发明名称
一种从粘胶化纤压榨碱液中提取木糖的方法

摘要
本发明涉及一种从粘胶化纤压榨碱液中提取木糖的方法。采用的技术方案是：
1. 预过滤得预浓缩液；
2. 将预浓缩液经纳滤膜循环过滤得浓缩液；
3. 浓缩液加入盐酸得水解液，水解液加入NaOH至中性，然后经过脱色处理后，通过调节NaCl浓度，匀速降温至室温，使水解液中的葡萄糖与NaCl共结晶除去葡萄糖；
4. 滤液经离子交换柱得净化液；
5. 净化液经二次结晶提纯得粗产品；
6. 粗产品经精制得木糖成品。本发明在节约了资源的同时，给企业带来了经济效益，保护了环境。
1. 一种从粘胶化纤压榨碱液中提取木糖的方法，其特征在于包括以下步骤：

1) 预过滤：将压榨碱液过滤，滤液为预浓缩液；所述的压榨碱液中，碱浓度为 50-200g/l，半纤维素浓度为 25-90g/l。

2) 微滤：将预浓缩液经纳滤膜过滤，取滤液按水稀释再经纳滤膜过滤，反复此操作，直至滤出的碱液中碱浓度小于等于 50g/l 时，停止过滤，得浓缩液。

3) 酸析水解：于浓缩液中加入 31-36% 的盐酸，调节溶液 PH 至 3-4，静置 30-90min，过滤，滤液于 100-120℃，PH 3-4 下，水解 2-4h，得水解液。

4) 中和脱酸：向水解液中加入 NaOH 至中性，得脱酸水解液。

5) 脱色：将脱酸水解液脱色处理 30-60min，得脱色脱酸水解液。

6) 一次结晶提纯：于脱色脱酸水解液中，调节 NaCl 浓度至按重量百分比为 16%，然后匀速降温至室温，搅拌，静置，过滤，取滤液。

7) 离子交换：将滤液依次通过酸性 H 型阳树脂、碱性 OH 型阴树脂，离子交换温度为 30-40℃，得净化液。

8) 二次结晶提纯：将净化液入蒸发器，在真空度为 0.08-0.1Mpa，温度为 65-70℃下，减压浓缩至固形物占重量百分比为 75-80%，得粗产品。

2. 如权利要求 1 所述的一种从粘胶化纤压榨碱液中提取木糖的方法，其特征在于包括以下步骤：

9) 精制：将粗产品压入结晶机，当温温至 60-65℃时，于粗产品中加入木糖品种，搅拌下，以每小时 5-10℃温温至室温，静置，过滤，取晶体，干燥，得木糖成品。

3. 如权利要求 1 所述的一种从粘胶化纤压榨碱液中提取木糖的方法，其特征在于：步骤 1 中的预过滤为在 40-50℃下，压榨碱液经板框分离和减孔过滤，将压榨碱液中粒度大于 40 微米的杂质滤除。

4. 如权利要求 1 所述的一种从粘胶化纤压榨碱液中提取木糖的方法，其特征在于：步骤 2 中，所述的纳滤膜为聚砜膜、PET、聚四氟乙烯膜中的一种或两种以上的组合；过滤条件为，采用错流过滤的方式，过滤压力为 0.6-2.0MPa，过滤温度为 30-60℃。

5. 如权利要求 1 所述的一种从粘胶化纤压榨碱液中提取木糖的方法，其特征在于：步骤 5 中脱色处理为，向脱酸水解液中加入其重量 0.5-2% 的活性炭，于 60-80℃下搅拌至色度为 10-15°。
说明书

一种从粘胶化纤压榨碱液中提取木糖的方法

技术领域

【0001】本发明属于功能糖制备技术领域，具体地涉及一种从化纤粘胶生产压榨碱液中提取木糖的方法。

背景技术

【0002】粘胶化纤是以用棉短绒制成的浆粕、木制的浆粕以及用其他纤维制成的浆粕为原料，在生产过程中，首先需要向浆粕中加入碱液（一般为NaOH溶液）进行浸渍，然后对浸渍液进行压榨，得到的碱纤维素进一步加二硫化碳黄化成粘胶，粘胶通过高压喷丝头形成纤维丝，纤维丝再切断干燥后，形成替代棉花纤维的粘胶纤维。而压榨下来的碱液循环利用于浸渍浆粕。

【0003】但是，粘胶纤维生产原料浆粕在制成浆粕时还含有部分木糖与葡萄糖聚合物半纤维素，在粘胶纤维生产时，半纤维素就会溶解在浸渍碱液中，随着浸渍碱中半纤维含量的不断增加，碱纤维素的压榨难度也逐渐增加，纤维的反应性能和粘胶过滤性能逐渐下降，二硫化碳消耗相应增加，影响了纤维素工序的生产稳定性和产品质量，为生产带来不便。因此当压榨碱液中半纤维素的浓度达到一定浓度时，企业就会将这部分压榨碱液丢弃，这样一方面给后续的污水处理带来了很大困难，而且压榨碱液中还含有的部分碱液和半纤维素等为有益成分，白白丢弃也造成资源的浪费。

【0004】木糖是一种还原性糖类，是多缩戊糖的一个组分，分子式为C₄H₇O₅，木糖甜度为蔗糖的72%，与葡萄糖甜度接近，风味亦与葡萄糖相似，能改善甜食的风味和口感，抑制异味。木糖在催化剂的存在下能被氢化还原生成木糖醇，可用作木糖醇的原料，木糖具有良好的食物配伍性，在与氨基酸混合加热过程中容易产生美拉德反应，起到增香的效果。木糖还具有良好的保健功能，能活化人体肠道内的双歧杆菌并促其生长，改善人体的微生态环境，提高机体的免疫能力。近年来，木糖是重要的化工原料，工业用来产木糖醇、饲料酵母，以及在食品、医药、化工、皮革、染料等领域都有着广泛的用途。

发明内容

【0005】本发明的目的在于克服现有技术的不足之处，提供一种节约资源，降低企业成本，对环境友好的从粘胶化纤压榨碱液中提取木糖的方法。

【0006】本发明采用的技术方案是：一种从粘胶化纤压榨碱液中提取木糖的方法，包括以下步骤：

【0007】1）预过滤：将压榨碱液过滤，滤液为预浓缩液；

【0008】2）所述的压榨碱液中，碱浓度为50~200g/1，半纤维素浓度为25~90g/1；

【0009】所述的预过滤为在40~50℃下，压榨碱液经板框分离和微孔过滤，将压榨碱液中粒度大于40微米的杂质滤除。

【0010】3）循环浓缩；将预浓缩液经纳滤膜过滤，滤出的净碱液返回生产中循环利用，留液加水稀释再经纳滤膜设备过滤，滤出的净碱液收集回用，被滤留液继续加水稀释和经
说明书

纳米滤膜过滤，反复此操作，直至滤出的碱液中碱浓度小于等于 50g/l 时，停止过滤，得浓缩液；

0011 优选的，所述的纳米滤膜为聚砜膜，PET，聚四氟乙烯膜中的一种或两种以上的组合；

0012 过滤条件为：采用错流过滤的方式，过滤压力为 0.6-2.0 MPa，过滤温度为 30-60℃。

0013 3) 酸析水解：于浓缩液中加入 31-36% 的盐酸，调节溶液 PH 至 3-4，静置 30-90 min，过滤，滤液于 100-120℃, PH3-4 下，水解 2-4 h，得水解液；

0014 4) 中和脱酸：向水解液中加入 NaOH 至中性，得脱酸水解液；

0015 5) 脱色：将脱酸水解液脱色处理 30-60 min，得脱色脱酸水解液；

0016 优选的，脱色处理为，向脱酸水解液中加入其重量 0.5-2% 的活性炭，于 60-80℃ 下搅拌至色度为 10-15°。

0017 6) 一次结晶提纯：于脱色脱酸水解液中，调节 NaCl 浓度至按重量百分比约为 16%，然后匀速降温至室温，搅拌，此时有大量结晶体出现，静置，过滤，取滤液；

0018 7) 离子交换：将滤液通过离子交换柱，得净化液；

0019 优选的，将滤液依次通过酸性 PF 型阳树脂、碱性 OH 型阴树脂，离子交换温度为 30-40℃。

0020 8) 二次结晶提纯：将净化液入蒸发器，在真空度为 0.08-0.1 MPa，温度为 65-70℃下，减压浓缩至固形物占重量百分比为 75-80%，得粗产品。

0021 9) 精制：将粗产品压入结晶机，当降温至 60-65℃ 时，于粗产品中加入木糖溶液，搅拌下，以每小时 5-10℃ 降温至室温，过滤，取晶体，干燥，得木糖成品。

0022 本发明的有益效果是：

0023 1. 将粘胶纤维企业丢弃的压榨废液回收利用。过过滤回收的碱液可继续用于生产，获得的含有半纤维素的浓缩液可用于水解制作提取木糖，节约了资源的同时又给企业带来了经济效益。

0024 2. 由于废物的回收利用，极减少化纤粘胶生产等废水的污染和排放，保护了环境。

0025 3. 整体的降低了粘胶纤维生产企业的成本。

0026 4. 由于采用纳米膜的技术。使得滤出的碱液中半纤维素含量很低，净化的碱液可以回用，既能保证粘胶纤维生产工艺和成品质量稳定，又减少碱耗和污染物（废碱）排放。既创造了经济效益又有环境效益产生，达到可持续发展循环经济的目的。

具体实施方式

0027 实施例 1 一种从粘胶化纤压榨碱液中提取木糖的方法

0028 工艺步骤如下：

0029 1) 预过滤：将压榨碱液（碱浓度为 100g/l，半纤维素浓度为 50g/l）于 40-50℃ 下经板框分离和微孔过滤，将压榨碱液中粒度大于 40 微米的杂质滤除，过滤，滤液为预浓缩液。经过此步骤，把压榨碱液中的大分子固形物杂质滤除，预浓缩液中约含有 80g/l 的半纤维素。
2) 循环浓缩：将预浓缩液经纳滤膜过滤，滤出的净碱液返回生产中循环利用，截留液加水稀释再经纳滤膜设备过滤，滤出的净碱液收集回用，被截留液继续加水稀释和经

纳滤膜过滤，反复此操作，直至滤出的碱液中碱浓度小于等于 50g/l 时，停止过滤，得浓缩

液；

3) 所述的纳滤膜为聚砜膜、PET、聚四氟乙烯膜中的一种或两种以上的组合；

过滤条件为：采用错流过滤的方式，过滤压力为 0.6-2.0MPa，过滤温度为 30-60°C。

4) 水解酸：向水解液中加入 31% (v/v) 的盐酸，调节溶液 PH 至 3-4，静置 60min，

此时水的性质由溶液转化为悬浮态，过滤，滤液于 110°C，PH3-4 下水解 3h，此时，半纤维素

水解为木糖、葡萄糖及杂质等，得水解液。

5) 中和脱酸：向水解液中加入 NaOH 至中性，得脱酸水解液；加入 NaOH 除去水解液

中的盐酸，脱去对木糖结晶不利的因素。

6) 脱色：向脱酸水解液加入其重量 0.5-2% 的活性炭，在 60-80°C 下搅拌进行脱色

处理 30-60min，去除色素胶和含氮物，得到色度为 10-15° 的脱色脱酸水解液。

7) 一次结晶提纯：经测定，脱色脱酸水解液中，木糖浓度约为 25% (w/w)，葡萄糖

浓度约为 25% (w/w)，NaCl 浓度约为 13% (w/w)，向脱色脱酸水解液中添加 NaCl，调节脱色

脱酸水解液中 NaCl 浓度至按重量百分比约为 16%，然后匀速降温至室温，搅拌，此时有大量的

结晶体出现，静置，过滤，取滤液；

按本发明的方法，经脱色脱酸处理后，脱色脱酸水解液中含有木糖浓度约为 20-30%，葡萄糖浓度约为 20-30%，NaCl 浓度约为 10-15%。本发明的优点就在于以 NaCl

作为葡萄糖结晶的晶核。实验结果发现，只有在脱色脱酸水解液中 NaCl 在 16% 左右时，在降温至室温时，葡萄糖即与 NaCl 在搅拌下生成共晶体 (C₆H₁₂O₆) ·2NaCl ·H₂O，从母

液中分离析出，晶核完全，脱色脱酸水解液中不残留葡萄糖，葡萄糖结晶快，其结晶速度较高

葡萄糖结晶体作为晶核快。经过 2-4 小时，NaCl 与葡萄糖便以不同形状的共晶体结晶出来。

分离取出结晶，得木糖溶液。

8) 水解酸：将澄清液依次通过酸性 II 型阳树脂、碱性 OH 型阴树脂，离子交换温度

为 30-40°C，得净化液。净化液中木糖的纯度可达 95-97%，使木糖溶液呈无色透明状；

9) 二次结晶提纯：将水解液入蒸发器，在真空度为 0.08-0.1Mpa，温度为 65-70°C

下，减压浓缩至固形物含量重量百分比为 75-80%，得糖晶体。

精制：将糖晶体压入结晶机，当降温至 60-65°C 时，于粗产品中加入木糖晶体，

慢慢搅拌助晶，然后以每小时 5-10°C 降温至室温，此时不断有结晶析出，过滤，取结晶体，

于 75-80°C，真空度 0.08Mpa 下，干燥时间 2h，得到木糖成品。

目标产物，经过紫外光谱和红外光谱确认结构所得成品为木糖，成品中水分

<5.0%，总固形物中木糖纯度 >95%。