045160 A2 I ! 00O 0 OO

~~

04

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
27 May 2004 (27.05.2004)

AT Y0 DO 0 R

(10) International Publication Number

WO 2004/045160 A2

(51) International Patent Classification’: HO04L 12/56
(21) International Application Number:
PCT/GB2003/004854

(22) International Filing Date:
11 November 2003 (11.11.2003)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:
0226249.1 11 November 2002 (11.11.2002) GB
(71) Applicant (for all designated States except US): CLEAR-
SPEED TECHNOLOGY LIMITED [GB/GB]; 3110
Great Western Court, Hunts Ground Road, Stoke Gifford,

Bristol BS34 8HP (GB).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SPENCER,

(74)

(81)

(84)

Anthony [GB/GB]; 34 Amberley Way, Wickwar, Wot-
ton-under-Edge, South Gloucestershire GL12 8LP (GB).
CAMERON, Ken [GB/GB]; 23 Elizabeth Crescent, Stoke
Gifford, Bristol BS34 8NY (GB).

Agent: O’CONNELL, David, Christopher; Haseltine
Lake, Imperial House, 15-19 Kingsway, London WC2B
6UD (US).

Designated States (national): AE, AG, AL, AM, AT, AU,
AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO,
CR, CU, CZ (utility model), CZ, DE (utility model), DE,
DK (utility model), DK, DM, DZ, EC, EE (utility model),
EE, EG, ES, FI (utility model), FI, GB, GD, GE, GH, GM,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK,
LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX,
MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD,
SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG,
US, UZ, VC, VN, YU, ZA, ZM, ZW.

Designated States (regional): ARIPO patent (BW, GH,
GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
Buropean patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE,

[Continued on next page]

(54) Title: DATA PACKET HANDLING IN COMPUTER OR COMMUNICATION SYSTEMS

next
bin
—]
Stage 1
bin sort
» processor | \
2 /

Stage 2
bin sort
processor

N

(57) Abstract: The ordering of packet flows, comprising sequences of data packets, in a communication or computer system, is
performed by assigning an exit number to each packet; queuing the packets in buffer means; and outputting the queued packets in
a predetermined order according to an order list determined by the exit numbers assigned to each packet before it was queued. The
exit number information is preferably assigned to packet records, which are queued in a separate buffer means to the packets, the
records being of fixed length and shorter than the data portions. The packet record buffer means comprise groups of bins, each bin
containing a range of exit numbers, the bins for higher exit number packet records having a larger range than bins for lower exit
number packet records. Lower exit number packet records in a bin are subdivided into a plurality of bins, each containing packet
records corresponding to a smaller range of exit numbers. Secondary bins may be created to temporarily store records assigned to a
bin that is currently being emptied. The bins may be filled by means of a parallel processor, preferably a SIMD array processor.

WO 2004/045160 A2 I} 110 N0VYH) AT 00000 0 000 AR

ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, For two-letter codes and other abbreviations, refer to the "Guid-
SI, SK, TR), OAPI patent (BE, BJ, CF, CG, CI, CM, GA, ance Notes on Codes and Abbreviations" appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gagzette.

Published:
— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854

DATA PACKET HANDLING IN COMPUTER OR COMMUNICATION
SYSTEMS

Field of the Invention

The present invention is concerned with one of the aspects of data packet
handling, such as data packet management in a computer system or traffic
management in a communications network, namely order list management. The
invention comprises a network processor incorporating the invention, a method of
implementing the invention and components incorporating the invention.
Background to the Invention

There are many aspects of control and management of information transmitted
across a computer or telecommunications network, over and above the comparatively
simple concept of traffic routing. These involve topics more concerned with the
relationship between the network provider and the customer, such as cost, quality or
level of service, priority and so on.

It is widely expected that the Internet will be re-invented as a converged
packet-based platform for new services, delivering all forms of digital material into all
types of application domain. This “Intelligent Internet” will need to differentiate
between the needs of different traffic streams and‘allocate resources appropriately to
meet those needs. In addition to considerable administrative support across the
network, three principal Traffic Management mechanisms are required on the data
fast path through the network routers. These are traffic classification, conditioning
and handling.

Routers already determine where to send packets. Classification must
additionally identify how packets should be treated as they are forwarded, the so-
called Class of Service (CoS). A Conditioner then checks that each traffic stream
complies with the terms of its Service Level Agreement (SLA). The SLA isa
contract that specifies limits on the rates at which a customer is permitted to send
traffic in different service classes. Finally, the Handler ensures that service
guarantees are met by the provider. Typically, this is achieved through implementing
a queue per available CoS. Each queue receives a prescribed quota of link bandwidth
and packet buffer space.

As Traffic Management is something of a moving target, with new standards

and improved algorithms constantly emerging, a programmable solution is considered

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854

2
to be a high priority. One problem facing engineers is how to design a programmable
architecture with a useful processing cycle budget per packet at 40 Gbits/s line rates.

This may be illustrated by reference to Figure 1, which shows a very
simplified schematic diagram of part of the traffic handling portion of a network. The
illustrated mechanism includes, in sequence, a traffic classifier A, traffic conditioner
B, traffic handling system C and switch fabric S. Block C need not be located
physically as in Figure 1 but may be positioned before or after the switch fabric S. It
is expected that data packets will be of varying size, ranging between 40bytes,
1.5kbytes, 9kbytes and up to 16kbytes.

The traffic classifier Block A has no facility for allocating bandwidth,
charging and so on. Its main function is the identification of the class of service that a
packet should receive. This typically involves a lookup operation, whereby a number
of fields from the packet headers that can uniquely identify the packet with a
microflow or flow aggregate are matched according to rules in a lookup table.

The traffic conditioner Block B performs a supervisory role in that it may
decide that a customer is using too much bandwidth (say) and may mark that
customer’s packets with a corresponding marking. This is called “colouring” and the
allocated markings may be, for example, “red”, “yellow” or “green”. Billing statistics
may also be performed here and it may take account of the colouring applied to that
packet or groups of packets.

The traffic conditioner enforces policy, which is specified in Traffic
Conditioning Agreements (TCAs) between a network service provider and its
customer. The TCA, which often forms part of the broader SLA, specifies agreed
limits to traffic profiles entering (or leaving) the service provider network. Generally
speaking, conditioners are therefore located in the boundary nodes of independently
administered domains. Policy enforcement requires mechanisms which meter traffic
streams to ensure that they comply with the terms of the TCA. “Out-of-profile”
streams, ie those stepping outside the bounds of the TCA, may have excess traffic
dropped — a measure referred to as policing. Alternatively, marking the packets as
indicated above may be regarded as more acceptable. Marked packets may
subsequently be discriminated against in the event of downstream traffic congestion.

The traffic handling system Block C decides when and how to put packets into
an output buffer and to pull them out for onward transmission via the output port O/P

of the illustrated section. Where the line rate is 40Gbps, packet transmission rate is of

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854

3
the order of 100,000,000 packets per second and the rate at which packets are queued

in the buffer ranges between 100s to 1,000s of Megabytes per second. It is the traffic
handler which queues traffic and then applies scheduling and shaping mechanisms to
forward it according to the required class of service. Scheduling disciplines ensure
that traffic streams are protected from one another, that the link is shared fairly
between streams, that performance bounds on guaranteed service traffic are met, and
that congestion in the network is controlled.

At each stage, statistics may be gathered for administrative purposes. The
scope of traffic management also encompasses some other important administrative
elements, such as policy management, system conﬁguration, statistics processing,
reporting, accounting and billing.

The functions performed by blocks A, B, and C are ideally carried out at line
rate, for example at 40Gbps. In the situation where C precedes S, it may not be
possible to draw packets out of C into the switch fabric S at the line rate. Huge
amounts of memory are therefore necessary to queue packets so as to come as close to
the ideal as possible. As an aid to this process, C keeps records of packets rather than
the packets themselves. These records are preferably of fixed size and contain
information about the packets, which, of course, are themselves of variable size.

Where the system attempts to put packets into the line at a rate that is greater
than the line rate (a condition known as “overspeed”) block C has to decide which
packets are kept and which are held back or discarded. Block B monitors usage and
attempts to provide individual customers with their agreed bandwidth but on an
averaging basis. It will tolerate transient increases over the agreed bandwidth so long
as the average is not exceeded over a given time period. In contrast, block C monitors
the actual usage.

In traffic handling, packets may be placed in one of a number of queues. With
more than one queue present, a scheduling function must determine the order in which
packets are served from the queues. Control of this function is what is meant in this
specification by “Order List Management”. The scheduled order is determined
principally by the relative priorities that the scheduler places on the queues - not on
the order in which packets arrived at the queues. The scheduling function is thus

fairly serial in character.

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854

4

For example, consider the two popular scheduling methods:

Fair Queue scheduling - every packet in the queue is given a finish number,
which indicates the relative point in time that the packet is entitled to be outputted.
The function that serves packets from the queue must identify the queue whose next
packet has the smallest finish number. Ideally, only after the packet has been served
and the next packet in the same queue has been revealed can the dequeueing function
make its next decision.

Round Robin scheduling - Queues are inspected in turn in a predetermined
sequence. On each visit a prescribed quota of data may be served.

The fundamental problem is how to peform such scheduling algorithms at high
speeds. A serialised process can only scale with clock/cycle frequency, or by
increasing the depth of the processisng pipe which makes the scheduling decision.
This approach may only be able to provide a couple of system clock cycles per
packet.

On top of this, the scheduling and queue management task is further
confounded by a requirement for a large number of potentially very deep queues.
Hardware, which executes the scheduling function in a serial manner, is then likely to
be highly customised and therefore inflexible if it is to meet the required performance.
Summary of the invention

In its broadest interpretation, the invention, in all its aspects, provides a system
for maintaining ordered logical data structures in software at high speeds. The
inventive aspects per se are set out below:

In a first aspect, the invention provides a method for handling packet flows,
comprising sequences of data packets, in a communication or computer system, the
method comprising: assigning an exit number to each said packet; queuing said
packets in buffer means; and outputting the queued packets in a predetermined order
according to an order list determined by said exit numbers assigned to each packet
before said packet is queued.

Exit number information is preferably assigned to packet records which are
queued in a separate buffer means to that in which said packets are queued. The
packet records are preferably of fixed length and shorter than said packets.

The buffer means for said packet records conveniently consist of groups of
bins, each bin containing a range of exit numbers, the bins for higher exit number

packet records having a larger range than bins for lower exit number packet records.

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854
5 .

Lower exit number packet records in a bin are preferably subdivided into a
plurality of bins, each containing packet records corresponding to a smaller range of
exit numbers.

Where a packet record is assigned an exit number corresponding to a bin that
is currently being emptied, that packet record may be held in a secondary bin of the
same exit number for emptying after the said bin that is currently being emptied.

The bins may be FIFO buffers, LIFO stacks or a mixture of both.

The queue management is preferably carried out by (a) processing all of the
bins in parallel and inserting incoming data into a bin by means of a parallel
processor, preferably a SIMD processor.

The invention also includes a communication network processor, means for
sorting data in a computer system and a parallel processor, structured to perform the
above method.

Brief Description of the Drawings

The invention will now be described with reference to the following drawings,
in which:

Figure 1 is a schematic representation of an ideal traffic handling mechanism;

Figure 2 illustrates the principles of the invention;

Figure 3 is a functional overview of a system employing the invention;

Figure 4 shows an implementation of the invention using MTAP processors
and stéte engines.

Figure 5 is a schematic representation of the way in which order lists are
handled; and

Figure 6 shows how sub-divided order lists are managed.

Detailed Description of the Illustrated Embodiments
Introduction

A third approach to scheduling, in accordance with the invention, is to
maintain a single, fully ordered queue instead of multiple FIFO queues. In other
words, rather than buffer packets in a set of parallel input queues and then schedule
them in some sequence into an output queue, packets are sorted on arrival directly into
the output queue.

In comparison with the Fair Queue and Round Robin scheduling approaches,

calculations must be made at wire speed for each packet prior to enqueueing but

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854
6

packets must be inserted into a potentially huge ordered data structure. Packet
removal is simplified.

However, this approach enables parallelism to be exploited in the
implementation of the solution. When performance can no longer be improved
through brute force in a serialised solution, the way forward is to find an approach
that can scale up through its parallelism.

In a preferred implementation, the present invention is able to take advantage
of parallel processing architectures which can provide a sufficient number of
processing cycles per packet to enable the calculation of the finish number (ie the
number that determines the exit time of the packet) to be made at wire speed for
packets as they arrive from the switch fabric. This invention also provides a solution
to the maintenance of a large orderlist at high speed.

Each SIMD processor in an array can be used to multiply the amount of
parallel processing power and can provide storage in each processor element (PE) in a
way that will be described later.

Switch fabrics route packets from multiple source ports to each destination
port, causing transient bursts of packets at a rate which exceed the egress line rate of a
linecard. The excess packets must be temporarily stored during such bursts. At high
line rates, both the rate of packet storage and the storage volume must be very high.
Typically 120Gbits/s aggregate data bandwidth into a 500Mbyte memory is required
at 40Gbits/s line rates. More importantly, random access to this memory demands a
number of independently addressable channels and consequently a large number of
pins on device packages. A viable memory sub-system can be realized by using low-
pincount, high-speed serial links to dedicated memory hubs. The hubs then provide
multiple channels of high volume rapid access memory technology such as Fast Cycle
RAM (FCRAM) or Rambus. This is an effective method for balancing device
pincounts across the system architecture.

As access to packet content is not required in traffic handling, packets can be
streamed directly to the memory hubs. Small records of packet meta-data are then
processed, and are used to represent packets in the logical queues. Congestion
avoidance (Random Early Detect) and scheduling (Fair Queuing) algorithms typically
required for traffic handling are implemented in software by a suitably configured

MTAP processing system.

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854

7

The stream of packet records through the Traffic Handler is quite different in
nature to the stream of packets experienced by the Classifier and Conditioner. Packet
records are usually smaller than the packet itself and can be of fixed size and the rate
of throughput may be very high during packet bursts from the switch fabric.

High throughput inevitably reduces the cycle budget for processing. One of
the strengths of a coherent, parallel approach is its ease of scalability. Using the
Classifier architecture for comparison, the number of PEs per processor or the number
of MTAP processors per chip is increased to meet the required processing cycle count
per packet record at the higher speeds. The implied increase in required silicon area
can be countered by significantly reducing the per-PE memory to accommodate the
relatively small packet records.

Description of the concept and invention

Consider first Figure 2, which shows the basic concept of bin sorting. Coarser
bin sorting is indicated to the left and finer bin sorting to the right. Each bin contains
records of packets with a range of exit numbers, except for the bin for exit number 1.
For the sake of illustration, the bin for exit numbers 2 and 3 is marked in heavier lines
to indicate that this is one bin. Packet records of exit numbers 4 to 7 may be put into
another bin, also marked by solid lines in Figure 2. The bins for higher exit numbers
generally accommodate a larger range of exit numbers than the bins for lower exit
numbers. However, the content of a bin is not ordered.

A function is required which receives packets and places them in the
appropriate bin. Another function is required which reads the content of each bin in
turn in ascending order of the finish number ranges. This stage of the process
produces a stream of packets in a coarsely sortéd order, depending on bin range.
These then go into a further set of bins with smaller ranges. The process is repeated
until the stream is fully sorted.

Assume that just as bins are emptied at one end of this sequence, new bins are
installed at the other as packets arrive with finish numbers that are, on average,
constantly increasing in value. Bins are created as necessary as lower exit number
bins are emptied.

Figure 3 shows an approach that applies the concept embraced by the present
invention. The numbering shows the sequence of events as packets arrive, state is
accessed, and packets are binned etc. The iterative nature of the bin sorting procedure

is indicated by the two illustrated stages. Each bin could be implemented as a FIFO

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854

8
queue or LIFO stack in memory or a combination of both. Such data structures may
be managed by pointers that locate the insertion and removal points for data to/from
the structure. The functions that operate on the bins need access to these pointers.
The functions could be mapped into processors and the pointers into a state memory.

The data structure comprises more than one set of bins. Within a set of bins
the finish number range is constant but, between sets, the ranges become
progressively smaller as the exit numbers become smaller. Bins with the widest range
have the largest finish number values and bins with the smallest range have the
smallest finish number values. For example, the total range of finish numbers across
all bins in one set may equate to the range of a single bin in an adjacent set.

When a bin is emptied, it is sorted into the next set of bins. Either this is
repeated until the finish number range of the final set of bins is unity or when the
smallest bins are emptied they are subject to a final sort before forwarding in order.
Details of the embodiment

Figure 4 shows how MTAP processors can be used to implement an orderlist
manager. The numbering shows the sequence of events that occur as packets are
scheduled, binned, re-binned, sorted and output etc. When MTAP processors are
arranged in a data flow processing architecture they are well suited to the processing
of a high speed stream of packets. They naturally operate by performing batch reads
of data, performing some processing, and then outputting data onto queues.

State Engines used as hardware accelerators can enable the MTAP processors
to store and manage the logical state required for the bins. The bins are most
conveniently implemented as LIFO stacks. This minimises the required state per bin,
and simplifies the management of bins as linked lists in memory. When each packet
is stored in a bin its location is retained in the state engine. This can be used as a
pointer by the next packet that needs to be written to the same bin. Each bin is thus a
stack in which each entry points to the next one down.

A databuffer block is used to store the bins. The block contains a bin memory
and presents producer and consumer interfaces to the processor. The consumer
receives a stream of packets and simply writes them to a supplied address. The
producer receives batch read requests from the procesor and outputs data from the
requested bin. As each bin is organised as a linked list, it is the responsibility of the

producer to extract the linked list pointer from each packet as it is read from the bin.

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854

9
Using SRAM the access time should be fast enough to make this serialised process
efficient.

In a real system embodiment it is not necessary to store the actual packets in
the bins. As previously mentioned, records, which represent information about the
packets, can be processed in their place. This simplifies implementation as the bins
can now store entities (records) which are usually, but not necessarily, of smaller size
than the packets and can be of fixed size.

As an aid to understanding the inventive approach, ;eference will now be
made to Figures 5 and 6. Consider the situation where the finish number of packets
dictates the storage location in a buffer and hence the order in which packets are read
from memory and passed to the line output O/P. Data packets are allocated to “flows”
on the basis of a number of parameters including, but not limited to, their origin,
destination, Class of Service, cost and nature, such as video or Internet Protocol (IP).
These flows can then be allocated “high”, “medium” and “low” priority in the order in
which they are managed. Billing can then be implemented on a per flow basis.
Clearly, a strategy is required for deciding which packets are to be taken from which
queue at what time.

This management criterion can be effected by assigning to each packet a tag
representing an exit time or number, based on the parameters set for billing purposes.
The packets will therefore be stored in the buffers in order of exit time or number.
This “number” could represent either the assigned exit time or the exit number in a
required sequence. No “intelligence” is then required in the system for pulling out
packets in the required order since that order has already been set in the storage phase.

The exit time order may conveniently be managed by storing those packets
having similar exit times or numbers in the same storage bin. However, it is not
necessary that each exit time or number should have a dedicated storage bin. It may
be sufficient for the bins to accommodate packets in order. This is illustrated
schematically in Figure 5, where packets having exit time or number order 1 are
placed in one bin, those with order 2 and 3 are out together in another bin 3 - 2, those
with order 4 to 7 are put together in another bin 7-4 and so on, up to order 1,000 if
need be. In order to cope with exit times or numbers in excess of the highest
numbered bin currently in use, the end bin can be designated n to infinity. As

numbers greater than n enter that bin, the range within that bin can itself be

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854
10

subdivided so that, in future, the end bin could be renamed as 10n to infinity. This
process could be repetitive.

It is important to appreciate that the order number of only the packet records,
rather than the packets themselves, need be stored in this way. There are potentially
huge savings in this approach since the records can be of fixed length and therefore
take up a known, predetermined allocation in a storage bin, in contrast to the far
greater and variable size of the packets themselves. Moreover, when the invention is
implemented by means of a series of parallel MTAP processors, as previously
mentioned, each record can be handled by a respective Processing Element (PE) of an
MTAP processor. In this way, a single clock cycle can enjoy the benefits of say
64cycles of processing time, because of the parallel architecture of MTAP processors
operating under Single Instruction Multiple Data (SIMD) conditions.

Reverting to Figure 5, and considering, for example, the situation as regards
the position for packet records with mixed exit orders 2 and 3, the parallel processor
can separate the list for the order 2 or 3 records into a respective list for each of order
2 and order 3. Similarly, the list for order numbers 4 to 7 can be coarsely split into
respective order lists for order numbers 4 and 5 (bin 5-4) and for order numbers 6 and
7 (bin 7-6). These coarse lists will eventually be broken down into finer lists in the
same way as for the combined order list for finish orders 2 and 3. The process for the
finer breakdown of this order list is illustrated schematically in Figure 6.

As shown, the combined order list for 2 and 3 is broken down into separate
order lists respectively for order 2 and for order 3. At the same time, packet records
in list 1 can be read out to extract the corresponding packet from buffer store and pass
it to the line O/P device. Once list 1 has been emptied, the manager moves to empty
from previously sorted list 2. If a new record with finish order 2, for example, arrives
whilst the combined list 2 - 3 is being sorted, the new arrival is passed into a second
order 2 list (bin 2”), shown in phantom lines in Figure 6, created for that purpose.
This bin 2’ for order 2 packet records will be emptied after the previously sorted list
for packet records of order 2 has been emptied. The same arrangement applies for
new entries of order 3 (bin 3°).

The main advantage of implementing the invention on the basis of SIMD
architecture is the programmability aspect, rather than having to predicate the number
and size of the individual storage bins for each order group, in hardware. A hardware-

based approach would necessitate excessively high processor speed and would be far

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854
11

more complex. As previously mentioned, SIMD processing effectively multiplies the .
number of processor clock cycles, thereby enhancing processor speed proportionately.

Each bin may be either of FIFO type or may be implemented by a stack, of
LIFO type. Stacks are advantageous in that they are easier to implement. The fact
that they reverse the order in which records are stored is immaterial to the order list
management since the splitting of the lists automatically ensures that the packets will
exit onto the O/P port in the correct order, according to their originally assigned exit
order tag. Packets in the same flow will have different exit numbers, ensuring that
their order is maintained.

The number of bins may vary up to around 1,000. There is an inevitable trade-
off between the number of bins and the amount of bin/list sorting. Fewer queues
require more sorting. The system designer will need to make that decision in the
context, inter alia, of the intended application.

In addition, the following criteria may influence the final design of the traffic
handler as regards list management:

On-demand load balancing: The processors are split between the enqueueing
(scheduling) task and the dequeueing (final sort) task. A sufficient number of
processors must be implemented in order that they can cope with the transient worst
case rate of packet arrival. However, the nominal arrival rate is much lower. This
would mean that a number of processors could routinely lay idle or be underused. In
that case, a small number of processors may be assigned permanently to either the
enqueueing or dequeueing tasks. The remainder may float. If input congestion is
detected then the floating processors thread switch and assist in the enqueueing task.
When the congestion is cleared, the floating processors migrate to the dequeueing task
and help to clear the backlog in the queues. If dequeuing is well resourced, then
floating processors may default to peripheral tasks such as statistics pre-processing for
subsequent reporting to the control plane.

Shadowed memory management: This is an important aspect of the orderlist
management system. Any given data structure needs functions to read and write
entries, logical state to characterise the structure, and underlying memory man-
agement to store the structure efficiently. The processor and accelerator only acheive
the first two of these. No mention has yet been made of maintaining a freelist of
available memory and allocating memory for the data structure to grow into. This in

itself can often incur considerable overhead. The efficiency of the orderlist manager

10

15

20

25

30

WO 2004/045160 PCT/GB2003/004854

12

is only possible because the memory management has already been performed for it
as follows:
Background:

In 40G traffic handling, it is practical to divorce the packet buffering from the
processing task. Packets are stored in memory within the packet buffering system.
Small records are passed to the processing system, which efficiently manipulates
records in place of the packets they represent.

The packet memory is partitioned into small blocks of fixed size. A free list or
bitmap is maintained which keeps track of which blocks are allocated and which are
free. The bitmap is used by the memory management system to manage memory
dynamically. Packets can be streamed directly into memory on arrival from the
switch fabric, with the small record of metadata retained for processing. Most
significantly, the record will contain the memory address of the (first) block of
memory in which the packet is stored.

Packet record handling and storage

Packet records are stored in a data structure by the orderlist manager. This
requires the existence of two resources - storage for the logical state describing each
bin in the structure and storage for the records themselves. State storage and bin
manipulation are implemented by the Queue State Engine (QSE) and parallel
processors respectively. Bin memory management relies directly on the packet
memory management.

Bin memory management concept

The memory provided for record storage is organised so that it mirrors the
memory provided for packets. For each memory block in the packet memory there is
a corresponding bin in the record store at a directly related memory address.

When a packet is stored, the memory block into which it is placed must be
free. The bin in the record memory must also then be free. When the record is
scheduled, the memory system recovers the packet and the memory block occupied by
that packet is released. Simultaneously, the corresponding record bin is released.
Since the storage and retrieval of the packet record is effectively “nested” within the
time over which the packet is stored and recovered, the system is very robust.

Use of pointers:
As records are randomly stored within the record memory, the records

belonging to a given bin must point to one another in a linked list arrangement. The

10

15

WO 2004/045160 PCT/GB2003/004854
13

record contains the pointer to the packet meniory. The pointer also then points to the
record’s own bin in its memory.

In effect, a record both points to itself and also to its neighbour. The same
information is being stored twice. Consider records A and B, which are adjacent in a
linked list. Record A has pointer ‘Self A’, which is its own bin, and ‘Next_A’, which
is a pointer to the next record in the list (record B). Record B also has ‘Self B’ and
‘Next_B’. It can be seen that ‘Next_A’ is the same as ‘Self B’. Only the ‘Next’
pointer is actually required in each packet. When a bin is read (in order A, B, C....)
each record can have its own pointer identity restored by retrieving it from the record
before it in the list. This provides a considerable reduction in the record storage
requirement.

Ancillary features:

Two storage systems can share the same memory manager when the write/read
accesses to one are nested within the write/read accesses to the other. A record’s own
pointer identity when it is not stored is interchangeable with a linked list pointer when
the record is stored. A translation must occur when the record is passed in and out of

storage. The bins may be managed by dedicated algorithms.

10

15

20

25

30

WO 2004/045160

14

Claims:

A method for handling packet flows, comprising sequences of data packets, in
a communication or computer system, the method comprising: assigning an
exit number to each said packet; queuing said packets in buffer means; and
outputting the queued packets in a predetermined order according to an order
list determined by said exit numbers assigned to each packet before said

packet is queued.

A method as claimed in claim 1, wherein said exit number information is
assigned to packet records, which are queued in a separate buffer means to that

in which said packets are queued.

A method as claimed in claim 2, wherein the packet records are of fixed

length.

A method as claimed in claim 2, wherein the packet records are shorter than

said packets.

A method as claimed in claim 1, wherein the buffer means for said packet
records comprise groups of bins, each bin containing a range of exit numbers,
the bins for higher exit number packet records having a larger range than bins

for lower exit number packet records.

A method as claimed in claim 5, wherein lower exit number packet records in
a bin are subdivided into a plurality of bins, each containing packet records

corresponding to a smaller range of exit numbers.

A method as claimed in claim 5, wherein under circumstances in which a
packet record is assigned an exit number corresponding to a bin that is
currently being emptied, that packet record is held in a secondary bin of the
same exit number for emptying after the said bin that is currently being

emptied.

PCT/GB2003/004854

10

15

20

25

30

WO 2004/045160

8.

10.

11.

12.

13.

14.

15.

16.

15
A method as claimed in claim 6, wherein the bins are FIFO buffers.

A method as claimed in claim 6, wherein the bins are LIFQ stacks.

A method as claimed in claim 6, wherein the bins are a mixture of FIFO

buffers and LIFQ stacks.

A method as claimed in claim 5, wherein queue management is performed by
(2) processing all of said bins in parallel and (b) inserting incoming data into a

bin by means of a parallel processor.

A method as claimed in claim 11, wherein said parallel processor performing

said inserting step (b) is an array processor.

A method as clamed in claim 12, wherein said array processor performing said

inserting step (b) is a SIMD processor.

A communication network processor in which traffic flows consist of data
packet streams, the network processor comprising: means for assigning a
buffer exit number to each said packet; buffer means for queuing said packets;
and output means for outputting the queued packets in a predetermined order
according to an order list determined by said exit numbers assigned to each

packet before said packet is queued.

Means for sorting data in a computer system in which data to be processed
consist of data packet streams, comprising: means for assigning a buffer exit
number to each said packet; buffer means for queuing said packets; and output
means for outputting the queued packets in a predetermined order according to
an order list determined by said exit numbers assigned to each packet before

said packet is queued.

A parallel processor adapted to implement the method according to any of

claims 1 to 13.

PCT/GB2003/004854

WO 2004/045160 PCT/GB2003/004854
16

17. A parallel processor using SIMD and adapted to implement the method

according to any of claims 1 to 13.

18. A network processor adapted to perform data packet management in a

communication network as claimed in claim 14.

19. A processor adapted to perform data packet sorting in a computer system as

claimed in claim 15.

WO 2004/045160 PCT/GB2003/004854

1/3
Senice Traffic
Traffic Traffic presening Handing
Classifier Conditioner switch Gbric System

honitor and |y
& restrict trafic
rates

Classifcation,
= filtering and
routing lookaup

Lo

A B S C
Fig 1
n-infinity 7 6 5 4 3 2 1

Packet
insertion

Packets arrive tag=92 tag=39

with pre-assigned

exit number

eg n=10
coarser < p | finer

Fig 2

WO 2004/045160 PCT/GB2003/004854

2/3
next
bin 6
! !
o Vo
Stage 1) Stage 2 '
bin sort i bin sort)
» processor | \ i processor i
2 !]
5 !
bind : :
' i
1 3
Stage 1 bin state (stack ptr) Stage 2 bin state (stack ptr)
Fig 3
QSE

(queue state)

2 1 9
\, MTAP [,
processor

(scheduling &
final sort)

10393[[0D

10InquISIT
oo

Data structure
\ QSE (bin state)
o MTAP e
w P
g, processor 3
g (bin sort) g
o -
S
6 4 Data structure 5

Fig4

PCT/GB2003/004854

WO 2004/045160

3/3

1 out

2 out

>

3 out

TANRVAN

7-6

Fig 5

Fig 6

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

