wo 2015/142755 A1 [N 00O 0O 00O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/142755 Al

24 September 2015 (24.09.2015) WIPO | PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 21/53 (2013.01) GO6F 21/56 (2013.01) kind of national protection available). AE, AG, AL, AM,
. o . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2015/020807 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
16 March 2015 (16.03.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
. MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
(25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
(26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(30) Priority Data: . L
61/954 373 17 March 2014 (17.03.2014) Us (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(71) Applicant: PROOFPOINT, INC. [US/US]; Proofpoint, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
Inc., 892 Ross Drive, Sunnyvale, California 94089 (US). TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
(72) Inventors: HUANG, Wayne; Proofpoint, Inc., 892 Ross TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
Drive, Sunnyvale, California 94089 (US). IDLE, M. DK, EE, ES, FL, R, GB, GR, HR, HU, IE, IS, IT, LT, LU,
James; Proofpoint, Inc., 892 Ross Drive, Sunnyvale, Cali- LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, S, SK,
fornia ’94089 (US) ’ ” ’ ’ SM, TR), OAPI (BF, BI, CF, CG, CIL, CM, GA, GN, GQ,

: GW, KM, ML, MR, NE, SN, TD, TG).
(74) Agents: DRAPINSKI, James et al.; Carr & Ferrell LLP, .
Published:

120 Constitution Drive, Menlo Park, California 94025
(US).

with international search report (Art. 21(3))

(54) Title: BEHAVIOR PROFILING FOR MALWARE DETECTION

Applying a domain specific language to a target
605

Tracking a set of temporal sequences and events of the target
610

Determining presence of one or more markers within the set of
temporal sequences and events that arc indicative of malware
615

Identifying the target as being associated with malware based on
the one or more markers
620

FIG. 6

(57) Abstract: Provided herein are systems and methods for behavior profiling of targets to determine malware presence. The meth-
od includes, in various embodiments, applying a domain specific language to a target, observing a set of temporal sequences and
events of the target; determining presence of markers within the set of temporal sequences and events indicative of malware, and
identifying the target as being associated with malware based on the markers. In some embodiments, a malware detection system is
provided for creating a behavioral sandbox environment where a target is inspected for malware. The behavioral sandbox environ-
ment can include forensic collectors. Each of the collectors may be configured to apply a domain specific language to a target; ob-
serve a set of temporal sequences and events of the target; determine presence of markers within the set of temporal sequences and
events indicative of malware; and detect malware presence based on the markers.

WO 2015/142755 PCT/US2015/020807

BEHAVIOR PROFILING FOR MALWARE DETECTION

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims the benefit of U.S. Provisional Application Serial No.
61/954,373, filed March 17, 2014, which is hereby incorporated by reference herein in its

entirety, including all references cited therein.

FIELD OF THE INVENTION
[0002] The present technology pertains to data security, and more specifically, but
not by limitation, to systems and methods that employ behavior profiling for malware
detection. In some embodiments, the systems and methods use domain specific
languages in order to profile the behavior of a domain such as a document, executable
tile, a Uniform Resource Locator (URL), or other target. The behaviors are comprised of
at least temporal sequences of events that, when analyzed, will yield evidence that can

be analyzed to detect the presence of malware.

WO 2015/142755 PCT/US2015/020807

SUMMARY
[0003] According to various embodiments, the present technology is directed to a
method comprising: (a) applying a domain specific language to a target, the domain
specific language utilized to detect malware associated with the target; (b) observing a
set of temporal sequences and events of the target; (c) determining presence of one or
more markers within the set of temporal sequences and events that are indicative of
malware; and (d) identifying the target as being associated with malware based on the
one or more markers.
[0004] According to some embodiments, the present technology is directed to a
system comprising: (a) a processor; and (b) a memory for storing executable
instructions, the instructions being execute by the processor to create a behavioral
sandbox environment where a target is inspected for malware, the behavioral sandbox
environment comprises (c) a plurality of forensic collectors that are each configured to
(i) apply a domain specific language to a target; (ii) observe a set of temporal sequences
and events of the target; (iii) determine presence of one or more markers within the set
of temporal sequences and events that are indicative of malware; and (iv) detect
malware presence based on the one or more markers.
[0005] The present technology, according to some embodiments, is directed to a
non-transitory computer-readable medium having embodied thereon instructions being
executable by at least one processor to perform a method for providing malware
detection, the method comprising: (a) retrieving a URL, the retrieving comprising
contacting a server to receive a home page code; (b) performing a preliminary
determination to determine if the home page code includes a malicious signature; (c) in
response to the home page code being deemed clean such that the preliminary
determination is that no malicious signature is included on the home page code, parsing
the home page code and translating the home page code onto a web page; (d) rendering

text and links to external databases for images on the web page; (e) allocating memory

WO 2015/142755 PCT/US2015/020807

to perform the rendering of the images; (f) generating an event log of all items rendered
on the web page; (g) analyzing a chronological order of events in the event log to
identify behavior patterns among the events; (h) comparing identified behavior patterns
to predetermined rules; and (i) identitying the URL as including malware if a match is
found between the identified behavior patterns and the predetermined rules.

[0006] The present technology, according to some embodiments, is also directed
to a method comprising: (a) applying a domain specific language to a target, the domain
specific language utilized to detect malware associated with the target; (b) observing a
set of temporal sequences and events of the target; (c) determining presence of one or
more markers within the set of temporal sequences and events that are indicative of
malware; and (d) identifying the target as being associated with malware based on the

one or more markers.

WO 2015/142755 PCT/US2015/020807

BRIEF DESCRIPTION OF THE DRAWINGS
[0007] The accompanying drawings, where like reference numerals refer to identical
or functionally similar elements throughout the separate views, together with the
detailed description below, are incorporated in and form part of the specification, and
serve to further illustrate embodiments of concepts that include the claimed disclosure,
and explain various principles and advantages of those embodiments.
[0008] The methods and systems disclosed herein have been represented by
appropriate conventional symbols in the drawings, showing only those specific details
that are pertinent to understanding the embodiments of the present disclosure so as not
to obscure the disclosure with details that will be readily apparent to those of ordinary
skill in the art having the benefit of the description herein.
[0009] FIG.1is a schematic diagram of an example computing environment for
practicing aspects of the present technology.
[0010] FIG. 2 illustrates an example malware analysis of an entry URL and anchor
URLs associated with www.mysql.com.
[0011] FIG. 3 illustrates an example resource URLs created from www.mysql.com.
[0012] FIG. 4 illustrates a granular view of a resource URL having a plurality of sub-
scenes (e.g., events).
[0013] FIG. 5 is an example web Ul comprising a graph illustrating temporal events
in an advertisement delivery process caused by a user clicking an advertisement tag.
[0014] FIG. 6 is a flowchart of an example sandboxing method of the present
technology.
[0015] FIG. 7 is a schematic diagram of an example computing system that can be

used to practice aspects of the present technology.

WO 2015/142755 PCT/US2015/020807

DETAILED DESCRIPTION
[0016] As more and more services and transactions are provided via the World Wide
Web, users are more likely to click on a link or a document that contains malware.
Email is a primary attack vector in Advanced Persistent Threats (APT), and is often
used to deliver malicious URLs and documents to victims.
[0017] Current technologies, such as anti-virus software programs and network
tirewalls, started out aiming at detecting viruses on the personal computer (PC).
However, as the PC has always had very limited computation power, the antivirus
software’s goal has been to "detect as much as possible” under constrained resources.
[0018] This concept rooted even deeper into the antivirus industry as the Internet
boomed and antivirus vendors started to integrate with network devices - firewalls,
gateways, email servers, and so forth. Since speed is critical and computation power is
limited on an appliance, antivirus technology went further down the road of signature-
based pattern matching.
[0019] However, signature-based pattern matching does not always detect the
malware before it infects a computer. For malware detection that relies solely on
signature-based pattern matching, it is possible that a threat is not perceived, because
the signature appears to be legitimate.
[0020] Some malware uses an exploit-based malware infection (EBMI) process,
which is a widely used attack vector in Advanced Persistent Threats. In EBMI, the
victim is infected by opening a malicious document, often referred to as a document
exploit. Common document exploit formats used in EBMI include web pages, PDF
tiles, Word™ files, Powerpoint™ files, Excel™ files, and Flash™ files embedded inside
one of the previous types.
[0021] During EBMI phase one, a victim opens a document via a document renderer,
defined as a software program that displays the document. Common (document,

renderer) pairs include (web page, web browser), (web page containing flash, web

WO 2015/142755 PCT/US2015/020807

browser with flash support or plug-in), (web page containing Java™ applets, web
browser with applet support / JRE), (PDF document, PDF reader), (Word document, MS
Word™), (Excel document, MS Excel™), (Powerpoint™ document, MS Powerpoint™),
and so forth.

[0022] The document in this instance, being malicious, is referred to as a document
exploit. It contains mechanisms to exploit vulnerabilities either directly inside the
renderer itself, or inside one of the renderer’s installed plug-ins (e.g., Flash™, Java™
applet, Real Player™, and so forth.). If the exploited vulnerability is unknown to the
renderer provider (vendor), then it is called a zero-day exploit.

[0023] The exploitation code (exploit) may be implemented using scripting
languages (e.g., Javascript™, Actionscript™, VBScript™, VBA™). Scripting languages
provide the functionality needed to exploit the targeted vulnerability. Since scripting
languages are interpreted languages, it is very easy to obfuscate the exploitation code,
thus making detection difficult. Common (renderer, scripting language) pairs include
(web browsers, Javascript™), (Flash™, Actionscript™), (PDF, JScript™), (Office
documents, VBA macros). Note that Javascript™, Actionscript™, and JScript™ are all
ECMA-based scripting languages.

[0024] The following attacks may leverage an EBMI process: (a) drive-by download
attacks, (b) malvertising attacks, (c) URL-based email attacks, and (d) attachment-based
email attacks. In (a) (b) and (c), the browser may load a web page served by an exploit
pack, which serves polymorphic web-page exploits. The server that hosts the exploit
pack is called the exploit server, and the involved URLs are called the exploit URLs.
[0025] When a document exploit is opened, and upon successful exploitation, a
dropper is often created on disk and executed. The dropper can either be the actual
malware, or it can be just a tiny executable whose sole job is to download the actual

malware over the Internet.

WO 2015/142755 PCT/US2015/020807

[0026] In order to attempt to permanently infect a compromised system, the
malware will often (a) move itself to permanent disk locations; and (b) modify system
configuration (e.g., registry settings) so as to be auto executed upon every system
startup. In order to hide itself from security checkers and users, the malware will often
rename itself to seemingly legitimate filenames or arrange for alternative, less
detectable and higher-privileged methods of execution, for example, using process
injection.

[0027] Once permanently installed, the malware will typically start to (a) connect
back to the command-and-control (CNC) server, or to (b) send the collected information
back to the attacker.

[0028] Accordingly, it would be desirable to provide methods and systems to detect
malware before it is downloaded onto a user’s computer. Furthermore, it would be
desirable to receive detailed forensics reports on exactly what occurred during the two
EBMI phases. These and other advantages of the present technology will be described
with reference to the collective drawings (FIGS. 1-7).

[0029] FIG. 1 illustrates an example environment 100 in which aspects of the present
technology can be implemented. The environment 100 comprises at least one client
terminal 105, such as an end user computing system utilized by an end user to interact
with a malware detection system, hereinafter (“system 110”). In some embodiments,
the client terminal 105 and system 110 are communicatively coupled with one another
via a network 115.

[0030] The network 115 may include private or public communication channels such
as the Internet. Suitable networks may include, or interface with, any one or more of a
local intranet, a PAN (Personal Area Network), a LAN (Local Area Network), a WAN
(Wide Area Network), a MAN (Metropolitan Area Network), a virtual private network
(VPN), a storage area network (SAN), a frame relay connection, an Advanced

Intelligent Network (AIN) connection, a synchronous optical network (SONET)

WO 2015/142755 PCT/US2015/020807

connection, a digital T1, T3, E1 or E3 line, Digital Data Service (DDS) connection, a
Digital Subscriber Line connection, an Ethernet connection, an ISDN (Integrated
Services Digital Network) line, a dial-up port such as a V.90, V.34 or V.34bis analog
modem connection, a cable modem, an ATM (Asynchronous Transfer Mode)
connection, or an FDDI (Fiber Distributed Data Interface) or CDDI (Copper Distributed
Data Interface) connection. Furthermore, communications may also include links to
any of a variety of wireless networks; including WAP (Wireless Application Protocol),
GPRS (General Packet Radio Service), GSM (Global System for Mobile
Communication), CDMA (Code Division Multiple Access) or TDMA (Time Division
Multiple Access), cellular phone networks, GPS (Global Positioning System), CDPD
(cellular digital packet data), RIM (Research in Motion, Limited) duplex paging
network, Bluetooth radio, or an IEEE 802.11-based radio frequency network.

[0031] According to some embodiments, the system 110 may include a cloud-based
computing environment for threat analysis and detection system using data analytics.
In general, a cloud-based computing environment is a resource that typically combines
the computational power of a large grouping of processors and/or combines the storage
capacity of a large grouping of computer memories or storage devices. For example,
systems that provide a cloud resource may be utilized exclusively by their owners; or
such systems may be accessible to outside users who deploy applications within the
computing infrastructure to obtain the benefit of large computational or storage
resources.

[0032] The cloud may be formed, for example, by a network of web servers such as
web servers with each web server (or at least a plurality thereof) providing processor
and/or storage resources. These servers may manage workloads provided by multiple
users (e.g., cloud resource customers or other users). Typically, each user places

workload demands upon the cloud that vary in real-time, sometimes dramatically. The

WO 2015/142755 PCT/US2015/020807

nature and extent of these variations typically depend on the type of business
associated with the user.

[0033] The system 110 may be generally described as a particular purpose
computing environment that includes executable instructions that are configured to
provide target behavioral profiling to determine the presence of malware based on
temporal activities and events of a target.

[0034] In general, the system 110 can be used to create and apply threat description
languages to targets, such as targets 120. The targets 120 comprise, for example, web
servers that provide a URL, an entry URL, a document, an executable file, or any other
targeted mentioned herein. Also, a target can be referred to as a suspect when the
target is being analyzed by the system 110.

[0035] A threat description language is referred to herein as a domain specific
language (DSL). In some embodiments, the system 110 is configured to apply a formal
threat description language to a target. In one example, a DSL can be used to describe
and detect malware in HTTP protocol streams, which facilitates malware detection. The
DSL may be used to describe behavior and patterns exhibited within conversations
between HTTP clients including, but not limited to, web browsers and HTTP servers.
Example HTTP servers (e.g., targets) can include Internet web servers. The DSL may be
implemented as a cloud-based software-as-a-service (SaaS) or as part of a hardware
appliance in communication with a network server. Source code inputs to this system
110 may have a unique file format and can comprise source code for the DSL.

[0036] Insome embodiments, a DSL may be a declarative language that is defined
when a user specifies tests that should be performed while analyzing an HTTP
conversation, but does not specify how those tests are run, in what order, or any other

kind of logic flow.

WO 2015/142755 PCT/US2015/020807

[0037] Additionally, a DSL compiler may use source code files that include rule sets
to generate Java™ source code, which may contain logic flow and procedure generated
by internal 'knowledge' encapsulated within the compiler.

[0038] Thus, in some embodiments, the system 110 comprises a DSL compiler
module 125 to generate a set of rule files and compile the same into a collection of Java
files, which in turn may be compiled into a rule engine 150.

[0039] In other embodiments, the rules can be created using other means such as
user creation or another computerized automatic code generator.

[0040] The rule engine 150 may be supported by an external runtime library, which
may also be written in Java™ in various embodiments. Java™ may be advantageous
due to its portability among operating systems and hardware, however, the DSL
compiler module 125 could generate any other procedural based language as output,
including machine code directly, assembly language, C and so forth.

[0041] The generated rule set is intended to be incorporated in one or more other
systems such as a protocol analyzer 135, which assembles network data packets into
their original conversations between client terminal 105 and the target 120, or a
behavioral sandbox environment 130, which uses a rule set to check HTTP
conversations, URLs found to be visited by a program, and other activities or actions.
[0042] Temporality is one of the advantages of various embodiments for describing
and detecting malware. More specifically, the rules of the DSL may be based on
observed temporal sequences and events between a client terminal 105 and a target 120.
For example, if a browser visits a web page before being sent to another (second) web
page, and then a Javascript is found in the second page, the Javascript may be identified
as malware by the system 110.

[0043] Rules may be programmed to identifty malware based on any of: (a) URLs
visited, pages containing certain content; (b) the presence or absence of certain HTTP

headers or their values; (c) the presence of certain Javascripts (or classes of Javascripts);

10

WO 2015/142755 PCT/US2015/020807

and (d) the detection of an attempt to download certain binaries with a known
signature and other markers —just to name a few.

[0044] In one embodiment, a rule of the DSL may detect one or more of these
markers and make decisions about the presence of malware based on the combinations
of markers that are present (or not).

[0045] In some embodiments, a rule of a DSL can also detect entities that are
somewhat like known malware, such as for Javascripts and binary downloads, and so
forth. There can be, for instance, a certain confidence level that something detected is a
variant of another known example malware. For example, in an attempt to disguise
some new variant of a threat programmed in Javascript, malware authors may change
the names of variables and non-useful code, and generally try to obfuscate the code.
The system 110, using a DSL, can detect various such changes and match the original
threat vector with a given probability (calculated from how different the new version of
the threat is from the original.)

[0046] After a set of rules is generated, an HTTP conversation (or other activity) may
be assessed using a rule set of a DSL. In this example, the system 110 examines the
conversations under all rules (or a portion thereof) that the rule set contains. Detected
issues may be evinced to a collector program. In some embodiments, a DSL may not
itself define how these HTTP conversations are captured by the collector program.
Accordingly, a DSL may advantageously be modular, and can be integrated with
anything that can present the DSL with a seemingly valid HTTP conversation.

[0047] Although examples have been outlined above regarding the use of DSLs for
inspecting HTTP conversations, such examples are not to be construed as limiting. A
DSL may be used by the system 110 to inspect a binary or text file, with some parts of
the language being designed to have more relevance than others to the type of

document/file set it is presented with. Moreover, a DSL may be a working

11

WO 2015/142755 PCT/US2015/020807

language/system, which is constantly being enhanced as different threat vectors are
discovered by researchers.

[0048] For example, the DSL can be a module or engine deployed on a network or
onto a specific server or target. As used herein, the terms “module” or “engine” may
also refer to any of an application-specific integrated circuit (“ASIC”), an electronic
circuit, a processor (shared, dedicated, or group) that executes one or more software or
firmware programs, a combinational logic circuit, and/or other suitable components
that provide the described functionality.

[0049] In general, a DSL may provide, relative to a target and its activities, a clear
definition of what to look for, as well as a coherent methodology that can be used by the
system 110 to present the analyzed information so as to facilitate clear understanding
and further use of the information. To realize these two factors, in various
embodiments, the system 110 utilizes a DSL in a forensics reporting methodology
(FRM).

[0050] Users of the system 110 (in some embodiments, an application programming
interface (API) for the DSL) can submit the following types of targets for analysis such
as URLs, a starting URL (e.g., entry point) of an entire website to be crawled and
scanned for malware; advertisement tags; document files; and executable files — just to
name a few.

[0051] The output of system 110 may be zero day, advanced persistent threat
malware forensics, FRM-based reports, and combinations thereof. In the FRM, a target
that is scanned by the system 110 is referred to as a suspect.

[0052] Insome embodiments, the system 110 is configured to provide a forensic
analysis by comparing a behavior analysis of a target and identification of the malware.
At the end of its automated scanning process, the system 110 (using a DSL) may

determine the suspect’s maliciousness, identification, and behaviors of the malware.

12

WO 2015/142755 PCT/US2015/020807

[0053] Determining whether a suspect (e.g., target that is suspected of having
malware) is malicious or benign may be a primary objective of the system 110.
However, determining the identity of the attacker can be difficult when the suspect is
new or has been rarely seen. The system 110 may be used to identify zero-day exploits
and advanced persistent threat (APT) malware. To be sure, with these types of
suspects, determining the identification of the malware or its authors may be ditficult
because these types of malware do not yet have names.

[0054] What is very valuable to victims of malware, however, is having behavioral
knowledge of a suspect. The behavioral knowledge allows administrators to answer
questions such as: “what does it do to the victim?”; “what does it steal?”; “what does it
break?”; “what does it install?”; “where is it trying to connect back to?”; “what
protocols are used?”; and so forth. The exact types of questions that can be answered
by the system 110 depend on the malware itself, such as whether the malware is an
executable file or a URL phishing attack, as well as the behaviors of the malware.
[0055] Such knowledge can aid the victim in their incidence response efforts, as well
as help them understand more about an identity of the attacker. An FRM may be
designed by the system 110, with its forensics reporting focusing much more on
maliciousness and behavior.

[0056] In some embodiments, the system 110 may detect malware and collect
forensic information by letting a suspect execute inside a monitored sandbox, such as
the behavioral sandbox environment 130. Modern malware, and especially the types
used in APT, often incorporates many painstakingly-developed features that
differentiate a benign victim environment (BVE) against a monitored lab environment
(MLE) used to analyze malware behavior, such as a malware sandbox.

[0057] Malware may incorporate both active and passive MLE-detection features.
Malware can actively detect victim environment behavior such as NIC names, special

CPU instructions, registry entries, so forth, that are indicative of MLEs. When malware

13

WO 2015/142755 PCT/US2015/020807

detects that it is executing inside a sandbox, it may terminate and in some cases also
delete itself. This prevents forensics information from being collected.

[0058] Passive detection techniques include for example waiting for a period of time
before actually performing malicious activities. MLEs typically do not wait forever, and
therefore, after letting the suspect execute for a fixed period of time and not observing
any malicious behavior, an MLE can declare a malicious suspect as benign.

[0059] Due to the above-mentioned techniques, the behavioral sandbox environment
130 may first attempt to induce or provoke an attack, in order to study a malware
suspect and observe its behavior. When this is successful and the suspect starts to
perform malicious activities, a “scene” has been generated from a suspect.

[0060] Insummary, opening, rendering and execution of a document or other
suspect within the behavioral sandbox environment 130 may create a scene, which sets
the scope of a forensics investigation effort. A scene can comprise sub-scenes. In one
example, when scanning an entire website, opening the entry URL using a browser
creates the root scene, and subsequently opening up the rest of the website’s pages
creates sub-scenes under the root scene. An example entry URL analysis process is
illustrated in FIG. 2.

[0061] Each scene or sub-scene is comprised of evidence, which includes the
activities and events occurring with respect to a target (e.g., suspect). The behavioral
sandbox environment 130 may utilize multiple forensics collectors 140A-N. For each
scene, the collectors may jointly gather as much evidence as possible. Evidence may be
defined as activities or events that occurred within a scene. By way of example,
evidence can comprise HTTP requests and responses, exploitation efforts (e.g., heap
spraying), file creation and modification, process creation, registry changes, foreign
memory manipulation, as well as other behaviors of malware that can be quantified or
observed. An aspect of the evidence may be the raw data that is collected, for example

the raw HTTP response content. Each scene may have multiple instances of evidence.

14

WO 2015/142755 PCT/US2015/020807

The behavioral sandbox environment 130 can be configured to apply to each instance of
evidence a time stamp. Thus, instances of evidence can be sorted in chronological order
by the system 110.

[0062] Multiple forensics analyzers 145A-N may be run against each evidence
instance’s raw data in some embodiments. These forensics analyzers 145A-N generate
multiple forensics reports for each instance of evidence, each forensics report may
include four elements proofs, exhibits, interpretations, and correlations.

[0063] Proofs may be a predefined set of facts. In various embodiments, the forensic
analyzer is designed to prove the existence of the predefined set of facts within a scene.
Examples of proofs may include the following: (a) "suspicious-or-malicious-scripts”; (b)
"injected-scripts"; (c) "blacklisted-url"; (d) "exploit-pack”; (e) "tds"; (f) "exploit”; (g)
"dropper"; (h) "execute”; (i) "registry-modifications"; (j) "file-modifications"; (k)
"network-activities”; (1) "dns-lookups”; (m) "http-requests"”; (n) "foreign-memory-read”;
(0) "remote-threads-created”; (p) "mutexes-created”; (q) "process-inject” — just to name a
few examples. In one embodiment, proofs are derived based on exhibits.

[0064] An exhibit may be a section of an instance of evidence that has special
meaning and can be used to derive a certain proof. Examples of exhibits may include: a
snippet of malicious code (exhibit) inside an HTTP response (evidence), a certain path
(exhibit) in which a browser is trying to create a file (evidence), or a certain registry key
(exhibit) that a PDF reader is trying to modify (evidence).

[0065] Exhibits are useful because an exhibit explains a reason why a forensics
analyzer is deriving a certain proof based on particular evidence. Sometimes, exhibits
are also extremely useful during incidence response; for example, knowing the exact
malicious snippet that was maliciously injected into a website can be used, in various
embodiments, to help the website owner quickly mitigate the infection. Because the
system 110 may collect fine-grained evidence instances, exhibits may often include each

activity for an instance of evidence.

15

WO 2015/142755 PCT/US2015/020807

[0066] Insome embodiments, a forensics report may have at least one interpretation.
An interpretation may be a judgment that a forensics analyzer is making against a
scene, based on a set of derived proofs. Examples of interpretations may include one or

"o

more of the following: "malicious;" "suspicious;"” and "blacklisted.” In one example, a
forensic analyzer can determine, based on evidence that a target URL has malware
associated with it based on its activities in the behavioral sandbox environment 130.
The forensic analyzer can blacklist the URL based on this knowledge.

[00671 In some embodiments, correlations may be used within a forensics report to
express causal relationships between evidences. Each evidence can have a single causal
evidence, but may have multiple resulting evidences. Therefore, the causal
relationships of an entire scene can be visualized using a tree representation in some
embodiments. An example tree graphical representation is illustrated in FIG. 5, which
is described in greater detail below.

[0068] Insome embodiments, an instance of evidence is analyzed by a plurality of
forensics analyzers 145A-N, each generating one or more forensics reports. Thus, an
instance of evidence may be associated with an aggregated set of exhibits, proofs,
interpretations, and correlations.

[0069] Similarly, each scene can be correlated to multiple evidences. Thus, a scene
will have an aggregated set of proofs and interpretations in various embodiments. For
those targets that require analysis of multiple sub-scenes (e.g., scanning an entire
website), sub-scene reports can be aggregated to form the root scene’s aggregated
report. Aggregated interpretations of a target’s root scene may be used to derive a set
of the target’s interpretations.

[0070] As mentioned above, the present technology can be implemented with the
use of an API. The API used by the system 110 may be accessed by making calls to a
scanning service via HTTPS. The scanning service can include a virtualized

embodiment of the system 110 executing within a cloud-based environment.

16

WO 2015/142755 PCT/US2015/020807

[0071] The API may implement security and authentication via a combination of
secure HTTP (HTTPS), HTTP basic authentication, and {id, password} pairs embedded
in request JavaScript Object Notations (jsons). That is, the scanning service can be
implemented in a service that is separated from the system 110 to prevent system
infection.

[0072] With respect to HTTPS, the scanning service may only be accessible via
HTTPS in some embodiments. With respect to basic authentication, it may be required
for every single HTTPS request, which implies every HTTPS request must be sent with
a base64-encoded authentication string in some embodiments. With respect to the {id,
password} pair inside request jsons, it will be understood that some API calls require
this additional {id, password} pair.

[0073] Because of basic authentication and id and password pair, each user may be
provided with two different {id, password} pairs, one for basic authentication and the
other for the id and password pair. Examples herein will denote the pair used for basic
authentication as Account (“Basic”) and the pair used for an id and password pair as
Account (malware detection API).

[0074] The malware detection API may support the following targets (suspects) for
analysis: URLs; an entry point URL of an entire website to be crawled and scanned for
malware; advertisement tags; document files; and executables. As noted above, a target
may be referred to as a suspect when the target is being analyzed by the system 110.
[0075] The scanning service may implement from scratch its own malware analysis
sandbox. The scanning service may run multiple renderers (e.g., browsers, PDF
readers, MS Office Word, Excel, PowerPoint) on top of its virtualization platform, such
as a virtual machine executing within a cloud. The scanning service may then collect
forensic information and then execute multiple analyzers against the collected data. At
the end of this process, an aggregated FRM (Forensics Reporting Methodology) report

may be returned to the API caller, such as the client terminal 105.

17

WO 2015/142755 PCT/US2015/020807

[0076] Within the aggregated FRM (AFRM) report, the interpretation state judgment
of the subject (the target) may be based on proofs of malicious activities. These proofs
may be derived from exhibits, which comprise those portions of the evidence instances
collected during forensics extraction (see above).

[0077] Evidence contained in the AFRM report may be fully correlated, and
therefore can be used to generate a precise incident traceback. The generated precise
incident traceback may describe in detail the entire dependency chain of an exploit-
based malware infection (EBMI) incident, from the point of malware introduction, to
each involved resources, to the actual point of exploitation, to the location of the
ultimately installed malware binary, to the installation and execution of that malicious
binary, to the harvesting of user data, to the controlling of user environment, to the
connection back to the command and control.

[0078] Certain components of an EBMI process may be downloaded over the
Internet. To avoid detection, exploit kits and malicious traffic distribution systems
(TDS) may implement an Internet Protocol address (IP address) cloaking scheme (also
referred to herein as IP cloaking). “IP addresses” are also referred to herein variously as
“IPs” and similarly an “IP address” is also referred to herein variously as an “IP”.
Examples of IP cloaking comprise, but are not limited to, maintaining a good list of IPs
of security vendors and search engines and tracking recently-visited IPs and serve
malware to each IP only once.

[0079] The system 110 may include an IP randomizer module 160 that is configured
to allow the system 110 to route network traffic via multiple geographic locations and
leverage an extremely large Internet Protocol address (IP address) pool. The IP
randomizer module 160 can also switch IP addresses frequently enough such that the
same IP address is not used for an extended (e.g., predetermined) period of time.

[0080] In some embodiments, the system 110 comprises a static analysis module 155.

The static analysis module 155 may work in tandem with a behavioral analysis module

18

WO 2015/142755 PCT/US2015/020807

(e.g., a behavior-based analysis that may be also used for forensics analysis and
malware detection discussed above). A large volume of malicious samples may be
detected daily. Samples that are detected only by the behavioral analysis module may
be logged and queued for further analysis (e.g., by an automatic analysis module, by a
malware research team, etc.). Static rules (e.g., DSL) may then be developed for these
new samples, which permit the static analysis module 155 to also detect them.

[0081] The static analysis module 155 may be advantageous for those applications
that require a response as quickly as possible. At the same time, static analysis may
offer more robust detection against dormant, inactive (many malware servers are active
only during specific hours), or broken malware, and also against IP cloaking.

[0082] For example, whenever the static analysis module 155 detects a malicious
domain that is registered by an attacker, then even if this domain is not currently
serving malware (e.g., not currently exhibiting suspicious behavior), the malware
detection system may still report a suspicious traceback.

[0083] The system 110 can also execute a hybrid analysis that first uses behavioral
analysis to execute the malware. During execution, the system 110 may collect forensic
evidence (e.g., dynamically generated code and domains involved), and send this data
back to the static analysis module 155.

[0084] The following descriptions relate to the use of the system 110 for analyzing
specific types of targets/suspects.

[0085] Referring now to FIG. 2, one type of suspect is a single web page (a URL) or
an entire website. In order to describe an example of how an example system 110 scans
a URL or website for malware, a summarization of a view of the system 110 is provided.
[0086] In this example, a scan job may start from an entry URL, which can be, for
example, a root URL 202 of a website. One can expand from the entry URL 202 a graph

(see example graph in FIG. 5) by following anchor URLs 204, which are commonly

19

WO 2015/142755 PCT/US2015/020807

referred to as links. This process of building an anchor URL graph from an entry URL
is called crawling.

[00871 In the HTTP model, each page, or HTTP resource, is dereferenced by a URL.
HTTP resources may be linked to each other by anchor URLs, which are HTML anchors
(<a) that link two HTTP resources together. Internally, the system 110 may build such a
graph during its scanning processes.

[0088] Each individual page often requires multiple resources in order to render
properly. These resources are each dereferenced by a URL, and collectively referred to
as “render URLs” of a page.

[0089] FIGS. 3 and 4 collectively illustrate, by way of example of these resources, the
render URLs 302 for the website of FIG. 2. The system 110 may also construct similar
graphs during its scanning.

[0090] When given an entry URL, the system 110 may perform a crawling process
and build an anchor-URL graph very similar to that shown in the example in FIG. 5.
The anchor-URLs graph may inform the system 110 of a scan scope and a next page to
scan. The system 110 may implement a breadth-first search when traversing this graph.
[0091] In FIG. 4, a virtualized view of an anchor URL 304 is illustrated. The anchor
URL 304 is illustrated with various events or sub-scenes associated therewith. For
example, the anchor URL involves customers by country. A plurality of iframe events
306 are utilized for implementing the anchor URL 304. Likewise, a set of Javascripts 308
are executed for the anchor URL 304. Each event is part of the evidence collected for the
anchor URL 304.

[0092] Pages with URLs that have the same domain name as entry URL may be
considered in-scope pages; if otherwise, they may be considered ex-scope pages. The
system 110 may only follow in-scope pages when building the anchor-URL graph in

some embodiments.

20

WO 2015/142755 PCT/US2015/020807

[0093] A basic scanning unit used by the system 110 may include a page. When
scanning a page, the system 110 may cover all render URLs of that page, irrespective of
whether these URLs are in-scope or ex-scope. The same process applies to redirect
links.

[0094] The following description involves an example analysis. This example is
regarding online advertising within an online advertising ecosystem. In the system 110
view of an online ad ecosystem, malvertising may occur when a malicious creative is
served through an advertisement tag to a user, such as in their browser application.
[0095] Each unique malicious creative may be called a malvertisement. Examples of
malvertisements include: click-to downloads; drive-by downloads; phishing; and
rogueware or ransomeware — just to name a few.

[0096] The system 110 may sample each advertisement tag and scan the creative
served. The serving of creatives is often targeted by malware, which means advertising
tags may serve different creatives depending on visitor attributes such as IP
geolocation, timezone, browser language preferences, and so forth.

[0097] To increase sample coverage, users can specify these attributes. For example,
a user can instruct the system 110 to scan an advertisement tag from different IP
geolocations.

[0098] During a malvertising incident, insight may be provided by the system 110
into the malvertising chain. One example chain comprises a malicious advertiser who
creates a malicious creative. The malicious creative is served over an advertisement
network onto an advertisement exchange in this example. The malicious creative is
provided to an optimizer (e.g., system 110) and publisher.

[0099] Another example chain comprises a malicious advertiser who creates a
malicious creative who places the advertisement for purchase on a demand-side
platform. The advertisement can be added to an exchange and published to be made

available to visitors. Another example chain comprises a malware attacker who

21

WO 2015/142755 PCT/US2015/020807

generates a malicious creative that is provided to a compromised advertiser. In this
example, the advertiser places the compromised advertisement on a platform and the
advertisement is published and accessed by visitors to a website that incorporates or
includes the advertisement.

[00100] FIG. 5 is an example web Ul built using the malware detection system API.
The example web Ul comprises a graph illustrating temporal events in an
advertisement delivery process caused by a user clicking an advertisement tag. For
each detected malvertisement, a detailed and precise malvertising chain can be formed
using the evidence correlation data contained within the FRM report by the system 110.
[00101] In this example, an advertisement tag associated with www.imdb.com 505 is
actuated in a behavior sandbox environment. Using the forensic collectors and
analyzers, the system traces the advertisement call and service process, determining a
specific chain of events that are indicative of malware activity. In this example, a call to
showads.pubmatic.com 510 is actuated, which leads to an ad server call to
ads.eqads.com 515 and ultimately to a publisher ad.yieldmanager.com 520.

[00102] In an exemplary embodiment, to scan document exploits (e.g., document
types such as PDFs, Word, Excel, PowerPoint, Flash, and so forth), the user may first
host the suspect document file somewhere accessible to the system 110, for example
Amazon S3, provided by Amazon™, Inc. The user may then submit a scan job to the
system 110, with the target being an HTTPS URL and with access credentials forming a
part of the URL.

[00103] Upon receiving the scan request, the system 110 may download the document
tile and then initiate a forensics extraction process, for example, by placing the
document in a sandbox. The forensic collectors may determine the document’s type by
analyzing the document binary content. Both dynamic and hybrid detection modules

may be used as mentioned above. At the end of this process, the system 110 may return

22

WO 2015/142755 PCT/US2015/020807

an FRM-based forensics report in an appropriate file format (e.g., json format, text file,
and so forth).

[00104] The following examples involve exemplary usage scenarios that would help
the user of various embodiments in developing using an API of the present technology.
[00105] In one example use case, a user needs to scan a large number of
advertisement tags at high sampling rates. The user hopes to reduce traffic and
eliminate unneeded data, and obtain only those reports whose results are unclean (e.g.,
suspicious, malicious, blacklisted content).

[00106] Insome embodiments, the user may desire to speed up queries and filter out
unwanted data. In one embodiment, the system can submit jobs with the response-
filter field set to clean. This will cause the system 110 to filter out clean reports when
delivering reports to the user. In another example, the system can use a batched report
retrieval API to retrieve reports in large batches. Since a response-filter was set to clean
for all jobs, the system 110 may return only those reports that are both undelivered and
unclean. The user can call this API, for example, every five minutes to retrieve all
unclean reports in the last five minutes.

[00107] In a sub-scenario, the user would also want to be notified immediately of an
unclean report as the unclean report is created. During job submission, a user can set
the response-filter field set to clean. At the same time, the user also sets the response-
url to a callback URL provided by the user. This may cause the system 110 to post only
unclean reports back to the user as the reports are created.

[00108] In another example use case, a user wishes to suspend all jobs that are tagged
“Optimizer 1.” The user can make use of a query-operate API. The user can set the
labell field to Optimizer 1 and the operation field to remove.

[00109] In a further example use case, the user desires to permanently remove all jobs
in the suspended state. The user can make use of the query-operate API. The user will

set the state field to SUSPENDED and the operation field to remove.

23

WO 2015/142755 PCT/US2015/020807

[00110] In another example use case, the user desires to permanently remove all jobs.
The user can make use of the query-operate API. The user will set the operation field to
remove. One example implementation is provided below with both a request and
response.

[00111] In a further example use case, the user desires to suspend all jobs that are
tagged “Optimizer 1.” The user can make use of the query-operate API. The user will
set the operation field to list.

[00112] In another example use case, the user desires to update a particular scan job
whose ID is 245039. The user can make use of the job removal API. The user can set the
scan-request-id field to list.

[00113] Advantages of various embodiments of the malware detection system of the
present technology include, but are not limited to, being able to use malware signatures
against “forensic data” such as bytestreams and events. Various embodiments of the
present technology also support chronological event analysis, relational event causality
analysis, and creation of multiple decisions per DSL. In some embodiments, the
present technology can generating signatures of malware using forensic data
(bytestreams and events) detecting malicious code and identifying both campaigns and
attackers.

[00114] FIG. 6 is a flowchart of an example method for behavior profiling of a target
to determine malware. In some embodiments, the method includes applying 605 a
domain specific language to a target. The domain specific language utilized to detect
malware associated with the target and is comprised of rules that are used in the
malware detection process.

[00115] Next, the method includes observing/tracking 610 a set of temporal sequences
and events of the target. This process can be accomplished using a plurality of forensic

collector modules.

24

WO 2015/142755 PCT/US2015/020807

[00116] The method further comprises determining 615 presence of one or more
markers within the set of temporal sequences and events that are indicative of malware
and identifying 620 the target as being associated with malware based on the one or
more markers. Steps 615 and 620 can be accomplished within a behavioral analysis
sandbox using a plurality of forensic analyzers.

[00117] The following paragraphs provide an example instruction set that can be
used to implement various embodiments of the present technology.

[00118] /* The ANTLR v4 definition of the Vicara language, which is used to define
searches and matches through texts and binaries in order to identify patterns pertaining
to malicious software or in fact any kind of searchable pattern.

[00119] Vicara is a declarative language, in that the patterns and conditions are
declared and the compiler does the rest, generating the logic flow and so on that is
required to conduct the searches and evaluate the conditions.

[00120] parser grammar VicaraParser;

[00121] options {

[00122]

[00123] language =Java;

[00124] tokenVocab = VicaraLexer;

[00125] superClass = AbstractVicaraParser;

[00126] }

[00127] @members {

[00128]
[00129] }
[00130] //
[00131] //

[00132] translationUnit:

25

WO 2015/142755 PCT/US2015/020807

[00133] mandatory //Information that the programmer must supply
[00134] vicaraRule // Definition of a Vicara HTML processing rule
[00135] EOF

[00136] ;

[00137]1 //

[00138] // The definition of a Vicara processing rule. Note that unlike other tools one
ruleset can be used per file, allowing rule developers to document decisions based on
their logical relationship and not skip docs and place every rule in just one file.

[00139] //

[00140] vicaraRule:

[00141] opts? // Global options to be used by this rule

[00142] description* // A description of the set of matches and conditions
[00143] definitions // Define the various matches and searches that can be combined
in this rule

[00144] decisions // Define the logical tests that should be performed with
the preceding definitions

[00145] ;

[00146]
[00147] //

[00148] //Mandatory documentation element. Will ensure that at least AUTHOR,
DATE, NAME and

[00149] // VERSION are present in the definition, but that is done in the semantic
verification

[00150] // phase.

[00151] //

26

WO 2015/142755

[00152]
[00153]
[00154]
[00155]
[00156]
[00157]
[00158]
[00159]
[00160]
[00161]
[00162]
[00163]
[00164]
[00165]
[00166]
[00167]
[00168]
[00169]
[00170]
[00171]
[00172]
[00173]
[00174]
[00175]
[00176]
[00177]

[00178]

mandatory:

mandDocs*

// One or more of these elements can exist in the file

//
mandDocs:
ruleName
| ruleAuthor
| ruleDate

| ruleVersion

ruleAuthor:

AUTHOR author=STRING SEMI

ruleDate:

DATE date=STRING SEMI

ruleVersion:

PCT/US2015/020807

VERSION version=STRING comment=STRING SEMI

ruleName:

27

WO 2015/142755

[00179]
[00180]
[00181]
[00182]

I

NAME name=I[D SEMI

PCT/US2015/020807

[00183]
options

[00184]

// Common options for global, marker and decision levels. While not all

// are valid at each of these levels, it is better to check their validity

semantically

[00185]
[00186]
[00187]
[00188]
[00189]
[00190]
[00191]
[00192]
[00193]
[00194]
[00195]

/] as we process these levels.

opts:

OPTIONS
LBRACE

optionSet®

RBRACE

/] Options may be global or match specific, overriding global options. The

semantic checking

[00196]
[00197]
[00198]
[00199]
[00200]
[00201]

// phase will verify that the given option is valid at the given level.

/1

optionSet:

MODE

EQUALS modes

SEMI

| INTERPRETATION EQUALS interpretation SEMI

PROOF

EQUALS proofs

28

SEMI

WO 2015/142755 PCT/US2015/020807

[00202]
[00203]
[00204]
[00205]
[00206]
[00207]
[00208]
[00209]
[00210]
[00211]
[00212]
[00213]
[00214]
[00215]
also

[00216]

| refOpt

| cveOpt

refOpt:
REFERENCE EQUALS r1=STRING r2=STRING? SEMI

cveOpt:
CVE EQUALS r1=STRING r2=STRING? SEMI

/I A generic description block. Used to describe the global rule/match set and

// for individual matches and checks. Note that markdown description is

processed such

[00217] // that indent (in spaces or 8 character tabs) of the first line after the [is taken
to be the default
[00218] //indent for the rest of the lines in the markdown text. This allows formatting

of the text in

[00219]

// the vicara source code, without compromising the ability to use indent

formatting in the markdown

[00220]
[00221]
[00222]

[00223]

// code itself. For instance, if the Vicara source code looks like this:

/]
// description [[

// This is a header

29

WO 2015/142755 PCT/US2015/020807

[00224]
[00225]
[00226]
[00227]
[00228]
[00229]
[00230]
[00231]
[00232]
[00233]
[00234]
[00235]
[00236]
[00237]
[00238]
[00239]
[00240]
[00241]
[00242]
[00243]
[00244]
[00245]
[00246]
[00247]
[00248]
[00249]
[00250]

//
//
// * Some bullets

//

// With an indented part of the bullet
/1]

//

// Then the markdown processor will be passed:
//

//This is a header

//
//
/¥ Some bullets

//

/| With an indented part of the bullet

/1

description:

DESCRIPTION locale=STRING? md=MARKDOWN

//
// The definitions section of a rule set defines all the tests that must

// be run against the http headers and body, and which will generate a true
// or false indicator that can be tested in the decisions section.

//

definitions:

DEFINITIONS

30

WO 2015/142755 PCT/US2015/020807

[00251] LBRACE
[00252] marker*
[00253] RBRACE
[00254] ;

[00255]

[00256] marker:

[00257] MARKER name=ID

[00258] LBRACE

[00259]

[00260] opts?

[00261] description*

[00262] nilsimsa? // A declaration of text used to calculate a Nilsimsa hash
[00263] markerExpr? // A declaration of a more exact match to the
conversation

[00264]

[00265] RBRACE

[00266] ;

[00267]

[00268] //

[00269] // The declaration of some text that should be used to generate a nilsimsa
hash code

[00270] // to check certain parts of the HTML against.

[00271] //

[00272] nilsimsa:

[00273] NILSIMSA

[00274] LBRACE

31

WO 2015/142755 PCT/US2015/020807

[00275]
[00276]
[00277]
[00278]
[00279]
[00280]
[00281]
[00282]
[00283]
[00284]
[00285]
[00286]
[00287]
[00288]
[00289]
[00290]
[00291]
[00292]
[00293]
[00294]
[00295]
[00296]
[00297]
[00298]
[00299]
[00300]
[00301]

TYPE EQUALS type=ID SEMI
(MODE EQUALS mde=ID SEMI)?
(ENCODING EQUALS enc=ID SEMI)?
md=MARKDOWN

RBRACE

markerExpr:
MATCH
LBRACE
mexp

RBRACE

// Actual expressions that we can match - note that we make

// no distinction between LHS and RHS - we will do that in the semantic

// verification stage.

//

/] We could define the precedence using the new v4 left recursion definitions
// but there are not very many operators and so it will be easy to look after

// the grammar by using the more obvious LL(1) expression tree.

//

mexp: orExp (OR orExp)*

4

orExp:
andExp (AND andExp)*

32

WO 2015/142755

[00302]
[00303]
[00304]
[00305]
[00306]
[00307]
[00308]
[00309]
[00310]

MATCHES | ENDSWITH | CONTAINS) compareExp)?

[00311]
[00312]
[00313]
[00314]
[00315]
[00316]
[00317]
[00318]
[00319]
[00320]
[00321]
[00322]
[00323]
[00324]
[00325]
[00326]
[00327]

andExp:
NOT andExp #nandexp
| arithExp #arith

arithExp:

PCT/US2015/020807

compareExp (op=(LT | LE | GT | GE | EQ | NE | STARTSWITH |

4

compareExp:

op=EXISTS? primary

primary
: body
| head
| uri
| regexp
| integer
| hex
| string
| trueFalse

| parens

33

WO 2015/142755 PCT/US2015/020807

[00328]
[00329]
[00330]
[00331]
[00332]
[00333]
[00334]
[00335]
[00336]
[00337]
[00338]
[00339]
[00340]
[00341]
[00342]
[00343]
[00344]
[00345]
[00346]
[00347]
[00348]
[00349]
[00350]
[00351]
[00352]
[00353]
[00354]

| pcount

4

pecount:

c=COUNT LPAREN primary COMMA regexp RPAREN

body:
BODY DOT ref=s(LENGTH | DATA | TYPE)

head:
hdr=(REQUESTHDR | RESPONSEHDR) DOT headerElements

uri:

URI DOT uriElements

regexp:

r=REGEXP

integer:

i=INTEGER

34

WO 2015/142755 PCT/US2015/020807

[00355]
[00356]
[00357]
[00358]
[00359]
[00360]
[00361]
[00362]
[00363]
[00364]
[00365]
[00366]
[00367]
[00368]
[00369]
[00370]
[00371]
[00372]
[00373]
[00374]
[00375]
[00376]
[00377]
[00378]
[00379]
[00380]
[00381]

hex:

h=HEX

string;:

s=STRING

parens:

LPAREN mexp RPAREN

headerElements:
METHOD #method
| FIELD LPAREN field=STRING
(COMMA element=STRING)?
(COMMA param=STRING)?

RPAREN #field
| COUNT #count
| STATUSCODE #statuscode
| VERSION #version
| TEXT #text

// Refer to the documentation of the Java URI class at:

/1

35

WO 2015/142755 PCT/US2015/020807

[00382] // http://docs.oracle.com/javase/7/docs/api/java/net/URLhtml
[00383] //

[00384] // For details concerning what the various components of a URI
[00385] //

[00386] uriElements:

[00387] (raw=RAW DOT)?
[00388] ref=(

[00389] PORT
[00390] | HOST
[00391] | DOMAIN
[00392] | AUTHORITY
[00393] | FRAGMENT
[00394] | PATH
[00395] | QUERY
[00396] | SCHEME
[00397] | TEXT
[00398] | USERINFO
[00399])

[00400] ;

[o0401] //

[00402] // The definitions section defines what combinations of the marker definitions
[00403] // cause a match for this evaluation. There may be more than one
combination

[00404] // of markers defined, and each one will return a different result if it matches
[00405] // at run time.

[00406] //

[00407] decisions:

36

WO 2015/142755

[00408]
[00409]
[00410]
[00411]
[00412]
[00413]
[00414]
[00415]
[00416]
[00417]
[00418]
[00419]
[00420]
[00421]
[00422]
[00423]
[00424]
[00425]
[00426]
[00427]
[00428]
[00429]
[00430]
[00431]
[00432]
[00433]
[00434]

DECISIONS
LBRACE

decision*

RBRACE

// An individual decision definition

/1

decision:
DECISION name=ID
(RESULT EQUALS resultString=STRING)?
LBRACE

opts?

description®

MATCH LBRACE

markerExp

RBRACE

RBRACE

37

PCT/US2015/020807

WO 2015/142755 PCT/US2015/020807

[00435] markerExp:

[00436] morExp (OR morExp)*

[00437] ;

[00438]

[00439] morExp:

[00440] mandExp (AND mandExp)*

[00441] ;

[00442]

[00443] mandExp:

[00444] NOT mandExp #nmandexp

[00445] | orderExpr #morderexp

[00446] ;

[00447]

[00448] orderExpr:

[00449] mPrimary (im=IMMEDIATELY? op=(PRECEDES | FOLLOWS)
mPrimary))?

[00450] ;

[00451]

[00452] mPrimary:

[00453] markerld=ID #mid // Marker name
[00454] | LPAREN markerExp LPAREN #mparens // Precedence
[00455] ;

[00456]

[00457] //

[00458] // Generic rules for various options choices and so on
[00459]

[00460]

38

WO 2015/142755 PCT/US2015/020807

[00461] interpretation:

[00462] i=ID

[00463] ;

[00464]

[00465] modes:

[00466] m=(

[00467] RAW

[00468] | TEXT

[00469])

[00470] ;

[00471]

[00472] proofs:

[00473] p+=ID (COMMA P+=ID)*

[00474] ;

[00475]

[00476] trueFalse:

[00477] b=(TRUE | FALSE)

[00478] ;

[00479] FIG. 7 is a diagrammatic representation of an example machine in the form of
a computer system 1, within which a set of instructions for causing the machine to
perform any one or more of the methodologies discussed herein may be executed. In
various example embodiments, the machine operates as a standalone device or may be
connected (e.g., networked) to other machines. In a networked deployment, the
machine may operate in the capacity of a server or a client machine in a server-client
network environment, or as a peer machine in a peer-to-peer (or distributed) network
environment. The machine may be a robotic construction marking device, a base

station, a personal computer (PC), a tablet PC, a set-top box (STB), a personal digital

39

WO 2015/142755 PCT/US2015/020807

assistant (PDA), a cellular telephone, a portable music player (e.g., a portable hard drive
audio device such as an Moving Picture Experts Group Audio Layer 3 (MP3) player), a
web appliance, a network router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify actions to be taken by that
machine. Further, while only a single machine is illustrated, the term “machine” shall
also be taken to include any collection of machines that individually or jointly execute a
set (or multiple sets) of instructions to perform any one or more of the methodologies
discussed herein.

[00480] The example computer system 1 includes a processor or multiple processors 5
(e.g., a central processing unit (CPU), a graphics processing unit (GPU), or both), and a
main memory 10 and static memory 15, which communicate with each other via a bus
20. The computer system 1 may further include a video display 35 (e.g., a liquid crystal
display (LCD)). The computer system 1 may also include an alpha-numeric input
device(s) 30 (e.g., a keyboard), a cursor control device (e.g., a mouse), a voice
recognition or biometric verification unit (not shown), a disk drive unit 37 (also referred
to as disk drive unit or drive unit), a signal generation device 40 (e.g., a speaker), and a
network interface device 45. The computer system 1 may further include a data
encryption module (not shown) to encrypt data.

[00481] The disk drive unit 37 includes a computer or machine-readable medium 50
on which is stored one or more sets of instructions and data structures (e.g., instructions
55, also identified variously as 55a, 55b, 55¢, 55d in FIG. 7 for residing, completely or at
least partially, in various elements in FIG. 7) embodying or utilizing any one or more of
the methodologies or functions described herein. The instructions 55 may also reside,
completely or at least partially, within the main memory 10 and/or within the
processors 5 during execution thereof by the computer system 1. The main memory 10

and the processors 5 may also constitute machine-readable media.

40

WO 2015/142755 PCT/US2015/020807

[00482] The instructions 55 may further be transmitted or received over a network via
the network interface device 45 utilizing any one of a number of well-known transfer
protocols (e.g., Hyper Text Transfer Protocol (HTTP)). While the machine-readable
medium 50 is shown in an example embodiment to be a single medium, the term
"computer-readable medium" should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database and/or associated caches and servers)
that store the one or more sets of instructions. The term "computer-readable medium"
shall also be taken to include any medium that is capable of storing, encoding, or
carrying a set of instructions for execution by the machine and that causes the machine
to perform any one or more of the methodologies of the present application, or that is
capable of storing, encoding, or carrying data structures utilized by or associated with
such a set of instructions. The term "computer-readable medium" shall accordingly be
taken to include, but not be limited to, solid-state memories, optical and magnetic
media. Such media may also include, without limitation, hard disks, floppy disks, flash
memory cards, digital video disks, random access memory (RAM), read only memory
(ROM), and the like. Various example embodiments described herein may be
implemented in an operating environment comprising software installed on a
computer, in hardware, or in a combination of software and hardware.

[00483] Not all components of the computer system 1 are required and thus portions
of the computer system 1 can be removed if not needed, such as I/O devices.

[00484] One skilled in the art will recognize that the Internet service may

be configured to provide Internet access to one or more computing devices that are
coupled to the Internet service, and that the computing devices may include one or
more processors, buses, memory devices, display devices, input/output devices, and the
like. Furthermore, those skilled in the art may appreciate that the Internet service may

be coupled to one or more databases, repositories, servers, and the like, which may be

41

WO 2015/142755 PCT/US2015/020807

utilized in order to implement any of the embodiments of the disclosure as described
herein.

[00485] The corresponding structures, materials, acts, and equivalents of all means
or step plus function elements in the claims below are intended to include any
structure, material, or act for performing the function in combination with other
claimed elements as specifically claimed. The description of the present technology
has been presented for purposes of illustration and description, but is not intended to
be exhaustive or limited to the present technology in the form disclosed. Many
modifications and variations will be apparent to those of ordinary skill in the art
without departing from the scope and spirit of the present technology. Exemplary
embodiments were chosen and described in order to best explain the principles of the
present technology and its practical application, and to enable others of ordinary skill
in the art to understand the present technology for various embodiments with various
modifications as are suited to the particular use contemplated.

[00486] Aspects of the present technology are described above with reference to
tlowchart illustrations and/or block diagrams of methods, apparatus (systems) and
computer program products according to embodiments of the present technology. It
will be understood that each block of the flowchart illustrations and/or block
diagrams, and combinations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instructions. These computer
program instructions may be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data processing apparatus to
produce a machine, such that the instructions, which execute via the processor of the
computer or other programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart and/or block diagram block

or blocks.

42

WO 2015/142755 PCT/US2015/020807

[00487] These computer program instructions may also be stored in a computer
readable medium that can direct a computer, other programmable data processing
apparatus, or other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce an article of
manufacture including instructions which implement the function/act specified in the
tlowchart and/or block diagram block or blocks.

[00488] The computer program instructions may also be loaded onto a computer,
other programmable data processing apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other programmable apparatus or
other devices to produce a computer implemented process such that the instructions
which execute on the computer or other programmable apparatus provide processes
for implementing the functions/acts specified in the flowchart and/or block diagram
block or blocks.

[00489] The flowchart and block diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of systems, methods and
computer program products according to various embodiments of the present
technology. In this regard, each block in the flowchart or block diagrams may
represent a module, segment, or portion of code, which comprises one or more
executable instructions for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the functions noted in the
block may occur out of the order noted in the figures. For example, two blocks shown
in succession may, in fact, be executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon the functionality
involved. It will also be noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams and/or flowchart

illustration, can be implemented by special purpose hardware-based systems that

43

WO 2015/142755 PCT/US2015/020807

perform the specified functions or acts, or combinations of special purpose hardware
and computer instructions.

[00490] In the description herein, for purposes of explanation and not limitation,
specific details are set forth, such as particular embodiments, procedures, techniques,
etc. In order to provide a thorough understanding of the present invention. However,
it will be apparent to one skilled in the art that the present invention may be practiced
in other embodiments that depart from these specific details.

[00491] Reference throughout this specification to "one embodiment” or "an
embodiment” means that a particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one embodiment of the present
invention. Thus, the appearances of the phrases "in one embodiment” or "in an
embodiment” or "according to one embodiment” (or other phrases having similar
import) at various places throughout this specification are not necessarily all referring
to the same embodiment. Furthermore, the particular features, structures, or
characteristics may be combined in any suitable manner in one or more embodiments.
Furthermore, depending on the context of discussion herein, a singular term may
include its plural forms and a plural term may include its singular form. Similarly, a
hyphenated term (e.g., "on-demand") may be occasionally interchangeably used with
its non-hyphenated version (e.g., "on demand"), a capitalized entry (e.g., "Software")
may be interchangeably used with its non-capitalized version (e.g., "software”), a
plural term may be indicated with or without an apostrophe (e.g., PE's or PEs), and an
italicized term (e.g., "N+1") may be interchangeably used with its non-italicized version
(e.g., "N+1"). Such occasional interchangeable uses shall not be considered inconsistent
with each other.

[00492] Also, some embodiments may be described in terms of “means for”
performing a task or set of tasks. It will be understood that a “means for” may be

expressed herein in terms of a structure, such as a processor, a memory, an I/O device

44

WO 2015/142755 PCT/US2015/020807

such as a camera, or combinations thereof. Alternatively, the “means for” may include
an algorithm that is descriptive of a function or method step, while in yet other
embodiments the “means for” is expressed in terms of a mathematical formula, prose,
or as a flow chart or signal diagram.

[00493] The terminology used herein is for the purpose of describing particular
embodiments only and is not intended to be limiting of the inventions used herein, the
singular forms "a", "an" and "the" are intended to include the plural forms as well,
unless the context clearly indicates otherwise. It will be further understood that the
terms "comprises” and/ or "comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, elements, and/or components,
but do not preclude the presence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups thereof.

[00494] Tt is noted that the terms "coupled,” "connected”, "connecting,” "electrically
connected,” etc., are used interchangeably herein to generally refer to the condition of
being electrically/electronically connected. Similarly, a first entity is considered to be
in "communication” with a second entity (or entities) when the first entity electrically
sends and/or receives (whether through wireline or wireless means) information
signals (whether containing data information or non-data/control information) to the
second entity regardless of the type (analog or digital) of those signals. It is further
noted that various figures (including component diagrams) shown and discussed
herein are for illustrative purpose only, and are not drawn to scale.

[00495] If any disclosures are incorporated herein by reference and such
incorporated disclosures conflict in part and/or in whole with the present disclosure,
then to the extent of conflict, and/or broader disclosure, and/or broader definition of
terms, the present disclosure controls. If such incorporated disclosures conflict in part
and/or in whole with one another, then to the extent of conflict, the later-dated

disclosure controls.

45

WO 2015/142755 PCT/US2015/020807

[00496] The terminology used herein can imply direct or indirect, full or partial,
temporary or permanent, immediate or delayed, synchronous or asynchronous, action

"o

or inaction. For example, when an element is referred to as being "on,” "connected” or
"coupled” to another element, then the element can be directly on, connected or coupled
to the other element and/or intervening elements may be present, including indirect
and/or direct variants. In contrast, when an element is referred to as being "directly
connected” or "directly coupled” to another element, there are no intervening elements
present. The description herein is illustrative and not restrictive. Many variations of
the technology will become apparent to those of skill in the art upon review of this
disclosure. For example, the technology is not limited to use for stopping email threats,
but applies to any messaging threats including email, social media, instant messaging,
and chat.

[00497] While various embodiments have been described above, it should be
understood that they have been presented by way of example only, and not limitation.
The descriptions are not intended to limit the scope of the invention to the particular
forms set forth herein. To the contrary, the present descriptions are intended to cover
such alternatives, modifications, and equivalents as may be included within the spirit
and scope of the invention as defined by the appended claims and otherwise
appreciated by one of ordinary skill in the art. Thus, the breadth and scope of a

preferred embodiment should not be limited by any of the above-described exemplary

embodiments.

46

WO 2015/142755 PCT/US2015/020807

CLAIMS

What is claimed is:

1. A method, comprising:

applying a domain specific language to a target, the domain specific language
utilized to detect malware associated with the target;

observing a set of temporal sequences and events of the target;

determining presence of one or more markers within the set of temporal
sequences and events that are indicative of malware; and

identitying the target as being associated with malware based on the one or more

markers.

2. The method of claim 1, further comprising creating a behavior profile for the

target based on the set of temporal sequences and events.

3. The method of claim 1, wherein the target comprises any of an HTTP
conversation, a URL, a starting URL, an advertisement tag, a document file, an

executable file, and combinations thereof.

4. The method of claim 1, further comprising, determining a maliciousness, an

identification, and behavior of the target if malware is detected.

47

WO 2015/142755 PCT/US2015/020807

5. The method of claim 1, further comprising:

determining if the malware is configured to protected itself from a monitored lab
environment; and

if the malware is configured to protect itself from a monitored lab environment
provoking the malware to attack; and

in response to the provoking, recording activities of the malware.

6. The method of claim 1, further comprising creating one or more scenes from

malicious behavior of the malware.

7. The method of claim 6, wherein each of the one or more scenes comprises a

plurality of evidences, and further wherein each of the one or more scenes comprises an

aggregated set of proofs and interpretations.

8. The method of claim 6, wherein each of the one or more scenes comprises any of

a URL opening, a document opening, and an execution of an executable file.

9. The method of claim 6, wherein each of the one or more scenes comprises one or

more sub-scenes that are based on an initiating scene.

48

WO 2015/142755 PCT/US2015/020807

10. The method of claim 6, further comprising executing a plurality of forensic
collectors to gather evidence from the malware, wherein the evidence comprises

activities of the malware that occur within the one or more scenes.

11. The method of claim 10, wherein the activities comprise any of HTTP requests
and responses, exploitation efforts, file creation and modification, process creation,

registry changes, foreign memory manipulation, and combinations thereof.

12. The method of claim 10, wherein each of the activities comprises a time stamp

such that the activities can be arranged in a chronological order.

13. The method of claim 10, wherein each of the plurality of forensic collectors is
configured to generate a forensic report comprising proofs, exhibits, interpretations,

and correlations.

14. The method of claim 13, wherein the proofs comprise a predefined set of facts,
the predefined set of facts being such that an analyzer tries to prove existence of the

predefined set of facts within the one or more scenes.

15. The method of claim 14, wherein the proofs are derived from exhibits.

49

WO 2015/142755 PCT/US2015/020807

16. The method of claim 15, wherein each of the exhibits comprise a section of

evidence having a special meaning used to infer presence of the malware.

17. The method of claim 13, wherein each of the interpretations comprises a

judgment of one of the forensic collectors relative to one of the scenes and based on a

derived set of the proofs.

18. The method of claim 13, wherein each of the correlations comprises a causal

relationship between instances of the evidence.

19. The method of claim 18, further comprising displaying the causal relationships in

a tree representation.

50

WO 2015/142755 PCT/US2015/020807

20. A malware detection system, comprising;:

a processor; and

a memory for storing executable instructions, the instructions being executed by
the processor to create a behavioral sandbox environment where a target is inspected
for malware, the behavioral sandbox environment comprising a plurality of forensic
analyzers that are each configured to:

apply a domain specific language to a target;

observe a set of temporal sequences and events of the target;

determine presence of one or more markers within the set of temporal sequences
and events that are indicative of malware; and

detect malware presence based on the one or more markers.

21. The system of claim 20, wherein each of the plurality of forensic analyzers of the
behavioral sandbox environment is further configured to:

allow a target to execute therein; and

collect evidence from the malware using a plurality of collector modules,

wherein the evidence comprises activities of the malware.

51

WO 2015/142755 PCT/US2015/020807

22. The system of claim 20, further comprising an Internet Protocol (IP) randomizer
module for thwarting IP cloaking of the malware; the IP randomizer module being
configured to :

cause network traffic to be routed via multiple geographic locations so as to
leverage a larger IP address pool; and

switch IP addresses at a frequency such that the same IP address is not used for a

predetermined period of time.

23. The system of claim 20, wherein each of the plurality forensics analyzers are
turther configured to:

determine malicious behavior from the set of temporal sequences and events;
and

log the target in response to the malicious behavior being determined or

suspected.

24. The system of claim 23, further comprising a static analysis module configured
to:
evaluate the target if the target is logged; and

create a rule set based on the malicious behavior of the target.

52

WO 2015/142755 PCT/US2015/020807

25. A non-transitory computer-readable medium having embodied thereon instructions
being executable by at least one processor to perform a method for providing malware
detection, the method comprising:

retrieving a URL, the retrieving comprising contacting a server to receive a home
page code;

performing a preliminary determination to determine if the home page code
includes a malicious signature;

in response to the home page code being deemed clean such that the preliminary
determination is that no malicious signature is included on the home page code, parsing
the home page code and translating the home page code onto a web page;

rendering text and links to external databases for images on the web page;

allocating memory to perform the rendering of the images;

generating an event log of all items rendered on the web page;

analyzing a chronological order of events in the event log to identify behavior
patterns among the events;

comparing identified behavior patterns to predetermined rules; and

identitying the URL as including malware if a match is found between the

identified behavior patterns and the predetermined rules.

53

WO 2015/142755 PCT/US2015/020807

26. The non-transitory computer-readable medium of claim 25, further comprising
using one or more analyzers to perform the comparing identified behavior patterns to
the predetermined rules, each analyzer generating a report based on the comparing,

and compiling the reports of the one or more analyzers.

54

PCT/US2015/020807

WO 2015/142755

1/7

(148
sjagre],

[OId

0¢T
JUDUIUOIIAUY

xoqpuesg
[e1o1ARY2g

oot

<01
P [EUTULID]
JuaI[d
091 qctT T oot
0<1 ocl
o[NpoN 9[npON Qﬁmwﬂﬁm— HQN%~6=<
IPzIWopuey] | i sisAeuy oy [0203)01
dl Jnels
i
} by ol
9[NpoN
N-V<P1 N-VO?1 wriduro)
sIZATRUY SI03031[0D 1sd
JISUIIO] JISUIIO]
el 21 KA1owa I0SSIO0LJ

0IT

wd)SAG U01)23)9(] dIEM[EA

PCT/US2015/020807

WO 2015/142755

2/7

RECHREN N

S8 JLHM

MO G

NCILIH (uvENYLS

NOHICS Mf_%& i

Ecu_a& UIF Rt
N AU

FIG. 2

WO 2015/142755

302

3/7

.
ER
I

00y LSS
ENTERPRSEEDTON ¢ ke

N 4

AD#SOL

n
V)

oITiON

p

oL

STANDARD E

fooe
3
[N
[}

a
N
u

TERPR

X

PCT/US2015/020807

WO 2015/142755 PCT/US2015/020807
4/7

OMERS BY COUNTRY~_ ¢
g3,

LN

My SQL

(e
<
s
-
=
(Ve
2
Lo}
1

RENDER URLs

FIG. 4

PCT/US2015/020807

WO 2015/142755

57

FIG. 5

WO 2015/142755 PCT/US2015/020807
6/7

Applying a domain specific language to a target
605

Y

Tracking a set of temporal sequences and events of the target
610

!

Determining presence of one or more markers within the set of
temporal sequences and events that are indicative of malware
615

!

Identifying the target as being associated with malware based on
the one or more markers
620

FIG. 6

WO 2015/142755

Sﬂ

PROCESSORS

717

/\/—20

PCT/US2015/020807

1

D
/—35

v

55a \
INSTRUCTIONS

10 \
MAIN
MEMORY

<t

VIDEO
DISPLAY

/—30

>

55b = _\
INSTRUCTIONS

15\

STATIC MEMORY

55¢ = [+

\ INSTRUCTIONS
45 \

NETWORK

INPUT DEVICE(s)

/—37

/
BUS

INTERFACE K
DEVICE

N

55d —-\

DRIVE UNIT L 50

MACHINE-
READABLE
MEDIUM

-

INSTRUCTIONS

/—40

B

SIGNAL
GENERATION
DEVICE

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US15/20807

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 21/53, 21/56 (2015.01)
CPC - GO6F 21/53, 21/56

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC(8): GOBF 21/00, 21/53, 21/56, 21/60, 21/71; HO4L 12/26 (2015.01)
CPC: GO6F 21/53, 21/554, 21/586, 21/577, 2221/033, 2221/2119; HO4L 63/1408, 63/145

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

expression, sequence, time, rule, policy

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

PatSeer (US, EP, WO, JP, DE, GB, CN, FR, KR, ES, AU, IN, CA, INPADOC Data),
Keywords: malware, malicious, detect, behavior, temporal, events, domain specific language, randomizer, pattern, match, URL, regular

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2011/0283360 A1 (ADABI, M. et al.) 17 November 2011; paragraphs [0025], [0029), [0043], |1-4, 6-9
— [0058], [0058]. -

Y 5, 10-24

Y US 2013/0332988 A1 (MICROSOFT CORPORATION) 12 December 2013; paragraphs [0024], |20-24
[0025], [0066], [0067].

Y US 2013/0086681 A1 (WEBROOT INC.) 04 April 2013; paragraphs [0039), [0041]; claim 1. 25-26

Y US 2013/0117849 A1 (GOLSHAN, A. et al.) 09 May 2013; paragraphs [0074], [0091], [0093]. [10-19, 24-26

Y US 2013/0326625 A1 (ANDERSON, B. et al.) 05 December 2013; paragraphs [0072], [0075]. 5

Y US 2009/0077664 A1 (HSU, S. et al.) 19 March 2009; figure 2 paragraph (0071). 19

Y US 2011/0154494 A1 (SUNDARAM, R. et al.) 23 June 2011; paragraphs [0015], [0027]. 22

Y US 6,484,143 B1 (SWILDENS, E. etal.) 19 November 2002; column 16, lines 18-23; column 17, |22
lines 12-15).

D Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

the priority date claim

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified) :

“Q” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

28 May 2015 (28.05.2015)

Date of mailing of the international search report

25 JUN 2015

Name and mailing address of the ISA/

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Shane Thomas

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - wo-search-report

