PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12N 15/19, C07K 14/52, C12N 15/62, C07K 19/00, 16/24, 16/42, C12Q 1/66, 1/68, G01N 33/52, 33/60

(11) International Publication Number:

WO 98/49310

A1

(43) International Publication Date:

5 November 1998 (05.11.98)

(21) International Application Number:

PCT/US98/08212

(22) International Filing Date:

23 April 1998 (23.04.98)

(30) Priority Data:

60/044,886 25 April 1997 (25.04.97) US 08/845,753 25 April 1997 (25.04.97) US 60/071,676 16 January 1998 (16.01.98) US 09/008,543 16 January 1998 (16.01.98) US

- (71) Applicant: ZYMOGENETICS, INC. [US/US]; 1201 Eastlake Avenue East, Seattle, WA 98102 (US).
- (72) Inventors: PRESNELL, Scott, R.; 919 N. 83rd Street, Seattle, WA 98103 (US). GILBERT, Teresa; 246 12th Street, S.E., Auburn, WA 98002 (US). WHITMORE, Theodore, E.; 6916 152nd Avenue, N.E., Redmond, WA 98052 (US). FOSTER, Donald, C.; 3002 N.E. 181st Street, Seattle, WA 98155 (US). HART, Charles, E.; 20114 183rd Place, N.E., Woodinville, WA 98072 (US). LEHNER, Joyce, M.; 6522 Phinney Avenue North #201, Seattle, WA 98103 (US). MARTINEZ, Theresa; 4591 Honeymoon Bay Road, Greenbank, WA 98253 (US). HOFFMANN, Ross, C.; 503 13th Avenue East #302, Seattle, WA 98102 (US).

(74) Agent: LUNN, Paul, G.; ZymoGenetics, Inc., 1201 Eastlake Avenue East, Seattle, WA 98102 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, UZ, VN, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: MAMMALIAN CYTOKINE-LIKE FACTOR 7

(57) Abstract

Novel mammalian zcyto7 polypeptides, polynucleotides encoding the polypeptides, and related compositions and methods including antibodies and anti-idiotypic antibodies.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
\mathbf{BE}	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
\mathbf{BF}	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
$\mathbf{E}\mathbf{E}$	Estonia	LR	Liberia	SG	Singapore		

MAMMALIAN CYTOKINE-LIKE FACTOR 7

5

BACKGROUND OF THE INVENTION

Proliferation and differentiation of cells of multicellular organisms are controlled by hormones and polypeptide growth factors. These diffusable molecules allow cells to communicate with each other and act in concert to form cells and organs, and to repair and regenerate damaged tissue. Examples of hormones and growth factors include the steroid hormones (e.g. estrogen, testosterone), parathyroid hormone, follicle stimulating hormone, the interleukins, platelet derived growth factor (PDGF), epidermal growth factor (EGF), granulocyte-macrophage colony stimulating factor (GM-CSF), erythropoietin (EPO) and calcitonin.

20

Hormones and growth factors influence cellular metabolism by binding to proteins. Proteins may be integral membrane proteins that are linked to signaling pathways within the cell, such as second messenger systems. Other classes of proteins are soluble molecules, such as the transcription factors.

Of particular interest are cytokines, molecules that promote the proliferation and/or differentiation of cells. Examples of cytokines include erythropoietin (EPO), which stimulates the development of red blood cells; thrombopoietin (TPO), which stimulates development of cells of the megakaryocyte lineage; and granulocyte-colony stimulating factor (G-CSF), which stimulates development of neutrophils. These cytokines are useful in restoring normal blood cell levels in patients suffering from anemia or receiving chemotherapy for cancer. The

2

demonstrated in vivo activities of these cytokines illustrates the enormous clinical potential of, and need for, other cytokines, cytokine agonists, and cytokine antagonists.

5

15

SUMMARY OF THE INVENTION

The present invention addresses this need by providing a novel polypeptide called cytokine-like factor 7, hereinafter referred to as Zcyto7 and related compositions and methods.

Thus, one aspect of the present invention provides for an isolated Zcyto7 polypeptide having amino acid sequences as follows. Both the human and the mouse cDNAs have been discovered. The human sequences are defined by SEQ ID NOs: 1 and 2. The murine nucleotide and amino acid sequences are defined by SEQ ID NOs: 11 and 12.

20 The nucleotide sequence of SEQ ID NO:1 contains an open reading frame encoding a polypeptide of about 180 amino acids with the initial Met as shown in SEQ ID NO:1 and SEQ ID NO:2. A predicted signal sequence is comprised of amino acid residues 1-20, and the resultant predicted mature Zcyto7 polypeptide is represented by the amino acid 25 sequence extending from amino acid residue 21, a glutamine to and including amino acid residue 180 a phenylalanine, also represented by SEQ ID NO: 14. Peptide mapping data indicate that mature Zcyto7 can be comprised of a number of N-terminal mature variants including the amino acid 30 sequence extending from amino acid residue 23, an arginine to and including amino acid residue 180 of SEQ ID NO: 2, also defined by SEQ ID NO: 36; amino acid sequence extending from amino acid residue 27, a serine to and including amino acid residue 180 of SEQ ID NO: 2, also defined by SEQ ID NO: 37; the amino acid sequence defined

3

by amino acid residue 30, a lysine, to and including amino acid residue 180 of SEQ ID NO: 2, also defined by SEQ ID NO: 38; amino acid sequence extending from amino acid 28, a lysine, to and including amino acid residue 180 of SEQ ID NO:2, also defined by SEQ ID NO: 41 and the amino acid sequence extending from amino acid residue 53, a methionine, to and including amino acid residue 180, also defined by SEQ ID NO: 42. The only observed cleavage at the carboxyl terminus is the phenylalanine at position 180 can be cleaved off. This can occur in all of the above-defined mature Zcyto7 polypeptides an example of which is shown by SEQ ID NO:43. Additional variants of human Zcyto7 are defined by SEQ ID NOs: 15-25. Within an additional embodiment, the polypeptide further comprises an affinity tag.

SEQ ID NOs: 11 and 12 define murine Zcyto7
wherein the mature protein extends from amino acid
residues amino acid residue 21, a histidine, to and
20 including amino acid residue 180 a phenylalanine, also
defined by SEQ ID NO: 39; or as an alternative splice site
from amino acid residue 23, an arginine, to and including
amino acid 180 also defined by SEQ ID NO: 40. The present
invention is also comprised of polypeptides having an
25 amino acid sequence at least 90% identical, more
preferably 95%, 97% or 99% identical to those Zcyto7
polypeptides defined in above.

30 An additional embodiment of the present invention relates to a peptide or polypeptide which has the amino acid sequence of an epitope-bearing portion of a Zcyto7 polypeptide having an amino acid sequence described above. Peptides or polypeptides having the amino acid sequence of an epitope-bearing portion of a Zcyto7 polypeptide of the present invention include portions of

4

such polypeptides with at least nine, preferably at least 15 and more preferably at least 30 to 50 amino acids, although epitope-bearing polypeptides of any length up to and including the entire amino acid sequence of a 5 polypeptide of the present invention described above are also included in the present invention. Examples of said polypeptides are defined by the amino acid sequences of SEQ ID NOs: 25-35. Also claimed are any of these polypeptides that are fused to another polypeptide or carrier molecule.

The present invention further comprises a polypeptide defined by SEQ ID NOs: 15-25 wherein the amino termini of said polypeptides are modified and begin at either amino acid residue 3, an arginine; amino acid residue 7, a serine; amino acid residue 8, a lysine; amino acid residue 10, a lysine or amino acid residue 33 methionine.

The present invention is further comprised of a polypeptide wherein the polypeptide is a polypeptide defined by SEQ ID NOs: 2, 12, 14-25 and 36 to 42 wherein the amino acid sequences end at the isoleucines at amino acid residue 179 of SEQ ID NO: 2, at amino acid residue 159 of SEQ ID NO: 36, amino acid residue 157 of SEQ ID NO:36, amino acid residue 153 of SEQ ID NO:37, amino acid residue 150 of SEQ ID NO:38, amino acid residue 159 of SEQ ID NO: 39, amino acid residue 157 of SEQ ID NO:40, amino acid residue 152 SEQ ID NO:42, amino acid residue 127 of SEQ ID NO:42.

The present invention is further comprised of an isolated peptide or polypeptide of the above-described peptides or polypeptide having an amino acid sequence modified by addition, deletion and/or replacement of one

5

or more amino acid residues and which maintains the biological activity of said peptide or polypeptide.

Within a further aspect of the invention there is provided a chimeric polypeptide consisting essentially of a first portion and a second portion joined by a peptide bond. The first portion of the chimeric polypeptide consists essentially of (a) a Zcyto7 polypeptide as described above (b) allelic variants of the polypeptides described above. The second portion of the chimeric polypeptide consists essentially of another polypeptide such as an affinity tag. Within one embodiment the affinity tag is an immunoglobulin F_C polypeptide. The invention also provides expression vectors encoding the chimeric polypeptides and host cells transfected to produce the chimeric polypeptides.

Another aspect of the present invention provides

20 for isolated nucleic acid molecules comprising a
polynucleotide selected from the group consisting of: (a)
a nucleotide sequence encoding the Zcyto7 polypeptides
described above; (b) a nucleotide sequence encoding the
polypeptides of SEQ ID NOs: 14-40 and (c) a nucleotide

25 sequence complementary to any of to any of the nucleotide
sequences in (a) or (b).

Further embodiments of the invention include isolated nucleic acid molecules that comprise a polynucleotide having a nucleotide sequence at least 90% identical, and more preferably 95%, 97%, 98%, or 99% identical to any of the nucleotide sequences in (a), (b) or (c) above, or a polynucleotide which hybridizes under stringent hybridization conditions to a polynucleotide having a nucleotide sequence of (a) (b) or (c) above. An additional nucleic acid embodiment of the present

6

invention relates to an isolated nucleic acid molecule comprising an amino acid of an epitope-bearing portion of a Zcyto7 polypeptide.

Within another aspect of the invention there is provided an expression vector comprising (a) a transcription promoter; (b) a DNA segment encoding a polypeptide described above, and (c) a transcription terminator, wherein the promoter, DNA segment, and terminator are operably linked.

Within a third aspect of the invention there is provided a cultured eukaryotic cell into which has been introduced an expression vector as disclosed above,

15 wherein said cell expresses a protein polypeptide encoded by the DNA segment.

In another embodiment of the present invention is an isolated antibody that binds specifically to a 20 Zcyto7 polypeptide described above. Also claimed is a method for producing antibodies which bind to a Zcyto7 polypeptide comprising inoculating a mammal with a Zcyto7 polypeptide or Zcyto7 epitope-bearing polypeptide so that the mammal produces antibodies to the polypeptide; and isolating said antibodies.

These and other aspects of the invention will become evident upon reference to the following detailed description.

DETAILED DESCRIPTION OF THE INVENTION

30

The teachings of all of the references cited herein are incorporated in their entirety herein by reference.

7

The term "affinity tag" is used herein to denote a polypeptide segment that can be attached to a second polypeptide to provide for purification or detection of the second polypeptide or provide sites for attachment of 5 the second polypeptide to a substrate. In principal, any peptide or protein for which an antibody or other specific binding agent is available can be used as an affinity tag. Affinity tags include a poly-histidine tract, protein A [Nilsson et al, <u>EMBO J</u>. $\underline{4}$:1075 (1985); Nilsson et al., 10 Methods Enzymol. 198:3 (1991)], glutathione S transferase [Smith and Johnson, Gene 67:31 (1988)], Glu-Glu affinity tag [Grussenmeyer et al., Proc. Natl. Acad. Sci. USA 82:7952-4 (1985)], substance P, $FLAG^{TM}$ peptide (Hopp et al., Biotechnology 6:1204-10 (1988), streptavidin binding peptide, or other antigenic epitope or binding domain. See, in general, Ford et al., Protein Expression and Purification 2: 95-107 (1991). DNAs encoding affinity tags are available from commercial suppliers (e.g., Pharmacia Biotech, Piscataway, NJ).

20

25

30

The term "allelic variant" denotes any of two or more alternative forms of a gene occupying the same chromosomal locus. Allelic variation arises naturally through mutation, and may result in phenotypic polymorphism within populations. Gene mutations can be silent (no change in the encoded polypeptide) or may encode polypeptides having altered amino acid sequence. The term allelic variant is also used herein to denote a protein encoded by an allelic variant of a gene.

The term "expression vector" denotes a DNA molecule, linear or circular, that comprises a segment encoding a polypeptide of interest operably linked to additional segments that provide for its transcription. Such additional segments may include promoter and

8

terminator sequences, and may optionally include one or more origins of replication, one or more selectable markers, an enhancer, a polyadenylation signal, and the like. Expression vectors are generally derived from plasmid or viral DNA, or may contain elements of both.

The term "isolated", when applied to a polynucleotide molecule, denotes that the polynucleotide has been removed from its natural genetic milieu and is 10 thus free of other extraneous or unwanted coding sequences, and is in a form suitable for use within genetically engineered protein production systems. Such isolated molecules are those that are separated from their natural environment and include cDNA and genomic clones. 15 Isolated DNA molecules of the present invention are free of other genes with which they are ordinarily associated, but may include naturally occurring 5' and 3' untranslated regions such as promoters and terminators. identification of associated regions will be evident to 20 one of ordinary skill in the art. See for example, Dynan and Tijan, Nature 316:774-78 (1985). When applied to a protein, the term "isolated" indicates that the protein is found in a condition other than its native environment, such as apart from blood and animal tissue. 25 preferred form, the isolated protein is substantially free of other proteins, particularly other proteins of animal origin. It is preferred to provide the protein in a highly purified form, i.e., greater than 95% pure, more preferably greater than 99% pure.

30

35

The term "operably linked", when referring to DNA segments, denotes that the segments are arranged so that they function in concert for their intended purposes, e.g. transcription initiates in the promoter and proceeds through the coding segment to the terminator

25

The term "polynucleotide" denotes a single- or double-stranded polymer of deoxyribonucleotide or ribonucleotide bases read from the 5' to the 3' end. Polynucleotides include RNA and DNA, and may be isolated from natural sources, synthesized *in vitro*, or prepared from a combination of natural and synthetic molecules.

The term "complements of polynucleotide molecules" denotes polynucleotide molecules having a complementary base sequence and reverse orientation as compared to a reference sequence. For example, the sequence 5' ATGCACGGG 3' is complementary to 5' CCCGTGCAT 3'.

The term "degenerate nucleotide sequence"

denotes a sequence of nucleotides that includes one or

more degenerate codons (as compared to a reference

polynucleotide molecule that encodes a polypeptide).

Degenerate codons contain different triplets of

nucleotides, but encode the same amino acid residue (i.e.,

GAU and GAC triplets each encode Asp).

The term "promoter" denotes a portion of a gene containing DNA sequences that provide for the binding of RNA polymerase and initiation of transcription. Promoter sequences are commonly, but not always, found in the 5' non-coding regions of genes.

The term "secretory signal sequence" denotes a

30 DNA sequence that encodes a polypeptide (a "secretory
peptide") that, as a component of a larger polypeptide,
directs the larger polypeptide through a secretory pathway
of a cell in which it is synthesized. The larger peptide
is commonly cleaved to remove the secretory peptide during

35 transit through the secretory pathway.

10

The term "receptor" denotes a cell-associated protein that binds to a bioactive molecule (i.e., a ligand) and mediates the effect of the ligand on the cell. Membrane-bound receptors are characterized by a multidomain structure comprising an extracellular ligandbinding domain and an intracellular effector domain that is typically involved in signal transduction. Binding of ligand to receptor results in a conformational change in the receptor that causes an interaction between the effector domain and other molecule(s) in the cell. 10 interaction in turn leads to an alteration in the metabolism of the cell. Metabolic events that are linked to receptor-ligand interactions include gene transcription, phosphorylation, dephosphorylation, increases in cyclic AMP production, mobilization of cellular calcium, mobilization of membrane lipids, cell adhesion, hydrolysis of inositol lipids and hydrolysis of phospholipids. Most nuclear receptors also exhibit a multi-domain structure, including an amino-terminal, transactivating domain, a DNA binding domain and a ligand binding domain. In general, receptors can be membrane bound, cytosolic or nuclear; monomeric (e.g., thyroid stimulating hormone receptor, beta-adrenergic receptor) or multimeric (e.g., PDGF receptor, growth hormone receptor, IL-3 receptor, GM-CSF receptor, G-CSF receptor, 25 erythropoietin receptor and IL-6 receptor).

The term "complement/anti-complement pair"

denotes non-identical moieties that form a non-covalently

30 associated, stable pair under appropriate conditions. For
instance, biotin and avidin (or streptavidin) are
prototypical members of a complement/anti-complement pair.

Other exemplary complement/anti-complement pairs include
receptor/ligand pairs, antibody/antigen (or hapten or

35 epitope) pairs, sense/antisense polynucleotide pairs, and
the like. Where subsequent dissociation of the

11

complement/anti-complement pair is desirable, the complement/anti-complement pair preferably has a binding affinity of $<10^9~\text{M}^{-1}$.

A "soluble protein" is a protein polypeptide that is not bound to a cell membrane.

Within preferred embodiments of the invention the isolated polynucleotides will hybridize to similar 10 sized regions of the DNA of SEQ ID NO:1, or a sequence complementary thereto, under stringent conditions. general, stringent conditions are selected to be about 5°C lower than the thermal melting point $(T_{\mbox{\scriptsize m}})$ for the specific sequence at a defined ionic strength and pH. The T_{m} is 15 the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typical stringent conditions are those in which the salt concentration is about 0.02 M or less at pH 7 and the temperature is at least about 60°C. As previously noted, the isolated polynucleotides of the present invention include DNA and RNA. Methods for isolating DNA and RNA are well known in the art. Total RNA can be prepared using guanidine HCl extraction followed by isolation by centrifugation in a CsCl gradient [Chirgwin et al., Biochemistry 18:52-94 (1979)]. Poly (A) + RNA is prepared from total RNA using the method of Aviv and Leder, Proc. Natl. Acad. Sci. USA 69:1408-1412 (1972). Complementary DNA (cDNA) is prepared from poly(A) + RNA using known methods. Polynucleotides encoding Zcyto7 polypeptides are then identified and isolated by, for example, hybridization or PCR.

Additionally, the polynucleotides of the present invention can be synthesized using a DNA synthesizer. Currently the method of choice is the phosphoramidite method. If chemically synthesized double stranded DNA is

required for an application such as the synthesis of a gene or a gene fragment, then each complementary strand is made separately. The production of short genes (60 to 80 bp) is technically straightforward and can be accomplished 5 by synthesizing the complementary strands and then annealing them. For the production of longer genes (>300 bp), however, special strategies must be invoked, because the coupling efficiency of each cycle during chemical DNA synthesis is seldom 100%. To overcome this problem, synthetic genes (double-stranded) are assembled in modular form from single-stranded fragments that are from 20 to 100 nucleotides in length. In addition to the protein coding sequence, synthetic genes can be designed with terminal sequences that facilitate insertion into a restriction endonuclease sites of a cloning vector and other sequences should also be added that contain signals for the proper initiation and termination of transcription and translation.

See Glick, Bernard R. and Jack J. Pasternak,
Molecular Biotechnology, Principles & Applications of
Recombinant DNA, (ASM Press, Washington, D.C. 1994),
Itakura, K. et al. Synthesis and use of synthetic
oligonucleotides. Annu. Rev. Biochem. 53: 323-356 (1984),
and Climie, S. et al. Chemical synthesis of the
thymidylate synthase gene. Proc. Natl. Acad. Sci. USA 87:633-637 (1990).

Those skilled in the art will recognize that the

sequences disclosed in SEQ ID NOS:1 and 2 represent a
single allele of the human. There are a number of
naturally occurring mature N-terminal variants having the
leader sequence cleaved at differing positions. They
include the sequences defined by SEQ ID NOs 14, 36, 37 and

35 38. Allelic variants of these sequences can be cloned by
probing cDNA or genomic libraries from different

13

individuals according to standard procedures. Examples of variants of human Zcyto7 are represented by the polypeptides of SEQ ID NOs: 15-25.

The murine Zcyto7 cDNA and protein are disclosed by SEQ ID NOs: 11 and 12. The mature Zcyto7 polypeptide is defined by SEQ ID NOs: 39 and 40.

The present invention further provides 10 counterpart proteins and polynucleotides from other species ("species orthologs"). Of particular interest are Zcyto7 polypeptides from other mammalian species, including murine, porcine, ovine, bovine, canine, feline, equine, and other primates. Species orthologs of the 15 human Zcyto7 protein can be cloned using information and compositions provided by the present invention in combination with conventional cloning techniques. For example, a cDNA can be cloned using mRNA obtained from a tissue or cell type that expresses the protein. Suitable 20 sources of mRNA can be identified by probing Northern blots with probes designed from the sequences disclosed herein. A library is then prepared from mRNA of a positive tissue or cell line. A protein-encoding cDNA can then be isolated by a variety of methods, such as by probing with a complete or partial human or mouse cDNA or with one or more sets of degenerate probes based on the disclosed sequences. A cDNA can also be cloned using the polymerase chain reaction, or PCR (Mullis, U.S. Patent No. 4,683,202), using primers designed from the sequences 30 disclosed herein. Within an additional method, the cDNA library can be used to transform or transfect host cells, and expression of the cDNA of interest can be detected with an antibody to the protein. Similar techniques can also be applied to the isolation of genomic clones. As 35 used and claimed the language "an isolated polynucleotide which encodes a polypeptide, said polynucleotide being

14

defined by SEQ ID NO: 2" includes all allelic variants and species orthologs of the polypeptide of SEQ ID NO:2.

The present invention also provides isolated 5 protein polypeptides that are substantially homologous to the protein polypeptides of SEQ ID NO: 2 and its species orthologs. By "isolated" is meant a protein or polypeptide that is found in a condition other than its native environment, such as apart from blood and animal 10 tissue. In a preferred form, the isolated polypeptide is substantially free of other polypeptides, particularly other polypeptides of animal origin. It is preferred to provide the polypeptides in a highly purified form, i.e. greater than 95% pure, more preferably greater than 99% 15 pure. The term "substantially homologous" is used herein to denote polypeptides having 50%, preferably 60%, more preferably at least 80%, sequence identity to the sequence shown in SEQ ID NO:2, or its species orthologs. polypeptides will more preferably be at least 90% identical, and most preferably 95% or more identical to 20 SEQ ID NO:2, or its species orthologs. Percent sequence identity is determined by conventional methods. See, for example, Altschul et al., Bull. Math. Bio. 48: 603-616 (1986) and Henikoff and Henikoff, Proc. Natl. Acad. Sci. 25 USA 89:10915-10919 (1992). Briefly, two amino acid sequences are aligned to optimize the alignment scores using a gap opening penalty of 10, a gap extension penalty of 1, and the "blossom 62" scoring matrix of Henikoff and Henikoff (ibid.) as shown in Table 2 (amino acids are indicated by the standard one-letter codes). The percent 30 identity is then calculated as:

Total number of identical matches

c 100

[length of the longer sequence plus the number of gaps introduced into the longer sequence in order to align the two sequences]

35

 \triangleright

 \succ

3

11 2 - 3

Table 2

5

10

15

20

Sequence identity of polynucleotide molecules is determined by similar methods using a ratio as disclosed above.

5 Substantially homologous proteins and polypeptides are characterized as having one or more amino acid substitutions, deletions or additions. These changes are preferably of a minor nature, that is conservative amino acid substitutions (see Table 3) and other 10 substitutions that do not significantly affect the folding or activity of the protein or polypeptide; small deletions, typically of one to about 30 amino acids; and small aminoor carboxyl-terminal extensions, such as an amino-terminal methionine residue, a small linker peptide of up to about 20-25 residues, or a small extension that facilitates purification (an affinity tag), such as a poly-histidine tract, protein A [Nilsson et al., EMBO J. 4:1075 (1985); Nilsson et al., Methods Enzymol. 198:3, (1991)], glutathione S transferase [Smith and Johnson, Gene 67:31, (1988)], or other antigenic epitope or binding domain. 20 See, in general Ford et al., Protein Expression and Purification 2: 95-107 (1991. DNAs encoding affinity tags are available from commercial suppliers (e.g., Pharmacia Biotech, Piscataway, NJ).

Table 3

Conservative amino acid substitutions

Basic:

arginine

lysine

30

25

histidine

.

Acidic:

glutamic acid

aspartic acid

Polar:

glutamine

asparagine

Hydrophobic:

leucine

isoleucine

17

Table 3, continued

valine

Aromatic:

phenylalanine

tryptophan

5

tyrosine

Small:

glycine
alanine
serine
threonine

10

methionine

Essential amino acids in the polypeptides of the present invention can be identified according to procedures known in the art, such as site-directed mutagenesis or 15 alanine-scanning mutagenesis [Cunningham and Wells, Science 244: 1081-1085 (1989); Bass et al., Proc. Natl. Acad. Sci. USA 88:4498-4502 (1991)]. In the latter technique, single alanine mutations are introduced at every residue in the molecule, and the resultant mutant molecules are tested for 20 biological activity (e.g., ligand binding and signal transduction) to identify amino acid residues that are critical to the activity of the molecule. Sites of ligandprotein interaction can also be determined by analysis of crystal structure as determined by such techniques as 25 nuclear magnetic resonance, crystallography or photoaffinity labeling. See, for example, de Vos et al., Science 255:306-312 (1992); Smith et al., J. Mol. Biol. 224:899-904, 1992; Wlodaver et al., FEBS Lett. 309:59-64 (1992). The identities of essential amino acids can also 30 be inferred from analysis of homologies with related proteins.

Multiple amino acid substitutions can be made and tested using known methods of mutagenesis and screening,

35 such as those disclosed by Reidhaar-Olson and Sauer,

Science 241:53-57 (1988) or Bowie and Sauer, Proc. Natl.

WO 98/49310

Acad. Sci. USA 86:2152-2156 (1989). Briefly, these authors disclose methods for simultaneously randomizing two or more positions in a polypeptide, selecting for functional polypeptide, and then sequencing the mutagenized 5 polypeptides to determine the spectrum of allowable substitutions at each position. Other methods that can be used include phage display, e.g., Lowman et al., Biochem. 30:10832-10837 (1991); Ladner et al., U.S. Patent No. 5,223,409; Huse, WIPO Publication WO 92/06204) and region-directed mutagenesis, Derbyshire et al., Gene 46:145 (1986); Ner et al., DNA 7:127 (1988).

Mutagenesis methods as disclosed above can be combined with high-throughput screening methods to detect activity of cloned, mutagenized proteins in host cells. Preferred assays in this regard include cell proliferation assays and biosensor-based ligand-binding assays, which are described below. Mutagenized DNA molecules that encode active proteins or portions thereof (e.g., ligand-binding fragments) can be recovered from the host cells and rapidly sequenced using modern equipment. These methods allow the rapid determination of the importance of individual amino acid residues in a polypeptide of interest, and can be applied to polypeptides of unknown structure.

25

20

Using the methods discussed above, one of ordinary skill in the art can prepare a variety of polypeptides that are substantially homologous to SEQ ID NO:2 or allelic variants thereof and retain the properties of the wild-type protein. As expressed and claimed herein the language, "a polypeptide as defined by SEQ ID NO: 2" includes all allelic variants and species orthologs of the polypeptide.

Another embodiment of the present invention provides for a peptide or polypeptide comprising an

19

epitope-bearing portion of a polypeptide of the invention. The epitope of the this polypeptide portion is an immunogenic or antigenic epitope of a polypeptide of the invention. A region of a protein to which an antibody can 5 bind is defined as an "antigenic epitope". See for instance, Geysen, H.M. et al., Proc. Natl. Acad Sci. USA 81:3998-4002 (1984).

As to the selection of peptides or polypeptides 10 bearing an antigenic epitope (i.e., that contain a region of a protein molecule to which an antibody can bind), it is well known in the art that relatively short synthetic peptides that mimic part of a protein sequence are routinely capable of eliciting an antiserum that reacts 15 with the partially mimicked protein. See Sutcliffe, J.G. et al. Science 219:660-666 (1983). Peptides capable of eliciting protein-reactive sera are frequently represented in the primary sequence of a protein, can be characterized by a set of simple chemical rules, and are confined neither to immunodominant regions of intact proteins (i.e., 20 immunogenic epitopes) nor to the amino or carboxyl terminals. Peptides that are extremely hydrophobic and those of six or fewer residues generally are ineffective at inducing antibodies that bind to the mimicked protein; longer soluble peptides, especially those containing 25 proline residues, usually are effective.

Antigenic epitope-bearing peptides and polypeptides of the invention are therefore useful to raise 30 antibodies, including monoclonal antibodies, that bind specifically to a polypeptide of the invention. Antigenic epitope-bearing peptides and polypeptides of the present invention contain a sequence of at least nine, preferably between 15 to about 30 amino acids contained within the amino acid sequence of a polypeptide of the invention. However, peptides or polypeptides comprising a larger

35

20

portion of an amino acid sequence of the invention, containing from 30 to 50 amino acids, or any length up to and including the entire amino acid sequence of a polypeptide of the invention, also are useful for inducing 5 antibodies that react with the protein. Preferably, the amino acid sequence of the epitope-bearing peptide is selected to provide substantial solubility in aqueous solvents (i.e., the sequence includes relatively hydrophilic residues and hydrophobic residues are 10 preferably avoided); and sequences containing proline residues are particularly preferred. All of the polypeptides shown in the sequence listing contain antigenic epitopes to be used according to the present invention, however, specifically designed antigenic epitopes include the peptides defined by SEQ ID NOs: 27-35. 15

Polynucleotides, generally a cDNA sequence, of the present invention encode the above-described polypeptides. A cDNA sequence which encodes a polypeptide of the present invention is comprised of a series of codons, each amino acid residue of the polypeptide being encoded by a codon and each codon being comprised of three nucleotides. The amino acid residues are encoded by their respective codons as follows.

25

30

35

Alanine (Ala) is encoded by GCA, GCC, GCG or GCT;
Cysteine (Cys) is encoded by TGC or TGT;
Aspartic acid (Asp) is encoded by GAC or GAT;
Glutamic acid (Glu) is encoded by GAA or GAG;
Phenylalanine (Phe) is encoded by TTC or TTT;
Glycine (Gly) is encoded by GGA, GGC, GGG or GGT;
Histidine (His) is encoded by CAC or CAT;
Isoleucine (Ile) is encoded by ATA, ATC or ATT;
Lysine (Lys) is encoded by AAA, or AAG;
Leucine (Leu) is encoded by TTA, TTG, CTA, CTC,

CTG or CTT;

5

10

ACT;

Methionine (Met) is encoded by ATG;
Asparagine (Asn) is encoded by AAC or AAT;
Proline (Pro) is encoded by CCA, CCC, CCG or CCT;
Glutamine (Gln) is encoded by CAA or CAG;
Arginine (Arg) is encoded by AGA, AGG, CGA, CGC,

CGG or CGT;
Serine (Ser) is encoded by AGC, AGT, TCA, TCC,

TCG or TCT;

Threonine (Thr) is encoded by ACA, ACC, ACG or

Infomine (Inf) is encoded by AcA, Acc, Acg of

Valine (Val) is encoded by GTA, GTC, GTG or GTT; Tryptophan (Trp) is encoded by TGG; and Tyrosine (Tyr) is encoded by TAC or TAT.

It is to be recognized that according to the present invention, when a cDNA is claimed as described above, it is understood that what is claimed are both the sense strand, the anti-sense strand, and the DNA as double-stranded having both the sense and anti-sense strand

20 annealed together by their respective hydrogen bonds. Also claimed is the messenger RNA (mRNA) which encodes the polypeptides of the present invention, and which mRNA is encoded by the above-described cDNA. A messenger RNA (mRNA) will encode a polypeptide using the same codons as those

25 defined above, with the exception that each thymine nucleotide (T) is replaced by a uracil nucleotide (U).

The protein polypeptides of the present invention, including full-length proteins, protein

fragments (e.g. receptor-binding fragments), and fusion polypeptides can be produced in genetically engineered host cells according to conventional techniques. Suitable host cells are those cell types that can be transformed or transfected with exogenous DNA and grown in culture, and include bacteria, fungal cells, and cultured higher eukaryotic cells. Eukaryotic cells, particularly cultured

cells of multicellular organisms, are preferred.

Techniques for manipulating cloned DNA molecules and introducing exogenous DNA into a variety of host cells are disclosed by Sambrook et al., Molecular Cloning: A Laboratory Manual, (2nd ed.) (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989), and Ausubel et al., ibid.

In general, a DNA sequence encoding a Zcyto7

10 polypeptide is operably linked to other genetic elements
required for its expression, generally including a
transcription promoter and terminator, within an expression
vector. The vector will also commonly contain one or more
selectable markers and one or more origins of replication,

15 although those skilled in the art will recognize that
within certain systems selectable markers may be provided
on separate vectors, and replication of the exogenous DNA
may be provided by integration into the host cell genome.
Selection of promoters, terminators, selectable markers,

20 vectors and other elements is a matter of routine design
within the level of ordinary skill in the art. Many such
elements are described in the literature and are available
through commercial suppliers.

25 To direct a Zcyto7 polypeptide into the secretory pathway of a host cell, a secretory signal sequence (also known as a leader sequence, prepro sequence or pre sequence) is provided in the expression vector. The secretory signal sequence may be that of the protein, or 30 may be derived from another secreted protein (e.g., t-PA) or synthesized de novo. The secretory signal sequence is joined to the Zcyto7 DNA sequence in the correct reading frame. Secretory signal sequences are commonly positioned 5' to the DNA sequence encoding the polypeptide of interest, although certain signal sequences may be positioned elsewhere in the DNA sequence of interest (see,

e.g., Welch et al., U.S. Patent No. 5,037,743; Holland et al., U.S. Patent No. 5,143,830).

Cultured mammalian cells are preferred hosts 5 within the present invention. Methods for introducing exogenous DNA into mammalian host cells include calcium phosphate-mediated transfection, Wigler et al., Cell 14:725 (1978); Corsaro and Pearson, Somatic Cell Genetics 7:603 (1981): Graham and Van der Eb, Virology 52:456 (1973), electroporation, Neumann et al., EMBO J. 1:841-845 (1982), 10 DEAE-dextran mediated transfection, Ausubel et al., eds., Current Protocols in Molecular Biology (John Wiley and Sons, Inc., NY, 1987), and liposome-mediated transfection (Hawley-Nelson et al., Focus 15:73 (1993); Ciccarone et al., Focus 15:80 (1993). The production of recombinant polypeptides in cultured mammalian cells is disclosed, for example, by Levinson et al., U.S. Patent No. 4,713,339; Hagen et al., U.S. Patent No. 4,784,950; Palmiter et al., U.S. Patent No. 4,579,821; and Ringold, U.S. Patent No. 4,656,134. Suitable cultured mammalian cells include the 20 COS-1 (ATCC No. CRL 1650), COS-7 (ATCC No. CRL 1651), BHK (ATCC No. CRL 1632), BHK 570 (ATCC No. CRL 10314), 293 [ATCC No. CRL 1573; Graham et al., J. Gen. Virol. 36:59-72 (1977)] and Chinese hamster ovary (e.g. CHO-K1; ATCC No. CCL 61) cell lines. Additional suitable cell lines are known in the art and available from public depositories such as the American Type Culture Collection, Rockville, Maryland. In general, strong transcription promoters are preferred, such as promoters from SV-40 or cytomegalovirus. See, e.g., U.S. Patent No. 4,956,288. Other suitable promoters include those from metallothionein genes (U.S. Patent Nos. 4,579,821 and 4,601,978) and the adenovirus

Drug selection is generally used to select for cultured mammalian cells into which foreign DNA has been

major late promoter.

24

inserted. Such cells are commonly referred to as "transfectants". Cells that have been cultured in the presence of the selective agent and are able to pass the gene of interest to their progeny are referred to as "stable transfectants." A preferred selectable marker is a gene encoding resistance to the antibiotic neomycin. Selection is carried out in the presence of a neomycin-type drug, such as G-418 or the like. Selection systems may also be used to increase the expression level of the gene of interest, a process referred to as "amplification." 10 Amplification is carried out by culturing transfectants in the presence of a low level of the selective agent and then increasing the amount of selective agent to select for cells that produce high levels of the products of the introduced genes. A preferred amplifiable selectable 15 marker is dihydrofolate reductase, which confers resistance to methotrexate. Other drug resistance genes (e.g. hygromycin resistance, multi-drug resistance, puromycin acetyltransferase) can also be used.

20

Other higher eukaryotic cells can also be used as hosts, including insect cells, plant cells and avian cells. Transformation of insect cells and production of foreign polypeptides therein is disclosed by Guarino et al., U.S. Patent No. 5,162,222; Bang et al., U.S. Patent No. 4,775,624; and WIPO publication WO 94/06463. The use of Agrobacterium rhizogenes as a vector for expressing genes in plant cells has been reviewed by Sinkar et al., J. Biosci. (Bangalore) 11:47-58 (1987).

30

35

25

Fungal cells, including yeast cells, and particularly cells of the genus Saccharomyces, can also be used within the present invention, such as for producing protein fragments or polypeptide fusions. Methods for transforming yeast cells with exogenous DNA and producing recombinant polypeptides therefrom are disclosed by, for

example, Kawasaki, U.S. Patent No. 4,599,311; Kawasaki et al., U.S. Patent No. 4,931,373; Brake, U.S. Patent No. 4,870,008; Welch et al., U.S. Patent No. 5,037,743; and Murray et al., U.S. Patent No. 4,845,075. Transformed 5 cells are selected by phenotype determined by the selectable marker, commonly drug resistance or the ability to grow in the absence of a particular nutrient (e.g., leucine). A preferred vector system for use in yeast is the POT1 vector system disclosed by Kawasaki et al., U.S. 10 Patent No. 4,931,373, which allows transformed cells to be selected by growth in glucose-containing media. Suitable promoters and terminators for use in yeast include those from glycolytic enzyme genes (see, e.g., Kawasaki, U.S. Patent No. 4,599,311; Kingsman et al., U.S. Patent No. 15 4,615,974; and Bitter, U.S. Patent No. 4,977,092) and alcohol dehydrogenase genes. See also U.S. Patents Nos. 4,990,446; 5,063,154; 5,139,936 and 4,661,454. Transformation systems for other yeasts, including Hansenula polymorpha, Schizosaccharomyces pombe, Kluyveromyces lactis, Kluyveromyces fragilis, Ustilago 20 maydis, Pichia pastoris, Pichia methanolica, Pichia guillermondii and Candida maltosa are known in the art. See, for example, Gleeson et al., J. Gen. Microbiol. 132:3459-3465 (1986) and Cregg, U.S. Patent No. 4,882,279. 25 Aspergillus cells may be utilized according to the methods of McKnight et al., U.S. Patent No. 4,935,349. Methods for transforming Acremonium chrysogenum are disclosed by Sumino et al., U.S. Patent No. 5,162,228. Methods for transforming Neurospora are disclosed by Lambowitz, U.S.

Transformed or transfected host cells are cultured according to conventional procedures in a culture medium containing nutrients and other components required for the growth of the chosen host cells. A variety of suitable media, including defined media and complex media,

30 Patent No. 4,486,533.

35

26

are known in the art and generally include a carbon source, a nitrogen source, essential amino acids, vitamins and minerals. Media may also contain such components as growth factors or serum, as required. The growth medium will generally select for cells containing the exogenously added DNA by, for example, drug selection or deficiency in an essential nutrient which is complemented by the selectable marker carried on the expression vector or co-transfected into the host cell.

10

Within one aspect of the present invention, a novel protein is produced by a cultured cell, and the cell is used to screen for a receptor or receptors for the protein, including the natural receptor, as well as agonists and antagonists of the natural ligand.

PROTEIN ISOLATION:

Expressed recombinant polypeptides (or chimeric 20 polypeptides) can be purified using fractionation and/or conventional purification methods and media. Ammonium sulfate precipitation and acid or chaotrope extraction may be used for fractionation of samples. Exemplary purification steps may include hydroxyapatite, size exclusion, FPLC and reverse-phase high performance liquid chromatography. Suitable anion exchange media include derivatized dextrans, agarose, cellulose, polyacrylamide, specialty silicas, and the like. PEI, DEAE, QAE and Q derivatives are preferred, with DEAE Fast-Flow Sepharose (Pharmacia, Piscataway, NJ) being particularly preferred. 30 Exemplary chromatographic media include those media derivatized with phenyl, butyl, or octyl groups, such as Phenyl-Sepharose FF (Pharmacia), Toyopearl butyl 650 (Toso Haas, Montgomeryville, PA), Octyl-Sepharose (Pharmacia) and the like; or polyacrylic resins, such as Amberchrom CG 71 (Toso Haas) and the like. Suitable solid supports include

glass beads, silica-based resins, cellulosic resins, agarose beads, cross-linked agarose beads, polystyrene beads, cross-linked polyacrylamide resins and the like that are insoluble under the conditions in which they are to be used. These supports may be modified with reactive groups that allow attachment of proteins by amino groups, carboxyl groups, sulfhydryl groups, hydroxyl groups and/or carbohydrate moieties. Examples of coupling chemistries include cyanogen bromide activation, N-hydroxysuccinimide 10 activation, epoxide activation, sulfhydryl activation, hydrazide activation, and carboxyl and amino derivatives for carbodiimide coupling chemistries. These and other solid media are well known and widely used in the art, and are available from commercial suppliers. Methods for binding receptor polypeptides to support media are well known in the art. Selection of a particular method is a matter of routine design and is determined in part by the properties of the chosen support. See, for example, Affinity Chromatography: Principles & Methods (Pharmacia 20 LKB Biotechnology, Uppsala, Sweden, 1988).

The polypeptides of the present invention can be isolated by exploitation of their properties. For example, immobilized metal ion adsorption (IMAC) chromatography can be used to purify histidine-rich proteins. Briefly, a gel is first charged with divalent metal ions to form a chelate [E. Sulkowski, Trends in Biochem. 3:1-7 (1985)].

Histidine-rich proteins will be adsorbed to this matrix with differing affinities, depending upon the metal ion used, and will be eluted by competitive elution, lowering the pH, or use of strong chelating agents. Other methods of purification include purification of glycosylated proteins by lectin affinity chromatography and ion exchange chromatography [Methods in Enzymol., Vol. 182:529-39, "Guide to Protein Purification", M. Deutscher, (ed.), (Acad. Press, San Diego, 1990). Alternatively, a fusion of

28

the polypeptide of interest and an affinity tag (e.g., polyhistidine, maltose-binding protein, an immunoglobulin domain) may be constructed to facilitate purification. Furthermore, to facilitate purification of the secreted receptor polypeptide, an amino or carboxyl-terminal extension, such as a poly-histidine tag, substance P, FLAG® peptide [Hopp et al., Bio/Technology 6:1204-1210 (1988); available from Eastman Kodak Co., New Haven, CT), a Glu-Glu affinity tag [Grussenmeyer et al., Proc. Natl. Acad. Sci. USA 82:7952-4 (1985)], or another polypeptide or protein for which an antibody or other specific binding agent is available, can be fused to Zyto7 to aid in purification.

<u>Uses</u>

15

20

25

Northern blot analysis of the expression of Zcyto7 reveals that Zcyto7 is specifically expressed in the spinal cord. In situ analysis of the spinal cord reveals that this expression is localized in the neurons and dorsal root ganglia. Therefore, Zcyto7 may play a role in the maintenance of spinal cord involving either glial cells or neurons. This indicates that Zcyto7 can be used to treat a variety of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), or dymyelinating diseases including multiple sclerosis. Zcyto7 may also be used to treat sensory neuropathis. The tissue specificity of Zcyto7 expression suggests that Zcyto7 may be a growth and/or maintenance factor in the spinal cord.

30 Zcyto7 gene's location on chromosome 5 indicates that zcyto7 is a cytokine which can be used to modulate the activities of cells of the immune system. Zcyto7 can also be used as a chemoattractant of neutrophils in the spinal column. This would be useful as an anti-infective for infections in the spinal column. It could also be used to help regulate other cytokines in the spinal cord. Zcyto7

may also be administered to treat peripheral neuropathies such as Charcot-Marie-Tooth (CMT) disease which is localized to the same chromosomal region of 5q as Zcyto7.

The fact that Zcyto7 inhibits the growth of BAF-3 and TF-1 cells as shown in examples 11 and 12 below indicates that Zcyto7 can be used to treat autoimmune diseases and possibly such cancers such as leukemias.

The present invention also provides reagents which will find use in diagnostic applications. For example, the Zcyto7 gene is heavily expressed in the spinal cord. A probe comprising the Zcyto7 DNA or RNA or a subsequence thereof can be used to determine if the Zcyto7 gene is present on chromosome 5 or if a mutation has occurred.

The present invention also provides reagents with significant therapeutic value. The Zcyto7 polypeptide

20 (naturally occurring or recombinant), fragments thereof, antibodies and anti-idiotypic antibodies thereto, along with compounds identified as having binding affinity to the Zcyto7 polypeptide, should be useful in the treatment of conditions associated with abnormal physiology or

25 development, including abnormal proliferation, e.g., cancerous conditions, or degenerative conditions. For example, a disease or disorder associated with abnormal expression or abnormal signaling by a Zcyto7 polypeptide should be a likely target for an agonist or antagonist of the Zcyto7 polypeptide.

In particular, Zcyto7 can be used to treat inflammation. Inflammation is a result of an immune response to an infection or as an autoimmune response to a self-antigen.

Treatment dosages should be titrated to optimize safety and efficacy. Methods for administration include intravenous, peritoneal, intramuscular, subdural, into the spinal fluid or transdermal administration.

Pharmaceutically acceptable carriers will include water, saline, buffers to name just a few. Dosage ranges would ordinarily be expected from 0.1µg to 1mg per kilogram of body weight per day. Preferably, 1µg to 100µg per day. However, the doses by be higher or lower as can be

determined by a medical doctor with ordinary skill in the art. For a complete discussion of drug formulations and dosage ranges see Remington's Pharmaceutical Sciences, 17th Ed., (Mack Publishing Co., Easton, Penn., 1990), and Goodman and Gilman's: The Pharmacological Bases of Therapeutics, 9th Ed. (Pergamon Press 1996).

Use of Zcyto7 to Promote Bone and Cartilage Growth

It has been discovered that Zcyto7 stimulates the proliferation of both chondrocytes and osteoblasts as is shown below in Examples 7 and 9 respectively. In addition, Zcyto7 also stimulates the steady state level of glycosaminoglycan present in chondrocyte cultures as shown in Example 8. Thus Zcyto7 can be used to stimulate both bone and cartilage growth in a variety of different therapeutic settings.

Zcyto7 can be implanted in a mammalian body so

that the zcyto7 is in contact with osteoblasts such that
osteoblast proliferation occurs and bone growth is
stimulated. For example, zcyto7 can be placed in a matrix
[with or without a bone morphogenic protein (BMP)]. The BMP
induces the migration of mesenchymal osteoblast precursors

to the site and further induces differentiation of the
mesenchymal cells into osteoblast. Zcyto7 will then

stimulate the further proliferation of the osteoblasts. A suitable matrix is made up of particles of porous materials. The pores must be of a dimension to permit progenitor cell migration and subsequent differentiation and proliferation. An ideal particle size should be in the range of 70 - 850 mm, preferably 150 - 420mm. The matrix containing the zcyto7 can be molded into a shape encompassing a bone defect. Examples of matrix materials are particulate, demineralized, guanidine extracted, species-specific bone. Other potentially useful matrix 10 materials include collagen, homopolymers and copolymers of glycolic acid and lactic acid, hydroxyapatite, tricalcium phosphate and other calcium phosphates. Zcyto7 can be applied into a matrix at a sufficient concentration to 15 promote the proliferation of osteoblasts, preferably at a concentration of at least $1\mu g/ml$ of matrix. A solution of zcyto7 can also be injected directly into the site of a bone fracture or defect including areas of bone degeneration to expedite healing of the fracture or defect site. Examples of BMPs and the use of matrices to produce 20 are disclosed in PCT application publication number WO 92/07073, publication No. WO 91/05802, U.S Patent No. 5,645,591 and U.S. Patent No. 5,108,753.

Zcyto7 can be further used to treat osteoporosis by administering a therapeutically effective amount of zcyto7 to an individual. A preferred dosage would be $1\mu g$ of zcyto7 per kilogram of body weight per day.

As stated above, it has also been determined that zcyto7 can be used to promote the production of cartilage through its ability to stimulate the proliferation of chondrocytes. Zcyto7 can be injected directly into the site where cartilage is to be grown. For example, zcyto7 can be injected directly in joints which have been afflicted with osteoarthritis or other injured joints in which the

32

cartilage has been worn down. An example of a case in which additional cartilage needs to be grown is shoulders and knees of injured athletes.

Cartilage can also be grown by first removing chondrocytes from an individual, culturing the chondrocytes with zcyto7 so that they proliferate and reimplanting the chondrocytes back into the individual where cartilage needs to be produced.

10

Zcyto7 can also be used to stimulate the regeneration of dentin or bone which has been lost due to periodontal disease. To do this, the surrounding tissue should be thoroughly cleaned and a solution of Zcto7 be administered, preferably by injection, into the site in which dentin regeneration is desired.

Antibodies to the zcyto7 polypeptide can be purified and then administered to a patient. These reagents can be combined for therapeutic use with additional active or inert ingredients, e.g., in pharmaceutically acceptable carriers or diluents along with physiologically innocuous stabilizers and excipients. These combinations can be sterile filtered and placed into dosage forms as by lyophilization in dosage vials or storage in stabilized aqueous preparations. This invention also contemplates use of antibodies, binding fragments thereof or single-chain antibodies of the antibodies including forms which are not complement binding.

30

35

The quantities of reagents necessary for effective therapy will depend upon many different factors, including means of administration, target site, physiological state of the patient, and other medications administered. Thus, treatment dosages should be titrated to optimize safety and efficacy. Typically, dosages used in

33

vitro may provide useful guidance in the amounts useful for in vivo administration of these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. 5 Methods for administration include oral, intravenous, peritoneal, intramuscular, or transdermal administration. Pharmaceutically acceptable carriers will include water, saline, buffers to name just a few. Dosage ranges would ordinarily be expected from $1\mu g$ to $1000\mu g$ per kilogram of 10 body weight per day. However, the doses may be higher or lower as can be determined by a medical doctor with ordinary skill in the art. For a complete discussion of drug formulations and dosage ranges see Remington's Pharmaceutical Sciences, 17th Ed., (Mack Publishing Co., Easton, Penn., 1990), and Goodman and Gilman's: The 15 Pharmacological Bases of Therapeutics, 9th Ed. (Pergamon Press 1996).

Nucleic Acid-based Therapeutic Treatment

20

If a mammal has a mutated or lacks a Zcyto7 gene, the Zcyto7 gene can be introduced into the cells of the mammal. In one embodiment, a gene encoding a Zcyto7 polypeptide is introduced in vivo in a viral vector. Such vectors include an attenuated or defective DNA virus, such as but not limited to herpes simplex virus (HSV), papillomavirus, Epstein Barr virus (EBV), adenovirus, adeno-associated virus (AAV), and the like. Defective viruses , which entirely or almost entirely lack viral genes, are preferred. A defective virus is not infective after introduction into a cell. Use of defective viral vectors allows for administration to cells in a specific, localized area, without concern that the vector can infect other cells. Examples of particular vectors include, but are not limited to, a defective herpes virus 1 (HSV1) vector [Kaplitt et al., Molec. Cell. Neurosci., 2:320-330

(1991)], an attenuated adenovirus vector, such as the
vector described by Stratford-Perricaudet et al., J. Clin.
Invest., 90 :626-630 (1992), and a defective adenoassociated virus vector [Samulski et al., J. Virol.,
5 61:3096-3101 (1987); Samulski et al. J. Virol., 63:38223828 (1989)].

In another embodiment, the gene can be introduced in a retroviral vector, e.g., as described in Anderson et al., U.S. Patent No. 5,399,346; Mann et al., Cell, 33:153 (1983); Temin et al., U.S. Patent No. 4,650,764; Temin et al., U.S. Patent No. 4,980,289; Markowitz et al., J. Virol., 62:1120 (1988); Temin et al., U.S. Patent No. 5,124,263; International Patent Publication No. WO 95/07358, published March 16, 1995 by Dougherty et al.; and Blood, 82:845 (1993).

Alternatively, the vector can be introduced by lipofection in vivo using liposomes. Synthetic cationic lipids can be used to prepare liposomes for in vivo 20 transfection of a gene encoding a marker [Felgner et al., Proc. Natl. Acad. Sci. USA, 84:7413-7417 (1987); see Mackey et al., Proc. Natl. Acad. Sci. USA, 85:8027-8031 (1988)]. The use of lipofection to introduce exogenous genes into specific organs in vivo has certain practical advantages. Molecular targeting of liposomes to specific cells represents one area of benefit. It is clear that directing transfection to particular cells represents one area of benefit. It is clear that directing transfection to particular cell types would be particularly advantageous in a tissue with cellular heterogeneity, such as the pancreas, liver, kidney, and brain. Lipids may be chemically coupled to other molecules for the purpose of targeting. Targeted peptides, e.g., hormones or neurotransmitters, and proteins such as antibodies, or non-peptide molecules could be 35 coupled to liposomes chemically.

It is possible to remove the cells from the body and introduce the vector as a naked DNA plasmid and then re-implant the transformed cells into the body. Naked DNA vector for gene therapy can be introduced into the desired host cells by methods known in the art, e.g., transfection, electroporation, microinjection, transduction, cell fusion, DEAE dextran, calcium phosphate precipitation, use of a gene gun or use of a DNA vector transporter [see, e.g., Wu et al., J. Biol. Chem., 267:963-967 (1992); Wu et al., J. Biol. Chem., 263:14621-14624 (1988)].

Zcyto7 polypeptides can also be used to prepare antibodies that specifically bind to Zcyto7 polypeptides.

These antibodies can then be used to manufacture antiidiotypic antibodies. As used herein, the term "antibodies" includes polyclonal antibodies, monoclonal antibodies, antigen-binding fragments thereof such as F(ab')₂ and Fab fragments, and the like, including genetically engineered antibodies. Antibodies are defined to be specifically binding if they bind to a Zcyto7 polypeptide with a K_a of greater than or equal to 10⁷/M. The affinity of a monoclonal antibody can be readily determined by one of ordinary skill in the art (see, for example, Scatchard, ibid.).

Methods for preparing polyclonal and monoclonal antibodies are well known in the art (see for example, Sambrook et al., Molecular Cloning: A Laboratory Manual,

(Second Edition) (Cold Spring Harbor, NY, 1989); and Hurrell, J. G. R., Ed., Monoclonal Hybridoma Antibodies: Techniques and Applications (CRC Press, Inc., Boca Raton, FL, 1982). As would be evident to one of ordinary skill in the art, polyclonal antibodies can be generated from a variety of warm-blooded animals such as horses, cows, goats, sheep, dogs, chickens, rabbits, mice, and rats. The

immunogenicity of a Zcyto7 polypeptide may be increased
through the use of an adjuvant such as Freund's complete or
incomplete adjuvant. A variety of assays known to those
skilled in the art can be utilized to detect antibodies

5 which specifically bind to Zcyto7 polypeptides. Exemplary
assays are described in detail in Antibodies: A Laboratory
Manual, Harlow and Lane (Eds.), (Cold Spring Harbor
Laboratory Press, 1988). Representative examples of such
assays include: concurrent immunoelectrophoresis, radioimmunoassays, radio-immunoprecipitations, enzyme-linked
immunosorbent assays (ELISA), dot blot assays, inhibition
or competition assays, and sandwich assays.

As would be evident to one of ordinary skill in art, polyclonal antibodies can be 15 the generated inoculating a variety of warm-blooded animals such horses, cows, goats, sheep, dogs, chickens, rabbits, mice, hamsters, guinea pigs and rats with a Zcyto7 polypeptide or fragment thereof. The immunogenicity of a polypeptide may be increased through the use of 20 adjuvant, such as alum (aluminum hydroxide) or Freund's complete or incomplete adjuvant. Polypeptides useful for immunization also include fusion polypeptides, such fusions of Zcyto7 or a portion thereof with immunoglobulin polypeptide or with maltose binding protein. The polypeptide immunogen may be a full-length molecule or a portion thereof. If the polypeptide portion is "haptenlike", such portion may be advantageously joined or linked to a macromolecular carrier (such as keyhole 30 hemocyanin (KLH), bovine serum albumin (BSA) or tetanus toxoid) for immunization.

As used herein, the term "antibodies" includes polyclonal antibodies, affinity-purified polyclonal antibodies, monoclonal antibodies, and antigen-binding fragments, such as F(ab')₂ and Fab proteolytic fragments.

37

Genetically engineered intact antibodies or fragments, such as chimeric antibodies, Fv fragments, single chain antibodies and the like, as well as synthetic antigenbinding peptides and polypeptides, are also included. Non-5 human antibodies may be humanized by grafting non-human CDRs onto human framework and constant regions, or by incorporating the entire non-human variable domains (optionally "cloaking" them with a human-like surface by replacement of exposed residues, wherein the result is a 10 "veneered" antibody). In some instances, humanized antibodies may retain non-human residues within the human variable region framework domains to enhance proper binding characteristics. Through humanizing antibodies, biological half-life may be increased, and the potential for adverse immune reactions upon administration to humans is reduced. 15

Alternative techniques for generating or selecting antibodies useful herein include in vitro exposure of lymphocytes to Zcyto7 protein or peptide, and 20 selection of antibody display libraries in phage or similar vectors (for instance, through use of immobilized or labeled Zcyto7 protein or peptide). Genes encoding polypeptides having potential Zcyto7 polypeptide binding domains can be obtained by screening random peptide 25 libraries displayed on phage (phage display) or on bacteria, such as E. coli. Nucleotide sequences encoding the polypeptides can be obtained in a number of ways, such as through random mutagenesis and random polynucleotide synthesis. These random peptide display libraries can be 30 used to screen for peptides which interact with a known target which can be a protein or polypeptide, such as a ligand or receptor, a biological or synthetic macromolecule, or organic or inorganic substances. Techniques for creating and screening such random peptide 35 display libraries are known in the art (Ladner et al., US

WO 98/49310

Patent NO. 5,223,409; Ladner et al., US Patent NO. 4,946,778; Ladner et al., US Patent NO. 5,403,484 and Ladner et al., US Patent NO. 5,571,698) and random peptide display libraries and kits for screening such libraries are 5 available commercially, for instance from Clontech (Palo Alto, CA), Invitrogen Inc. (San Diego, CA), New England Biolabs, Inc. (Beverly, MA) and Pharmacia LKB Biotechnology Inc. (Piscataway, NJ). Random peptide display libraries can be screened using the Zcyto7 sequences disclosed herein 10 to identify proteins which bind to Zcyto7. These "binding proteins" which interact with Zcyto7 polypeptides can be used for tagging cells; for isolating homolog polypeptides by affinity purification; they can be directly or indirectly conjugated to drugs, toxins, radionuclides and 15 the like. These binding proteins can also be used in analytical methods such as for screening expression libraries and neutralizing activity. The binding proteins can also be used for diagnostic assays for determining circulating levels of polypeptides; for detecting or 20 quantitating soluble polypeptides as marker of underlying pathology or disease. These binding proteins can also act as Zcyto7 "antagonists" to block Zcyto7 binding and signal transduction in vitro and in vivo.

25 Antibodies can also be generated gene therapy.

The animal is administered the DNA or RNA which encodes

Zcyto7 or an immunogenic fragment thereof so that cells of
the animals are transfected with the nucleic acid and
express the protein which in turn elicits an immunogenic

30 response. Antibodies which then are produced by the animal
are isolated in the form of polyclonal or monoclonal
antibodies.

Antibodies to Zcyto7 may be used for tagging cells that express the protein, for affinity purification,

39

within diagnostic assays for determining circulating levels of soluble protein polypeptides, and as antagonists to block ligand binding and signal transduction *in vitro* and *in vivo*.

5

Radiation hybrid mapping is a somatic cell genetic technique developed for constructing highresolution, contiguous maps of mammalian chromosomes [Cox 10 et al., Science 250:245-250 (1990)]. Partial or full knowledge of a gene's sequence allows the designing of PCR primers suitable for use with chromosomal radiation hybrid mapping panels. Commercially available radiation hybrid mapping panels which cover the entire human genome, such as 15 the Stanford G3 RH Panel and the GeneBridge 4 RH Panel (Research Genetics, Inc., Huntsville, AL), are available. These panels enable rapid, PCR based, chromosomal localizations and ordering of genes, sequence-tagged sites (STSs), and other nonpolymorphic and polymorphic markers within a region of interest. This includes establishing 20 directly proportional physical distances between newly discovered genes of interest and previously mapped markers. The precise knowledge of a gene's position can be useful in a number of ways including: 1) determining if a sequence is part of an existing contig and obtaining additional surrounding genetic sequences in various forms such as YAC-, BAC- or cDNA clones, 2) providing a possible candidate gene for an inheritable disease which shows linkage to the same chromosomal region, and 3) for cross-referencing model 30 organisms such as mouse which may be beneficial in helping to determine what function a particular gene might have.

The present invention also provides reagents which will find use in diagnostic applications. For example, the Zcyto7 gene has been mapped on chromosome 5q31. A Zcyto7 nucleic acid probe could to used to check

for abnormalities on chromosome 5. For example, a probe comprising Zcyto7 DNA or RNA or a subsequence thereof can be used to determine if the Zcyto7 gene is present on chromosome 5q31 or if a mutation has occurred. Detectable chromosomal aberrations at the Zcyto7 gene locus include but are not limited to aneuploidy, gene copy number changes, insertions, deletions, restriction site changes and rearrangements. Such aberrations can be detected using polynucleotides of the present invention by employing molecular genetic techniques, such as restriction fragment length polymorphism (RFLP) analysis, short tandem repeat (STR) analysis employing PCR techniques, and other genetic linkage analysis techniques known in the art [Sambrook et al., ibid.; Ausubel, et. al., ibid.; Marian, A.J., Chest, 108: 255-265, (1995)].

Zcyto7 maps at the 5q31 region which is a "gene cluster" which contains a group of cytokines and cytokine receptors. The cytokines clustered there include IL-3, IL-20 4, IL-5, IL-13, GM-CSF, and M-CSF. This result authenticates zcyto7 as a cytokine.

25 The invention is further illustrated by the following non-limiting examples.

Example 1. Cloning of Zcyto7

Zcyto7 was identified from expressed sequence tag defined (EST) by SEQ ID NO: 3 by its homology to Interleukin-17. The cDNA clone was obtained from a human fetal heart cDNA library. The plasmid containing the cDNA streaked out on an LB 100 μ g/ml ampicillin and 100 μ g/ml methicillin plate. The cDNA insert was sequenced. The insert was determined to be 717 base pairs long with a 180

41

amino acid open reading frame and a putative 20 amino acid signal peptide.

Example 2

Northern Blot Analysis

5 Human multiple tissue blots 1,2,3 (Clontech)were probed to determine the tissue distribution of Zcyto7. A EcoRI/NotI fragment containing the entire Zcyto7 coding region was generated from the EST582069 clone and used for the probe. A plasmid prep of EST582069 was prepared from a 5 ml LB 100 μ g/ml ampicillin overnight culture at 37° using 10 the QIAprep Spin Miniprep Kit (Qiagen). 12 µl out of 100 µl were digested with 5 μ l of H buffer (Boehringer Mannheim), 12.5 units of EcoRI (Gibco BRL) and 12.5 units Not1 (New England Biolabs) in a 50 μ l reaction at 37°C for 2 hours. The digest was electrophoresed on a 0.7% TBE agarose gel 15 and the fragment was cut out. To obtain additional material the digest was repeated under the same conditions as above except 24 μ l of EST582069 was used in the second digest. The second digest was electrophoresed on a 0.7% TBE agarose gel and the fragment was cut out. The DNA was extracted 20 from both gel slabs with a QIAquick Gel Extraction Kit (Qiagen). 135 ng of this DNA was labeled with P^{32} using the Multiprime DNA Labeling System (Amersham) and unincorporated radioactivity was removed with a NucTrap Probe Purification Column (Stratagene). Multiple tissue 25 northerns and a human RNA master blot were prehybridized 3 hours with 10 ml ExpressHyb Solution (Clontech) containing 1 mg salmon sperm DNA which was boiled 5 minutes and then iced 1 minute and added to 10 ml of ExpressHyb Solution, mixed and added to blots. Hybridization was carried out overnight at 65°C. Initial wash conditions were as follows: 2X SSC, 0.05% SDS RT for 40 minutes with several changes of solution then 0.1% SSC, 0.1% SDS at 50°C for 40 minutes, 1 solution change. Blots were than exposed to film a -80°C for

42

5 hours. There was cross hybridization/background so blots were further washed at 55°C then 65°C with 0.1% X SSC, 0.1% SDS for 1 hour each. Spinal cord showed very high expression of Zcyto7 mRNA and trachea showed weak expression of mRNA. The transcript size was approximately 0.75 kb.

Example 3

Chromosomal Assignment and Placement of Zcyto7.

10

Zcyto7 was mapped to chromosome 5 using the commercially available "GeneBridge 4 Radiation Hybrid Panel" (Research Genetics, Inc., Huntsville, AL). The GeneBridge 4 Radiation Hybrid Panel contains PCRable DNAs from each of 93 radiation hybrid clones, plus two control DNAs (the HFL donor and the A23 recipient). A publicly available WWW server (http://www-genome.wi.mit.edu/cgi-bin/contig/rhmapper.pl) allows mapping relative to the Whitehead Institute/MIT Center for Genome Research's radiation hybrid map of the human genome (the "WICGR" radiation hybrid map of the human genome) which was constructed with the GeneBridge 4 Radiation Hybrid Panel.

For the mapping of Zcyto7 with the "GeneBridge 4
25 RH Panel", 20 µl reactions were set up in a PCRable 96-well
microtiter plate (Stratagene, La Jolla, CA) and used in a
"RoboCycler Gradient 96" thermal cycler (Stratagene). Each
of the 95 PCR reactions consisted of 2 µl 10X KlenTaq PCR
reaction buffer (CLONTECH Laboratories, Inc., Palo Alto,
30 CA), 1.6 µl dNTPs mix (2.5 mM each, PERKIN-ELMER, Foster
City, CA), 1 µl sense primer SEQ ID NO:4, 1 µl antisense
primer SEQ ID NO:5, 2 µl "RediLoad" (Research Genetics,
Inc., Huntsville, AL), 0.4 µl 50X Advantage KlenTaq
Polymerase Mix (Clontech Laboratories, Inc.), 25 ng of DNA

43

from an individual hybrid clone or control and x μl ddH2O for a total volume of 20 μ l. The reactions were overlaid with an equal amount of mineral oil and sealed. The PCR cycler conditions were as follows: an initial 1 cycle 5 5 minute denaturation at 95°C, 35 cycles of a 1 minute denaturation at 95°C, 1 minute annealing at 52°C and 1 minute extension at 72°C, followed by a final 1 cycle extension of 7 minutes at 72°C. The reactions were separated by electrophoresis on a 3% NuSieve GTG agarose gel (FMC 10 Bioproducts, Rockland, ME).

The results showed that Zcyto7 maps 490.89 cR from the top of the human chromosome 5 linkage group on the WICGR radiation hybrid map. Relative to the centromere, its 15 nearest proximal marker was D5S413 and its nearest distal maker was WI-5208. The use of surrounding markers position Zcyto7 in the 5q31.3-q32 region on the integrated LDB chromosome 5 map (The Genetic Location Database, University of Southhampton, WWW server: http://cedar.genetics. soton.ac.uk/ public_html/) .

Example 4

Construction of Zcyto7 Expression Vectors

25

20

Two Zcyto7 construction vectors were made in a FLAG amino acid sequence (SEQ ID NO: 10) was inserted onto the N-terminal or C-terminal ends of the Zcyto7 polypeptide. For the construction in which the FLAG amino acid sequence was attached to the N-terminus of Zcyto7, a 473 bp Zcyto7 PCR DNA fragment was generated with 1 μl of a $\frac{1}{4}$ dilution of the EST582069 plasmid prep of Example 2 and picomoles (pm) of primer SEQ ID NO: 6 and 20 pm primer SEQ ID NO: 7. The PCR reaction was incubated at 94°C for 1 35 minute, and then run for 5 cycles each individual cycle being comprised of 20 seconds at 94°C and 2 minutes at 64°C.

This was followed by 22 cycles each cycle being comprised of 20 seconds at 94°C and 2 minutes at 74°C. The reaction was ended with an incubation for 10 minutes at 74°C. 50 μl of the PCR reaction mixture was digested with 30 units of 5 BamH1 (Boehringer Mannheim) and 120 units of Xho1 (Boehringer Mannheim) for 2 hours at 37°C. The digested reaction mixture was electrophoresed on a 1% TBE gel; the DNA band was excised with a razor blade and the DNA was extracted from the gel with the Qiaquick® Gel Extraction 10 Kit (Qiagen). The excised DNA was subcloned into plasmid nfpzp9 which had been cut with Bam and Xho. Nfpzp9 is a mammalian cell expression vector comprising an expression cassette containing the mouse metallothionein-1 promoter, a sequence encoding the tissue plasminogen activator (TPA) leader, then the FLAG peptide (SEQ ID NO:10), then multiple 15 restriction sites. These were followed by the human growth hormone terminator, an E. coli origin of replication and a mammalian selectable marker expression unit containing the SV40 promoter, enhancer and origin of replication; a 20 dihydrofolate reductase gene (DHFR) and the SV40 terminator.

For the construction of the zcyto7 gene in which a C-terminus FLAG was inserted onto the C-terminus of the zcyto7 polypeptide, a 543 bp zcyto7 PCR fragment was generated with 1 μl of $^{1}\!\!\!\!/_{4}$ dilution of the EST582069 plasmid preparation described in Example 1 and 20 pm each of primers SEQ ID NO: 8 and SEQ ID NO: 9. The PCR reaction was incubated at 94°C for 1 minute, then run for 5 cycles, each 30 cycle being comprised 20 seconds at 94°C and 2 minutes at 55°C. This was followed by 22 cycles each cycle comprised of 20 seconds at 94°C and 2 minutes at 74°C . The reaction was ended with a final 10 minute extension at 74°C. The entire reaction mixture was run on a 1% TBE gel and the DNA was 35 cut out with a razor blade and the DNA was extracted using the QIAQUICK TM gel extraction kit. 20 μl out of the

recovered 35 μ l digested with 10 units of BamH1 (Boehringer Mannheim) and 10 units of EcoR1(Gibco BRL) for 2 hours at 37°C. The digested PCR mixture was electrophoresed on a 1% TBE gel. The DNA band was cut out with a razor blade and 5 the DNA was extracted from the gel using the QIAquick® Gel Extraction Kit (Qiagen). The extracted DNA was subcloned into plasmid cfpzp9 which had been cut with EcoR1 and BamH1. Plasmid cfpzp9 is a mammalian expression vector containing an expression cassette having the mouse metallothionein-1 promoter, multiple restriction sites for 10 insertion of coding sequences, a sequence encoding the FLAG peptide, SEQ ID NO:10, a stop codon, a human growth hormone terminator, an E. coli origin of replication, a mammalian selectable marker expression unit having an SV40 promoter, 15 enhancer and origin of replication, a DHFR gene and the SV40 terminator.

Using antibodies to the FLAG polypeptides, one can separate the FLAG-tagged Zcyto7 polypeptides from a cell supernatant liquid.

Example 5 Cloning of murine Zcyto7

Mouse Zcyto7 was identified from EST SEQ ID NO:14 by its homology to human Zcyto7. The cDNA clone was discovered in a murine embryo cDNA library in which the embryos were between 13.5 and 14.5 days old. The cDNA was supplied as an agar stab containing *E. coli* transfected with the plasmid having the cDNA of interest and then streaked out on an LB 100 μg/ml ampicillin, 25 μg/ml methicillin plate. The cDNA insert in EST660242 was sequenced. The insert was determined to be 785 base pairs with an open reading frame of 180 amino acids and a putative 20 amino acid signal peptide. The sequences are defined by SEQ ID NO:11 and SEQ ID NO:12.

46

Example 6

Tissue Distribution of murine Zcyto7

5

15

Mouse Multiple Tissue Northern Blot (Clontech, Palo Alto, CA), mouse northern dot blot (Clontech), a mouse embryo northern blot, and a mouse spinal cord dot blot were probed to determine the tissue distribution of murine 10 Zcyto7.

The mouse embryo RNA were isolated from mouse embryos which were 6 to nine days from the date of fertilization using the POLY (A) PURE® mRNA isolation kit (Ambion). 100 mg of each mouse embryo was lysed in 1 ml of lysis buffer, homogenized and processed in batch method according to the manufacturer's protocol. For the northern blot, 2 μg of RNA was loaded on 1.5% agarose, 2.2M formaldehyde gel. The gel was run at 60V for four hours and 30 minutes. The RNA was 20 transferred overnight onto a Nytran membrane which had been pre-wetted in 20 X SSC. The RNAs were crosslinked onto the membrane by UV light and baked at 80°C for 1 hour.

The mouse spinal cord RNA was also prepared with the POLY (A) PURE® mRNA isolation kit (Ambion). The mouse spinal cord dot blot was made by spotting a dot with 1, 2 and 3 μl of RNA at 1 μg RNA/ μl concentration onto Nytran membrane.

30 A Not1/EcoRI fragment containing the entire Zcyto7 coding region was generated from the clone containing SEQ ID NO: 12 (hereinafter referred to as the SEQ ID NO:12 clone) and was used for the probe. A plasmid prep of the SEQ ID NO:12 clone was prepared from a 5 ml LB 100 $\mu g/ml$ 35 ampicillin overnight culture at 37°C using the QIAPREP SPIN MINIPREP kit (Qiagen). 4.66 µg were digested with 8 µl of

47

high buffer (Boehringer Mannheim), 20 units of Not1 (Biolabs) and 20 units of EcoRI (Gibco BRL) in a 80 μ l reaction at 37°C for 2 hours. The digest was electrophoresed on a 1.0% TBE gel and the fragment was cut out. The DNA was extracted from the gel slab with a QIAQUICK® gel extraction kit (Qiagen). 98.8 ng of this fragment was labeled with P³² using the MULTIMPRIME® DNA labeling system (Amersham) and unincorporated radioactivity was removed with a NUCTRAP® probe purification column (Stratagene).

10

The two northern preps and the two dot blot preps were prehybridized for 3 hours at 65°C as follows. 1 mg of salmon sperm was boiled 5 minutes, iced 1 minute, mixed with 10 ml of EXPRESSHYB® solution and added to the blots.

- 15 Hybridization was carried out overnight at 65°C. Initial wash conditions were as follows: 2 X SSC, 0.1% SDS for 40 minutes at room temperature then 0.1 X SSC, 0.1% SDS for 40 minutes at 50°C. Blots were exposed to film overnight at -80°C. The northern blots and the mouse dot blot were further washed with 0.1% X SSC, 0.1% SDS at 60°C to remove background. The mouse spinal cord dot blot was washed again at higher stringency with 0.1 X SSC, 0.1% SDS at 65°C to confirm the earlier results.
- 25 Results: Mouse Zcyto7 expression was seen in the spinal cord, submaxillary gland and epididymis. Mouse embryo showed expression of Zcyto7 starting on day 12, peaking at day 16 and ending day 17 from the date of fertilization. The transcript size was approximately 1 kb.

48

Example 7

Proliferation of Chondrocytes Using Zcyto7

A chondrocyte proliferation assay was done to determine the effect that Zcyto7 would have on chondrocyte proliferation. The assay was done with 20% confluent cultures. As a control vehicle, bovine serum albumin was added to a culture of chondrocytes instead of Zcyto7. The assay measured the 3H-thymidine incorporation of nascent DNA in the chondrocytes, Wahl et al., Mol. Cell. Biol. 8:5016-5025 (1988).

Results: A 3.5 - 9 fold stimulation of primary chondrocyte proliferation was seen upon exposure of the chondrocyte cultures to $1\mu g/ml$ of zcyto7. Chondrocyte stimulation by zcyto7 was seen with multiple preparations of the protein and was seen across species lines. It contrast to this, the control experiment using BSA resulted in no stimulation of chondrocytes.

Example 8

Production of Glycosaminoglycan by Zcyto7-treated 25 Chondrocytes

A 20% confluent culture of chondrocytes was prepared and zcyto7 was applied at a concentration of $1\mu g/ml$. In a second experiment in addition to zcyto7, IL-1 β was applied to the cell culture. In a control group BSA was added to the chondrocyte culture. The level of glycosaminoglycan (GAG) production by the chondrocyte culture was then determined using a 1,9-dimethylmethlyene blue dye binding assay, Fardale et al., Biochem. Biophys. Acta 888:173-177 (1987).

49

Results: Chondrocytes which were cultured with zcyto7 showed a 50% increase in the steady state presence of GAG in the chondrocyte culture. Moreover, when the chondrocytes were co-cultured with both zcyto7 and interleukin-1 β (IL-1)the GAG production by the chondrocytes increased 2.5 fold as compared with culturing of the chondrocytes with either zcyto7 or IL-1 β alone. While the cultured cells to which BSA was added showed no increased production of GAG.

10

Example 9

Osteoblast Stimulation by Zcyto7

The CCC4 cell line is an osteoblast-like cell line derived from p53 knockout mice. The CCC4 line was transfected with a plasmid containing an inducible serum response element (SRE) driving the expression of luciferase. The stimulation of the SRE and thus the expression of luciferase indicates that the chemical entity is likely to stimulate osteoblasts.

CCC4 cells were cultured in the presence of $1\mu g$ of zcyto7/ml of culture medium. As a control BSA, fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) were each added to different cultures of CCC4 cells. BSA was a negative control and FGF and PDGF were positive controls as they are known to promote osteoblast proliferation. Luciferase activity was detected by addition of 40 μl of Promega luciferase substrate using a 2 second integrated read on Labsystes LUMINOSKAN®.

Results

Zcyto7 as well as, FGF and PDGF stimulate the 35 expression of luciferase in this assay indicating that they

50

stimulate osteoblasts. The BSA vehicle control was negative in this assay.

Example 10

5

Effect of Zcyto7 on the Growth of Fibroblasts

Confluent cultures of human dermal, lung, and fetal lung fibroblasts were inoculated with Zcyto7 to determine

10 the effects of Zcyto7 on the growth of fibroblasts. FGF was used as a positive control and BSA as a negative control vehicle.

Results: Zcyto7 had no effect on the growth of fibroblasts.

15

Example 11

Effect of Zcyto7 on the Growth of BaF3 Cells

BaF3 cells, a murine pre-B cell line dependent on IL-3 20 to proliferate, were washed several times with base medium and then plated in a 96-well plate each well contained approximately 5500 cells/well. The cells were treated with either $1\mu g/ml$ of Zcyto7 or 1-2pg/ml of IL-3 or with a combination of both Zcyto7 and IL-3. Also in a separate experiment 0.1-10ng/ml of $TGF\beta$ was added to the wells instead of Zcyto7. After incubation of the assay plate at 37°C and 5% CO2 for 3-6 days, 20 μl of ALAMAR blue was added to each well and the plate is incubated at 37° C for 15-24hours. The plate was then read with a fluorometer with excitation wavelength of 544m and emission wavelength of 590m. The assay was also scored by eye for stimulation or inhibition of cell proliferation prior to the addition of the ALAMAR blue. The base medium contained RPMI 1640 + 10% HIA-FBS + L-glutamine + Na pyruvate.

51

Results: Zcyto7 and TGF β significantly inhibited the IL-3 driven proliferation of BaF3 cells. However, when neutralizing antibodies to TGF β were added in along with the Zcyto7, the Zcyto7 inhibition of the proliferation of the BaF3 cells was eliminated.

Example 12

Effect of Zcyto7 on the Growth of TF-1 Cells

10

15

25

TF-1 cells, a human leukemia cell line which is GM-CSF or IL-1 β dependent, were washed several times with base medium and then plated in a 96-well plate each well containing approximately 7000 cells/well. The cells were co-cultured with 1 μ g/ml of Zcyto7 and 100-200 μ g/ml of IL-1 β . Also in a separate experiment TGF β was added to the wells instead of Zcyto7. After incubation of the assay plate at 37°C and 5% CO2 for 3-6 days, 20 μ l of ALAMAR blue was added to each well and the plate is incubated at 37°C for 15-24 hours. The plate is then read with a fluorometer with excitation wavelength of 544nm and emission wavelength of 590nm. The assay was also scored by eye for stimulation or inhibition of cell proliferation prior to the addition of the ALAMAR blue. The base medium contained RPMI 1640 + 10% HIA-FBS + L-glutamine + Na pyruvate.

Results: The IL-1 β stimulation of TF-1 cells is inhibited by both Zcyto7 and TGF- β . The concentration of Zcyto7 at which inhibition of proliferation occurred was greater than 200ng/ml; and the concentration of TGF- β at which inhibition of proliferation occurred was about 50pg/ml.

SEQUENCE LISTING

- (1) GENERAL INFORMATION
- (i) APPLICANT: ZymoGenetics, Inc.

1201 Eastlake Avenue East

Seattle

WA USA 98102

- (ii) TITLE OF THE INVENTION: MAMMALIAN CYTOKINE-LIKE FACTOR-7
- (iii) NUMBER OF SEQUENCES: 43
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: ZymoGenetics, Inc.
 - (B) STREET: 1201 Eastlake Avenue East
 - (C) CITY: Seattle
 - (D) STATE: WA
 - (E) COUNTRY: USA
 - (F) ZIP: 98102
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Lunn, Paul G
 - (B) REGISTRATION NUMBER: 32,743
 - (C) REFERENCE/DOCKET NUMBER: 97-15PC

	(i	(A) (B)	TELE	COMMU EPHON EFAX : EX :	IE: 2	206-4	142-6	6627	ATION	1:						
		(2)) INF	ORMA	NOITA	l FOF	R SEC) ID	NO:1	.:						
	(i	(A) (B) (C)	LENG TYPE STRA	ICE (GTH: E: nu ANDE[DLOG)	736 uclei ONESS	base c ac S: si	e pai cid ingle	rs								
			OLEC EATU	CULE JRE:	TYPE	E: c[AAC									
		(B)	LO0	1E/KE CATIO HER I)N: 5	57	.596	equer	nce							
	()	ki) S	SEQUE	ENCE	DESC	CRIPT	ΓΙΟN:	: SEC) ID	NO:1	L:					
GAAT	TCG	GCA (CGAGO	GAGG(CG GO	GCAG(CAGCT	r GC <i>A</i>	AGGCT	TGAC	CTT	GCAG(CTT (GGCG(GA ATG Met 1	59
											ATT Ile					107
GGG Gly	CTG Leu	GGC Gly 20	CAG Gln	CCC Pro	AGG Arg	AGC Ser	CCC Pro 25	AAA Lys	AGC Ser	AAG Lys	AGG Arg	AAG Lys 30	GGG Gly	CAA G1n	GGG Gly	155
											GTG Val 45					203
											GAG Glu					251

GAG Glu															299
AAG Lys															347
TCT Ser															395
GAC Asp 115															443
ACC Thr															491
GTT Val															539
TGC Cys															587
ATC Ile		TGA	ATCA(CCT (GCC(CAGAA	AG C(CAGG(CCAG(C AGO	CCCGA	AGAC	CAT	ССТССТ	645
TGCACCTTTG TGCCAAGAAA GGCCTATGAA AAGTAAACAC TGACTTTTGA AAGCCAGAAA AAAAAAAAAA AAAAAAAATT CCTGCGGCCG C										705 736					

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
 (v) FRAGMENT TYPE: internal

55

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asp Trp Pro His Asn Leu Leu Phe Leu Leu Thr Ile Ser Ile Phe Leu Gly Leu Gly Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln 25 Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp 40 Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg 55 60 Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala 70 75 Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg 85 90 Ser Leu Ser Pro Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile 105 Pro Val Asp Leu Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn 120 Pro Phe Thr Met Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe 135 140 Ser Gln Val Pro Val Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr 145 150 155 160 Gly Pro Cys Arg Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys 165 170 175 Thr Cys Ile Phe 180

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 397 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: Other
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

AGGCGGGCAN AGCTGCAGGC	TGACCTTGCA	GCTTGGCGGA	ATGGACTGGC	CTCACAACCT	60
GCTGTTTCTT CTTACCATTT	CCATCTTCCT	GGGGCTGGGC	AGCCAGGAGC	CCCAAAAGCA	120
AGAGGAAGGG GCAAGGGCGG	CCTGGGCCCN	TGGCCTGGCC	TCACCAGGTG	CCACTGGACC	180
TGGTGTCACG GATGAAACCG	TATGCCCGCA	TGGAGGAGTA	TGAGAGGAAC	ATCGAGGAGA	240
TGGTGGCCCA GCTGAGGAAC	AGCTCANAAG	CTGGCCCAGA	GAAAGTGTGA	GGTCAACTTG	300

CAGCTGTGGA TGTCCAACAA GAAGGAGCCT GTCTCCCTTG GGGCTACAAG CATCAACCAC CGACCCCAGC CGTATCCCCG TGGGACCTTG CCGGGAC	360 397
(2) INFORMATION FOR SEQ ID NO:4:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other(vii) IMMEDIATE SOURCE:(B) CLONE: ZC13265	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
TTACCATTTC CATCTTCC	18
(2) INFORMATION FOR SEQ ID NO:5:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 18 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13266	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
CCCTTCCTCT TGCTTTTG	18
(2) INFORMATION FOR SEQ ID NO:6:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other (vii) IMMEDIATE SOURCE:	

(B) CLONE: ZC13326	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
CAAGGATCCC AGCCCAGGAG CCCCAAAAG	29
(2) INFORMATION FOR SEQ ID NO:7:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other(vii) IMMEDIATE SOURCE:(B) CLONE: ZC13330	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
GACCTCGAGT CAGAAGATGC AGGTGCAGCC	30
(2) INFORMATION FOR SEQ ID NO:8:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 30 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
(ii) MOLECULE TYPE: Other (vii) IMMEDIATE SOURCE: (B) CLONE: ZC13325	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
GTCGAATTCA TGGACTGGCC TCACAACCTG	30
(2) INFORMATION FOR SEQ ID NO:9:	
(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 27 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	

58

(ii) MOLECULE TYPE: Other

(vii) IMMEDIATE SOURCE:

(B) CLONE: ZC13327

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

GAAGGATCCG AAGATGCAGG TGCAGCC

27

- (2) INFORMATION FOR SEQ ID NO:10:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 10 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Asp Tyr Lys Asp Asp Asp Asp Lys Gly Ser 1 5 10

- (2) INFORMATION FOR SEQ ID NO:11:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 692 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (ix) FEATURE:
 - (A) NAME/KEY: Coding Sequence
 - (B) LOCATION: 50...589
 - (D) OTHER INFORMATION:
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

GGGGTTCCTG GCGGGTGGCA GCTGCGGGCC TGCCGCCTGA CTTGGTGGG ATG GAC TGG

Met Asp Trp

						CTG Leu		106
						GGG Gly		154
						CTG Leu		202
						AAC Asn 65		250
						AAG Lys		298
						AGC Ser		346
						CCT Pro		394
						CCC Pro		442
						AGC Ser 145		490
						GGG Gly		538
						ACC Thr		586

60

TTC TGAGCCAACC ACCAACCCGG TGGCCTCTGC AACAACCCTC CCTCCCTGCA CCCACT 645
Phe
180

GTGACCCTCA AGGCTGATAA ACAGTAAACG CTGTTCTTTG TAAAGGA

692

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 180 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
 (v) FRAGMENT TYPE: internal

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Asp Trp Pro His Ser Leu Leu Phe Leu Leu Ala Ile Ser Ile Phe 10 Leu Ala Pro Ser His Pro Arg Asn Thr Lys Gly Lys Arg Lys Gly Gln Gly Arg Pro Ser Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp 40 Leu Val Ser Arg Val Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg 60 Asn Leu Gly Glu Met Val Ala Gln Leu Arg Asn Ser Ser Glu Pro Ala 70 75 Lys Lys Lys Cys Glu Val Asn Leu Gln Leu Trp Leu Ser Asn Lys Arg 90 Ser Leu Ser Pro Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile 105 Pro Ala Asp Leu Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn 120 125 Pro Phe Thr Met Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe 135 140 Ser Gln Val Pro Val Arg Arg Leu Cys Pro Gln Pro Pro Arg Pro 150 155 Gly Pro Cys Arg Gln Arg Val Val Met Glu Thr Ile Ala Val Gly Cys 165 170 175 Thr Cys Ile Phe 180

(2) INFORMATION FOR SEQ ID NO:13:

(i)	SEQUENCE	CHARACTER I	STICS:
		40-	

(A) LENGTH: 497 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

GGGGTTCCTG GCGGGTGGCA	GCTGCGGGCC	TGCCGCCTGA	CTTGGTGGGA	TGGACTGGCC	60
GCACAGCCTG CTCTTCCTCC	TGGCCATCTC	CATCTTCCTG	GCGCCAAGCC	ACCCCCGGAA	120
CACCAAAGGC AAAAGAAAAG	GGCAAGGGAG	GCCCAGTCCC	TTGGCCCCTG	GGCTCATCAG	180
GTGCCGCTGG ACCTGGTGTC					240
AACCTTGGGG AGATGGTGGC					300
GAAGTCAATC TACAGCTGTG					360
ATCAACCACG ACCCCAGCCG					420
GGTTGCGTGA ATCCCTTCAC	CATGCAGGAG	GACCGTAGCA	TGGTGAGCGT	GCCAGTGTTC	480
AGCCAGGTGC CGGTGCG					497

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 160 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly 1 5 10 15

Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg 25 30

Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu 45

Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys 50 60

Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 65 70 75 80

Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 85

Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met

100 105 110

Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro

115 120 125

Val Arg Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg

130 135 140

Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe

145 150 155 160

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 160 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

Gln Pro Arg Ala Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly 1 10 Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg 25 Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys 55 60 Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 70 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 105 100 110 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 120 125 Val Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 135 140 Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 160 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Gln Pro Arg Ser Pro Lys Ala Lys Arg Lys Gly Gln Gly Arg Pro Gly 10 Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu 40 Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 90 Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 100 105 110 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 115 120 125 Val Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 135 140 Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:
- Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Ala 1 5 10 15

Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu 40 Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 70 75 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 105 110 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 120 Val Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 135 Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 160 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly 10 15 15

Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ala Arg 25 30 30

Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Glu 35 40 45

Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys 50 55 60

Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 65 70 75 80

Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 95

Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 100

Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro
115

Val Arg Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg
130

Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe
145

150

Ser Val Pro Val Phe Ser Gln Val Pro
125

140

Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe
145

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly 10 Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu 40 45 Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys 55 Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 70 75 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 90 Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 105 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 115 120 125 Val Arg Arg Leu Cys Pro Pro Pro Arg Thr Gly Pro Cys Arg 135 140 Gln Arg Val Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid

- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly 10 Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg 25 Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 75 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 100 105 110 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 120 125 Val Arg Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 135 140 Gln Arg Leu Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly
1 5 10 15
Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg
20 25 30

Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys 55 60 Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 70 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 85 90 Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 105 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 120 125 Val Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 135 140 Gln Arg Phe Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly 10 Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Gly Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu 40 Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 70 75 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 90 Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 100 105 110 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 120 125

Val Arg Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 130 135 140 Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Ser Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg 25 Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys 55 60 Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 70 75 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 85 90 Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 105 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 120 Val Arg Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 135 140 Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 160 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Gln Pro Arg Ser Pro Lys Val Lys Arg Lys Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu 40 Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 70 75 80 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 90 Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 105 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 120 125 Val Arg Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 135 Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Gln Pro Arg Val Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly 1 5 10 15

Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg 20 25 30

Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu 35 40 45

Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro 70 75 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 85 90 Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 100 105 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 120 125 Val Arg Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 135 140 Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 150 155 160

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 97 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

 Cys
 Glu
 Val
 Asn
 Leu
 Gln
 Leu
 Trp
 Met
 Ser
 Asn
 Lys
 Arg
 Ser
 Leu
 Ser

 Pro
 Trp
 Gly
 Tyr
 Ser
 Ile
 Asn
 His
 Asp
 Pro
 Ser
 Arg
 Ile
 Pro
 Val
 Asp
 Arg
 Ile
 Pro
 Val
 Asp
 Pro
 Pro
 Pro
 Pro
 Val
 Asp
 Pro
 P

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 100 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly Pro 10 Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met 40 45 Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu 55 Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp 70 75 Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro 90 95 Glu Ala Arg Cys 100

- (2) INFORMATION FOR SEQ ID NO:28:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly Pro 1 5 10 15 Leu

- (2) INFORMATION FOR SEQ ID NO:29:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 17 amino acids

(B) TYPE: amino acid(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu 1 5 10 15 Glu

- (2) INFORMATION FOR SEQ ID NO:30:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg Cys 1 10 15

- (2) INFORMATION FOR SEQ ID NO:31:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Pro Val Arg Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys $1 \qquad \qquad 5 \qquad \qquad 10 \qquad \qquad 15$ Arg Gln Arg

- (2) INFORMATION FOR SEQ ID NO:32:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 47 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Pro Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly Pro 1 5 10 15

Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Met 20 25 30

Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu 35 40 45

- (2) INFORMATION FOR SEQ ID NO:33:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 70 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu 1 5 10 15
Glu Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys 20 25 30
Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser 35 40 45
Pro Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp 50 55 60
Leu Pro Glu Ala Arg Cys 65

- (2) INFORMATION FOR SEQ ID NO:34:
- (i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 61 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg Cys 1 5 5 10 10 15

Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp Arg Ser 25 30

Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg Arg Arg Leu 35 40 45

Cys Pro Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln Arg 50 60

- (2) INFORMATION FOR SEQ ID NO:35:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 73 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: peptide
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg Cys 1 5 10 15

Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp Arg Ser 25 30

Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg Arg Arg Leu 35 40 45

Cys Pro Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln Arg Ala Val Met 50 60

Glu Thr Ile Ala Val Gly Cys Thr Cys 65 70

- (2) INFORMATION FOR SEQ ID NO:36:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 158 amino acids

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly Pro Leu 10 Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys 25 Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val 40 Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly 70 75 Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu 90 Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu 100 105 Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg 115 120 Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln Arg 135 140 Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 150

- (2) INFORMATION FOR SEQ ID NO:37:
- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 154 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro l1 5 10 15 His Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg 20 25 30

Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu 55 60 Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile Asn 70 His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg Cys Leu 90 Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp Arg Ser Met 105 Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg Arg Leu Cys 120 125 Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln Arg Ala Val Met Glu 135 Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 151 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Lys Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn Ser Ser 40 Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile Asn His Asp Pro 70 75 Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg Cys Leu Cys Leu Gly 85 90 Cys Val Asn Pro Phe Thr Met Gln Glu Asp Arg Ser Met Val Ser Val 100 105 Pro Val Phe Ser Gln Val Pro Val Arg Arg Leu Cys Pro Pro Pro 120 125

Pro Arg Thr Gly Pro Cys Arg Gln Arg Ala Val Met Glu Thr Ile Ala 130 135 140

Val Gly Cys Thr Cys Ile Phe 145 150

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 160 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

His Pro Arg Asn Thr Lys Gly Lys Arg Lys Gly Gln Gly Arg Pro Ser Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg 25 Val Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Leu Gly Glu Met Val Ala Gln Leu Arg Asn Ser Ser Glu Pro Ala Lys Lys Lys Cys 55 60 Glu Val Asn Leu Gln Leu Trp Leu Ser Asn Lys Arg Ser Leu Ser Pro 70 75 Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Ala Asp Leu 85 90 Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 105 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 120 Val Arg Arg Arg Leu Cys Pro Gln Pro Pro Arg Pro Gly Pro Cys Arg 135 140 Gln Arg Val Wat Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155 160

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 158 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Arg Asn Thr Lys Gly Lys Arg Lys Gly Gln Gly Arg Pro Ser Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Val Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Leu Gly Glu Met Val 40 Ala Gln Leu Arg Asn Ser Ser Glu Pro Ala Lys Lys Cys Glu Val Asn Leu Gln Leu Trp Leu Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly 75 Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Ala Asp Leu Pro Glu 90 Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu 105 Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg 120 125 Arg Arg Leu Cys Pro Gln Pro Pro Arg Pro Gly Pro Cys Arg Gln Arg 135 Val Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 145 150 155

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 153 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Lys Arg Lys Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His 1 5 10 15 15 Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met 20 25 30 Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn 35 40 45

Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile Asn His 70 75 Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg Cys Leu Cys 85 90 Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp Arg Ser Met Val 100 105 Ser Val Pro Val Phe Ser Gln Val Pro Val Arg Arg Leu Cys Pro 120 125 Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln Arg Ala Val Met Glu Thr 135 140 Ile Ala Val Gly Cys Thr Cys Ile Phe 150

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 128 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

Met Lys Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu 10 Met Val Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu 55 60 Pro Glu Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met 70 80 Gln Glu Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro 90 Val Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg 100 105 Gln Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe 115 120 125

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 157 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

Arg Ser Pro Lys Ser Lys Arg Lys Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val Pro Leu Asp Leu Val Ser Arg Met Lys 25 Pro Tyr Ala Arg Met Glu Glu Tyr Glu Arg Asn Ile Glu Glu Met Val 40 Ala Gln Leu Arg Asn Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly 75 70 Tyr Ser Ile Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu 90 Ala Arg Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu 100 105 Asp Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg 115 120 125 Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln Arg 130 135 Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile 145 150

CLAIMS

We claim:

- 1. An isolated polynucleotide which encodes a mammalian Zcyto7 polypeptide or variants thereof.
- 2. The isolated polynucleotide of claim 1 wherein said polynucleotide encodes a polypeptide selected from the group SEQ ID NO:2, SEQ ID NO:12, SEQ ID NOs:14-27 and SEQ ID NOs: 36-43.
- 3. A polynucleotide of claim 2 wherein the polypeptide encoded by said polynucleotide is a polypeptide defined by SEQ ID NOs: 15-25 wherein the amino termini of said polypeptides begin at either amino acid residue 3, an arginine; amino acid residue 7, a serine; amino acid residue 8, a lysine; amino acid residue 10, a lysine or amino acid residue 33 methionine.
- 4. A polynucleotide of claim 2 wherein the polypeptide encoded by said polynucleotide is a polypeptide defined by SEQ ID NOs: 2, 12, 14-25 and 36 to 42 wherein the amino acid sequences end at the isoleucines at amino acid residue 179 of SEQ ID NO: 2, at amino acid residue 159 of SEQ ID NOs: 14-25, which corresponds to amino acid residue 157 of SEQ ID NO:36, amino acid residue 153 of SEQ ID NO:37, amino acid residue 150 of SEQ ID NO:38, amino acid residue 159 of SEQ ID NO: 39, amino acid residue 157 of SEQ ID NO:40, amino acid residue 152 SEQ ID NO:42, amino acid residue 127 of SEQ ID NO:42.
- 5. An isolated polynucleotide which encodes a peptide or polypeptide having at least 15 amino acid residues comprised of an epitope-bearing portion of a polypeptide of SEQ ID NOs: 2, 14-27 and 36-43.

- 6. The isolated polynucleotide of claim 5 wherein the peptide or polypeptide is selected from the group consisting of SEQ ID NOs:28-35.
- 7. The polynucleotide of claims 5 or 6 wherein peptide or polypeptide is fused to a carrier polypeptide or other carrier molecule.
- 8. A polynucleotide of which encodes a peptide or polypeptide which is 90%, 95% or 99% identical to the polypeptides encoded by the polynucleotides of claims 1-7.
- 9. An expression vector comprising the following operably linked elements:
 - a transcription promoter;
- a DNA segment defined by claims 1-8; and a transcription terminator.
- 10. An expression vector comprising the following operably linked elements:
 - (a) a transcription promoter;
- (b) a DNA segment encoding a chimeric polypeptide, wherein said chimeric polypeptide consists essentially of a first portion and a second portion joined by a peptide bond, said first portion being comprised of a mammalian polypeptide, said polypeptide being the amino acid sequences of SEQ ID NOs: 2,12, 14-43 and said second portion being a second polypeptide or protein.
 - (c) a transcription terminator.
- 11. An isolated mammalian Zcyto7 polypeptide or variants thereof.

- 12. The isolated Zcyto7 polypeptide of claim 11 selected from the group of amino acid sequences consisting of SEQ ID NOs: 2, 12, 14-27 and 36-43.
- 13. A polypeptide of claim 12 wherein the polypeptide is a polypeptide defined by SEQ ID NOs: 15-25 wherein the amino termini of said polypeptides are modified and begin at either amino acid residue 3, an arginine; amino acid residue 7, a serine; amino acid residue 8, a lysine; amino acid residue 10, a lysine or amino acid residue 33 methionine.
- 14. A polypeptide of claim 12 wherein the polypeptide is a polypeptide defined by SEQ ID NOs: 2, 12, 14-25 and 36 to 42 wherein the amino acid sequences end at the isoleucines at amino acid residue 179 of SEQ ID NO: 2, at amino acid residue 159 of SEQ ID NOs: 14-25, which corresponds to amino acid residue 157 of SEQ ID NO:36, amino acid residue 153 of SEQ ID NO:37, amino acid residue 150 of SEQ ID NO:38, amino acid residue 159 of SEQ ID NO: 39, amino acid residue 157 of SEQ ID NO:40, amino acid residue 152 SEQ ID NO:42, amino acid residue 127 of SEQ ID NO:42.
- 15. An isolated peptide or polypeptide having at least 15 amino acid residues comprised of an epitope-bearing portion of a polypeptide of a Zcyto7 polypeptide.
- 16. The peptide or polypeptide of claim 15 wherein said peptide or polypeptide is an epitope-bearing portion of a polypeptide of SEQ ID NOs: 2, 14-27 and 36-43.
- 17. The isolated peptide or polypeptide of claim 16 wherein the peptide or polypeptide is selected from the group of amino acid sequence consisting of SEQ ID NOs:28-35.

- 18. An isolated peptide or polypeptide which is 90%, 95% or 99% identical to the peptides or polypeptides of claims 12-17.
- 19. An isolated peptide or polypeptide of claims 12-17 having an amino acid sequence modified by addition, deletion and/or replacement of one or more amino acid residues and which maintains the biological activity of said peptide or polypeptide.
- 20. An antibody that specifically binds to a mammalian polypeptide, said polypeptide being defined by the amino acid sequences of claims 12-20.
- 21. A method for producing an antibody which binds to a peptide or polypeptide of claims 12-19 comprising inoculating an animal with said peptide or polypeptide or with a nucleic acid which encodes said peptide or polypeptide, wherein said animal produces antibodies to said peptide or polypeptide; and

isolating said antibody.

- 22. The antibody of claims 21 wherein said antibody is either a polyclonal or monoclonal antibody.
- 23. Antibody fragments, single chain antibodies or humanized antibodies of the antibodies of claims 20 and 21.
- 24. An anti-idiotypic antibody of an antibody of claims 21-23.

INTERNATIONAL SEARCH REPORT

tr. ational Application No PCT/US 98/08212

A CLASSIE	ICATION OF SUBJECT	MATTER			
IPC 6	C12N15/19 C07K16/42	CO7K14/52	C12N15/62 C12Q1/68	C07K19/00 G01N33/52	C07K16/24 G01N33/60
According to	International Patent Cla	ssification(IPC) or to bot	h national classification	and IPC	
B. FIELDS S	SEARCHED				
		classification system folio C12Q G01N	wed by classification sy	mbols)	
Documentation	on searched other than	minimum documentation	to the extent that such o	documents are included in t	the fields searched
Electronic da	ita base consulted during	g the international searc	h (name of data base ar	nd, where practical, search	terms used)
C. DOCUME	NTS CONSIDERED TO	BE RELEVANT			
Category '	Citation of document, v	with indication, where ap	propriate, of the relevant	t passages	Relevant to claim No.
X	Database EMBL EMEST10, Entry HS558371, Accession number W74558, 21 June 1996 96% identity with Seq.ID:1 nt.16-408 XP002073847				1-9
Α		nole document	<u></u>		11-19
Х	Database EMBL EMEST11, Entry HSA33733, Accession number AA033733, 26 August 1996 96% identity with Seq.ID:1 nt.48-501 XP002073848			1-9	
A		nole document 	- -/-		11-19
X Furt	her documents are listed	d in the continuation of b	oox C.	Patent family memb	ers are listed in annex.
° Special ca	ategories of cited docum	ents:	•		
"A" docum consider filling of the consider filling fil	ent defining the general dered to be of particular document but published date ent which may throw do is cited to establish the on or other special reaso ent referring to an oral of means	state of the art which is relevance I on or after the internation ubts on priority claim(s) publication date of anoth in (as specified) disclosure, use, exhibition international filling date	not onal "X or ner "Y in or	or priority date and not incided to understand the invention. " document of particular recannot be considered in involve an inventive step. " document of particular recannot be considered to document is combined to document is combined.	d after the international filing date in conflict with the application but principle or theory underlying the elevance; the claimed invention lovel or cannot be considered to p when the document is taken alone elevance; the claimed invention or involve an inventive step when the with one or more other such document being obvious to a person skilled
	actual completion of the			Date of mailing of the int	
6	S August 1998			18/08/1998	·
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,				Authorized officer	
	Fax: (+31-70) 340		'	Macchia, 6	à

1

INTERNATIONAL SEARCH REPORT

li ational Application No
PCT/US 98/08212

		PC1/US 98/08212	
	ation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category 3	Citation of document, with indication.where appropriate, of the relevant passages	Relevant to claim No.	
X	Database EMBL EMEST10, Entry HS664361, Accession number W74664, 21 June 1996 98% identity with Seq.ID:1 nt.247-702 reverse orientation XP002073865	1-9	
A	see the whole document	11-19	
X	Database EMBL EMEST16, Entry MMW165, Accession number W91165, 9 July 1996 99% identity with Seq.ID:11 nt.1-389 XP002073849	1-9	
Α	see the whole document	11-19	
X	Database EMBL EMEST16, Entry MMA44549, Accession number AA044549, 6 September 1996 99% identity with Seq.ID:11 nt.1-498 XP002073850	1-9	
Α	see the whole document	11-19	
A	ZHENG M.H. ET AL.: "WHAT'S NEW IN THE ROLE OF CYTOKINES ON OSTEOBLAST PROLIFERATION AND DIFFERENTIATION?" PATHOLOGY RESEARCH AND PRACTICE, vol. 188, no. 8, December 1992, pages 1104-1121, XP000676745		

1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 98/08212

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
1. X Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claim(s) 21 is(are) directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.	
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:	
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.	
As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:	
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	