(54) 发明名称

一种苯基烷基醚的醚键断裂方法

(57) 摘要

本发明公开了一种苯基烷基醚的醚键断裂方法，该方法是在有机溶剂中，在三氯化铝和无机酸清除剂存在的条件下，苯基烷基醚在20℃至回流的温度下发生醚键断裂反应，生成苯酚及其衍生物。该方法条件温和，操作简便，而且产率高，适用的苯基烷基醚范围广。
1. 一种苯基烷基酯的酰键断裂方法，其特征在于包括如下步骤：

在有机溶剂中，于三碘化铝和无机酸清除剂存在的条件下，苯基烷基酯在-20℃至回流
的温度下发生酰键断裂反应，生成苯酚及其衍生物，所述的苯基烷基酯为：

其中，R²、R³、R⁴、R⁵分别为：氢原子、卤素、甲基、乙基、丙基、异丙基、乙烯基、丙烯基、烯丙基、异戊烯基、硝基、氟基、甲酰基、乙酰基、三氟乙酰基、羟基、甲氧基、乙氧基、异丙氧基、酰胺基团或者-OR。

所述的R为甲基、乙基、正丙基或异丙基。

2. 根据权利要求1所述的苯基烷基酯的酰键断裂方法，其特征在于：所述的无机酸清除
剂为碳酸锂、碳酸钠、硫酸钠、硫酸钾、磷酸钠、磷酸锂、磷酸钾、磷酸钠、磷酸锂、乙
醇锂，乙醇钠，乙醇钾，丙醇锂，丙醇钠，丙醇钾，异丙醇锂，异丙醇钠，异丙醇钾，正丁醇锂，正
丁醇钠，正丁醇钾，叔丁醇锂，叔丁醇钠，叔丁醇钾，环己醇锂，环己醇钠，环己醇钾，苯酚
锂，苯酚钠，苯酚钾，氧化锂，氧化钠，氧化钾，氧化锂和氧化钠中的任意一种，或者任意几
种的组合。

3. 根据权利要求1所述的苯基烷基酯的酰键断裂方法，其特征在于：所述的酰键断裂反
应的时间为1分钟～48小时。

4. 根据权利要求3所述的苯基烷基酯的酰键断裂方法，其特征在于：所述的酰键断裂反
应的时间为0.5～18小时。

5. 根据权利要求1所述的苯基烷基酯的酰键断裂方法，其特征在于：当苯基烷基酯含
有一个亟待断裂的酰键时，三碘化铝，无机酸清除剂和苯基烷基酯的摩尔比为0.4～3：0.01～10：1；当苯基烷基酯含有多个亟待断裂的酰键时，三碘化铝和无机酸清除剂的用量按亟待
断裂的酰键的个数成倍增加。

6. 根据权利要求5所述的苯基烷基酯的酰键断裂方法，其特征在于：当苯基烷基酯含
有一个亟待断裂的酰键时，三碘化铝，无机酸清除剂和苯基烷基酯的摩尔比为1.0～1.5：1.1～3：1。

7. 根据权利要求1所述的苯基烷基酯的酰键断裂方法，其特征在于：先将三碘化铝溶于
有机溶剂中，再依次加入无机酸清除剂、苯基烷基酯，或先将三碘化铝溶于有机溶剂中，再
加入无机酸清除剂和苯基烷基酯的混合物，或先将无机酸清除剂和苯基烷基酯加入有机溶
剂中，再加入三碘化铝。

8. 根据权利要求1所述的苯基烷基酯的酰键断裂方法，其特征在于：所述的有机溶剂为
烷烃、芳烃、二硫化碳和氮类溶剂中的任意一种或者任意几种的组合，所述的烷烃为石油
醚、正己烷、环己烷、环己烷异构体混合物或庚烷，所述的芳烃为苯、甲苯或二甲苯，所述的氮
类溶剂为乙腈、丙腈、丁腈、异丁腈、苯胺、苯乙腈、丙二腈、丁二腈、戊二腈或己二腈。
一种苯基烷基醚的醚键断裂方法

技术领域
[0001] 本发明涉及药物和化工原料的中间体合成技术领域，具体涉及一种苯基烷基醚的醚键断裂方法。

背景技术

[0004] CN106278825A公开了一种用三溴化铝-吡啶断裂醚键的方法，以接近定量的产率脱除了丁香酚的甲基，但是由于吡啶通过与三溴化铝的络合作用影响了三溴化铝的亲氧化，导致该方法仅能用于邻羟基苯基烷基醚，而不能用于普通的不含邻羟基的苯基烷基醚的醚键断裂。

[0005] CN106866377A公开了三溴化铝-碳二亚胺断裂醚键的方法，基本上解决了各类常见苯基烷基醚的醚键断裂问题，然而碳二亚胺的副产物在多数情况下成了需要除去的杂质，而且碳二亚胺通常稳定性差。

[0006] 吡啶气味很重，对空气有污染，而且对操作人员的身体有一定的伤害，碳二亚胺一般价格比较昂贵，贮存稳定性也比较差。此外，吡啶和碳二亚胺生产的副产物均为有机物，如果处理不当的话，就成为有机污染物。

发明内容
[0007] 为解决上述现有技术存在的问题，本发明提供了一种苯基烷基醚的醚键断裂方法，该方法条件温和，操作简便，而且产率高，适用的苯基烷基醚范围广。

[0008] 实现本发明上述目的所使用的技术方案为：

[0009] 一种苯基烷基醚的醚键断裂方法，包括如下步骤：

[0010] 在有机溶剂中，在三溴化铝和无机酸清除剂存在的条件下，苯基烷基醚在-20℃至回流的温度下发生醚键断裂反应，生成苯酚及其衍生物，所述的苯基烷基醚为：
[0012] 其中，R₁、R₂、R₃、R₄、R₅ 分别为：氢原子、卤素、甲基、乙基、丙基、异丙基、乙烯基、丙烯基、烯丙基、异戊烯基、硝基、氰基、甲基酰基、乙酰基、三氟乙酰基、羟基、甲氧基、乙氧基、异丙氧基、甲酰基团或者-OR；

[0013] 所述的R为甲基、乙基、正丙基或者异丙基。

[0014] 所述的有机酸清除剂为碳酸锂、碳酸钠、碳酸钾、碳酸铷、碳酸镁、碳酸钙、碳酸钡、甲醇锂、甲醇钠、甲醇钾、乙醇锂、乙醇钠、乙醇钾、丙醇锂、丙醇钠、丙醇钾、异丙醇锂、异丙醇钠、异丙醇钾、正丁醇锂、正丁醇钠、正丁醇钾、叔丁醇锂、叔丁醇钠、叔丁醇钾、环己醇锂、环己醇钠、环己醇钾、苯酚锂、苯酚钠、苯酚钾、氧化锂、氧化镁、氧化钙、氧化铜和氧化锌中的任意一种，或者任意几种的组合。

[0015] 所述的醚键断裂反应的反应时间为1分钟～48小时。

[0016] 所述的醚键断裂反应的反应时间为0.5～18小时。

[0017] 当苯基烷基醚含有一个烷链断裂的醚键时，三碘化铝、有机酸清除剂和苯基烷基醚的摩尔比为0.4～3.0：0.01～10：1；当苯基烷基醚含有多个烷链断裂的醚键时，三碘化铝和无机酸清除剂的用量按卤链断裂的醚键的个数成倍增加。

[0018] 当苯基烷基醚含有一个烷链断裂的醚键时，三碘化铝、无机酸清除剂和苯基烷基醚的摩尔比为1.0～1.5：1.1～3：1。

[0019] 先将三碘化铝溶于有机溶剂中，再依次加入无机酸清除剂、苯基烷基醚；或先将三碘化铝溶于有机溶剂中，再加入无机酸清除剂和苯基烷基醚的混合物；或先将无机酸清除剂和苯基烷基醚加入有机溶剂中，再加入三碘化铝。

[0020] 所述的有机溶剂为烷烃、芳烃、二硫化碳和腈类溶剂中的任意一种或者任意几种的组合，所述的烷烃为石油醚、正己烷、环己烷、己烷异构体混合物或庚烷，所述的芳烃为苯、甲苯或二甲苯，所述的腈类溶剂为乙腈、丙腈、丁腈、异丁腈、苯腈、苯乙腈、丙二腈、丁二腈、戊二腈或己二腈。

[0021] 与现有技术相比，本发明的优点与有益效果在于：

[0022] 1) 本发明用三碘化铝作为醚链断裂的试剂，由于其与无机酸清除剂不络合，所以亲氧性不受限制，断裂醚键的反应活性不受反应条件的影响。

[0023] 2) 本发明使用的无机酸清除剂来源广泛，性质稳定，价格低廉。

[0024] 3) 本发明可以用于脱除乙基、异丙基等比甲基位阻大的烷基。

[0025] 4) 邻羟基苯基烷基醚中硝基、卤素、醛基、烯烃、氰基、羰基、酰胺基团和羧基等官能团对不受反应条件的影响，适用范围广。

[0026] 5) 无机酸清除剂不仅价格便宜，而且没有气味，对空气污染小，对操作人员没有身体伤害，而且产生的副产物为无机盐，对环境污染小。

具体实施方式

[0027] 下面结合具体实施例对本发明进行详细说明。

[0028] 以下实施例中所使用的三碘化铝均为参考文献(Bhatt, M.V.; Babu,

0029 向若干个烧杯中分别加入碘、铝粉和乙腈，加热至回流，搅拌约1小时至碘的紫红色消失，冷却至室温，用旋转蒸发仪蒸去溶剂，得到临时制备的浅黄色或灰白色三碘化铝粉末。将得到的浅黄色或灰白色三碘化铝粉末用玻璃塞密封，放入干燥器中室温保存、备用。

0030 实施例1（丁香酚脱甲基）

0031

0032 向一个100ml烧杯中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、叔丁醇钾（1.237g, 11.0mmol）和丁香酚（0.819g, 5.0mmol），加热至80℃，反应18小时后停止搅拌，冷却至室温后向烧杯中加入2mol/l的稀盐酸（10ml）酸化，用乙酸乙酯（50ml × 3）萃取，合并有机相，先用硫酸钠饱和水溶液洗涤，再用饱和食盐水（10ml）洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:4，体积比）纯化，得到0.733g 4-烯丙基丁香酚粗品，取4-烯丙基丁香酚粗品（0.709g）用石油醚减压升华，得到0.681g 4-烯丙基邻苯二酚（白色蜡状固体，产率93%）。

0033 Rr=0.38（石油醚/乙酸乙酯=2:1）；熔点：45-46℃。

0034 1HNMR (400MHz, CDCl3) δ 6.82 (d, J = 8.0Hz, 1H), 6.74 (s, 1H), 6.65 (d, J = 8.0Hz, 1H), 5.99-5.89 (m, 1H), 5.38 (brs, 2H), 5.09-5.06 (m, 2H), 3.29 (d, J = 8.0Hz, 2H)。

0035 实施例2（丁香酚脱甲基）

0036

0037 用CuO（5.966g）代替叔丁醇钾，其余条件与实施例1一致，得到4-烯丙基邻苯二酚（产率88%）。

0038 实施例3（丁香酚脱甲基）

0039

0040 用CaO（4.200g）代替CuO，其余条件与实施例2一致，得到4-烯丙基邻苯二酚（产率95%）。

0041 实施例4（丁香酚脱甲基）

0042

0043 用Na2CO3（7.949g）代替CaO，其余条件与实施例3一致，得到4-烯丙基邻苯二酚（产率83%）。

0044 实施例5（丁香酚甲酯脱甲基）

0045

0046 向一个100ml烧杯中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、CaO（0.422g, 7.5mmol）和丁香酚甲酯（0.893g, 5.0mmol），加热至80℃，反应18小时后停止搅拌，冷却至室温后向烧杯中加入2mol/l的稀盐酸（10ml）酸化，用乙酸乙酯（50ml × 3）萃取，合并有机相，先用硫酸钠饱和水溶液（10ml）洗涤，再用饱和食盐水（10ml）洗涤，无水硫酸
酸醚干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:4，体积比）纯化，得到0.670g 4-烯丙基苯甲醚（白色鳞状固体，产率89%）。

实施例6（香兰素脱甲基）

向一个100ml茄形瓶中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、CaO（0.422g, 7.5mmol）和香兰素（760mg, 5.0mmol），加热至80°C，反应18小时后停止搅拌，冷却至室温后向茄形瓶中加入2mol/L的稀盐酸（10ml）酸化，用乙酸乙酯（50ml×3）萃取，合并有机相，先用硫酸钠饱和水溶液（10ml）洗涤，再用饱和食盐水（10ml）洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:2，体积比）纯化，得到0.656g 3,4-二羟基苯甲醚（白色固体，产率95%）。

实施例7（异香兰素脱甲基）

向一个100ml茄形瓶中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、CaO（0.422g, 7.5mmol）和异香兰素（0.762g, 5.0mmol），加热至80°C，反应18小时后停止搅拌，冷却至室温后向茄形瓶中加入2mol/L的稀盐酸（10ml）酸化，用乙酸乙酯（50ml×3）萃取，合并有机相，先用硫酸钠饱和水溶液（10ml）洗涤，再用饱和食盐水（10ml）洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:2，体积比）纯化，得到0.647g 3,4-二羟基苯甲醚（类白色固体，产率94%）。

实施例8（乙基香兰素脱乙基）

向一个100ml茄形瓶中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、CaO（0.422g, 7.5mmol, 1.5eq）和乙基香兰素（0.833g, 5.0mmol），加热至80°C，反应18小时后停止搅拌，冷却至室温后向茄形瓶中加入2mol/L的稀盐酸（10ml）酸化，用乙酸乙酯（50ml×3）萃取，合并有机相，先用硫酸钠饱和水溶液（10ml）洗涤，再用饱和食盐水（10ml）洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:2，体积比）纯化，得到0.646g 3,4-二羟基苯甲醚（类白色固体，产率93%）。

实施例9（藜芦醛脱甲基）

向一个100ml茄形瓶中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、CaO（0.420g, 7.5mmol）和藜芦醛（0.830g, 5.0mmol），加热至80°C，反应18小时后停止搅拌，冷却至室温后向茄形瓶中加入2mol/L的稀盐酸（10ml）酸化，用乙酸乙酯（50ml×3）萃取，合并有机相，先用硫酸钠饱和水溶液（10ml）洗涤，再用饱和食盐水（10ml）洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:2，体积比）纯化，得到0.646g 3,4-二羟基苯甲醚（类白色固体，产率93%）。
燥，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:2，体积比）纯化，得到0.569g 3,4-二羟基苯甲醛（白色固体，产率73%）。

【0061】实施例10（香草酮脱甲基）

[0062]

向一个100ml茄形瓶中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、CaO（0.422g，7.5mmol）和香草酮（0.833g, 5.0mmol），加热至80℃，反应18小时后停止搅拌，冷却至室温后向茄形瓶中加入2mol/L的稀盐酸（10ml）酸化，用乙酸乙酯（50ml×3）萃取，合并有机相，先用硫代硫酸钠饱和水溶液（10ml）洗涤，再用饱和食盐水（10ml）洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:2，体积比）纯化，得到0.720g 3,4-二羟基苯乙酮（白色固体，产率94%）。

【0064】Rf=0.30（石油醚/乙酸乙酯=2:1）；熔点:117-118℃。

【0065】1H NMR (400MHz, DMSO-d6) δ8.81 (brs, 1H), 9.34 (brs, 1H), 7.36-7.33 (m, 2H), 6.81 (d, J=8.4Hz, 1H), 2.44 (s, 3H)。

【0066】实施例11（4-羟基-3-甲氧基苯甲醛）

【0067】

向一个100ml茄形瓶中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、CaO（0.422g，7.5mmol）和4-羟基-3-甲氧基苯甲醛（0.746g, 5.0mmol），加热至80℃，反应18小时后停止搅拌，冷却至室温后向茄形瓶中加入2mol/L的稀盐酸（10ml）酸化，用乙酸乙酯（50ml×3）萃取，合并有机相，先用硫代硫酸钠饱和水溶液（10ml）洗涤，再用饱和食盐水（10ml）洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:1，体积比）纯化，得到0.645g 3,4-二羟基苯甲醛（白色固体，产率95%）。

【0069】Rf=0.48（石油醚/乙酸乙酯=1:1）；熔点:154-154.5℃。

【0070】1H NMR (400MHz, DMSO-d6) δ8.81 (brs, 2H), 7.11 (d, J=8.0Hz, 1H), 7.06 (s, 1H), 6.86 (d, J=8.0Hz, 1H)。

【0071】实施例12（3-羟基-4-甲氧基苯甲醛）

【0072】

向一个100ml茄形瓶中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、CaO（0.418g，7.5mmol）和3-羟基-4-甲氧基苯甲醛（0.747g, 5.0mmol），加热至80℃，反应18小时后停止搅拌，冷却至室温后向茄形瓶中加入2mol/L的稀盐酸（10ml）酸化，用乙酸乙酯（50ml×3）萃取，合并有机相，先用硫代硫酸钠饱和水溶液（10ml）洗涤，再用饱和食盐水（10ml）洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析（淋洗剂为乙酸乙酯/石油醚=1:1，体积比）纯化，得到0.652g 3,4-二羟基苯甲醛（白色固体，产率96%）。

【0074】实施例13（愈创木酚脱甲基）

【0075】

向一个100ml茄形瓶中加入三碘化铝（2.242g, 5.5mmol）、乙腈（40ml）、CaO
(0.418g, 7.5mmol)和愈创木酚 (0.621g,5.0mmol), 加热至80℃, 反应18小时后停止搅拌, 冷至室温后向茄形瓶中加入2mol/L的稀盐酸 (10ml) 酸化, 用乙酸乙酯 (50ml×3) 萃取, 合并有机相, 先用氯化钠饱和水溶液 (10ml) 洗涤, 再用饱和食盐水 (10ml) 洗涤, 无水硫酸镁干燥, 过滤, 滤液用旋转蒸发仪蒸干, 残余物通过快速柱层析 (淋洗剂为乙酸乙酯/石油醚 = 1:4) 纯化, 得到0.520g邻苯二酚 (白色固体, 产率94%)。

[Rf=0.44 (石油醚/乙酸乙酯 = 3:1); 熔点: 102.5-104.5℃。

[1H NMR (400MHz, CDCl3)] δ 6.87-6.81 (m, 4H), 5.25 (brs, 2H).

技术例14 (愈创木酚脱甲基)

[0080] 向一个100ml茄形瓶中加入三碘化铝 (2.42g, 5.5mmol), 乙腈 (40ml), BuOK (0.840g, 6.9mmol) 和愈创木酚 (0.621g, 5.0mmol), 加热至80℃, 反应18小时后停止搅拌, 冷至室温后, 向茄形瓶中加入2mol/L的稀盐酸 (10ml) 酸化, 用乙酸乙酯 (50ml×3) 萃取, 合并有机相, 先用氯化钠饱和水溶液 (10ml) 洗涤, 再用饱和食盐水 (10ml) 洗涤, 无水硫酸镁干燥, 过滤, 滤液用旋转蒸发仪蒸干, 残余物通过快速柱层析 (淋洗剂为乙酸乙酯/石油醚 = 1:4) 纯化, 得到0.519g邻苯二酚 (白色固体, 产率94%)。

技术例15 (2-异丙氧基苯酚脱异丙基)

[0084] 向一个100ml茄形瓶中加入三碘化铝 (2.42g, 5.5mmol), 乙腈 (40ml), CaO (0.421g, 7.5mmol) 和2-异丙氧基苯酚 (0.763g, 5.0mmol), 加热至80℃, 反应18小时后停止搅拌, 冷至室温后, 向茄形瓶中加入2mol/L的稀盐酸 (10ml) 酸化, 用乙酸乙酯 (50ml×3) 萃取, 合并有机相, 先用氯化钠饱和水溶液 (10ml) 洗涤, 再用饱和食盐水 (10ml) 洗涤, 无水硫酸镁干燥, 过滤, 滤液用旋转蒸发仪蒸干, 残余物通过快速柱层析 (淋洗剂为乙酸乙酯/石油醚 = 1:4) 纯化, 得到0.520g邻苯二酚 (白色固体, 产率94%)。

技术例16 (3-甲氧基苯酚脱甲基)

[0087] 向一个100ml茄形瓶中加入三碘化铝 (2.42g, 5.5mmol), 乙腈 (40ml), CaO (0.421g, 7.5mmol) 和3-甲氧基苯酚 (0.621g, 5.0mmol), 加热至80℃, 反应18小时后停止搅拌, 冷至室温后, 向茄形瓶中加入2mol/L的稀盐酸 (10ml) 酸化, 用乙酸乙酯 (50ml×3) 萃取, 合并有机相, 先用氯化钠饱和水溶液 (10ml) 洗涤, 再用饱和食盐水 (10ml) 洗涤, 无水硫酸镁干燥, 过滤, 滤液用旋转蒸发仪蒸干, 残余物通过快速柱层析 (淋洗剂为乙酸乙酯/石油醚 = 1:3) 纯化, 得到0.101g间苯二酚 (白色固体, 产率18%)。

[Rf=0.25 (石油醚/乙酸乙酯 = 3:1); 熔点: 105-105.5℃。

[1H NMR (400MHz, DMSO-d6)] δ 8.15 (s, 2H), 6.92 (t, J=8.2Hz, 1H), 6.20-6.17 (m, 3 H).

技术例17 (4-氯丙基苯甲酸脱甲基)

[0091]
说明书

[0092] 向一个100ml茄形瓶中加入三碘化铝(2.242g, 5.5mmol)、乙醇(40ml)、CaO(0.419g, 7.55mmol)和4-烯丙基甲氧基苯(0.742g, 5.0mmol),加热至80℃,反应18小时后停止搅拌,冷却至室温后向茄形瓶中加入2mol/L的稀盐酸(10ml)酸化,用乙酸乙酯(50ml×3)萃取,合并有机相,先用硫代硫酸钠饱和水溶液(10ml)洗涤,再用饱和食盐水(10ml)洗涤,无水硫酸镁干燥,过滤,滤液用旋转蒸发仪蒸干,残余物通过快速柱层析(淋洗剂为乙酸乙酯/石油醚=1:3,体积比)纯化,得到0.480g 4-烯丙基苯酚(淡黄色油状液体,产率71%)。

[0093] Rf=0.53(石油醚/乙酸乙酯=3:1)。

[0094] H NMR (400MHz, CDCl3) δ 7.00 (d, J=7.6Hz, 2H), 6.75 (d, J=7.5Hz, 2H), 6.37 (s, 1H), 5.96–5.86 (m, 1H), 5.03 (d, J=14.6Hz, 1H), 5.02 (d, J=11.2Hz, 1H), 3.27 (d, J=6.7Hz, 2H)。

[0095] 实施例18(合成辣椒素脱甲基)

[0097] 向一个100ml茄形瓶中加入三碘化铝(1.121g, 2.75mmol)、乙醇(20ml)、CaO(0.209g, 3.75mmol)和合成辣椒素(0.734g, 2.5mmol),加热至80℃,反应18小时后停止搅拌,冷却至室温后向茄形瓶中加入2mol/L的稀盐酸(10ml)酸化,用乙酸乙酯(50ml×3)萃取,合并有机相,先用硫代硫酸钠饱和水溶液(10ml)洗涤,再用饱和食盐水(10ml)洗涤,无水硫酸镁干燥,过滤,滤液用旋转蒸发仪蒸干,残余物通过快速柱层析(淋洗剂为乙酸乙酯/石油醚=1:1,体积比)纯化,得到0.679g N-(3,4-二羟基苯基)壬酰胺(黄色固体,产率97%)。

[0098] Rf=0.42(石油醚/乙酸乙酯=1:1);熔点:97.5–98℃。

[0099] H NMR (400MHz, CDCl3) δ 8.52 (s, 1H), 6.85 (s, 1H), 6.80 (d, J=8.0Hz, 1H), 6.62 (d, J=8.0Hz, 1H), 6.09 (s, 1H), 5.95 (s, 1H), 4.31 (d, J=5.8Hz, 2H), 2.21 (t, J=7.6Hz, 2H), 1.62 (t, J=7.2Hz, 2H), 1.35–1.18 (m, 10H), 0.86 (t, J=6.4Hz, 3H)。

[0100] 实施例19(邻香兰素脱甲基)

[0101] 向一个100ml茄形瓶中加入三碘化铝(2.242g, 5.5mmol)、乙醇(40ml)、CaO(0.420g, 7.5mmol)和邻香兰素(0.763g, 5.5mmol),加热至80℃,反应18小时后停止搅拌,冷却至室温后向茄形瓶中加入2mol/L的稀盐酸(10ml)酸化,用乙酸乙酯(50ml×3)萃取,合并有机相,先用硫代硫酸钠饱和水溶液(10ml)洗涤,再用饱和食盐水(10ml)洗涤,无水硫酸镁干燥,过滤,滤液用旋转蒸发仪蒸干,残余物通过快速柱层析(淋洗剂为乙酸乙酯/石油醚=1:3,体积比)纯化,得到0.259g 2,3-二羟基苯甲醛(黄色固体,产率37%)。

[0103] Rf=0.49(石油醚/乙酸乙酯=3:1);熔点:103.5–104℃。

[0104] H NMR (400MHz, CDCl3) δ 11.09 (s, 1H), 9.90 (s, 1H), 7.26–7.14 (m, 2H), 6.95 (t, J=7.8Hz, 1H), 5.65 (s, 1H)。

[0105] 实施例20(5-硝基香兰素脱甲基)

[0106]
向一个100ml的容器中加入三氯化铝(2.42g, 5.5mmol)、乙腈(40ml)、CaO(0.421g, 7.5mmol)和5-硝基香兰素(0.985g, 5.0mmol),加热至80℃,反应18小时后停止搅拌,冷至室温后向该容器中加入2mol/L的稀盐酸(10ml)酸化,用乙酸乙酯(50ml × 3)萃取,合并有机相，先用硫代硫酸钠饱和水溶液(10ml)洗涤，再用饱和食盐水(10ml)洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析(淋洗剂为乙酸乙酯/石油醚=1:3,体积比)纯化，得到0.131g 3,4-二羟基-5-硝基苯甲醛(黄色固体，产率14%)。

\[\text{Rf} = 0.38 \text{ (石油醚/乙酸乙酯=3:1), 熔点: 134.5-135℃。} \]

\[\text{H NMR (400MHz, DMSO-\text{d}_6) ð 9.80 (s, 1H), 7.98 (s, 1H), 7.47 (s, 1H).} \]

实施例21 (4-硝基愈创木酚脱甲基)

向一个100ml的容器中加入三氯化铝(1.121g, 2.75mmol)、乙腈(20ml)、CaO(0.212g, 3.75mmol)和4-硝基愈创木酚(0.423g, 2.5mmol),加热至80℃,反应18小时后停止搅拌,冷至室温后向该容器中加入2mol/L的稀盐酸(10ml)酸化,用乙酸乙酯(50ml × 3)萃取,合并有机相，先用硫代硫酸钠饱和水溶液(10ml)洗涤，再用饱和食盐水(10ml)洗涤，无水硫酸镁干燥，过滤，滤液用旋转蒸发仪蒸干，残余物通过快速柱层析(淋洗剂为乙酸乙酯/石油醚=1:1,体积比)纯化，得到0.245g 4-硝基邻苯二酚(黄色固体，产率63%)。

\[\text{Rf} = 0.48 \text{ (石油醚/乙酸乙酯=1:1), 熔点: 175.5-176℃。} \]

\[\text{H NMR (400MHz, DMSO-\text{d}_6) ð 10.29 (brs, 2H), 7.64 (dd, J_1 = 8.4Hz, J_2 = 2.8Hz, 1H), 7.6 (d, J = 2.4Hz, 1H), 6.89 (d, J = 8.8Hz, 1H).} \]