

# United States Patent

Taber et al.

[15] 3,647,463

[45] Mar. 7, 1972

[54] **DIRECT-POSITIVE PHOTOGRAPHIC ELEMENTS CONTAINING MULTIPLE LAYERS**

[72] Inventors: Robert C. Taber; James E. Koller, both of Rochester, N.Y.

[73] Assignee: Eastman Kodak Company, Rochester, N.Y.

[22] Filed: Aug. 14, 1969

[21] Appl. No.: 850,197

[52] U.S. Cl..... 96/68, 96/67, 96/64

[51] Int. Cl..... G03c 1/76

[58] Field of Search..... 96/68, 64, 67

[56] References Cited

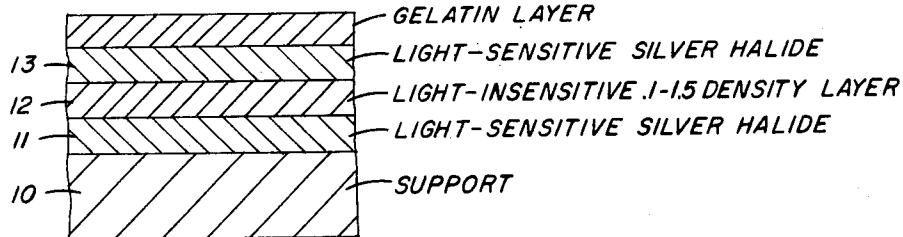
## UNITED STATES PATENTS

1,905,188 4/1933 Sease..... 96/68

2,566,180 8/1951 Fallesen..... 96/56

|           |         |               |       |
|-----------|---------|---------------|-------|
| 3,178,282 | 4/1965  | Luckey .....  | 96/64 |
| 3,352,672 | 11/1967 | Hoppe .....   | 96/64 |
| 3,450,536 | 6/1969  | Wyckoff ..... | 96/68 |
| 3,457,072 | 7/1969  | Ditzer .....  | 96/68 |
| 3,471,295 | 10/1969 | Bockly .....  | 96/64 |

Primary Examiner—Norman G. Torchin


Assistant Examiner—Judson R. Hightower

Attorney—W. H. J. Kline, Bernard D. Wiese and Gerald E. Battist

## [57] ABSTRACT

This invention relates to direct-positive silver halide elements comprising (1) duplicate layers containing silver halide emulsions having substantially the same light-response characteristics and (2) means for providing a sensitivity difference between said duplicate layers of at least 0.5 log exposure. In certain preferred embodiments, relatively light-insensitive absorbing silver halide emulsions and/or light-absorbing dyes are used in an interlayer to provide an effective density of 0.1 to 1.5.

16 Claims, 3 Drawing Figures



PATENTED MAR 7 1972

3,647,463

FIG. 1

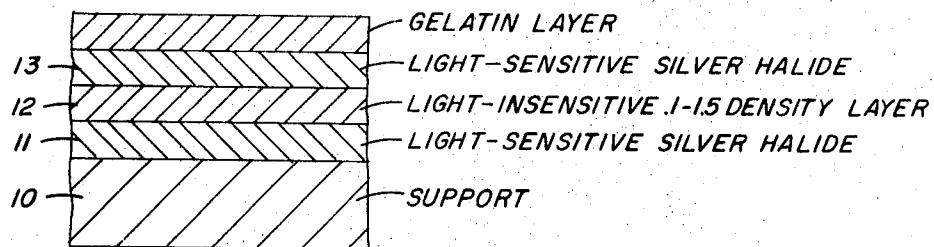



FIG. 2

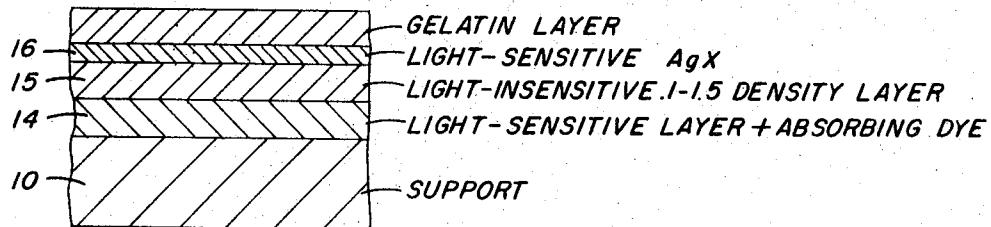
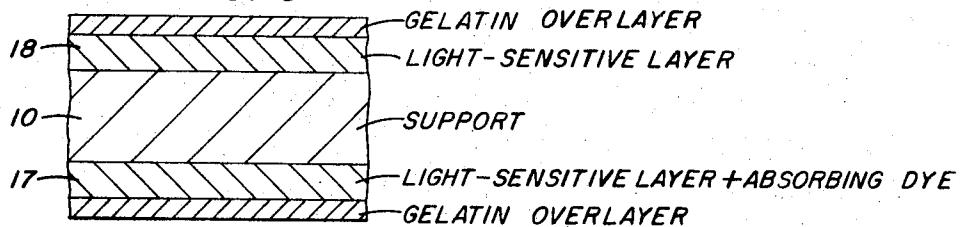




FIG. 3



ROBERT C. TABER  
JAMES E. KOLLER  
INVENTORS

BY

Gerald Battist

ATTORNEY

## DIRECT-POSITIVE PHOTOGRAPHIC ELEMENTS CONTAINING MULTIPLE LAYERS

This invention relates to photographic elements. In one aspect, this invention relates to direct-positive silver halide elements having low-contrast, extended latitude, photographic characteristics. In another aspect, this invention relates to direct-positive photographic elements having duplicate light-sensitive layers with a light-insensitive layer having a density of about 0.1 to about 1.5 interposed between said duplicate layers.

It is known in the art that extended latitude negative photographic elements can be provided by utilizing several layers of emulsions of different sensitivity. Moreover, it is known that extended latitude direct-positive elements can be made with direct-positive emulsions having different sensitivity characteristics such as, for example, by using emulsions of different grain size or emulsions containing grains which have been fogged to different fog levels. However, in commercial production it is desirable to have improved and simple methods of making extended latitude direct-positive elements which will provide an exposure curve of substantially the same shape without wide variance in exposure response from batch to batch and from start to finish on a given coating run.

We have now discovered improved layer arrangements for direct-positive photographic elements whereby extended latitude may be obtained with very good reproducibility of exposure vs. density curves. Generally, the photographic elements of this invention comprise at least two layers of direct-positive silver halide emulsions having similar sensitivity characteristics, i.e., duplicate layers, and means for providing a reduced exposure in one of said layers.

In one embodiment, the direct-positive emulsions used in each of the duplicate layers are prepared as one emulsion and merely coated as two separate layers.

In a preferred embodiment of this invention, the direct-positive element comprises at least two layers containing direct-positive emulsions having similar sensitivity characteristics and a substantially light-insensitive interlayer having an effective density of 0.1 to 1.5, and preferably 0.3 to 0.7, interposed between said layers.

In another preferred embodiment, the duplicate layers contain blends of direct-positive emulsions.

In yet another embodiment, absorbing dyes are incorporated in the direct-positive emulsion layers closest to the support. In one variation of this embodiment, the furthermost direct-positive layers from the support have a higher silver-to-vehicle ratio and are at least 50 percent thinner coatings than at least one of the corresponding light-sensitive underlays.

According to the various embodiments of the invention, an extended latitude photographic direct-positive silver halide element can be provided repetitively with exposure curves of similar shape with very little variance at any point on the average curve; this can be obtained with fewer requisite separate emulsions for each element. Moreover, the duplicate emulsion layers can be coated on the same side of the support to obtain better image sharpness as the layers are in closer proximity.

FIGS. 1 and 2 generally represent two preferred embodiments according to this invention.

The support 10 is generally any photographic film base such as cellulose acetates, polyesters, polycarbonates, paper, etc., which can be subbed or coated before the photographic emulsions are coated thereon. The light-sensitive layers 11 and 13 can be direct-positive, light-sensitive layers which can have substantially the same sensitivity characteristics including blends of direct-positive emulsions. The interlayer 12 is substantially light-insensitive and has an effective density of 0.1 to about 1.5 and preferably 0.3-0.7 to reduce the exposure on the underlayer 11. The effective density is understood to mean that it is effective in reducing the light exposure over the region of sensitivity of the underlayer 11. The interlayers having this effective density will, of course, transmit between about 3 to about 75 percent of the radiant energy reaching the inter-

layer. FIG. 3 represents one embodiment of the invention wherein the silver halide layers 17 and 18 are coated on opposite sides of the support and one of the layers, such as layer 17, contains an absorbing dye.

5 In one preferred embodiment according to FIG 2, an absorbing dye is incorporated in the underlayer 14 having an effective absorption in the region of light sensitivity of the emulsion in layer 14. Preferably the light-sensitive emulsion layer 16 in this arrangement is about 50 percent thinner than emulsion layer 14 and it has a higher silver-to-gelatin ratio. The layer 15, which is a 0.1-1.5 density layer, is preferably included in this embodiment to provide exceptional extended latitude properties; however, it can also be omitted and still provide extended latitude characteristics as the absorbing dye will somewhat reduce the effective exposure of layer 14.

In a preferred embodiment, the direct-positive compositions of this invention are blue-sensitive compositions. It is understood that blue-sensitive means that the direct-positive compositions will provide a reversal image when exposed with

20 light in the 350- to 500-millimicron range of the electromagnetic spectrum. The silver halide compositions can also be spectrally sensitized to form reversal images when exposed in others regions of the spectrum such as in the green and red regions. However, they all have the property of being capable of forming a reversal image when exposed with light in the blue region of the visible spectrum. Generally, these emulsions have high photographic speed compared to compositions such as conventional Herschel reversal emulsions. Typical useful 25 elements containing the emulsions of the invention may also be exposed with UV light and may be exposed from the front or back, depending on the contrast desired.

Typical direct-positive silver halide compositions which can be characterized by the above tests and which are useful in

30 this invention are: (1) emulsions comprising silver halide grains having internal centers which promote the deposition of photolytic silver and an outer region or shell of a fogged insoluble silver salt and preferably a halogen-conducting compound in said emulsion or (2) an emulsion which comprises

35 fogged silver halide grains and an organic compound which accepts electrons, said grains being such that a test portion thereof, when coated as a photographic silver halide emulsion on a support to give a maximum density of at least about 0.5 upon processing for 5 minutes at about 68° F. in Developer A, 40 has a maximum density which is at least about 30 percent greater than the maximum density of an identical coated test portion which is processed for 6 minutes at about 68° F. in Developer A after being bleached for about 10 minutes at about 68° F. in a bleach composition of:

|    |                       |          |
|----|-----------------------|----------|
| 50 | potassium cyanide     | 50 mg.   |
|    | acetic acid (glacial) | 3.47 cc. |
|    | sodium acetate        | 11.49 g. |
|    | potassium bromide     | 119 mg.  |
|    | water to              | 1 liter  |

55 Developer A has the composition:

|    |                                |           |
|----|--------------------------------|-----------|
| 60 | N-methyl-p-aminophenol sulfate | 2.5 g.    |
|    | sodium sulfite (anhydrous)     | 30.0 g.   |
|    | hydroquinone                   | 2.5 g.    |
|    | sodium metaborate              | 10.0 g.   |
|    | potassium bromide              | 0.5 g.    |
|    | water to                       | 1.0 liter |

65 This invention can be practiced with direct-positive emulsions of the type in which a silver halide grain has a water-insoluble silver salt center and an outer shell composed of a fogged, water-insoluble silver salt that develops to silver without exposure. These emulsions can be prepared in various ways, such as those described in Berriman, U.S. Pat. No.

70 3,367,778 issued Feb. 6, 1968. For example, the shell of the grains in such emulsions may be prepared by precipitating over the core grains a light-sensitive, water-insoluble silver salt that can be fogged and which fog is removable by bleaching.

75 The shell is of sufficient thickness to prevent access of the

developer used in processing the emulsions of the invention to the core. The silver salt shell is surface fogged to make it developable to metallic silver with conventional surface image-developing compositions. The silver salt of the shell is sufficiently fogged to produce a density of at least about 0.5 when developed for 6 minutes at 68° F. in Developer B below when the emulsion is coated at a silver coverage of 100 mg. per square foot. Such fogging can be effected by chemically sensitizing to fog with the sensitizing agents described for chemically sensitizing the core emulsion, high-intensity light and the like fogging means well-known to those skilled in the art. While the core need not be sensitized to fog, the shell is fogged. Fogging by means of a reduction sensitizer, a noble metal salt such as gold salt plus a reduction sensitizer, a sulfur sensitizer, high pH and low pAg silver halide precipitating conditions, and the like can be suitably utilized. The shell portion of the subject grains can also be coated prior to fogging.

## Developer B

|                                |         |
|--------------------------------|---------|
| N-methyl-p-aminophenol sulfate | 2.5 g.  |
| ascorbic acid                  | 10.0 g. |
| potassium metaborate           | 35.0 g. |
| potassium bromide              | 1.0 g.  |
| water to                       | 1 liter |
| pH of                          | 9.6     |

Before the shell of water-insoluble silver salt is added to the silver salt core, the core emulsion is first chemically or physically treated by methods previously described in the prior art to produce centers which promote the deposition of photolytic silver, i.e., latent image nucleating centers. Such centers can be obtained by various techniques as described in the Berriman patent referred to above. Silver salt cores containing centers attributable to a metal of Group VIII of the Periodic Table, e.g., palladium, iridium or platinum and the like, are especially useful since these centers also appear to function as electron acceptors. Chemical sensitization techniques of the type described by Antoine Hautot and Henri Saubenier in *Science et Industries Photographiques*, Vol. XXVIII, Jan. 1957, pages 1 to 23, and Jan. 1957, pages 57 to 65, are particularly useful. Such chemical sensitization includes three major classes, namely, gold or noble metal sensitization, sulfur sensitization, such as by a labile sulfur compound, and reduction sensitization, e.g., treatment of the silver halide with a strong reducing agent which introduces small specks of metallic silver into the silver salt crystal or grain.

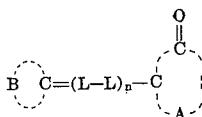
In another embodiment, the silver halide emulsions can comprise silver halide grains having centers which promote the deposition of photolytic silver which are either sufficiently small or sufficiently buried within the crystal as to be not accessible to initiate development to a visible image. Silver halide grains of this type can be provided by either using very low concentrations of the sensitizing agent throughout the precipitation or adding the sensitizing agent to the precipitation medium during the initial part of the precipitation whereby the concentration of the sensitizing agent will be lowered significantly by occlusion of the agent in the grains so that continued precipitation would result in lowered concentration of centers for promoting deposition of photolytic silver in the outer regions of each grain.

The practice of this invention is particularly suitable for high-speed direct-positive emulsions comprising fogged silver halide grains and a compound which accepts electrons, as described in U.S. Pat. No. 3,501,306 of Illingsworth. The fogged silver halide grains of such emulsions are such that a test portion thereof, when coated as a photographic silver halide emulsion on a support to give a maximum density of at least about 1 upon processing for 6 minutes at about 68° F. in Developer A, has a maximum density which is at least about 30 percent greater than the maximum density of an identical coated test portion which is processed for 6 minutes at about 68° F. in Developer A after being bleached for about 10 minutes at about 68° F. in a bleach composition of:

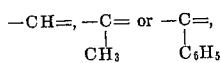
|                       |          |
|-----------------------|----------|
| potassium cyanide     | 50 mg.   |
| acetic acid (glacial) | 3.47 cc. |
| sodium acetate        | 11.49 g. |
| potassium bromide     | 119 mg.  |
| water to              | 1 liter  |

5 The grains of such emulsions will lose at least about 25 percent and generally at least about 40 percent of their fog when bleached for 10 minutes at 68° F. in a potassium cyanide bleach composition as described herein. This fog loss can be 10 illustrated by coating the silver halide grains as a photographic silver halide emulsion on a support to give a maximum density of at least 1.0 upon processing for 6 minutes at about 68° F. in Developer A and comparing the density of such a coating with an identical coating which is processed for 6 minutes at 68° F. 15 in Developer A after being bleached for about 10 minutes at 68° F. in the potassium cyanide bleach composition. As already indicated, the maximum density of the unbleached coating will be at least 30 percent greater, generally at least 60 percent greater, than the maximum density of the bleached coating.

20 The silver halides employed in the preparation of the photographic emulsions include silver chloride, silver bromide, silver bromoiodide, silver chlorobromide, silver chlorobromoiodide, and the like. Preferably the halide comprises at least 50 percent bromide and/or less than 10 percent iodide. Emulsion blends, e.g., blends of silver chloride and silver chlorobromide, can be used. Also, the core of the silver halide grain can be composed of silver halide of different composition than that in the outer shell of the grain.


25 30 Silver halide grains having an average grain size less than about 2 microns, preferably less than about 0.5 micron, give particularly good results. The silver halide grains can be regular and can be any suitable shape such as cubic or octahedral, as described in U.S. Pat. No. 3,501,305 of Illingsworth. Such grains advantageously have a rather uniform diameter frequency distribution, as described and claimed in U.S. Pat. No. 3,501,307 of Illingsworth. For example, at least 95 percent, by weight, of the photographic silver halide grains can have a diameter which is within about plus or minus 40 percent, preferably within about plus or minus 30 percent, of the mean grain size. Average grain size can be determined using conventional methods, e.g., as shown in an article by Trivelli and Smith entitled "Empirical Relations between Sensitometric and Size-Frequency Characteristics in Photographic Emulsion Series" in *The Photographic Journal*, Vol. LXXIX, 1949, pages 330-338, and "Methods of Particle-Size Analysis," *ASTM Symposium on Light Microscopy*, by Loveland, 1953, pages 94-122. The fogged silver halide grains in these direct-positive photographic emulsions of this invention produce a density of at least 0.5 when developed without exposure for 5 minutes at 68° F. in Developer A when such an emulsion is coated at a coverage of 50 to about 500 mg. of silver per square foot of support. The photographic silver halides can be 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 430 435 440 445 450 455 460 465 470 475 480 485 490 495 500 505 510 515 520 525 530 535 540 545 550 555 560 565 570 575 580 585 590 595 600 605 610 615 620 625 630 635 640 645 650 655 660 665 670 675 680 685 690 695 700 705 710 715 720 725 730 735 740 745 750 755 760 765 770 775 780 785 790 795 800 805 810 815 820 825 830 835 840 845 850 855 860 865 870 875 880 885 890 895 900 905 910 915 920 925 930 935 940 945 950 955 960 965 970 975 980 985 990 995 1000 1005 1010 1015 1020 1025 1030 1035 1040 1045 1050 1055 1060 1065 1070 1075 1080 1085 1090 1095 1100 1105 1110 1115 1120 1125 1130 1135 1140 1145 1150 1155 1160 1165 1170 1175 1180 1185 1190 1195 1200 1205 1210 1215 1220 1225 1230 1235 1240 1245 1250 1255 1260 1265 1270 1275 1280 1285 1290 1295 1300 1305 1310 1315 1320 1325 1330 1335 1340 1345 1350 1355 1360 1365 1370 1375 1380 1385 1390 1395 1400 1405 1410 1415 1420 1425 1430 1435 1440 1445 1450 1455 1460 1465 1470 1475 1480 1485 1490 1495 1500 1505 1510 1515 1520 1525 1530 1535 1540 1545 1550 1555 1560 1565 1570 1575 1580 1585 1590 1595 1600 1605 1610 1615 1620 1625 1630 1635 1640 1645 1650 1655 1660 1665 1670 1675 1680 1685 1690 1695 1700 1705 1710 1715 1720 1725 1730 1735 1740 1745 1750 1755 1760 1765 1770 1775 1780 1785 1790 1795 1800 1805 1810 1815 1820 1825 1830 1835 1840 1845 1850 1855 1860 1865 1870 1875 1880 1885 1890 1895 1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075 2080 2085 2090 2095 2100 2105 2110 2115 2120 2125 2130 2135 2140 2145 2150 2155 2160 2165 2170 2175 2180 2185 2190 2195 2200 2205 2210 2215 2220 2225 2230 2235 2240 2245 2250 2255 2260 2265 2270 2275 2280 2285 2290 2295 2300 2305 2310 2315 2320 2325 2330 2335 2340 2345 2350 2355 2360 2365 2370 2375 2380 2385 2390 2395 2400 2405 2410 2415 2420 2425 2430 2435 2440 2445 2450 2455 2460 2465 2470 2475 2480 2485 2490 2495 2500 2505 2510 2515 2520 2525 2530 2535 2540 2545 2550 2555 2560 2565 2570 2575 2580 2585 2590 2595 2600 2605 2610 2615 2620 2625 2630 2635 2640 2645 2650 2655 2660 2665 2670 2675 2680 2685 2690 2695 2700 2705 2710 2715 2720 2725 2730 2735 2740 2745 2750 2755 2760 2765 2770 2775 2780 2785 2790 2795 2800 2805 2810 2815 2820 2825 2830 2835 2840 2845 2850 2855 2860 2865 2870 2875 2880 2885 2890 2895 2900 2905 2910 2915 2920 2925 2930 2935 2940 2945 2950 2955 2960 2965 2970 2975 2980 2985 2990 2995 3000 3005 3010 3015 3020 3025 3030 3035 3040 3045 3050 3055 3060 3065 3070 3075 3080 3085 3090 3095 3100 3105 3110 3115 3120 3125 3130 3135 3140 3145 3150 3155 3160 3165 3170 3175 3180 3185 3190 3195 3200 3205 3210 3215 3220 3225 3230 3235 3240 3245 3250 3255 3260 3265 3270 3275 3280 3285 3290 3295 3300 3305 3310 3315 3320 3325 3330 3335 3340 3345 3350 3355 3360 3365 3370 3375 3380 3385 3390 3395 3400 3405 3410 3415 3420 3425 3430 3435 3440 3445 3450 3455 3460 3465 3470 3475 3480 3485 3490 3495 3500 3505 3510 3515 3520 3525 3530 3535 3540 3545 3550 3555 3560 3565 3570 3575 3580 3585 3590 3595 3600 3605 3610 3615 3620 3625 3630 3635 3640 3645 3650 3655 3660 3665 3670 3675 3680 3685 3690 3695 3700 3705 3710 3715 3720 3725 3730 3735 3740 3745 3750 3755 3760 3765 3770 3775 3780 3785 3790 3795 3800 3805 3810 3815 3820 3825 3830 3835 3840 3845 3850 3855 3860 3865 3870 3875 3880 3885 3890 3895 3900 3905 3910 3915 3920 3925 3930 3935 3940 3945 3950 3955 3960 3965 3970 3975 3980 3985 3990 3995 4000 4005 4010 4015 4020 4025 4030 4035 4040 4045 4050 4055 4060 4065 4070 4075 4080 4085 4090 4095 4100 4105 4110 4115 4120 4125 4130 4135 4140 4145 4150 4155 4160 4165 4170 4175 4180 4185 4190 4195 4200 4205 4210 4215 4220 4225 4230 4235 4240 4245 4250 4255 4260 4265 4270 4275 4280 4285 4290 4295 4300 4305 4310 4315 4320 4325 4330 4335 4340 4345 4350 4355 4360 4365 4370 4375 4380 4385 4390 4395 4400 4405 4410 4415 4420 4425 4430 4435 4440 4445 4450 4455 4460 4465 4470 4475 4480 4485 4490 4495 4500 4505 4510 4515 4520 4525 4530 4535 4540 4545 4550 4555 4560 4565 4570 4575 4580 4585 4590 4595 4600 4605 4610 4615 4620 4625 4630 4635 4640 4645 4650 4655 4660 4665 4670 4675 4680 4685 4690 4695 4700 4705 4710 4715 4720 4725 4730 4735 4740 4745 4750 4755 4760 4765 4770 4775 4780 4785 4790 4795 4800 4805 4810 4815 4820 4825 4830 4835 4840 4845 4850 4855 4860 4865 4870 4875 4880 4885 4890 4895 4900 4905 4910 4915 4920 4925 4930 4935 4940 4945 4950 4955 4960 4965 4970 4975 4980 4985 4990 4995 5000 5005 5010 5015 5020 5025 5030 5035 5040 5045 5050 5055 5060 5065 5070 5075 5080 5085 5090 5095 5100 5105 5110 5115 5120 5125 5130 5135 5140 5145 5150 5155 5160 5165 5170 5175 5180 5185 5190 5195 5200 5205 5210 5215 5220 5225 5230 5235 5240 5245 5250 5255 5260 5265 5270 5275 5280 5285 5290 5295 5300 5305 5310 5315 5320 5325 5330 5335 5340 5345 5350 5355 5360 5365 5370 5375 5380 5385 5390 5395 5400 5405 5410 5415 5420 5425 5430 5435 5440 5445 5450 5455 5460 5465 5470 5475 5480 5485 5490 5495 5500 5505 5510 5515 5520 5525 5530 5535 5540 5545 5550 5555 5560 5565 5570 5575 5580 5585 5590 5595 5600 5605 5610 5615 5620 5625 5630 5635 5640 5645 5650 5655 5660 5665 5670 5675 5680 5685 5690 5695 5700 5705 5710 5715 5720 5725 5730 5735 5740 5745 5750 5755 5760 5765 5770 5775 5780 5785 5790 5795 5800 5805 5810 5815 5820 5825 5830 5835 5840 5845 5850 5855 5860 5865 5870 5875 5880 5885 5890 5895 5900 5905 5910 5915 5920 5925 5930 5935 5940 5945 5950 5955 5960 5965 5970 5975 5980 5985 5990 5995 6000 6005 6010 6015 6020 6025 6030 6035 6040 6045 6050 6055 6060 6065 6070 6075 6080 6085 6090 6095 6100 6105 6110 6115 6120 6125 6130 6135 6140 6145 6150 6155 6160 6165 6170 6175 6180 6185 6190 6195 6200 6205 6210 6215 6220 6225 6230 6235 6240 6245 6250 6255 6260 6265 6270 6275 6280 6285 6290 6295 6300 6305 6310 6315 6320 6325 6330 6335 6340 6345 6350 6355 6360 6365 6370 6375 6380 6385 6390 6395 6400 6405 6410 6415 6420 6425 6430 6435 6440 6445 6450 6455 6460 6465 6470 6475 6480 6485 6490 6495 6500 6505 6510 6515 6520 6525 6530 6535 6540 6545 6550 6555 6560 6565 6570 6575 6580 6585 6590 6595 6600 6605 6610 6615 6620 6625 6630 6635 6640 6645 6650 6655 6660 6665 6670 6675 6680 6685 6690 6695 6700 6705 6710 6715 6720 6725 6730 6735 6740 6745 6750 6755 6760 6765 6770 6775 6780 6785 6790 6795 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 6860 6865 6870 6875 6880 6885 6890 6895 6900 6905 6910 6915 6920 6925 6930 6935 6940 6945 6950 6955 6960 6965 6970 6975 6980 6985 6990 6995 7000 7005 7010 7015 7020 7025 7030 7035 7040 7045 7050 7055 7060 7065 7070 7075 7080 7085 7090 7095 7100 7105 7110 7115 7120 7125 7130 7135 7140 7145 7150 7155 7160 7165 7170 7175 7180 7185 7190 7195 7200 7205 7210 7215 7220 7225 7230 7235 7240 7245 7250 7255 7260 7265 7270 7275 7280 7285 7290 7295 7300 7305 7310 7315 7320 7325 7330 7335 7340 7345 7350 7355 7360 7365 7370 7375 7380 7385 7390 7395 7400 7405 7410 7415 7420 7425 7430 7435 7440 7445 7450 7455 7460 7465 7470 7475 7480 7485 7490 7495 7500 7505 7510 7515 7520 7525 7530 7535 7540 7545 7550 7555 7560 7565 7570 7575 7580 7585 7590 7595 7600 7605 7610 7615 7620 7625 7630 7635 7640 7645 7650 7655 7660 7665 7670 7675 7680 7685 7690 7695 7700 7705 7710 7715 7720 7725 7730 7735 7740 7745 7750 7755 7760 7765 7770 7775 7780 7785 7790 7795 7800 7805 7810 7815 7820 7825 7830 7835 7840 7845 7850 7855 7860 7865 7870 7875 7880 7885 7890 7895 7900 7905 7910 7915 7920 7925 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985 7990 7995 8000 8005 8010 8015 8020 8025 8030 8035 8040 8045 8050 8055 8060 8065 8070 8075 8080 8085 8090 8095 8100 8105 8110 8115 8120 8125 8130 8135 8140 8145 8150 8155 8160 8165 8170 8175 8180 8185 8190 8195 8200 8205 8210 8215 8220 8225 8230 8235 8240 8245 8250 8255 8260 8265 8270 8275 8280 8285 8290 8295 8300 8305 8310 8315 8320 8325 8330 8335 8340 8345 8350 8355 8360 8365 8370 8375 8380 8385 8390 8395 8400 8405 8410 8415 8420 8425 8430 8435 8440 8445 8450 8455 8460 8465 8470 8475 8480 8485 8490 8495 8500 8505 8510 8515 8520 8525 8530 8535 8540 8545 8550 8555 8560 8565 8570 8575 8580 8585 8590 8595 8600 8605 8610 8615 8620 8625 8630 8635 8640 8645 8650 8655 8660 8665 8670 8675 8680 8685 8690 8695 8700 8705 8710 8715 8720 8725 8730 8735 8740 8745 8750 8755 8760 8765 8770 8775 8780 8785 8790 8795 8800 8805 8810 8815 8820 8825 8830 8835 8840 8845 8850 8855 8860 8865 8870 8875 8880 8885 8890 8895 8900 8905 8910 8915 8920 8925 8930 8935 8940 8945 8950 8955 8960 8965 8970 8975 8980 8985 8990 8995 9000 9005 9010 9015 9020 9025 9030 9035 9040 9045 9050 9055 9060 9065 9070 9075 9080 9085 9090 9095 9100 9105 9110 9115 9120 9125 9130 9135 9140 9145 9150 9155 9160 9165 9170 9175 9180 9185 9190 9195 9200 9205 9210 9215 9220 9225 9230 9235 9240 9245 9250 9255 9260 9265 9270 9275 9280 9285 9290 9295 9300 93

more negative than  $-1.3$ . Cathodic measurements can be made with a  $1 \times 10^{-4}$  molar solution of the electron acceptor in a solvent, for example, methanol which is 0.05 molar in lithium chloride using a dropping mercury electrode with the polarographic halfwave potential for the most positive cathodic wave being designated  $E_c$ . Anodic measurements can be made with  $1 \times 10^{-4}$  molar aqueous solvent solution, for example, methanolic solutions of the electron acceptor which are 0.05 molar in sodium acetate and 0.005 molar in acetic acid using a carbon paste of pyrolytic graphite electrode, with the voltammetric half-peak potential for the most negative anodic response being designated  $E_a$ . In each measurement, the reference electrode can be an aqueous silver—silver chloride (saturated potassium chloride) electrode at  $20^\circ C$ . Electrochemical measurements of this type are known in the art and are described in *New Instrumental Methods in Electrochemistry*, by Delahay, Interscience Publishers, New York, 1954; *Polarography*, by Kolthoff and Lingane, 2nd Edition, Interscience Publishers, New York, New York, 1952; *Analytical Chemistry*, 36, 2426 (1964) by Elving; and *Analytical Chemistry*, 30, 1576 (1958) by Adams. Signs are given according to IUPAC, Stockholm Convention 1953.


Advantageously, these electron acceptors used herein also provide spectral sensitization such that the ratio of minus blue relative speed to blue relative speed of the emulsion is greater than 7, and preferably greater than 10, when exposed to a tungsten light source through Wratten No. 16 and No. 35 plus 38A filters respectively. Such electron acceptors can be termed "spectrally sensitizing electron acceptors". However, electron acceptors can be used which do not spectrally sensitize the emulsion.

An especially useful class of electron acceptors which can be used in the direct-positive photographic silver halide emulsions and processes of this invention are cyanine dyes, such as the imidazo[4,5-b]quinoxaline dyes. Dyes of this class are described in Brooker and VanLare, Belgian Pat. No. 660,253 issued Mar. 15, 1965. In these dyes, the imidazo[4,5-b]quinoxaline nucleus is attached, through the two-carbon atom thereof to the methine chain. Typical good electron-acceptor dyes used in direct-positive emulsions are disclosed in Illingsworth and Spencer, Belgian Pat. No. 695,364 granted Sept. 11, 1967.

A preferred class of halogen-conducting compounds useful in this invention is characterized by an anodic halfwave potential which is less than 0.62 and a cathodic halfwave potential which is more negative than  $-1.3$ . A preferred class of halogen conductors that can be used in the practice of this invention comprises the spectral sensitizing merocyanine dyes having the formula:



where A represents the atoms necessary to complete an acid heterocyclic nucleus, e.g., rhodanine, 2-thiohydantoin and the like, B represents the atoms necessary to complete a basic nitrogen-containing heterocyclic nucleus, e.g., benzothiazole, naphthothiazole, benzoxazole and the like, each L represents a methine linkage, e.g.,



and  $n$  is an integer from 0 to 2, i.e., 0, 1 or 2. Typical halogen-conducting compounds are disclosed in Wise, Belgian Pat. No. 695,361 granted Sept. 11, 1967.

In the preparation of the above photographic emulsions, the electron acceptors, halogen conductors, bromide and iodide salts are advantageously incorporated in the washed, finished

silver halide emulsion and should, of course, be uniformly distributed throughout the emulsion. The methods of incorporating such addenda in emulsions are relatively simple and well known to those skilled in the art of emulsion making. For example, it is convenient to add them from solutions in appropriate solvents, in which case the solvent selected should be completely free from any deleterious effect on the ultimate light-sensitive materials. Methanol, isopropanol, pyridine, water, etc., alone or in admixtures, have proven satisfactory as solvents for the electron acceptors and halogen conductors. The type of silver halide emulsions that can be sensitized with these dyes includes any of those prepared with hydrophilic colloids that are known to be satisfactory for dispersing silver halides, for example, emulsions comprising natural materials such as gelatin, albumin, agar-agar, gum arabic, alginic acid, etc., and hydrophilic synthetic resins such as polyvinyl alcohol, polyvinyl pyrrolidone, cellulose ethers, partially hydrolyzed cellulose acetate and the like. The binding agents for the emulsion layer can also contain dispersed polymerized vinyl compounds such as disclosed, for example, in U.S. Pat. No. 3,142,568 by Nottorf issued July 28, 1964, U.S. Pat. No. 3,193,386 by White issued July 6, 1965, U.S. Pat. No. 3,062,674 by Houck et al. issued Nov. 6, 1962, and U.S. Pat. No. 3,220,844 by Houck et al. issued Nov. 30, 1965, and include the water-insoluble polymers and latex copolymers of alkyl acrylates and methacrylates, acrylic acid, sulfoalkyl acrylates or methacrylates and the like.

The interlayers useful according to this invention generally contain an adsorbing dye and/or a relatively insensitive silver halide. In one preferred embodiment, when an insensitive silver halide is used in the interlayer, it has a light sensitivity of at least less than one-tenth of one adjacent light-sensitive recording layer. Typical silver halides useful in the interlayer can be made as described in Trivelli and Smith, above, U.S. Pat. No. 3,206,313 by Porter et al. issued Sept. 14, 1965, and U.S. Pat. No. 2,592,250 by Davey et al. issued Apr. 8, 1952. The silver halide interlayers generally contain desensitizing compounds such as described in U.S. Pat. No. 2,954,292 by Duffin et al. issued Sept. 27, 1960, U.S. Pat. No. 2,965,485 by Duffin et al. issued Dec. 20, 1960, U.S. Pat. No. 2,541,472 by Kendall et al. issued Feb. 13, 1951, and U.S. Pat. No. 3,340,063 by Kalenda issued Sept. 5, 1967. The desensitizers are generally utilized in concentrations sufficient to provide a light sensitivity of at least one-tenth or less than that of the recording emulsions in the respective element in which it is to be used.

The absorbing dyes which can be incorporated into the underlays of the elements according to this invention generally include those dyes described in U.S. Pat. No. 3,253,921 by Sawdey issued May 31, 1966, U.S. Pat. No. 2,274,782 by Gaspar issued Mar. 3, 1942, U.S. Pat. No. 2,527,583 by Silbstein et al. issued Oct. 31, 1950, French Pat. No. 1,359,683 by Heseltine issued Mar. 23, 1964, and U.S. Pat. No. 2,956,879 by VanCampen issued Oct. 18, 1960. If desired, the dyes may be mordanted, for example, as described in U.S. Pat. No. 3,282,699 by Jones et al. issued Nov. 1, 1966. Typical useful absorbing dyes include: anhydro-1,1'-diethyl-2,2'-cyanine hydroxide, monosulfonated; anhydro-9-ethyl-3,3'-dimethyl-4,5;4',5'-dibenzothiacarbocyanine hydroxide, disulfonated; 4-[4-(3-ethyl-2(3H)-benzoxazolylidene)-2-butenyliidene]-3-methyl-1-p-sulfophenyl-2-pyrazolin-5-one, monosulfonated; anhydro-3,3'-diethyl-9-methyl-4,5;4',5'-dibenzothiacarbocyanine hydroxide, disulfonated; 4-[4-(3-ethyl-2(3H)-benzoxazolylidene)ethylidene]-3-methyl-1-p-sulfophenyl-2-pyrazolin-5-one, monosulfonated; and anhydro-3,3'-triethyl-5,5'-di(p-sulfophenyl)oxacarbocyanine hydroxide. When spectrally sensitized direct-positive emulsions are used in the recording layers, an absorbing dye is generally used in the interlayer or the duplicate layer nearer the support to provide an effective reduction in exposure over the area of light sensitivity of the emulsion. Preferably, the dyes used in the interlayer or underlays are of the non-wandering type or are mordanted in the respective layer. How-

ever, in certain embodiments the absorbing dyes can be incorporated in one layer and allowed to wander into other layers, especially in those embodiments where the outermost light-sensitive layer is thinner than other sensitive layers. Of course, dyes can also be incorporated in each layer at the diffusion equilibrium concentration for constant reproducibility.

The invention can be further illustrated by the following examples of preferred embodiments thereof.

#### EXAMPLE 1

A direct-positive gelatino emulsion containing silver bromide grains comprising a central core of silver bromide which promote the deposition of photolytic silver and an outer shell comprising fogged silver bromide that develops to silver without exposure is prepared as described in Example 2 of Berriman, U.S. Pat. No. 3,367,778. Said emulsion is then divided into three separate aliquot portions and fogged to different levels with the following gold and reducing agents.

Emulsion A - 0.10 mg. of thiourea dioxide/silver mole 1.50

mg. of potassium chloroaurate/silver mole

Emulsion B - 0.20 mg. of thiourea dioxide/silver mole 1.50

mg. of potassium chloroaurate/silver mole

Emulsion C - 0.40 mg. of thiourea dioxide/silver mole 3.00

mg. of potassium chloroaurate/silver mole

An electron acceptor dye of the type described in Belgian Pat. No. 695,356 is added to the three emulsions along with other beneficial coating addenda dictated by normal image, e.g., spreading agents, hardening agents and the like. The coatings are coated on a polyester film support at a coverage of 100 mg. of silver and 190 mg. of gelatin/ft.<sup>2</sup>. A protective gelatin layer is coated at 83 mg. of gelatin/ft.<sup>2</sup> over the emulsion layer. The three coatings are then exposed for 10 seconds on an Eastman 1B sensitometer and developed for 6 minutes at 70° C. in an Elonhydroquinone developer, fixed and washed. The processed coatings exhibit a direct-positive image with the following results:

| Emulsion Number | Relative Speed | Gamma | Dmax | Dmin |
|-----------------|----------------|-------|------|------|
| A               | 100            | 3.82  | 1.79 | 0.14 |
| B               | 246            | 3.18  | 1.77 | 0.14 |
| C               | 933            | 2.16  | 1.82 | 0.14 |

The following examples are overcoated with a protective gelatin layer at 83 mg. gelatin/ft.<sup>2</sup>. All the examples are processed in a manner similar to that described in Example 1.

#### EXAMPLE 2

A blended melt is prepared that comprises 44 percent of Emulsion A, 33 percent of Emulsion B and 23 percent of Emulsion C. An electron acceptor dye is added as described in Example 1 and the emulsion is coated at 120 mg. of silver/ft.<sup>2</sup>.

#### EXAMPLE 3

A melt is prepared as described in Example 2 and coated as depicted in FIG. 2 on a 7-mil polyester film support as Emulsion layer 14 at 135 mg. of silver/ft.<sup>2</sup>. To this emulsion layer is added two absorbing dyes: Dye A at 1 mg./ft<sup>2</sup> and Dye B at 2 mg./ft<sup>2</sup>. Both absorbing dyes are listed in French Pat. No. 1,359,683 with Dye A described in Example 6 and Dye B described in Example 7.

A substantially light-insensitive silver halide emulsion is prepared similar to that described in Example 1, except the emulsion is not fogged, chemically sensitized or spectrally sensitized, and coated as emulsion layer 15 at 135 mg. silver/ft.<sup>2</sup>.

A third melt is prepared using 100 percent of emulsion A and spectrally sensitized as described in Example 1. The melt is coated as emulsion layer 16 at 60 mg. silver/ft.<sup>2</sup>.

#### EXAMPLE 4

A photographic duplicating material is prepared similar to that described in Example 3, except emulsion layer 16 contains a spectrally sensitized melt comprising 60 percent of Emulsion A and 40 percent of Emulsion B. The absorbing dyes are coated in emulsion layer 14 at 2 mg./ft.<sup>2</sup> of Dye A and 4 mg./ft.<sup>2</sup> of Dye B. Emulsion layer 14 is coated at 98 mg. of silver/ft.<sup>2</sup>.

The following table clearly indicates that when a multilayer coating of our invention such as Example 3 or 4 is compared to a single layer coating, Example 2, exposure latitude and maximum density of approximately twofold can be obtained.

5 The resulting image of this duplicating material has extremely good quality with respect to sharpness.

| Example Number | Dmax | Dmin | Gamma | Exposure Latitude in log E Units |
|----------------|------|------|-------|----------------------------------|
| 2              | 1.74 | 0.14 | 1.10  | 1.2                              |
| 3              | 2.91 | 0.14 | 1.08  | 2.3                              |
| 4              | 3.31 | 0.18 | 1.14  | 2.5                              |

The exposure latitude is determined as the difference between the logarithm of the exposure required to produce a density 0.2 unit above minimum and that required for a density 0.1 unit below maximum.

#### EXAMPLE 5

A blended melt is prepared that comprises 45 percent of Emulsion A, 30 percent of Emulsion B and 25 percent of Emulsion C of Example 1. The melt is spectrally sensitized as described in Example 1 and coated at 100 mg. of silver/ft.<sup>2</sup> on one side of a support.

#### EXAMPLE 6

A melt is prepared as described in Example 5 and coated at 100 mg. of silver/ft.<sup>2</sup> on both sides of a support. To one coating is added two absorbing dyes: Dye A, 6 mg./ft.<sup>2</sup>, and Dye B, 12 mg./ft.<sup>2</sup>. Both absorbing dyes are listed in French Pat. No. 1,359,683 with Dye A described in Example 6 and Dye B described in Example 7.

#### EXAMPLE 7

A solarized direct-positive silver halide emulsion is prepared as described in U.S. Pat. No. 2,184,013 and coated on one side of a support at 440 mg. of silver/ft.<sup>2</sup> with the electron-accepting dye 5-[1-ethoxyethyliidene]-3-phenyl rhodanine coated in the emulsion layer at 2 mg./ft.<sup>2</sup>.

#### EXAMPLE 8

The emulsion melt described in Example 7 is coated on both sides of a support at 440 mg. of silver/ft.<sup>2</sup>. Dyes A and B are added to the emulsion melt on one side of a support and coated at 7 mg./ft<sup>2</sup> and 9 mg./ft<sup>2</sup>, respectively.

The following table clearly indicates that when the duplicated coatings, Examples 6 and 8, are compared to respective single-layer coatings, Examples 5 and 7, an exposure latitude of approximately twofold is obtained.

| Example Number | Dmax | Gamma | Exposure Latitude in Log E. Units |
|----------------|------|-------|-----------------------------------|
| 5              | 1.74 | 1.10  | 1.2                               |
| 6              | 3.30 | 1.06  | 2.4                               |
| 7              | 1.90 | 1.28  | 1.1                               |
| 8              | 3.68 | 1.46  | 2.0                               |

The exposure latitude is determined by the log E units between 0.1 density units below maximum density and 0.2 density units above minimum density.

The following example illustrates another method of changing the characteristic curve in a duplicated emulsion material.

#### EXAMPLE 9

A blended melt is prepared in a manner similar to that described in Example 5 except the emulsion ratios are 42 percent of Emulsion A, 33 percent of Emulsion B and 25 percent of Emulsion C. The melt is then coated on both sides of a polyester film support as shown in FIG. 3 at the coverages listed in the following table. To the melt for layer 17 is added 4.2 g. of Dye A/silver mole and 8.4 g. of Dye B/silver mole.

| Sample Number | Silver Laydown in Layer 17 (mg./ft <sup>2</sup> ) | Silver Laydown in Layer 18 (mg./ft <sup>2</sup> ) | Shadow Area | Gamma | Highlight Area |
|---------------|---------------------------------------------------|---------------------------------------------------|-------------|-------|----------------|
| 1             | 120                                               | 120                                               | 0.63        |       | 0.98           |
| 2             | 110                                               | 135                                               | 0.72        |       | 0.73           |
| 3             | 85                                                | 160                                               | 0.98        |       | 0.72           |

The above table illustrates that when the silver laydown is decreased in one side and increased in the other side, the con-

trast of the highlight area decreases while the contrast of the shadow area increases.

Although the invention has been described in considerable with particular reference to certain preferred embodiments thereof, variations and modifications can be effected within the spirit and scope of the invention.

We claim:

1. A direct-positive photographic element comprising a support and at least two layers containing light-sensitive direct-positive compositions which have a substantially light-insensitive 0.1 to 1.5 density layer interposed between said light-sensitive direct-positive layers.

2. A direct-positive photographic element according to claim 1 wherein said light-sensitive layers comprise fogged, direct-positive silver halide grains.

3. A direct-positive photographic element according to claim 1 wherein said light-sensitive layers comprise blue-sensitive-direct-positive silver halide emulsions.

4. A direct-positive element according to claim 1 wherein said light-sensitive layers each comprise fogged direct-positive silver halide emulsions of substantially the same sensitivity.

5. A direct-positive element according to claim 1 wherein at least one of said light-sensitive layers comprises an admixture of at least two portions of silver halide grains.

6. A direct-positive element according to claim 1 wherein at least one of said light-sensitive layers comprises silver halide grains having silver halide cores with a fogged silver halide cover thereon.

7. A direct-positive element according to claim 3 wherein said light-sensitive layers comprise a halogen conductor.

8. A direct-positive element according to claim 1 wherein said light-sensitive layers are at least ten times more sensitive

to light than said light-insensitive interlayer.

9. A direct-positive element according to claim 3 wherein said light-sensitive layers comprise an organic electron acceptor.

5 10. A direct-positive element according to claim 1 wherein said light-sensitive layers comprise silver halide grains which are fogged by reduction and gold-fogging agents.

10 11. A direct-positive element according to claim 1 wherein one of said light-sensitive layers comprises a light-absorbing organic dye.

12. A direct-positive element according to claim 1 wherein the furthermost direct-positive, light-sensitive layer from the support is at least 50 percent thinner than at least one of said light-sensitive underlayers.

15 13. A direct-positive photographic element comprising (1) a support, (2) at least two layers comprising direct-positive, light-sensitive compositions of substantially the same light sensitivity and (3) means for providing a sensitivity difference in said light-sensitive layers of at least 0.5 log exposure.

14. A direct-positive photographic element according to claim 13 wherein said means is a light-insensitive 0.1 to 1.5 density layer interposed between said light-sensitive layers.

15 15. A direct-positive photographic element according to claim 13 wherein said means comprises light-absorbing dyes in one of said light-sensitive layers wherein said dyes have an effective absorption in the same region of the spectrum as the sensitivity of the light-sensitive compound of said layer.

16. A direct-positive photographic element according to claim 1 wherein said light-insensitive layer has an effective density of from about 0.3 to about 0.7.

\* \* \* \* \*

35

40

45

50

55

60

65

70

75