(19) 中华人民共和国国家知识产权局

(12) 发明专利

(10) 授权公告号 CN 103025334 B
(45) 授权公告日 2016.03.16

(21) 申请号 201180036057.1
(22) 申请日 2011.05.24
(30) 优先权数据
 2010902262 2010.05.24 AU
(85) PCT国际申请进入国家阶段日
 2013.01.23
(86) PCT国际申请的申请数据
 PCT/AU2011/000622 2011.05.24
(87) PCT国际申请的公布数据
 WO2011/146981 EN 2011.12.01
(73) 专利权人 澳星医疗私人有限公司
 地址 澳大利亚新南威尔士州
(72) 发明人 N.N. 戈格尼 M. 阿夫哈姆
(74) 专利代理机构 北京尚诚知识产权代理有限公司
 代理人 龙淳

(51) Int.Cl.
 A61K 31/733(2006.01)
 A61K 31/64(2006.01)
 A61P 3/10(2006.01)

(54) 发明名称
 抗糖尿病组合物和方法
(57) 摘要
 本发明涉及在糖尿病治疗中有效的协同组合物。具体而言，本发明涉及在 2 型糖尿病 (T2DM) 和高血糖的治疗中使用的包括菊糖或其合适来源以及磺脲的协同组合物。
1. 一种包括菊糖以及磺脲的组合物在制备用于治疗糖尿病的药物中的用途，其中所述药物调节血糖浓度。
2. 如权利要求 1 所述的用途，其中所述药物降低血糖浓度。
3. 如权利要求 1 所述的用途，其中所述药物使血糖浓度正常化。
4. 一种包括菊糖的组合物在制备用于在受试者中改善磺脲治疗糖尿病的药物效力的药物中的用途。
5. 如权利要求 1-4 中任一项所述的用途，其中所述糖尿病为 2 型糖尿病。
6. 一种包括菊糖以及磺脲的组合物在制备用于治疗高血糖的药物中的用途，其中所述药物调节血糖浓度。
7. 如权利要求 6 所述的用途，其中所述药物降低血糖浓度。
8. 如权利要求 6 所述的用途，其中所述药物使血糖浓度正常化。
9. 一种包括菊糖的组合物在制备用于在使用磺脲治疗的受试者中预防低血糖的形成或改善低血糖的药物中的用途。
10. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述药物包括菊糖并与磺脲结合，或者所述药物包括单独的单位剂量的菊糖以及磺脲，其中各个单位剂量可与磺脲同时施用或以任意顺序依次施用。
11. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述菊糖从天然来源获得。
12. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述菊糖是从合成产生的。
13. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中菊糖来源是植物，或其部分。
14. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中菊糖来源是植物，或其部分，且所述植物或其部分选自洋葱，韭菜，大蒜，朝鲜蓟，婆罗门参，龙舌兰和菊苣。
15. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中菊糖来源是菊苣根。
16. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述菊糖是纯化的或纯的菊糖。
17. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述磺脲选自格列齐特，格列本脲，格列吡酮，格列美脲，格列喹酮，格列吡脲，格列喹酮，甲苯磺丁脲，氯磺丙脲，乙酰苯磺酰环己脲，或其组合。
18. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述磺脲是格列本脲或格列齐特。
19. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述药物被配制成用于口服给药。
20. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述药物包括含量为 4 克至 40 克以每日施用的菊糖。
21. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述药物包括含量为 10 克至 35 克以每日施用的菊糖。
22. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述药物是食品和/或饮料中的补充剂。
23. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述菊糖被配制成作为选自丸剂，片剂，和胶囊剂的药物单位剂型来施用。
24. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述菊糖被配制成作为选自丸
剤、片剤、和胶囊剂的药物单位剂型来施用，且其中所述药物单位剂型还包括磺脲。

25. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述葡糖被配制成用于连续施用
2 个月至 6 个月的时间。

26. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述葡糖被配制成用于连续施用
4 个月至 6 个月的时间。

27. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述葡糖被配制成用于连续施用
并且要在磺脲施用期间进行施用。

28. 如权利要求 1-4 和 6-9 中任一项所述的用途，其中所述葡糖被配制成用于连续施用
并且其中要在停止施用磺脲之后继续施用。

29. 一种用于治疗糖尿病的组合物，包括葡糖以及磺脲，其任选地与一种或多种药学可
接受的载体和/或赋形剂相结合。

30. 如权利要求 29 所述的组合物，其中所述葡糖从天然来源获得。

31. 如权利要求 29 所述的组合物，其中所述葡糖是合成产生的。

32. 如权利要求 29 所述的组合物，其中菊糖来源是菊苣根，或者其中所述菊糖是纯化的
或纯的菊糖。

33. 如权利要求 29-32 中任一项所述的组合物，其中所述磺脲选自格列齐特、格列本
脲、格列派特、格列吡嗪、格列美脲、格列喹酮、格列吡脲、妥拉磺脲、甲苯磺丁脲、氯磺丙脲、
乙酰苯磺酰环己脲，或其组合。

34. 如权利要求 29 所述的组合物，其中菊糖来源是菊苣根，或者其中所述菊糖是纯化的
或纯的菊糖，且所述磺脲是格列本脲或格列齐特。

35. 如权利要求 29-32 和 34 中任一项所述的组合物，其采用立即释放、受控释放或延迟
释放的剂型形式。

36. 如权利要求 29-32 和 34 中任一项所述的组合物，其采用选自丸剂、片剂、和胶囊剂
的单位剂型。

37. 如权利要求 29-30 和 34 中任一项所述的组合物，其采用立即释放、受控释放或延迟
释放的剂型形式，其中菊糖来源是菊苣根，或者其中菊糖是纯化的或纯的菊糖，且所述磺脲
是格列本脲或格列齐特。

38. 如权利要求 29-30 和 34 中任一项所述的组合物，其采用选自丸剂、片剂、和胶囊剂
的单位剂型，其中菊糖来源是菊苣根，或者其中菊糖是纯化的或纯的菊糖，且所述磺脲是格
列本脲或格列齐特。
抗糖尿病组合物和方法

技术领域

本发明涉及在糖尿病治疗中有效的协同组合物。具体而言，本发明涉及用于2型糖尿病(T2DM)治疗的协同组合物，其包括菊糖(insulin)或其合适来源，以及磺脲(Sulphonylureas)。

背景技术

贯穿说明书，不应将对于现有技术的任何讨论理解为承认这些现有技术是领域内广泛知晓的或者其形成领域内公知常识的一部分。

糖尿病作为全球健康问题(1~5)

糖尿病是世界上发展最快的慢性疾病。2006年12月20日，联合国大会通过了联合国决议61/255，将糖尿病确认为全世界国家所面临的主要健康危机。决议把每年的11月14日指定为联合国世界糖尿病日，并号召所有国家形成对于糖尿病患者和存在糖尿病发生风险的人群的预防、治疗和护理的国家政策。

2007年，糖尿病人群数量最大的五个国家是印度(4090万)、中国(3980万)、美国(1920万)、俄罗斯(960万)和德国(740万)。每年还有七百万人患上糖尿病。每年有380万例死亡归因于糖尿病。更多人死于因糖尿病相关的血脂异常和高血糖症加强的心血管疾病。平均而言，患有T2DM的人的死亡时间比没有糖尿病的人早5~10年，大多数是因为心血管疾病。心血管疾病是糖尿病死亡以及大多数失能的主因，占所有糖尿病死亡的约50%。患有T2DM的人心脏病发作或发生中风的可能性为不患糖尿病的人的两倍多。确实，患有T2DM的人比心脏病发作过而不患糖尿病的人更容易心脏病发作。

2006年，2007年，糖尿病人群数量最大的五个国家是印度(4090万)、中国(3980万)、美国(1920万)、俄罗斯(960万)和德国(740万)。每年还有七百万人患上糖尿病。每年有380万例死亡归因于糖尿病。更多人死于因糖尿病相关的血脂异常和高血糖症加强的心血管疾病。平均而言，患有T2DM的人的死亡时间比没有糖尿病的人早5~10年，大多数是因为心血管疾病。心血管疾病是糖尿病死亡以及大多数失能的主因，占所有糖尿病死亡的约50%。患有T2DM的人心脏病发作或发生中风的可能性为不患糖尿病的人的两倍多。确实，患有T2DM的人比心脏病发作过而不患糖尿病的人更容易心脏病发作。

2006年，2007年，糖尿病人群数量最大的五个国家是印度(4090万)、中国(3980万)、美国(1920万)、俄罗斯(960万)和德国(740万)。每年还有七百万人患上糖尿病。每年有380万例死亡归因于糖尿病。更多人死于因糖尿病相关的血脂异常和高血糖症加强的心血管疾病。平均而言，患有T2DM的人的死亡时间比没有糖尿病的人早5~10年，大多数是因为心血管疾病。心血管疾病是糖尿病死亡以及大多数失能的主因，占所有糖尿病死亡的约50%。患有T2DM的人心脏病发作或发生中风的可能性为不患糖尿病的人的两倍多。确实，患有T2DM的人比心脏病发作过而不患糖尿病的人更容易心脏病发作。
年の澳大利亚AusDiab随访研究（澳大利亚糖尿病、肥胖和生活方式的研究）显示，170 万澳大利亚人患有糖尿病。但高达一半的 T2DM 病例未被诊断（9）。截至 2031 年, 据估计将有 330 万澳大利亚人患 T2DM（5）。T2DM 的总财政花费估计为每年 103 亿美元。其中，估计职业花费为 44 亿美元，生产力损失为 41 亿美元，医疗系统花费为 11 亿美元。11 亿美元是因为肥胖（3）。毫无疑问，糖尿病是严重的健康危机。高达 60% 的 T2DM 病例可以通过良好的血糖控制来预防，而坚持健康的生活方式可以显著地改善与糖尿病相关的并发症。

与 2 型糖尿病相关的并发症

患者中 T2DM 的进展会引起以下风险升高：(i) 不利的心血管事件，与动脉粥样硬化有关，特别是管状动脉事件；(ii) 视网膜病变；(iii) 肾病以及(iv) 神经病变。如果没有相应治疗，T2DM 会引起充血性心力衰竭、心肌梗死、周围血管疾病、中风、胰腺炎、终末期肾脏疾病和失明。越来越多的证据表明，这些并发症的发生主要是因为长期的高血糖和高血压引起营养性血流损伤以及这些器官内的损伤（10）。越来越多的证据表明，早期有效的葡萄糖控制会降低 T2DM 中出现这些并发症的风险（11）。而且，这些并发症尤其是心肌梗死和充血性心力衰竭的事件，与 T2DM 患者中葡萄糖和血红蛋白 Alc（HbA1c）的水平升高直接相关。引人注目的是，围手术期血糖严格控制也使得糖尿病冠状动脉旁路移植后并发症例如死亡率、感染、住院期长短和其他因素（13）减少，表明升高的葡萄糖浓度对长期间的疾病表现以及急性干预和手术是不利的。糖尿病的治疗包括口服和可注射药物，各有各的益处和疾病风险。

2 型糖尿病的管理

患有 T2DM 的人经常被开除片剂以控制他们的血糖水平。这些片剂要与健康饮食和规律的身体运动结合使用，而非替代。糖尿病管理的目的是保持血糖水平尽可能接近于“正常”，即在 4～6mmol/L（空腹）之间。因为这会帮助预防短期和长期的糖尿病并发症。必须有定期的血糖监控，以查看进行中的治疗是否充分地控制了血糖水平。

胰岛素疗法：

将胰岛素，一种生物药物，皮下注射到患者，以维持体内血糖水平的健康。然而，由于低血糖发作是在胰岛素治疗患者中出现的最常见并发症（14）。用胰岛素改进血糖控制使得体重增加（相比于常规治疗的 0.4kg，其为约 3.5kg），这样又使心血管疾病和糖尿病死亡的风险增加（15）。

T2DM 的经口治疗

目前，以下片剂被用于降低 T2DM 血糖水平。这些片剂包括双胍类、磺脲、噻唑烷二酮类（Thiazolidinediones）、格列酮类（Glitazones）、氯肽苯酸类（Meglitinides）、α 葡萄糖苷酶抑制剂、肠促胰岛素类疗法或其组合。

尽管所有上述作用剂都提供由改善血糖控制和减少并发症所带来的显著益处，但使用所有这些作用剂进行治疗伴有与不良的药物反应，一些药物反应可能比较严重，甚至是威胁生命。因此，由于(i) 胰岛素和磺脲疗法的低血糖风险、(ii) 噻唑烷二酮类疗法中的显著充血性心力衰竭和骨折事件、(iii) 罗格列酮（rosiglitazone）疗法中升高的心血管风险、(iv) 与艾塞那肽（Exenatide）疗法相关的胰腺炎、(v) 与二甲双胍（Metformin）疗法相关的乳酸性酸中毒，以及(vi) 与西格列汀（sitagliptin）疗法相关的超敏反应，需要更安全和/或更有效并具有改善的风险 - 效益特性的降葡萄糖疗法，以干预使人虚弱的 T2DM 并
说明书

毕业于可选的 T2DM 治疗方法，例如与膳食纤维的联合治疗。很长一段时间以来，都认为难以消化的膳食纤维例如低聚果糖（FOS）对人类健康具有有益的效果。迄今为止，已有四个不同的临床研究显示出矛盾的结果。

1984 年首次发表了这类营养品在 T2DM 中的作用（16），其证据在于处于磺脲治疗的 T2DM 患者中有轻微的空腹血糖水平 (FGL) 的降低。该研究显示，与蔗糖 (G-F) 相比，每天摄入 8 克 FOS 后 14 天引起约 7.6% 的 FGL 降低、约 7.8% 的总胆固醇降低和约 10.4% 的 LDL- 胆固醇降低，其中 FOS 来源于用果糖苷酶处理的蔗糖并包括葡萄糖 - 果糖 - 果糖 (G-F-F)、G-F-F-F 和 G-F-F-F-F 结构的组合。

在研究开始 (第 0 天) 和最后 (第 14 天) 测量 FGL、总胆固醇和 LDL-胆固醇。在该研究中，摄入 FOS 后，14 个受试者中有 4 个受试者表现出升高的 FGL 而 10 个受试者表现出降低的 FGL。总体而言，作者认为，该 FOS 组合使糖尿病患者的 FGL 降低，尽管实验上该研究 (i) 具有非常小的 FGL 降低效果 (降低 0.8mmol/L)；(ii) 在 28.6% 的受试者 (14 个中有 4 个) 中具有增加的 FGL，并且 (iii) 糖尿病患者具有非常高且不受控制的葡萄糖和脂类浓度。此外，该研究具有 (iv) 有限的范围，(v) 较短的持续期，(vi) 利用了多个不同短链结构的 FOS。

1999 年对 20 个 T2DM 患者进行另一临床试验 (17)，这些患者消耗 FOS (由 95% 的聚合度为 3~10 的 FOS 组成)，15 克 / 天，共 20 天。患者接受降葡萄糖药物 (具体的药物未知)、抗高血压剂和降脂药物。在研究的开始 (第 1 天) 和结束 (第 21 天) 收集血液。作者报道，与安慰剂 (D-葡萄糖) 相比，在这些患者中没有发现 FOS 对 FGL 有显著作用。

发表了对 12 名 T2DM 患者进行的另一临床试验 (18)，他们摄入磺脲 (sulfonylurea) 和 / 或甲双胍。作者的结论是，与安慰剂蔗糖 (G-F) 相比，用 FOS (44% 的 G-F-F, 46% 的 G-F-F-F 和 10% 的 G-F-F-F-F, 从法国 ACTILIGHT 购买) 以 20 克 / 天共 28 天对 T2DM 患者进行治疗并没改变患者的 FGL。

美国专利申请 US2009/0214511 描述了一种含有菊糖还包括作为基本成分的蔗糖和淀粉酶的可消化剂，其在糖尿病、糖尿病和 / 或糖尿病前期患者中在“稳定和平衡”血糖方面有效。其还声称，每天摄入 4 克制剂“可以”改善血糖控制。尽管该专利申请提及使用该制剂治疗 “30 个患者”，但是没有提供以下信息：在使用制剂治疗之前或之后关于任何“患者”的糖尿病状态 (或其它)、任何患者的血糖水平的信息；或者关于患者可能已服用的任何抗糖尿病药物 (如果有的话) 的类型和量的详细信息。

尽管有以上讨论的改善 T2DM 治疗的尝试，但仍然需要具有更有效的血糖水平控制以及改善的不良反应情况的替代疗法。

本发明的目的是克服现有技术治疗中的至少一个缺点，或提供有用的替代途径。

发明内容

根据第一个方面，提供一种治疗糖尿病的方法，包括以足以降低血糖浓度、调节血糖浓度或使血糖浓度正常化的量和时间对需要此治疗的受试者施用组合物，该组合物包括菊糖或其来源以及磺脲。

发明背景
[0030] 根据第二个方面，提供一种在接受胰岛素治疗法的受者中改善糖腺对糖
病的治疗疗效的方法，包括对该受者施用包括葡萄糖其来源的组合物。

[0031] 优选于治疗的糖尿病是 2 型糖尿病。

[0032] 根据第三个方面，提供一种在受者中治疗高血糖的方法，包括以足以降低血糖
浓度，调节血糖浓度或使血糖浓度正常化的量和时间对需要此治疗的受者施用组合物，
该组合物包括葡萄糖、其来源以及磺胺。

[0033] 优选受者有轻度高血糖，其是一种糖尿病前期状态。

[0034] 重要的是，葡萄糖能够预防或改善通常与磺胺治疗相关的低血糖。

[0035] 根据第四个方面，提供一种在使用磺胺治疗的受者中预防低血糖形成或改善低
血糖的方法，包括以足以预防或改善低血糖的量和时间对需要此治疗的受试体施用组合
物，该组合物包括葡萄糖、其来源。

[0036] 葡萄糖可以以纯的或纯化的形式使用但也可以方便地以富含葡萄糖的植物制剂或提
取物形式提供。这些植物来源可以有利地选自洋葱、韭根、大蒜、朝鲜薑、罂粟籽参、龙舌兰
和菊苣。

[0037] 磺胺可以选自格列齐特 (Gliclazide)、格列派特 (Glisteroxepide)、格列本
脲 (Glibenclamide)（也称为优降糖, Glyburide)、格列吡嗪 (Glipizide)、格列美
脲 (Glimepiride)、格列喹酮 (Gliclindone)、格列吡脲 (Glycophyrimide) 、妥拉磺
脲 (Tolazamide)、甲苯磺丁脲 (Tolbutamide)、氯磺丙脲 (Chlorpropamide) 、甲氨双硫磺环己
脲 (Acetohexamide)、或其组合。

[0038] 优选的联合治疗是使用格列本脲或格列齐特以及来自菊苣根 (CR) 的葡萄糖或食品
级葡萄糖（作为相对纯的葡萄糖的便利来源）。当然，应当理解的是，其他来源的葡萄糖、或者纯化的
或合成的葡萄糖也可以用在本发明的组合物和方法中，正如其他磺胺也可以用在此中。

[0039] 葡萄糖或其来源可以与磺胺同时给药或以任何顺序依次给药。给药的优选方式是经
口服用。

[0040] 方便地，葡萄糖可以作为日常膳食或饮料的补充剂进行给药。然而，优选葡萄糖以药物
单位剂型的形式进行施用，例如丸剂、片剂、囊片剂、 capsule 或胶囊剂，以更好地控制剂量
和患者依从性。

[0041] 根据第五个方面，本发明提供包括葡萄糖或其来源以及磺胺的协同组合物。

[0042] 尽管这些组合物可以制成常规的片剂或胶囊剂形式，优选将其制成即刻、持续或延
后释放的制剂。

[0043] 贯穿说明书和权利要求，除非上下文明显另有需要，词语“包括、包含”等应理解为
与排他或穷举意思相反的包含在内的含义，即，解释为“包括但不限于”的含义。

附图说明

[0044] 图 1 :摄入格列本脲和葡萄糖过程中的 FBG。患者已经消耗指定量的葡萄糖 (JLS)，FBG
的测量如在实施例中所述。误差线表示在指定测量中 FBG 水平的平均值 ± 均方差标准误
差 (SEM)。附图说明：

[0045] *格列本脲的剂量从每天 10mg 增加到 15mg。

[0046] #患者摄入 12 克葡萄糖 / 天。
说明书中

图2：在格列齐特单一起疗的患者中，糖含对FBG水平的作用的剂量和时间依赖性。附图说明：

图3：在使用磺脲、格列本脲的单一疗法进行治疗的患者中，糖含对FBG水平的作用。附图说明：

图4：糖含对没有接受任何抗糖尿病方案的糖尿病前期受试者的作用。附图说明：

图5：在二甲双胍、拜糖苹（Glucobay）和胰岛素联合治疗的患者中，糖含对FBG水平的作用。附图说明：

具体实施方式

磺脲最广泛地用于调节血糖水平并且广泛用于2型糖尿病（T2DM）的治疗。这些作用剂具有相当好的安全特性：长期使用不会损害组织和器官。然而，磺脲会引起低血糖，而这可能会致死。1966年开发出一种这样的作用剂，格列本脲，其被大量用于T2DM的治疗。通过抑制β胰岛中ATP依赖性钾通道，格列本脲触发升高的胰岛素分泌。其他磺脲也具有该特性和作用机制。然而，出于未知的原故，在数月/数年的治疗之后，患者开始耐受格列本脲疗法。在其他磺脲例如格列齐特中也观察到这种现象，基于它们的作用模式和化学结构的相似性，将会理解其他磺脲会在长时间的使用后表现出相似的耐受性。因此，改善磺脲效力的其他联合治疗方式需要控制葡萄糖的水平。
说明书中提到，糖尿病和葡萄或菊糖的来源（例如 CR 或相似的含葡萄的植物来源）进行治疗协同地发挥作用，使得 T2DM 患者的血糖水平正常化。基于它们作用模式和化学结构的相似性，应该理解到磺脲家族的其他成员也会表现出与葡萄的协同作用。该研究显著地表明，葡萄或含有葡萄的天然产物（例如 CR）可以被广泛地用于联合治疗以保持较低的血糖水平或使血糖水平正常化，从而使高血糖水平相关的并发症降至最低。本研究还表明，葡萄或其来源可以有效地用以预防或改善由磺脲治疗引起的不良反应，例如低血糖。此外，葡萄联合治疗允许降低患者的磺脲处方剂量以调节血糖水平。抗糖尿病药物量的调整经常由执业医师在控制糖尿病患者的期间做出，并会由使用葡萄进行联合治疗之后使患者的血糖水平正常化而有动机进行调整。这反过来又使得与磺脲治疗相关的潜在不良反应降至最低。

[0073] 葡萄似乎是代谢依赖于的方式与磺脲协同作用，使得患者的血糖浓度正常化，从而改善磺脲对糖尿病和高血糖的治疗效力。有趣的是，其他的与生化参数，包括 HbA1c、胆固醇、甘油三酯、LDL、HDL 和心脏病风险，似乎也经这些治疗而显得有所改善。

[0074] 通常可经口服用并在联合治疗中表现出良好效力的葡萄的量，将容易地由执业医师根据葡萄的来源、患者的状况和反应、抗糖尿病治疗的类型等等来确定，并且通常会在约 4 克/天至约 40 克/天的范围内（或在含有葡萄的制剂中的葡萄等效重量），更通常在 10~35 克/天。便利的剂量可以根据患者的反应和葡萄来源从 4.6.8.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.32.34.36.38 或 40 克/天中选择。这可以容易地通过简单的试验和关于剂量调整的试验而确定。此外，根据给药途径，剂量方案也可以不同（例如，IV 给药可能需要较少的量）。如果仅需要对 FBG 有较小作用或在使用低剂量磺脲的情况下，可以使用较少剂量的葡萄。也可使用较高剂量的葡萄并且其也是有效的，但可能伴有轻微的不适。含有葡萄的组合物可以与磺脲同时施用，或者可以以任意顺序依次施用。此外，每日、每周或每月的葡萄剂量可以分成多个更小的剂量进行摄取或者可以作为单次剂量 (bolus dose) 进行摄取。合适且方便的给药方案可以是例如，在每次早餐、午餐和晚餐过程中或紧接其后施用每日总剂量的三分之一。

[0075] 除纯的、纯化的或合成的葡萄外，除上述 CR 之外的葡萄天然来源可以选自富含葡萄的植物例如洋葱、韭菜、大蒜、朝鲜蓟、娑罗门参、龙舌兰等。其他富含葡萄的植物来源可以由本领域技术人员容易地确定。这些植物来源中大致的葡萄含量和聚合度列于表 1 中（19）。

[0076] 表 1：植物来源中葡萄的含量和聚合度
<table>
<thead>
<tr>
<th>来源</th>
<th>菊糖含量（鲜重的百分比, w/w）</th>
<th>聚合度（DP）</th>
</tr>
</thead>
<tbody>
<tr>
<td>洋葱</td>
<td>2 - 6</td>
<td>2-12（平均为 5）</td>
</tr>
<tr>
<td>菊芋</td>
<td>14 - 19</td>
<td>2-50（52% DP<10，22% DP 1020，20% DP 2040，6% DP>40）</td>
</tr>
<tr>
<td>菊苣</td>
<td>15 - 20</td>
<td>3-60（31% DP<10，24% DP 10~20，45% DP>20）</td>
</tr>
<tr>
<td>韭葱</td>
<td>3 - 10</td>
<td>12</td>
</tr>
<tr>
<td>大蒜</td>
<td>9 - 16</td>
<td>2-50</td>
</tr>
<tr>
<td>朝鲜蓟</td>
<td>3 - 10</td>
<td>（0% DP<19；13% DP 19~40，87% DP>40）</td>
</tr>
<tr>
<td>小麦</td>
<td>1 - 4</td>
<td>低 DP 范围，DP<5</td>
</tr>
<tr>
<td>香蕉</td>
<td>0.3 - 0.7</td>
<td>ND</td>
</tr>
<tr>
<td>香蕉</td>
<td>0.5 - 1</td>
<td>ND</td>
</tr>
<tr>
<td>麦</td>
<td>0.5 - 1.5</td>
<td>ND</td>
</tr>
<tr>
<td>十种</td>
<td>12 - 15</td>
<td>ND</td>
</tr>
<tr>
<td>牛蒡</td>
<td>3.5 - 4.0</td>
<td>ND</td>
</tr>
</tbody>
</table>

[Camas | 12 - 22 | ND]

[Mumong | 8 - 13 | ND]

[雪莲果 | 3 - 19 | ND]

[婆婆罗门参 | 4 - 11 | ND]

[0079] ND:未测定

从天然来源得到的菊糖通常具有不均一的聚合度（DP）。例如，从CR得到的菊糖的DP范围为3至约60（平均DP为25），或者为约8至约60，平均DP相似。在此会注意到，来自这些天然来源的菊糖还会包含一定比例的低聚果糖（FOS），其通常在3~10的DP范围内。菊糖的商业来源是公知的，如在下文实施例中所描述的。

[0080] 有利地，菊糖或其天然来源可以与任何以下磺脲组合使用，其中磺脲可有效调节血糖浓度且可以选自，例如格列齐特、格列派特、格列本脲（也称为优降糖）、格列吡嗪、格列美脲、格列喹酮、格列吡脲、妥拉磺脲、甲苯磺丁脲、氯磺丙脲和乙酰苯磺酰环己脲。施用到患者的磺脲的量可以根据患者对使用了菊糖或其天然来源的联合治疗的反应而变化（包括降低）。

[0081] 菊糖或其天然来源可以被施用于对接受磺脲作用的患者上，或是在使用磺脲进行治疗的开始时且在患者用磺脲治疗的过程中持续施用，或是在需要调节血糖水平/使血糖水平正常化时间歇性地施用。菊糖和磺脲的共同给药对血糖水平的作用可能不能在短期内看到，因此共同给药需要维持足够长的时间以达到期望的效果，例如超过4~6个月。基于患者的情况、治疗的性质和反应，在观察到有益效果之前可能需要更长时间的菊糖给药。当然，应该理解的是，可以在患者需要糖尿病或高血糖治疗的期间内维持这样的共同给药。

[0082] 本发明的组合物除了可以有效用于治疗T2DM患者外，本发明的组合物也可以用
于治疗还没有被归为糖尿病但仍然处于低水平磺脲治疗的高血糖受试者（即，糖尿病前期），从而预防或推迟糖尿病的发生。

可以透过多种途径来施用本发明的组合物，包括口服给药、直肠给药、经皮给药、皮下给药、静脉内给药、肌内给药、鞘内给药、腹膜内给药、鼻内给药和颊给药。根据既定的递送途径不同，优选将化合物制成经口服用、可注射的或外用的组合物。

口服给药的组合物可以采用散装液体溶液（bulk liquid solution）或悬浮液、或散装粉剂等形式。例如，在菊糖或其天然来源的情况下，组合物可以是膳食补充剂的形式，例如其是可以简单地在摄入之前添加至每日膳食中的粉剂或悬浮剂。也可以采用鲜、干或半干的部分植物的形式，以相似方式进行使用。

然而，更优选地是组合物以单位剂型呈现，以便于剂量准确。术语“单位剂型”是指适用动物受试者和其他哺乳动物（例如宠物或家畜）的单一剂量的物理上分离的单元，每个单元含有预定量的活性材料，该预定量被计算为与合适的药物赋形剂联合产生期望的疗效。典型的单位剂型包括预填充、预测应的液体组合物安瓶或注射器或者在固体组合物的情况下包括丸剂、片剂、胶囊剂、囊片剂、capsule 等。

本发明的作用剂或化合物可以制备成单独的组合物，以用于顺序给药或同时给药，或者可以在联合组合物/单位剂型中制备在一起。这些组合物可以与常规施用的佐剂、载体、稀释剂或赋形剂一起，置入药物组合物及其单位剂型形式中，并且这些形式可以采用固体，例如片剂或填充式胶囊剂；或者液体，例如溶液、悬浮液、乳剂、酏剂或填充有这些的胶囊剂，全部经口服用。

适合口服给药的液体形式可以包括具有缓冲剂、悬浮剂和分散剂、着色剂、香料等的合适水性或非水性媒介物。固体形式可以包括，例如，任意以下成分或具有相似特性的化合物：粘合剂，例如微晶纤维素、黄芪胶或明胶；赋形剂，例如淀粉或乳糖；崩解剂，例如褐藻酸、Primogel、或玉米淀粉；润滑剂，例如硬脂酸镁；助流剂，例如胶体二氧化硅、甜味剂，例如蔗糖或糖精；或调味剂，例如薄荷、水杨酸甲酯、或橙味剂。

对于某些应用，组合物也可以是用于肠胃外（包括皮下使用）的无菌可注射溶液的形式。这些药物组合物及其单位剂型可以包括常规比例的成分，有或没有额外的活性化合物或成分，且这样的单位剂型可以包括任意合适有效量的与所要使用的预期每天、每周、每月或其他给药范围相称的活性成分。可注射组合物通常是基于可注射的无菌盐水或磷酸缓冲盐水或其他领域内已知的可注射载体。

各组合物的实际给药量通常由医生根据相关情况来确定，包括所要治疗的病症、所选的给药途径、实际施用的化合物、个体患者的年龄、体重和反应、患者症状／病症的严重度等等。

上述用于口服给药或可注射组合物的组分仅仅是代表性的。其他材料以及处理技术等可在 Remington's Pharmaceutical Sciences 第 5 部分中找到(20)。

本发明的化合物也可以以持续释放的形式给药或从持续释放药物递送体系而进行给药，以单独剂型或以组合剂型进行。代表性的持续释放材料的描述也可以在 Remington's Pharmaceutical Sciences 的引伸材料中找到。

现在将参考具体但非限制性的实施例来更加详细地说明本发明，实施例描述了具体的组合物和使用方法。然而，应该理解的是，纳入对具体流程、组合物和方法的详细描述
实施例

实施例 1：对 2 型糖尿病的格列本脲 / 葡糖联合治疗 : 案例报告

（i）概要

对使用格列本脲这种磺脲类治疗 T2DM 患者的研究证实了葡萄糖对 FBG 正常化的深切效力。该患者显示出对格列本脲治疗（15mg/天）的耐受性。引人注意的是，葡萄糖以及格列本脲的组合摄入引起协同作用，以对于糖类剂量依赖方式使 FBG 降低并将 FBG 保持在正常水平。此外，撤出葡萄糖导致 FBG 升高，而葡萄糖的再引入则使 FBG 正常化。患者观察到，葡萄糖的加入使得能量恢复，肌肉疼痛减轻并提供更好的生活方式，最重要的是消除了低血糖的发生。FBG 的正常化还在应对白内障和膀胱失禁手术方面对患者有帮助。这些发现暗示了当与格列本脲联合使用时葡萄糖摄入与 FBG 之间的直接关系。

（ii）背景：

血糖水平升高是衰竭性疾病例如 T2DM 的特点。在该疾病中，患者的细胞无法吸收或释放出调节血糖水平所需的胰岛素。增加的葡萄糖水平起到炎性体的作用，激发免疫系统和细胞因子生成 (21)。白细胞还破坏胰腺中的 B 胰岛，造成胰岛素产生减少。提升的葡萄糖水平又引起多种疾病表现和一些器官损伤以及最终的死亡。少量药物被成功地用于治疗 T2DM。

如前面所述，格列本脲抑制胰腺中 B 胰岛的 ATP 敏感性钾通道，引起增加的胰岛素分泌，其作用机制与其他磺脲的作用机制相同。由于会形成对磺脲治疗的耐受性，需要其他方式的联合治疗来控制葡萄糖水平。由此有了本研究，本研究证实了葡萄糖与格列本脲 (作为磺脲的一个实例) 的协同降血糖能力。数据表明，尽管患者对单独的格列本脲治疗变得耐受，但引入葡萄糖则深切地控制 FBG，使其降低至正常水平并改善格列本脲诱导的低血糖。该协同作用使得能够通过药物如心房颤动、高血压、高血糖、高血胆固醇和骨关节炎的患者的总体生活方式得到显著改善。

（i）试剂者：

64 岁女性，体重指数 32（被归类为肥胖），具有 T2DM、心房颤动、高血压、高血胆固醇和骨关节炎的病史。

病理

生活在伊朗东北部的患者在 49 岁时被诊断出 T2DM。医生建议仅饮食疗法。在 51 岁时，因为升高的 FBG 和高血压，使用格列本脲（5mg/天，2×2.5mg/天）和卡托普利（Captopril）（每天 5mg）进行治疗。在 60 岁时，患者因为高血压和心脏衰竭而住院。对她进行治疗并处方为硝酸甘油和美托洛尔（Metoprolol）（澳大利亚 AstraZeneca Pty Ltd）。现在，该患者接受以下药物：

处方药：

12
格列本脲（Alphapharm Pty Ltd）：15 mg/天 5 mg 一天 3 次
卡托普利（Alphapharm Pty Ltd）：50 mg/天 25 mg 一天 2 次
索他洛尔（Sandoz Pty Ltd）：80 mg/天 40 mg 一天 2 次
阿托伐他汀（Pfizer）：40 mg/天 40 mg 一天 1 次

OTC 或其他补充剂：

菊糖：12 克/天 4 克 一天 3 次

[0107]菊糖来源：来自菊苣根（CR）的菊糖，以名为 Just Like Sugar® 的产品形式获得（Just Like Sugar, Inc., 邮箱 96083, 拉斯维加斯, 内华达州 89193, USA; 产品编号：AR160GR-2），其包含约 96% 的菊糖，并被用作当前研究的菊糖的合适来源。该菊糖来源在适当情况下被当作菊糖（JLS）。通常，从 CR 提取的菊糖具有不均一的 DP，在约 3 至约 60 的范围内，平均 DP 为约 25（19:22）。

[0108]在本研究中使用的另一菊糖制剂来源于比利时 Orafiti Inc.（DP 在约 8 至约 60 的范围内，平均 DP 为约 25）。该菊糖来源在适当情况下被当作菊糖（Orafiti）。

[0109]（iv）方法：

[0110]葡萄糖测定：使用 Accu-Chek Advantage（Roche, 曼海姆, 德国）设备（CAT/ TYP033304394001mmol/L 和 8549084416）根据制造商的说明书测量血糖水平。也可以使用其他的类似设备。本文提供了数据的所有其他测试都由伊朗东北部的 SADRA 病理实验室或澳大利亚的 MEDLAB 病理实验室进行。

[0111]（v）结果：

[0112]研究菊糖对格列本脲疗效的效力。在菊糖联合治疗几年后，患者的 FBG 大幅波动并且在 10mmol/L 附近而不受控制。其胆固醇和甘油三酯也很高（表 2）。图 1 描绘出在指定时间点的每月 FBG 均值。治疗情况描述如下：

[0113]2007 年 1 月：患者的内分泌医师将格列本脲的剂量从每天 2×5mg 增加到 3×5mg。结果，患者对剂量增加有反应，她的 FGI 从 7.8mmol/L （一月份的平均 FBG）大幅降低到 6mmol/L （二月份的平均 FBG）。

[0114]2007 年 3 月至 8 月：在格列本脲剂量增加后的几个月中，患者的 FBG 继续波动并增加。

[0115]2007 年 9 月至 2008 年 1 月：患者开始摄入低剂量的菊糖（JLS），4.5 克/天。

[0116]2008 年 1 月至 2 月：菊糖摄入逐渐增加到 12 克/天。

[0117]2008 年 3 月至 8 月：增加菊糖摄入使 FBG 逐渐降低至健康范围，即在 5.5mmol/L 以下。

[0118]2008 年 9 月：患者因为心悸而住院。她首次被诊断为心房颤动并被开出处方华法林（Warfarin）。她的 FBG 在这个月波动但是在十月降低至正常水平并保持至 2009 年 3 月。

[0119]2008 年 12 月：患者做了白内障手术。低 FBG 有助于良好恢复。

[0120]2009 年 1 月：患者手术后以减轻膀胱失禁。低 FBG 有助于良好恢复。

[0121]2009 年 3 月：无法得到菊糖供应。截至 2009 年 10 月，患者的 FBG 大幅增加至约 7.5mmol/L。

[0122]2009 年 10 月：患者开始摄入菊糖，约 3.5 克/天。
2010 年 4 月：血糖的摄入增加到 12 克 / 天。
尽管 FBG 随血糖的摄入量而波动，但患者表现出正常水平的 HAIc 和脂类概况（表2）。
表 2：由独立的病理实验室进行的患者的 FBG、HAIc 和脂类概况。

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HAIc（正常为<7%）</td>
<td>6.5</td>
<td>7.1</td>
<td>6.6</td>
<td>6.9</td>
<td>6.9</td>
<td>6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>胆固醇（正常为 3.1~5.1 mmol/L）</td>
<td>6.2</td>
<td>3.1</td>
<td>3.6</td>
<td>3.8</td>
<td>4.4</td>
<td>4.4</td>
<td>3.8</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>甘油三酯（正常为 0.5~2 mmol/L）</td>
<td>4.1</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
<td>1.6</td>
<td>1.5</td>
<td></td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>HDL（正常为>1 mmol）</td>
<td>1.2</td>
<td>1.2</td>
<td>1.4</td>
<td>1.3</td>
<td>1.4</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LDL（正常为 0~3.5 mmol/L）</td>
<td>1.4</td>
<td>1.9</td>
<td>2.5</td>
<td>2.4</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>冠心病风险率（正常为<5）</td>
<td>2.6</td>
<td>3.0</td>
<td>3.1</td>
<td>3.4</td>
<td>3.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

该日的测试由伊朗 SADRA 病理实验室进行。
从 2008 年至今的测试由澳大利亚的 MEDLAB 病理实验室进行。
（vi）结论：
当与格列本脲结合作以约 12 克 / 天摄入菊糖时，患者的 FOL 恢复至接近正常水平。
患者也声称，菊糖的摄入使她的能量提升，低血糖的发作减少，减轻了她的肌肉疼痛，并在整体上提供了更高质量的生活。

实施例 2：对 2型糖尿病的格列齐特 / 菊糖联合治疗；案例报告
另一个患者，接受近十年的格列齐特治疗（30mg, 每天一次）且血糖水平不受控制，在 9mmol/L 以下，也开始了使用菊糖（JLS）的联合治疗。各种血液参数的测量如实施例 1 所述。结果显示在图 2 中。每天摄入 9 克菊糖，同时进行格列齐特疗法，使得 FBG 水平从 9.4 ± 1.82mmol/L 降至 7.5 ± 0.2mmol/L, 且 FBG 波动降低（p<0.016, 误差线表示在指定月中 12~15 次 FBG 测量的标准误差均值）。每天摄入 12 克菊糖使得患者的 FBG 水平进一步降至 7.1 ± 0.1mmol/L。以此用量的菊糖继续进行联合治疗使得 FBG 进一步降低至 6.2 ± 0.1mmol/L, 并使葡萄糖波动进一步降低。
表 3：由独立的病理实验室进行的患者的 FBG、HAIc 和脂类概况
表 1

<table>
<thead>
<tr>
<th>参数</th>
<th>22/07/2008</th>
<th>20/04/2009</th>
<th>17/12/2010</th>
<th>16/05/2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>空腹葡萄糖（正常为 3~5.5 mmol/L）</td>
<td>6.0</td>
<td>7.7</td>
<td>7.4</td>
<td>5.0</td>
</tr>
<tr>
<td>HbA1c（正常为<7%）</td>
<td>7.0</td>
<td>7.0</td>
<td>7.8</td>
<td>7.2</td>
</tr>
<tr>
<td>胆固醇（正常为 3.1~5.1 mmol/L）</td>
<td>4.4</td>
<td>4.2</td>
<td>2.9</td>
<td>4.4</td>
</tr>
<tr>
<td>甘油三酯（正常为 0.5~2 mmol/L）</td>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>HDL（正常为>1 mmol）</td>
<td>1.0</td>
<td>1.2</td>
<td>1.1</td>
<td>1.0</td>
</tr>
<tr>
<td>LDL（正常为 0.3~3.5 mmol/L）</td>
<td>2.9</td>
<td>2.3</td>
<td>1.4</td>
<td>2.2</td>
</tr>
<tr>
<td>冠心病风险率（正常为<5）</td>
<td>4.4</td>
<td>3.5</td>
<td>2.6</td>
<td>3.7</td>
</tr>
</tbody>
</table>

*该日的测试由 Douglas Hanly Moir Pathology 进行。

该日的测试由 MEDLAB Pathology 进行。

实施例 3: 对 2 型糖尿病的格列本脲/联合治疗; 使用不同来源的葡萄糖

如实施例 1 所述，对患者使用艾格尼(Nrafti)，并按照与上述相似的操作规程继续进行与格列本脲 (5mg, 每天三次) 的联合治疗，除患者接受 15 克/天的葡萄糖 (Orafti) 外。经两个月的治疗，FBG 水平升高到正常水平之上，但是当剂量增加到 22 克/天时，FBG 水平达到稳定。在葡萄糖剂量继续增加到 30 克/天之后，FBG 回复到正常水平。

实施例 4: 在糖尿病前期患者中葡萄糖对 FBG 的作用

一个有糖尿病倾向（他母亲患有 2 型糖尿病）但没有接受抗 - 糖尿病药物的受试者，其 FBG 水平在正常范围之上 (约 6.0mmol/L)，也使用葡萄糖 13 个月，首先为葡萄糖 (JLS) 接着为葡萄糖 (Orafti)。与接受降糖治疗的患者相比，经过 13 个月时间的葡萄糖摄入 (12~15 克/天) 并不改变受试者的 FBG 水平。

实施例 5: 葡萄糖对接受非磺脲类抗糖尿病药物治疗的糖尿病患者的 FBG 的作用

在应用二甲双胍 (500mg, 每天两次)、拜糖苹 (100mg, 每天三次) 和胰岛素 (60 单位, 每天两次) 的联合抗糖尿病治疗的患者中，葡萄糖剂量在 2011 年 1 月增大，在 2011 年 2 月开始 12 克/天的治疗剂量。剂量为 12~15 克/天的葡萄糖 (JLS) 持续 4 个月对患者的 FBG 水平没有影响 (参见图 5)。这显示出，葡萄糖并不与二甲双胍和/或拜糖苹协同调节糖尿病患者的 FBG。

表 4：由独立的病理实验室进行的患者的 FBG、HbA1C 和脂类概况
说明书

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>空腹葡萄糖（正常为3~5.5 mmol/L）</td>
<td>10.7</td>
<td>8.6</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>HA1c（正常为<7%）</td>
<td>8.0</td>
<td>7.0</td>
<td>7.3</td>
<td>7.0</td>
<td>7.0</td>
</tr>
<tr>
<td>胆固醇（正常为3.1~5.1 mmol/L）</td>
<td>5.1</td>
<td>4.4</td>
<td>4.8</td>
<td>5.1</td>
<td>5.0</td>
</tr>
<tr>
<td>甘油三酯（正常为0.5~2 mmol/L）</td>
<td>2.7</td>
<td>1.0</td>
<td>0.9</td>
<td>1.4</td>
<td>1.0</td>
</tr>
<tr>
<td>HDL（正常为>1 mmol）</td>
<td>1.3</td>
<td>1.0</td>
<td>1.5</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>LDL（正常为0~3.5 mmol/L）</td>
<td>2.6</td>
<td>2.0</td>
<td>2.9</td>
<td>3.0</td>
<td>2.0</td>
</tr>
<tr>
<td>冠心病风险率（正常为<8）</td>
<td>3.9</td>
<td>3.1</td>
<td>3.2</td>
<td>3.4</td>
<td>3.6</td>
</tr>
</tbody>
</table>

*该日的测试由澳大利亚的MEDLAB Pathology进行

在另一个接受二甲双胍（1000mg，每天两次）/吡格列酮（15mg，每天一次）联合抗糖尿病治疗的患者中，在2011年2月开始糖耐量增加并在接下来的3个月持续使用12克菊糖/天的治疗剂量（见图6），但是对FBG没有显著的作用。从该研究可看出，菊糖与另一种非磺脲的吡格列酮这种抗糖尿病药物也没有协同作用。

表5：由独立病理实验室进行的患者（MR）的FBG、HA1C和脂类概况

<table>
<thead>
<tr>
<th></th>
<th>04/06/2009</th>
<th>26/11/2009*</th>
<th>22/05/2010*</th>
<th>29/01/2011*</th>
</tr>
</thead>
<tbody>
<tr>
<td>葡萄糖（正常为3~5.5 mmol/L）</td>
<td>9.0</td>
<td>8.6</td>
<td>12</td>
<td>7.8</td>
</tr>
<tr>
<td>HA1c（正常为<7%）</td>
<td>7.2</td>
<td>7.7</td>
<td>7.2</td>
<td>7.5</td>
</tr>
<tr>
<td>胆固醇（正常为3.1~5.1 mmol/L）</td>
<td>5.4</td>
<td>5.6</td>
<td>3.0</td>
<td>2.8</td>
</tr>
<tr>
<td>甘油三酯（正常为0.5~2 mmol/L）</td>
<td>1.2</td>
<td>1.7</td>
<td>0.9</td>
<td>1.1</td>
</tr>
<tr>
<td>HDL（正常为>1 mmol）</td>
<td>1.4</td>
<td>1.4</td>
<td>1.7</td>
<td>1.5</td>
</tr>
<tr>
<td>LDL（正常为0~3.5 mmol/L）</td>
<td>3.4</td>
<td>3.4</td>
<td>0.9</td>
<td>0.8</td>
</tr>
<tr>
<td>冠心病风险率（正常为<8）</td>
<td>3.8</td>
<td>4</td>
<td>1.8</td>
<td>1.9</td>
</tr>
</tbody>
</table>

*该日的测试由澳大利亚MEDLAB Pathology进行

与磺脲不同，拜糖苹是肠α-葡萄苷酶的竞争性抑制剂，其具有对蔗糖的最大特异性抑制活性。在拜糖苹的作用下，淀粉和蔗糖在小肠内消化为可吸收的单糖的过程被剂量依赖性地延迟。二甲双胍（一种双胍）也与磺脲不同，其作用于肝脏并降低肝脏的糖质新生作用以及葡萄糖向血流的释放。此外，吡格列酮与磺脲不同，其选择性地刺激受体过氧化物酶体增殖物激活受体γ（PPAR-γ）并使PPAR-α程度减轻。其调节参与肌肉、脂肪组织和肝脏中控制葡萄糖和脂类代谢中的胰岛素敏感基因的转录。这些化合物都不像磺脲
那样作用于胰腺以刺激胰岛素分泌。

[0152] 这些研究表列,由慢性 T2DM 患者摄入菊糖使得对磺胺疗法的耐受性转变,将 FGB 降低至正常水平并消除低血糖的发作。这些发现表明,菊糖与磺胺协同作用而降低 T2DM 患者的 FGB。另一方面,当对具有升高的 FGB 的糖尿病前期受试者或对接受不包括磺胺的抗糖尿病药物的糖尿病患者长期给药时,菊糖对 FGB 没有影响。

[0153] 尽管本发明已经参考具体实施方式进行了说明,但应该理解的是,与所描述发明的原理和精神一致的变形和改变也包括在内。

[0154] 参考文献

图 1
图2
图 4
图 6