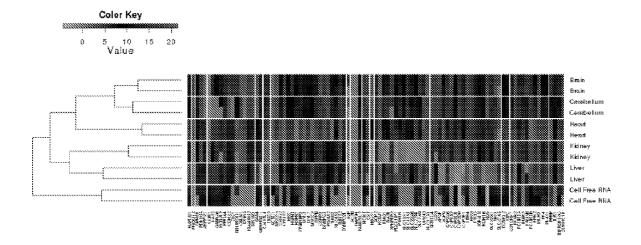


Figure 16

Figure 17

Detecting a Sample Level of RNA in a Biological Sample

Comparing the Sample Level of RNA to a Reference Level of RNA

Determining
Whether a Difference
Exists Between the
Sample Level and the
Reference Level

Characterizing the Tissue as Abnormal if a Difference is Detected

FIGURE 10					
FIGURE 18					
Gene	Tissue				
A4GALT	Uterus Corpus				
A4GNT	Superior Cervical Ganglion				
AADAC	small intestine				
AASS	Ovary				
ABCA12	Tonsil				
ABCA4	retina				
ABCB4	CD19 Bcells neg. sel.				
ABCB6	CD71 Early Erythroid				
ABCB7	CD71 Early Erythroid				
ABCC2	Pancreatic Islet				
ABCC3	Adrenal Cortex				
ABCC9	Dorsal Root Ganglion				
ABCF3	Adrenal gland				
ABCG1	Lung				
ABCG2	CD71 Early Erythroid				
ABHD4	Adipocyte				
ABHD5	Whole Blood				
ABHD6	pineal night				
ABHD8	Whole Brain				
ABO	Heart				
ABT1	X721 B lymphoblasts				

ABTB2	Placenta
ACAA1	Liver
ACACB	Adipocyte
ACAD8	Kidney
ACADL	Thyroid
ACADS	Liver
ACADSB	Fetal liver
ACAN	Trachea
ACBD4	Liver
ACCN3	Prefrontal Cortex
ACE2	Testis Germ Cell
ACHE	CD71 Early Erythroid
ACLY	Adipocyte
ACOT1	Adipocyte
ACOX2	Liver
ACP2	Liver
ACP5	Lung
ACP6	CD34
ACPP	Prostate
ACR	Testis Intersitial
ACRV1	Testis Intersitial
ACSBG2	Testis Intersitial
ACSF2	Kidney
ACSL4	Fetal liver
l	

ACSL5	small intestine
ACSL6	CD71 Early Erythroid
ACSM3	Leukemia chronic Myelogenous K562
ACSM5	Liver
ACSS3	Adipocyte
ACTA1	Skeletal Muscle
ACTC1	Heart
ACTG1	CD71 Early Erythroid
ACTL7A	Testis Intersitial
ACTL7B	Testis Intersitial
ACTN3	Skeletal Muscle
ACTR8	Superior Cervical Ganglion
ADA	Leukemia lymphoblastic MOLT 4
ADAM12	Placenta
ADAM17	CD33 Myeloid
ADAM2	Testis Intersitial
ADAM21	Appendix
ADAM23	Thalamus
ADAM28	CD19 Bcells neg. sel.
ADAM30	Testis Germ Cell
ADAM5P	Testis Intersitial
ADAM7	Testis Leydig Cell
ADAMTS12	Atrioventricular Node

ADAMTS20	Appendix
ADAMTS3	CD105 Endothelial
ADAMTS8	Lung
ADAMTS9	Dorsal Root Ganglion
ADAMTSL2	Ciliary Ganglion
ADAMTSL3	retina
ADAMTSL4	Atrioventricular Node
ADARB2	Skeletal Muscle
ADAT1	CD71 Early Erythroid
ADCK4	Ciliary Ganglion
ADCY1	Fetal brain
ADCY9	Lung
ADCYAP1	Pancreatic Islet
ADH7	Tongue
ADIPOR1	Bone marrow
ADM2	Pituitary
ADORA3	Olfactory Bulb
ADRA1D	Skeletal Muscle
ADRA2A	Lymph node
ADRA2B	Superior Cervical Ganglion
ADRB1	pineal night
AFF3	Trigeminal Ganglion
AFF4	Testis Intersitial
AGPAT2	Adipocyte

AGPAT3	CD33 Myeloid
A GD A FILE	
AGPAT4	CD71 Early Erythroid
AGPS	Testis Intersitial
AGR2	Trachea
AGRN	Colorectal adenocarcinoma
AGRP	Superior Cervical Ganglion
AGXT	Liver
AIFM1	X721 B lymphoblasts
AIM2	CD19 Bcells neg. sel.
AJAP1	BDCA4 Dentritic Cells
AKAP10	CD33 Myeloid
AKAP3	Testis Intersitial
AKAP6	Medulla Oblongata
AKAP7	Fetal brain
AKAP8L	CD71 Early Erythroid
AKR1C4	Liver
AKR7A3	Liver
AKT2	Thyroid
ALAD	CD71 Early Erythroid
ALDH3B2	Tongue
ALDH6A1	Kidney
ALDH7A1	Ovary
ALDOA	Skeletal Muscle
ALG12	CD4 T cells

ALG13	CD19 Bcells neg. sel.
ALG3	Liver
ALOX12	Whole Blood
ALOX12B	Tonsil
ALOX15B	Prostate
ALPI	small intestine
ALPK3	Skeletal Muscle
ALPL	Whole Blood
ALPP	Placenta
ALPPL2	Placenta
ALX1	Superior Cervical Ganglion
ALX4	Superior Cervical Ganglion
AMBN	pineal day
AMDHD2	BDCA4 Dentritic Cells
AMELY	Subthalamic Nucleus
AMHR2	Heart
AMPD1	Skeletal Muscle
AMPD2	pineal night
AMPD3	CD71 Early Erythroid
ANAPC1	X721 B lymphoblasts
ANG	Liver
ANGEL2	CD8 T cells
ANGPT1	CD35
ANGPT2	Ciliary Ganglion

ANGPTL2	Uterus Corpus
ANGPTL3	Fetal liver
ANK1	CD71 Early Erythroid
ANKFY1	CD8 T cells
ANKH	Cerebellum Peduncles
ANKLE2	Testis
ANKRD1	Skeletal Muscle
ANKRD2	Skeletal Muscle
ANKRD34C	Thalamus
ANKRD5	Skeletal Muscle
ANKRD53	Skeletal Muscle
ANKRD57	Bronchial Epithelial Cells
ANKS1B	Superior Cervical Ganglion
ANTXR1	Uterus Corpus
ANXA13	small intestine
ANXA2P1	Bronchial Epithelial Cells
ANXA2P3	Bronchial Epithelial Cells
AOC2	retina
AP1G1	Testis Germ Cell
AP1M2	Kidney
AP3S1	Heart
APBA1	Dorsal Root Ganglion
APBB1IP	Whole Blood
APBB2	Superior Cervical Ganglion

APC	Fetal brain
APEX2	Colorectal adenocarcinoma
APIP	Trachea
APOA1	Liver
APOA4	small intestine
APOB48R	Whole Blood
APOBEC1	small intestine
APOBEC2	Skeletal Muscle
APOBEC3B	Colorectal adenocarcinoma
APOC4	Liver
APOF	Liver
APOL5	Bone marrow
APOOL	Superior Cervical Ganglion
AQP2	Kidney
AQP5	Testis Intersitial
AQP7	Adipocyte
AR	Liver
ARCN1	Trigeminal Ganglion
ARFGAP1	Lymphoma burkitts Raji
ARG1	Fetal liver
ARHGAP11A	Trigeminal Ganglion
ARHGAP19	Olfactory Bulb
ARHGAP22	CD36
ARHGAP28	Testis Intersitial

ARHGAP6	Prostate
ARHGEF1	CD4 T cells
AKHGEFI	CD4 I cens
ARHGEF5	Pancreas
ARHGEF7	Thymus
ARID3A	Placenta
ARID3B	X721 B lymphoblasts
ARL15	Uterus Corpus
ARMC4	Superior Cervical Ganglion
ARMC8	CD71 Early Erythroid
ARMCX5	small intestine
ARR3	retina
ARSA	Liver
ARSB	Superior Cervical Ganglion
ARSE	Liver
ARSF	Globus Pallidus
ART1	Cardiac Myocytes
ART3	Testis
ART4	CD71 Early Erythroid
ASB1	Trigeminal Ganglion
ASB7	Globus Pallidus
ASB8	Superior Cervical Ganglion
ASCC2	CD71 Early Erythroid
ASCL2	Superior Cervical Ganglion
ASCL3	Superior Cervical Ganglion

ASF1A	CD71 Early Erythroid
ASIP	BDCA4 Dentritic Cells
ASL	Liver
ASPN	Uterus
ASPSCR1	Colorectal adenocarcinoma
ASTE1	CD8 T cells
ASTN2	pineal day
ATF5	Liver
ATG4A	CD71 Early Erythroid
ATG7	CD14 Monocytes
ATN1	Prefrontal Cortex
ATOH1	Superior Cervical Ganglion
ATP10A	CD56 NK Cells
ATP10D	Placenta
ATP11A	Superior Cervical Ganglion
ATP12A	Trachea
ATP13A3	Smooth Muscle
ATP1B3	Adrenal Cortex
ATP2C2	Colon
ATP4A	Adrenal gland
ATP4B	Parietal Lobe
ATP5G1	Heart
ATP5G3	Heart
ATP5J2	Superior Cervical Ganglion
L	L

ATP6V0A2	CD37
ATP6V1B1	Kidney
ATP7A	CD71 Early Erythroid
ATRIP	CD14 Monocytes
ATXN3L	Superior Cervical Ganglion
ATXN7L1	Skeletal Muscle
AURKC	Testis Seminiferous Tubule
AVEN	Bronchial Epithelial Cells
AVIL	Dorsal Root Ganglion
AVP	Hypothalamus
AXIN1	CD56 NK Cells
AXL	Cardiac Myocytes
AZI1	CD71 Early Erythroid
B3GALNT1	Amygdala
B3GALT5	CD105 Endothelial
B3GNT2	CD71 Early Erythroid
B3GNT3	Placenta
B3GNTL1	CD38
BAAT	Liver
BACH2	Lymphoma burkitts Daudi
BAD	Whole Brain
BAG2	Uterus
BAG4	Superior Cervical Ganglion
BAI1	Cingulate Cortex
L	l

BAIAP2	Liver
BAIAP2L2	Superior Cervical Ganglion
BAMBI	Colorectal adenocarcinoma
BANK1	CD19 Bcells neg. sel.
BARD1	X721 B lymphoblasts
BARX1	Atrioventricular Node
BATF3	X721 B lymphoblasts
BBOX1	Kidney
BBS4	pineal day
BCAM	Thyroid
BCAR3	Placenta
BCAS3	X721 B lymphoblasts
BCKDK	Liver
BCL10	Colon
BCL2L1	CD71 Early Erythroid
BCL2L10	Trigeminal Ganglion
BCL2L13	pineal day
BCL2L14	Testis
BCL3	Whole Blood
BDH1	Liver
BDKRB1	Smooth Muscle
BDKRB2	Smooth Muscle
BDNF	Smooth Muscle
BECN1	Ciliary Ganglion

BEST1	retina
BET1L	Superior Cervical Ganglion
BHLHB9	pineal night
BIRC3	CD19 Bcells neg. sel.
BLK	CD19 Bcells neg. sel.
BLVRA	CD105 Endothelial
BMP1	Placenta
BMP2K	CD71 Early Erythroid
BMP3	Temporal Lobe
BMP5	Trigeminal Ganglion
BMP8A	Fetal Thyroid
BMP8B	Superior Cervical Ganglion
BMPR1B	Skeletal Muscle
BNC1	Bronchial Epithelial Cells
BNC2	Uterus
BNIP3L	CD71 Early Erythroid
вок	Thalamus
BPHL	Kidney
BPI	Bone marrow
BPY2	Adrenal gland
BRAF	Superior Cervical Ganglion
BRAP	Testis Intersitial
BRE	Adrenal gland
BRS3	Skeletal Muscle

Cerebellum Peduncles
CD71 Early Erythroid
Prefrontal Cortex
Superior Cervical Ganglion
Appendix
CD8 T cells
CD71 Early Erythroid
X721 B lymphoblasts
Leukemia chronic
Myelogenous K563
Miyelogenous 18303
Testis Leydig Cell
CD33 Myeloid
Superior Cervical Ganglion
Ciliary Ganglion
Adrenal Cortex
CD19 Bcells neg. sel.
Dorsal Root Ganglion
Superior Cervical Ganglion
Testis Seminiferous Tubule
Superior Cervical Ganglion
Fetal brain
Adipocyte
Appendix
Skeletal Muscle

C11orf71	Thyroid
C11orf80	Leukemia lymphoblastic
	MOLT 5
	Modre
C12orf4	CD71 Early Erythroid
C12orf43	Whole Brain
C12orf47	CD8 T cells
C12orf49	CD56 NK Cells
C13orf23	Placenta
C13orf27	Testis Leydig Cell
C13orf34	CD71 Early Erythroid
C14orf106	CD33 Myeloid
C14orf118	Superior Cervical Ganglion
C14orf138	CD19 Bcells neg. sel.
C14orf162	Cerebellum
C14orf169	Testis
C14orf56	Superior Cervical Ganglion
C15orf2	Cerebellum
C15orf29	Fetal brain
C15orf39	Whole Blood
C15orf44	Testis
C15orf5	Superior Cervical Ganglion
C16orf3	Dorsal Root Ganglion
C16orf53	pineal day
C16orf59	CD71 Early Erythroid

-	
C16orf68	Testis
C16orf71	Testis Seminiferous Tubule
C17orf42	X721 B lymphoblasts
C17orf53	Dorsal Root Ganglion
C17orf59	Dorsal Root Ganglion
C17orf68	CD8 T cells
C17orf73	Cardiac Myocytes
C17orf80	Testis Germ Cell
C17orf81	Testis Intersitial
C17orf85	BDCA4 Dentritic Cells
C17orf88	Superior Cervical Ganglion
C19orf29	Leukemia chronic
	Myelogenous K564
C19orf61	Leukemia lymphoblastic
02/01/01	MOLT 6
C1GALT1C1	Superior Cervical Ganglion
C1orf103	Leukemia chronic
	Myelogenous K565
C1orf105	Testis Intersitial
C1orf106	small intestine
C1orf114	Testis Intersitial
C1orf135	Testis
C1orf14	Testis Leydig Cell
C1orf156	CD19 Bcells neg. sel.
C1orf175	Testis Intersitial

C1orf222	Testis
C1orf25	CD71 Early Erythroid
C1orf27	pineal night
C1orf35	CD71 Early Erythroid
C1orf50	Testis
C1orf66	Leukemia chronic Myelogenous K566
C1orf68	Liver
C1orf89	Atrioventricular Node
C1orf9	CD71 Early Erythroid
C1QTNF1	Smooth Muscle
C1QTNF3	Spinal Cord
C2	Liver
C20orf191	Superior Cervical Ganglion
C20orf29	Superior Cervical Ganglion
C21orf45	CD105 Endothelial
C21orf7	Whole Blood
C21orf91	Testis Intersitial
C22orf24	Superior Cervical Ganglion
C22orf26	Ciliary Ganglion
C22orf30	Trigeminal Ganglion
C22orf31	Uterus Corpus
C2CD2	Adrenal Cortex
C2orf18	Cerebellum

C2orf34	pineal day
C2orf42	Testis
C2orf43	X721 B lymphoblasts
C2orf54	Trigeminal Ganglion
C3AR1	CD14 Monocytes
C3orf37	Lymphoma burkitts Daudi
C3orf64	pineal day
C4orf19	Placenta
C4orf23	Superior Cervical Ganglion
C4orf6	Superior Cervical Ganglion
C5	Fetal liver
C5AR1	Whole Blood
C5orf23	CD39
C5orf28	Thyroid
C5orf4	CD71 Early Erythroid
C5orf42	Superior Cervical Ganglion
C6orf103	Testis Intersitial
C6orf105	Colon
C6orf108	Lymphoma burkitts Raji
C6orf124	Fetal brain
C6orf162	Pituitary
C6orf208	Superior Cervical Ganglion
C6orf25	Superior Cervical Ganglion
C6orf27	Superior Cervical Ganglion
L	<u>-</u>

C6orf35	Appendix
C6orf54	Skeletal Muscle
C6orf64	Testis
C7orf10	Bronchial Epithelial Cells
C7orf25	Superior Cervical Ganglion
C7orf58	Leukemia chronic
0.01100	Myelogenous K567
	Nijelogenous ikeo,
C8G	Liver
C8orf17	Superior Cervical Ganglion
C8orf41	Leukemia lymphoblastic
	MOLT 7
C9	Liver
C9orf116	Testis
C9011110	Tesus
C9orf27	Trigeminal Ganglion
C9orf3	Uterus
C9orf38	Superior Cervical Ganglion
C9orf40	CD71 Early Erythroid
C9orf46	Bronchial Epithelial Cells
C9orf68	Skeletal Muscle
C9orf86	CD71 Early Erythroid
C9orf9	Testis Intersitial
CA1	CD71 Early Erythroid
CA12	Kidney
CA3	Thyroid
CA4	Lung

~	T
CA5A	Liver
CA5B	Superior Cervical Ganglion
CA6	Salivary gland
CA7	Atrioventricular Node
CA9	Skin
CAB39L	Prostate
CABP5	retina
CABYR	Testis Intersitial
CACNA1B	Superior Cervical Ganglion
CACNA1D	Pancreas
CACNA1E	Superior Cervical Ganglion
CACNA1F	pineal day
CACNA1G	Cerebellum
CACNA1H	Adrenal Cortex
CACNA1I	Prefrontal Cortex
CACNA1S	Skeletal Muscle
CACNA2D1	Superior Cervical Ganglion
CACNA2D3	CD14 Monocytes
CACNB1	Skeletal Muscle
CACNG2	Cerebellum Peduncles
CACNG4	Skeletal Muscle
CADM4	Prostate
CADPS2	Cerebellum Peduncles
CALCA	Dorsal Root Ganglion
	<u> </u>

CALCRL	Fetal lung
CALML5	Skin
CAMK1G	Whole Brain
CAMK4	Testis Intersitial
CAMTA2	pineal night
CAND2	Heart
CANT1	Prostate
CAPN5	Colon
CAPN6	Placenta
CAPN7	Superior Cervical Ganglion
CARD14	CD71 Early Erythroid
CASP10	CD4 T cells
CASP2	Leukemia lymphoblastic MOLT 8
CASP9	Adrenal Cortex
CASQ2	Heart
CASR	Kidney
CASS4	Cingulate Cortex
CATSPERB	Superior Cervical Ganglion
CAV3	Superior Cervical Ganglion
CBFA2T3	BDCA4 Dentritic Cells
CBL	Testis Germ Cell
CBLC	Bronchial Epithelial Cells
CBX2	Trachea
	I .

CCBP2	Superior Cervical Ganglion
CCDC132	Trigeminal Ganglion
CCDC19	Testis Intersitial
CCDC21	CD71 Early Erythroid
CCDC25	CD33 Myeloid
CCDC28B	Lymphoma burkitts Raji
CCDC33	Superior Cervical Ganglion
CCDC41	CD40
CCDC46	Testis Intersitial
CCDC51	Leukemia promyelocytic HL60
CCDC6	Colon
CCDC64	CD8 T cells
CCDC68	Fetal lung
CCDC76	CD8 T cells
CCDC81	Superior Cervical Ganglion
CCDC87	Testis
CCDC88A	BDCA4 Dentritic Cells
CCDC88C	CD56 NK Cells
CCDC99	Leukemia lymphoblastic MOLT 9
CCHCR1	Testis
CCIN	Testis Intersitial
CCKAR	Uterus Corpus
CCL11	Smooth Muscle

CCL13	small intestine
CCL18	Thymus
CCL2	Smooth Muscle
CCL21	Lymph node
CCL22	X721 B lymphoblasts
CCL24	Uterus Corpus
CCL27	Skin
CCL3	CD33 Myeloid
CCL4	CD56 NK Cells
CCL7	Smooth Muscle
CCND1	Colorectal adenocarcinoma
CCNF	CD71 Early Erythroid
CCNJ	Ciliary Ganglion
CCNJL	Atrioventricular Node
CCNL2	CD4 T cells
CCNO	Testis
CCR10	X721 B lymphoblasts
CCR3	Whole Blood
CCR5	CD8 T cells
CCR6	CD19 Bcells neg. sel.
CCRL2	CD71 Early Erythroid
CCRN4L	Appendix
CCS	CD71 Early Erythroid
CCT4	Superior Cervical Ganglion
L	

CD160	CD56 NK Cells
CD180	CD19 Bcells neg. sel.
CD1C	Thymus
CD207	Appendix
CD209	Lymph node
CD22	Lymphoma burkitts Raji
CD226	Superior Cervical Ganglion
CD244	CD56 NK Cells
CD248	Adipocyte
CD320	Heart
CD3EAP	Dorsal Root Ganglion
CD3G	Thymus
CD4	BDCA4 Dentritic Cells
CD40	Lymphoma burkitts Raji
CD40LG	CD41
CD5L	CD105 Endothelial
CD79B	Lymphoma burkitts Raji
CD80	X721 B lymphoblasts
CD81	CD71 Early Erythroid
CDC14A	Testis
CDC25C	Testis Intersitial
CDC27	CD71 Early Erythroid
CDC34	CD71 Early Erythroid
CDC42EP2	Smooth Muscle

CDC6	Colorectal adenocarcinoma
CDC73	Colon
CDCA4	CD71 Early Erythroid
CDCP1	Bronchial Epithelial Cells
CDH13	Uterus
CDH15	Cerebellum
CDH18	Subthalamic Nucleus
CDH20	Superior Cervical Ganglion
CDH22	Cerebellum Peduncles
CDH3	Bronchial Epithelial Cells
CDH4	Amygdala
CDH5	Placenta
CDH6	Trigeminal Ganglion
CDH7	Skeletal Muscle
CDK5R2	Whole Brain
CDK6	CD42
CDK8	Colorectal adenocarcinoma
CDKL2	Superior Cervical Ganglion
CDKL3	Superior Cervical Ganglion
CDKL5	Superior Cervical Ganglion
CDKN2D	CD71 Early Erythroid
CDON	Tonsil
CDR1	Cerebellum
CDS1	small intestine

CDSN	Skin
CDX4	Superior Cervical Ganglion
CDYL	CD71 Early Erythroid
CEACAM21	Bone marrow
CEACAM3	Whole Blood
CEACAM5	Colon
CEACAM7	Colon
CEACAM8	Bone marrow
СЕВРА	Liver
СЕВРЕ	Bone marrow
CELSR3	Fetal brain
CEMP1	Skeletal Muscle
CENPE	CD71 Early Erythroid
CENPI	Appendix
CENPQ	Trigeminal Ganglion
CENPT	CD71 Early Erythroid
CEP170	Fetal brain
CEP55	X721 B lymphoblasts
CEP63	Whole Blood
CEP76	CD71 Early Erythroid
CER1	Superior Cervical Ganglion
CES1	Liver
CES2	Liver
CES3	Colon

CETN1	Testis
CFHR4	Liver
CFHR5	Liver
CFI	Fetal liver
CGB	Placenta
CGRRF1	Testis Intersitial
CHAD	Trachea
CHAF1A	Leukemia lymphoblastic MOLT 10
CHAF1B	Leukemia lymphoblastic MOLT 11
СНАТ	Uterus Corpus
CHD3	Fetal brain
CHD8	Trigeminal Ganglion
CHI3L1	Uterus Corpus
CHIA	Lung
CHIT1	Lymph node
СНКА	Testis Intersitial
CHML	Superior Cervical Ganglion
СНМР1В	Superior Cervical Ganglion
СНМР6	Heart
CHODL	Testis Germ Cell
CHPF	Colorectal adenocarcinoma
CHRM2	Skeletal Muscle
CHRM3	Prefrontal Cortex

CHRM4	Superior Cervical Ganglion
CHRM5	Skeletal Muscle
CHRNA2	Heart
CHRNA4	Skeletal Muscle
CHRNA5	Appendix
CHRNA6	Temporal Lobe
CHRNA9	Appendix
CHRNB3	Superior Cervical Ganglion
CHST10	Whole Brain
CHST12	CD56 NK Cells
CHST3	Testis Germ Cell
CHST4	Uterus Corpus
CHST7	Ovary
CHSY1	Placenta
CIB2	BDCA4 Dentritic Cells
CIDEA	Ciliary Ganglion
CIDEB	Liver
CIDEC	Adipocyte
CISH	Leukemia chronic
	Myelogenous K568
CKAP2	CD71 Early Erythroid
CKM	Skeletal Muscle
CLCA4	Colon
CLCF1	Uterus Corpus

CLCN1	Skeletal Muscle
CLCN2	Olfactory Bulb
CLCN5	Appendix
CLCN6	Whole Brain
CLCNKA	Kidney
CLCNKB	Kidney
CLDN10	Kidney
CLDN11	Heart
CLDN15	small intestine
CLDN4	Colorectal adenocarcinoma
CLDN7	Colon
CLDN8	Salivary gland
CLEC11A	CD43
CLEC16A	Lymphoma burkitts Raji
CLEC4M	Lymph node
CLEC5A	CD33 Myeloid
CLGN	Testis Intersitial
CLIC2	CD71 Early Erythroid
CLIC5	Skeletal Muscle
CLMN	Testis Intersitial
CLN3	Placenta
CLN5	Thyroid
CLN6	pineal day
CLPB	Testis Intersitial
L	l

CLTCL1	Testis
CLUL1	retina
CMA1	Adrenal Cortex
СМАН	Uterus
CMAS	CD71 Early Erythroid
CMKLR1	BDCA4 Dentritic Cells
CNGA1	Uterus Corpus
CNIH3	Amygdala
CNNM1	Prefrontal Cortex
CNNM4	pineal day
CNR1	Fetal brain
CNR2	Uterus Corpus
CNTFR	Cardiac Myocytes
CNTLN	Trigeminal Ganglion
CNTN2	Thalamus
COBLL1	Placenta
COG7	Prostate
COL11A1	Adipocyte
COL13A1	Cardiac Myocytes
COL14A1	Uterus
COL17A1	Bronchial Epithelial Cells
COL19A1	Trigeminal Ganglion
COL7A1	Skin
COL8A2	retina
L	l

COL9A1	pineal night
COL9A2	retina
COLEC10	Appendix
COLEC11	Liver
COMP	Adipocyte
COMT	Liver
COQ4	Thyroid
COQ6	Testis
CORIN	Superior Cervical Ganglion
CORO1B	CD14 Monocytes
CORO2A	Bronchial Epithelial Cells
COX6B1	Superior Cervical Ganglion
СР	Fetal liver
CPA3	CD44
СРМ	Adipocyte
CPN2	Liver
CPNE6	Amygdala
CPNE7	Leukemia chronic
	Myelogenous K569
	Wiyelogenous 1x507
CPOX	Fetal liver
CPT1A	X721 B lymphoblasts
CPZ	Placenta
CPZ CR1	Placenta Whole Blood

Placenta
Cerebellum Peduncles
Placenta
Testis Intersitial
Adipocyte
Skeletal Muscle
Lung
Adipocyte
pineal night
Kidney
Pancreatic Islet
Superior Cervical Ganglion
Superior Cervical Ganglion
retina
Superior Cervical Ganglion
Fetal brain
Leukemia chronic
Myelogenous K570
Heart
Colorectal adenocarcinoma
BDCA4 Dentritic Cells
Smooth Muscle
Whole Blood
Salivary gland

CSNK1G3	CD19 Bcells neg. sel.
CSPG4	Trigeminal Ganglion
CST2	Salivary gland
CST4	Salivary gland
CST5	Salivary gland
CST7	CD56 NK Cells
CSTF2T	CD105 Endothelial
CTAG2	X721 B lymphoblasts
CTBS	Whole Blood
CTDSPL	Colorectal adenocarcinoma
CTF1	Superior Cervical Ganglion
CTLA4	Superior Cervical Ganglion
CTNNA3	Testis Intersitial
CTPS2	Ciliary Ganglion
CTSD	Lung
CTSG	Bone marrow
CTSK	Uterus Corpus
CTTNBP2NL	CD8 T cells
CUBN	Kidney
CUEDC1	BDCA4 Dentritic Cells
CUL1	Testis Intersitial
CUL7	Smooth Muscle
CXCL1	Smooth Muscle
CXCL3	Smooth Muscle
	<u> </u>

CXCL5	Smooth Muscle
CXCL6	Smooth Muscle
CXCR3	BDCA4 Dentritic Cells
CXCR5	CD19 Bcells neg. sel.
CXorf1	pineal day
CXorf40A	Adrenal Cortex
CXorf56	Superior Cervical Ganglion
CXorf57	Hypothalamus
CYB561	Prostate
CYLC1	Testis Seminiferous Tubule
CYLD	CD4 T cells
CYorf15B	CD4 T cells
CYP19A1	Placenta
CYP1A1	Lung
CYP1A2	Liver
CYP20A1	BDCA4 Dentritic Cells
CYP26A1	Fetal brain
CYP27A1	Liver
CYP27B1	Bronchial Epithelial Cells
CYP2A6	Liver
CYP2A7	Liver
CYP2B7P1	Superior Cervical Ganglion
CYP2C19	Atrioventricular Node
CYP2C8	Liver
	1

CYP2C9	Liver
CYP2D6	Liver
CYP2E1	Liver
CYP2F1	Superior Cervical Ganglion
CYP2W1	Skin
CYP3A43	Liver
CYP3A5	small intestine
CYP3A7	Fetal liver
CYP4F11	Liver
CYP4F2	Liver
CYP4F8	Prostate
CYP7B1	Ciliary Ganglion
DACT1	Fetal brain
DAGLA	Amygdala
DAO	Kidney
DAPK2	Atrioventricular Node
DAZ1	Testis Leydig Cell
DAZL	Testis
DBI	CD71 Early Erythroid
DBNDD1	Trigeminal Ganglion
DBP	Thyroid
DCBLD2	Trigeminal Ganglion
DCC	Testis Seminiferous Tubule
DCHS2	Cerebellum
L	1

DCI	Liver
DCLRE1A	X721 B lymphoblasts
DCP1A	CD4 T cells
DCT	retina
DCUN1D1	CD71 Early Erythroid
DCUN1D2	Heart
DCX	Fetal brain
DDX10	Leukemia promyelocytic
	HL61
	IILUI
DDX17	Heart
DDX23	Thymus
DDX25	Testis Leydig Cell
DDX28	CD14 Monocytes
DDX31	Superior Cervical Ganglion
DDX43	Testis Seminiferous Tubule
DDX5	Liver
DDX51	BDCA4 Dentritic Cells
DDX52	Colorectal adenocarcinoma
DECR2	Liver
DEFA4	Bone marrow
DEFA5	small intestine
DEFA6	small intestine
DEFB126	Testis Germ Cell
DEGS1	Skin

DENND1A	X721 B lymphoblasts
DENND2A	Atrioventricular Node
DENND3	CD33 Myeloid
DENND4A	pineal night
DEPDC5	Lymphoma burkitts Raji
DES	Skeletal Muscle
DGAT1	small intestine
DGCR14	Testis Intersitial
DGCR6L	Trigeminal Ganglion
DGCR8	Leukemia chronic
	Myelogenous K571
	Wiyelogellous K3/1
DGKA	CD4 T cells
DGKB	Caudate nucleus
DGKE	Superior Cervical Ganglion
DGKG	Cerebellum
DGKQ	Superior Cervical Ganglion
DHDDS	pineal day
DHODH	Liver
DHRS1	Liver
DHRS12	Liver
DHRS2	Colorectal adenocarcinoma
DHRS9	Trachea
DHTKD1	Liver
DHX29	CD71 Early Erythroid

DHX35	Leukemia lymphoblastic
	MOLT 12
DHX38	CD56 NK Cells
DHX57	Testis Seminiferous Tubule
DIAPH2	Testis Germ Cell
DIDO1	CD8 T cells
DIO2	Thyroid
DIO3	Cerebellum Peduncles
DKFZP434L187	Atrioventricular Node
DKK2	Ciliary Ganglion
DKK4	Pancreas
DLAT	Adipocyte
DLEU2	CD71 Early Erythroid
DLG3	Fetal brain
DLK2	Testis Leydig Cell
DLL3	Fetal brain
DLX2	Fetal brain
DLX4	Placenta
DLX5	Placenta
DMC1	Superior Cervical Ganglion
DMD	Olfactory Bulb
DMPK	Heart
DMWD	Atrioventricular Node
DNA2	X721 B lymphoblasts
	·

DNAH17	Testis
DNAH2	Atrioventricular Node
DNAH9	Cardiac Myocytes
DNAI1	Testis
DNAI2	Testis
DNAJC1	CD56 NK Cells
DNAJC9	CD71 Early Erythroid
DNAL4	Testis
DNALI1	Testis Intersitial
DNASE1L1	CD14 Monocytes
DNASE1L2	Tonsil
DNASE1L3	BDCA4 Dentritic Cells
DNASE2B	Salivary gland
DND1	Testis
DNM2	BDCA4 Dentritic Cells
DNMT3A	Superior Cervical Ganglion
DNMT3B	Leukemia chronic
	Myelogenous K572
DNMT3L	Liver
DOC2B	Adrenal gland
DOCK5	Superior Cervical Ganglion
DOCK6	Lung
DOK2	CD14 Monocytes
DOK3	Superior Cervical Ganglion

DOK4	Fetal brain
DOK5	Fetal brain
DOLK	Testis
DOPEY2	Skeletal Muscle
DOT1L	Superior Cervical Ganglion
DPAGT1	X721 B lymphoblasts
DPEP3	Testis
DPF3	Cerebellum
DPH2	Skeletal Muscle
DPM2	CD71 Early Erythroid
DPP4	Smooth Muscle
DPPA4	CD45
DPT	Adipocyte
	raipoeyte
DPY19L2P2	
DPY19L2P2	Leukemia lymphoblastic MOLT 13
	Leukemia lymphoblastic MOLT 13
DPY19L2P2 DRD2	Leukemia lymphoblastic
	Leukemia lymphoblastic MOLT 13
DRD2	Leukemia lymphoblastic MOLT 13 Caudate nucleus
DRD2 DSC1	Leukemia lymphoblastic MOLT 13 Caudate nucleus Skin
DRD2 DSC1 DSG1	Leukemia lymphoblastic MOLT 13 Caudate nucleus Skin Skin
DRD2 DSC1 DSG1 DTL	Leukemia lymphoblastic MOLT 13 Caudate nucleus Skin Skin CD105 Endothelial
DRD2 DSC1 DSG1 DTL DTX2	Leukemia lymphoblastic MOLT 13 Caudate nucleus Skin Skin CD105 Endothelial Skeletal Muscle
DRD2 DSC1 DSG1 DTL DTX2 DTYMK	Leukemia lymphoblastic MOLT 13 Caudate nucleus Skin Skin CD105 Endothelial Skeletal Muscle CD105 Endothelial
DRD2 DSC1 DSG1 DTL DTX2 DTYMK DUSP10	Leukemia lymphoblastic MOLT 13 Caudate nucleus Skin Skin CD105 Endothelial Skeletal Muscle CD105 Endothelial X721 B lymphoblasts

DUSP7	Bronchial Epithelial Cells
DVL3	Placenta
DYNC2H1	Pituitary
DYRK2	CD8 T cells
DYRK4	Testis Intersitial
DYSF	Whole Blood
E2F1	CD71 Early Erythroid
E2F2	CD71 Early Erythroid
E2F4	CD71 Early Erythroid
E2F5	Lymphoma burkitts Daudi
E2F8	CD71 Early Erythroid
E4F1	CD4 T cells
EAF2	CD19 Bcells neg. sel.
EBI3	Placenta
ECHDC1	Adipocyte
ECHS1	Liver
ECM1	Tongue
ECSIT	Heart
EDA	Trigeminal Ganglion
EDA2R	Superior Cervical Ganglion
EDC3	Testis
EDIL3	Occipital Lobe
EDN2	Superior Cervical Ganglion
EDN3	retina

	_
EDNRA	Uterus
EFCAB1	Superior Cervical Ganglion
EFHC1	Testis Intersitial
EFHC2	Appendix
EFNA4	Prostate
EFNB1	Colorectal adenocarcinoma
EFNB3	Fetal brain
EGF	Kidney
EGFR	Placenta
EGLN1	Whole Blood
EIF1AY	CD71 Early Erythroid
EIF2AK1	CD71 Early Erythroid
EIF2B4	Testis
EIF2C2	CD71 Early Erythroid
EIF2C3	Pituitary
EIF3K	Superior Cervical Ganglion
EIF4G2	Liver
EIF5A2	Ciliary Ganglion
ELF3	Colon
ELL2	Pancreatic Islet
ELMO3	CD71 Early Erythroid
ELOVL6	Adipocyte
ELSPBP1	Testis Leydig Cell
ELTD1	Smooth Muscle
	·

EMID1	Fetal brain
EMILIN2	Superior Cervical Ganglion
EML1	Fetal brain
EMR3	Whole Blood
EMX2	Uterus
EN1	Adipocyte
ENDOG	Liver
ENO3	Skeletal Muscle
ENOX1	Fetal brain
ENPP1	Thyroid
ENTPD1	X721 B lymphoblasts
ENTPD2	Superior Cervical Ganglion
ENTPD3	Caudate nucleus
ENTPD4	Smooth Muscle
ENTPD7	Bone marrow
EPB41	CD71 Early Erythroid
EPB41L4A	Trigeminal Ganglion
EPHA1	Liver
ЕРНА3	Fetal brain
ЕРНА5	Fetal brain
EPN2	CD71 Early Erythroid
EPN3	Thalamus
EPS15L1	Appendix
EPS8L1	Placenta

EPS8L3	Pancreas
EPX	Bone marrow
EPYC	Placenta
ERCC1	Heart
ERCC4	Superior Cervical Ganglion
ERCC6	Ovary
ERCC8	Uterus Corpus
EREG	CD46
ERF	Ciliary Ganglion
ERG	CD47
ERICH1	Superior Cervical Ganglion
ERLIN2	Thyroid
ERMAP	CD71 Early Erythroid
ERMP1	CD56 NK Cells
ERN1	Liver
ERO1LB	Pancreatic Islet
ESM1	CD105 Endothelial
ESR1	Uterus
ETFB	Liver
ETNK1	Colon
ETNK2	Liver
ETV3	Superior Cervical Ganglion
ETV4	Colorectal adenocarcinoma
EVPL	Tongue
L	4

EXOSC1	Trigeminal Ganglion
EXOSC2	X721 B lymphoblasts
EXOSC4	Testis
EXOSC5	X721 B lymphoblasts
EXPH5	Placenta
EXT2	Smooth Muscle
EXTL3	Subthalamic Nucleus
EYA3	Cardiac Myocytes
EYA4	Skin
F10	Liver
F11	Pancreas
F12	Liver
F13B	Fetal liver
F2R	Cardiac Myocytes
F2RL1	Colon
FAAH	pineal night
FABP6	small intestine
FABP7	Fetal brain
FADS1	Adipocyte
FAH	Liver
FAIM	Colorectal adenocarcinoma
FAM105A	BDCA4 Dentritic Cells
FAM106A	Atrioventricular Node
FAM108B1	Whole Brain

FAM110B	Trigeminal Ganglion
FAM118A	CD33 Myeloid
FAM119B	Uterus Corpus
FAM120C	Ovary
FAM125B	Spinal Cord
FAM127B	Thyroid
FAM135A	Appendix
FAM149A	pineal day
FAM48A	Testis Intersitial
FAM50B	Whole Brain
FAM55D	Colon
FAM5C	Amygdala
FAM63A	Whole Blood
FAM86A	Pituitary
FAM86B1	Skeletal Muscle
FAM86C	Leukemia promyelocytic HL62
FANCE	Lymphoma burkitts Daudi
FANCG	Leukemia lymphoblastic MOLT 14
FARP2	Testis
FARS2	Heart
FAS	Whole Blood
FASLG	CD56 NK Cells
FASTK	Heart
	ı

E A CENTEDA	YEAR DI LIL
FASTKD2	X721 B lymphoblasts
FAT4	Fetal brain
FBLN2	Adipocyte
FBN2	Placenta
FBP1	Liver
FBP2	Skeletal Muscle
FBXL12	Thymus
FBXL15	Whole Brain
FBXL4	CD71 Early Erythroid
FBXL6	Pancreas
FBXL8	X721 B lymphoblasts
FBXO17	Leukemia chronic
	Myelogenous K573
FBXO38	CD8 T cells
FBXO4	Trigeminal Ganglion
FBXO46	X721 B lymphoblasts
FCGR2A	Whole Blood
FCGR2B	Placenta
FCHO1	Lymphoma burkitts Raji
FCN2	Liver
FCRL2	CD19 Bcells neg. sel.
FECH	CD71 Early Erythroid
FEM1B	Testis Intersitial
FEM1C	Cerebellum
L	1

FER1L4	Trigeminal Ganglion
FETUB	Liver
FEZF2	Amygdala
FFAR2	Whole Blood
FFAR3	Temporal Lobe
FGD1	Fetal brain
FGD2	CD33 Myeloid
FGF12	Occipital Lobe
FGF14	Cerebellum
FGF17	Cingulate Cortex
FGF2	Smooth Muscle
FGF22	Ovary
FGF23	Superior Cervical Ganglion
FGF3	Colorectal adenocarcinoma
FGF4	Olfactory Bulb
FGF5	Superior Cervical Ganglion
FGF8	Superior Cervical Ganglion
FGF9	Cerebellum Peduncles
FGFR1OP	Testis Intersitial
FGFR4	Liver
FGL1	Fetal liver
FGL2	CD14 Monocytes
FHIT	CD4 T cells
FHL3	Skeletal Muscle

Testis Intersitial
Uterus
Smooth Muscle
Smooth Muscle
Testis
CD105 Endothelial
Superior Cervical Ganglion
Skin
Temporal Lobe
Skeletal Muscle
Whole Blood
Superior Cervical Ganglion
Placenta
Lung
Liver
Appendix
Superior Cervical Ganglion
Fetal brain
Testis Intersitial
Prostate
Colorectal adenocarcinoma
Prostate
Pancreatic Islet
Superior Cervical Ganglion

FOXC1	Salivary gland
FOXC2	Superior Cervical Ganglion
FOXD3	Superior Cervical Ganglion
FOXD4	Globus Pallidus
FOXE1	Thyroid
FOXE3	Superior Cervical Ganglion
FOXK2	Adrenal Cortex
FOXL1	Liver
FOXN1	Superior Cervical Ganglion
FOXN2	Appendix
FOXP3	Adrenal Cortex
FPGS	Ovary
FPGT	pineal day
FPR2	Whole Blood
FPR3	Superior Cervical Ganglion
FRAT1	Whole Blood
FRAT2	Whole Blood
FRK	Superior Cervical Ganglion
FRMD8	Superior Cervical Ganglion
FRS2	Pituitary
FRS3	Testis
FRZB	retina
FSHB	Pituitary
FSHR	Superior Cervical Ganglion
L	

TO TO	
FST	Bronchial Epithelial Cells
FSTL3	Placenta
FSTL4	Appendix
FTCD	Liver
FTSJ1	Bronchial Epithelial Cells
FXC1	Superior Cervical Ganglion
FXN	CD105 Endothelial
FXYD2	Kidney
FYCO1	Tongue
FZD4	Adipocyte
FZD5	Colon
FZD7	Cerebellum
FZD8	Superior Cervical Ganglion
FZD9	Appendix
FZR1	CD71 Early Erythroid
G6PC	Liver
G6PC2	Superior Cervical Ganglion
GAB1	Superior Cervical Ganglion
GABRA4	Caudate nucleus
GABRA5	Amygdala
GABRB2	Skin
GABRE	Placenta
GABRG3	Subthalamic Nucleus
GABRP	Tonsil

Skeletal Muscle
Caudate nucleus
Placenta
Heart
Spinal Cord
Liver
Leukemia chronic Myelogenous K574
CD33 Myeloid
Colon
Kidney
CD71 Early Erythroid
CD71 Early Erythroid
Trigeminal Ganglion
Superior Cervical Ganglion
Liver
Liver
Testis Intersitial
CD71 Early Erythroid
Appendix
Cerebellum
Heart
Leukemia chronic Myelogenous K575
Superior Cervical Ganglion

GBA	Placenta
GBX1	Bone marrow
GCAT	Liver
GCDH	Liver
GCGR	Liver
GCHFR	Liver
GCKR	Liver
GCLC	CD71 Early Erythroid
GCLM	CD71 Early Erythroid
GCM1	Placenta
GCM2	Skeletal Muscle
GCNT1	CD19 Bcells neg. sel.
GCNT2	CD71 Early Erythroid
GDAP1L1	Fetal brain
GDF11	retina
GDF15	Placenta
GDF2	Subthalamic Nucleus
GDF5	Fetal liver
GDF9	Testis Leydig Cell
GDPD3	Colon
GEM	Uterus Corpus
GEMIN4	Testis Intersitial
GEMIN8	Skeletal Muscle
GFOD2	Superior Cervical Ganglion

GFRA3	Liver
GFRA4	Pons
GGTLC1	Lung
GH2	Placenta
GHRHR	Pituitary
GHSR	Superior Cervical Ganglion
GIF	Superior Cervical Ganglion
GIMAP4	Whole Blood
GINS4	X721 B lymphoblasts
GIP	small intestine
GIPC2	small intestine
GJA3	Superior Cervical Ganglion
GJA4	Lung
GJA5	Superior Cervical Ganglion
	Skeletal Muscle
GJA8	
GJA8 GJB1	Liver
GJB1	Liver
GJB1 GJB3	Liver Bronchial Epithelial Cells
GJB1 GJB3 GJB5	Liver Bronchial Epithelial Cells Bronchial Epithelial Cells
GJB1 GJB3 GJB5 GJC1	Liver Bronchial Epithelial Cells Bronchial Epithelial Cells Superior Cervical Ganglion
GJB1 GJB3 GJB5 GJC1 GJC2	Liver Bronchial Epithelial Cells Bronchial Epithelial Cells Superior Cervical Ganglion Spinal Cord
GJB1 GJB3 GJB5 GJC1 GJC2 GK	Liver Bronchial Epithelial Cells Bronchial Epithelial Cells Superior Cervical Ganglion Spinal Cord Whole Blood
GJB1 GJB3 GJB5 GJC1 GJC2 GK GK2	Liver Bronchial Epithelial Cells Bronchial Epithelial Cells Superior Cervical Ganglion Spinal Cord Whole Blood Testis Intersitial

GLE1	Testis Intersitial
GLI1	Atrioventricular Node
GLMN	Skeletal Muscle
GLP2R	Superior Cervical Ganglion
GLRA1	Superior Cervical Ganglion
GLRA2	Uterus Corpus
GLS2	Liver
GLT8D2	Smooth Muscle
GLTP	Tonsil
GLTPD1	Heart
GMDS	Colon
GMEB1	CD56 NK Cells
GML	Trigeminal Ganglion
GNA13	BDCA4 Dentritic Cells
GNA14	Superior Cervical Ganglion
GNAT1	retina
GNAZ	Fetal brain
GNB1L	Leukemia chronic
	Myelogenous K576
GNG4	Superior Cervical Ganglion
GNLY	CD56 NK Cells
GNRHR	Pituitary
GOLT1B	Smooth Muscle
GON4L	Leukemia chronic Myelogenous K577

GP5	Trigeminal Ganglion
GP6	Superior Cervical Ganglion
GP9	Whole Blood
GPATCH1	CD8 T cells
GPATCH2	Testis Seminiferous Tubule
GPATCH3	CD14 Monocytes
GPATCH4	Atrioventricular Node
GPATCH8	CD56 NK Cells
GPC4	Pituitary
GPC5	pineal day
GPD1	Adipocyte
GPI	CD71 Early Erythroid
GPKOW	CD71 Early Erythroid
GPR124	retina
GPR137	Testis
GPR143	retina
GPR153	Fetal brain
GPR157	Globus Pallidus
GPR161	Uterus
GPR17	Whole Brain
GPR172B	Placenta
GPR176	Smooth Muscle
GPR18	CD19 Bcells neg. sel.
GPR182	Superior Cervical Ganglion

GPR20	Trigeminal Ganglion
GPR21	Globus Pallidus
GPR31	Superior Cervical Ganglion
GPR32	Superior Cervical Ganglion
GPR35	Pancreas
GPR37L1	Amygdala
GPR39	Superior Cervical Ganglion
GPR4	Lung
GPR44	Thymus
GPR50	Superior Cervical Ganglion
GPR52	Superior Cervical Ganglion
GPR6	Caudate nucleus
GPR64	Testis Leydig Cell
GPR65	CD56 NK Cells
GPR68	Skeletal Muscle
GPR87	Bronchial Epithelial Cells
GPR98	Medulla Oblongata
GPRIN2	Superior Cervical Ganglion
GPT	Liver
GPX5	Testis Leydig Cell
GRAMD1C	Appendix
GRB7	Liver
GREM1	Smooth Muscle
GRID2	Superior Cervical Ganglion
L	l

GRIK3	Superior Cervical Ganglion
GRIK4	Olfactory Bulb
GRIN2A	Subthalamic Nucleus
GRIN2B	Skeletal Muscle
GRIN2C	Thyroid
GRIN2D	Superior Cervical Ganglion
GRIP1	Superior Cervical Ganglion
GRIP2	CD48
GRK1	Superior Cervical Ganglion
GRK4	Testis
GRM1	Cerebellum
GRM2	Heart
GRM4	Cerebellum Peduncles
GRRP1	Globus Pallidus
GRTP1	Superior Cervical Ganglion
GSR	X721 B lymphoblasts
GSTCD	Atrioventricular Node
GSTM1	Liver
GSTM2	Liver
GSTM4	small intestine
GSTT2	Whole Brain
GSTTP1	Testis Intersitial
GSTZ1	Liver
GTF2IRD1	Colorectal adenocarcinoma

GTF3C5	Heart
GTPBP1	CD71 Early Erythroid
GUCY1A2	Superior Cervical Ganglion
GUCY1B2	Superior Cervical Ganglion
GUCY2C	Colon
GUCY2D	BDCA4 Dentritic Cells
GUF1	Superior Cervical Ganglion
GULP1	Placenta
GYG2	Adipocyte
GYPE	CD71 Early Erythroid
GYS1	Heart
GZMK	CD8 T cells
H2AFB1	Testis
НААО	Liver
HAL	Fetal liver
HAMP	Liver
HAO1	Liver
HAO2	Kidney
HAPLN1	Cardiac Myocytes
HAPLN2	Spinal Cord
HAS2	Skeletal Muscle
HBE1	Leukemia chronic
	Myelogenous K578
HBQ1	CD71 Early Erythroid

HBS1L	CD71 Early Erythroid
HBXIP	Kidney
HCCS	CD71 Early Erythroid
HCFC2	Testis Intersitial
HCG4	Superior Cervical Ganglion
HCG9	Liver
HCN4	Testis Leydig Cell
HCRT	Hypothalamus
HCRTR1	Bone marrow
HCRTR2	Atrioventricular Node
HDAC11	Testis
HDGF	CD71 Early Erythroid
HEATR6	Atrioventricular Node
HECTD3	CD71 Early Erythroid
HECW1	Atrioventricular Node
НЕРН	Leukemia chronic
111/111	Myelogenous K579
	Wiyelogenous 18377
HEXIM1	CD71 Early Erythroid
HEY2	retina
HGC6.3	Skeletal Muscle
HGF	Smooth Muscle
HGFAC	Liver
ННАТ	BDCA4 Dentritic Cells
HHIPL2	Testis Intersitial

HHLA1	Adrenal gland
	Aurenai gianu
HHLA3	Liver
HIC1	Superior Cervical Ganglion
HIC2	Leukemia chronic
	Myelogenous K580
HIF3A	Superior Cervical Ganglion
HIGD1B	Lung
HIP1R	CD19 Bcells neg. sel.
НІРК3	CD33 Myeloid
HIST1H1E	Leukemia chronic
	Myelogenous K581
HIST1H1T	Dorsal Root Ganglion
HIST1H2AB	CD19 Bcells neg. sel.
HIST1H2BC	Leukemia chronic
	Myelogenous K582
HIST1H2BG	CD8 T cells
HIST1H2BJ	Ciliary Ganglion
HIST1H2BM	Superior Cervical Ganglion
HIST1H2BN	small intestine
HIST1H3F	Uterus Corpus
HIST1H3I	Cardiac Myocytes
HIST1H3J	Atrioventricular Node
HIST1H4A	CD71 Early Erythroid
HIST1H4E	Superior Cervical Ganglion
HIST1H4G	Skeletal Muscle

THEODOLLA	T 1 . 1 .
HIST3H2A	Leukemia chronic
	Myelogenous K583
HIVEP2	Fetal brain
HKDC1	pineal night
HLA-DOB	CD19 Bcells neg. sel.
HLCS	Thyroid
HMBS	CD71 Early Erythroid
HMGA2	Bronchial Epithelial Cells
HMGB3	Placenta
HMGCL	Liver
HMGCS2	Liver
НМНВ1	Skeletal Muscle
HNF4G	Ovary
HNRNPA2B1	Liver
HOOK1	Testis Intersitial
HOOK2	Thyroid
HOXA1	Leukemia chronic
	Myelogenous K584
HOXA10	Uterus
HOXA3	Superior Cervical Ganglion
HOXA6	Kidney
HOXA7	Adrenal Cortex
HOXA9	Colorectal adenocarcinoma
HOXB1	Cingulate Cortex
HOXB13	Prostate

	1
HOXB5	Colorectal adenocarcinoma
НОХВ6	Colorectal adenocarcinoma
HOXB7	Colorectal adenocarcinoma
HOXB8	Superior Cervical Ganglion
HOXC11	Superior Cervical Ganglion
HOXC5	Liver
HOXC8	Skeletal Muscle
HOXD1	Trigeminal Ganglion
HOXD10	Uterus
HOXD11	Appendix
HOXD12	Skeletal Muscle
HOXD3	Uterus
HOXD4	Uterus
HOXD9	Uterus
HP	Liver
HPGD	Placenta
HPN	Liver
HPR	Liver
HPS1	CD71 Early Erythroid
HPS4	CD105 Endothelial
HR	pineal day
HRC	Heart
HRG	Liver
HRK	CD19 Bcells neg. sel.
L	<u> </u>

HS1BP3	CD14 Monocytes
1131113	CD14 Monocytes
HS3ST1	Ovary
HS3ST3B1	Heart
HS6ST1	Superior Cervical Ganglion
HSD11B1	Liver
HSD17B1	Placenta
HSD17B2	Placenta
HSD17B6	Liver
HSD17B8	Liver
HSD3B1	Placenta
HSF1	Heart
HSFX1	Cardiac Myocytes
HSP90AA1	Heart
HSPA1L	Testis Intersitial
HSPA4L	Testis Intersitial
HSPA6	Whole Blood
HSPB2	Heart
HSPB3	Heart
HSPC159	Superior Cervical Ganglion
HTN1	Salivary gland
HTR1A	Liver
HTR1B	Heart
HTR1D	Skeletal Muscle
HTR1E	pineal night

HTR1F	Appendix
HTR2A	Prefrontal Cortex
HTR2C	Caudate nucleus
HTR3A	Dorsal Root Ganglion
HTR3B	Skin
HTR5A	Skeletal Muscle
HTR7	Cardiac Myocytes
HTRA2	CD71 Early Erythroid
HUS1	Superior Cervical Ganglion
HYAL2	Lung
HYAL4	Superior Cervical Ganglion
ICAM4	CD71 Early Erythroid
ICAM5	Amygdala
ICOSLG	Skeletal Muscle
IDE	Testis Germ Cell
IDH3G	Heart
IER3IP1	Smooth Muscle
IFI44	CD33 Myeloid
IFIT1	Whole Blood
IFIT2	Whole Blood
IFIT5	Whole Blood
IFNA21	Testis Seminiferous Tubule
IFNA4	Dorsal Root Ganglion
IFNA5	Superior Cervical Ganglion

IFNA6	Superior Cervical Ganglion
IFNAR1	Superior Cervical Ganglion
IFNG	CD56 NK Cells
IFNW1	Ovary
IFT140	Thyroid
IFT52	CD71 Early Erythroid
IFT81	Testis Leydig Cell
IGF1R	Prostate
IGF2AS	Subthalamic Nucleus
IGFALS	Liver
IGLL1	CD49
IGLV6-57	Lymph node
IHH	Heart
IKZF3	CD8 T cells
IKZF5	CD8 T cells
IL10	Atrioventricular Node
IL11	Smooth Muscle
IL11RA	CD4 T cells
IL12A	Uterus Corpus
IL12RB2	CD56 NK Cells
IL13	Testis Intersitial
IL13RA2	Testis Intersitial
IL15	pineal night
IL17B	Olfactory Bulb
L	<u> </u>

IL17RA	CD33 Myeloid
IL17RB	Kidney
IL18RAP	CD56 NK Cells
IL19	Trachea
IL1B	Smooth Muscle
IL1F6	Superior Cervical Ganglion
IL1F7	Skeletal Muscle
IL1F9	Superior Cervical Ganglion
IL1RAPL1	Prefrontal Cortex
IL1RAPL2	Superior Cervical Ganglion
IL1RL1	Placenta
IL2	Heart
IL20RA	Ciliary Ganglion
IL21	Superior Cervical Ganglion
IL22	Superior Cervical Ganglion
IL24	Smooth Muscle
IL25	Pons
IL2RA	Superior Cervical Ganglion
IL2RB	CD56 NK Cells
IL3RA	BDCA4 Dentritic Cells
IL4	Atrioventricular Node
IL4R	CD19 Bcells neg. sel.
IL5	Atrioventricular Node
IL5RA	Ciliary Ganglion
L	l

IL9	Leukemia promyelocytic
	HL63
IL9R	Testis Intersitial
ILVBL	Heart
IMPG1	retina
INCENP	Leukemia lymphoblastic
	MOLT 15
INE1	Atrioventricular Node
ING1	CD19 Bcells neg. sel.
INHA	Testis Germ Cell
INHBA	Placenta
INHBE	Liver
INPP5B	X721 B lymphoblasts
INSIG2	X721 B lymphoblasts
INSL4	Placenta
INSL6	Superior Cervical Ganglion
INSRR	Superior Cervical Ganglion
INTS12	BDCA4 Dentritic Cells
INTS5	Liver
IPO8	CD4 T cells
IQCB1	Lymphoma burkitts Daudi
IRF2	Whole Blood
IRF6	Bronchial Epithelial Cells
IRS4	Skeletal Muscle
IRX4	Skin

IRX5	Lung
ISCA1	CD71 Early Erythroid
ISL1	Pancreatic Islet
ISOC2	Liver
ISYNA1	Testis Germ Cell
ITCH	Testis Intersitial
ITFG2	CD4 T cells
ITGA2	Bronchial Epithelial Cells
ITGA3	Bronchial Epithelial Cells
ITGA9	Testis Seminiferous Tubule
ITGB1BP3	Heart
ITGB5	Colorectal adenocarcinoma
ITGB6	Bronchial Epithelial Cells
ITGB8	Appendix
ITGBL1	Adipocyte
ITIH4	Liver
ITIH5	Placenta
ITM2B	X721 B lymphoblasts
ITPKA	Whole Brain
ITSN1	CD71 Early Erythroid
IVL	Tongue
JAKMIP2	Prefrontal Cortex
JMJD5	Liver
JPH2	Superior Cervical Ganglion
L	L

KAL1	Spinal Cord
KALI	Spinal Coru
KAZALD1	Skeletal Muscle
KCNA1	Superior Cervical Ganglion
KCNA10	Skeletal Muscle
KCNA2	Skeletal Muscle
KCNA3	Dorsal Root Ganglion
KCNA4	Superior Cervical Ganglion
KCNAB1	Caudate nucleus
KCNAB3	Subthalamic Nucleus
KCNB2	Trigeminal Ganglion
KCNC3	Lymphoma burkitts Daudi
KCND1	Thyroid
KCND2	Cerebellum Peduncles
KCNE1	Pancreas
KCNE1L	Superior Cervical Ganglion
KCNE4	Uterus Corpus
KCNG1	CD19 Bcells neg. sel.
KCNG2	Superior Cervical Ganglion
KCNH1	Appendix
KCNH2	CD105 Endothelial
KCNH4	Superior Cervical Ganglion
KCNJ1	Kidney
KCNJ10	Occipital Lobe
KCNJ13	Superior Cervical Ganglion

KCNJ14	A
KCNJ14	Appendix
KCNJ2	Whole Blood
KCNJ3	Superior Cervical Ganglion
KCNJ6	Cingulate Cortex
KCNJ9	Cerebellum
KCNK10	BDCA4 Dentritic Cells
KCNK12	Olfactory Bulb
KCNK2	Atrioventricular Node
KCNK7	Superior Cervical Ganglion
KCNMA1	Uterus
KCNMB3	Testis Intersitial
KCNN2	Adrenal gland
KCNN4	CD71 Early Erythroid
KCNS3	Lung
KCNV2	retina
KCTD14	Adrenal gland
KCTD15	Kidney
KCTD17	pineal day
KCTD20	CD71 Early Erythroid
KCTD5	BDCA4 Dentritic Cells
KCTD7	pineal night
KDELC1	Cardiac Myocytes
KDELR3	Smooth Muscle
KDSR	Olfactory Bulb
KDSR	Olfactory Bulb

KIAA0040	CD19 Bcells neg. sel.
KIAA0087	Trigeminal Ganglion
KIAA0090	Placenta
KIAA0100	BDCA4 Dentritic Cells
KIAA0141	Superior Cervical Ganglion
KIAA0196	CD14 Monocytes
KIAA0319	Fetal brain
KIAA0556	pineal day
KIAA0586	Testis Intersitial
KIAA1024	Adrenal Cortex
KIAA1199	Smooth Muscle
KIAA1310	Uterus Corpus
KIAA1324	Prostate
KIAA1539	CD71 Early Erythroid
KIAA1609	Bronchial Epithelial Cells
KIAA1751	Superior Cervical Ganglion
KIF17	Cingulate Cortex
KIF18A	X721 B lymphoblasts
KIF18B	Leukemia lymphoblastic MOLT 16
KIF21B	Fetal brain
KIF22	CD71 Early Erythroid
KIF25	Superior Cervical Ganglion
KIF26B	Ciliary Ganglion

KIF5A	Whole Brain
KIFC1	CD71 Early Erythroid
	, ,
KIR2DL2	CD56 NK Cells
KIR2DL3	CD56 NK Cells
KIR2DL4	CD56 NK Cells
KIR2DS4	CD56 NK Cells
KIR3DL1	CD56 NK Cells
KIR3DL2	CD56 NK Cells
KIRREL	Superior Cervical Ganglion
KISS1	Placenta
KL	Kidney
KLF12	CD8 T cells
KLF15	Liver
KLF3	CD71 Early Erythroid
KLF8	Spinal Cord
KLHDC4	CD56 NK Cells
KLHL11	Temporal Lobe
KLHL12	Testis Intersitial
KLHL18	CD105 Endothelial
KLHL21	Heart
KLHL25	Atrioventricular Node
KLHL26	Whole Brain
KLHL29	Uterus Corpus
KLHL3	Cerebellum

KLHL4	Fetal brain
KLK10	Tongue
KLK12	Tongue
KLK13	Tongue
KLK14	Atrioventricular Node
KLK15	Pancreas
KLK2	Prostate
KLK3	Prostate
KLK5	Testis Intersitial
KLK7	Pancreas
KLK8	Tongue
KLRC3	CD56 NK Cells
KLRF1	CD56 NK Cells
KLRK1	CD8 T cells
KNTC1	Leukemia lymphoblastic MOLT 17
KPNA4	X721 B lymphoblasts
KPTN	Cerebellum
KRT1	Skin
KRT10	Skin
KRT12	Liver
KRT17	Tongue
KRT2	Skin
KRT23	Colorectal adenocarcinoma

KRT3	Superior Cervical Ganglion
KRT33A	Superior Cervical Ganglion
KRT34	Skin
KRT36	Superior Cervical Ganglion
KRT38	Atrioventricular Node
KRT6B	Tongue
KRT84	Superior Cervical Ganglion
KRT86	Placenta
KRT9	Superior Cervical Ganglion
KRTAP1-1	Superior Cervical Ganglion
KRTAP1-3	Ciliary Ganglion
KRTAP4-7	Superior Cervical Ganglion
KRTAP5-9	Superior Cervical Ganglion
L1TD1	Dorsal Root Ganglion
L2HGDH	Superior Cervical Ganglion
LACTB2	small intestine
LAD1	Bronchial Epithelial Cells
LAIR1	BDCA4 Dentritic Cells
LAIR2	CD56 NK Cells
LALBA	Ovary
LAMA2	Adipocyte
LAMA3	Bronchial Epithelial Cells
LAMA4	Smooth Muscle
LAMA5	Colorectal adenocarcinoma
L	

LAMB3	Bronchial Epithelial Cells
LAMC2	Bronchial Epithelial Cells
LANCL2	Testis
LAT	CD4 T cells
LAX1	CD4 T cells
LCAT	Liver
LCMT2	CD105 Endothelial
LCT	Trigeminal Ganglion
LDB1	CD105 Endothelial
LDB3	Skeletal Muscle
LDHAL6B	Testis
LDHB	Liver
LDLR	Adrenal Cortex
LECT1	CD105 Endothelial
LEF1	Thymus
LEFTY1	Colon
LEFTY2	Uterus Corpus
LENEP	Salivary gland
LEP	Placenta
LETM1	Thymus
LFNG	Liver
LGALS13	Placenta
LGALS14	Placenta
LGR4	Colon

	T
LHB	Pituitary
LHCGR	Superior Cervical Ganglion
LHX2	Fetal brain
LHX5	Superior Cervical Ganglion
LHX6	Fetal brain
LIG3	Leukemia lymphoblastic
	MOLT 18
LILRB4	BDCA4 Dentritic Cells
LILRB5	Skeletal Muscle
LIM2	CD56 NK Cells
LIMS2	Uterus
LIPF	small intestine
LIPG	Thyroid
LIPT1	CD8 T cells
LMCD1	Skeletal Muscle
LMF1	Liver
LMO1	retina
LMTK2	Superior Cervical Ganglion
LMX1B	Superior Cervical Ganglion
LOC1720	Superior Cervical Ganglion
LOC388796	Lymphoma burkitts Raji
LOC390561	Uterus Corpus
LOC390940	Superior Cervical Ganglion
LOC399904	Temporal Lobe

1 70
Appendix
Superior Cervical Ganglion
Appendix
Ovary
Appendix
Skin
Uterus Corpus
Testis Germ Cell
CD71 Early Erythroid
Pons
CD8 T cells
Pancreas
Superior Cervical Ganglion
Fetal brain
Superior Cervical Ganglion
Amygdala
Thyroid
Superior Cervical Ganglion
Testis Germ Cell
Smooth Muscle
Thyroid
Skeletal Muscle
Skeletal Muscle
Colon

LRRC32	Lung
LRRC36	Testis Intersitial
LRRC37A4	Cerebellum
LRRK1	Lymphoma burkitts Daudi
LST1	Whole Blood
LST-3TM12	Fetal liver
LTB4R	CD33 Myeloid
LTB4R2	Temporal Lobe
LTBP4	Thyroid
LTC4S	Lung
LTK	BDCA4 Dentritic Cells
LUC7L	Whole Blood
LY6D	Tongue
LY6E	Lung
LY6G5C	CD71 Early Erythroid
LY6G6D	Pancreas
LY6G6E	Ovary
LY6H	Amygdala
LY96	Whole Blood
LYL1	CD71 Early Erythroid
LYPD1	Smooth Muscle
LYST	Whole Blood
LYVE1	Fetal lung
LYZL6	Testis Intersitial

	I
LZTFL1	Leukemia lymphoblastic
	MOLT 19
LZTS1	Skeletal Muscle
MACROD1	Heart
MAF	small intestine
MAFF	Placenta
MAFK	Superior Cervical Ganglion
MAGEA1	X721 B lymphoblasts
MAGEA2	Leukemia chronic
	Myelogenous K585
MAGEA5	X721 B lymphoblasts
MAGEA8	Placenta
MAGEB1	Testis Germ Cell
MAGEC1	Leukemia chronic
	Myelogenous K586
MAGEC2	Skeletal Muscle
MAGED4	Fetal brain
MAGEL2	Hypothalamus
MAGI1	Globus Pallidus
MAGIX	Superior Cervical Ganglion
MAGOHB	CD105 Endothelial
MALL	small intestine
MAML3	Ovary
MAMLD1	Testis Germ Cell
MAN1A2	Placenta

MAN1C1	Placenta
MAN2C1	CD8 T cells
MAP2K3	CD71 Early Erythroid
MAP2K5	Globus Pallidus
MAP2K7	Atrioventricular Node
MAP3K12	Cerebellum
MAP3K14	CD19 Bcells neg. sel.
MAP3K6	Lung
MAP4K2	X721 B lymphoblasts
MAPK4	Skeletal Muscle
MAPK7	CD56 NK Cells
MAPKAP1	X721 B lymphoblasts
МАРКАРК3	Heart
MARK2	Globus Pallidus
MARK3	CD71 Early Erythroid
MAS1	Appendix
MASP1	Heart
MASP2	Liver
MAST1	Fetal brain
MATK	CD56 NK Cells
MATN1	Trachea
MATN4	Lymphoma burkitts Raji
MBNL3	CD71 Early Erythroid
MBTPS1	pineal night
L	l

MBTPS2	Dorsal Root Ganglion
MC2R	Adrenal Cortex
MC3R	Superior Cervical Ganglion
MC4R	Superior Cervical Ganglion
MCCC2	X721 B lymphoblasts
MCF2	pineal day
MCM10	CD105 Endothelial
МСМ9	CD19 Bcells neg. sel.
MCOLN3	Adrenal Cortex
МСРН1	Thymus
MCTP1	Caudate nucleus
MCTP2	Whole Blood
ME1	Adipocyte
MECR	Heart
MED1	Thymus
MED15	CD8 T cells
MED22	CD19 Bcells neg. sel.
MED31	Cerebellum
MED7	Testis Intersitial
MEGF6	Lung
MEGF8	Skeletal Muscle
MEOX2	Fetal lung
MEP1B	small intestine
MET	Bronchial Epithelial Cells

METTL4	CD8 T cells
METTL8	CD19 Bcells neg. sel.
MEX3D	Subthalamic Nucleus
MFAP5	Adipocyte
MFI2	Uterus Corpus
MFN1	Lymphoma burkitts Raji
MFSD7	Ovary
MGA	CD8 T cells
MGAT4A	CD8 T cells
MGAT5	Temporal Lobe
MGC29506	Thymus
MGC4294	Superior Cervical Ganglion
MGC5590	Cardiac Myocytes
MGMT	Liver
MGST3	Lymphoma burkitts Daudi
MIA2	Superior Cervical Ganglion
MIA3	BDCA4 Dentritic Cells
MICALL2	Colorectal adenocarcinoma
MIER2	Lung
MIPEP	Kidney
MITF	Uterus
MKS1	Superior Cervical Ganglion
MLANA	retina
MLF1	Testis Intersitial
L	l

MLH3	Whole Blood
MLL2	Liver
MLLT1	Superior Cervical Ganglion
MLLT10	Dorsal Root Ganglion
MLLT3	CD8 T cells
MLN	Liver
MLNR	Superior Cervical Ganglion
MMACHC	Liver
MME	Adipocyte
MMP10	Uterus Corpus
MMP11	Placenta
MMP12	Tonsil
MMP15	Thyroid
MMP24	Cerebellum Peduncles
MMP26	Skeletal Muscle
MMP28	Lung
MMP3	Smooth Muscle
MMP8	Bone marrow
MMP9	Bone marrow
MN1	Fetal brain
MNDA	Whole Blood
MOBKL3	Adrenal Cortex
MOCOS	Adrenal gland
MOCS3	Atrioventricular Node

MOGAT2	Liver
MON1B	Prostate
MORC4	Placenta
MORF4L2	Heart
MORN1	Cingulate Cortex
MOS	Superior Cervical Ganglion
MOSC2	Kidney
MOSPD2	CD33 Myeloid
MPL	Skeletal Muscle
MPP3	Cerebellum
MPP5	Placenta
MPP6	Testis Germ Cell
MPPED1	Fetal brain
MPPED2	Thyroid
MPZL1	Smooth Muscle
MPZL2	Colorectal adenocarcinoma
MRAS	Heart
MREG	pineal day
MRPL17	X721 B lymphoblasts
MRPL46	X721 B lymphoblasts
MRPS18A	Heart
MRPS18C	Atrioventricular Node
MRS2	X721 B lymphoblasts
MRTO4	Leukemia promyelocytic
L	l

sts
noma
noma
Raji
al
oid
oid
oid
nglion
nglion

MTNR1B	Superior Cervical Ganglion
MTTP	small intestine
MUC1	Lung
MUC13	Pancreas
MUC16	Trachea
MUC2	Colon
MUC5B	Trachea
MUM1	Testis
MUSK	Skeletal Muscle
MUTYH	Leukemia lymphoblastic MOLT 20
MVD	Adipocyte
MXD1	Whole Blood
MYBPC1	Skeletal Muscle
MYBPC3	Heart
МҮВРН	Superior Cervical Ganglion
MYCN	Fetal brain
MYCT1	Trigeminal Ganglion
MYF5	Superior Cervical Ganglion
MYF6	Skeletal Muscle
MYH1	Skeletal Muscle
MYH13	Skeletal Muscle
MYH15	Appendix
МҮН7В	Superior Cervical Ganglion

MYL7	Heart
MYNN	Trigeminal Ganglion
MYO16	Fetal brain
MYO1A	small intestine
MYO1B	Bronchial Epithelial Cells
MYO5A	Superior Cervical Ganglion
MYO5C	Salivary gland
MYO7B	Liver
MYOC	retina
MYST2	Testis
MYT1	pineal night
N4BP1	Whole Blood
N6AMT1	Trigeminal Ganglion
NAALAD2	Pituitary
NAALADL1	Liver
NAB2	Cerebellum
NAPG	Superior Cervical Ganglion
NARF	CD71 Early Erythroid
NAT1	Colon
NAT2	Colon
NAT8	Kidney
NAT8B	Kidney
NAV2	Fetal brain
NAV3	Fetal brain

NBEA	Fetal brain
NBEAL2	Lymphoma burkitts Raji
NCAM2	Superior Cervical Ganglion
NCAPG2	CD71 Early Erythroid
NCBP1	X721 B lymphoblasts
NCLN	BDCA4 Dentritic Cells
NCOA2	Whole Blood
NCR1	CD56 NK Cells
NCR2	Lymphoma burkitts Raji
NCR3	CD56 NK Cells
NDP	Amygdala
NDUFA4L2	Pancreas
NDUFB2	Heart
NDUFB7	Heart
NECAB2	Caudate nucleus
NEIL3	Leukemia lymphoblastic MOLT 21
NEK11	Uterus Corpus
NEK3	Pancreas
NEK4	Testis Germ Cell
NELF	Colorectal adenocarcinoma
NELL1	Whole Brain
NES	Olfactory Bulb
NETO2	Fetal brain
	·

NEU3	Atrioventricular Node
NEUROD6	Fetal brain
NEUROG3	Superior Cervical Ganglion
NFATC1	CD19 Bcells neg. sel.
NFATC3	Thymus
NFE2	CD71 Early Erythroid
NFE2L3	Colorectal adenocarcinoma
NFKB2	Lymphoma burkitts Raji
NFKBIB	Testis
NFKBIL2	Atrioventricular Node
NFX1	BDCA4 Dentritic Cells
NFYA	Cardiac Myocytes
NGB	CD71 Early Erythroid
NGF	Ciliary Ganglion
NGFR	Colorectal adenocarcinoma
NHLH2	Hypothalamus
NINJ1	Whole Blood
NIPSNAP3B	Superior Cervical Ganglion
NKAIN1	Fetal brain
NKX2-2	Spinal Cord
NKX2-5	Heart
NKX2-8	Superior Cervical Ganglion
NKX3-2	Colon
NKX6-1	Skeletal Muscle

NLE1	Lymphoma burkitts Raji
NMBR	Superior Cervical Ganglion
NMD3	Bronchial Epithelial Cells
NME5	Testis Intersitial
NMU	Leukemia chronic Myelogenous K587
NMUR1	CD56 NK Cells
NOC2L	Lymphoma burkitts Raji
NOC3L	X721 B lymphoblasts
NOC4L	Testis
NOL10	Superior Cervical Ganglion
NOL3	Heart
NOS1	Uterus Corpus
NOS3	Placenta
NOTCH1	Leukemia lymphoblastic MOLT 22
NOX1	Colon
NOX3	CD105 Endothelial
NOX4	Kidney
NPAS2	Smooth Muscle
NPAT	CD8 T cells
NPC1L1	Fetal liver
NPFFR1	Subthalamic Nucleus
NPHP4	CD50
NPHS2	Kidney

NPM3	Bronchial Epithelial Cells
NPPA	Heart
NPPB	Heart
NPPC	Superior Cervical Ganglion
NPTXR	Skeletal Muscle
NPY	Prostate
NPY1R	Fetal brain
NPY2R	Superior Cervical Ganglion
NQO2	Kidney
NR0B2	Liver
NR1D1	pineal day
NR1H2	Lung
NR1H4	Fetal liver
NR113	Liver
NR2C1	Superior Cervical Ganglion
NR2C2	Testis Leydig Cell
NR2E1	Amygdala
NR2E3	retina
NR4A1	Adrenal Cortex
NR4A2	Adrenal Cortex
NR4A3	Adrenal Cortex
NR5A1	Globus Pallidus
NR6A1	Testis
NRAP	Heart

NRAS	BDCA4 Dentritic Cells
NRBF2	Whole Blood
NRG2	Superior Cervical Ganglion
NRIP2	Olfactory Bulb
NRL	retina
NRP2	Skeletal Muscle
NRTN	Superior Cervical Ganglion
NRXN3	Cerebellum Peduncles
NSUN3	CD71 Early Erythroid
NSUN6	CD4 T cells
NT5DC3	Fetal brain
NT5M	CD71 Early Erythroid
NTAN1	CD71 Early Erythroid
NTHL1	Liver
NTN1	Superior Cervical Ganglion
NTNG1	Uterus Corpus
NTSR1	Colorectal adenocarcinoma
NUDT1	CD71 Early Erythroid
NUDT15	Colorectal adenocarcinoma
NUDT18	CD19 Bcells neg. sel.
NUDT4	CD71 Early Erythroid
NUDT6	Leukemia lymphoblastic MOLT 23
NUDT7	Superior Cervical Ganglion

NUFIP1	CD105 Endothelial
NUMB	Whole Blood
NUP155	Testis Intersitial
NUPL1	Fetal brain
NUPL2	Colorectal adenocarcinoma
NXPH3	Cerebellum
OAS1	CD14 Monocytes
OAS2	Lymphoma burkitts Daudi
OAS3	CD33 Myeloid
OASL	Whole Blood
OAZ3	Testis Intersitial
OBFC2A	Uterus Corpus
OBSCN	Temporal Lobe
OCEL1	CD14 Monocytes
OCLM	Superior Cervical Ganglion
OCLN	Skeletal Muscle
ODF1	Testis Intersitial
ODZ4	Fetal brain
OGFRL1	Whole Blood
OLAH	Placenta
OLFM4	small intestine
OLFML3	Adipocyte
OLR1	Placenta
OMD	Superior Cervical Ganglion

OMP	Superior Cervical Ganglion
ONECUT1	Liver
OPA3	Colorectal adenocarcinoma
OPLAH	Heart
OPN1LW	retina
OPN1SW	Superior Cervical Ganglion
OPRD1	Thalamus
OPRL1	Lymphoma burkitts Raji
OR10C1	Superior Cervical Ganglion
OR10H1	Trigeminal Ganglion
OR10H3	Pons
OR10J1	Superior Cervical Ganglion
OR11A1	Superior Cervical Ganglion
OR1A1	Superior Cervical Ganglion
OR2B2	Superior Cervical Ganglion
OR2B6	Superior Cervical Ganglion
OR2C1	Superior Cervical Ganglion
OR2H1	Skeletal Muscle
OR2J3	Superior Cervical Ganglion
OR2S2	Uterus Corpus
OR2W1	Superior Cervical Ganglion
OR3A2	Superior Cervical Ganglion
OR52A1	Testis Seminiferous Tubule
OR5I1	Lymphoma burkitts Raji
L	·

	T
OR6A2	Superior Cervical Ganglion
OR7A5	Appendix
OR7C1	Testis Seminiferous Tubule
OR7E19P	Superior Cervical Ganglion
ORAI2	CD19 Bcells neg. sel.
ORM1	Liver
OSBP2	CD71 Early Erythroid
OSBPL10	CD19 Bcells neg. sel.
OSBPL3	Colorectal adenocarcinoma
OSBPL7	Tonsil
OSGEPL1	CD4 T cells
OSM	CD71 Early Erythroid
OSR2	Uterus
OTUD3	Prefrontal Cortex
OTUD7B	Heart
OXCT2	Testis Intersitial
OXSM	X721 B lymphoblasts
OXT	Hypothalamus
P2RX2	Superior Cervical Ganglion
P2RX3	CD71 Early Erythroid
P2RX6	Skeletal Muscle
P2RY10	CD19 Bcells neg. sel.
P2RY2	Bronchial Epithelial Cells
P2RY4	Superior Cervical Ganglion

PADI3	Pons
PAEP	Uterus
PAFAH2	Thymus
PAGE1	X721 B lymphoblasts
PAK1IP1	Prostate
PAK7	Fetal brain
PALB2	X721 B lymphoblasts
PALMD	Fetal liver
PANK4	Lymphoma burkitts Raji
PANX1	Bronchial Epithelial Cells
PAPOLG	Fetal brain
PAPPA2	Placenta
PAQR3	Testis Germ Cell
PARD3	Bronchial Epithelial Cells
PARG	Superior Cervical Ganglion
PARN	X721 B lymphoblasts
PARP11	Appendix
PARP16	Atrioventricular Node
PARP3	X721 B lymphoblasts
PART1	Prostate
PAWR	Uterus
PAX1	Thymus
PAX2	Kidney
PAX4	Superior Cervical Ganglion
	······································

PAX7	Atrioventricular Node
PCCA	Colon
PCDH1	Placenta
PCDH11X	Fetal brain
PCDH17	Testis Intersitial
PCDH7	Prefrontal Cortex
PCDHB1	Superior Cervical Ganglion
PCDHB11	Uterus Corpus
PCDHB13	Pancreatic Islet
PCDHB3	Testis
PCDHB6	Superior Cervical Ganglion
PCK2	Liver
PCNP	Liver
PCNT	Skeletal Muscle
PCNX	CD8 T cells
PCNXL2	Prefrontal Cortex
PCOLCE	Liver
PCOLCE2	Adipocyte
PCSK1	Pancreatic Islet
PCYOX1	Adipocyte
PCYT1A	Testis
PDC	retina
PDCD1	Pons
PDCD1LG2	Superior Cervical Ganglion
L	I

PDE10A	Caudate nucleus
PDE1B	Caudate nucleus
PDE1C	pineal night
PDE3B	CD8 T cells
PDE6A	retina
PDE6G	retina
PDE7B	Trigeminal Ganglion
PDE9A	Prostate
PDGFRL	Fetal Thyroid
PDHA2	Testis Intersitial
PDIA2	Pancreas
PDK3	X721 B lymphoblasts
PDLIM3	Skeletal Muscle
PDLIM4	Colorectal adenocarcinoma
PDPN	Placenta
PDPR	Superior Cervical Ganglion
PDSS1	Leukemia lymphoblastic MOLT 24
PDX1	Heart
PDXP	CD14 Monocytes
PDZD3	Superior Cervical Ganglion
PDZK1IP1	Kidney
PDZRN4	Atrioventricular Node
PECR	Liver

PEPD	Kidney
PER3	retina
PET112L	Heart
PEX11A	Prostate
PEX13	Testis Intersitial
PEX19	Adipocyte
PEX3	X721 B lymphoblasts
PEX5L	Superior Cervical Ganglion
PF4	Whole Blood
PF4V1	Whole Blood
PFKFB1	Liver
PFKFB2	Pancreatic Islet
PFKFB3	Skeletal Muscle
PGA3	small intestine
PGAM1	CD71 Early Erythroid
PGAP1	Adrenal Cortex
PGGT1B	Ciliary Ganglion
PGK2	Testis Intersitial
PGLYRP4	Superior Cervical Ganglion
PGM3	Smooth Muscle
PGPEP1	Kidney
PGR	Uterus
PHACTR4	X721 B lymphoblasts
PHC1	Testis Germ Cell

PHEX	BDCA4 Dentritic Cells
PHF7	Testis Intersitial
PHKG1	Superior Cervical Ganglion
PHKG2	Testis
PHLDA2	Placenta
PHOX2A	Uterus Corpus
PI15	Testis Leydig Cell
PI3	Tonsil
PI4K2A	CD71 Early Erythroid
PIAS2	Testis Intersitial
PIAS3	pineal day
PIAS4	Whole Brain
PIBF1	Testis Intersitial
PICK1	Cerebellum Peduncles
PIGB	X721 B lymphoblasts
PIGL	Colorectal adenocarcinoma
PIGR	Trachea
PIGV	Testis
PIGZ	Pancreas
PIK3C2B	Thymus
PIK3CA	CD8 T cells
PIK3R2	Fetal brain
PIK3R5	CD56 NK Cells
PIP5K1B	CD71 Early Erythroid

PIPOX	Liver
PIR	Bronchial Epithelial Cells
PITPNM3	Superior Cervical Ganglion
PITX1	Tongue
PITX2	retina
PITX3	Adrenal gland
PKD2	Uterus
PKDREJ	CD14 Monocytes
PKLR	Liver
PKMYT1	CD71 Early Erythroid
PKP2	Colon
PLA1A	X721 B lymphoblasts
PLA2G12A	CD105 Endothelial
PLA2G2E	Superior Cervical Ganglion
PLA2G2F	Trigeminal Ganglion
PLA2G3	Skeletal Muscle
PLA2G4A	Smooth Muscle
PLA2G7	CD14 Monocytes
PLAA	X721 B lymphoblasts
PLAC1	Placenta
PLAC4	Placenta
PLAG1	Trigeminal Ganglion
PLAGL2	Testis
PLCB2	CD14 Monocytes

	T
PLCB3	small intestine
PLCB4	Thalamus
PLCXD1	X721 B lymphoblasts
PLD1	X721 B lymphoblasts
PLEK2	Bronchial Epithelial Cells
PLEKHA2	Superior Cervical Ganglion
PLEKHA6	Placenta
PLEKHA8	CD56 NK Cells
PLEKHF2	CD19 Bcells neg. sel.
PLEKHH3	Superior Cervical Ganglion
PLK1	X721 B lymphoblasts
PLK3	CD33 Myeloid
PLK4	CD71 Early Erythroid
PLN	Uterus
PLOD2	Smooth Muscle
PLS1	Colon
PLSCR2	Testis Intersitial
PLUNC	Trachea
PLXNA1	Fetal brain
PLXNC1	Whole Blood
PMCH	Hypothalamus
PMCHL1	Hypothalamus
PMEPA1	Prostate
PNMT	Adrenal Cortex
	L

PNPLA2	Adipocyte
PNPLA3	Atrioventricular Node
PNPLA4	Bronchial Epithelial Cells
POF1B	Skin
POFUT2	Smooth Muscle
POLE2	Leukemia lymphoblastic MOLT 25
POLL	CD71 Early Erythroid
POLM	CD19 Bcells neg. sel.
POLQ	Lymphoma burkitts Daudi
POLR1C	Leukemia promyelocytic HL65
POLR2D	Testis
POLR2J	Trigeminal Ganglion
POLR3B	X721 B lymphoblasts
POLR3C	CD71 Early Erythroid
POLR3D	X721 B lymphoblasts
POLR3G	Leukemia promyelocytic HL66
POLRMT	Testis
POM121L2	Superior Cervical Ganglion
POMC	Pituitary
POMGNT1	Heart
POMT1	Testis
POMZP3	Testis Germ Cell

PON3	Liver
POP1	Dorsal Root Ganglion
POPDC2	Heart
POSTN	Cardiac Myocytes
POU2F3	Trigeminal Ganglion
POU3F3	Superior Cervical Ganglion
POU3F4	Ciliary Ganglion
POU4F2	Superior Cervical Ganglion
POU5F1	Pituitary
POU5F1P3	Uterus Corpus
POU5F1P4	Ciliary Ganglion
PP14571	Placenta
PPA1	Heart
PPARD	Placenta
PPARG	Adipocyte
PPARGC1A	Salivary gland
PPAT	X721 B lymphoblasts
PPBPL2	Superior Cervical Ganglion
PPCDC	X721 B lymphoblasts
PPEF2	retina
PPFIA2	pineal day
PPFIBP1	Colorectal adenocarcinoma
PPIL2	Leukemia chronic Myelogenous K588

PPIL6	Liver
PPM1D	CD51
PPM1H	Cerebellum
PPOX	CD71 Early Erythroid
PPP1R12B	Uterus
PPP1R13B	Thyroid
PPP1R3D	Whole Blood
PPP2R2D	Whole Brain
PPP3R1	Whole Blood
PPP5C	X721 B lymphoblasts
PPRC1	CD105 Endothelial
PPT2	Olfactory Bulb
PPY	Pancreatic Islet
PPY2	Superior Cervical Ganglion
PQLC2	Skeletal Muscle
PRAME	Leukemia chronic Myelogenous K589
PRDM1	Superior Cervical Ganglion
PRDM11	CD52
PRDM12	Cardiac Myocytes
PRDM13	Superior Cervical Ganglion
PRDM16	Superior Cervical Ganglion
PRDM5	Skeletal Muscle
PRDM8	Superior Cervical Ganglion

PREP	X721 B lymphoblasts
PRF1	CD56 NK Cells
PRG3	Bone marrow
PRICKLE3	X721 B lymphoblasts
PRKAA1	Testis Intersitial
PRKAB1	CD71 Early Erythroid
PRKAB2	Dorsal Root Ganglion
PRKCG	Superior Cervical Ganglion
PRKCH	CD56 NK Cells
PRKRIP1	Colorectal adenocarcinoma
PRKY	CD4 T cells
PRL	Pituitary
PRLH	Trigeminal Ganglion
PRM2	Testis Leydig Cell
PRMT3	Leukemia promyelocytic HL67
PRMT7	BDCA4 Dentritic Cells
PRND	Testis Germ Cell
PRO1768	Trigeminal Ganglion
PRO2012	Appendix
PROC	Liver
PROCR	Placenta
PROL1	Salivary gland
PROP1	Trigeminal Ganglion

PROZ	Superior Cervical Ganglion
PRPS2	Ovary
PRR3	Leukemia lymphoblastic MOLT 26
PRR5	CD71 Early Erythroid
PRR7	X721 B lymphoblasts
PRRC1	BDCA4 Dentritic Cells
PRRG1	Spinal Cord
PRRG2	Parietal Lobe
PRRG3	Salivary gland
PRRX1	Adipocyte
PRSS12	Superior Cervical Ganglion
PRSS16	Thymus
PRSS21	Testis
PRSS8	Placenta
PSCA	Prostate
PSD	Subthalamic Nucleus
PSG1	Placenta
PSG11	Placenta
PSG2	Placenta
PSG3	Placenta
PSG4	Placenta
PSG5	Placenta
PSG6	Placenta

PSG7	Placenta
PSG9	Placenta
PSKH1	Testis
PSMB4	Superior Cervical Ganglion
PSMD5	Leukemia chronic Myelogenous K590
PSPH	Lymphoma burkitts Raji
PSPN	Trigeminal Ganglion
PSTPIP2	Bone marrow
PTCH2	Fetal brain
PTDSS2	Lymphoma burkitts Raji
PTER	Kidney
PTGDR	CD56 NK Cells
PTGER2	CD56 NK Cells
PTGES2	X721 B lymphoblasts
PTGES3	Superior Cervical Ganglion
PTGFR	Uterus
PTGIR	CD14 Monocytes
PTGS1	Smooth Muscle
PTGS2	Smooth Muscle
PTH2R	Superior Cervical Ganglion
PTHLH	Bronchial Epithelial Cells
PTK7	BDCA4 Dentritic Cells
PTPLA	CD53

PTPN1	CD19 Bcells neg. sel.
PTPN21	Testis
PTPN3	Thalamus
PTPN9	Appendix
PTPRG	Adipocyte
PTPRH	Pancreas
PTPRS	BDCA4 Dentritic Cells
PURG	Skeletal Muscle
PUS3	Skeletal Muscle
PUS7L	Superior Cervical Ganglion
PVALB	Cerebellum
PVRL3	Placenta
PXDN	Smooth Muscle
PXMP2	Liver
PXMP4	Lung
PYGM	Skeletal Muscle
PYGO1	Skeletal Muscle
PYHIN1	Superior Cervical Ganglion
PYY	Colon
PZP	Skin
QPRT	Liver
QRSL1	CD19 Bcells neg. sel.
QTRT1	Thyroid
RAB11B	Thyroid
L	<u> </u>

RAB11FIP3	Kidney
RAB17	Liver
RAB23	Uterus
RAB25	Tongue
RAB30	Liver
RAB33A	Whole Brain
RAB38	Bronchial Epithelial Cells
RAB3D	Atrioventricular Node
RAB40A	Dorsal Root Ganglion
RAB40C	Superior Cervical Ganglion
RAB4B	BDCA4 Dentritic Cells
RABL2A	Fetal brain
RAC3	Whole Brain
RAD51L1	Superior Cervical Ganglion
RAD52	Lymphoma burkitts Raji
RAD9A	CD105 Endothelial
RAG1	Thymus
RALGPS1	Fetal brain
RAMP1	Uterus
RAMP2	Lung
RAMP3	Lung
RANBP10	CD71 Early Erythroid
RANBP17	Colorectal adenocarcinoma
RAP2C	Uterus

RAPGEF1	Uterus Corpus
RAPGEF4	Amygdala
RAPGEFL1	Whole Brain
RAPSN	Skeletal Muscle
RARA	Whole Blood
RARB	Superior Cervical Ganglion
RARS2	Uterus Corpus
RASA1	Placenta
RASA2	CD8 T cells
RASA3	CD56 NK Cells
RASAL1	Lymphoma burkitts Raji
RASGRF1	Cerebellum
RASGRP3	CD19 Bcells neg. sel.
RASSF7	Pancreas
RASSF8	Testis Intersitial
RASSF9	Appendix
RAVER2	Ciliary Ganglion
RAX	Cerebellum Peduncles
RBBP5	CD14 Monocytes
RBM19	Superior Cervical Ganglion
RBM4B	Fetal brain
RBM7	Whole Blood
RBMY1A1	Testis
RBP4	Liver

	T
RBPJL	Pancreas
RBX1	CD71 Early Erythroid
RC3H2	BDCA4 Dentritic Cells
RCAN3	Prostate
RCBTB2	Leukemia lymphoblastic MOLT 27
RCN3	Smooth Muscle
RDH11	Prostate
RDH16	Liver
RDH8	retina
RECQL4	CD105 Endothelial
RECQL5	Skeletal Muscle
RELB	Lymphoma burkitts Raji
REN	Ovary
RENBP	Kidney
RERGL	Uterus
RETSAT	Adipocyte
REV3L	Uterus
REXO4	CD19 Bcells neg. sel.
RFC1	Leukemia lymphoblastic MOLT 28
RFC2	X721 B lymphoblasts
RFNG	Liver
RFPL3	Superior Cervical Ganglion
RFWD3	CD105 Endothelial

RFX1	Superior Cervical Ganglion
RFX3	Trigeminal Ganglion
RFXAP	Pituitary
RGN	Adrenal gland
RGPD5	Testis Intersitial
RGR	retina
RGS14	Caudate nucleus
RGS17	Pancreatic Islet
RGS3	Heart
RGS6	pineal night
RGS9	Caudate nucleus
RHAG	CD71 Early Erythroid
RHBDF1	Olfactory Bulb
RHBDL1	Lymphoma burkitts Raji
RHBG	Atrioventricular Node
RHCE	CD71 Early Erythroid
RHD	CD71 Early Erythroid
RHO	retina
RHOBTB1	Placenta
RHOBTB2	Lung
RHOD	Bronchial Epithelial Cells
RIBC2	Testis Intersitial
RIC3	Cingulate Cortex
RIC8B	Caudate nucleus
L	L

RIN3	CD14 Monocytes
RINT1	Superior Cervical Ganglion
RIOK2	Smooth Muscle
RIT1	Whole Blood
RIT2	Fetal brain
RLBP1	retina
RLN1	Prostate
RLN2	Superior Cervical Ganglion
RMI1	X721 B lymphoblasts
RMND1	Trigeminal Ganglion
RMND5A	CD71 Early Erythroid
RMND5B	Testis
RNASE3	Bone marrow
RNASEH2B	Leukemia lymphoblastic MOLT 29
RNASEL	Whole Blood
RNF10	CD71 Early Erythroid
RNF121	Subthalamic Nucleus
RNF123	CD71 Early Erythroid
RNF125	CD8 T cells
RNF14	CD71 Early Erythroid
RNF141	Testis Intersitial
RNF17	Testis Intersitial
RNF170	Thyroid
	1

	_
RNF185	Superior Cervical Ganglion
RNF19A	CD71 Early Erythroid
RNF32	Testis Intersitial
RNF40	CD71 Early Erythroid
RNFT1	Testis Leydig Cell
RNMTL1	Testis
ROBO1	Fetal brain
ROPN1	Testis Intersitial
ROR1	Adipocyte
RORB	Superior Cervical Ganglion
RORC	Liver
RP2	Whole Blood
RPA4	Superior Cervical Ganglion
RPAIN	Lymphoma burkitts Daudi
RPE	Leukemia promyelocytic HL68
RPE65	retina
RPGRIP1	Testis Intersitial
RPGRIP1L	Superior Cervical Ganglion
RPH3AL	Pancreatic Islet
RPL10L	Testis
RPL3L	Skeletal Muscle
RPP38	Testis Germ Cell
RPRM	Fetal brain

RPS6KA4	Pons
IN SOIL I	TONS
RPS6KA6	Appendix
RPS6KB1	CD4 T cells
DDCCI/C1	There's Live with a
RPS6KC1	Testis Intersitial
RRAD	Skeletal Muscle
RRAGB	Superior Cervical Ganglion
RRH	retina
RRN3	CD56 NK Cells
RRP12	CD33 Myeloid
RRP9	X721 B lymphoblasts
RS1	retina
RSAD2	CD71 Early Erythroid
RSF1	Uterus
RTDR1	Testis
RTN2	Skeletal Muscle
RUNX1T1	Fetal brain
RUNX2	Pons
RWDD2A	Testis Germ Cell
RXFP3	Superior Cervical Ganglion
RYR2	Prefrontal Cortex
S100A12	Bone marrow
S100A2	Bronchial Epithelial Cells
S100A3	Colorectal adenocarcinoma
S100A5	Liver

S100G	Uterus Corpus
S1PR5	CD56 NK Cells
SAA1	Salivary gland
SAA3P	Skin
SAA4	Liver
SAC3D1	Testis
SAG	retina
SAMHD1	CD33 Myeloid
SAMSN1	Leukemia chronic Myelogenous K591
SAR1B	small intestine
SARDH	Liver
SATB2	Fetal brain
SBNO1	Appendix
SCAMP3	Atrioventricular Node
SCAND2	Superior Cervical Ganglion
SCAPER	Fetal brain
SCARA3	Uterus Corpus
SCGB1D2	Skin
SCGB2A2	Skin
SCGN	Pancreatic Islet
SCIN	Trigeminal Ganglion
SCLY	Liver
SCN3A	Fetal brain

SCN4A	Skeletal Muscle
SCN5A	Heart
SCN8A	Superior Cervical Ganglion
SCNN1B	Lung
SCNN1D	Superior Cervical Ganglion
SCO2	CD33 Myeloid
SCRIB	Heart
SCRT1	Superior Cervical Ganglion
SCT	BDCA4 Dentritic Cells
SCUBE3	Superior Cervical Ganglion
SCYL2	BDCA4 Dentritic Cells
SCYL3	BDCA4 Dentritic Cells
SDCCAG3	Lymphoma burkitts Raji
SDF2	Whole Blood
SDPR	Fetal lung
SDS	Liver
SEC14L3	Trigeminal Ganglion
SEC14L4	CD71 Early Erythroid
SEC22B	Placenta
SECTM1	Whole Blood
SEL1L	Pancreas
SELE	retina
SELP	Whole Blood
SEMA3A	Appendix
	1

SEMA3B	Placenta
SEMA3D	Trigeminal Ganglion
SEMA4G	Fetal liver
SEMA5A	Olfactory Bulb
SEMA7A	Superior Cervical Ganglion
SEMG1	Prostate
SEMG2	Prostate
SENP2	Testis Intersitial
SEPHS1	Leukemia lymphoblastic MOLT 30
SERPINA10	Liver
SERPINA7	Fetal liver
SERPINB13	Tongue
SERPINB3	Trachea
SERPINB4	Superior Cervical Ganglion
SERPINB8	CD33 Myeloid
SERPINE1	Cardiac Myocytes
SERPINF2	Liver
SETD4	Testis
SETD8	CD71 Early Erythroid
SETMAR	Atrioventricular Node
SF3A3	Leukemia chronic
51 5115	Myelogenous K592
CEN 50 mil	m c
SFMBT1	Testis Germ Cell
SFRP5	retina
	· · · · · · · · · · · · · · · · · · ·

SFTPA2	Lung
SFTPD	Lung
SGCA	Heart
SGCB	Olfactory Bulb
SGPL1	Colorectal adenocarcinoma
SGPP1	Placenta
SGTA	Heart
SH2D1A	Leukemia lymphoblastic MOLT 31
SH2D3C	Thymus
SH3BGR	Skeletal Muscle
SH3TC1	Thymus
SH3TC2	Placenta
SHANK1	CD56 NK Cells
SHC2	Pancreatic Islet
SHC3	Prefrontal Cortex
SHH	Superior Cervical Ganglion
SHOX2	Thalamus
SHQ1	Leukemia lymphoblastic MOLT 32
	MOL1 32
SHROOM2	pineal night
SI	small intestine
SIAH1	Placenta
SIAH2	CD71 Early Erythroid
SIGLEC1	Lymph node

2222	
SIGLEC5	Superior Cervical Ganglion
SIGLEC6	Placenta
SILV	retina
SIM1	Superior Cervical Ganglion
SIM2	Skeletal Muscle
SIRPB1	Whole Blood
SIRT1	CD19 Bcells neg. sel.
SIRT4	Superior Cervical Ganglion
SIRT5	Heart
SIRT7	CD33 Myeloid
SIX1	Pituitary
SIX2	Pituitary
SIX3	retina
SIX5	Superior Cervical Ganglion
SKAP1	CD8 T cells
SLAMF1	X721 B lymphoblasts
SLC10A1	Liver
SLC10A2	small intestine
SLC12A1	Kidney
SLC12A2	Trachea
SLC12A6	Testis Intersitial
SLC12A9	CD14 Monocytes
SLC13A2	Kidney
SLC13A3	Kidney

SLC13A4	pineal night
SLC14A1	CD71 Early Erythroid
SLC15A1	Superior Cervical Ganglion
SLC16A10	Superior Cervical Ganglion
SLC16A4	Placenta
SLC16A8	retina
SLC17A1	Superior Cervical Ganglion
SLC17A3	Kidney
SLC17A4	Superior Cervical Ganglion
SLC17A5	Placenta
SLC18A1	Skeletal Muscle
SLC18A2	Uterus
SLC19A2	Adrenal Cortex
SLC19A3	Placenta
SLC1A5	Colorectal adenocarcinoma
SLC1A6	Cerebellum
SLC1A7	Trigeminal Ganglion
SLC20A2	Thyroid
SLC22A1	Liver
SLC22A13	Superior Cervical Ganglion
SLC22A18AS	Lymphoma burkitts Raji
SLC22A2	Kidney
SLC22A3	Prostate
SLC22A4	CD71 Early Erythroid

SLC22A6	Kidney
SLC22A7	Liver
SLC22A8	Kidney
SLC24A1	retina
SLC24A2	Ciliary Ganglion
SLC24A6	Adrenal gland
SLC25A10	Liver
SLC25A11	Heart
SLC25A17	X721 B lymphoblasts
SLC25A21	Leukemia chronic
	Myelogenous K593
SLC25A28	BDCA4 Dentritic Cells
SLC25A31	Testis
SLC25A37	Bone marrow
SLC25A38	CD71 Early Erythroid
SLC25A4	Skeletal Muscle
SLC25A42	Superior Cervical Ganglion
SLC26A2	Colon
SLC26A3	Colon
SLC26A4	Thyroid
SLC26A6	Leukemia lymphoblastic
	MOLT 33
SLC27A2	Kidney
SLC27A5	Liver
SLC27A6	Olfactory Bulb

SLC28A3	Pons
SLC29A1	CD71 Early Erythroid
SLC2A11	pineal day
SLC2A14	Colorectal adenocarcinoma
SLC2A2	Fetal liver
SLC2A6	CD14 Monocytes
SLC30A10	Fetal liver
SLC31A1	CD105 Endothelial
SLC33A1	BDCA4 Dentritic Cells
SLC34A1	Kidney
SLC35A3	Colon
SLC35C1	Colorectal adenocarcinoma
SLC35E3	Prostate
SLC37A1	X721 B lymphoblasts
SLC37A4	Liver
SLC38A3	Liver
SLC38A4	Fetal liver
SLC38A6	CD105 Endothelial
SLC38A7	Prefrontal Cortex
SLC39A7	Prostate
SLC3A1	Kidney
SLC41A3	Testis
SLC45A2	retina
SLC47A1	Adrenal Cortex
L	.

CD71 Early Erythroid
Heart
small intestine
Kidney
Superior Cervical Ganglion
Thyroid
Placenta
Skeletal Muscle
Kidney
Fetal lung
Bronchial Epithelial Cells
Trigeminal Ganglion
pineal night
Superior Cervical Ganglion
CD71 Early Erythroid
Placenta
Superior Cervical Ganglion
Prefrontal Cortex
CD33 Myeloid
Liver
Ciliary Ganglion
X721 B lymphoblasts
CD33 Myeloid
Leukemia lymphoblastic

	MOLT 34
SLIT3	Adipocyte
SLITRK3	Subthalamic Nucleus
SLMO1	Superior Cervical Ganglion
SLURP1	Tongue
SMC2	Leukemia lymphoblastic MOLT 35
SMCHD1	Whole Blood
SMCP	Testis Intersitial
SMG6	Appendix
SMR3A	Salivary gland
SMR3B	Salivary gland
SMURF1	Testis
SMYD3	Leukemia chronic
	Myelogenous K594
SMYD5	Pancreas
SNAPC1	Testis Intersitial
SNAPC4	Testis
SNCAIP	Uterus Corpus
SNIP1	Globus Pallidus
SNX1	Fetal Thyroid
SNX16	Trigeminal Ganglion
SNX19	Superior Cervical Ganglion
SNX2	CD19 Bcells neg. sel.
SNX24	Spinal Cord

SOAT1	Adrenal gland
SOAT2	Fetal liver
SOCS1	Lymphoma burkitts Raji
SOCS2	Leukemia chronic Myelogenous K595
SOCS6	Colon
SOD3	Thyroid
SOHLH2	X721 B lymphoblasts
SOS1	Adipocyte
SOSTDC1	retina
SOX1	Superior Cervical Ganglion
SOX11	Fetal brain
SOX12	Fetal brain
SOX18	Superior Cervical Ganglion
SOX5	Testis Intersitial
SP140	CD19 Bcells neg. sel.
SPA17	Testis Intersitial
SPAG1	Appendix
SPAG11B	Testis Leydig Cell
SPAG6	Testis
SPANXB1	Testis Seminiferous Tubule
SPAST	Fetal brain
SPATA2	Testis
SPATA5L1	Leukemia promyelocytic HL69

SPATA6	Testis Intersitial
SPC25	Leukemia chronic
	Myelogenous K596
SPCS3	BDCA4 Dentritic Cells
SPDEF	Prostate
SPEG	Uterus
SPIB	Lymphoma burkitts Raji
SPINT3	Testis Germ Cell
SPO11	Trigeminal Ganglion
SPPL2B	CD54
SPR	Liver
SPRED2	Thymus
SRD5A1	Fetal brain
SRD5A2	Liver
SREBF1	Adrenal Cortex
SRF	CD71 Early Erythroid
SRR	Superior Cervical Ganglion
SSH3	Bronchial Epithelial Cells
SSR3	Prostate
SSSCA1	CD105 Endothelial
SST	Pancreatic Islet
SSTR1	Atrioventricular Node
SSTR4	Ciliary Ganglion
SSTR5	Subthalamic Nucleus

SSX2	Superior Cervical Ganglion
SSX5	Liver
ST3GAL1	CD8 T cells
ST6GALNAC4	CD71 Early Erythroid
ST7	X721 B lymphoblasts
ST7L	Ovary
ST8SIA2	Superior Cervical Ganglion
ST8SIA4	Whole Blood
ST8SIA5	Adrenal gland
STAB2	Lymph node
STAC	Ciliary Ganglion
STAG3L4	Appendix
STAM2	Testis Intersitial
STARD13	X721 B lymphoblasts
STARD5	Uterus Corpus
STAT2	BDCA4 Dentritic Cells
STAT5A	Leukemia lymphoblastic MOLT 36
STBD1	Pancreatic Islet
STC1	Smooth Muscle
STEAP1	Prostate
STEAP3	CD71 Early Erythroid
STIL	Trigeminal Ganglion
STK11	CD71 Early Erythroid

STK16	X721 B lymphoblasts
STMN3	Amygdala
STON1	Uterus
STRN	Ciliary Ganglion
STRN3	Uterus
STS	Placenta
STX17	Superior Cervical Ganglion
STX2	CD8 T cells
STX3	Whole Blood
STX6	Whole Blood
STYK1	Trigeminal Ganglion
SUCLG1	Kidney
SULT1A3	Ciliary Ganglion
SULT2A1	Adrenal gland
SULT2B1	Tongue
SUOX	Liver
SUPT3H	Testis Seminiferous Tubule
SUPV3L1	Leukemia promyelocytic HL70
SURF2	Testis Germ Cell
SUV39H1	CD71 Early Erythroid
SVEP1	Placenta
SYCP1	Testis Intersitial
SYCP2	Testis Leydig Cell

SYDE1	Placenta
SYF2	Skeletal Muscle
SYN3	Skeletal Muscle
SYNGR4	Testis
SYNPO2L	Heart
SYP	pineal night
SYT12	Trigeminal Ganglion
T	X721 B lymphoblasts
TAAR3	Superior Cervical Ganglion
TAAR5	Superior Cervical Ganglion
TAC1	Caudate nucleus
TAC3	Placenta
TACR3	Pancreas
TAF4	Leukemia lymphoblastic MOLT 37
TAF5L	CD71 Early Erythroid
TAF7L	Testis Germ Cell
TAL1	CD71 Early Erythroid
TANC2	Superior Cervical Ganglion
TAP2	CD56 NK Cells
TARBP1	CD55
TAS2R1	Globus Pallidus
TAS2R14	Superior Cervical Ganglion
TAS2R7	Superior Cervical Ganglion

TAS2R9	Subthalamic Nucleus
TASP1	Superior Cervical Ganglion
TAT	Liver
TBC1D12	Spinal Cord
TBC1D13	Kidney
TBC1D16	Adipocyte
TBC1D22A	CD19 Bcells neg. sel.
TBC1D22B	CD71 Early Erythroid
TBC1D29	Dorsal Root Ganglion
TBC1D8B	Pituitary
TBCA	Superior Cervical Ganglion
TBCD	Leukemia lymphoblastic
	MOLT 38
TBCE	CD56
TBL1Y	Superior Cervical Ganglion
TBL2	Testis
ТВР	Testis Intersitial
TBRG4	Lymphoma burkitts Raji
TBX10	Skeletal Muscle
TBX19	Pituitary
TBX21	CD56 NK Cells
TBX3	Adrenal gland
TBX4	Temporal Lobe
TBX5	Superior Cervical Ganglion
	·

ТСНН	Placenta
_	
TCL1B	Atrioventricular Node
TCL6	Cardiac Myocytes
TCN2	Kidney
TCP11	Testis Intersitial
TDP1	Testis Intersitial
TEAD3	Placenta
TEAD4	Colorectal adenocarcinoma
TEC	Liver
TECTA	Superior Cervical Ganglion
TESK2	CD19 Bcells neg. sel.
TEX13B	Skeletal Muscle
TEX14	Testis Seminiferous Tubule
TEX15	Testis Seminiferous Tubule
TEX28	Testis
TFAP2A	Placenta
TFAP2B	Skeletal Muscle
TFAP2C	Placenta
TFB1M	Leukemia promyelocytic HL71
TFB2M	Leukemia chronic Myelogenous K597
TFCP2L1	Salivary gland
TFDP1	CD71 Early Erythroid
TFDP3	Superior Cervical Ganglion

TFEC	CD33 Myeloid
TFF3	Pancreas
TFR2	Liver
TGDS	Pancreas
TGFB1I1	Uterus
TGM2	Placenta
TGM3	Tongue
TGM4	Prostate
TGM5	Liver
TGS1	CD105 Endothelial
THADA	CD4 T cells
THAP10	Whole Brain
ТНАР3	Lymphoma burkitts Raji
THBS3	Testis
THG1L	CD105 Endothelial
THNSL2	Liver
THRB	Superior Cervical Ganglion
THSD1	Pancreas
THSD4	Superior Cervical Ganglion
THSD7A	Placenta
THUMPD2	Leukemia lymphoblastic MOLT 39
TIMM22	Whole Brain
TIMM50	Skin

TIMM8B	Heart
	Itait
TIMP2	Placenta
TLE3	Whole Blood
TLE6	CD71 Early Erythroid
TLL1	Superior Cervical Ganglion
TLL2	Heart
TLR3	Testis Intersitial
TLR7	BDCA4 Dentritic Cells
TLX3	Cardiac Myocytes
TM4SF20	small intestine
TM4SF5	Liver
TM7SF2	Adrenal gland
TMCC1	Pancreas
TMCC2	CD71 Early Erythroid
TMCO3	Smooth Muscle
TMEM104	Skin
TMEM11	CD71 Early Erythroid
TMEM110	Liver
TMEM121	CD14 Monocytes
TMEM135	Adipocyte
TMEM140	Whole Blood
TMEM149	BDCA4 Dentritic Cells
TMEM159	Heart
TMEM186	X721 B lymphoblasts

TMEM187	Lung
TMEM19	Superior Cervical Ganglion
TMEM2	Placenta
TMEM209	Superior Cervical Ganglion
TMEM39A	Pituitary
TMEM45A	Skin
TMEM48	X721 B lymphoblasts
TMEM53	Liver
TMEM57	CD71 Early Erythroid
TMEM62	Cingulate Cortex
TMEM63A	CD4 T cells
TMEM70	Skeletal Muscle
TMLHE	Superior Cervical Ganglion
TMPRSS2	Prostate
TMPRSS3	small intestine
TMPRSS5	Olfactory Bulb
TMPRSS6	Liver
TNFAIP6	Smooth Muscle
TNFRSF10C	Whole Blood
TNFRSF10D	Cardiac Myocytes
TNFRSF11A	Appendix
TNFRSF11B	Thyroid
TNFRSF14	Lymphoma burkitts Raji
TNFRSF25	CD4 T cells

TNFRSF4	Lymph node
TNFRSF8	X721 B lymphoblasts
TNFRSF9	Ciliary Ganglion
TNFSF11	Lymph node
TNFSF14	X721 B lymphoblasts
TNFSF8	CD4 T cells
TNFSF9	Leukemia promyelocytic HL72
TNIP2	Lymphoma burkitts Raji
TNN	pineal night
TNNI1	Skeletal Muscle
TNNI3	Heart
TNNI3K	Superior Cervical Ganglion
TNNT1	Skeletal Muscle
TNNT2	Heart
TNP1	Testis Intersitial
TNP2	Testis Intersitial
TNR	Skeletal Muscle
TNS4	Colorectal adenocarcinoma
TNXA	Adrenal Cortex
TNXB	Adrenal Cortex
TOM1L1	Bronchial Epithelial Cells
TOMM22	X721 B lymphoblasts
ТОРЗВ	Leukemia chronic
	Myelogenous K598

TOX3	Colon
TOX4	Superior Cervical Ganglion
TP53BP1	pineal night
TP73	Skeletal Muscle
TPPP3	Placenta
TPSAB1	Lung
TRABD	BDCA4 Dentritic Cells
TRADD	CD4 T cells
TRAF1	X721 B lymphoblasts
TRAF2	Lymphoma burkitts Raji
TRAF3IP2	Bronchial Epithelial Cells
TRAF6	Leukemia chronic
	Myelogenous K599
TRAK1	CD19 Bcells neg. sel.
TRAK2	CD71 Early Erythroid
TRDMT1	Superior Cervical Ganglion
TRDN	Tongue
TREH	Kidney
TREML2	Placenta
TRH	Hypothalamus
TRIM10	CD71 Early Erythroid
TRIM13	Testis Intersitial
TRIM15	Pancreas
TRIM17	Ciliary Ganglion
	L

Whole Blood
Amygdala
Placenta
Tongue
Skeletal Muscle
Cerebellum
Amygdala
CD71 Early Erythroid
CD56 NK Cells
Fetal brain
Skeletal Muscle
Testis Intersitial
CD105 Endothelial
CD8 T cells
Superior Cervical Ganglion
Superior Cervical Ganglion
retina
BDCA4 Dentritic Cells
Skeletal Muscle
Superior Cervical Ganglion
Leukemia lymphoblastic MOLT 40
Testis Intersitial
Pituitary

	T
TSKS	Testis Intersitial
TSPAN1	Trachea
TSPAN15	Olfactory Bulb
TSPAN32	CD8 T cells
TSPAN5	CD71 Early Erythroid
TSPAN9	Heart
TSSC4	Heart
TSTA3	CD105 Endothelial
TTC15	Testis Intersitial
TTC22	Superior Cervical Ganglion
TTC23	Lymphoma burkitts Raji
TTC27	Leukemia chronic
	Myelogenous K600
TTC28	Fetal brain
TTC9	Fetal brain
TTLL12	CD105 Endothelial
TTLL4	Testis
TTLL5	Testis Intersitial
ТТРА	Atrioventricular Node
TTTY9A	Superior Cervical Ganglion
TUBA4B	Lymphoma burkitts Raji
TUBA8	Superior Cervical Ganglion
TUBAL3	small intestine
TUBB4Q	Skeletal Muscle
	1

TUBD1	Superior Cervical Ganglion
TUFM	Superior Cervical Ganglion
TUFT1	Skin
TWSG1	Smooth Muscle
TYR	retina
TYRP1	retina
U2AF1	Superior Cervical Ganglion
UAP1L1	X721 B lymphoblasts
UBA1	Superior Cervical Ganglion
UBE2D1	Whole Blood
UBE2D4	Liver
UBFD1	CD105 Endothelial
UBQLN3	Testis Intersitial
UCN	pineal night
UCP1	Fetal Thyroid
UFC1	Trigeminal Ganglion
UGT2A1	Atrioventricular Node
UGT2B15	Liver
UGT2B17	Appendix
ULBP1	Cerebellum
ULBP2	Bronchial Epithelial Cells
UMOD	Kidney
UNC119	Lymphoma burkitts Raji
UNC5C	Superior Cervical Ganglion
	L

UNC93A	Fetal liver
UNC93B1	BDCA4 Dentritic Cells
UPB1	Liver
UPF1	Prostate
UPK1A	Prostate
UPK1B	Trachea
UPK3A	Prostate
UPK3B	Lung
UPP1	Bronchial Epithelial Cells
UQCC	Lymphoma burkitts Raji
UQCRC1	Heart
UQCRFS1	Superior Cervical Ganglion
URM1	Heart
UROD	CD71 Early Erythroid
USH2A	pineal day
USP10	Whole Blood
USP12	CD71 Early Erythroid
USP13	Skeletal Muscle
USP18	X721 B lymphoblasts
USP19	Trigeminal Ganglion
USP2	Testis Germ Cell
USP27X	Superior Cervical Ganglion
USP29	Superior Cervical Ganglion
USP32	Testis Intersitial

USP6NL	Atrioventricular Node
UTRN	Testis Intersitial
0 2 2 2 2 .	
UTS2	CD56 NK Cells
UTY	Ciliary Ganglion
UVRAG	CD19 Bcells neg. sel.
VAC14	Skeletal Muscle
VARS	X721 B lymphoblasts
VASH1	pineal night
VASH2	Fetal brain
VASP	Whole Blood
VAV2	CD19 Bcells neg. sel.
VAV3	Placenta
VAX2	Superior Cervical Ganglion
VCPIP1	CD33 Myeloid
VENTX	CD33 Myeloid
VGF	Pancreatic Islet
VGLL1	Placenta
VGLL3	Placenta
VILL	Colon
VIPR1	Lung
VLDLR	Pancreatic Islet
VNN2	Whole Blood
VNN3	CD33 Myeloid
VPRBP	Testis Intersitial

VPREB1	CD57
VPS13B	CD8 T cells
VPS33B	Testis
VPS45	pineal day
VPS53	Skin
VSIG4	Lung
VSX1	Superior Cervical Ganglion
VTCN1	Trachea
WARS2	X721 B lymphoblasts
WASL	Colon
WDR18	X721 B lymphoblasts
WDR25	Lung
WDR43	Lymphoma burkitts Daudi
WDR55	CD4 T cells
WDR5B	Superior Cervical Ganglion
WDR60	Testis Intersitial
WDR67	CD56 NK Cells
WDR70	BDCA4 Dentritic Cells
WDR78	Testis Seminiferous Tubule
WDR8	Lymphoma burkitts Raji
WDR91	X721 B lymphoblasts
WHSC1L1	Ovary
WHSC2	Lymphoma burkitts Raji
WIPI1	CD71 Early Erythroid
L	.

WISP1	Uterus Corpus
WISP3	Superior Cervical Ganglion
WNT11	Uterus Corpus
WNT2B	retina
WNT3	Superior Cervical Ganglion
WNT4	Pancreatic Islet
WNT5A	Colorectal adenocarcinoma
WNT5B	Prostate
WNT6	Colorectal adenocarcinoma
WNT7A	Bronchial Epithelial Cells
WNT7B	Skeletal Muscle
WNT8B	Skin
WRNIP1	Trigeminal Ganglion
WT1	Uterus
WWC3	CD19 Bcells neg. sel.
XCL1	CD56 NK Cells
XK	CD71 Early Erythroid
XPNPEP2	Kidney
XPO4	pineal day
XPO6	Whole Blood
XPO7	CD71 Early Erythroid
XRCC3	Colorectal adenocarcinoma
YAF2	Skeletal Muscle
YBX2	Testis
L	l

YIF1A	Liver
YIPF6	CD71 Early Erythroid
YWHAQ	Skeletal Muscle
YY2	Uterus Corpus
ZAK	Dorsal Root Ganglion
ZAP70	CD56 NK Cells
ZBED4	Dorsal Root Ganglion
ZBTB10	Superior Cervical Ganglion
ZBTB17	Lymphoma burkitts Raji
ZBTB24	Skin
ZBTB3	Superior Cervical Ganglion
ZBTB33	Superior Cervical Ganglion
ZBTB40	CD4 T cells
ZBTB43	CD33 Myeloid
ZBTB5	CD19 Bcells neg. sel.
ZBTB6	Superior Cervical Ganglion
ZBTB7B	Ovary
ZC3H12A	Smooth Muscle
ZC3H14	Testis Intersitial
ZCCHC2	Salivary gland
ZCWPW1	Testis Germ Cell
ZDHHC13	X721 B lymphoblasts
ZDHHC14	Lymphoma burkitts Raji
ZDHHC18	Whole Blood
	·

ZDHHC3	Testis Intersitial
ZER1	CD71 Early Erythroid
ZFHX4	Smooth Muscle
ZFP2	Superior Cervical Ganglion
ZFP30	Ciliary Ganglion
ZFPM2	Cerebellum
ZFR2	Trigeminal Ganglion
ZFYVE9	Cingulate Cortex
ZG16	Colon
ZGPAT	Liver
ZIC3	Cerebellum
ZKSCAN1	Pancreas
ZKSCAN5	CD19 Bcells neg. sel.
ZMAT5	Liver
ZMYM1	Superior Cervical Ganglion
ZMYND10	Testis
ZNF124	Uterus Corpus
ZNF132	Skin
ZNF133	CD58
ZNF135	CD59
ZNF136	CD8 T cells
ZNF14	Trigeminal Ganglion
ZNF140	Superior Cervical Ganglion
ZNF157	Trigeminal Ganglion
L	L

ZNF167	Appendix
ZNF175	Leukemia chronic
	Myelogenous K601
	Wyciogenous Koor
ZNF177	Testis Seminiferous Tubule
ZNF185	Tongue
ZNF193	Ovary
ZNF200	Whole Blood
ZNF208	Liver
ZNF214	Superior Cervical Ganglion
ZNF215	Dorsal Root Ganglion
ZNF223	Ciliary Ganglion
ZNF224	CD8 T cells
ZNF226	pineal night
ZNF23	CD71 Early Erythroid
ZNF235	Superior Cervical Ganglion
ZNF239	Testis Seminiferous Tubule
ZNF250	Skin
ZNF253	Superior Cervical Ganglion
ZNF259	Testis
ZNF264	CD4 T cells
ZNF267	Whole Blood
ZNF273	Skin
ZNF274	CD19 Bcells neg. sel.
ZNF280B	Testis Intersitial

ZNF286A	Superior Cervical Ganglion
ZNF304	Superior Cervical Ganglion
ZNF318	X721 B lymphoblasts
ZNF323	Superior Cervical Ganglion
ZNF324	Thymus
ZNF331	Adrenal Cortex
ZNF34	Fetal Thyroid
ZNF343	Ciliary Ganglion
ZNF345	Superior Cervical Ganglion
ZNF362	Atrioventricular Node
ZNF385D	Superior Cervical Ganglion
ZNF391	Testis Intersitial
ZNF415	Testis Intersitial
ZNF430	CD8 T cells
ZNF434	Globus Pallidus
ZNF443	Trigeminal Ganglion
ZNF446	Superior Cervical Ganglion
ZNF45	CD60
ZNF451	CD71 Early Erythroid
ZNF460	Trigeminal Ganglion
ZNF467	Whole Blood
ZNF468	CD56 NK Cells
ZNF471	Skeletal Muscle
ZNF484	Atrioventricular Node
L	L

ZNF507	Fetal liver
ZNF510	Appendix
ZNF516	Uterus
ZNF550	Temporal Lobe
ZNF556	Ciliary Ganglion
ZNF557	Ciliary Ganglion
ZNF587	Superior Cervical Ganglion
ZNF589	Superior Cervical Ganglion
ZNF606	Fetal brain
ZNF672	CD71 Early Erythroid
ZNF696	Trigeminal Ganglion
ZNF7	Skeletal Muscle
ZNF711	Testis Germ Cell
ZNF717	Appendix
ZNF74	Dorsal Root Ganglion
ZNF770	Skeletal Muscle
ZNF771	Atrioventricular Node
ZNF780A	Superior Cervical Ganglion
ZNF79	Leukemia lymphoblastic MOLT 41
ZNF8	Superior Cervical Ganglion
ZNF80	Trigeminal Ganglion
ZNF804A	Lymphoma burkitts Daudi
ZNF821	Testis Intersitial

ZNHIT2	Testis
ZP2	Cerebellum
ZPBP	Testis Intersitial
ZSCAN16	CD19 Bcells neg. sel.
ZSCAN2	Skeletal Muscle
ZSWIM1	Ciliary Ganglion
ZW10	Superior Cervical Ganglion
ZXDB	Ciliary Ganglion
ZZZ3	CD61

60983995 v1-WorksiteUS-029129/0008