woO 2009/021208 A1 |10 0 OO T O O O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization f ; A
International Bureau

(43) International Publication Date
12 February 2009 (12.02.2009)

) IO O A O

(10) International Publication Number

WO 2009/021208 Al

(51) International Patent Classification:

GOGF 3/00 (2006.01)
(21) International Application Number:
PCT/US2008/072684
(22) International Filing Date: 8 August 2008 (08.08.2008)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
60/964,180
60/964,131

(71) Applicant (for all designated States except
INNOPATH SOFTWARE, INC. [US/US];
Caribbean Drive, Sunnyvale, CA 94089 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): KRIVOPALTSEYV,
Eugene [US/US]; 400 Carubbean Drive, Sunnyvale, CA
94089 (US).

(74) Agents: STANIFORD, Geoffrey, T. et al.; Courtney Stan-
iford & Gregory LLP, P.O. Box 9686, San Jose, CA 95157
Us).

8 August 2007 (08.08.2007)
8 August 2007 (08.08.2007)

Us
Us
Us):
400

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AOQ, AT, AU, AZ,BA, BB, BG, BH, BR, BW, BY, BZ, CA,
CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID,
1L, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK,
LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW,
MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT,
RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB,GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL,
NO, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG,
CIL, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
with international search report

(54) Title: WORKFLOW-BASED USER INTERFACE SYSTEM FOR MOBILE DEVICES MANAGEMENT

201~ 203~
Workflow Workflow
Designer Designer

MDM Carrier Suite 202
| Job Management

212 Service
210—{ Workflow Engine 214

- Workflow
208 Adapter Layer Device Repository

Modeling
206 Protocol Layer Service 216
|

(57) Abstract: Embodiments of a workflow-based
user interface for defining and managing functions
implemented on mobile devices are described. A
method under an embodiment utilizes a workflow-based
mobile device management user interface. The method
utilizes a pluggable workflow framework to achieve
mobile device management externalization. The mobile
device management platform is required to implement
a set of basic action blocks that are used as primitives
for further management policy composition The method
provides a development environment integrated with
a mobile device management platform that allows
assembling management (monitoring) primitives into
meaningful management policies without changes to a
core management platform infrastructure The method
claims addition of new primitives deployed as add-on
products to enable new and advanced management
policies, best integration practices with a carrier
operational support system. The method enables
debugging and tracing mobile device management
policies in real time to minimize development and
testing efforts.

WO 2009/021208 PCT/US2008/072684

WORKFLOW-BASED USER INTERFACE SYSTEM
FOR MOBILE DEVICES MANAGEMENT

Inventors:

Eugene Krivopaltsev

CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority from U.S. Provisional Patent Application No.

60/964,180, entitled “Integrated Mobile Device Management,” filed August 08, 2007,

which is incorporated by reference in its entirety herein, and from U.S. Provisional
Patent Application No. 60/964,131, entitled “Managing and Enforcing Policies on
Mobile Devices”, filed August 08, 2007, which is incorporated by reference in its

entirety herein.

TECHNICAL FIELD

Embodiments are described relating to telecommunication devices, and more
specifically to user interface systems for configuring and managing mobile client

devices.

BACKGROUND

The basic functionality of a typical mobile phone has gone through dramatic

changes from being solely voice oriented to being capable to support complex features
and rich data intensive applications. It is expected that this trend of increased
complexity and capability of mobile devices will continue and drive significant
increases in product and service innovation. In many respects, mobile device
management is quite similar to a classic enterprise management. It includes
provisioning, which is the ability to setup a new device or service for a mobile
subscriber, firmware and software lifecycle management, which includes the delivery,
configuration and retirement of new or updated programs and data, remote diagnostics
of phone features, software and network connectivity, asset management, reporting and
other features. To ensure ease of use, a combination of intelligent management,
proactive monitoring and diagnostics is a necessity for wireless/mobile operators.
Present system, network, and enterprise management solutions are typically

based on a protocol which defines two key items, a PDU (protocol data unit), which

WO 2009/021208 PCT/US2008/072684

describes the content that is passed between a managed object and its manager, and a
data model that uniquely describes the location and structure of managed objects. For
mobile devices, the preeminent standard is OMA DM (the Open Mobile Alliance’s
Device Management) standard. A carrier typically one more instances of an MDM
platform to manage associated mobile devices. The OMA DM protocol leverages the
popular browser-client web-server interaction model and HTTP transport. Interactions
between the management platform and device may be initiated by either the server
(management platform) or the client (mobile device). A client initiated interaction
follows the familiar paradigm of a web browser initiating a session with a web server.
When the server wishes to initiate an interaction, it must start by notifying the client so
that the client can once again initiate a browser-like session with the server. This
server-to-client notification is carried via an SMS (short message service)
communications channel text message that is specially recognized by the mobile device
and routed to the OMA DM client software so that it may establish a session with the
server. Once the SMS-based notification is received, a client-to-server session is
established and proceeds in the same manner as for a client initiated interaction.

In general, a mobile device management platform is a complex software product
that provides device management firmware update, device configuration and remote
diagnostics management. The platform keeps track of all managed devices, provides a
device modeling framework, contains specific metadata that describe firmware
packages, applications, diagnostic policies and other artifacts to facilitate
comprehensive mobile device management. As mobile device technology advances,
there is a constant drive to provide and improve basic mobile device management
functions, such as diagnostics, remote configuration and provisioning, security,
backup/restore, network usage and support, device provisioning, policy applications,
logging and monitoring, and remote control and administration, and any other similar
functions. Such functions are typically delivered as configuration modules through
FOTA (firmware over the air) updates. Presently these functions are implemented
using traditional programming languages, such as Java, C, C++, and so on. This
approach has multiple limitations primarily related to specific customer and equipment
constraints and requirements. Some of the requirements are not known in advance
because they are specific to new equipment, revised management policies based on

local operational environment, and other similar reasons. In order to satisfy new

WO 2009/021208 PCT/US2008/072684

monitoring and management requirements, there is a need for a mobile device
management provider to create custom patches. In many cases, these are essentially
equivalent to deeply customized project versions. This can have a significant negative
impact in terms of time, resources, and maintenance efforts. Moreover, the user
typically has minimal ability to significantly change management policies without
upgrading the core software within the mobile device.

While the goals of various carriers regarding mobile device management are
similar, their specific needs can be quite varied. Needs can vary based on local law or
custom, the surrounding systems that must be integrated and the desire for distinct
service offerings. A few of the major challenges for MDM platform providers and their
customers are described. First, a carrier shall be able to change a management task to
include an interaction with a subscriber and MDM, based on equipment capabilities,
legal, security and other factors. Carrier requirements may evolve over time and create
a need to refine/change management policies over time. Second, because mobile
device management is not an isolated service, it must be integrated with other carrier
services such as billing, accounting, troubleticketing, asset management. However
integration requirements are often very specific. Third, a carrier is always looking to
extend existing applications to include new features like software management, auto-
provisioning, asset management or other new applications. Fourth, carrier
requirements may evolve over time. Customized features typically become available as
a part of a new release or patch from third party. This has multiple drawbacks, in that
the carrier does not do it itself, the release cycle can be lengthy, resource consuming
and therefore expensive, and release multiplication can lead to maintenance problems,
especially when new common patches should be applied over all previously customized
releases. Fifth, in many cases management application development does not start from
a scratch. Ideally a management application developed by MDM provider should be
open for a carrier inspection and customization without a need to involve an original
software vendor. Existing management algorithms could be used as macro building
blocks to compose new services. Sixth, MDM providers strive to bring reliability and
stability to a management platform. There are multiple reasons in pursuing these goals,
however, an extensive customization, based on “tail to fit” is a main drawback for a
stable and reliable platform. Finally, migration is a key procedure that eases process of

bringing data and intelligence from previous product releases to a latest one.

WO 2009/021208 PCT/US2008/072684

What is needed, therefore, is the ability to program complex business and
management policies using simple user interface (UI) forms or natural languages in a
work-flow based model that is efficient and that provides the benefits of

externalization, flexibility, and simplicity.

WO 2009/021208 PCT/US2008/072684

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are illustrated by way of example and not

limitation in the figures of the accompanying drawings, in which like references
indicate similar elements and in which:

Figure 1 illustrates a computer network system including a carrier suite server
computer that implements one or more embodiments of a workflow designer system,
under an embodiment.

Figure 2 illustrates a computer network system that implements one or more
embodiments of a workflow-based mobile device management system.

Figure 3 is a table that outlines and describes information in the configuration
library, under an embodiment.

Figure 4 illustrates a workflow stack logic flow for multiple workflows, under
an embodiment.

Figure 5 illustrates an example workflow presented in a user interface and
including a number of process states and transitions, under an embodiment.

Figure 6 is a flow diagram that illustrates workflow life cycle states, under an
embodiment.

Figure 7 illustrates a graphical user interface screen for designing a workflow,
under an embodiment.

Figure 8 is a block diagram that illustrates the components of an MDM plug-in
module for workflow-based mobile device management tasks, under and embodiment.

Figure 9 is a block diagram that illustrates an action block repository for use
with an MDM plug-in module, under an embodiment.

Figure 10 is an example screenshot for the workflow GUI for defining device
management conditions, under an embodiment.

Figure 11 is an example screenshot for the workflow GUI of a workflow
designer OMA command editor, under an embodiment.

Figure 12 illustrates a system for mobile device management between a MDM
platform and an OMA DM enabled mobile device, under an embodiment.

Figure 13 illustrates an example OMADM management tree for a mobile client
device, under an embodiment.

Figure 14 is a block diagram that illustrates a system for providing alarm

notification and alarm retrieval for an intelligent agent, under an embodiment.

WO 2009/021208 PCT/US2008/072684

DETAILED DESCRIPTION

Embodiments of the invention as described herein provide a solution to the
problems of conventional methods as stated above. Embodiments of a workflow-based
user interface for defining and managing functions implemented on mobile devices are
described. A method under an embodiment utilizes a workflow-based mobile device
management user interface. The method utilizes a pluggable workflow framework to
achieve mobile device management externalization. The mobile device management
platform is required to implement a set of basic action blocks that are used as primitives
for further management policy composition. The method provides a development
environment integrated with a mobile device management platform that allows assembling
management (monitoring) primitives into meaningful management policies without
changes to a core management platform infrastructure. The method claims addition of new
primitives deployed in real time as add-on products to enable new and advanced
management policies, best integration practices with a carrier operational support system.
The method enables debugging and tracing mobile device management policies in real
time to minimize development and testing efforts.

In the following description, various examples are given for illustration, but none
are intended to be limiting. The embodiments described herein provide a method and
apparatus for implementing a workflow-based user interface and system for managing
mobile devices over a network.

In one embodiment, a mobile device management system incorporates a workflow
designer interactive design tool enables system designers and integrator to specify
sequences of device management actions in a single logical workflow. The workflow
designer essentially functions like a white board, allowing designers to manipulate
graphical elements and symbolically depict the flow of management actions. Workflows
are functional templates used to direct management of targeted entities, such as wireless
devices and Operation Support Systems (OSS). In one embodiment, the workflow
designer is a distributed, client-based application that contains two graphical user interface-
based modules: a workflow designer component that creates and manages workflows, and

a workflow monitor component that monitors and troubleshoots workflows.

WO 2009/021208 PCT/US2008/072684

In one embodiment, the workflow designer application is connected through a
network to a server-based device management system (e.g., an MDM carrier suite) that is
part of a wireless operator’s OTA (over the air) system. The carrier suite stores created
workflows; makes workflows available to the workflow designer application; uses
workflows to direct management tasks invoked by users and provides interfaces to
customer support representatives. The workflow designer application users can monitor
instance processing of the workflow using the workflow monitor, in order to modify or
troubleshoot the related workflow.

Aspects of the one or more embodiments described herein may be implemented on
one or more computers executing software instructions. The computers may be networked
in a client-server arrangement or similar distributed computer network. In one
embodiment, the workflow application designer is embodied as a client-based workflow
designer application that is installed on a user’s local client machine. This client-side
application works together with a server-based device management system (e.g., an MDM
carrier suite) that stores created workflows, and uses workflows to manage targeted entities
(e.g., mobile devices).

Mobile Device Management Server

In one embodiment, a workflow design system is implemented in an MDM carrier
suite that allows subscribers, customer care representatives and system administrators to
perform a wide range of mobile device management tasks. The carrier suite is configured
to perform management tasks with minimal user involvement based on defined rules,
without direct involvement of administrative personnel.

Figure 1 illustrates a computer network system including a carrier suite server
computer that implements one or more embodiments of a workflow designer system, under
an embodiment. For the embodiment of Figure 1, an MDM carrier suite server 102
(“MDM server”) is coupled to a plurality of workstation client computers and remote or
mobile client computers over a variety of network connections. The MDM server 102 has
a set of carrier suite applications including a configuration manager 104, a firmware
manager 106, and a diagnostics manager 108. These applications perform management

tasks for applications and functionality provided on the mobile device 120.

WO 2009/021208 PCT/US2008/072684

The configuration manager 104 sets and manages the parameters that are required
to be configured on the mobile device 120. Typically, in order to use voice and data
networks, a large number of parameters must be set on the mobile device. Some are set at
the factory, but many are not in order to enable configuration in the field to accommodate
new features, applications, and so on. The configuration manager facilitates a simple and
reliable way to configure a mobile device managed service, and represents a significant
improvement over present manual method, such as WAP, email, and MMS, which are
difficult and error-prone. The configuration settings are based on underlying OMA
protocol and utilize a management object configuration that corresponds to set of
properties in a device management tree. To abstract an “application” configuration from
an individual make/model a virtual configuration property is associated with a device
property defined within DDF (device description framework) files. Configuration settings
could be reviewed, stored and distributed for an individual device or a group of devices.
The configuration manager allows setting or resetting of both fixed and dynamic settings
using over-the-air (OTA) mechanisms.

The firmware manager 106 implements a FOTA process (firmware over the air) to
update firmware consisting of operating system (OS) components, drivers, patches, and
other software components that are essential to operation of the mobile device. The FOTA
process which is based on standard mobile device protocols such as OMA DM, OMA
DLOTA (Download Over the Air) and FUMO (Firmware Update Management Object). In
one embodiment, the management platform of the MDM server 102 has a repository of
update packages store in a data store, such as database 112, that are specially constructed
to minimize number of bits transferred over the air and to optimize flash block writes. The
FOTA process can be client or server-initiated. A server-initiated FOTA request targets a
single device (e.g., mobile device 120) or multiple devices in a bulk request. In some
cases updating a mobile device to the latest firmware version requires multiple incremental
updates (multi-step upgrade). The core management platform logs all update steps and is
capable in generating detailed reports.

The diagnostic manager 108 performs the tasks of querying, diagnosing and fixing

problems related to mobile device operation remotely and in real-time. Such problems can

WO 2009/021208 PCT/US2008/072684

include hardware faults (e.g., bad battery, failed transceiver, keypad, or display, etc.), or
firmware or network faults (e.g., bad driver or OS module, etc.). In general, increased
device complexity requires effective ways to diagnose, detect, and repair managed mobile
devices. Present manual diagnostics methods generally take a long time and require
expertise and expense. The diagnostic manager 108 implements automatic diagnostic
mechanisms to provide mobile device self-diagnostic functionality and therefore provides
proactive management of the device.

As shown in Figure 1, an MDM console 114 acts as an interface to the MDM
server 102 for administrative and customer care tasks. Servers in the carrier network 116
can interface to the MDM server 102 through suitable APIs (application program
interfaces). Such servers can include network elements that detect new mobile devices on
the network or that provide some level of customer care tasks. A self-care server 118 can
also be included to permit users to configure their own mobile devices.

A data store 112 coupled to the MDM server 102 stores data about mobile devices,
as well as information about device models and information that the server needs to
configure and manage these devices. A configuration library 122 within the MDM
database stores diverse information about device modules and applications that are
managed over the air. The MDM carrier suite organizes the required information so that
administrators can define a large amount of information one time, and change it if
necessary so that support personnel need to provide only a minimal amount of information.
The configuration library 122 encompasses all of the information in the MDM carrier suite
that is needed to manage the configuration of applications on mobile devices.

The MDM carrier suite includes processes that may represent one or more
executable programs modules that are stored within the server 102 and executed locally
within the server. Alternatively, however, it may be stored on a remote storage or
processing device coupled to server accessed by the server to be locally executed. In a
further alternative embodiment, the process may be implemented in a plurality of different
program modules, each of which may be executed by two or more distributed server

computers coupled to each other over a network.

WO 2009/021208 PCT/US2008/072684

For the embodiment shown in Figure 1, the mobile device 122 comprises a mobile
phone (e.g., a smartphone) that is coupled to the MDM server 102 over one or more
wireless networks. Communication between the MDM server and mobile device is
accomplished via SMS (short message service) messages, or a similar message protocol.
For this embodiment, the push path for configuration messages and notifications is from
the MDM server 102 to a Short Message Service Center (SMSC) 124 and through a radio
access network (RAN) 126 to the mobile device 120. SMSC 124 is a network element in
the mobile telephone network that delivers SMS messages.

In one embodiment, the mobile device 120 is an OMA-enabled client device. In
this case, it uses the OMA DM protocol to communicate with the MDM server 102, and
one or more return paths from the mobile device to the server are available. If the mobile
device supports HTTP (hypertext transport protocol), it can communicate directly with the
server over link 130. If it does not support HTTP, the mobile device communicates with
the server through a WAP (wireless application protocol) gateway 132.

In one embodiment, a standard management protocol, such as OMA DM (Open
Mobile Alliance Device Management), is used by the server to establish the configuration
properties of the mobile client 102. In general, the OMA DM specification is designed for
management of small mobile devices such as cell phones, PDAs and palm top computers.
The device management function is intended to support the following typical uses:
provisioning including configuration of the device, enabling and disabling features;
providing software upgrades, performing fault management, and the other similar
functions.

The configuration of the mobile device, including any relevant operating
characteristics is represented and stored using the OMA DM device management tree
structure. For OMA DM applications on a mobile device, configuration is handled by
setting the values of objects in the OMA DM management tree for the device. Certain
OMA DM applications may be predefined, such as bootstrap routines, diagnostics, and
other applications. The OMA DM uses XML (eXtensible Markup Language) for data
exchange. Device management of mobile clients takes place by communication between

the MDM server 102 (which is managing the device) and the mobile client 102. OMA DM

10

WO 2009/021208 PCT/US2008/072684

is designed to support and utilize any number of data transports such as, physically over
both wireline (e.g., USB, RS-232) and wireless media (e.g., GSM, CDMA, IrDA or
Bluetooth). The transport layers may be implemented over WAP (wireless application
protocol), WSP (wireless session protocol), HTTP (hypertext transport protocol), OBEX
(object exchange), or similar transport protocols. In one embodiment, the communication
is initiated by the MDM server 102, is asynchronous using any applicable available
method, such as a WAP Push or SMS (short message service). The initial message from
server to client is said to be in the form of a notification, or alert message. Once the
communication is established between the server 102 and client 120, a sequence of
messages might be exchanged to complete a given device management task. The OMA
DM protocol specifies exchange of packages during a session, each package consisting of
several messages and each message in turn consisting of one or more commands. The
server 102 initiates the commands and the mobile client 120 is expected to execute the
commands and return the result via a reply message.

MDM Managed Client

The client device 120 is typically a mobile client device that executes a number of

different application programs that provide various functions or utilities, such as
communication, entertainment, navigation, information management, and basic computing
functions. Mobile client 120 may be a cell phone, smartphone, or any mobile
communication device that provides access to the network and has a sufficient degree of
user input and processing capability to implement policies and execute tasks managed by
the MDM server 102. In some computing environments, the client device may also be
embodied in a standard mobile computing device, such as a notebook computer, personal
digital assistant, game console, media playback unit, or similar computing device. Such
client computers may be coupled to the server computer over a wired connection, a
wireless connection or any combination thereof.

In one embodiment, the mobile device includes an intelligent management agent
that communicates with the processing elements of the MDM carrier suite server 102. In

one embodiment, a standard management protocol, such as OMA DM (Open Mobile

11

WO 2009/021208 PCT/US2008/072684

Alliance Device Management), is used by the server retrieve, analyze and set management
properties values for the mobile client.

Figure 12 illustrates a system for mobile device management between a MDM
platform and an OMA DM enabled mobile device, under an embodiment. Using the OMA
DM protocol, the server 1202 can retrieve, analyze and set management propetty values
stored in the management tree 1204 of mobile device 1206. The device management
function is intended to support the following typical uses: provisioning including
configuration of the device, enabling and disabling features; software upgrades, fault
management, and the like. In one embodiment, the configuration manager 104 in the
carrier suite of the MDM server 102 manages configuration settings on the mobile device
over the wireless (cellular) network. For OMA DM applications, the carrier suite
configures virtually any application on the mobile device for which configuration is
handled by setting the values of objects in the OMA DM management tree. Certain OMA
DM applications may be predefined, such as bootstrap routines, diagnostics, and other
applications.

The management tree 1204 represents any type of configuration aspect of the
mobile device and comprises a number of nodes storing operational parameters relating to
relevant settings, functions, or the like. Figure 13 illustrates an example OMADM
management tree for a mobile client device, under an embodiment. The management tree
includes a root node 1302 and a number of subnodes under this root node. These subnodes
can include a DMAcc node 1304, a vendor node 1306, and an operator node 1308. Each
node has an associated URI. For example, to access the "ABC Inc" node in the
management tree of Figure 13, the correct URI is “. /DMAcc/ABCInc”. The DMAcc
node 1304 generally specifies the settings for the device management client in a managed
device. Any number of functions, applications or relevant settings for the client can be
specified by subnodes in the management tree. For the example of Figure 13, subnodes are
shown for the ring signal 1312 and screen saver 1314 settings of the mobile client. These
and any other settings may be configured through firmware updates provided by the MDM

server administrator, a carrier service administrator, or any other third party provider.

12

WO 2009/021208 PCT/US2008/072684

The management tree contains and organizes all the available management objects
so that the server can access every node directly through a unique URI (uniform resource
identifier). The management tree comprises a number of hierarchically organized nodes.
An interjor node can have an unlimited number of child nodes, while a leaf node must
contain a value, including null. Each node has a set of run-time properties associated with
it. All properties are only valid for the associated node. An access control list (ACL)
dictates which server can manipulate that node. The manipulation includes adding a child
node, getting the node's properties, replacing this node, or deleting this node, as well as
other run-time properties. The management tree, or any subtree for the mobile device can
be accessed via an OMA message invocation from the MDM server platform 1202.

In one embodiment, the mobile device policy management system includes
mechanisms that augment node management properties. In general, the structure of
management information defines a management node. The method augments set of
standard management properties to include following set: status, refresh interval, state
(enabled/disabled), and logging flag. In addition the management properties include minor
actions, thresholds and simple rules, as well as major actions, thresholds and simple rules.
The "status" property is equivalent to a perceived node severity, i.e., none, minor, or major.
The "refresh" interval defines a period for a rule evaluation. The management state allows
the system to suspend or resume node evaluation. The logging flag controls logging policy
for a given node. A property group is repeated for each supported severity level. The
"action" property presents an action that is fired if a simple rule is satisfied. The
"threshold" presents a threshold value used as a rule parameter.

In one embodiment, the system defines mobile agent behavior which requires
periodic monitoring for each active monitoring node in a device management tree. The
process includes rule evaluation, logging, and executing corrective action. The mobile
agent combines an execution of standard OMA messages sent by the MDM and permanent
monitoring of active nodes.

The mobile agent process can also include a function for providing notation of
alarms. For example, each time a simple rule is satisfied, an agent generates an alarm

record that includes node URI, node value, severity timestamp and perceived severity. An

13

WO 2009/021208 PCT/US2008/072684

agent trying to send alarm notifications to a server could retrieve all alarms using a
dedicated management node. Figure 14 is a block diagram that illustrates a system for
providing alarm notification and alarm retrieval for an intelligent agent, under an
embodiment. As shown in Figure 14, the intelligent agent 1404 includes an alarm
management node 1406. The agent communicates with MDM platform and provides
alarm notifications to the platform and retrieves alarms from the platform in the alarm
management node 1406.

In one embodiment, an intelligent agent provides a status aggregation for each sub-
tree in a device management tree. This allows the server to get an overall device status
without a need to query individual nodes.

The MDM server 102 can be used to store and distribute a monitoring
configuration. Under this embodiment, a procedure defines a monitoring configuration
that is based on a set of augmented node properties. The management server is used to
create, store and distribute monitoring configurations.

Workflow Designer

As shown in Figure 1, system 100 also includes a workflow designer component
140. The workflow designer may be embodied as a program (e.g., a Java application)
executed on the MDM server 102 or a separate computer that is coupled to the MDM
server over a TCP network. The workflow designer performs the general tasks of
designing and monitoring (test) workflows, and allows for the customization of OTA
operations to meet specific needs and to manage diverse device models. As such, the
workflow designer is basically a tool that allows developers to design and implement
custom workflows comprising sets of instructions to the MDM server that dictate how the
server should perform OTA device management operations. Rather than requiring that an
operation (e.g., firmware update or application configuration) is always performed the
same way, workflows allow carriers to match details of the operation to business
requirements, quickly provide services on new devices that may not adhere to
specifications, or change the details of OTA management for different groups of

subscribers, for example, to provide tiered services or enterprise features. Using the

14

WO 2009/021208 PCT/US2008/072684

workflow designer 140, users control device management by specifying the logic and
processing of device management operations.

Figure 2 is a block diagram that illustrates a workflow designer framework, under
an embodiment. As shown in Figure 2, the workflow designer 210 obtains workflows
from a workflow repository database 216 of the MDM server 202 and performs workflow
management functions. One or more workflow designer applications 201 and 203 can
have a single designer session running, and each MDM server can have multiple,
concurrent designer sessions running. The workflow sessions are organized and managed
by a job management service 212.

The MDM server is coupled to one or more mobile client devices 222. When a
mobile device communicates with the MDM server 201 for device management, a protocol
layer module 206 manages the communication traffic. A device modeling service 214
determines the context for the specific device and type of management task. An adapter
layer 208 instantiates a workflow and passes control to the workflow engine 210, which
processes the workflow instance. Throughout instance processing, the MDM server user
does not need to be aware of the underlying workflow technology and interacts with
management functions rather than with the workflows directly. Implementation of the
workflow designer and the MDM carrier suite of the server leverages a workflow paradigm
for the majority of device management tasks.

Individual workflows are assigned to a management category, can use parameters,
can be cloned, and can be related to other workflows as a subroutine workflow. When
created, workflows are assigned to as specific device management categories, depending
on their intended purpose. The device management categories include configuration
management, which specifies the configuration of application parameters on a device;
firmware management, which specifies the upgrading of device firmware; a composite
category which is a combination of two or more categories, or for a purpose not related to
the other categories; and diagnostics management which configures diagnostics and event
monitoring. The configuration management category utilizes the data stored in the
configuration library 122 of Figure 1. Figure 3 is a table that outlines and describes

information in the configuration library, under an embodiment.

15

WO 2009/021208 PCT/US2008/072684

Workflows are assigned to a particular category upon creation. Workflow
parameters contain values used during workflow instance processing. In one embodiment,
there are three types of parameters. These include category parameters, that are always
present for all workflows in a given workflow category and have initial values that are
assigned by the MDM server and in which a workflow instantiation populates all
parameters defined for the workflow category; internal parameters, which are signed by an
individual action block and used within a workflow instance; and external parameters that
are declared as one the following types: Boolean, integer, double, string. During
declaration, initial (default) values can be assigned. The workflow designer user can
define additional parameters, not included in the workflow category, to be made available
to a workflow instance. Each workflow definition may declare its own input parameters
specific to that particular definition.

An existing workflow can only be changed when it is in the pending state.
However, an existing workflow (in any state) can be used as the basis for a different
workflow by using the process of cloning. Cloning a workflow involves saving an existing
workflow with a different name. The cloned workflow is automatically assigned the
pending state, which can then be changed.

In general, workflows are designed as modular processing units. Any workflow
can call any other workflow as a subroutine, and instance processing is then transferred
from the calling workflow (caller) to the called workflow (callee). Figure 4 illustrates a
workflow stack logic flow for multiple workflows, under an embodiment. The example of
Figure 4 includes three workflows denoted workflow A, workflow B, and workflow C.
Each workflow includes a number of states connected by transitions. Certain states within
a workflow can call one or more other workflows. Caller and callee workflows call one
another in accordance with specific rules. First, all related caller and callee workflows are
grouped in a stack, as shown by stack 402 of Figure 4. Since caller and callee workflows
share the same execution context, workflow parameters and objects are available to both
caller and callee workflows. A subroutine state transfers processing to a specified callee
workflow. A workflow can have any number of subroutine states, and when called,

instance processing is transferred to the initial state in the callee workflow. When the

16

WO 2009/021208 PCT/US2008/072684

callee instance processing reaches an end state (a state that does not have any transitions
going from the state), instance processing is transferred back to the subroutine state in the
caller workflow. Any workflow can have any number of end states, for example,
workflow B in Figure 4 has two end states. When the end state in a callee workflow
returns processing to a subroutine state that is also an end state, processing is then returned
to the subroutine state in the original caller workflow. When instance processing of the
highest workflow in a stack reaches an end state, all instance processing stops.

As mentioned above, a workflow is made up of specific components, including
process state, which is a point in a workflow that can be referenced (instance processing
can lead to a given state); and a transition, which is a logical path leading from one process
state to another state. Each transition is made up of one logical condition, and one or more
action blocks in a specific sequence. During instance processing if the condition is
satisfied, all action blocks are applied to the targeted entity, in sequence. If the condition is
not satisfied, no action blocks are applied.

Figure 5 illustrates an example workflow presented in a user interface and
including a number of process states and transitions, under an embodiment. In the
example of Figure 5, process states are indicated by rectangles, and represent a functional
or operational state that instance processing of the workflow can reach. Each process state
can have any number of transitions (including none) leading to and going from the state.
Each process state is categorized as a specified type of either a transient state, DM terminal
state, or a subroutine state. A transient state (no icon) is a state where instance process
immediately proceeds to the first transition going from the state. Initial states can be either
transient states or subroutine states. A DM terminal state, illustrated in Figure 5 as a
telephone icon 504, is a device/subscriber query state. When a workflow instance
processing reaches a DM terminal state, the DM terminal state executes the query
commands specified by a transition preceding the state and instance processing is
suspended while waiting for the query response. After a response is received, the DM
terminal state processes the response. The instance processing resumes with the
processing of transitions going from the DM terminal state that typically evaluate the query

response to determine subsequent actions. A subroutine state, icon 506, is a gateway to a

17

WO 2009/021208 PCT/US2008/072684

subroutine workflow. When the workflow instance processing of a caller workflow
reaches a subroutine process state instance processing is transferred to the initial state in
the specified subroutine (callee) workflow. When the subroutine workflow instance
processing reaches an end state, the subroutine workflow instance processing is returned to
the subroutine state in the caller workflow. Transitions going from the subroutine state are
then processed, in order.

Process states can be assigned the attributes of an initial state, a persistent state, or
an end state. An initial state (e.g., right-arrow icon 502) is the beginning state for a
workflow. Every workflow must have one and only one initial process state, and
workflow instance processing starts at the initial state, however, instance processing can
restart at a persistent state. When a subroutine workflow is called, instance processing
begins at the initial state in the subroutine. A persistent state (which may be displayed as a
floppy disk icon) represents the ability to resume instance processing from the point of
stoppage. Although persistence is applied to a process state, persistence controls workflow
instance processing. Workflow instance processing can be resumed from the point of
stoppage when and only when processing stops at a persistent state. Persistence is
typically applied to one or more states in a workflow when instance processing by the
same local computer is likely to be interrupted, such as when waiting for a device query
response that may take some time. Persistence is typically used when instance processing
could be re-assigned to another node of an MDM cluster

An end state is any state that does not have any transitions going from the state.
Any process state can attain the end state attribute by its position in a workflow. When
instance processing reaches an end state in a callee workflow, instance processing is
transferred to the subroutine state in the caller workflow that called the subroutine
workflow. When workflow instance processing reaches an end state in the highest
(parent) workflow in a stack, all instance processing stops. Upon return to an end state that
is a subroutine state, if the end subroutine state was called by a workflow, instance
processing is transferred to the calling workflow, and if the end subroutine state is in the

highest workflow in the stack, all instance processing is stopped.

18

WO 2009/021208 PCT/US2008/072684

In addition, process states can be assigned one of six severity levels. These are
denoted: normal, warning, minor, major, critical, or fatal. The meaning of each severity
level is user-defined. The severity level of a workflow instance is the severity of the state
currently being processed. Instance severity can be changed during the processing of an
instance. Workflow monitoring filtering can be based on severity levels. The workflow
instances that are displayed at any point in time are governed by the current instance
severity level. Thus, severity filtering can be used to display workflow instances that are
encountering difficulties.

Transitions are paths that workflow instance processing can take to go from one
process state to another process state. Transitions are made up of two components: a
logical condition made up of one or more logical elements, and one or more processing
action blocks.

When a transition is processed, its condition is first analyzed to determine whether
the condition is satisfied or not. If the condition is satisfied, the specified action blocks are
applied to the targeted entity. If the processing of the target is not successful, an error is
returned, and instance processing is stopped.

Workflow transitions adhere to a number of defined rules. Each transition contains
one condition (a related set of one or more logical elements), which produces a Boolean
result (satisfied or not satisfied). If more than one condition is desired to advance from one
state to another state, more than one transition between the states must be used. Initial
states do not have transitions leading to the state and can have any number of transitions
going from the state. End states do not have transitions going from the state and can have
any number of transitions leading to the state. Process states other than initial and end
states can have any number of transitions leading to or going from the state. One pair of
states can have any number of transitions between the two states.

When there is more than one transition going from a state, the transitions are
processed in a user-defined order, only one transition from a state will actually be
followed. Once a transition condition is satisfied, all other transitions from the same state
are not processed. If a transition condition is not satisfied the condition in the next

transition is evaluated. If there are no other unprocessed transitions, then the instance

19

WO 2009/021208 PCT/US2008/072684

remains in the state and the instance processing is not stopped. If, however, a transition
condition is satisfied, the processing action blocks specified by the transition are applied to
the target. Upon successful processing, the instance processing proceeds to the next state.
If action processing was not successful, then an error is returned, and workflow instance
processing stops.

Action blocks can initiate the querying of a targeted device. The actual processing
of the query must then be performed by a DM terminal state that the transition leads to.
Instance processing then stops at the DM terminal state until a response from the targeted
device is returned. The response must then be evaluated by the condition(s) of one or more
transitions going from the DM terminal state, in order to determine whether a condition
(related to the device response) is satisfied.

A workflow contains process states and transitions that define the logic and the
processing to be applied to targeted entities. A workflow instance is the processing of a
workflow instantiation for a targeted wireless device at a specific time. When processing
workflow instances the evaluation of logical conditions is influenced by the specific
conditions encountered at the time of instance processing (e.g., time-specific factors).
Different processing of the same workflow instance, targeting the same entity, but running
at different times, can follow different logical paths and process the target differently.

Instance processing can be transferred between parent (caller) and subroutine
(callee) workflows. Many users can instantiate and process separate workflow instances
from the same workflow. Workflow instances operate independently of the associated
workflow template and all other instances instantiated from the template. At any one time,
each instance processes a different target, although, different instances can process the
same target, at different times. If workflow instance processing is stopped at a persistent
state, then instance processing can resume from the point of stoppage. If workflow
instance processing is stopped when the processing is not at a persistent state, then instance
processing cannot resume from the point of stoppage.

A workflow instance can exist in one of three operational states: running,
completed, and aborted. In the running state, a targeted entity is being processed by the

instance. In the completed state, the instance has reached an end state in the highest (or

20

WO 2009/021208 PCT/US2008/072684

only) workflow in a stack, and instance processing is terminated. In the aborted state,
instance processing has been terminated because an exception occurred (during processing
of a transition condition or action), a device query time-out exception occurred, or a
computer malfunction occurred.

Created workflows can be used in a wireless operator environment by the MDM
carrier suite to manage wireless devices. Prior to using a workflow, a mapping must be
established to assign a specific workflow to direct a particular type of management task.
Workflow can be assigned to a management task by either implicit or explicit means. In
the implicit case, the category to which a workflow is assigned at the time of creation
controls the type of management task suitable for the workflow. When an MDM user
initiates a specific task, the assigned workflow is instantiated and the instance is processed.
Composite category workflows are not implicitly assigned to management tasks. Inthe
explicit case, an MDM user assigns a specific workflow to the task to be performed,
regardless of any implicit assignments. The user can select any workflow, including those
of the composite workflow category.

To initiate device management, a user selects a management task, and the MDM
carrier suite determines the workflow to direct the task based on the following factors:
device identity, management task, and initiator (client or server). This is an example of
implicit assignment. Different default workflows, to be used for each category of task, can
be specified at the device profile, device model, and system levels. An explicit assignment
permits a user to select a workflow other than the workflow implicitly assigned by the
MDM carrier suite. Explicit workflow assignment is necessary in certain cases, such as
testing an experimental device management algorithm, or using a composite workflow. In
order to explicitly assign a workflow to direct a management task, an MDM advance
request feature is used to select a workflow from a list of suitable workflows.

Workflows must be instantiated prior to commencing workflow instance processing
that directs management support of a targeted entity. Workflows are only instantiated prior
to initial instance processing, and not when instance processing is suspended (e.g., waiting

for the response to a device query) or transferred between caller and callee workflows.

21

WO 2009/021208 PCT/US2008/072684

Once workflow instance processing commences, instance processing can be observed
using the Workflow monitor.

Workflows specify the processing of targeted entities, and specify the logic that
controls that processing. However, in order to actually process a target, workflows must
first be instantiated by a wireless operator device management system (e.g., the MDM
carrier suite). Instance processing of a workflow then directs the wireless operator OTA
system to actually perform the processing of the target.

Instance processing of all workflows follows the pattern of: initial state to transition
to state to transition to state, and so on till the end state is reached. Instance processing
evaluates the logical condition of each transition to determine whether the condition is
satisfied. When a transition condition is satisfied, all action blocks specified by the
transition are applied to the targeted entity in the specified order. When more than one
transition goes from a process state, each transition is processed in a designer-specified
order.

Instance processing adheres to specific guidelines dictating beginning a workflow,
transition processing, state processing, and ending a workflow for each specific situation.
For the beginning, after instantiation, instance processing of the top workflow in a stack
always begins at the initial process state. If the initial state is a transient state, the first
transition going from the state is processed. If the initial state is a subroutine state, then
instance processing is immediately transferred to the called workflow. After instance
processing is transferred to a called workflow, processing always begins at the initial state
in the called workflow. If instance processing is resumed after being stopped at a
persistent state, processing resumes from the point of stoppage.

For transition processing, the processing begins with the first (or only) transition
going from a state. If more than one transition goes from a state, the transitions are
processed in the order specified by the designer. If a transition’s logical condition is
satisfied then all processing specified by the transition is applied to the target. If a
specified processing action is not successfully applied to the targeted entity, an error is
returned, and instance processing stops. All other transitions between the same two states

are not processed, and processing proceeds to the state that the processed transition leads

22

WO 2009/021208 PCT/US2008/072684

to. If a transition’s logical condition is not satisfied, the next transition between the two
states is processed, and so on, until all transitions between the two states are processed. If
none of the transitional conditions between two states are satisfied, then the instance
remains in the prior state, but processing does not stop.

For state processing, when processing a DM terminal state, a query (specified by a
transition before the state) is sent to the target device. Instance processing is suspended
until the response is returned. After receipt of the response, the state processes the response
(which is evaluated by a transition after the state to determine subsequent actions). When
processing a subroutine state, instance processing is transferred to the called workflow.
When instance processing reaches a transient state, the first transition going from the state
is then processed.

During ending instance processing, when instance processing reaches an end state
in a callee workflow in a stack, processing is transferred to the subroutine state in the caller
workflow. When instance processing reaches an end state in the highest or only workflow
in a stack, all instance processing is terminated.

In one embodiment, a workflow monitor is provided to enable a user to examine
the workflow instance processing of a target entity for analysis and troubleshooting
purposes. A graphical user interface window is provided to allow step-by-step observation
of workflow instances. Processing messages (logs) are created during workflow instance
processing. The state-by-state progress of workflow instance processing of workflows in
the pending state can be tracked.

Workflows are managed by processing them through workflow states that comprise
the workflow management life cycle. After a workflow has been created, the functional
capability of the workflow is managed throughout its life cycle by the state that is applied
to the workflow. Workflow states control which user can invoke workflow instance
processing from a workflow, what entities can be targeted by workflow instances, and
what life cycle states can subsequently be applied to a workflow.

Each workflow exists in one of the following workflow states of pending, testing,
ready, or approved. In the pending state, the workflow is in development and cannot be

assigned to direct management tasks. Newly created and imported workflows are assigned

23

WO 2009/021208 PCT/US2008/072684

pending status. Pending workflows can then modified, and can be assigned testing status
and deleted status. In the testing state, the workflow can support the testing of target
entities. Testing workflows operate as regular, approved workflows, and can be subjected
to test cases to determine suitability for normal, operational target support. Testing
workflows can be rejected (to pending status) or promoted (to ready status). In the ready
status, the workflow can undergo administrative processing (approval or rejection). Ready
status workflows can be rejected (to pending status) or approved (to support normal,
operational targets). In the approved status, the workflow can direct management tasks in
support of targeted entities. Approved status workflows can be retired (to pending status).
Figure 6 is a flow diagram that illustrates workflow life cycle states, under an
embodiment. This figure shows the transition of workflow states among the different
statuses of pending 602, testing 604, ready 608, and approved 610.

In general, workflows direct processes that manage targets such as a wireless
device, an Operation Support System, a computer system, or a collection of these targets.
Workflows specify the logic and processing to be performed on a target when a workflow
is instantiated. Workflow designers define the logic and processing of a workflow by
specifying the process state and transition components. The high-level logic of a workflow
is graphically represented by the position of process states and the transitions between
states. The low-level logic of a workflow is specified in each transition’s logical condition.
Processing is specified in the action blocks and the action sequence applied by each
transition when the transition’s condition is met. A workflow is a plan for managing
targets. A system such as the MDM carrier suite, that is capable of actually processing
targets, then uses the workflow plan to process targets. The system instantiates (starts up)
a workflow instance to process each target, which is then manages target processing
according to the logic specified by the workflow and the relevant factors related to the
target and its environment.

In one embodiment, the workflow designer application is provided as a GUlI-based
“free-form” application, in which the user invokes functionality based on the design of
workflows, and not on the order of functional procedures. Figure 7 illustrates a graphical

user interface screen for designing a workflow, under an embodiment. The main

24

WO 2009/021208 PCT/US2008/072684

application window of the workflow designer program enables designers to create, import,
review, modify, export, and delete workflows. As shown in Figure 7, the main window is
divided into the following functional areas: a menubar 702 that provides access to
application functionality; a toolbar 704 that provides quick access to commonly-used
application functionality; a workflow repository 706 that lists workflows for review and
management, grouped according to workflow categories; a workflow designer palette 708
that provides graphic display of the workflow process states and transitions; a workflow
parameter panel 710 that lists external parameters for the displayed workflow; and an
information bar 712 that provides the name and description of the displayed workflow.

As a graphical user interface system, it should be noted that any number of icon or
object representations can be used for the states and transitions shown in Figure 7. Icons
can be of different shapes, colors, shading or hatch patterns to denote different types or
statuses of the states and transitions, based on design rules and preferences. In one
embodiment, the user interface includes a drag-and-drop utility that allows a designer to
select icons or object elements from a menu area and drop them into the designer palette
are 708. Using a combination of mouse and/or keyboard commands, these elements can
then be manipulated using familiar computer-implemented drawing techniques to create a
workflow.

Pluggable Workflow Framework

In one embodiment, the workflow design process described above is used by a
mobile device management system to define management policies for implementation in
mobile devices. The method utilizes a pluggable workflow framework to achieve mobile
device management externalization. The mobile device management platform implements
a set of basic action blocks that are used as primitives for further management policy
composition. The method provides a development environment integrated with a mobile
device management platform that allows assembling management (monitoring) primitives
into meaningful management policies without changes to a core management platform
infrastructure. The method allows new primitives to be deployed on the fly as add-on
products to enable new and advanced management policies, best integration practices with

a carrier operational support system.

25

WO 2009/021208 PCT/US2008/072684

The target mobile device is a managed entity representing an object that can be
controlled by a standard protocol (e.g., SNMP, IMX, CIM, or OMA DM) or any
proprietary management protocol. The management policy is presented as a workflow that
is executed by a workflow engine, such as workflow engine 210 of Figure 2. The engine
controls an execution using different factors, such as polling intervals, external events,
device traffic, and other environmental aspects. The workflow designer is used to manage
workflow definitions. It is implemented as a highly customizable and metadata driven
application, where each device management task type corresponds to a workflow category.
Within a category, multiple workflow definitions can be created to get an advantage of one
of few recommended policies or optimize user experience for a certain group of mobile
devices.

In one embodiment, the workflow-based management tasks are implemented as an
MDM plug-in module that comprises protocol and MDM specific action blocks. This
structure, in conjunction with a base set of actions and conditions presents a rich repository
to build simple and complex management applications. Figure 8 is a block diagram that
illustrates the components of an MDM plug-in module for workflow-based mobile device
management tasks, under and embodiment. The plug-in module 802 is coupled to an
aggregated workflow context tree 804 that contains categories and subcategories defined
by the MDM plug-in. The MDM system 800 defines a set of mobile device management
specific actions, stored in action set 812, and conditions, stored in condition set §10. Tt
also defines mobile device management specific contexts (e.g., FOTA, RD, Composite,
and configuration management). The state types module 806 stores state definition files
that define a new mobile device specific state. This suspends further workflow execution
until a device responds to a previously sent OMA message. A DM tools module 814
comprises tools descriptors that define and MDM specific tools menu. The MDM property
files 808 define localized key values. The MDM platform services 816 can include a
platform services API and various platform service routines that couple the workflow
engine to a host computer system or OS.

Figure 9 is a block diagram that illustrates an action block repository for use with

an MDM plug-in module, under an embodiment. As shown in system 900, a core action

26

WO 2009/021208 PCT/US2008/072684

set 904 comprises action blocks (actions and conditions) to create and evaluate logical and
arithmetical expressions, enable parameters, evaluate UNIX regular expressions, and
perform text processing. For example, date and time conditions can be used to inspect a
current time range against a range of specified legal timing intervals, day of the week and
other conditions. An OSS action set 906 provides mechanisms for exporting data out of
the MDM framework into a file system of a host OS. This module may enable SNMP
(Simple Network Management Protocol) and JIMX (Java Management Extensions) to get
and set actions. It also launches program scripts, creates custom logging files, emits JMS
(Java Message Service) notifications, sends e-mail, and other similar tasks. The MDM
plug-in framework 902 provides and MDM specific action set. The main elements of this
plug-in enable the construction of complex OMA messages and the transmission of these
messages to managed resources, such as the mobile client devices. It can also evaluate
overall incoming OMA message status, and statuses of individual commands. Some action
blocks expose certain MDM data models, such as device, profile, subscriber, managed
application, environmental conditions (e.g., “roaming”), group membership, and other
similar models. An MDM management component 908 comprises various OMA data
objects, such as the OMA stack, OMA command status, and device modeling and
profiling, among others.

As described above, the workflow designer application is provided as a GUI-based
“free-form” application. The GUI is typically implemented through a number of different
interactive screens that allow user input to define and control various parameters related to
workflow design for the various management functions. Figure 10 is an example
screenshot for the workflow GUI for defining device management conditions, under an
embodiment. A device management conditions pull-down menu window 1002 is provided
within a “set conditions” display area of display screen 1000. This menu provides for the
viewing and setting of various parameters related to base management functions,
configuration functions, and firmware (FOTA) updates. An input screen 1004 that allows
for user input is activated upon the selection of a corresponding management menu item.

For the example of Figure 10, selecting the “subscriber” table in window 1002 results in

27

WO 2009/021208 PCT/US2008/072684

the display of window 1004 that allows the user to construct subscriber-specific
expressions.

Figure 11 is an example screenshot for the workflow GUI of a workflow designer
OMA command editor, under an embodiment. The display window 1100 illustrated in
Figure 11 allows a user to set action parameters by specifying a name, description, and
setting certain characteristics. The example illustrated in Figure 11 shows the construction
of OMA commands that allow the building of OMA DM messages.

The workflow framework described and illustrated herein allows device
management algorithms to be designed and implemented in a drag-and-drop GUI
paradigm, as illustrated in Figure 7. This frees a carrier to modify or totally replace factory
built solutions for supported mobile devices. It eliminates the need for core software
changes for customization of management tasks. The workflow life cycle controls
workflow changes. For approved management tasks, corresponding workflows are sealed
to eliminate accidental workflow changes. Individual workflow instances can migrate
within a cluster to improve scalability and eliminate any “same box” affinity requirement.
A workflow definition is similar to a programming unit in that it introduces flexibility,
parameterization, and defines few API layers. An internal management tasks is associated
with a corresponding workflow definition. The association is flexible and follows a device
make/model profile that is based on a three level inheritance paradigm. The lowest level is
system-based, the medium-level is model based, and the highest-level (most fine-grained
association) is at the profile level. Therefore, by issuing the same task, multiple workflows
can be assigned to carry out an assignment.

Embodiments described herein include a method of implementing mobile device
management in network of managed object mobile devices coupled to a mobile device
manager server computer, comprising: defining a set of action blocks comprising actions
and conditions to be implemented on a mobile device managed by the mobile device
manager server; using the action blocks as primitives for the composition of management
tasks; representing the action blocks as objects in a graphical user interface layout tool; and
defining the management tasks using a workflow design tool that utilizes a drag-and-drop

graphical user interface, the management tasks comprising a plurality of process states

28

WO 2009/021208 PCT/US2008/072684

functionally coupled to one another through one or more transitions. In this method, a
process state of the plurality of process states comprises one of a transient state, a terminal
state, and a subroutine state. A process state is assigned an attribute selected from the
group consisting of: initial state, persistent state, and end state. A process state is assigned
a severity level selected from the group consisting of: normal, warning, minor, major,
critical, and fatal. In this method a first workflow may call a second workflow through a
subroutine state. The one or more transitions comprise at least one transition path linking a
first process state to a second process state. The transition comprises a logical condition
and one or more processing blocks.

The method may further comprise: processing a transition by analyzing the logical
condition to determine whether or not the condition is satisfied, applying the corresponding
action block to the mobile device if the condition is satisfied; and generating an error
message if the condition is not satisfied. The workflow design tool is used to create a
workflow that directs a management support of the mobile device. The method further
comprises instantiating the workflow by the server computer to direct a carrier system
administrator to perform processing of the mobile device. The processing step comprises
transmitting firmware over the air to the mobile device, and adheres to a sequence of
processing states and transitions defined by the workflow. In this method, the workflow
transitions through a workflow lifecycle comprising a pending state, a testing state, a ready
state, and an approved state.

Embodiments are also directed to a system for configuring and managing a mobile
device remotely coupled to a device management (DM) server comprising: a configuration
manager component configuring a number of parameters of the mobile device to be
operable with one or more functional applications; a firmware manager component to
upgrade the mobile device using an over-the-air protocol to transmit firmware upgrade
modules; a diagnostics manager component to remotely query, diagnose and fix problems
on the mobile device; and a workflow designer component enabling a user to design and
implement a set of instructions that dictate how the DM server institutes over-the-air
device management operations to the mobile device, in the form of a workflow. In this

system, a configuration database is stored in a data store coupled to the DM server, and

29

WO 2009/021208 PCT/US2008/072684

storing a configuration library containing a plurality of data objects related to configuration
and operation of the mobile device. The mobile device is an Open Mobile Alliance Device
Management (OMA DM) enabled mobile device, and wherein the firmware upgrade
modules are transmitted over an OMA DM based firmware-over-the-air protocol. The
configuration settings of the mobile device are embodied in an OMA DM device
management tree of the mobile device, and wherein a virtual configuration property is
associated with a device property defined with one or more device description framework
files. The mobile device comprises a smartphone coupled to the DM server over at least
one wireless network. The workflow designer component can be used to create a
workflow that directs firmware management of the mobile device.

Embodiments are further directed to a user interface system comprising: a menu
area providing icons representing process states and transitions; a drag-and-drop tool
allowing a user to create a workflow comprising process states linked by one or more
transitions; and a workflow palette area displaying completed and in process workflows,
wherein a workflow dictates a process flow for managing remote support of a managed
object client device coupled to a server computer over a network, and wherein the remote
support comprises installing one or more firmware updates that are transmitted to the
device using an over-the-air protocol. For this user interface system, the mobile device is
an Open Mobile Alliance Device Management (OAM DM) enabled mobile device, and the
process states include one or more configuration parameters of the mobile device; and
wherein the one or more configuration parameters are represented in at least one node of
an OMA DM management tree for the mobile device. The user interface system further
comprises an update component configured to enable transmission of the firmware update
to the mobile device over an OMA DM based firmware-over-the-air protocol.

The systems and methods described herein include and/or run under and/or in
association with a processing system. The processing system includes any collection of
processor-based devices or computing devices operating together, or components of
processing systems or devices, as is known in the art. For example, the processing system
can include one or more of a portable computer, portable communication device operating

in a communication network, and/or a network server. The portable computer can be any

30

WO 2009/021208 PCT/US2008/072684

of a number and/or combination of devices selected from among personal computers,
cellular telephones, personal digital assistants, portable computing devices, and portable
communication devices, but is not so limited. The processing system can include
components within a larger computer system.

The processing system of an embodiment includes at least one processor and at
least one memory device or subsystem. The processing system can also include or be
coupled to at least one database. The term “processor” as generally used herein refers to
any logic processing unit, such as one or more central processing units (CPUs), digital
signal processors (DSPs), application-specific integrated circuits (ASIC), etc. The
processor and memory can be monolithically integrated onto a single chip, distributed
among a number of chips or components, and/or provided by some combination of
algorithms. The methods described herein can be implemented in one or more of software
algorithm(s), programs, firmware, hardware, components, circuitry, in any combination.

Components of the systems and methods described herein can be located together
or in separate locations. Communication paths couple the components and include any
medium for communicating or transferring files among the components. The
communication paths include wireless connections, wired connections, and hybrid
wireless/wired connections. The communication paths also include couplings or
connections to networks including local area networks (LANs), metropolitan area networks
(MANS), wide area networks (WANs), proprictary networks, interoffice or backend
networks, and the Internet. Furthermore, the communication paths include removable
fixed mediums like floppy disks, hard disk drives, and CD-ROM disks, as well as flash
RAM, Universal Serial Bus (USB) connections, RS-232 connections, telephone lines,
buses, and electronic mail messages.

Unless the context clearly requires otherwise, throughout the description, the words
“comprise,” “comprising,” and the like are to be construed in an inclusive sense as opposed
to an exclusive or exhaustive sense; that is to say, in a sense of “including, but not limited
to.” Words using the singular or plural number also include the plural or singular number
respectively. Additionally, the words “herein,” “hereunder,” “above,” “below,” and words

of similar import refer to this application as a whole and not to any particular portions of

31

WO 2009/021208 PCT/US2008/072684

this application. When the word “or” is used in reference to a list of two or more items,
that word covers all of the following interpretations of the word: any of the items in the
list, all of the items in the list and any combination of the items in the list.

The above description of embodiments of the systems and methods described
herein is not intended to be exhaustive or to limit the systems and methods described to the
precise form disclosed. While specific embodiments of, and examples for, the systems and
methods described herein are described herein for illustrative purposes, various equivalent
modifications are possible within the scope of other systems and methods, as those skilled
in the relevant art will recognize. The teachings of the systems and methods described
herein provided herein can be applied to other processing systems and methods, not only
for the systems and methods described above.

The elements and acts of the various embodiments described above can be
combined to provide further embodiments. These and other changes can be made to the

systems and methods described herein in light of the above detailed description.

32

WO 2009/021208 PCT/US2008/072684

CLAIMS

What is claimed is:

1. A method of implementing mobile device management in network of managed
object mobile devices coupled to a mobile device manager server computer, comprising:
defining a set of action blocks comprising actions and conditions to be
implemented on a mobile device managed by the mobile device manager server;
using the action blocks as primitives for the composition of management tasks;
representing the action blocks as objects in a graphical user interface layout tool;
and
defining the management tasks using a workflow design tool that utilizes a drag-
and-drop graphical user interface, the management tasks comprising a plurality of process

states functionally coupled to one another through one or more transitions.

2. The method of claim 1 wherein a process state of the plurality of process states

comprises one of a transient state, a terminal state, and a subroutine state.

o]

3. The method of claim 2 wherein a process state is assigned an attribute selected

from the group consisting of: initial state, persistent state, and end state.

4. The method of claim 3 wherein a process state is assigned a severity level selected

from the group consisting of: normal, warning, minor, major, critical, and fatal.

5. The method of claim 3 wherein a first workflow may call a second workflow

through a subroutine state.

6. The method of claim 1 wherein the one or more transitions comprise at least one

transition path linking a first process state to a second process state.

33

WO 2009/021208 PCT/US2008/072684

7. The method of claim 6 wherein the transition comprises a logical condition and one

or more processing blocks.

8. The method of claim 7 further comprising:

processing a transition by analyzing the logical condition to determine whether or
not the condition is satisfied,

applying the corresponding action block to the mobile device if the condition is
satisfied; and

generating an error message if the condition is not satisfied.

9. The method of claim 1 wherein the workflow design tool is used to create a

workflow that directs a management support of the mobile device.

10. The method of claim 9 further comprising instantiating the workflow by the server
computer to direct a carrier system administrator to perform processing of the mobile

device.

11. The method of claim 10 wherein the processing comprises transmitting firmware

over the air to the mobile device.

12. The method of claim 11 wherein the processing adheres to a sequence of

processing states and transitions defined by the workflow.

13. The method of claim 12 wherein the workflow transitions through a workflow

lifecycle comprising a pending state, a testing state, a ready state, and an approved state.

14. A system for configuring and managing a mobile device remotely coupled to a
device management (DM) server comprising:
a configuration manager component configuring a number of parameters of the

mobile device to be operable with one or more functional applications;

34

WO 2009/021208 PCT/US2008/072684

a firmware manager component to upgrade the mobile device using an over-the-air
protocol to transmit firmware upgrade modules;

a diagnostics manager component to remotely query, diagnose and fix problems on
the mobile device; and

a workflow designer component enabling a user to design and implement a set of
instructions that dictate how the DM server institutes over-the-air device management

operations to the mobile device, in the form of'a workflow.

15. The system of claim 14 further comprising a configuration database stored in a data
store coupled to the DM server, and storing a configuration library containing a plurality of

data objects related to configuration and operation of the mobile device.

16. The system of claim 15 wherein the mobile device is an Open Mobile Alliance
Device Management (OMA DM) enabled mobile device, and wherein the firmware

upgrade modules are transmitted over an OMA DM based firmware-over-the-air protocol.

17. The system of claim 16 wherein the configuration settings of the mobile device are
embodied in an OMA DM device management tree of the mobile device, and wherein a
virtual configuration property is associated with a device property defined with one or

more device description framework files.

18. The system of claim 17 wherein the mobile device comprises a smartphone coupled

to the DM server over at least one wireless network.

19. The system of claim 18 wherein the workflow designer component is used to create

a workflow that directs firmware management of the mobile device.

20. A user interface system comprising:

a menu area providing icons representing process states and transitions;

35

WO 2009/021208 PCT/US2008/072684

a drag-and-drop tool allowing a user to create a workflow comprising process states
linked by one or more transitions; and

a workflow palette area displaying completed and in process workflows, wherein a
workflow dictates a process flow for managing remote support of a managed object client
device coupled to a server computer over a network, and wherein the remote support
comprises installing one or more firmware updates that are transmitted to the device using

an over-the-air protocol.

21. The user interface system of claim 20 further wherein the mobile device is an Open
Mobile Alliance Device Management (OAM DM) enabled mobile device, and the process
states include one or more configuration parameters of the mobile device; and wherein the
one or more configuration parameters are represented in at least one node of an OMA DM

management tree for the mobile device.
22. The user interface system of claim 21 further comprising an update component

configured to enable transmission of the firmware update to the mobile device over an

OMA DM based firmware-over-the-air protocol.

36

PCT/US2008/072684

WO 2009/021208

112

~
(g1 owm%mm 001 .
TonyeINg1juo,) . %Va ﬁwwmw
14| E
01—
O[T WI0fig[d JoAIOS WAN!
Io3euel EFLA T LR LA who_w%me
SOSOUSRI(] | QIeMUII] | UONBINGIJUO) Q11
N0 N901 oI
JOAJRG A)ING JOLIIR) WAL

7¢T Aemaen

JauIR))

9[0SU0))
NAN!

SUBSTITUTE SHEET (RULE 26)

WO 2009/021208 PCT/US2008/072684

2/12
201~ 203~
Workflow Workflow
Designer Designer
£\ [\
Network 210 }
I —
V V
MDM Carrier Suite 202
_ | Job Management
212 Setvice
I
210—— Workflow Engine 214
I - Workflow
208—— Adapter Layer Device Repository
| Modeling
206 Protocol Layer | | Service 216
I

] [
i

FIG.2

SUBSTITUTE SHEET (RULE 26)

WO 2009/021208

PCT/US2008/072684

3/12

ITEM

DESCRIPTION

Device models

Device models are collections of information about the attributes, properties,
and capabilities of subsets of devices with a specific make and model.

Device profiles

Device profiles are collections of information about the atfributes, properties,
and capabilities of subsets of devices with a specific make and model.

For example, different firmware versions might change the

capabilities of the device model.

Device Description
Frameworks (DDFs)

Device Description Frameworks (DDFs) imported from DDF files describe
the structures of the OMA DM management trees on the device models.

Aliases

Aliases are arbitrary names that you define. They can be used to provide
default values for settings, correct values for updating devices based on
diagnostics, and names that are simpler and easier to read the object URIS.

URI-alias mappings

URI-alias mappings establish correspondences between aliases and URIs, for

a specific DDF file. These mappings allow the console to display more easily
understood names for objects, provide a place in which default values can be
defined, and permit specification of how dynamic node names will be determined.

Application Application definitions are used for management of OMA DM applications.
definitions Application definitions specify a set of aliases that are needed for an
application, for example, to configure or diagnose the application.
Application Application profiles are used for management of OMA DM applications.
profiles Application profiles belong to a specific application definition. They

provide values for the aliases specified in the parent application definition,
or identify how the value can be obtained by reference to another
application profile or to an alias.

Access points

Access points are used for configuration of legacy applications (that is,
applications that are managed with protocols that are older than the OMA
DM protocol, for example, Smart Messaging or OMA Client Provisioning).
An access point allows a mobile device to gain access to the
Communications Service Provider's network.

Proxies

Proxies are used for configuration of legacy applications. A proxy
is a server that manages access points.

Proxy groups

Proxy groups are used for configuration of legacy applications. A proxy
group is an ordered list of proxies, along with associated information, such
as authentication and port information that applies to all proxies in the group.
Instead of specifying a proxy in a settings template, you can specify a proxy
group. When a proxy group is used, the MDM Carrier Suite uses the first
accessible proxy in the group.

Settings templates

Settings templates are used for configuration of legacy applications.
A settings template specifies application-specific and generic settings
that apply to many device models.

300

FIG.3

SUBSTITUTE SHEET (RULE 26)

WO 2009/021208

4/12

PCT/US2008/072684

Workflow A
(Caller)

Stack (of
workflows ——402
A, B,(C)

Workflow B
(Caller and
Callee)

Workflow C
(Callee)

Initial ‘ Transient
Transient @ State
State Y
< Trans >
Y
Subroutine State [<
y
Initial - | Transient
Transient State Clras) State
Y Y
< Trans > Trans >
y y
End End Subroutine <
Transient State State

/

[nitial Transient State

Yy

< Trans >

i

Transient State

Yy

< Trans >

A
End Transient State

F1G.4

SUBSTITUTE SHEET (RULE 26)

WO 2009/021208

PCT/US2008/072684

5/12
(" Verify_Pin $Q
[=] First
504

é

& getDevData.

506

\

Verificati.

e ”

@ Subscriber.

(e

506

é

Success

—

FIG.5

SUBSTITUTE SHEET (RULE 26)

PCT/US2008/072684

WO 2009/021208

6/12

9D

MOTJYIOM JOdX < wmww
019 809\,
panorddy MO[JIom aa01ddy fpeoy /)"
MOTJYIOM)0WOI]
MO[JyIoM 10300y
MOJJFI0M MY MOTJI0M 100[Y v09
. . sunsay,
A
— ﬁ MOTJJIOM)83
MO[JIOM 333[9(<03 < MO[JyIoM poduw]

wﬁvﬂum MO[JI0OM)81

SUBSTITUTE SHEET (RULE 26)

WO 2009/021208

7/12

PCT/US2008/072684

<4 iMDM Workflow Designer[svs@10.10.4.133]

File Edit Preferences Tools Help Menubar—_ 7()2

N = g g Toolbar —— 7()4

Vll

%neﬂc
(2 Device Management

—{% Configuration Management
Firmware Management

M

Cabe

</ alert_single
< calles

< caller

< Fota22

< GeiStructData

< GetStructData_Parameter

Workflow
Repository

1| OneCondOneDmAct &3 | Fota2 23! Alert_signal 23!

] Workflow
< al2s Designer Palette

708

y

< TNDS_Store3

< TNDS_Store_1

Xy {[Name

Presentation{ Default value | Description

E

Composite
susan

Parameter Panel

Workflow

&3 |mt || &3

FIG.7

SUBSTITUTE SHEET (RULE 26)

E-J—f[ﬂizg;nostics Management
sagarTrialWF 710
— 2239
— Foo
— BrokenCircle
106 Name: {Alert single| ~ Description: |test aIertlnforma"ion Ear
{
712

WO 2009/021208

8/12

PCT/US2008/072684

Plug-In 802
Context State Property
Tree Types files
304 306 308
Condition Action DM
Set Set Tools
810 812 814
300 MDM Platform services 816
900
Plug-in Framework. 902
Core action: OSS actions: MDM Management:
Regular e-mail, OMA Stack,
expressions, SNMP, IMX, OMA command
time/date events, Unix scripts, status,
arithmetic and Messaging, Device modeling
logic expressions Logging and profiling
904 906 908

SUBSTITUTE SHEET (RULE 26)

FIG.9

WO 2009/021208

9/12

PCT/US2008/072684

<4 Modify Transition

X

— Set Condition

=7 ALL Categories
—+—— Base Conditions
—H=] Always True

General Expression
Platform Script

Test Parameter Existence
Counter

=7 Date & Time

a—mce Management 1002
= Base

Simple make and Model
Subscriber Status

DM Expression

Property Existence Status
ls Device Roaming
Device Info Changed
-~ OMA Response Status
= Configuration

CM has Valid Parameters
== Fota

Fota Update Status
Firmware Package

(by selector)

Firmware Package
(by name & version)

Download Method

CM has Dynamic Node [

FwY Up-o-Date

This condition allows to construct a "subscriber” specific expre

Dialing Number

Device ID

Equals

v

Skip

v

Equals

v

Skip

v

Flex

Equals

Skip

ls Tester? 0 [Skip

ls Roaming? 0 | Skip

[—

.| Device Management

Conditions

SN

Previous [| Next

Cancel

Finish

FIG.10

SUBSTITUTE SHEET (RULE 26)

]

o

00

WO 2009/021208 PCT/US2008/072684

10/12
<% New Action Editor
Set Action Parameters
Name |Construct OMA Commands
Description |This action allows to build OMA DM messages
by constructing OMA commands.
Add A :
T v
Nert(Display)] ype Literal
Alert(Confirm/Reject) Alert(Text)
| Alert text |
Alert(SingleChoice)
Alert(MultipleChoice) cl DefResp
(™ Make a sequence MinDT|_ 115~
Index Operation MaxDT| 115
MaxLen| 113
SR Add Operation

ActionList || OK || Apply || Cancel

FIG.11 o

SUBSTITUTE SHEET (RULE 26)

WO 2009/021208 PCT/US2008/072684

11/12
1206
Mobile Device =
Management ’
Platform
1202

1204

Management
Tree

FIG.12

SUBSTITUTE SHEET (RULE 26)

WO 2009/021208

Root
FIG.13 1302
Vendor DMAcc
1306 1304
ABC Inc.
1310

12/12

Ring Signal 1312

PCT/US2008/072684

Operator
1308

OP1||OP2

FIG.14

Screen Saver 1314

Alarm
. Notification 1404
Intelligent
MDM Agent
Platform
Alarm Alarm
Retrieval Management
1402 : " Node
1406

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 08/72684

A. CLASSIFICATION OF SUBJIECT MATTER
IPC(8) - GOGF 3/00 (2008.04)
USPC - 715/762

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC - 715/762

Minimum documentation searched (classification system followed by classification symbols)

USPC - 705/7, 8; 715/747, 744, 762 -- text search, see search terms

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

below

Electronic data base consulted during the international search (name of
PubWest (PGPB,USPT,USOC,EPAB,JPAB); Google Scholar

data base and, where practicable, search terms used)

Search Terms Used: MDM, mobile, device, management, XML, extensible, markup, language, extended, state, debug, log, trac,
upgrade, diagnos, troubleshoot, browser, server, host, API, programming, interface, user

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2006/0039561 A1 (YPYA et al.) 23 February 2006 (23.02.2006), entire document especially | 1-3, 5-9
- Figs 1, 2A, 2B, 4; para [0008]-{0011], {0013], [0026], [0027], [0033], [0041], [D045], [0047), | ~—————m-
Y [0050], [0059], and {0062). 4,10-13, 20-22
X US 2007/0093243 A1 (KAPADEKAR et al.) 26 April 2007 (26.04.2007), entire document 14-17
- especially Figs 1-2, 4, 5B, 14A, 15, 18-20; para [0013], [0017], (0019], (0040], [0043], [0045]- JUSE—.
Y (0048}, [0049)-[0052], [0055], [0075], [0081], {0253], [0255), [0261], [0307]-{0314], [0368], 18-22
[0387]-[0389]. [0448]-{0449), (0472]-[0473], [0504}, and [0525)-[0526].
Y US 2005/0221814 A1 (FAGAN et al.) 06 October 2005 (06.10.2005), especially Figs 6B, 6C; 4,13
para [0010], [0046), [0058], [0061], and [0078].
Y US 2005/0044164 A1 (O'FARRELL et al.) 24 February 2005 (24.02.2005), especially para 10-13
[0010] and [0036).
Y US 2006/0217113 A1 (RAO et al.) 28 September 2006 (28.09.2006), especially para [0022], 18-19
[0038], and [0044].

El Further documents are listed in the continuation of Box C.

[l

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or afier the intemnatignal
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying Lﬂe invention

“X” document of particular relevance, the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

27 October 2008 (27.10.2008)

Date of mailing of the international search report

04 NOV 2008

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP. 571-272-7774

Form PCT/ISA/210 (second sheet) (April 2007)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - wo-search-report

