发明名称
用于冷冻甜食制造机的材料供应装置和包括该装置的冷冻甜食制造机

摘要
在材料罐 (10) 中的材料 (M) 的液位 (L) 附近浮动的浮动件 (41) 随着材料液位 (L) 的高度的减小而下降。该下降运动转换为双筒部分 (51) 中的外筒部分的旋转运动。该旋转运动自动改变连通孔的尺寸。该连通孔由设置在双筒部分 (51) 中的内筒部分中的通孔和外筒部分中的通孔的重叠部分构成。这种改变可以通过通孔的形状优化，这使得从材料罐 (10) 供应到筒部分 (20) 的材料 (M) 和从竖直管 (61) 供应到筒部分 (20) 的空气之间的比率能够保持在需要范围内的恒定值。
1. 一种用于冷冻甜食制造机的材料供应装置，该材料供应装置设置在所述冷冻甜食制造机中，所述冷冻甜食制造机包括：材料罐，该材料罐用于存储液体类的冷冻甜食材料；筒部分，该筒部分用于将所述冷冻甜食材料与空气一起搅拌并冷却成冷冻甜食；以及冷却部分，该冷却部分用于冷却所述材料罐和所述筒部分；并且所述材料供应装置适宜调节从所述材料罐供应到所述筒部分的所述冷冻甜食材料的量，所述材料供应装置包括：

液位探测装置，该液位探测装置用于自动探测所述材料罐中的所述冷冻甜食材料的液位；

供应量调节装置，该供应量调节装置用于结合探测到的所述液位的高度来调节供应到所述筒部分的所述冷冻甜食材料的量；以及

空气引入装置，该空气引入装置用于将空气引入所述筒部分；

其中所述液位探测装置是浮在所述材料罐中的所述冷冻甜食材料的所述液位上的浮动件，并且

所述供应量调节装置包括：双筒部分，该双筒部分包括具有第一通孔的外筒部分和具有能够与所述第一通孔连通的第二通孔的内筒部分，并且所述内筒部分能够相对于所述外筒部分旋转；以及位置传递装置，该位置传递装置用于将所述浮动件的向上和向下位移传递到所述双筒部分，以使所述外筒部分和所述内筒部分相对彼此旋转，以便改变由所述第一通孔和所述第二通孔的彼此重叠的部分形成的连通孔的尺寸，从而调节供应到所述筒部分的所述冷冻甜食材料的量。

2. 根据权利要求1所述的材料供应装置，

其中所述空气引入装置是竖直管，该竖直管的上部具有外部空气引入口，并且该竖直管连通到所述筒部分，所述双筒部分的一个端部与所述竖直管连通，并且所述双筒部分在所述材料罐中的底表面附近水平地延伸，并且

所述位置传递装置是一种连杆机构，该连杆机构将根据所述冷冻甜食材料的液位高度的所述浮动件的所述向上和向下运动转换为所述外筒部分和所述内筒部分相对彼此围绕所述双筒部分的水平轴线的旋转运动。

3. 根据权利要求2所述的材料供应装置，

其中所述浮动件的外周表面上具有第二水平轴，

所述双筒部分具有第二水平轴，该第二水平轴与所述内筒部分或所述外筒部分的端部设置为一体，并且

所述连杆机构包括：第一臂，该第一臂的相对的端部具有枢轴联接部分；以及第二臂，该第二臂的相对的端部具有枢轴联接部分，所述第一臂的一个端部的所述枢轴联接部分和所述第二臂的一个端部的所述枢轴联接部分彼此枢轴联接，以使得所述第一臂和所述第二臂能够摆动，所述第一臂的另一端部的所述枢轴联接部分与所述第一水平轴枢轴联接，以使得所述第一臂能够摆动，并且所述第二臂的另一端部的所述枢轴联接部分与所述第二水平轴枢轴联接，以使得所述外筒部分或所述内筒部分能够旋转。

4. 根据权利要求3所述的材料供应装置，

其中沿所述浮动件的外周表面的竖直方向设置有多个所述第一水平轴。

5. 根据权利要求2所述的材料供应装置，

其中所述浮动件具有孔，所述竖直管能够穿过该孔而插入。
6. 根据权利要求2所述的材料供应装置，
其中所述连通孔设置在所述双筒部分的下部中。

7. 根据权利要求1所述的材料供应装置，
其中所述双筒部分的上部具有外部空气引入口，并且所述双筒部分沿坚直方向设置在所述材料罐中，以便作所述空气引入装置，并且所述外部空气引入口通过所述外筒部分或所述内筒部分而与所述筒部分的内部连通并连接，
所述位移传递装置是一种运动方向转换机构，该运动方向转换机构将根据所述冷冻甜食材料的液位高度的所述浮动件的所述向上和向下运动转换为所述外筒部分和所述内筒部分相对彼此的旋转运动，并且
所述运动方向转换机构包括：形成在所述外筒部分和所述内筒部分的外周壁上的不同的引导狭缝，以及安装到所述浮动件上并且插在所述引导狭缝中的销。

8. 根据权利要求7所述的材料供应装置，
其中所述浮动件具有安装部分，该安装部分能够将所述销以可拆卸的方式安装在沿所述引导狭缝的坚直方向的多个位置上。

9. 一种冷冻甜食制造机，该冷冻甜食制造机包括：材料罐，该材料罐用于存储液体类的冷冻甜食材料；筒部分，该筒部分用于将所述冷冻甜食材料与空气一起搅拌并冷却成冷冻甜食；冷却部分，该冷却部分用于冷却所述材料罐和所述筒部分；以及根据权利要求1所述的用于冷冻甜食制造机的材料供应装置。
用于冷冻甜食制造机的材料供应装置和包括该装置的冷冻
甜食制造机

技术领域
[0001] 本发明涉及一种用于冷冻甜食制造机的材料供应装置和一种包括该材料供应装置的冷冻甜食制造机。更具体地，本发明涉及一种用于冷冻甜食制造机的材料供应装置，该冷冻甜食制造机制造诸如软冰淇淋或奶昔（shakes）的冷冻甜食。

背景技术
[0002] 图19是从侧表面示出常规冷冻甜食制造机的示意剖视图。图20是说明用于常规冷冻甜食制造机的材料供应阀的结构的剖视图。图21是用于常规冷冻甜食制造机的材料供应阀的横向剖视图。
[0004] 在本领域中，这种“液体类冷冻甜食材料”称为“混合料”，并且这种“材料供应阀”称为“混合阀”。
[0005] 材料罐1在其底部具有材料引入路径1a。材料引入路径1a连接到筒部2，且材料供应阀3安装到材料引入路径1a上。此外，在材料罐1的底部的底表面上设置有叶轮（未示出），该叶轮由马达旋转以便搅拌材料罐1中的材料M。
[0006] 此外，筒部2包括：螺旋形搅拌器2a，该螺旋形搅拌器用来搅拌和混合供应到筒部2的内部的材料M和空气；马达2c，该马达用来旋转和驱动搅拌器2a；和抽取部分2b，该抽取部分用来抽取筒部2中制造的冷冻甜食S。通过打开抽取部分2b中的抽取路径并且通过搅拌器旋转来抽取筒部2中的冷冻甜食S。
[0007] 冷却部分是包括蒸发器、压缩机、冷凝器、膨胀阀等的制冷循环机构，所述蒸发器、压缩机、冷凝器、膨胀阀通过管路按上述顺序彼此连接成环状。
[0008] 材料供应阀3具有由外筒4和内筒5构成的双重结构，如图19至图21所示。
[0009] 外筒4连接到材料罐1中的材料引入路径1a并且在材料罐1的底部附近具有通孔4a。
[0010] 从外筒4的上开口插入到外筒4中的内筒5在其下部具有多个（图中为两个）具有不同尺寸的通孔5a和5b，通孔5a和5b可以与外筒4中的通孔4a连通。通孔4a和通孔5a或5b形成连通孔。
[0011] 此外，外筒4在其上端具有定位切口槽4b和4c，并且内筒5也在其上端具有与前述切口槽4b或4c接合的突出件5c。此外，材料供应阀3在其上端敞开并且也用作空气引入管以便从其开口将空气与材料M一起引入筒部分2。
[0012] 具有前述结构的材料供应阀3能够改变外筒4和内筒5之间的位置关系。通过使
得将各个筒的内部和外部互相连通的通孔4a、5a和5b在位置上彼此重叠或彼此位移开，可以打开或关闭连通孔。

【0013】此外，可选择内筒5中的较小通孔5a和较大通孔5b中的一个，并且可以使该选择的通孔与外筒4中的通孔4a重叠，这使得彼此连通材料罐1和简部分2的连通孔的尺寸可调节。通过调节连通孔的尺寸，即使材料罐1中的材料M的液位L的高度改变时，流入简部分2的材料M的流率也可被调节到预定范围内，由此将简部分2中的材料M和空气之间的混合比率调节到预定比率内。

【0014】当从筒部分2抽取冷冻甜食S时，来自材料罐1的空气和材料M通过材料供应阀3被供应到筒部分2。

【0015】就是说，当连通孔的尺寸保持在恒定值时，随着材料罐1中的材料M的液位L下降，由材料M施加在连通孔上的压力减小，结果，通过连通孔流入简部分2的材料M的流率减小。除此之外，被引入简部分2的材料供应阀3中的材料M的量减小，这使得简部分2中空气对材料M的混合比率高于预定比率，由此使冷冻甜食S的质量偏离容许范围。因此，随着材料液位L的下降，可以调节连通孔的尺寸使其逐渐增加，这可以调节供应到简部分2的材料M的量以防止该量发生较大变化。这可以将筒部分2中的材料M和空气之间的混合比率保持在预定范围内。

发明内容

【0016】然而，常规冷冻甜食制造机需要操作者根据需要监视材料的液位高度，然后根据材料M的液位L选择内筒中的具有适当尺寸的连通孔并手动操作内筒。就是说，需要操作者调节从材料罐1供应到简部分2的材料的量。因此，需要这种复杂的操作，并且由于操作者用他或她的手接近材料，因此也需要注意卫生方面的问题。

【0017】此外，如上所述，连通孔的尺寸随着材料液位L下降而阶梯式地增加，以便将筒2中的材料M和空气之间的混合比率保持在预定比率内。然而，存在以下问题。

【0018】如图22所示，直到连通孔的尺寸改变到下一个尺寸，流入材料供应阀3的材料M的流率才随着材料罐1中的材料M的液位L下降而减小。这逐渐增加了供应到简部分2的空气对材料M的混合比率。此外，改变连通孔的尺寸的时间选择根据操作者而变化。因此，如图22中的虚线所示，如果时间选择变化较大，则存在材料M和空气之间的混合比率偏离预定比率的情况。

【0019】如上所述，由于连通孔的尺寸阶梯式地改变并且连通孔的尺寸由操作者手动地改变，因此常规冷冻甜食制造机具有供应到简部分2的材料M和空气之间的混合比率不稳定的问题。

【0020】本发明考虑到上述问题而作出，并且本发明的目的在于提供一种用于冷冻甜食制造机的材料供应装置，该材料供应装置可以消除操作者根据材料的液位高度来操作阀的必要性，简化操作并且改善卫生方面，并且也提供一种包括该材料供应装置的冷冻甜食制造机。

【0021】因此，根据本发明，提供了一种用于冷冻甜食制造机的材料供应装置，该材料供应装置设置在冷冻甜食制造机中，所述冷冻甜食制造机包括：材料罐，所述材料罐用于存储液体类冷冻甜食材料的材料罐；筒部分，所述筒部分用于将冷冻甜食材料与空气一起搅拌并
冷却成冷冻甜食；和冷却部分，所述冷却部分用于冷却材料罐和筒部分；并且所述材料供应装置适于调节从材料罐供应到筒部分的冷冻甜食材料的量，所述材料供应装置包括：液位探测装置，所述液位探测装置用于自动探测材料罐中的冷冻甜食材料的液位；供应量调节装置，所述供应量调节装置用于结合探测到的液位的高度来调节供应到筒部分的冷冻甜食材料的量和空气引入装置，所述空气引入装置用于将空气引入所述筒部分；其中所述液位探测装置是在材料罐中冷冻甜食材料的液位上的浮动物，并且所述供应量调节装置包括双筒部分和位移传递装置，所述双筒部分包括具有第一通孔的外筒部分和具有能够与第一通孔连通的第二通孔的内筒部分，并且内筒部分相对于外筒部分旋转；所述位移传递装置用于将浮动件的向上和向下位移传递到双筒部分，以使外筒部分和内筒部分相对彼此旋转，以便改变由第一通孔和第二通孔的彼此重叠部分形成的连通孔的尺寸，从而调节供应到筒部分的材料的量。

此外，根据本发明的另一方面，提供了一种冷冻甜食制造机，该冷冻甜食制造机包括：材料罐，所述材料罐用于存储液体类冷冻甜食材料；筒部分，所述筒部分用于将冷冻甜食材料与空气一起搅拌并冷却成冷冻甜食；冷却部分，该冷却部分用于冷却材料罐和筒部分，和用于冷冻甜食制造机的材料供应装置。

根据本发明，材料罐中的材料的液位的高度由液位探测装置探测，并且可结合探测到的液位的高度通过供应量调节装置来调节供应到筒部分的材料的量，这使得筒部分中的材料和空气之间的混合比率能自动调节到预定范围内，因此制出希望的冷冻甜食。这可以消除用来监视材料的液位高度和根据该液位高度通过调节供应到筒部分的材料的量的操作者的复杂操作的必要性。此外，操作者不需要将他或她的手插入材料罐来操作阀，因而改善了卫生方面。

此外，液位探测装置是浮动件，该浮动件浮在材料罐中的材料液位上，并且可以以简单的结构和较低的成本制造而不使用电装置。

供应量调节装置可以形成为用于将材料罐中的浮动件的位移通过位移传递装置而机械地传递到双筒部分以使外筒部分和内筒部分相对彼此旋转的机构。也就是说，不使用诸如马达的动力源来使外筒部分和内筒部分相对彼此旋转，随着材料罐中的材料液位高度的变化而运动的浮动件的运动可用作动力。这使得供应量调节装置能够以较低的成本制造。

液位探测装置和供应量调节装置可用于下文将描述的各种类型的实施方式。

附图说明

图 1 是从侧表面示出本发明的冷冻甜食制造机的第一实施方式的示意性结构的剖视图。

图 2 是表示第一实施方式的材料供应装置的侧视图，该材料供应装置通过组装和利用液位探测装置、供应量调节装置和空气引入装置而形成。

图 3 是表示处于分解状态的根据第一实施方式的材料供应装置的分解图。

图 4(a) 和图 4(b) 是表示根据第一实施方式的连通孔具有较小的尺寸的状态的说明视图。

图 5(a) 和图 5(b) 是表示根据第一实施方式的连通孔具有较大的尺寸的状态的说明视图。
明视图。
[0032] 图 6 是表示根据第一实施方式的浮动件已行下降的状态的侧视图。
[0033] 图 7(a) 和图 7(b) 是表示材料被供应到根据第一实施方式的筒部状态的说明图。
[0034] 图 8(a) 和图 8(b) 是表示材料和空气被供应到根据第一实施方式的筒部状态的说明图。
[0035] 图 9 是说明材料筒内材料液位的下降和供应到筒部的空气和材料的量之间的混合比率之间的关系的视图。
[0036] 图 10(a) 至图 10(f) 是表示第一实施方式的第一修改实施例的视图。
[0037] 图 11 是表示第一实施方式的第二修改实施例的视图。
[0038] 图 12 是表示第一实施方式的第三修改实施例的视图。
[0039] 图 13 是表示根据第一实施方式的第三修改实施例的材料供应装置的侧视图。
[0040] 图 14 是表示根据第二实施方式的材料供应装置的说明图。
[0041] 图 15 是说明以下事实的概念视图：在第二实施方式中，如果销下降，则使得第一通孔旋转，从而逐渐增加连通孔的尺寸。
[0042] 图 16 是表示根据第三实施方式的材料供应装置的说明图。
[0043] 图 17 是表示根据第五实施方式的材料供应装置的说明图。
[0044] 图 18 是说明以下事实的概念视图：在第五实施方式中，当销下降时，使得外筒部分旋转，从而逐渐增加连通孔的尺寸。
[0045] 图 19 是从侧表面示出常规冷冻甜食制造机的示意性结构的剖视图。
[0046] 图 20 是说明图 19 的材料供应阀的结构的剖视图。
[0047] 图 21 是图 19 的材料供应阀的横向剖视图。
[0048] 图 22 是说明材料筒中材料液位的下降和有关供应到筒部的材料和空气的量的空气混合比率之间的关系的视图。

具体实施方式
[0049] 根据本发明的用于冷冻甜食制造机的材料供应装置是一种设置在冷冻甜食制造机中的材料供应装置，所述冷冻甜食制造机包括：材料罐，所述材料罐用于存储液体类冷冻甜食材料；筒部分，所述筒部分用于将冷冻甜食材料与空气一起搅拌并冷却成冷冻甜食；和冷却部分，所述冷却部分用于冷却冷冻甜食材料和筒部分，并且材料供应装置也适于调节从材料罐供应到筒部分的冷冻甜食材料的量，所述材料供应装置包括：液位探测装置，所述液位探测装置用于自动探测材料罐中的冷冻甜食材料的液位；供应量调节装置，所述供应量调节装置用于结合探测到的液位的高度来调节供应到筒部分的冷冻甜食材料的量；和空气引入装置，所述空气引入装置用于将空气引入所述筒部分；其中所述液位探测装置是浮在材料罐中冷冻甜食材料的液位上的浮动件，并且所述供应量调节装置包括：双筒单元，所述双筒单元包括具有第一通孔的外筒部分和具有能够与第一通孔连通的第二通孔的内筒部分，并且内筒部分相对于外筒部分旋转，和位移传递装置，所述位移传递装置用于将浮动件的向上和向下位移传递到双筒单元，以使外筒部分和内筒部分相对彼此旋转，以改变由前述第一通孔和第二通孔的彼此重叠的部分形成的连通孔的尺寸，因而调节供应到筒部分
的材料的量。

【0050】根据本发明的冷冻甜食制造机是一种如下的冷冻甜食制造机，该冷冻甜食制造机在冷却状态下以预定比率内的混合比率搅拌且混合材料和空气，用来制造散布有细腻气泡的冷冻甜食，诸如软冰淇淋和称为奶昔的饮料。

【0051】下面，将参考附图描述根据本发明的用于冷冻甜食制造机的材料供应装置和包括该材料供应装置的冷冻甜食制造机的实施方式。然而，本发明并不受以下实施方式的限制。

【0052】(第一实施方式)

【0053】图1是从侧表面示出根据本发明的材料供应装置和使用该材料供应装置的冷冻甜食制造机的第一实施方式的示意性结构的剖视图。冷冻甜食制造机包括：材料罐10，该材料罐10存储液体冷冻甜食材料M；筒部分20，所述筒部分20将冷冻甜食材料M和空气一起搅拌并冷却成冷冻甜食；冷却部分，该冷却部分冷却材料罐10和筒部分20；和材料供应装置F1，所述材料供应装置F1调节从材料罐10供应到筒部分20的冷冻甜食材料M的量。

【0054】材料罐10具有由盖件10a打开和关闭的上开口部分，并且在其底部还具有材料引入路径11，并且材料引入路径11连接到筒部分20。此外，在材料罐10的底部的底表面上设置有叶轮(未示出)，该叶轮由马达旋转以便搅拌材料罐10中的材料M。

【0055】此外，筒部分20具有：具有螺旋形搅拌叶片的搅拌器21，该搅拌器21用来搅拌和混合材料M和供应到筒部分20内部的空气；马达22，该马达22用来旋转和驱动搅拌器21；和抽取部分23，该抽取部分23用来抽取在筒部分20中制造的冷冻甜食S。筒部分20中的冷冻甜食S通过在搅拌器21旋转的状态下打开抽取部分23的抽取路径而被抽取。

【0056】在本实施方式中，冷却部分不限于某特定结构，该冷却部分是制冷循环机构，该制冷循环机构由例如放置在材料罐10和筒部分20的周围的蒸发器、压缩机、冷凝器、膨胀阀等等构成。

【0057】此外，材料罐10、筒20和冷却部分的结构可以与参考图19描述的常规冷冻甜食制造机的材料罐、筒和冷却部分的结构相同。

【0058】放置在材料罐10中的材料供应装置F1包括：液位探测装置40，所述液位探测装置40用以自动探测材料罐10中的材料M的液位L；供应量调节装置50，所述供应量调节装置50用于选择探测到的液位的高度来调节供应到筒部分20的材料M的量；和空气引入装置60，所述空气引入装置60用来将空气引入所述筒部分20。

【0059】图2是表示材料供应装置F1的侧视图，该材料供应装置F1通过组装和利用液位探测装置40、供应量调节装置50和空气引入装置60而形成。图3是表示处于分解状态的材料供应装置F1的分解图。

【0060】如图1至图3所示，空气引入装置60是竖直管61，该竖直管61的上部具有外部空气引入口61a，并且该竖直管61从外部空气引入口61a延伸穿过材料罐10以与筒部分20的内部连通。该竖直管61的下端插入到材料罐10的材料引入路径11。竖直管61具有凹入的外周槽61b，以便将O型环9装配到该外周槽61b上，并且该竖直管61在该外周槽61b的略微上方还具有要与材料罐10的底部接触的外凸缘61c。O型环9防止材料罐10中的材料M通过除下文所述的连通孔以外的部分而被供应到筒部分20。

【0061】液位探测装置40是浮在材料罐10中的材料液位L上的浮动件41。浮动件41具有带有孔的环的形状，竖直管61通过该孔插入，并且浮动件41由具有圆形容器形状的浮动
件主体 42 和盖件 43 构成，盖件 43 装配在浮动件主体 42 中以覆盖该浮动件主体 42 的上开口部分。

[0062] 此外，浮动件主体 42 的中心部分具有筒部分 42a，以便穿过该筒部分 42a 插入竖直管 61，并且浮动件主体 42 的底部还具有沿着横穿筒部分 42a 的方向形成的凹入部分 42b。[0063] 此外，在凹入部分 42b 的上方的浮动件主体 42 的外周表面上的位置处沿着相同轴线设置有一对第一水平轴 156a。该对第一水平轴 156a 是用于把将在下面描述的连杆机构 155 第一臂 157 安装浮动件 41 以使其能够摆动的轴。

[0064] 此外，盖件 43 具有短的筒部分 43a 以及外周壁部分 43b。短的筒部分 43a 使得竖直管 61 能够穿过盖件 43 的中心插入并且装配到筒部分 42a。外周壁部分 43b 沿着盖件 43 的外周缘竖直设置并且装配到浮动件主体 42 的外周上边缘。

[0065] 供应量调节装置 50 构造成包括双筒部分 51 和作为位移传递装置的连杆机构 155，如图 1 和图 2 所示。

[0066] 如图 1 至图 3 所示，双筒部分 51 具有：具有第二通孔 53a 的内筒部分 53；和具有第一通孔 52a 的外筒部分 52。该第一通孔 52a 能够与第二通孔 53a 连通。外筒部分 52 装配在内筒部分 53 中，以使得内筒部分 52 能够相对于内筒部分 53 旋转。

[0067] 该双筒部分 51 的一个端部敞开并且与竖直管 61 连通，并且该双筒部分 51 在材料罐 10 的底部附近水平地延伸。此外，双筒部分 51 的另一端部封闭。

[0068] 更具体地，内筒部分 53 的一个端部与竖直管 61 连通并连接，并且内筒部分 53 的另一端部敞开。此外，内筒部分 53 的下部设置有第二通孔 53a，并且内筒部分 53 的上部的外周表面上还沿其轴向设置有突起 53b。

[0069] 在另一方面，外筒部分 52 从其敞开的端部装配在内筒部分 53 中，并且外筒部分 52 的另一端部封闭，并且第二水平轴 156b 设置成与外筒部分 52 的封闭的端部形成为一体。

[0070] 第二水平轴 156b 是用于把将在下文描述的连杆机构 155 的第二臂 158 安装到外筒部分 52 的轴，并且该轴也用于把从连杆机构 155 传递的力量传递到外筒部分 52。因此，第二水平轴 156b 不是圆柱形轴，而是成形为具有例如等腰三角形柱的形状。

[0071] 此外，外筒部分 52 的下部具有第一通孔 52a，该第一通孔 52a 能够与内筒部分 53 中的第二通孔 53a 连通，并且外筒部分 52 在其与第一通孔 52a 相对的内筒表面还具有凹入部分 52b。凹入部分 52b 用于容纳内筒部分 53 上的前述突起 53b，并且在周向的预定范围内形成。

[0072] 在具有前述结构的双筒部分 51 中，外筒部分 52 装配到内筒部分 53 的外侧，使得外筒部分 52 能够相对于内筒部分 53 旋转且两者之间基本上没有间隙。

[0073] 此外，在竖直管 61 的与第二水平轴 156b 相对的那侧，支撑杆 159 从竖直管 61 的外周表面水平地延伸。此外，在支撑杆 159 的端部设置有次第二水平轴 1156b，该次第二水平轴 1156b 的轴线与第二水平轴 156b 的轴线垂直。该次第二水平轴 1156b 是用于支撑连杆机构 155 的第二臂 158 使其可摆动的轴。

[0074] 图 4 是表示根据本实施方式的连通孔具有较小的尺寸的状态的说明视图，图 5 是表示根据本实施方式的连通孔具有较大的尺寸的状态的说明视图。

[0075] 如图 4 所示，内筒部分 53 中的第二通孔 53a 形成为具有沿轴向延伸的较长孔的形状，而外筒部分 52 中的第一通孔 52a 形成为具有基本上三角形的形状。具有前述结构的双
筒部分 51 具有连通孔 51a，该连通孔 51a 由彼此成叠的外筒部分 52 中的第一通孔 52a 和内筒部分 53 中的第二通孔 53a 构成。

【0076】 借助该双筒部分 51，外筒部分 52 从图 4 所示的状态沿箭头 A 的方向旋转，这移动了第一通孔 52a 的位置，由此改变了前述连通孔 51a 的尺寸，如图 5 所示。此时，通过沿周向的外筒部分 52 的凹入部分 52b 的端表面在内筒部分 53 的突起 53b 上，限制第一通孔 52a 相对第二通孔 53a 的运动。

【0077】 在材料罐 L 中的材料 M 的液位 L 如图 1 所示处于较高位置的状态下，第一通孔 52a 和第二通孔 53a 之间的位置关系使得连通孔 51a 的尺寸较小，如图 4 所示。在另一方面，液位已下降到材料罐的底部附近的状态下，连通孔 51a 具有较大尺寸，如图 5 所示。

【0078】 因此，考虑第二通孔 53a 的形状和尺寸以及内筒部分 53 中的突起 53b 的宽度，形成第一通孔 52a 的位置、第一通孔 52a 的形状和尺寸以及外筒部分 52 中的凹入部分 52b 的尺寸等等，使得根据材料液位 L 的高度的第一通孔 52a 和第二通孔 53a 之间的位置关系和连通孔 51a 的尺寸与上文所述的情况一致。

【0079】 如图 1 至图 3 所示，在供应量调节装置 50 中，作为位移传递装置的连杆机构 155 将根据材料液位 L 的高度的浮动件 1 的向上或向下运动转换为外筒部分 52 和内筒部分 53 相对彼此的绕水平轴线的旋转运动，该旋转运动改变双筒部分 51 中的第一通孔 51a 的尺寸（图 4 和图 5），如上文所述。也就是说，连杆机构 155 构造成如上文所述地改变连通孔 51a 的尺寸，以便调节供应到筒部分 20 的材料 M 的量。

【0080】 如图 3 所示，连杆机构 155 包括：第一臂 157，该第一臂 157 在其相对的端部具有枢轴形接部分；和第二臂 158，该第二臂 158 在其相对的端部具有枢轴形接部分。第一臂 157 的一个端部的枢轴形接部分和第二臂 158 的一个端部的枢轴形接部分彼此枢轴形接以使得第一臂 157 和第二臂 158 能够摆动。第一臂 157 的另一端部的枢轴形接部分联接于第一水平轴 156a，使得第一臂 157 能够摆动。第二臂 158 的另一端部的枢轴形接部分联接于第二水平轴 156b，使得外筒部分 52 能够旋转。

【0081】 第一臂 157 形成为具有基本上 Y 形的形状，该第一臂 157 的一个端部具有分叉部分 157a，并且该第一臂 157 的另一端部还具有垂直地弯曲的弯曲部分 157b。在分叉部分 157a 的相对的端部形成有作为枢轴形接部分的轴孔 157c，该轴孔使得所述一对第一水平轴 156a 能够可旋转地穿过该轴孔而插入。在弯曲部分 157b 的端部，轴形枢轴形接部分 156c 与其一体地形成。

【0082】 第二臂 158 也形成成为具有基本上为 Y 形的形状，类似于第一臂 157，第二臂 158 的一个端部具有分叉部分 158a，并且在与分叉部分 158a 相对的端部还具有对平行线性部分 158b。

【0083】 在分叉部分 158a 的一个端部形成有作为枢轴形接部分的三角形孔 158c，该三角形孔 158c 要装配到具有等腰三角形柱的形状的第二水平轴 156b，并且在分叉部分 158a 的另一端部还形成有作为枢轴形接部分的轴孔 158d，该轴孔 158d 使次第二水平轴 1156b 能够穿过该轴孔而插入，从而次第二水平轴 1156b 能够相对于分叉部分 158a 的另一端部旋转。分叉部分 158a 防止外筒部分 52 被拉至内筒部分 53。

【0084】 此外，在该对平行线性部分 158b 的端部形成有孔形枢轴形接部分 158e，该孔形枢轴形接部分 158e 使得轴形枢轴形接部分 156 能够穿过该孔形枢轴形接部分 158e 而插入。
使得轴心枢轴联接部分 156c 能够相对于平行线性部分 158b 的端部旋转，从而这平行线性部分 158b 以可枢转地支撑第一臂 157 的枢轴联接部分 156c 的方式将该枢轴联接部分 156c 夹在中间。此外，在设置有轴枢联接部分 158e 的该对平行线性部分 158b 的端部的相对表面中，形成有一对锥形槽 158f，该锥形槽 158f 的深度随沿垂直于平行线性部分 158b 的向上方向离开枢轴联接部分 158e 的距离增加而逐渐增加。在将枢轴联接部分 156c 安装到枢轴联接部分 158e 的过程中，当枢轴联接部分 156c 的轴末端相应于的锥形槽 158f 运动时，该对平行线性部分 158b 之间的间隙由于其弹性变形而增加，这使得枢轴联接部分 156c 能够容易地插入枢轴联接部分 158e。

在具有前述结构的连杆机构 155 中，在如图 1 和图 2 所示的材料罐 10 填充的材料 M 达到其上部并且因此浮动件 41 存在于上部位置的状态下，第一 157 和第二臂 158 在彼此联接的同时呈现 L 形弯曲的形态。

当材料罐 10 中的材料 M 被供应到筒部分 20 时，液位 L 逐渐降低。在此过程中，浮动件 41 如图 6 所示地逐渐下降，这使得第二臂 158 相对于第二水平轴 156b 向下（沿箭头 A 的方向）摆动，从而使得第一臂 157 和第二臂 158 彼此接近。

由于第二臂 158 向下摆动，因此联接到第二臂 158 的双筒部分 51 的外筒部分 52 沿箭头 A 的方向旋转，这使得第一通孔 52a 相对于第二通孔 53a 从图 4 的状态运动到图 5 的状态，从而逐渐增加连通孔 51a 的尺寸。此外，图 6 是表示在本实施方式中浮动件已经下降的状态的侧视图。

此外，如图 6 所示，连杆机构 155 的弯曲部分 157b 防止第一臂 157 和第二臂 158 彼此干涉，并且此外，凹入部分 42b 提供空隙以便防止浮动件 41 的底部接触双筒部分 51，这允许浮动件 41 下降到材料罐 10 的底部附近或下降到其底部。

因此，对于本实施方式，可增加第二臂 158 的摆动行程，与浮动件 41 具有平坦的底表面的情况相比，这增加了外筒部分 52 可旋转的范围。结果，对于本实施方式，可以保证第一通孔 52a 相对于第二通孔 53a 的较长运动行程，因此使得连通孔 51a 的尺寸随着液位的下降而缓地改变而不是突然地改变。

此外，由于浮动件 41 可下降到材料罐 10 的底部附近或下降到其底表面，并且此外，连通孔 51a 放置在双筒部分 51 的下部，因此即使材料罐 10 中的液位 L 下降到底部附近，也可以将材料供应到筒部分 20。

具有前述结构的材料供应装置 F1 可由诸如聚缩醛的塑料或诸如不锈钢的金属制造。

下面将描述根据第一实施方式的冷冻甜食制造机中的材料罐 10 供应材料到筒部分 20 的状态。

图 7 是表示材料被供应到根据第一实施方式的筒部分的状态的说明图，并且图 8 是表示材料和空气被供应到根据第一实施方式的筒部分的状态的说明图。

在图 1 所示的冷冻甜食制造机中，筒部分 20 存储通过在冷冻状态下以预定范围内（例如在软冰淇淋的情况下，材料和空气的体积比大约为 7 ：3）的混合比率搅拌和混合材料和空气而制成的冷冻甜食 S。此外，在图 1 所示的冷冻甜食制造机中，在材料罐 10 存储材料 M 到其上限高度附近的状态下，材料 M 已经流入竖直管 61 达到与材料罐 10 中的液位 L 的高度相同的高度，如图 7(a) 所示。此时，在由在双筒部 51 中彼此重叠的外筒部分 52 中
的第一通孔 52a 和内筒部分 53 中的第二通孔 53a 构成的连接通孔 51a 具有较小的尺寸，如图4所示。

[0095] 通过打开抽吸部分 23 中的抽吸路径并且通过筒部分 20 中的搅拌器旋转，抽吸预定量的冷冻甜食 S。此时，如图7(b) 中示出的，在筒部分 20 中产生负压，该负压使得竖直管 61 中的材料 M 由于筒部分 20 中的负压的抽吸效应而首先流入筒部分 20。同时，竖直管 61 中的材料 M 的液位 L1 下降。

[0096] 随着竖直管 61 中的材料 M 的液位 L1 下降，由于材料罐 10 中的材料 M 的液位 L 的高度和竖直管 61 中的材料 M 的液位 L1 的高度之间的差以及材料 M 的比重等等的关系，材料罐 10 中的材料 M 施加在通孔 51a 上的压力逐渐变得大于双筒部分 51 中的材料 M 施加在通孔 51a 上的压力。结果，材料罐 10 中的材料 M 逐渐流入双筒部分 61 的通孔 51a 中（参见图 8(a)）。

[0097] 当进一步抽取冷冻甜食 S 时，竖直管 61 中的材料 M 的液位 L1 下降以达到筒部分 20 的内部。同时，如图 8(a) 所示，通过通孔 51a 从材料罐 10 流出的材料 M 和竖直管 61 中的空气流入筒部分 20，然后，材料 M 和空气在冷却状态下在筒部分 20 中被搅拌和混合，从而形成冷冻甜食。此时，流入筒部分 20 的空气通过与材料 M 混合而被引入冷冻甜食。

[0098] 然后，在冷冻甜食 S 的抽取完成之后，如图 8(b) 所示，材料 M 和空气不再流入筒部分 20，并且材料流入竖直管 61 直到其高度达到材料罐 10 中的材料 M 的液位 L。在冷冻甜食的抽取期间，在材料罐 10 中的材料 M 的液位 L 下降时，图 1 中所示的浮动件 41 也下降。随着浮动件 41 下降，外筒部分 52 由于前述连杆机构 155 的运转而旋转对应于第二臂 158 的摆动量的量，这连续地增加了通孔 51a 的尺寸。

[0100] 因此，即使材料罐 10 中的材料 M 的液位 L 连续下降并且因此材料罐 10 中的材料 M 施加在通孔 51a 上的压力逐渐减小，也能够防止流过通孔 51a 的材料 M 的流率偏离预定范围。结果，防止了流入筒部分 20 的材料 M 和空气之间的混合比率偏离预定范围。

[0101] 如上所述，多次从筒部分 20 抽取预定量的冷冻甜食 S，这使得材料罐 10 中的材料 M 的液位 L 的高度逐渐下降。在此期间，在冷冻甜食 S 的抽取停止时，材料流入竖直管 61 直到其高度达到上文中参考图 8(b) 所述的材料罐 10 中的材料 M 的液位 L 的高度，但是，每次抽取冷冻甜食 S 时，竖直管 61 中的材料 M 的液位 L1 的高度都减小。也就是说，每次抽取冷冻甜食 S 时，在抽取冷冻甜食时被引入筒部分 20 的竖直管 61 中的材料 M 的量都减小。

[0102] 根据本发明的材料供应装置的设计考虑了竖直管 61 中的材料 M 的量。也就是说，在材料供应装置中，通孔 51a 的尺寸及其改变的速率设计成，即使每当开始抽取冷冻甜食 S 时，在不执行冷冻甜食 S 的抽取时的材料罐 10 中的材料 M 的液位 L 的高度和竖直管 61 中的材料液位 L1 的高度发生了变化，材料 M 和空气之间的混合比率也落在预定范围内。这实现了将流入双筒部分 51 的材料 M 的流率自动控制为使得要被供应到筒部分 20 的材料 M 和空气处于适当比率的流率。

[0103] 通过根据本发明的材料供应装置和使用该材料供应装置的冷冻甜食制造机，如上所述，材料罐 10 中的材料 M 的量随着冷冻甜食 S 被逐渐抽取而减小，并且当材料液位 L 下降到低于通孔 51a 时，材料 M 不再被供应到筒部分 20。因此，优选地，在液位 L 在通孔 51a 上方时，如果双筒部分 51 暴露到液位 L 上方的空气中时，操作者向材料罐 10 补充材料 M。此外，当材料罐 10 补充材料 M 时，浮动件 41 上升，并且同时，供应量调节装置 50 执行与
浮动件 41 下降时所执行的操作相反的操作，使得连通孔 51a 从如图 5 所示的具有较大尺寸的状态恢复到如图 4 所示的具有较小尺寸的状态。

[0104] 此外，通常在这样的冷冻甜食制造机中，冷却部分可以根据加热循环（该加热循环是制冷循环的逆过程）来运作，用于以一定温度来加热材料罐 10 和轴部分 20，以便对材料 M 和冷冻甜食 S 进行热巴氏杀菌，该温度不会引起材料 M 的变质。此时，例如，可以将上端具有外挡圈的屏蔽管插入到竖直管 61 中，以防止竖直管 61 和轴部部分 51 之间的通连。进行这种屏蔽，从而即使由于轴部分 20 中的冷冻甜食 S 融化且分离为材料 M 和空气而在轴部部分 20 中形成空间，也能够防止材料罐 10 中的材料 M 通过连通孔 51a 流入轴部分 20。

[0105] 通过根据第一实施方式的具有前述结构的材料供装置 F1，可以提供以下优点。

[0106] （效果 1-1）

[0107] 通过浮动件 41 探测材料罐 10 中的材料 M 的液位 L 的高度，并且连杆机构 155 结合探测到的液位 L 的高度来运转。此外，外筒部分 52 相对于内筒部分 53 旋转以调节连通孔 51a 的尺寸，由此调节被供应到轴部分 20 的材料 M 的量。从而能够将轴部分 20 中的材料 M 和空气之间的混合比率自动调节到预定范围内，从而能够制造希望的冷冻甜食。

[0108] 除此之外，还提供了以下优点：不需要监视材料 M 的液位 L 的高度和根据液位 L 的高度通过阀手动调节供应到轴部分 20 的材料 M 的量等操作者的复杂操作。此外，由于操作者不需要将他或她的手插入材料罐 10 来操作阀，由此还提供了在卫生方面有所改善的优点。

[0109] 此外，如图 9 所示，连通孔的尺寸随着材料罐 10 中的材料 M 的液位 L 降低而自动且连续地增加，这可以稳定流入轴部部分 51 的材料 M 的流率。这防止了供应到轴部分 20 的材料 M 和空气之间的混合比率偏离预定范围。此外，在图 9 中，为了方便描述，代表混合比率的图线被指定为表示恒定比率的直线，毫无疑问，只要该图线落在预定范围内，该图线可以不是直线。

[0110] （效果 1-2）

[0111] 此外，液位探测装置是浮动件 41，该浮动件浮在材料罐 10 中的材料液位 L 上，并且可以以简单的结构和较低的成本来制造而不使用电装置。

[0112] 此外，这里使用的供应量调节装置是一种机构，该机构用于将材料罐 10 中的浮动件 41 的位移通过位移传递装置机械地传递到轴部部分 52，以使外筒部分 52 和内筒部分 53 相对彼此旋转。而不使用诸如马达等驱动源来使外筒部分 52 和内筒部分 53 相对彼此旋转。也就是说，供应量调节装置可由一个能够利用随着材料罐 10 中的材料液位 L 的高度的改变而运动的浮动件 41 的运动作为动力源的机构构成。因此，供应量调节装置可以以简单的结构和较低的成本来制造而不使用电装置。

[0113] （效果 1-3）

[0114] 此外，位移传递装置是连杆机构 155，因此能够将浮动件 41 的向上或向下位移平稳地转换为旋转力并且当然地将传递到外筒部分 52。

[0115] 此外，由于竖直管 61 插在浮动件 41 的孔中，因此防止浮动件 41 在材料液位 L 上自由浮动，这可以将第一水平轴 156a 保持在基本上恰好位于第二水平轴 156b 的上方的位置。从而连杆机构 155 的运转能够使得外筒部分 52 以高的精度旋转对应于材料液位 L 的向上或向下的位移的量。
[0116] （效果 1-4）
[0117] 由于使用竖直管 61 作为空气引入装置，因此可以不必提供单独的装置来将空气
引入筒部分 20，从而简化了材料供应装置 F1 的结构。
[0118] （效果 1-5）
[0119] 由于连通孔 51a 设置在双筒部分 51 的下部中，因此即使材料罐 10 中的材料的液
位 l. 降低到底部附近，也可以稳定地将材料供应到筒部分。
[0120] 可以对本第一实施方式作出以下修改。
[0121] （第一实施方式的第一修改实施例）
[0122] 图 10 为表示第一实施方式的第一修改实施例的视图。例如，根据第一实施方式的
双筒部分中的第一通孔和第二通孔的形状可改变为如图 10(a) 至图 10(f) 所示的形状。
[0123] 图 10(a) 示出了外筒部分 152 中的第一通孔 152a 和内筒部分 153 中的第二通孔
153a 具有相同的等腰三角形形状，并且各个三角形形状沿相同的方向放置的情况。而且，除
了等腰三角形以外，各个连通孔的形状可适当改变为正三角形、直角三角形等形状。
[0124] 图 10(b) 示出了外筒部分 252 中的第一通孔 252a 和内筒部分 253 中的第二通孔
253a 具有相同的等腰三角形形状，并且各个三角形形状沿相反的方向放置的情况。
[0125] 图 10(c) 示出了外筒部分 352 中的第一通孔 352a 和内筒部分 353 中的第二通孔
353a 具有相同的沿周向延伸的长椭圆形形状的情况。而且，除了长椭圆形以外，各个通孔的
形状可适当改变为椭圆形、液滴形等形状。
[0126] 图 10(d) 示出了外筒部分 452 中的第一通孔 452a 和内筒部分 453 中的第二通孔
453a 具有相同的正方形形状的情况。而且，除了正方形以外，各个连通孔的形状可适当改变
为矩形、菱形、五边形、六边形等形状。
[0127] 图 10(e) 示出了外筒部分 552 中的第一通孔 552a 和内筒部分 553 中的第二通孔
553a 具有相同的圆形形状的情况。
[0128] 图 10(f) 示出了外筒部分 652 中的第一通孔 652a 和内筒部分 653 中的第二通孔
653a 为相同的沿周向延伸并且沿筒轴线方向布置的两个较长的孔的情况。而且，各个通孔
的数量可适当改变为三个或更多个，并且各个通孔的尺寸也可制成彼此不同。
[0129] 此外，虽然未示出，但是第一通孔和第二通孔可以设置在双筒部分的端部表面中。
在这种情况下，内筒部分的端部非常类似于外筒部分，并且第一和第二通孔围绕第二水平轴
形成在内筒部分和外筒部分的封闭的端壁中。除了如上文所述的三角形、矩形、圆形等形
状以外，第一通孔和第二通孔的形状可以为弧形。
[0130] 此外，第一通孔和第二通孔的形状和组合不限于上述这些，并且也可以组合具有
不同形状的第一通孔和第二通孔和不同数量的第一通孔和第二通孔。
[0131] （第一实施方式的第二修改实施例）
[0132] 图 11 是表示第一实施方式的第二修改实施例的视图。根据第一实施方式的连杆
机构的第二水平轴 156b 可以布置在双筒部分的内筒部分 753 中，如图 11 所示。在这种情
况下，具有敞开的相对端部的外筒部分 752 在其一个端部与竖直管连接且连接。此外，内筒部
分 753 的一个端部通过端壁 753a 封闭，该端壁 753a 的外直径大于外筒部分 752 的内直径，
并且第二水平轴 156b 与该端壁 753a 一体地形成。此外，内筒部分 753 的敞开的端部插入
并安装在外筒部分 752 中。此外，第一通孔 752a 和第二通孔 753a 形成在外筒部分 752 和
内筒部分 753 的下部中。此外，优选地，在外筒部分 752 的开口部分附近和在内筒部分 753 的端壁 753a 附近设置有如参考图 3 所描述的凹入部分和突起，以便限制内筒部分 753 的旋转范围。

[0133]（第一实施方式的第五修改实施例）

[0134]图 12 是表示第一实施方式的第三修改实施例的视图。图 13 是表示根据第一实施方式的第三修改实施例的材料供应装置的侧视图。

[0135]如图 12 所示，连杆机构可以沿坚直方向设置有多个成对的第一水平轴 156a。由此，可以从位于不同坚直位置的多个成对的第一水平轴 156a 中选择一对第一水平轴 156a，并且第一臂 157 可以枢轴联接到该对第一水平轴 156a 上，如图 13 所示，这使得轴孔 157c（见图 3）相对于浮动件 41 的高度和连杆机构 155 中的第一臂 157 和第二臂 158 之间的安装角度能够改变。

[0136]结果，对于相同的浮动件 41 的高度位置，双筒部分 51 中的连通孔的尺寸可以与选定的第一水平轴 156a 的位置一起改变。例如，当此处使用的材料 M 具有较高的粘度时，可以采取的对策是，使连通孔的尺寸略微大与当材料 M 粘度较低时的尺寸。除此之外，在选定的第一水平轴 156a 的所述位置下，可以改变连通孔的尺寸相对于浮动件的下降量的变化。

[0137]（第一实施方式的第五修改实施例）

[0138]在图 1、图 2 等图中示出的浮动件 41 仅需要具有足以防止浮动件 41 水平地脱离竖直管 61 的孔。因此，除了球形以外，浮动件 41 可以为 C 形、马蹄形等。而且，浮动件 41 可以由诸如泡沫塑料的泡沫件制成。

[0139]此外，浮在材料液位 L 上的浮动件 41 上所施加的浮力由浮动件 41 的重量，浮动件 41 中的空气的量等等决定。因此，通过在浮动件 41 上安装浮力调节重物或者将水引入浮动件主体 42 的方法，可以提供与前述第三修改实施例相同的效果，即相对于材料液位 L 改变第一水平轴 156a 的位置的效果。

[0140]（第一实施方式的第五修改实施例）

[0141]虽然已经参考图 1 至图 3 和图 6 描述了连杆机构 155 中的第一臂 157 设置有弯曲部分 157b 的情况，但该弯曲部分可以设置在第二臂 158 上或者该弯曲部分可以同时设置在第一臂 157 和第二臂 158 上。而且，除了带直角的折叠形状以外，该弯曲部分可以为弯曲的形状。

[0142]（第一实施方式的第六修改实施例）

[0143]虽然已经参考图 1 至图 3 和图 6 描述了采用第一臂 157 和第二臂 158 作为连杆机构的情况，但是可以采用单个臂。在采用这种单个臂的情况下，该单个臂沿纵向在其相对的端部设置有轴孔 157c 和轴孔 158c 和 158d，并且这些相对端部之间的长度基本上等于从第三水平轴 156c 到轴孔 157c 的距离和从轴孔 158e 和 158d 到轴孔 158e 的距离的总和。在这种情况下，必要的是，当浮动件 41 下降时，在防止浮动件 41 靠在竖直管 61 滑动的同时，浮动件 41 与竖直管 61 分离。因此，浮动件 41 不需要具有筒部分 42a 和凹入部分 42b。

[0144]（第二实施方式）

[0145]第二实施方式与第一实施方式的类似之处在于，冷冻甜食制造机中的材料供应装置包括液位探测装置、供应量调节装置和空气引入装置，但是第二实施方式与第一实施方式的不同之处在于它们的结构。下文中，将描述第二实施方式，主要关于与第一实施方式的
差异。
[0146] 图 14 是表示根据第二实施方式的材料供应装置 F2 的说明图，图 15 是用来说明以下事实的概念视图：如果销 85 下降，则引起第一通孔 81a 旋转，从而逐渐增加连通孔 86 的尺寸。
[0147] 在材料供应装置 F2 中，液位探测装置是环形的浮动件 241，该浮动件 241 浮在材料罐 10 中的冷冻甜食材料的液位上。浮动件 241 具有平坦的底部并且没有如根据第一实施方式的浮动件 41 的凹入部分 42b（参见图 1 和图 3）。
[0148] 供应量调节装置包括双简部分 80 和位移传递装置，如图 14 和图 15 所示。
[0149] 双简部分 80 由具有第一通孔 81a 的外筒部分 81 和具有能够连通到第一通孔 81a 的第二通孔 82a 的内筒部分 82 构成，其中内筒部分 82 可相对于外筒部分 81 旋转。连通孔 86 由第一通孔 81a 和第二通孔 82a 的彼此重叠的部分形成。
[0150] 位移传递装置将浮动件 241 的向上或向下位移传递到双简部分 80 以使外筒部分 81 和内筒部分 82 相对彼此旋转，这将改变前述连通孔 86 的尺寸，因此调节供应到筒部分的材料的量。
[0151] 此外，图 14 表示外筒部分 81 已经被拉出内筒部分 82 的状态，其中内筒部分 82 的下端以液体密封的状态连接到材料罐 10 的底部中的材料引入路径。
[0152] 更具体地，外筒部分 81 是从材料罐 10 的底部延伸到其上部的竖直管。内筒部分 82 也是竖直管，该内筒部分 82 的下端具有要与材料罐 10 的底部接触的外凸缘，并且在外凸缘的下方也具有凹入的外周槽，以便在该外周槽中装配 0 形环，从而当插入材料罐 10 的材料引入路径中时进行密封。
[0153] 通过将内筒部分 82 插入到外筒部分 81 中面组装成双简部分 80，该双筒部分 80 的上部具有外部空气引入口，并且沿竖直方向安装在材料罐 10 中。在安装在材料罐 10 中的双筒部分 80 中，外部空气引入口通过内筒部分 82 连通且连接到筒部分的内部，因此，双筒部分 80 也用作空气引入装置。
[0154] 此外，根据第二实施方式的位移传递装置是运动方向转换机构，该运动方向转换机构将根据材料拌位的高度的浮动件 241 的向上或向下运动转换为外筒部分 81 和内筒部分 82 相对彼此的旋转运动。
[0155] 运动方向转换机构包括：在外筒部分 81 和内筒部分 82 的各周壁中形成的不同引导狭缝；和由金属或硬塑料制成的销 85，该销 85 安装到浮动件 241 上并且插在各引导狭缝中。
[0156] 在外筒部分 81 中形成的引导狭缝是例如沿筒纵向延伸的纵向引导狭缝并且也用作前述第一通孔 81a。在内筒部分 82 中形成的引导狭缝 84 是例如螺旋形引导狭缝并且也用作前述第二通孔 82a。即，第一通孔 81a 和第二通孔 82a 也具有引导销 85 的运动方向的功能。
[0157] 通过在具有布置在浮动件 241 的底表面上的 L 形部件的安装部分 87 中形成螺纹孔，并且还通过将具有外螺纹的销 85 以可拆卸的方式拧到该螺纹孔，可以将销 85 安装到浮动件 241 上。由此，在双简部分 80 插入到浮动件 241 的孔中之后，销 85 可以安装到安装部分 87 上并且插入第一通孔 81a 和第二通孔 82a，以便组装它们。
[0158] 此外，如图 14 和图 15 所示，第二通孔 82a 具有沿向下方向逐渐增加的宽度。如果
说明书

销 85 随着浮动件 241 的下降而一起沿着第一通孔 81a 和第二通孔 82a 下降，这将使外筒部分 81 和内筒部分 82 相对彼此旋转。这将逐渐增加由第一通孔 81a 和第二通孔 82a 的重叠部分构成的连通孔 86 的尺寸，其中销 85 插入该重叠部分。

【0159】在第二实施方式中，如图 14 和图 15 所示。内筒部 82 固定到材料罐 10 上，因此，随着浮动件 241 的下降，外筒部分 81 与安装销 85 的浮动件 241 一起旋转。随着外筒部分 81 的旋转，连通孔 86 的位置下降，并且连通孔 86 的尺寸也逐渐增加。

【0160】参考图 1、图 14 和图 15 以便描述，在具有前述结构的第二实施方式中，即使材料液位 L 的高度改变，从材料罐 10 中的材料液位 L 到存在于销 85 的位置处的连通孔 86 的距离也保持在恒定值。因此，即使材料液位 L 的高度改变，连通孔 86 也存在于从连通孔 86 到材料液位 L 附近的距离基本上保持恒定的位置。

【0161】当根据第二实施方式的冷冻甜食制造机抽取冷冻甜食 S 时，双筒部分 80 中的材料 M 首先流入筒部分 20 中的空间。然后，当双筒部分 80 中的材料液位 L 下降到连通孔 86 附近时，材料罐 10 中的材料 M 开始通过连通孔 86 流入双筒部分 80。当材料引入路径 11 中的材料液位 L 达到筒部分 20 内时，空气也被供应到筒部分 20 内，并且材料 M 和空气在筒部分 20 中被搅拌和冷却。然后，当完成冷冻甜食 S 的抽取时，连续流入双筒部分 80 的材料 M 的液位 L 上升到与材料罐 10 中的材料液位 L 的高度相同的高度。

【0162】在此期间，随着材料罐 10 中的材料液位 L 的下降，销 85 在旋转的同时沿着螺旋形第二通孔 82a 和直的第一通孔 81a 下降，这逐渐增加了连通孔 86 的尺寸，因而逐渐增加材料罐 10 中的材料 M 流入双筒部分 80 的流率。

【0163】在第二实施方式中，从材料罐 10 中的材料液位 L 到连通孔 86 的距离几乎不改变。因此，即使材料罐 10 中的材料液位 L 的高度改变时，由材料罐 10 中的材料 M 施加在连通孔 86 上的压力也基本上保持在恒定值。然而，双筒部分 80 中的材料 M 的量根据材料罐 10 中的材料液位 L 的高度而变化。即，每次抽取冷冻甜食 S 并且因此材料罐 10 中的材料液位 L 的高度下降时，流入筒部分 20 的双筒部分 80 中的材料 M 的量减小。

【0164】为了补偿双筒部分 80 中的材料 M 的减小，在第二实施方式中，第二通孔 82a 的宽度沿向下方向逐渐增加，这增加了材料罐 10 中的材料 M 流入双筒部分 80 的流率，因此将供应到筒部分 20 的材料 M 和空气之间的混合比率保持在预定范围内。

【0165】因此，在第二实施方式中，作为螺旋形引导狭缝的第二通孔 82a 的宽度的增加率、第一通孔 81a 的宽度、销 85 的直径等等的设计考虑以下事实：供应到筒部分 20 的材料 M 和空气之间的混合比率应当保持在预定范围内。

【0166】对于第二实施方式，除了第一实施方式的前述效果 1-1 和 1-2 外，还可以提供以下效果。

【0167】（效果 2-1）

【0168】双筒部分 80 也用作空气引入装置。除此之外，位移传递装置由安装到浮动件 241 上的销 85 和形成在外筒部分 81 和内筒部分 82 的外周壁中的不同引导狭缝构成。因此，可以以较小数量的部件、简单的结构和较低的成本制造材料供应装置。

【0169】可以对该第二实施方式作出以下变化。

【0170】（第二实施方式的第一修改实施例）

【0171】在具有用于将销 85 安装到浮动件 241 的 L 形部件的安装部分 87 中，可以竖直地
形成有多个螺纹孔，这使得安装销 85 的位置的高度能够改变。

[0172] 由此，对于相同的浮动件 241 的高度位置，双筒部分 80 中的连通孔 86 的尺寸可以与选定的安装销 85 的位置的高度一起改变。例如，在材料 M 具有较高的粘度的情况下，可以采取的对策是，使连通孔 86 的尺寸略大于其粘度较低时的尺寸。

[0173] 而且，如在第一实施方式的第四修改实施例中那样，重物或水可被引入浮动件 241 以便调节浮力，因此改变销 85 相对于材料罐 10 中的材料液位 L 的位置。

[0174] （第二实施方式的第二修改实施例）

[0175] 销可以由盘簧或由橡胶或弹性塑料制成的弹性件形成并且可以固定到浮动件 241 上。由此，在将浮动件 241 组装到双筒部分 80 上和将浮动件 241 从双筒部分 80 拆卸下来的过过程中，销可以弹性地变形因此不会干涉组装和拆卸过程。

[0176] 此外，在这种情况下，可以在外筒部分 81 中从第一通孔 81a 偏离 180 度的相对位置上形成与第一通孔 81a 相同的另一通孔，而且可以在内筒部分 82 中从第二通孔 82a 偏离 180 度的相对位置上形成与第二通孔 82a 相同的另一通孔，此外，可以在彼此偏离 180 度的相对位置上设置一对销。由此，可以减少施加在单个销上的载荷。而且，作为在内筒部分 82 上添加通孔的替代方案，可以采用在内筒部分 82 的周壁中形成的非贯通的销引导槽。此外，这种结构可以应用于金属或硬塑料制成的销。

[0177] （第二实施方式的第三修改实施例）

[0178] 内筒部分 82 中的第二通孔 82a 可以具有恒定的宽度，而外筒部分 81 中的第一通孔 81a 可以具有沿向下方向逐渐增加的宽度。

[0179] 此外，第二通孔 82a 和第一通孔 81a 都可以具有沿向下方向逐渐增加的宽度。

[0180] （第三实施方式）

[0181] 图 16 是表示根据第三实施方式的材料供应装置 F3 的说明图。

[0182] 第三实施方式与第二实施方式的区别在于，也用作引导狭缝的螺旋形第一通孔 181a 形成在双筒部分 180 中的外筒部分 181 中，并且也用作引导狭缝的直的第二通孔 182a 形成在内筒部分 182 中，但其它结构与第二实施方式的结构基本相类似。此外，在图 16 中，与第二实施方式的部件相同的部件具有相同的附图符号表示。

[0183] 在这种情况下，如图 16 所示，第一通孔 181a 和第二通孔 182a 中的至少一个形成为具有沿向下方向逐渐增加的宽度。

[0184] 在根据第三实施方式的材料供应装置 F3 中，销 85 沿着内筒部分 182 中的第二通孔 182a 直线下降，而与销 85 接触且靠着销 85 滑动的第一通孔 181a 的边缘部分受到沿周向的力，从而使得外筒部分 181 旋转。此外，类似于第二实施方式中的情况，其中要插入销 85 的连通孔 86（见图 15）的尺寸逐渐增加，由此逐渐增加从材料罐 10 流入双筒部分 180 的材料 M 的流率。

[0185] 对于第三实施方式，可以提供与第一实施方式的前述效果 1-1 和 1-2 以及第二实施方式的前述效果 2-1 相同的效果。

[0186] （第三实施方式的修改实施例）

[0187] 第二实施方式的第一、第二和第三修改实施例可以应用于第三实施方式。

[0188] （第四实施方式）

[0189] 第四实施方式与第二和第三实施方式类似，除了用于将双筒部分连接到材料罐的
材料引入路径（未示出）的结构与图 14 和图 16 中示出的第二和第三实施方式的相应结构不同。

[0190] 即，使用第二实施方式（类似于第三实施方式）作为例子来描述，在第二实施方式中，双筒部分 80 中的内筒部分 82 连接且固定到材料罐 10 中的材料引导路径 11 以旋转外筒部分 81，在第四实施方式中，外筒部分 81 连接且固定到材料罐 10 中的材料引导路径 11 以旋转内筒部分 82。

[0191] 在第四实施方式中，在外筒部分 81 的下部中形成有要与材料罐 10 的底部接触的外凸缘和用于 0 形环的凹入的外周槽。此外，形成在外筒部分和内筒部分中的各设通孔 81a 和 82a。用于将销 85 安装到浮动件 241 上的齿轮等等与第二实施方式的结构类似。

[0192] 对于第四实施方式，可以提供与第一实施方式的述述效果 1-1 和 1-2 以及第二实施方式的述述效果 2-1 相同的效果。

[0193] 第二实施方式的第一和第三修改实施例可应用于第四实施方式。

[0194] （第五实施方式）

[0195] 图 17 是表示根据第五实施方式的材料供应装置 F5 的说明图。

[0196] 第五实施方式的结构类似于包括浮动件 241 和销 85 的第二和第三实施方式，但与第二和第三实施方式的区别在于：用于将随着材料液位 L 的高度变化而进行的浮动件 241 的向上或向下运动转化为外筒部分 281 和内筒部分 282 相对彼此的旋转运动的运动方向转换机构；以及双筒部分 280 中的第一通孔 281a 和第二通孔 282a。此外，在图 17 中，与第二和第三实施方式的部件相同的部件由相同的附图标记表示。

[0197] 下面，要说明与第二和第三实施方式的区别来描述第五实施方式。

[0198] 根据第五实施方式的运动方向转换机构包括：沿轴向形成在外筒部分 281 的外周壁中的纵向引导狭缝 283；对角地形成在内筒部分 282 的外周壁中的对角引导狭缝 285；和可拆卸地安装在浮动件 241 上的销 185。

[0199] 销 185 插在纵向引导狭缝 283 中，并且该销 185 的末端能够沿对角引导狭缝 285 滑动。

[0200] 在双筒部分 280 中，对角引导狭缝 285 形成在内筒部分 282 中的周向范围是外筒部分 281 和内筒部分 282 相对彼此旋转的范围。

[0201] 此外，在外筒部分 281 的外周壁的下部中，在纵向引导狭缝 283 不存在的位置，第一通孔 281a 形成为具有例如沿周向方向延长的长孔形状。在内筒部分 282 的外周壁的下部中，在对角引导狭缝 285 不存在的位置，第二通孔 282a 形成为具有例如沿周向方向较长的长孔形状。第一通孔 281a 和第二通孔 282a 设置在外筒部分 281 和内筒部分 282 相对彼此的旋转范围内处于相同高度并且也彼此重叠的位置。

[0202] 图 18 是说明以下事实的概念视图：在第五实施方式中，如果销 185 下降，则使得外筒部分 281 旋转，因此逐渐增加连通孔 286 的尺寸。

[0203] 对于如图 17 和图 18 所示的具有前述结构的第五实施方式，当销 185 沿着浮动件 241 的下降而沿着纵向引导狭缝 283 和对角引导狭缝 285 下降时，销 185 沿周向推动纵向引导狭缝 283 的侧边缘，因此使得外筒部分 281 相对于内筒部分 282 旋转。

[0204] 因此，第一通孔 281a 相对于第二通孔 282a 沿周向运动，由此逐渐增加由彼此重叠的第一通孔 281a 和第二通孔 282a 形成的连通孔 286 的尺寸。这增加了材料罐中的材料流。
入双筒部分 80 的流率。

[0205] 对于第五实施方式，可以提供与第一实施方式的前述效果 1-1 和 1-2 以及第二实施方式的前述效果 2-1 相同的效果。

[0206] （第六实施方式）

[0207] 在图 17 所示的第五实施方式中，双筒部分 280 中的内筒部分 282 连接且固定到材料罐 10 中的材料引入路径 11 上以旋转外筒部分 281，但在第六实施方式中，外筒部分 281 连接且固定到材料罐 10 中的材料引入路径 11 上以旋转内筒部分 282（未示出）。

[0208] 在第六实施方式中，在外筒部分 281 的下部中形成有与材料罐 10 的底部接触的外凸缘和用于 O 形环的凹入的外周槽。此外，分别形成在外筒部分 281 和内筒部分 282 中的引导狭缝以及用于将销安装到浮动件上的结构等等与第五实施方式的中的相应结构类似。

[0209] 对于第六实施方式，可以提供与第一实施方式的前述效果 1-1 和 1-2 以及第二实施方式的前述效果 2-1 相同的效果。

[0210] （第五和第六实施方式的修改实施例）

[0211] 第二实施方式的第一和第二修改实施例可应用于第五和第六实施方式。

[0212] 此外，根据第五和第六实施方式的第一通孔和第二通孔的形状和组合可以如第一实施方案的第一修改实施例中那样进行适当改变。

[0213] 而且，在第五和第六实施方式中，对角引导狭缝可以形成在外筒部分中，而纵向引导狭缝可以形成在内筒部分中。
图 7(a)
图 7(b)
图8(a)
图 8(b)
图 17
图 22

材料罐中材料液位的高度

混合比率

抽取的数量

混合比率(空气的量/材料的量)