A method and apparatus for cleaning the interior of storage tanks of the type used for storing large volumes of liquids, such as crude oil, wherein hydrocarbon sludge accumulates with the passage of time, such apparatus comprising a hollow housing (310), liquid agitation means including a plurality of nozzled outlet jets laterally rotatably mounted on the housing in fluid communication with the hollow interior thereof, connecting means comprising an independently rotatable tubular casing (382) rotatably mounted on the housing in fluid communication with the interior thereof, the tubular casing having a knuckled (400) mounted therein and being operatively connected with the nozzled outlet jets, and multi-joint support pipe (500) means rotatably jointed to the connecting means in fluid communication with the interior of the tubular casing. With this construction, an appropriate pump means may be provided for forcing a liquid, such as crude oil through the multi-joint support pipe means into the hollow housing and out of the hollow housing through the nozzled outlet jets and indexing power means may suitably be provided and operatively rotatably connected to the laterally rotatable outlet jets for their rotation at a predetermined rate independent of the rate of flow of liquid through the nozzled outlet jets.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AT</th>
<th>Austria</th>
<th>FR</th>
<th>France</th>
<th>ML</th>
<th>Mali</th>
</tr>
</thead>
<tbody>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GB</td>
<td>United Kingdom</td>
<td>MW</td>
<td>Malawi</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>HU</td>
<td>Hungary</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>IT</td>
<td>Italy</td>
<td>NO</td>
<td>Norway</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>JP</td>
<td>Japan</td>
<td>RO</td>
<td>Romania</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
<td>SD</td>
<td>Sudan</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>KR</td>
<td>Republic of Korea</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>LI</td>
<td>Liechtenstein</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>LK</td>
<td>Sri Lanka</td>
<td>SU</td>
<td>Soviet Union</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroon</td>
<td>LU</td>
<td>Luxembourg</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>DE</td>
<td>Germany, Federal Republic of</td>
<td>MC</td>
<td>Monaco</td>
<td>TG</td>
<td>Togo</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>MG</td>
<td>Madagascar</td>
<td>US</td>
<td>United States of America</td>
</tr>
</tbody>
</table>
LIQUID CIRCULATOR USEFUL FOR DISPERSING SEDIMENT CONTAINED IN A STORAGE TANK

This invention relates to a novel method and apparatus for the dispersion of sediment, such as hydrocarbon sludge in a storage tank. More particularly, this invention relates to a method and apparatus for cleaning the interior of hydrocarbon storage tanks of the type used in petroleum refineries, chemical plants and the like for storing large volumes of hydrocarbon liquids, wherein solid materials (composed principally of hydrocarbons) and normally referred to as "hydrocarbon sludge" accumulate with the passage of time.

It is a common commercial practice to store liquid materials in storage tanks. Typically, for many industrial applications, storage tanks will have a diameter from 100 to 300 feet and heights of 20 to 50 feet or more. The liquids stored in such storage tanks are diverse. For example, water or aqueous solutions of organic or inorganic chemicals may be stored in this manner, derivatives of agricultural products such as vegetable oils which are water soluble are likewise stored in this manner.

More commonly, however, large volume storage tanks of this nature are used in the production, collection and refining of crude oils and derivatives thereof such as crude oils containing naphthenic and aromatic components and refinery products such as gasolines, diesel fuels, jet fuels, fuel oils, kerosene, gas oil, etc., and petrochemical derivatives thereof such as
benzene, xylenes, toluene, etc.

With the passage of time, solid materials, usually in finely divided form, will accumulate in the storage tank and settle at the bottom thereof. When the accumulation becomes excessive, it must be removed from the storage tank.

One manner in which this can be accomplished is to drain the tank and manually remove the sediments that are deposited therein. However, such a procedure is costly and time-consuming and can cause the workmen involved therein to be exposed to toxic or potentially toxic materials.

The problem of sediment accumulation is particularly accentuated insofar as the storage of crude oil and, in particular, aromatic and naphthenic crude oils is concerned. Such crude oils, as introduced into the storage tank, will normally contain aromatic, naphthenic and asphaltic components which are believed to be potentially reactive and/or condensable with each other. Moreover, a minor amount of water will normally be present in the crude oil (e.g., about 0.1 to 5 wt.%), but, usually, the water will not be present as a separate phase, but rather as small droplets of water emulsified by ionizable components of the crude oil, such as asphaltenes.

It is believed that molecular charge transfer forces, such as Van Der Waals forces, cause many of the molecular aromatic, naphthenic and asphaltic components of the crude oil to agglomerate and weakly bond to each other to form aggregates having a size sufficient to cause them to precipitate from the crude oil and to settle at the bottom of a crude oil storage tank together with the emulsified water droplets so that the resultant "hydrocarbon sludge"
will normally comprise highly aromatic components such as polycyclic aromatic components in which a significant portion of the water (in the form of emulsified droplets) will be occluded. Also, when porphyrins are present, the porphyrin molecules are believed to be intercallatively attracted to each other so as to form agglomerates that will settle from the crude oil stored in the crude oil storage tank. It is for reasons such as these that the sediment in the bottom of a crude oil storage tank is sometimes colloquially referred to as "black sediment and water" or "hydrocarbon sludge" or just plain "sludge".

The hydrocarbon sludge that accumulates, as such, is of marginal economic value and, if manually removed, usually represents a disposal problem.

It is known to remove sediments from a storage tank by agitating the liquid in the storage tank so as to resuspend the sediment so that a stream of sediment-containing liquid can be withdrawn from the storage tank and filtered, as illustrated, for example, by U.S. Patent Nos. 4,407,678 and 4,685,974 described below.

U.S. Patent No. 4,407,678 discloses a sludge removal machine for removing sludge from the bottom of a storage tank which comprises a hollow body, and laterally rotatable nozzles. The sludge removal machine is suspended in a storage tank from a pipe through which a cleaning liquid may be pumped. The sludge removal machine is also provided with a "turbine" or impeller for rotating the nozzles in order to disperse sludge.

U.S. Patent No. 4,685,974 is directed to a method for removing settled sludge from the bottom of a storage tank which uses apparatus of the type disclosed and claimed in the afor ward U.S. Patent No. '678. In accordance with the method of
U.S. Patent No. '678., a liquid such as crude oil is pumped into a machine suspended in a storage tank adjacent a side wall thereof and which is provided with diametrically opposed lateral nozzles which are rotated in a manner such that each nozzle emits liquid during 180° of its rotation to avoid impingement of liquid on the side of the tank wall to thereby suspend the sledge into liquid in the tank after which the liquid having sludge suspended therein is pumped from the tank.

U.S. Patent No. 3,586,294 is directed to a method and apparatus for creating a suspension of fine particles in a liquid in a tank using a plurality of spargers suspended above the bottom of the tank on a nonrotating lattice of feed pipes through which a liquid is pumped for emission through the sparging nozzles to suspend fine particles of sediment in the liquid for discharge from the tank on removal of the suspension.

U.S. Patent No. 1,978,615 is directed to a method an apparatus for cleaning sediment from a tank containing a fluid comprising a central manifold from which a plurality of discharge pipes radiate, each discharge pipe being provided with a plurality of discharge nozzles so that liquid may be pumped through the central manifold and out through the nozzles to roil the sediment or other foreign material at the bottom of the tank and suspend it for withdrawal through a side withdrawal pipe located above the apparatus.

U.S. Patent No. 3,953,226 is directed to a device for cleaning sediment from a hot wort tank including pipe means oscillatably suspended from the
top of the tank, the oscillatetable pipe means being provided at a discharge point near the bottom of the tank with one or more spray jets through which hot water may be sprayed to sweep suspended matter to a sump located on the opposite side of the storage tank for removal.

U.S. Patent No. 3,878,857 is directed to a device for cleaning the side walls of a storage tank such as a tank located on a ship carrying crude oil. The apparatus comprises an L-shaped inlet pipe suspended from the top of the tank, a pair of diametrically opposed jets are mounted on the end of the "L" so that liquid pumped through the L-shaped inlet pipe will be forced to flow out of the pipe through one of the jets at a time. Means are provided for rotating the jet nozzles about their vertical axis and an indexing means is also provided for rotating the jetting means a fraction of a turn about a horizontal axis for each complete revolution about the vertical axis. The mechanism for accomplishing this is suitably a worm gear which operates in conjunction with a cog wheel and a blocking wheel.

U.S. Patent No. 2,116,935 is directed to a method and apparatus for cleaning tanks such as railroad tank cars and comprises a pipe which is suspended vertically in the tank for rotation about a horizontal axis and which contains at the lower end thereof a reaction nozzle mounted for rotation about a horizontal axis and includes a reaction nozzle member mounted on the vertical conduit for rotation about a horizontal axis so that liquid pumped down the conduit is forced out the vertically disposed jets of the reaction nozzle. The device also includes
appropriate means for slowly rotating the reaction nozzle about the vertical axis of the suspending pipe.

However, the prior art practices have not been entirely satisfactory and there is need for improvement.

The present invention is directed to providing a method and apparatus useful for the removal of sediment, such as hydrocarbon sludge from a storage tank containing a liquid such as crude oil which will overcome the shortcomings and deficiencies of the prior art discussed above.

The invention therefore relates to apparatus for dispersing accumulated sediments, such as hydrocarbon sludge, in a storage tank, such apparatus comprising a hollow housing, liquid agitation means including a plurality of nozzled outlet jets laterally rotatably mounted on the housing in fluid communication with the hollow interior thereof, connecting means comprising an independently rotatable tubular casing rotatably mounted on the housing in fluid communication with the interior thereof, the tubular casing having casing turning means, mounted therein and having casing turning means mounted thereon and being operatively connected with the nozzled outlet jets, and multi-joint support pipe means rotatably jointed to the connecting means in fluid communication with the interior of the tubular casing.

With this construction, an appropriate pump means may be provided for forcing a liquid, such as a liquid hydrocarbon through the multi-joint support pipe means and the tubular connecting means into the
hollow housing and out of the hollow housing through the nozzled outlet jets and indexing power means may suitably be provided and operatively connected with the laterally rotatable outlet jets in a manner to be described in order to laterally rotate the nozzled outlet jets at a predetermined rate independent of the rate of flow of liquid through the nozzled outlet jets.

In a preferred embodiment, the liquid circulator will also comprise an elongate sled and the hollow housing will be pivotally mounted on the sled adjacent the front end thereof. The mass of the sled should be greater than the mass of a combination of the hollow housing, the liquid agitating means and the connecting means so that the center of gravity of the sled and the said combination mounted thereon is below the lateral axis of the opening in the housing and the tubular connecting means mounted thereon. As a consequence the liquid agitation means will always be in an upright position.

In accordance with a further preferred embodiment of the present invention, a gate valve and an isolation barrel are fixed to a manway in the side of a storage tank, such as a storage tank of the type used to store crude oil. Hydrocarbon sludge will settle from the stored crude oil with the passage of time such that the bottom of a crude oil storage tank may contain an accumulation of about 1 to about 10 feet of hydrocarbon sludge in the bottom of the crude oil storage tank. In accordance with this preferred embodiment of the present invention, an isolation barrel is mounted on the gate valve, the isolation barrel being provided with a valve-controlled drain line in the side thereof and a
tubular packing gland in the closed rear end thereof. In accordance with the method of the invention, with the gate valve closed, a crude oil circulator of the present invention is placed in the isolation barrel. After the crude oil circulator is positioned in the isolation barrel and the isolation barrel is mounted on the gate valve, the gate valve may be opened and crude oil in the storage tank will flow into the isolation barrel. The first joint of pipe connected to the laterally nozzled hydrocarbon sludge circulator will suitably contain a rotatable kelley rod or other suitable interconnective turning means. A plurality of additional joints of pipe, each of which contains interconnective turning means is then sequentially coupled to the first joint of pipe and pushed through the packing gland of the isolation barrel, thereby progressively forcing the crude oil circulator into the crude oil storage tank. When the crude oil circulator has been forced into the storage tank a desired distance, a connecting rod is coupled to the interconnective turning means. The valved drain line of the isolation barrel is then fluidly interconnected with a suitable filter means which is, in turn, fluidly interconnected with the suction side of a high pressure liquid pump. The discharge side of the high pressure liquid pump is fluidly interconnected with the plurality of joints of pipe coupled to the liquid (crude oil) circulator. Indexing power means are provided operatively interconnected with the connecting rod. With this arrangement, operation of the high pressure liquid pump will cause a stream of crude oil to be drawn from the isolation barrel through the drain line to the filter means, and after filtration, to the suction side of the high pressure liquid pump. The crude oil will be pressured in the pump and discharged therefrom through the joints of pipe.
back to the liquid circulator and out the nozzled outlet jets into the storage tank.

Simultaneous operation of the indexing power means will rotate the connecting rod which will rotate the interconnective turning means and the casing turning means in the connecting means. As a consequence, the tubular housing and the nozzle drive means will rotate and thereby rotate the nozzled outlet jets. The resultant agitation of the crude oil in the storage tank will cause the sediment in the tank to be dispersed therein for passage from the storage tank through the isolation barrel to the filter means.

In a preferred aspect of the method of the present invention, a stream of the crude oil is injected into the hydrocarbon sludge at a velocity of about 10,000 to about 20,000 gallons per minute to thereby disperse the hydrocarbon sludge in the crude oil while agitating the crude oil in order to maintain the dispersed hydrocarbon sludge in suspension, the method thereafter including the steps of withdrawing a stream of crude oil containing dispersed hydrocarbon sludge from the crude oil storage tank, filtering the withdrawn suspension, pressuring the filtered crude oil and reinjecting the crude oil under pressure into the crude oil storage tank at the desired velocity.

Further modifications, embodiments and advantages of the present invention will be hereinafter described in greater detail with reference to the accompanying drawings wherein:
Fig. 1 is a schematic view, with parts broken away, illustrating, in general, the manner in which the apparatus of the present invention may be assembled so as to practice the method of the present invention;

Fig. 2 is a sectional view showing a storage tank to which a gate valve, an isolation barrel of the present invention, a liquid circulator of the present invention and a high pressure pump have been connected, the liquid circulator being positioned inside the isolation barrel;

Fig. 3 is a sectional view similar to Fig. 2 showing the liquid circulator in position in the storage tank;

Fig. 4 is a sectional view illustrating a preferred embodiment of the liquid circulator of the present invention;

Fig. 5 is a sectional view showing another embodiment of a liquid circulator that may be used in accordance with the present invention;

Fig. 6 is a top view showing the manner in which the circulator of Fig. 5 is mounted on a sled;

Fig. 7 is a sectional view of a joint of pipe having a kelley rod spider and a kelley rod mounted therein and showing the manner in which kelley rods are interconnected to the kelley rod coupling means with keys;

Fig. 8 is a side view, partially in section, of a transition sub of the present invention;

Fig. 9 is a side view, partially in section of an isolation barrel constructed in accordance with the present invention; and

Fig. 10 is a perspective view of a tripping rack useful in the practice of the present invention.
Turning now to Fig. 1, there is shown a portion of a storage tank 100 provided with a manway 106 (Fig. 2) to which a gate valve 110 has been mounted in any suitable manner and to which an isolation barrel 200 has been secured, in turn, in any suitable manner (e.g., as shown in Fig. 2, through the provision of manway flange 108 on the manway 106, gate valve flanges 113 on the bore 112 of the gate valve 110 and an isolation barrel flange 201 on the isolation barrel 200; the flanges 108, 113 and 201 being interconnected in any suitable manner, such as through the provision of interconnecting nuts and bolts and seals, (not shown). Drain line conduit means such as a drain pipe 120 provided with a drain pipe inlet valve 124 and a drain pipe outlet valve 126 is fixed to the drain line 214 on the side of the isolation barrel 200 in any suitable manner. Filter means 130 are fluidly interconnected with the drain pipe 120 through drain pipe outlet valve 126 in any desired manner (e.g., through the provision of mating flanges (not shown) which are bolted together.)

The filter means 130 may be of any desired construction known to those skilled in the art and may comprise, for example, a pair of filter casings 132 and 134 in which a pair of filters 136 and 138 are mounted; each of the filters 132-134 being interconnected with a filter inlet manifold 140 by filter inlet lines 142 and 144 controlled by filter inlet valves 146 and 148 in the inlet lines and being interconnected with a filter outlet manifold 150 by filter outlet lines 152 and 154 controlled by filter outlet line valves 156 and 158, respectively.
The filter outlet manifold 150 is fluidly interconnected by any suitable means such as a filter conduit hose 160 with the suction side of a high pressure pump 170. Normally, the filter means 130 will be mounted on a truck 172 for convenience of transportation and likewise, the high pressure pump 170 will be mounted on a truck 174 for ease of transportation.

The discharge side of the high pressure pump 170 is fluidly interconnected with an elbow joint 644 by any suitable means such as a pump discharge pipe 180.

A tripping rack 600 mounted adjacent the end of and in axial alignment with the isolation barrel 200 is used for assembling the multi-joint support pipe means of the present invention; the construction of a preferred embodiment of the tripping rack being shown in more detail in Fig. 10.

Turning now to Figs. 2 and 3, there is shown a storage tank 100, such as a crude oil storage tank containing crude oil 102 and, as shown in Fig. 2, hydrocarbon sludge 104. The crude oil storage tank 100 is provided with a manway 106 such as a manway having a manway flange 108 on which a gate valve 110 is mounted in the manner described above. The gate valve 110 may be of any desired construction and may comprise, for example, a bonnet 112 and a base provided with flanges 113 into which a valve plate 116 may be raised and lowered by appropriate turning means such as a turning bar 118.

A flanged isolation barrel 200, the details of construction of which are shown more clearly in Fig. 9, is appropriately mounted on the gate valve 110 and held in place by suitable means such as supports 202.

A crude oil circulator designated generally by the number 300 is positioned in the isolation
barrel 200 before the isolation barrel 200 is bolted to the flanges 113 of the gate valve 110 by nuts and bolts (not shown). The details of construction of appropriate crude oil circulators 300 are shown in Figs. 4, 5 and 6.

The crude oil circulator 300 may be appropriately inserted and positioned and supported in the crude oil tank 100 by a multi-joint pipe support means 500 the details of which are shown in more detail in Fig. 7.

Turning now to Fig. 4, there is shown a preferred embodiment of a liquid circulator such as a crude oil circulator 300. The crude oil circulator 300 comprises a sled 302 provided with a bracket 304 adjacent the front end thereof on which is pivotally mounted by any appropriate means such as pivot pins 306, a hollow housing 310 having an opening 312 at the rear end thereof and being closed by a surge cap 314 at the front end thereof. The hollow housing 310 also comprises a lateral barrel segment 316 provided with an upstanding tubular support segment 318 in fluid communication with the interior of the hollow housing 310.

Liquid agitation means of any suitable construction are rotatably mounted on the upstanding tubular segment 318 of the hollow housing 310. For example, the liquid agitation means may comprise a tubular base on which a rotatable support bearing such as a chucksan bearing comprising a fixed inner support ring 324, a rotatable outer support ring 326 and interconnecting ball bearings 328. A connecting pipe flange 330 is fixed to the outer rotatable ring 326 of the rotatable bearing and a transition pipe 332 is fixed to the connecting pipe flange 330 in any suitable manner such as, for example, by welding.
In the preferred embodiment of the present invention, a pair of nozzled outlet jets designated generally by the number 340, only one of which is shown, are mounted on opposite ends of the transition pipe 332 so that the nozzled outlet jets 340 are diametrically opposite to each other. Each of the jets 340 may be comprised, for example, of an extension pipe 334 used to adjust the vertical height and/or angularity of the nozzled outlet jet 340 and reverse flow control means such as a check valve 344 is mounted on the outer end of the extension pipe 334. The reverse flow control means (check valve 344) may comprise, for example, a check valve housing 346 having a bore 348 therein, the check valve housing 346 being mounted on the extension pipe 334 at the outer end thereof with the check valve bore 348 in communication with the interior of the extension pipe 334. The check valve housing 346 is provided with an angled offset core 350 in which a check valve spring 352 is mounted under tension so as to urge a check ball 356 into engagement with a check valve seat 358 in the check valve bore 348. With this construction, the check ball 356 will normally be urged into a closed seating position against the check ball seat 358 so that fluid cannot flow into the interior of the extension pipe 334. A nozzle 360 having orifice 362 formed therein and lined with an appropriate erosion resistant material such as a tungsten carbide liner 364 is mounted on the discharge end of the check valve housing 346.

It is also to be observed that the transition pipe 332 is provided with a side port 333 in order to establish fluid communication with the
interior of the upstanding tubular support segment 318 of the hollow housing 312 and the interior of the tubular base 321.

Nozzle drive means are carried by the transition pipe 332 for rotating the nozzled outlet jets 340. In the embodiment shown in Fig. 4, the nozzle turning means comprises a flanged bevelled indexing gear 370 mounted to the transition pipe 332 in any appropriate manner, such as, for example, through the provision of a tubular indexing gear shaft 372 sized to fit around the rotatable outer ring 326 of the rotatable bearing, the bevelled indexing gear 370 also being provided with an indexing gear flange 322 fixed to the tubular indexing gear shaft 372 at the outer end thereof. With this construction, the tubular indexing gear flange 322 can be mounted on the connecting pipe flange 330 in any suitable manner, such as by means of a plurality of transition pipe collar bolts 376 and fixed with tightening nuts (not shown).

In accordance with the preferred embodiment, connecting means designated generally by the number 380 and comprising an independently rotatable tubular casing 382 is provided which is fixed to the opening 312 of the housing 310 in any appropriate manner so as to be rotatable thereabout. For example, a forward rotatable support bearing such as chicksan bearing 386 comprising a fixed inner forward bearing ring 388 may be mounted on the tubular housing 310 about the opening 312 to establish fluid communication between the opening 312 and the interior of the tubular casing 382. A rotatable outer forward bearing ring 390 is fixed to the forward end of the tubular casing 382 to complete the forward rotatable support bearing 386. Rotatability is provided through the provision of ball bearings 392.
In accordance with this construction, a tubing sub 384 is provided and a rear rotatable support bearing such as a chicksan bearing designated generally by the number 394 is used to interconnect the tubing sub 384 with the rotatable tubular casing 382. In accordance with this construction, a rotatable inner rear bearing ring 396 is fixed to the back end of the tubular casing 382 and a fixed outer rear bearing ring 398 is mounted on the tubing sub 384. Rotatability is provided through the provision of ball bearings 399.

The connecting means 380 is also provided with appropriate casing turning means such as, for example, a kelley 400 comprising an elongate metal bar of rectangular (i.e., square) cross-section which is mounted on a kelley spider designated generally by the number 402 and comprising a kelley support bracket 404 of mating rectangular cross-section in respect of the kelley 400 which is fixed in the tubular casing 382 by kelley support vanes 406 which are threaded or welded or in other appropriate manner connected to both the kelley support bracket 404 and the interior of the tubular casing 382. The kelley 400 is fixed to the kelley support tube 404 in a desired predetermined location by means of a kelley key 408 which mounts in mating key slots in the kelley 400 and the kelley support tube 404.

The connecting means 380 is also provided with appropriate nozzle drive means which, in the embodiment shown in Fig. 4, comprises a flanged tubular bevelled drive gear 410 provided with a tubular drive gear shaft 412 and a tubular drive gear flange 414 which are sized to fit about the rotatable outer forward bearing ring 390. The rotatable outer bearing ring 390 is also provided with
an outer forward bearing pipe collar 416 so that the
tubular drive gear flange 414 can be fixed to the
collar 416 by any appropriate means such as bolts
418 and tightening nuts 420.

With this construction the tubular casing
382, which is freely rotatable about ball bearings
392 and 399 supports the hollow housing 310 of the
crude oil circulator 300, the housing 310 also being
free to rotate about the tubular casing 382 through
the provision of ball bearings 392. It is necessary
that the liquid circulator 300 be in an upright
position inside a storage tank 100 if it is to work
effectively. Therefore, in accordance with the
present invention, a sled 302 is provided having a
weight (mass) greater (i.e. more than half of the
combined mass) than the combined weight of the
hollow housing 310, the liquid agitating means 320
and the connecting means 380. As a consequence,
the center of gravity for the combination of the
sled 302 with the housing 310, the agitating means
320 and the connecting means 380 will be below the
aligned lateral axes of the tubular housing 310
and the tubular casing 382. As a consequence, the
sled 302, by virtue of its weight, will always be
below the aligned lateral axes of the hollow housing
310 and the tubular casing 382 so that the crude
oil circulator 300 will be in an upright position.

Turning now to Fig. 5, a modified liquid
circulator 300 of the present invention is shown.
The liquid circulator 300 of Fig. 5 is similar to
the liquid circulator 300 of Fig. 4 in that there is
provided a sled 302 upon which a hollow housing 310
is pivotally mounted about a bracket 304, the hollow
housing 310 being provided with an opening 312 at
the rear end thereof, a surge cap 314 and a lateral
barrel segment comprising an upstanding tubular
support segment 318. Agitating means 430 of a con-
struction to be described is rotatably mounted on
the upstanding tubular support segment 318 by any suitable means such as through the provision of a rotatable bearing such as a chicksan bearing 322 comprising a fixed inner ring 324 fixed to the upstanding tubular support segment 318 and a rotatable outer ring 326 rotatably interconnected with the inner ring 324 by means of ball bearings 328. Connecting means 380 comprising a tubular casing 382 and a tubing sub 384 are also provided, the tubular casing 382 being rotatably mounted to the lateral barrel segment 316 through the provision of a forward rotatable support bearing assembly 386 of any appropriate construction, such as a chicksan bearing, comprising a fixed inner forward bearing ring 388, which is mounted on the housing 310 about the opening 312 and a rotatable outer forward bearing ring which is mounted on the tubular casing 382 and rotatably interconnected with the fixed inner forward bearing 388 by ball bearings 392. In like manner, the tubular casing 382 is rotatably mounted on the tubing sub 384 by any appropriate means such as a rear rotatable bearing such as a chicksan bearing 394 comprising, for example a rotatable inner rear bearing ring 396 mounted on the tubular casing 382 and a fixed outer rear bearing ring 396 mounted on the tubing sub 384 and interconnected with the inner bearing ring 396 by ball bearings 392.

However, in the embodiment of liquid circulator 300 shown in Fig. 5, the liquid agitation means 320 also comprises an agitator turning rod 432 which is vertically mounted in the bore of the upstanding tubular support segment 318 and fixed to the transition pipe 332 opposite the side port 333 therein by any appropriate means such as an upper agitator turning rod bracket 434 fixed to the transition pipe 332 and interconnected with the agitator
turning rod 432 by means of an upper turning rod connecting pin 436. The agitator turning rod 432 is also provided at the lower end thereof with a lower agitator turning rod bracket 438. In order to ensure that the agitator turning rod 432 is centered in the bore of the upstanding tubular support segment 318, the upstanding tubular support segment 318 is provided with an agitator turning rod spider 440 which is connected thereto in any appropriate manner such as by means of connecting threads.

In accordance with the embodiment of the present invention shown in Fig. 5, there is also provided a tubular casing 382 which is rotatably connected to the lateral barrel segment 316 of the housing 310 by any suitable means such as a rotatable bearing comprising, as in Fig. 3, a forward rotatable bearing support ring fixed about the open end of the housing 310, a rotatable outer forward bearing ring fixed to the tubular casing 382 in any suitable means such as by appropriate threads and interconnected with the fixed inner forward bearing ring by means of ball bearings 392. In like fashion, the tubing sub 384 is mounted to the rear end of the tubular casing 382 by an appropriate rotating bearing comprising, for example, rotatable inner rear bearing ring 394 fixed to the tubular casing 382, fixed outer rear bearing ring 398 fixed to the tubing sub 384 and interconnected with the rotatable inner bearing pipe 396 by ball bearings 399.

With this construction, however, the kelley that is provided is an elongate kelley which extends beyond the tubular casing 382 and through the opening 312 of the housing 310 into the interior thereof. Also, a modified kelley support spider 452 is provided which, in this situation may be of a circular
cross-section and of greater dimensions than the maximum dimension of the kelley rod. The modified elongate kelley is connected to the modified kelley spider support 452 by means of a kelley spider pin 456. With this construction there is also provided a forward kelley support spider 458 adjacent the opening 312 in the housing 310 in which the kelley 450 is rotatably mounted and the kelley 450 is also provided with a forward kelley bracket 460.

In accordance with this construction, the elongate kelley is interconnected with the turning rod 432 by means of a differential link 470 comprising a forward linking pin bracket 472 and a rear linking pin bracket 474; the differential link 470 being interconnected with the turning rod 432 through the forward linking pin bracket 472 and the lower turning rod bracket 438 by means of a forward link pin 478. The differential link 470 is interconnected with the elongate kelley 450 by means of the forward kelley bracket 460 and the rear link pin bracket 474 by means of a rear link pin 488.

Turning next to Fig. 6, the manner in which the hollow housing 310 is pivotally mounted on the sled 302 is shown more clearly. Thus, as is shown in Fig. 6, the bracket 304 is provided with pinions 306 which pivotally connect the brackets 304 with the housing 310 and the brackets 304 are fixed to the sled 302 by means of bolts 308 and secured in place through the provision of securing nuts 309 (see Fig. 5).

Turning now to Fig. 7, there is shown one of the joints of pipe utilized in preparing the multi-joint support pipe means of the present invention. The joint of pipe 502 has kelley rod spiders 504 mounted adjacent each end thereof, each of the kelley
rod spiders 504 comprising a tubular kelley rod holder 506 in which a kelley rod 520 can be rotatably mounted and a plurality of kelley rod spider support vanes 508 fixed to the outer wall of the tubular kelley rod holder 506 and the inner wall of the joint of pipe 502 by any suitable means such as welding. A kelley rod keyway 522 is formed in each end of the kelley rod 520.

Each of the joints of pipe 502 is appropriately provided with connecting means such as a bevelled male thread 510 at one end thereof and an internally bevelled female thread 512 at the other end thereof, the threadings 510, 512 being flush with the body of the joint of pipe 502 so that the connected joints of pipe 502 having a uniform outer diameter throughout their entire length.

Appropriate means are provided for interconnecting the adjacent kelley rods such as, for example, a kelley rod coupling pipe 524 provided with kelley rod coupling keyways 526 at each end thereof. With this construction, a kelley rod coupling key 530 can be inserted in each of the keyways 522 of the kelley rod 520 and interconnected with the keyways 526 on the inner bore of the kelley rod coupling pipe. Thus, by forming the keyway 522 in the kelley rod on the outer surface thereof and by providing a kelley rod coupling pipe 524 of a diameter such that it will fit over the kelley rod 520 and by then providing an inner surface keyway 526 therein, it is possible to easily assemble adjacent kelley rods. Also, it is to be observed that the keyways in the kelley rods 520 and the kelley rod coupling pipe 524 can be aligned with each other so that, for example, by always interconnecting the kelley rods 520 with the kelley rod coupling pipes 524 while the keyways are at the top of the respective units, it is possible
to obtain an alignment of the kelley rods with the crude oil circulator 300.

Turning now to Fig. 10, there is shown a tripping rack 600 to be used in accordance with the present invention in preparing the multi-joint support pipe means. The tripping rack 600 may suitably comprise a tripping rack frame 602 provided with an elongate central slot 604 in which is mounted a drive gear (not shown) on a suitable support means such as adjacent the rear end thereof and an idler gear (not shown) adjacent the front end of the elongate central slot 604. Suitable reciprocating means such as an endless chain (not shown) are used to interconnect the drive gear with the idler gear and the idler gear is operatively connected with appropriately tripping rack power means such as a hydraulic motor 630 through which hydraulic fluid can be circulated by means of hydraulic fluid lines 632 so that the endless chain can be moved in a forward or rearward direction as desired.

Suitable pipe rack means for holding a plurality of joints of pipe 502 are also provided which, as shown in Fig. 11 may, if desired, comprise a pair of horizontal pipe racks 606 which are bolted or otherwise suitably secured to the elongate tripping rack frame 602 by any suitable means (not shown). Alternately, as shown in Fig. 1, the pipe rack means may comprise a separate pipe rack 608 which is positioned adjacent the tripping rack 600 and which is used to hold a plurality of joints of pipe 502. Suitable adjustable tripping rack support means are provided such as, for example, with reference to Fig. 10, adjustable tripping rack support means 610 comprising a base plate 612 on which an upstanding column 614 is mounted. An adjustable collar 616
is slidably mounted on each of the upstanding columns 614 and appropriate means are provided for adjusting the height of the tripping rack, such as a plurality of holes 615 in the upstanding column 614 in which adjusting pins 617 may be inserted through a corresponding hole 619 in the collar 616.

In accordance with this construction, a tripping sled 622 is slidably mounted on the tripping rack frame 602 and operatively interconnected with an endless chain (not shown) for movement backward and forward along the tripping rack frame 602 in response to movement of the endless chain. A push-pull sub 624 comprising a push-pull pipe segment 628 and a pivot rod 626 are mounted on the tripping sled 622; the pivot rod being pivotally mounted on the sled 622 and extending into the push-pull pipe segment 628 and the push-pull pipe segment 628 being rotatably mounted on the push-pull pivot rod 626.

The tripping sled and the tripping rack are used to interconnect joints of pipe 502 in a manner to be described in order to provide the multi-joint support pipe means of the present invention.

When a multi-joint support pipe means of a desired length has been formed, a transition sub 640 of the type shown in Fig. 8 may be interconnected with the rear most joint of pipe of the multi-joint support pipe means.

Thus, with reference to Fig. 8, the transition sub 640 may comprise, for example, an elbow-jointed tubular casing 642 from which a flanged elbow joint 644 extends. Suitable pipe coupling means are mounted on the front open end of the tubular elbow-joint casing 642 such as a pipe coupling means 646. A pipe support bracket 648 may be provided, if desired, to support the transition sub while it is being positioned. The rear opening of the elbow-joint tubular casing 642 is closed in accordance with
the present invention with a high pressure packing gland 650 in which a deformable packing 652 is mounted; the front end of the high pressure tubular packing gland 650 being in bearing engagement with a metal packing ring 653 on which a metal packing gland tube bears. A flanged high pressure packing gland cover plate 654 is used to cover the rear open end of the high pressure tubular packing gland 650. A kelley drive rod 656 is inserted through the opening in the flanged high pressure packing cover tube 654 and the high pressure tubular packing gland 650 through the bore of the elbow-jointed tubular casing 642 and coupled with the rear most kelley rod of the rear most joint of pipe by any suitable means such as a kelley rod coupling pipe 524 of the type shown in Fig. 7. Thereafter, the flanged high pressure packing gland cover plate 654 is secured to the flanges of the flanged high pressure tubular packing gland 650 by any appropriate means such as a plurality of flange bolts 658 which are tightened by means of flange nuts 659.

Returning now to Fig. 10, a gear box 660 is also mounted on the tripping rack frame 602, the gear box 660 containing a drive gear (not shown) and at least one driven reduction gear (not shown) and being provided with indexing power means such as a hydraulic motor 666. The drive gear of the gear box 660 is operatively connected with a coupling rod 668 which, in turn, is operatively interconnected with the kelley drive rod 656 by any suitable means such as a universal coupling 670.

In Fig. 9, the operative interrelationship of the isolation barrel 200 with the crude oil circulator 300 and the transition sub 690 is shown. Turning now to Fig. 9, there may be provided, if
desired, a flanged angle pipe 190 mounted on the outside of the gate valve 110 and interconnected with a flanged isolation barrel extension pipe 192 which is in turn connected to an isolation barrel 200 comprising an elongate tubular isolation barrel 202 which is closed at the rear end thereof with a cover plate 204 in which a low pressure packing gland 206 is mounted so as to be in axial alignment with the lateral axes of the flanged angular adjusting pipe 290 and the flanged isolation barrel extension pipe 192.

A deformable packing material 208 is mounted in the flanged low pressure tubular packing gland 206 and a packing ring 210 is positioned adjacent the front end thereof in order to hold the deformable packing material 208 in place. A flanged low pressure packing gland tube 212 is inserted into the flanged low pressure packing gland 206. The circular opening in the flanged low pressure packing gland cover plate 212, the deformable packing 208 and the packing tube 210 are such that a joint of pipe 502 may be inserted therethrough.

After a joint of pipe 502 has been inserted through the flanged low pressure packing gland cover plate 212, the flanges of the cover plate 212 and the packing gland 206 may be operatively interconnected and tightened by any appropriate means such as packing bolts (not shown).

A flanged drain line 214 is provided in the side of the isolation barrel 200 and, at the start of operations, a crude oil circulator 300 is mounted inside the isolation barrel 200 and an initial joint of pipe 502 is connected therewith so as to extend from the interior of the isolation barrel 200 through the flanged tubular packing gland 206.
OPERATION

When a crude oil storage tank 100 containing crude oil and having a significant quantity of hydrocarbon sludge 104 accumulated in the bottom thereof is to be cleaned, a gate valve 110 is mounted on the manway 106 in any appropriate manner, such as for example, by bolting the inner flange of the flanged bore 112 of the gate valve 110 to a manway flange. At the time of installation, the gate valve member 116 will be in a closed position.

A crude oil circulator 300 such as a circulator shown in Fig. 4 is provided. An initial joint of pipe 502 is passed through the low pressure packing gland 206 and coupled to the tubing sub 384. At the time the kelley rod 520 of the first joint of pipe will be connected to the kelley 400 in any suitable manner, such as through the use of a kelley rod coupling pipe 524 to which it is keyed by a kelley rod coupling key 530.

The flanges of the flanged isolation barrel 200 can then be jointed with the outer flange of the flanged bore 112 of the gate valve 110 in order to properly position the isolation barrel 200 in the crude oil circulator 300; the isolation barrel being supported in the appropriate position in any suitable manner such as through the provision of isolation barrel support means 202.

In a situation such as that shown in Fig. 2 wherein the manway 106 is positioned significantly above the bottom of the storage tank 100, it may be desirable to insert the crude oil circulator 300 into the storage tank 100 while supported on the multi-joint support pipe means 500 at an angle from the
horizontal. In this situation, as shown in Fig. 9, the outer flange of the flange bore of the gate
d valve 110 may be connected to a flanged angle ad-
justing pipe 190 to which a flanged isolation barrel
extension pipe 192 may, in turn, be bolted; the
isolation barrel 200 being secured at its forward
flange to the rear flange of the flanged isolation
barrel extension pipe 192.

Next, a tripping rack of any appropriate
construction such as a tripping rack 600 shown in
Fig. 10 may be positioned in lateral axial align-
ment with the lateral axes of the crude oil circu-
lator 200 and the initial joint of pipe 502 extend-
ing through the flanged flow pressure tubular packing
gland 206. The tripping rack 600 will be appro-
priately supported in the desired position by means
of a plurality of adjustable tripping rack support
means 610, such as four such supports positioned
at each of the four corners of the tripping sled
600. With this construction, each of the adjusting
collars 616 is fixed to a horizontal pipe rack 606
in any appropriate manner and placed over a cor-
responding upstanding column 614 and the height is
appropriately adjusted by raising or lowering the
adjustable collar 616 to align the hole 619 therein
with the desired hole 615 in the upstanding column
614 and is secured in place through the insertion
of an adjusting pin 617 into the matched holes 615-
619.

After the tripping rack 600 has been properly
aligned with the isolation barrel 200 and the drain
pipe inlet valve 124 has been closed, the turning
bar 118 of the gate valve 110 may be rotated in order
to raise the gate valve plate 116 and thereby, as
shown in Fig. 3, establish fluid communication between
the interior of the storage tank 100 and the isolation barrel 200. As a consequence, crude oil will flow into the isolation barrel 200. It will not flow therefrom at this time because the drain pipe inlet valve 124 will be closed, because an initial joint of pipe 502 extending through the flanged low pressure tubular packing gland 206 will prevent crude oil from flowing through the packing gland 206 and because the check ball 356 will be urged against a check ball seat 358 by the check valve spring 352 to prevent crude oil from back flowing through the orifice 362 into the interior of the crude oil circulator 300.

A second joint of pipe 502 may then be taken from the pipe rack 606. The kelley rod 520 of the second joint of pipe 502 is then interconnected with the kelley joint of the first joint of pipe 502 by inserting a kelley key 530 in the kelley rod keyway 522 at the rear end of the first kelley rod and inserting the kelley rod coupling pipe 526 over the rear end of the first kelley rod in alignment so that the rear end of the kelley key 530 is engaged in the kelley rod coupling pipe keyway 526. In like manner, the front end of the second kelley rod will be interconnected by inserting a kelley key 530 in the kelley rod keyway in the front end of the second kelley rod and then inserting the second kelley rod and the second kelley rod coupling key into the coupling pipe 524.

Next, the second joint of pipe 502 is interconnected with the first joint of pipe by stabbing the forward male flush joint pipe thread 510 of the second joint of pipe into the rear female flush joint pipe thread 512 of the first joint of pipe and tightening the joint with any appropriate means such as pipe tongs (not shown).
Next, with reference to Fig. 1, the tripping sled 620 is positioned at the rear of the elongate central slot 604 of the tripping rack frame 602 and the push-pull pipe segment 628 of the push-pull sub 624 of the tripping sled 620, is connected with the second joint of pipe 502 by stabbing a male flush joint pipe thread of the push-pull pipe segment 628 into the rear female flush joint pipe thread 512 of the second pipe joint. After the joint has been tightened by any suitable means, such as, for example, through the use of pipe tongs, the tripping rack power means 630 is actuated to move the top of the endless chain and, hence, the tripping sled 622 in a forward direction towards the crude oil storage tank 100 to thereby progressively partially force the second joint of pipe 502 through the flanged low pressure tubular packing gland 206 of the isolation barrel 200 until only the rear end thereof protrudes. Motion of the sled 622 is then terminated and the push-pull pipe segment is unscrewed from the second pipe joint 502, and moved upward and out of the way by rotation of the push-pull pivot rod 626. The tripping sled 622 is then caused to move to the rear of the elongate central slot 604 by reverse actuation of the tripping rack power means 630 to move the top of the endless chain and, hence, the tripping sled 622, to the rear of the elongate central slot 604.

As a consequence, the crude oil circulator will have moved forwardly from its initial position in the isolation barrel 200 and through, for example, the flanged isolation barrel extension pipe 192 and the flanged angle adjusting pipe 190 into the manway 106.

The pipe tripping operation will then be continued by placing a third joint of pipe 502 on the
tripping rack 600 and interconnecting the kelley rod 520 that is rotatably mounted therein at the front end thereof with the rear end of the kelley rod of the second joint of pipe by means of a kelley rod coupling pipe 524 and a kelley rod coupling key 530 interconnecting the rear of the second kelley rod with the kelley rod coupling pipe. In like manner, a kelley rod coupling key 530 inserted in the rear kelley rod coupling pipe keyway is then inserted into the front kelley rod keyway of the third kelley rod and the third kelley rod is inserted into the kelley rod coupling pipe 524. Again, the front end of the third joint of pipe 502 namely, the forward male flush joint pipe thread, is stabbed into the rear female flush joint pipe thread of the second joint of pipe 502 and the joint is made tight by any suitable means such as pipe tongs (not shown) which are used to tightly thread the third joint of pipe 502 at the front end thereof to the rear end of the second joint of pipe 502.

Again, the tripping rack power means 630 is actuated to move the tripping sled 622 in a forward direction and to thereby move the push-pull sub and the third joint of pipe in a forward direction so that the third joint of pipe is partially forced through the flanged low pressure tubular packing gland 206 until only the rear end thereof protrudes. As a consequence, the crude oil circulator 300, now supported on a multi-joint pipe support means is extended into the crude oil storage tank 100. Because the mass of the sled 302 is greater than the combined mass of the tubular housing 310, the agitation means 320 and the connecting means 380, and because the combination just described
and the sled can freely rotate about the forward rotatable support bearing 386, the crude oil circulator will remain in an upright position while supported on the multi-joint support pipe means inside the crude oil storage tank 100. Also, by always inserting the kelley rod coupling keys 530 in the kelley rod coupling pipe 526 and the kelley rod keyway 522 with the keyway in an upright (12 o'clock) position, the orientation of the kelley rod 520 with the kelley 400 can be maintained even though the crude oil circulator 300 is now freely rotatably suspended on the multi-joint support pipe means inside the crude oil storage tank 100.

Additional joints of pipe 502 will be added to the multi-joint support means by operation of the tripping rack in the manner described above until a predetermined number of joints of pipe have been added to the multi-joint support pipe means sufficient to position the crude oil circulator 300 adjacent the center of the crude oil storage tank 100.

At this point, the crude oil circulator impinges upon the bottom of the storage tank due to the bending of the plurality of joints of pipe or to the deliberate sloping of the isolation barrel 200 as, for example, by utilizing a flanged angle adjusting pipe 190 to offset the isolation barrel 200 at a predetermined angle from the horizontal.

Thereafter, and with the tripping sled 622 of the tripping rack 600 moved to the rear thereof and disconnected from the rearmost of the joints of pipe 502, a transition sub 640 will be moved into position on the tripping sled 622 by any suitable means such as a travelling hoist (not shown) connected to the transition sub 640 by a hook inserted through
the support bracket 648.

When the transition sub 640 has been properly positioned on the tripping rack 622 with the lateral axis of the elbow-jointed tubular casing 642 in alignment with the lateral axis of the joint of pipe 502, a kelley drive rod 656 is inserted through the flanged high pressure tubular packing gland 650 and through the bore of the elbow-jointed tubular casing 642 to proximity with the rear end of the kelley rod 520 of the rear most joint of pipe 502.

A kelley rod coupling key 530 is inserted in the rear kelley rod keyway 522 of the kelley rod 520 of the rear most joint of pipe 502 and a kelley rod coupling pipe 524 is mounted on the rear end of the rear most kelley 520 with the kelley rod coupling pipe keyway in engagement with the rod key 530 mounted on the rear most kelley rod.

A second kelley rod key 530 is mounted in the rear slot of the kelley rod coupling pipe 524 and the coupling pipe 524 is then inserted over the front end of the kelley drive rod 656 with the kelley rod coupling key engaged in the kelley drive rod keyway 657. The pipe joint coupling means 646 of the elbow-jointed tubular casing 642, will appropriately comprise a male flush joint pipe thread member (now shown) in order to form a fluid tight connection between the rear most joint of pipe 502 and the elbow-jointed tubular casing 642.

The kelley drive rod 656 is then interconnected with the coupling rod 668 of the gear box 660 by any suitable means such as a universal coupling 670. Next, and in respect of Fig. 1, a drain line pipe 120 will be fluidly interconnected with the flanged drain line 214 of the isolation barrel 200. The drain line pipe 120 will be fluidly interconnected with the filter inlet line 144 of a suitable
filter means 130. Conduit means 160 will be connected at one end thereof with the filter manifold outlet line 150 and the other end thereof will be connected to the suction side of the high pressure pump 170. A pump discharge pipe 180 is interconnected between the discharge side of the high pressure pump 170 and the elbow-joint 644 of the elbow-jointed tubular casing 642. With the drain line inlet valve 124 and the drain line outlet valve 126 open and, for example, the filter inlet line valve 146 and the filter outlet line valve 156 open, the high pressure crude oil pump 170 will be energized. As a consequence, a stream of crude oil will be withdrawn from the storage tank 100 through the manway 106 and gate valve 110 into the flanged adjusting pipe 190 and then into the flanged isolation barrel extension pipe 192. The crude oil will also fill the interior of the isolation barrel 200 and a stream of the crude oil will be withdrawn therefrom through the flanged drain line 214 of the isolation barrel 200 and the drain line pipe 120 into a filter casing 132 of the filter means 130 and will be drawn through the filter screen 136 mounted therein and thence through the filter outlet line 152 to the filter outlet manifold 150 and from thence to pump inlet line 160 and from thence to the suction side of the high pressure pump 170.

Also, the pump discharge pipe 180 is interconnected between the discharge side of the high pressure pump 170 and the elbow-joint 644 of the elbow-jointed tubular casing 642.

Crude oil under pressure is discharged from the high pressure pump means 170 through the pump discharge conduit 180 and through the elbow-joint 644 to the bore of the elbow-jointed tubular casing.
642 and from thence through the interior of the tubing sub 384 and the multi-joint support pipe means through the tubular casing 382 of the connecting means 380 to the opening 312 into the interior of the hollow housing 310.

Thereafter, the crude oil under pressure will be forced through the upstanding tubular support segment 318 of the hollow housing 310 into the inner pipe 324 of the rotatable bearing 322 and then through the side port 333 into the interior of the transition pipe 332. The crude oil will then flow through the extension pipe 342, and because of the pressure exerted thereon will unseat the check ball 356 and force it against the pressure of the check valve spring 352 into the angled core 350 of the check valve housing 346. The crude oil will then flow through the check valve bore 348 and out the orifice 362 of the nozzle 360 into the crude oil storage tank 100.

At the same time, the indexing power means 666 will be actuated to rotate a drive gear 662 (not shown) and, more slowly, a reduction driven gear 664 (not shown) so as to rotate the coupling rod 668 and thence through the universal coupling 670 to rotate the kelley drive rod 656. Rotation of the kelley drive rod 656 will, in turn, rotate the interconnected kelley rods 520 of the multi-joint support pipe means 500 which will, in turn, rotate the kelley 400 which will cause the tubular casing 382 to rotate about forward support bearing 386 and rear rotatable support bearing 394. Rotation of the forward support bearing 386 will rotate the flanged bevelled tubular drive gear 410 which will, in turn, rotate the flanged bevelled index gear 370. Rotation of the flanged bevelled index gear 370 will cause a corresponding rotation of the connecting pipe collar 330, the transition
332, the extension pipe 342 and the nozzled outlet jets 340.

As indicated earlier, the gear ratios in the gear box 660 should be adjusted so that the nozzled outlet jets 340 will rotate at the rate of about 0.5 to about 4 or 5 revolutions per hour. For example, if the indexing power means 666 is a hydraulic motor having a drive shaft rotating at the rate of about 60 revolutions per second, a gear ratio of about 3,600 to 1 is established between the drive gear and the driven gear, through intermediate driven gears (not shown) if necessary, in order to provide for a gear ratio of about 3,600 to 1 if the nozzled outlet jets are to be rotated at the rate of about 1 revolution per hour.

The high pressure pump 170 will suitably be sized to deliver, for example, from about 2,000 to about 6,000 hydraulic horse power. Pump 170 should be capable of delivery up to about 5000 gallons per minute of liquid at a pressure of up to about 5000 pounds per sq. inch, i.e. preferably from 3000 to 5000 psig, to the circulator 300 with the result that crude oil will be ejected from the nozzled outlet jets 340 at a rate of about 1,000 to about 3,000 gallons per minute. The rate of flow will suitably be adjusted to provide for an initial nozzle velocity for the crude oil of about 200 to about 300 feet per second. This will cause the ejected crude oil to be ejected from the nozzle 362 in a highly turbulent dispersion cone which as the cone expands in cross-sectional area will result in a corresponding decrease in the rate of flow of the ejected crude oil such that, however, the rate of flow of the ejected crude oil adjacent the perimeter of the crude oil storage tank 100 will be about 1 to 2 feet per second.
As mentioned earlier, the hydrocarbon sludge 104 or "black sediment and water" that accumulates with time in a crude oil storage tank 100 will be formed by the reversible interaction of asphaltenes, porphyrins, condensed ring aromatics, etc., in the crude oil. Thus, the charge transfer forces at the molecular level will cause a reversible coupling of these molecular components to form molecules of a size such that they become solid particles big enough to settle as sludge 104 in the storage tank 100.

However, when the hydrocarbon sludge is impacted with a high velocity jet of crude oil emanating from the nozzles 340 of a crude oil circulator 300 of the present invention, the energy of the ejected crude oil is sufficient to disrupt the charge transfer forces to refragment the hydrocarbon sludge molecule into smaller components that are small enough to be colloidally suspended in or dissolved in the crude oil. Agglomerations of water in the hydrocarbon sludge will likewise tend to be atomized and colloidally suspended in like manner.

The slow rotation of the nozzled outlet jets 340 provides adequate time for the disruption of the charge transfer forces so that the slow rate of rotation actually enhances, rather than impedes the rate at which the hydrocarbon sludge is fragmentized and resuspended in the crude oil.

As a consequence, the sludge will be progressively dispersed in the crude oil and will be of a size such that it will normally pass through the filters of the filter means so that at the end of the dispersing operation, the aromatic, asphaltenic, naphthenic and/or porphyrinic components of the sludge will have been molecularly redispersed in the crude
oil so that they will comprise a part of the crude oil that is withdrawn from the storage tank for processing in the refinery within which the crude oil storage tank is located.

If the crude oil circulator has been positioned in the crude oil storage tank 100 at an angle, through the use of a flanged angle adjustment pipe 190, so as to be on or adjacent the bottom of the storage tank 100, the cone of highly turbulent crude oil ejected from the nozzle 340 will impact upon the bottom of the storage tank 100 so as to insure that all of the hydrocarbon sludge is impacted and fragmentized and resuspended as described above so as to clean the crude oil storage tank of hydrocarbon sludge.

Normally, with the apparatus of the present invention, a crude oil storage tank can be cleaned in a short time such as a matter of 0.5 to 5 days.

When the cleaning operation is complete, if it is desired to remove the cleaning assembly of the present invention, the high pressure pump 170 and the indexing power means 666 will be deenergized and the high pressure pump will be disconnected from the pump inlet line 160 and the pump discharge conduit 180. In like manner, the pump inlet line 160 can be disconnected from the filter manifold outlet line 150 and the pump discharge conduit 180 can be disconnected from the elbow joint 644. Thereafter, and if the filter means is mounted on truck 172 and the high pressure crude oil pump is mounted on a truck 74, the two trucks may be driven from the site.

The valve 124 of the flange drain line 214 will be closed.

Thereafter, the coupling rods 668 will be
disconnected from the kelley drive rod 656 after
which the pipe joint coupling means 646 of the elbow-
jointed tubular casing 642 will be disconnected from
the rear most joint of pipe 502 so that the rear
most kelley rod 520 can be disconnected from the
kelley drive rod 656.

When this has been done, the elbow-jointed
tubular casing 642 can be removed from the tripping
rack and the push-pull pipe segment of the tripping
sled 620 can be repositioned and reconnected with
the rear most joint of pipe 502.

The tripping rack power means will then be
actuated to move the tripping sled 622 to the rear of
the tripping sled 622 thereby withdrawing the rear
most joint of pipe 502 from the flanged flow pressure
tubular packing gland 206. The rear most joint of
pipe 502 is then uncoupled from the next adjacent
joint of pipe 502 by any suitable means such as
through the use of pipe tongs and the kelley rod 520
of the rear most joint of pipe is disconnected from
the kelley rod coupling pipe 524 so that the rear
most pipe joint 502 can be removed from the tripping
sled 622 and placed in pipe rack 606.

The tripping sled 622 is then moved for-
wardly along the tripping rack 602 by appropriate ac-
tivation of the tripping rack power means 630 and
the reverse tripping operation is conducted on the
next joint of pipe. Reverse tripping is continued
until the crude oil circulator is once again po-
30isioned inside the isolation barrel 200. When this
has been done, the turning bar 118 may be used to
lower the gate valve member 116 into the bore of
the gate valve 110 to discontinue fluid communica-
tion of the crude oil between the crude oil in the
storage tank 102 and the crude oil in the isolation
tank 200. The remaining crude oil in the storage
tank 200 may then be removed therefrom through the
drain line 214 after which the isolation barrel 200,
the flanged isolation barrel extension pipe 192
and the flanged angle adjusting pipe 190 may be
unbolted and removed from the manway 106.

The equipment can then be moved to another
location to another crude oil storage tank 100 which
is to be cleaned.
ClAims

1. Apparatus useful for dispersing sediment in a storage tank containing a liquid and sediment, said apparatus including a liquid circulator comprising a hollow housing open at the rear end thereof for placement in said storage tank, liquid agitation means including a plurality of nozzled outlet jets laterally rotatably mounted on said housing in fluid communication with the interior of said housing, and connecting means comprising a tubular casing mounted at the front end thereof on the open end of said housing, said tubular casing being independently rotatable about its longitudinal axis, said connecting means also comprising casing turning means mounted in said tubular casing and nozzle drive means carried by said tubular casing and operatively connected with said nozzled outlet jets of said liquid agitation means, said apparatus also including multi-joint support pipe means comprising a plurality of joints of pipe sequentially coupled to each other, each joint of pipe having interconnective turning means rotatably mounted therein and coupled to the interconnective turning means of the next adjacent joints of pipe, the most forward of said joints of pipe being coupled at the front end thereof to the rear end of said tubular casing and the interconnective turning means of said most forward of joints of pipe being operatively coupled to said tubular casing turning means, said multi-joint support pipe means being adapted for fluid connection to liquid pump means adjacent the rear end thereof for supplying liquid under pressure through said joints of pipe to the interior of said casing, said housing and, thence, to said nozzled outlet jets of said agitation means and the interconnective turning means of said outermost joint of pipe being adapted for operative connection with indexing power means for rotating said interconnective
turning means of said joints of pipe and said casing
turning means and, hence, for rotating said nozzled
outlet jets at a predetermined rate independent of the
pressure and rate of flow of liquid through said nozzled outlet jets.

2. The apparatus of claim 1 wherein said
casing turning means comprises a kelley and said interconnective turning means comprises interconnected kelley rods.

3. The apparatus of claim 1 or 2 wherein said hollow housing comprises a lateral barrel segment closed at the front end thereof and an upstanding tubular support segment.

4. The apparatus of claim 3 wherein said liquid agitation means comprises a tubular base rotatably mounted on said upstanding tubular support segment of said housing, a transition pipe laterally mounted on said tubular base, opposed nozzled outlet jets diametrically mounted on opposite ends of said transition pipe and nozzle turning means for rotating said outlet jets mounted to said transition pipe.

5. The apparatus of claim 4 wherein said nozzle turning means of said agitating means is a bevelled indexing gear fixed to the outside of said upstanding tubular support segment, and said nozzle drive means of said connecting means is a bevelled drive gear fixed to the outside of said independently rotatable casing in driving engagement with said bevelled indexing gear.

6. The apparatus of claim 4 or 5 wherein said casing turning means of said connecting means comprises a kelley spider mounted in said independently rotatable casing and a kelley mounted in said kelley spider, and wherein said turning means of said multi-joint pipe means comprises a kelley rod spider mounted
in said joint of pipe, a kelley rod rotatably mounted
in said kelley rod spider, kelley rod coupling means
mounted on and between adjacent kelley rods to in-
terconnect said kelley rods, one of said kelley rod
coupling means being mounted on and between the fore-
most of said kelley rods and said kelley of said con-
necting means to interconnect said kelley with said
interconnected kelley rods.

7. The apparatus of claim 4 wherein said
nozzle turning means of said agitating means is a
turning rod centrally mounted in and to said transition
pipe and extending through said port in said transition
pipe and the bore of said upstanding tubular support
into the interior of said housing, wherein said kelley
extends into the lateral barrel segment of said housing,
and said nozzle drive means of said connecting means
comprises a differential bar rotatably interconnecting
said kelley with said turning rod.

8. The apparatus of any of claims 1 to 7
for use in a storage tank containing hydrocarbon sludge
and crude oil, said storage tank having a diameter of
about 100 to about 300 feet, a height of about 20 to
about 50 feet, and having a manway in the side thereof,
said apparatus including a gate valve mounted on the
outside of said storage tank over said manway, and an
elongate open ended tubular isolation barrel laterally
mounted on said gate valve, a cover plate mounted in
said isolation barrel adjacent the rear thereof closing
the rear end thereof, a tubular packing gland mounted
in said cover plate in lateral axial alignment with the
lateral axis of said isolation barrel and a drain
line mounted on said isolation barrel at the side thereof,
and wherein the liquid circulator means is insertable
into said isolation barrel through the open front end
thereof, said tubular casing being rotatably mounted
at the front end thereof on the rear end of said hollow
housing, said casing turning means being rotatably
mounted on the rear end of said tubular casing, and said nozzle drive means operatively connected to said tubular casing and said liquid agitation means for rotating said liquid agitation means on rotation of said casing said tubular casing and said casing turning means being in lateral axial alignment with the lateral axes of said isolation barrel and said tubular packing gland when said liquid circulator means is in said isolation barrel, said apparatus further including filter means fluidly connected with said drain line, high pressure pump means fluidly connected on the suction side thereof with said filter means and fluidly connected on the discharge side thereof with the outermost of said joints of pipe, and indexing power means operatively connected with said interconnective turning means of said multi-joint support pipe means for rotating said nozzle turning means and, hence, through said nozzle drive means of said connecting means, for rotating said agitation means of said crude oil circulator, whereby a stream of crude oil may be removed from said tank through said isolation barrel and said drain line, filtered in said filter means, pressurized by said pump means and reinjected into said storage tank through said multi-joint support pipe means and said nozzled jets of said agitation means of said circulator to fragmentize and at least partially re-disperse said hydrocarbon sludge in said crude oil.

9. The apparatus of claim 8 wherein said liquid circulator includes an elongate sled and said hollow housing is pivotally mounted adjacent the front end thereof on said sled adjacent the front end of said sled.

10. The apparatus of claim 8 or 9, wherein said tubular casing has a kelley mounted therein, and the interconnective turning means for each pipe joint comprises a kelley rod rotatably mounted therein and
coupled to the next adjacent kelley rods, the most forward of said joints of pipe passing through said packing gland and being coupled to the rear end of said tubular casing and the kelley rod of said most forward of joints of pipe being operatively coupled to said kelley, said apparatus including a tripping rack adjacent said storage tank in lateral axial alignment with said isolation barrel, said tripping rack comprising an elongate frame, reciprocation means carried by said frame for movement forward and back along said frame, a tripping sled carried by said reciprocation means, and push-pull coupling means comprising a push-pull sub mounted on said tripping sled for releasably mounting the rearmost of said joints of pipe on said frame, said indexing power means being operatively connected with the outermost of said kelley rods for rotating said kelley rods and said kelley, and, hence, for rotating said outlet jets at a predetermined rate independent of the rate of flow of crude oil through said nozzled outlet jets.

11. The apparatus of claim 10 wherein said elongate frame of said tripping rack additionally comprises a transition sub: said transition sub comprising an elbow-jointed elongate tubular casing open at the front end thereof, a high pressure tubular packing gland mounted in and closing the rear end of said elbow-jointed tubular casing, pipe joining means mounted on the front end of said elbow-jointed tubular casing for coupling the rearmost of said joints of pipe of said multi-joint support pipe means to the front end of said elbow-jointed tubular casing, a connecting rod extending through said high pressure packing gland into said elbow-jointed tubular casing and operatively connected to the rearmost of said kelley rods of said multi-joint support pipe means, said indexing power means being operatively coupled to said connecting rod, elbow joint conduit means operatively fluidly connecting said elbow
joint with the discharge side of said high pressure pump means whereby said crude oil may be pumped from said pump means through said elbow joint into said elbow-jointed tubular casing and then into said multi-joint pipe support means for delivery to said connecting means, said housing means and said nozzled outlet jets.

12. The apparatus of claim 10 or 11 wherein: said elongate frame of said tripping rack is a tripping frame having an elongate central slot formed therein and, said tripping frame also comprises frame support means mounted on said frame for supporting said elongate frame in elongate axial alignment with the elongate axes of said isolation barrel and said elongate packing gland, and reciprocating means rotatably mounted in said central slot, tripping rack power means mounted on said frame and operatively connected with said reciprocating means for moving said reciprocating means forwardly and rearwardly in said channel, said tripping sled being operatively connected to said reciprocating means for movement along said frame in response to movement of said reciprocating means and said push-pull sub also comprising a pivot rod vertically pivotally mounted to said tripping sled and a push-pull pipe segment rotatably mounted on said pivot rod for coupling engagement with said rearmost of said joints of pipe of said multi-joint support pipe means.

13. The apparatus of claim 10 or 11 wherein said tripping rack additionally comprises: a gear box mounted on said elongate frame comprising at least a drive gear and a driven reduction gear operatively connected therewith, a kelley drive rod operatively joining said driven reduction gear with the rearmost kelley rod of said rearmost joint of pipe of said multi-joint support pipe means, and indexing power means mounted on said tripping rack and operatively connected with said drive gear.
14. The apparatus of claim 10 or 11 including filter means located outside said storage tank, drain line conduit means fluidly interconnecting said drain line of said isolation barrel with said filter means, and filter conduit means fluidly interconnecting said filter means with the suction side of said pump high pressure crude oil pump means, whereby operation of said high pressure crude oil pump means will cause a stream of crude oil to flow from said storage tank into said isolation barrel, thence through said drain line and said drain line conduit means to said filter means, thence through said filter means and said filter conduit means, and thence through said high pressure crude oil pump means, to said multi-joint support means, said connecting means, said crude oil circulator and said outlet jets back to said crude oil storage tank.

15. Apparatus useful for dispersing hydrocarbon sludge in a crude oil storage tank containing crude oil and hydrocarbon sludge, said apparatus comprising: a liquid circulator comprising: an elongate sled a hollow housing pivotally mounted adjacent the front end thereof on said sled adjacent the front end of said sled, said hollow housing comprising a lateral barrel segment closed at the front end thereof and open at the rear end thereof and an upstanding tubular support segment, liquid agitation means comprising a tubular base rotatably mounted on said upstanding tubular support segment of said housing, a transition pipe laterally mounted on said tubular base, opposed nozzled outlet jets diametrically mounted on opposite ends of said transition pipe and nozzle turning means carried by said transition pipe for rotating said outlet jets, and connecting means comprising a tubular casing mounted at the front end thereof on the open end of said lateral barrel segment, said tubular casing being independently rotatable about its longitudinal axis and in lateral
alignment with the longitudinal axis of said barrel of said housing, said connecting means also comprising a kelley mounted in said casing, and nozzle drive means carried by said casing and operatively connected with said nozzle turning means of said liquid agitation means, said nozzle turning means of said agitating means comprises a bevelled indexing gear mounted on the outside of said upstanding tubular support segment, and said nozzle drive means of said connecting means comprising a bevelled drive gear fixed to the outside of said independently rotatable casing in driving engagement with said bevelled indexing gear, said apparatus also comprising: multi-joint support pipe means comprising a plurality of joints of pipe sequentially coupled to each other, each joint of pipe having a kelley rod rotatably mounted therein and coupled to the next adjacent kelley rods, the most forward of said joints of pipe being coupled to the rear end of said tubular casing and the kelley rod of said most forward of joints of pipe being coupled to said kelley, the mass of said sled being greater than the mass of a combination of said hollow housing, said liquid agitation means and said connecting means, whereby the center of gravity of said sled and said combination will be below the aligned lateral axes of said hollow housing and said connecting means, whereby, when sled and said combination are suspended from said multi-joint pipe support means, said sled will be below said combination, hydrocarbon crude oil pump means fluidly interconnected with said multi-joint support pipe means adjacent the rear end thereof for supplying crude oil under pressure through said joints of pipe to the interior of said casing, said housing and, thence, to said nozzled outlet jets, and indexing power means operatively connected with the outermost of said kelley rods for rotating said kelley rods and said kelley to rotate said bevelled drive gear and
said bevelled indexing gear to thereby rotate said nozzled outlet jets at a predetermined rate independent of the rate of flow of liquid through said nozzled outlet jets.

16. The apparatus of claim 15 wherein:

said tubular casing of said connecting means comprises an elongate casing tube, a kelley support spider mounted in said tube, a rotatable support bearing mounted on each end of said casing tube, said forward support bearing being rotatably mounted on said elongate barrel member of said housing in lateral axial alignment with the lateral axis of said barrel member, said bevelled drive gear being circumferentially mounted said forward support bearing, said connecting means also comprising a tubing sub, said rear support bearing being rotatably mounted on said tubing sub, said tubing sub being coupled to the most forward of said joints of pipe, and said kelley being mounted in said kelley support spider and coupled to said most forward of said kelley rods, whereby rotation of said kelley rods by said indexing power means will rotate said kelley, said kelley support rods, said elongate casing tube, and said bevelled drive gear of said connecting means, and said bevelled indexing gear said tubular support segment, said transition pipe and said nozzled outlet jets of said liquid agitation means.

17. A method for redispersing hydrocarbon sludge deposited in a crude oil storage tank containing crude oil and said hydrocarbon sludge, said crude oil storage tank having a manway in the side thereof covered by a normally closed gate valve, said method comprising the steps of: mounting on said gate valve an isolation barrel open only at the front thereof and having an axially aligned packing gland in the rear end thereof and a drain line, said isolation barrel containing a
crude oil circulator comprising a laterally elongate housing open at the rear end thereof and having up-standing rotatable nozzled outlet jets and nozzle turning means mounted thereon and also having independently rotatable tubular connecting means mounted on said rear opening thereof, said tubular connecting means including nozzle drive means operatively connected with said nozzle turning means and also having tubular casing turning means mounted therein and operatively connected with said nozzle drive means, inserting an initial joint of pipe through said packing gland, said joint of pipe having interconnective turning means mounted therein, coupling said joint of pipe to said tubular connecting means and connecting said interconnective turning means with said tubular casing turning means, opening said gate valve to establish fluid communication between the interior of said storage tank and the interior of said isolation barrel so as to permit crude oil to flow into said isolation barrel, sequentially coupling to said initial joint of pipe additional joints of pipe, each of which contains interconnective turning means, and connecting each of said interconnective turning means with the next succeeding interconnective turning means to thereby progressively insert said crude oil circulator into said crude oil storage tank and to provide multi-joint support pipe means for supporting said crude oil circulator in said tank, continuing said additional coupling of joints of pipe to said multi-joint support pipe means until said crude oil circulator is approximately centrally positioned in said crude oil storage tank, fluidly interconnecting said drain line sequentially with drain line conduit means, filter means, filter conduit means and the suction side of a high pressure crude oil pump, fluidly interconnecting the discharge side of said high pressure pump with elbow joint conduit means fluidly connected to the rearmost of said joints of pipe, connecting the interconnective turning means of said rearmost of said joints of pipe with indexing power
means for rotating said interconnective turning means, said tubular casing turning means and said nozzled outlet jets, actuating said high pressure crude oil pump to withdraw crude oil from said crude oil storage tank through said isolation barrel, said drain line, said drain line conduit means, said filter means and said filter conduit means to the suction side of said high pressure crude oil pump to pressure said crude oil in said high pressure crude oil pump and recycling said pressured crude oil through said elbow joint conduit means through said multi-joint support pipe means, said tubular connecting means, said hollow housing and said nozzled outlet jets back to said storage tank, said crude oil being ejected from said nozzled outlet jets at an outlet velocity within the range of about 200 to 300 ft. per second sufficient to provide a velocity of at least about 1.5 ft. per second at the periphery of said storage tank, and rotating said indexing power means to rotate said nozzled outlet jets at the rate of about 0.5 to 5 revolutions per hour and continuing said recycle of said crude oil through said nozzled outlet jets and continuing said rotation of said nozzled outlet jets until said sludge originally in said storage tank is substantially redispersed in said crude oil.

18. The method of claim 17 wherein said crude oil is ejected from said nozzled outlet jets above the floor of said storage tank and into said hydrocarbon sludge in the form of a high velocity cone of ejected crude oil impinging on the floor of said storage tank.

19. The method of claim 17 or 18 wherein the said additional coupling of joints of pipe to said multi-joint support pipe means is accomplished by: positioning a tripping rack in axial alignment with the elongate axis of said isolation barrel, said tripping rack comprising an elongate frame, reciprocating means
carried by said frame for forward and backward movement and a tripping sled comprising push-pull coupling means, mounted on said elongate frame in operative engagement with said reciprocating means, conducting an initial operation by moving said tripping sled to the rear of said frame, coupling a first additional joint of pipe with said push-pull coupling means and with the said tubular connecting means of said crude oil circulator and connecting said interconnective turning means of said first additional joint of pipe with said tubular casing turning means, moving said tripping sled forward along said tripping rack to thereby force said first additional joint of pipe through said packing gland into said isolation barrel and forcing said crude oil circulator further into said storage tank, conducting a succeeding operation by disconnecting said first additional joint of pipe from said push-pull coupling means and moving said tripping sled to the rear of said frame, coupling a next joint of pipe to said push-pull coupling means and said first additional joint of pipe and uniting the interconnective turning means of said next joint of pipe to the interconnective turning means of said first additional joint of pipe, and again moving said tripping sled forward along said tripping rack to thereby force said next joint of pipe through said packing gland into said isolation barrel and to thereby force said crude oil circulator still further into said storage tank, and repeating said succeeding operation until said multi-joint support pipe means has been formed and said circulating means is located adjacent the center of said crude oil storage tank.

20. The method of claim 19 wherein said tripping sled also comprises an elbow-jointed tubular transition sub open at the front thereof and having pipe joining means mounted on said open front end
and also having a high pressure packing gland at the rear end thereof having a turning rod extending there-through, said elbow joint of said transition sub being fluidly interconnected with said pump discharge conduit means, and said indexing power means being operatively connected to said turning rod, and wherein after said multi-joint pipe support means has been formed the method includes the additional steps of coupling the rearmost of said joints of pipe of said multi-joint support means to said transition sub and connecting the interconnective turning means of said rearmost joint of pipe with said turning rod, then actuating said high pressure crude oil pump to thereby inject crude oil under pressure through said elbow joint of said transition sub to said multi-joint support pipe means and actuating said indexing power means to rotate said turning rod and, hence, through said interconnective turning means, said independently rotatable tubular connecting means and said nozzle turning means to thereby rotate said nozzled outlet jets.
INTERNATIONAL SEARCH REPORT

I. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both National Classification and IPC

| IPC 4 | B 08 B 9/08, B 05 B 3/02 |

II. FIELDS SEARCHED

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC 4</td>
<td>B 05 B, B 08 B</td>
</tr>
</tbody>
</table>

III. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR, A, 2518964 (TATHO INDUSTRIES CO.) 1 July 1983, see figures 3-5,9,7; page 6, line 11 - page 7, line 17; page 8, lines 6-34</td>
<td>1,2</td>
</tr>
<tr>
<td>A</td>
<td>GB, A, 512656 (SWINNEY BROTHERS LTD) 19 October 1939, see figure 1; page 2, lines 17-23; claim 1</td>
<td>1,2,6,10, 13,15</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 2845091 (C.H. NEER) 29 July 1958, see figures 1,10; column 4, lines 1-65</td>
<td>1,2,15,17</td>
</tr>
<tr>
<td>A</td>
<td>DE, U, 8706489 (BERND SUSS) 19 November 1987, see the whole document</td>
<td>15</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 4214705 (WATTS et al.) 29 July 1980, see abstract; figure 4; column 5, lines 58-63</td>
<td>15</td>
</tr>
</tbody>
</table>

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the international filing date
 - "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the international filing date but later than the priority date claimed

*"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
*"X" document of particular relevance: the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
*"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

IV. CERTIFICATION

Date of the Actual Completion of the International Search: 28th June 1989

International Searching Authority: EUROPEAN PATENT OFFICE

Signature of Authorized Officer: [Signature]

Form PCT/ISA/210 (second sheet) (January 1985)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to Claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>US, A, 3042553 (T.J. KEARNEY et al.) 3 July 1962, see figure 1; claim 1</td>
<td>17</td>
</tr>
</tbody>
</table>

Form PCT ISA 210 (extra sheet) (January 1985)
This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on 14/07/89. The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BE-A- 894849</td>
<td>14-02-83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE-A, C 3240186</td>
<td>07-07-83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB-A, B 2113079</td>
<td>03-08-83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL-A- 8204195</td>
<td>18-07-83</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US-A- 4426233</td>
<td>17-01-84</td>
</tr>
<tr>
<td>GB-A- 512656</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US-A- 2845091</td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>DE-U- 8706489</td>
<td>08-10-87</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US-A- 4214705</td>
<td>29-07-80</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>US-A- 3042553</td>
<td></td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

For more details about this annex: see Official Journal of the European Patent Office, No. 12/82.