wo 2015/002878 A1 |1 I 0000 0O 00 R0 O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2015/002878 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

31

8 January 2015 (08.01.2015) WIPOIPCT
International Patent Classification:
GO8C 25/02 (2006.01)
International Application Number:
PCT/US2014/044869

International Filing Date:
30 June 2014 (30.06.2014)

Filing Language: English
Publication Language: English
Priority Data:

61/841,603 1 July 2013 (01.07.2013) US
14/306,312 17 June 2014 (17.06.2014) US

Applicant: CLEVERSAFE, INC. [US/US]; Ste. 1700,
222 S. Riverside Plaza, Chicago, Illinois 60606 (US).

Inventors: TRICHARDT, Brennan James; 2446 N.
Spaulding #2, Chicago, Illinois 60647 (US). RESCH,
Jason K.; 3361 S. Wabash Avenue, Chicago, Illinois
60616 (US).

Agent: MARKISON, Timothy W.; P.O. Box 160727,
Austin, Texas 78716-0727 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

(84)

HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant'’s entitlement to apply for and be granted a
patent (Rule 4.17(i1))

Published:

with international search report (Art. 21(3))

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

(54) Title: REBUILDING DATA WHILE READING DATA IN A DISPERSED STORAGE NETWORK

DST client module 34

outbound DST processing 80

DS error
encoding
12

read slice
requests 1-6

DS error
decoding
182

check slice
requests 7-8

ermor
detector
822

inbound DST processing 82

read data
request 524

DST execution unit set 520

read slice request 1

DST EX unit 1
slice 1

read slice request 2

DST EX unit 2

slice 2

read slice request 3 DST EX unit 3

DST EX unit 4
DSTEX unit§

DST EX unit 6

read slice request 4

read slice request 5

read slice request &

shaded: storage error —1

slice 6

chack slice request 7

check slice request 8

DSTEX unit 8
slice 8

(57) Abstract: A method begins by a dispersed storage (DS) processing sending representations of a read-rebuild inquiry request to
storage units and receiving a decode threshold number of encoded data slices in response. The method continues with the DS pro -
cessing module receiving a remaining number of slice status responses regarding a remaining number of encoded data slices. The
method continues with the DS processing module decoding the decode threshold number of encoded data slices to reproduce a data
segment and interpreting the remaining number of slice status responses to determine whether one of the remaining number of en-
coded data slices includes an error. When determining the error, the method continues with the DS processing module generating a
rebuilt encoded data slice based on the reproduced data segment to replace the one of the remaining number of encoded data slices
that includes the error.

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

TITLE OF THE INVENTION
REBUILDING DATA WHILE READING DATA IN A DISPERSED STORAGE
NETWORK

CROSS REFERENCE TO RELATED PATENTS
The present application claims priority pursuant to 35 U.S.C. § 119(e) to U.S.
Provisional Application No. 61/841,603, entitled “ACCESSING PERMUTATIONS OF
DATA WITHIN A DISPERSED STORAGE NETWORK, filed 1 July 2013 and to U.S.
Utility Application No. 14/306,312, entitled “REBUILDING DATA WHILE READING
DATA IN A DISPERSED STORAGE NETWORK?”, filed 17 June 2014, which are hereby
incorporated herein by reference in their entirety and made part of the present application for

all purposes.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT - NOT APPLICABLE

INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT
DISC — NOT APPLICABLE

BACKGROUND OF THE INVENTION
TECHNICAL FIELD OF THE INVENTION
This invention relates generally to computer networks and more particularly to

dispersed storage of data and distributed task processing of data.

DESCRIPTION OF RELATED ART

Computing devices are known to communicate data, process data, and/or store data.
Such computing devices range from wireless smart phones, laptops, tablets, personal
computers (PC), work stations, and video game devices, to data centers that support millions
of web searches, stock trades, or on-line purchases every day. In general, a computing device
includes a central processing unit (CPU), a memory system, user input/output interfaces,
peripheral device interfaces, and an interconnecting bus structure.

As is further known, a computer may effectively extend its CPU by using “cloud
computing” to perform one or more computing functions (e.g., a service, an application, an
algorithm, an arithmetic logic function, etc.) on behalf of the computer. Further, for large
services, applications, and/or functions, cloud computing may be performed by multiple

cloud computing resources in a distributed manner to improve the response time for

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

completion of the service, application, and/or function. For example, Hadoop is an open
source software framework that supports distributed applications enabling application
execution by thousands of computers.

In addition to cloud computing, a computer may use “cloud storage” as part of its
memory system. As is known, cloud storage enables a user, via its computer, to store files,
applications, etc. on an Internet storage system. The Internet storage system may include a
RAID (redundant array of independent disks) system and/or a dispersed storage system that

uses an error correction scheme to encode data for storage.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING(S)

Figure 1 is a schematic block diagram of an embodiment of a distributed computing
system in accordance with the present invention;

Figure 2 is a schematic block diagram of an embodiment of a computing core in
accordance with the present invention;

Figure 3 is a diagram of an example of a distributed storage and task processing in
accordance with the present invention;

Figure 4 is a schematic block diagram of an embodiment of an outbound distributed
storage and/or task (DST) processing in accordance with the present invention;

Figure 5 is a logic diagram of an example of a method for outbound DST processing
in accordance with the present invention;

Figure 6 is a schematic block diagram of an embodiment of a dispersed error
encoding in accordance with the present invention;

Figure 7 is a diagram of an example of a segment processing of the dispersed error
encoding in accordance with the present invention;

Figure § is a diagram of an example of error encoding and slicing processing of the
dispersed error encoding in accordance with the present invention;

Figure 9 is a diagram of an example of grouping selection processing of the outbound
DST processing in accordance with the present invention;

Figure 10 is a diagram of an example of converting data into slice groups in
accordance with the present invention;

Figure 11 is a schematic block diagram of an embodiment of a DST execution unit in
accordance with the present invention;

Figure 12 is a schematic block diagram of an example of operation of a DST

execution unit in accordance with the present invention;

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Figure 13 is a schematic block diagram of an embodiment of an inbound distributed
storage and/or task (DST) processing in accordance with the present invention;

Figure 14 is a logic diagram of an example of a method for inbound DST processing
in accordance with the present invention;

Figure 15 is a diagram of an example of de-grouping selection processing of the
inbound DST processing in accordance with the present invention;

Figure 16 is a schematic block diagram of an embodiment of a dispersed error
decoding in accordance with the present invention;

Figure 17 is a diagram of an example of de-slicing and error decoding processing of
the dispersed error decoding in accordance with the present invention;

Figure 18 is a diagram of an example of a de-segment processing of the dispersed
error decoding in accordance with the present invention;

Figure 19 is a diagram of an example of converting slice groups into data in
accordance with the present invention;

Figure 20 is a diagram of an example of a distributed storage within the distributed
computing system in accordance with the present invention;

Figure 21 is a schematic block diagram of an example of operation of outbound
distributed storage and/or task (DST) processing for storing data in accordance with the
present invention;

Figure 22 is a schematic block diagram of an example of a dispersed error encoding
for the example of Figure 21 in accordance with the present invention;

Figure 23 is a diagram of an example of converting data into pillar slice groups for
storage in accordance with the present invention;

Figure 24 is a schematic block diagram of an example of a storage operation of a DST
execution unit in accordance with the present invention;

Figure 25 is a schematic block diagram of an example of operation of inbound
distributed storage and/or task (DST) processing for retrieving dispersed error encoded data
in accordance with the present invention;

Figure 26 is a schematic block diagram of an example of a dispersed error decoding
for the example of Figure 25 in accordance with the present invention;

Figure 27 is a schematic block diagram of an example of a distributed storage and
task processing network (DSTN) module storing a plurality of data and a plurality of task

codes in accordance with the present invention;

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Figure 28 is a schematic block diagram of an example of the distributed computing
system performing tasks on stored data in accordance with the present invention;

Figure 29 is a schematic block diagram of an embodiment of a task distribution
module facilitating the example of Figure 28 in accordance with the present invention;

Figure 30 is a diagram of a specific example of the distributed computing system
performing tasks on stored data in accordance with the present invention;

Figure 31 is a schematic block diagram of an example of a distributed storage and
task processing network (DSTN) module storing data and task codes for the example of
Figure 30 in accordance with the present invention;

Figure 32 is a diagram of an example of DST allocation information for the example
of Figure 30 in accordance with the present invention;

Figures 33 - 38 are schematic block diagrams of the DSTN module performing the
example of Figure 30 in accordance with the present invention;

Figure 39 is a diagram of an example of combining result information into final
results for the example of Figure 30 in accordance with the present invention;

Figure 40A is a schematic block diagram of an embodiment of a dispersed storage
network in accordance with the present invention;

Figure 40B is a diagram of an embodiment of a structure of a provenance object in
accordance with the present invention;

Figure 40C is a diagram of an embodiment of a set of dispersed hierarchical indexes
in accordance with the present invention;

Figure 40D is a flowchart illustrating an example of generating provenance
information in accordance with the present invention;

Figure 41 is a flowchart illustrating an example of identifying a potential error in
accordance with the present invention;

Figure 42A is a diagram of another embodiment of a dispersed storage network in
accordance with the present invention;

Figure 42B is a flowchart illustrating an example of accessing data in accordance with
the present invention;

Figure 43A is a diagram of another embodiment of a dispersed storage network in
accordance with the present invention;

Figure 43B is a flowchart illustrating an example of accessing permuted data in

accordance with the present invention;

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Figure 44A is a diagram of another embodiment of a dispersed storage network in
accordance with the present invention;

Figure 44B is a flowchart illustrating another example of accessing permuted data in
accordance with the present invention;

Figures 45A-D are diagrams of another embodiment of a dispersed storage network
(DSN) illustrating an example of rebuilding data in accordance with the present invention;

Figure 45E is a flowchart illustrating an example of rebuilding data in accordance
with the present invention;

Figure 46A is a diagram of another embodiment of a dispersed storage network in
accordance with the present invention; and

Figure 46B is a flowchart illustrating an example of updating configuration

information and software in accordance with the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 is a schematic block diagram of an embodiment of a distributed computing
system 10 that includes a user device 12 and/or a user device 14, a distributed storage and/or
task (DST) processing unit 16, a distributed storage and/or task network (DSTN) managing
unit 18, a DST integrity processing unit 20, and a distributed storage and/or task network
(DSTN) module 22. The components of the distributed computing system 10 are coupled via
a network 24, which may include one or more wireless and/or wire lined communication
systems; one or more private intranet systems and/or public internet systems; and/or one or
more local area networks (LAN) and/or wide area networks (WAN).

The DSTN module 22 includes a plurality of distributed storage and/or task (DST)
execution units 36 that may be located at geographically different sites (e.g., one in Chicago,
one in Milwaukee, etc.). Each of the DST execution units is operable to store dispersed error
encoded data and/or to execute, in a distributed manner, one or more tasks on data. The tasks
may be a simple function (e.g., a mathematical function, a logic function, an identify
function, a find function, a search engine function, a replace function, etc.), a complex
function (e.g., compression, human and/or computer language translation, text-to-voice
conversion, voice-to-text conversion, etc.), multiple simple and/or complex functions, one or
more algorithms, one or more applications, etc.

Each of the user devices 12 — 14, the DST processing unit 16, the DSTN managing
unit 18, and the DST integrity processing unit 20 include a computing core 26 and may be a

portable computing device and/or a fixed computing device. A portable computing device

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

may be a social networking device, a gaming device, a cell phone, a smart phone, a personal
digital assistant, a digital music player, a digital video player, a laptop computer, a handheld
computer, a tablet, a video game controller, and/or any other portable device that includes a
computing core. A fixed computing device may be a personal computer (PC), a computer
server, a cable set-top box, a satellite receiver, a television set, a printer, a fax machine, home
entertainment equipment, a video game console, and/or any type of home or office computing
equipment. User device 12 and DST processing unit 16 are configured to include a DST
client module 34.

With respect to interfaces, each interface 30, 32, and 33 includes software and/or
hardware to support one or more communication links via the network 24 indirectly and/or
directly. For example, interfaces 30 support a communication link (e.g., wired, wireless,
direct, via a LAN, via the network 24, etc.) between user device 14 and the DST processing
unit 16. As another example, interface 32 supports communication links (e.g., a wired
connection, a wireless connection, a LAN connection, and/or any other type of connection
to/from the network 24) between user device 12 and the DSTN module 22 and between the
DST processing unit 16 and the DSTN module 22. As yet another example, interface 33
supports a communication link for each of the DSTN managing unit 18 and DST integrity
processing unit 20 to the network 24.

The distributed computing system 10 is operable to support dispersed storage (DS)
error encoded data storage and retrieval, to support distributed task processing on received
data, and/or to support distributed task processing on stored data. In general and with respect
to DS error encoded data storage and retrieval, the distributed computing system 10 supports
three primary operations: storage management, data storage and retrieval (an example of
which will be discussed with reference to Figures 20-26), and data storage integrity
verification. In accordance with these three primary functions, data can be encoded,
distributedly stored in physically different locations, and subsequently retrieved in a reliable
and secure manner. Such a system is tolerant of a significant number of failures (e.g., up to a
failure level, which may be greater than or equal to a pillar width minus a decode threshold
minus one) that may result from individual storage device failures and/or network equipment
failures without loss of data and without the need for a redundant or backup copy. Further,
the system allows the data to be stored for an indefinite period of time without data loss and
does so in a secure manner (e.g., the system is very resistant to attempts at hacking the data).

The second primary function (i.e., distributed data storage and retrieval) begins and

ends with a user device 12 - 14. For instance, if a second type of user device 14 has data 40

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

to store in the DSTN module 22, it sends the data 40 to the DST processing unit 16 via its
interface 30. The interface 30 functions to mimic a conventional operating system (OS) file
system interface (e.g., network file system (NES), flash file system (FFS), disk file system
(DES), file transfer protocol (FTP), web-based distributed authoring and versioning
(WebDAV), etc.) and/or a block memory interface (e.g., small computer system interface
(SCSI), internet small computer system interface (iISCSI), etc.). In addition, the interface 30
may attach a user identification code (ID) to the data 40.

To support storage management, the DSTN managing unit 18 performs DS
management services. One such DS management service includes the DSTN managing unit
18 establishing distributed data storage parameters (e.g., vault creation, distributed storage
parameters, security parameters, billing information, user profile information, etc.) for a user
device 12-14 individually or as part of a group of user devices. For example, the DSTN
managing unit 18 coordinates creation of a vault (e.g., a virtual memory block) within
memory of the DSTN module 22 for a user device, a group of devices, or for public access
and establishes per vault dispersed storage (DS) error encoding parameters for a vault. The
DSTN managing unit 18 may facilitate storage of DS error encoding parameters for each
vault of a plurality of vaults by updating registry information for the distributed computing
system 10. The facilitating includes storing updated registry information in one or more of
the DSTN module 22, the user device 12, the DST processing unit 16, and the DST integrity
processing unit 20.

The DS error encoding parameters (e.g., or dispersed storage error coding parameters)
include data segmenting information (e.g., how many segments data (e.g., a file, a group of
files, a data block, etc.) is divided into), segment security information (e.g., per segment
encryption, compression, integrity checksum, etc.), error coding information (e.g., pillar
width, decode threshold, read threshold, write threshold, etc.), slicing information (e.g., the
number of encoded data slices that will be created for each data segment); and slice security
information (e.g., per encoded data slice encryption, compression, integrity checksum, etc.).

The DSTN managing module 18 creates and stores user profile information (e.g., an
access control list (ACL)) in local memory and/or within memory of the DSTN module 22.
The user profile information includes authentication information, permissions, and/or the
security parameters. The security parameters may include encryption/decryption scheme, one
or more encryption keys, key generation scheme, and/or data encoding/decoding scheme.

The DSTN managing unit 18 creates billing information for a particular user, a user

group, a vault access, public vault access, etc. For instance, the DSTN managing unit 18

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

tracks the number of times a user accesses a private vault and/or public vaults, which can be
used to generate a per-access billing information. In another instance, the DSTN managing
unit 18 tracks the amount of data stored and/or retrieved by a user device and/or a user group,
which can be used to generate a per-data-amount billing information.

Another DS management service includes the DSTN managing unit 18 performing
network operations, network administration, and/or network maintenance. Network
operations includes authenticating user data allocation requests (e.g., read and/or write
requests), managing creation of vaults, establishing authentication credentials for user
devices, adding/deleting components (e.g., user devices, DST execution units, and/or DST
processing units) from the distributed computing system 10, and/or establishing
authentication credentials for DST execution units 36. Network administration includes
monitoring devices and/or units for failures, maintaining vault information, determining
device and/or unit activation status, determining device and/or unit loading, and/or
determining any other system level operation that affects the performance level of the system
10. Network maintenance includes facilitating replacing, upgrading, repairing, and/or
expanding a device and/or unit of the system 10.

To support data storage integrity verification within the distributed computing system
10, the DST integrity processing unit 20 performs rebuilding of ‘bad’ or missing encoded
data slices. At a high level, the DST integrity processing unit 20 performs rebuilding by
periodically attempting to retrieve/list encoded data slices, and/or slice names of the encoded
data slices, from the DSTN module 22. For retrieved encoded slices, they are checked for
errors due to data corruption, outdated version, etc. If a slice includes an error, it is flagged
as a ‘bad’ slice. For encoded data slices that were not received and/or not listed, they are
flagged as missing slices. Bad and/or missing slices are subsequently rebuilt using other
retrieved encoded data slices that are deemed to be good slices to produce rebuilt slices. The
rebuilt slices are stored in memory of the DSTN module 22. Note that the DST integrity
processing unit 20 may be a separate unit as shown, it may be included in the DSTN module
22, it may be included in the DST processing unit 16, and/or distributed among the DST
execution units 36.

To support distributed task processing on received data, the distributed computing
system 10 has two primary operations: DST (distributed storage and/or task processing)
management and DST execution on received data (an example of which will be discussed
with reference to Figures 3-19). With respect to the storage portion of the DST management,

the DSTN managing unit 18 functions as previously described. With respect to the tasking

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

processing of the DST management, the DSTN managing unit 18 performs distributed task
processing (DTP) management services. One such DTP management service includes the
DSTN managing unit 18 establishing DTP parameters (e.g., user-vault affiliation information,
billing information, user-task information, etc.) for a user device 12-14 individually or as part
of a group of user devices.

Another DTP management service includes the DSTN managing unit 18 performing
DTP network operations, network administration (which is essentially the same as described
above), and/or network maintenance (which is essentially the same as described above).
Network operations include, but are not limited to, authenticating user task processing
requests (e.g., valid request, valid user, etc.), authenticating results and/or partial results,
establishing DTP authentication credentials for user devices, adding/deleting components
(e.g., user devices, DST execution units, and/or DST processing units) from the distributed
computing system, and/or establishing DTP authentication credentials for DST execution
units.

To support distributed task processing on stored data, the distributed computing
system 10 has two primary operations: DST (distributed storage and/or task) management
and DST execution on stored data. With respect to the DST execution on stored data, if the
second type of user device 14 has a task request 38 for execution by the DSTN module 22, it
sends the task request 38 to the DST processing unit 16 via its interface 30. An example of
DST execution on stored data will be discussed in greater detail with reference to Figures 27-
39. With respect to the DST management, it is substantially similar to the DST management
to support distributed task processing on received data.

Figure 2 is a schematic block diagram of an embodiment of a computing core 26 that
includes a processing module 50, a memory controller 52, main memory 54, a video graphics
processing unit 55, an input/output (IO) controller 56, a peripheral component interconnect
(PCI) interface 58, an 1O interface module 60, at least one 10 device interface module 62, a
read only memory (ROM) basic input output system (BIOS) 64, and one or more memory
interface modules. The one or more memory interface module(s) includes one or more of a
universal serial bus (USB) interface module 66, a host bus adapter (HBA) interface module
68, a network interface module 70, a flash interface module 72, a hard drive interface module
74, and a DSTN interface module 76.

The DSTN interface module 76 functions to mimic a conventional operating system
(OS) file system interface (e.g., network file system (NFES), flash file system (FFS), disk file
system (DFS), file transfer protocol (FTP), web-based distributed authoring and versioning

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

(WebDAV), etc.) and/or a block memory interface (e.g., small computer system interface
(SCSI), internet small computer system interface (iSCSI), etc.). The DSTN interface module
76 and/or the network interface module 70 may function as the interface 30 of the user device
14 of Figure 1. Further note that the IO device interface module 62 and/or the memory
interface modules may be collectively or individually referred to as IO ports.

Figure 3 is a diagram of an example of the distributed computing system performing a
distributed storage and task processing operation. The distributed computing system includes
a DST (distributed storage and/or task) client module 34 (which may be in user device 14
and/or in DST processing unit 16 of Figure 1), a network 24, a plurality of DST execution
units 1-n that includes two or more DST execution units 36 of Figure 1 (which form at least a
portion of DSTN module 22 of Figure 1), a DST managing module (not shown), and a DST
integrity verification module (not shown). The DST client module 34 includes an outbound
DST processing section 80 and an inbound DST processing section 82. Each of the DST
execution units 1-n includes a controller 86, a processing module 84, memory 88, a DT
(distributed task) execution module 90, and a DST client module 34.

In an example of operation, the DST client module 34 receives data 92 and one or
more tasks 94 to be performed upon the data 92. The data 92 may be of any size and of any
content, where, due to the size (e.g., greater than a few Terabytes), the content (e.g., secure
data, etc.), and/or task(s) (e.g., MIPS intensive), distributed processing of the task(s) on the
data is desired. For example, the data 92 may be one or more digital books, a copy of a
company’s emails, a large-scale Internet search, a video security file, one or more
entertainment video files (e.g., television programs, movies, etc.), data files, and/or any other
large amount of data (e.g., greater than a few Terabytes).

Within the DST client module 34, the outbound DST processing section 80 receives
the data 92 and the task(s) 94. The outbound DST processing section 80 processes the data
92 to produce slice groupings 96. As an example of such processing, the outbound DST
processing section 80 partitions the data 92 into a plurality of data partitions. For each data
partition, the outbound DST processing section 80 dispersed storage (DS) error encodes the
data partition to produce encoded data slices and groups the encoded data slices into a slice
grouping 96. In addition, the outbound DST processing section 80 partitions the task 94 into
partial tasks 98, where the number of partial tasks 98 may correspond to the number of slice
groupings 96.

The outbound DST processing section 80 then sends, via the network 24, the slice

groupings 96 and the partial tasks 98 to the DST execution units 1-n of the DSTN module 22

10

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

of Figure 1. For example, the outbound DST processing section 80 sends slice group 1 and
partial task 1 to DST execution unit 1. As another example, the outbound DST processing
section 80 sends slice group #n and partial task #n to DST execution unit #n.

Each DST execution unit performs its partial task 98 upon its slice group 96 to
produce partial results 102. For example, DST execution unit #1 performs partial task #1 on
slice group #1 to produce a partial result #1, for results. As a more specific example, slice
group #1 corresponds to a data partition of a series of digital books and the partial task #1
corresponds to searching for specific phrases, recording where the phrase is found, and
establishing a phrase count. In this more specific example, the partial result #1 includes
information as to where the phrase was found and includes the phrase count.

Upon completion of generating their respective partial results 102, the DST execution
units send, via the network 24, their partial results 102 to the inbound DST processing section
82 of the DST client module 34. The inbound DST processing section 82 processes the
received partial results 102 to produce a result 104. Continuing with the specific example of
the preceding paragraph, the inbound DST processing section 82 combines the phrase count
from each of the DST execution units 36 to produce a total phrase count. In addition, the
inbound DST processing section 82 combines the ‘where the phrase was found’ information
from each of the DST execution units 36 within their respective data partitions to produce
‘where the phrase was found’ information for the series of digital books.

In another example of operation, the DST client module 34 requests retrieval of stored
data within the memory of the DST execution units 36 (e.g., memory of the DSTN module).
In this example, the task 94 is retrieve data stored in the memory of the DSTN module.
Accordingly, the outbound DST processing section 80 converts the task 94 into a plurality of
partial tasks 98 and sends the partial tasks 98 to the respective DST execution units 1-n.

In response to the partial task 98 of retrieving stored data, a DST execution unit 36
identifies the corresponding encoded data slices 100 and retrieves them. For example, DST
execution unit #1 receives partial task #1 and retrieves, in response thereto, retrieved slices
#1. The DST execution units 36 send their respective retrieved slices 100 to the inbound
DST processing section 82 via the network 24.

The inbound DST processing section 82 converts the retrieved slices 100 into data 92.
For example, the inbound DST processing section 82 de-groups the retrieved slices 100 to
produce encoded slices per data partition. The inbound DST processing section 82 then DS
error decodes the encoded slices per data partition to produce data partitions. The inbound

DST processing section 82 de-partitions the data partitions to recapture the data 92.

11

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Figure 4 is a schematic block diagram of an embodiment of an outbound distributed
storage and/or task (DST) processing section 80 of a DST client module 34 Figure 1 coupled
to a DSTN module 22 of a Figure 1 (e.g., a plurality of n DST execution units 36) via a
network 24. The outbound DST processing section 80 includes a data partitioning module
110, a dispersed storage (DS) error encoding module 112, a grouping selector module 114, a
control module 116, and a distributed task control module 118.

In an example of operation, the data partitioning module 110 partitions data 92 into a
plurality of data partitions 120. The number of partitions and the size of the partitions may be
selected by the control module 116 via control 160 based on the data 92 (e.g., its size, its
content, etc.), a corresponding task 94 to be performed (e.g., simple, complex, single step,
multiple steps, etc.), DS encoding parameters (e.g., pillar width, decode threshold, write
threshold, segment security parameters, slice security parameters, etc.), capabilities of the
DST execution units 36 (e.g., processing resources, availability of processing recourses, etc.),
and/or as may be inputted by a user, system administrator, or other operator (human or
automated). For example, the data partitioning module 110 partitions the data 92 (e.g., 100
Terabytes) into 100,000 data segments, each being 1 Gigabyte in size. Alternatively, the data
partitioning module 110 partitions the data 92 into a plurality of data segments, where some
of data segments are of a different size, are of the same size, or a combination thereof.

The DS error encoding module 112 receives the data partitions 120 in a serial manner,
a parallel manner, and/or a combination thereof. For each data partition 120, the DS error
encoding module 112 DS error encodes the data partition 120 in accordance with control
information 160 from the control module 116 to produce encoded data slices 122. The DS
error encoding includes segmenting the data partition into data segments, segment security
processing (e.g., encryption, compression, watermarking, integrity check (e.g., CRC), etc.),
error encoding, slicing, and/or per slice security processing (e.g., encryption, compression,
watermarking, integrity check (e.g., CRC), etc.). The control information 160 indicates
which steps of the DS error encoding are active for a given data partition and, for active
steps, indicates the parameters for the step. For example, the control information 160
indicates that the error encoding is active and includes error encoding parameters (e.g., pillar
width, decode threshold, write threshold, read threshold, type of error encoding, etc.).

The grouping selector module 114 groups the encoded slices 122 of a data partition
into a set of slice groupings 96. The number of slice groupings corresponds to the number of
DST execution units 36 identified for a particular task 94. For example, if five DST

execution units 36 are identified for the particular task 94, the group selecting module groups

12

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

the encoded slices 122 of a data partition into five slice groupings 96. The grouping selector
module 114 outputs the slice groupings 96 to the corresponding DST execution units 36 via
the network 24.

The distributed task control module 118 receives the task 94 and converts the task 94
into a set of partial tasks 98. For example, the distributed task control module 118 receives a
task to find where in the data (e.g., a series of books) a phrase occurs and a total count of the
phrase usage in the data. In this example, the distributed task control module 118 replicates
the task 94 for each DST execution unit 36 to produce the partial tasks 98. In another
example, the distributed task control module 118 receives a task to find where in the data a
first phrase occurs, where in the data a second phrase occurs, and a total count for each
phrase usage in the data. In this example, the distributed task control module 118 generates a
first set of partial tasks 98 for finding and counting the first phase and a second set of partial
tasks for finding and counting the second phrase. The distributed task control module 118
sends respective first and/or second partial tasks 98 to each DST execution unit 36.

Figure 5 is a logic diagram of an example of a method for outbound distributed
storage and task (DST) processing that begins at step 126 where a DST client module
receives data and one or more corresponding tasks. The method continues at step 128 where
the DST client module determines a number of DST units to support the task for one or more
data partitions. For example, the DST client module may determine the number of DST units
to support the task based on the size of the data, the requested task, the content of the data, a
predetermined number (e.g., user indicated, system administrator determined, etc.), available
DST units, capability of the DST units, and/or any other factor regarding distributed task
processing of the data. The DST client module may select the same DST units for each data
partition, may select different DST units for the data partitions, or a combination thereof.

The method continues at step 130 where the DST client module determines
processing parameters of the data based on the number of DST units selected for distributed
task processing. The processing parameters include data partitioning information, DS
encoding parameters, and/or slice grouping information. The data partitioning information
includes a number of data partitions, size of each data partition, and/or organization of the
data partitions (e.g., number of data blocks in a partition, the size of the data blocks, and
arrangement of the data blocks). The DS encoding parameters include segmenting
information, segment security information, error encoding information (e.g., dispersed
storage error encoding function parameters including one or more of pillar width, decode

threshold, write threshold, read threshold, generator matrix), slicing information, and/or per

13

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

slice security information. The slice grouping information includes information regarding
how to arrange the encoded data slices into groups for the selected DST units. As a specific
example, if the DST client module determines that five DST units are needed to support the
task, then it determines that the error encoding parameters include a pillar width of five and a
decode threshold of three.

The method continues at step 132 where the DST client module determines task
partitioning information (e.g., how to partition the tasks) based on the selected DST units and
data processing parameters. The data processing parameters include the processing
parameters and DST unit capability information. The DST unit capability information
includes the number of DT (distributed task) execution units, execution capabilities of each
DT execution unit (e.g., MIPS capabilities, processing resources (e.g., quantity and capability
of microprocessors, CPUs, digital signal processors, co-processor, microcontrollers,
arithmetic logic circuitry, and/or the other analog and/or digital processing circuitry),
availability of the processing resources, memory information (e.g., type, size, availability,
etc.)), and/or any information germane to executing one or more tasks.

The method continues at step 134 where the DST client module processes the data in
accordance with the processing parameters to produce slice groupings. The method
continues at step 136 where the DST client module partitions the task based on the task
partitioning information to produce a set of partial tasks. The method continues at step 138
where the DST client module sends the slice groupings and the corresponding partial tasks to
respective DST units.

Figure 6 is a schematic block diagram of an embodiment of the dispersed storage
(DS) error encoding module 112 of an outbound distributed storage and task (DST)
processing section. The DS error encoding module 112 includes a segment processing
module 142, a segment security processing module 144, an error encoding module 146, a
slicing module 148, and a per slice security processing module 150. Each of these modules is
coupled to a control module 116 to receive control information 160 therefrom.

In an example of operation, the segment processing module 142 receives a data
partition 120 from a data partitioning module and receives segmenting information as the
control information 160 from the control module 116. The segmenting information indicates
how the segment processing module 142 is to segment the data partition 120. For example,
the segmenting information indicates how many rows to segment the data based on a decode
threshold of an error encoding scheme, indicates how many columns to segment the data into

based on a number and size of data blocks within the data partition 120, and indicates how

14

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

many columns to include in a data segment 152. The segment processing module 142
segments the data 120 into data segments 152 in accordance with the segmenting
information.

The segment security processing module 144, when enabled by the control module
116, secures the data segments 152 based on segment security information received as control
information 160 from the control module 116. The segment security information includes
data compression, encryption, watermarking, integrity check (e.g., cyclic redundancy check
(CRC), etc.), and/or any other type of digital security. For example, when the segment
security processing module 144 is enabled, it may compress a data segment 152, encrypt the
compressed data segment, and generate a CRC value for the encrypted data segment to
produce a secure data segment 154. When the segment security processing module 144 is not
enabled, it passes the data segments 152 to the error encoding module 146 or is bypassed
such that the data segments 152 are provided to the error encoding module 146.

The error encoding module 146 encodes the secure data segments 154 in accordance
with error correction encoding parameters received as control information 160 from the
control module 116. The error correction encoding parameters (e.g., also referred to as
dispersed storage error coding parameters) include identifying an error correction encoding
scheme (e.g., forward error correction algorithm, a Reed—Solomon based algorithm, an online
coding algorithm, an information dispersal algorithm, etc.), a pillar width, a decode threshold,
a read threshold, a write threshold, etc. For example, the error correction encoding
parameters identify a specific error correction encoding scheme, specifies a pillar width of
five, and specifies a decode threshold of three. From these parameters, the error encoding
module 146 encodes a data segment 154 to produce an encoded data segment 156.

The slicing module 148 slices the encoded data segment 156 in accordance with the
pillar width of the error correction encoding parameters received as control information 160.
For example, if the pillar width is five, the slicing module 148 slices an encoded data segment
156 into a set of five encoded data slices. As such, for a plurality of encoded data segments
156 for a given data partition, the slicing module outputs a plurality of sets of encoded data
slices 158.

The per slice security processing module 150, when enabled by the control module
116, secures each encoded data slice 158 based on slice security information received as
control information 160 from the control module 116. The slice security information
includes data compression, encryption, watermarking, integrity check (e.g., CRC, etc.),

and/or any other type of digital security. For example, when the per slice security processing

15

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

module 150 is enabled, it compresses an encoded data slice 158, encrypts the compressed
encoded data slice, and generates a CRC value for the encrypted encoded data slice to
produce a secure encoded data slice 122. When the per slice security processing module 150
is not enabled, it passes the encoded data slices 158 or is bypassed such that the encoded data
slices 158 are the output of the DS error encoding module 112. Note that the control module
116 may be omitted and each module stores its own parameters.

Figure 7 is a diagram of an example of a segment processing of a dispersed storage
(DS) error encoding module. In this example, a segment processing module 142 receives a
data partition 120 that includes 45 data blocks (e.g., d1 — d45), receives segmenting
information (i.e., control information 160) from a control module, and segments the data
partition 120 in accordance with the control information 160 to produce data segments 152.
Each data block may be of the same size as other data blocks or of a different size. In
addition, the size of each data block may be a few bytes to megabytes of data. As previously
mentioned, the segmenting information indicates how many rows to segment the data
partition into, indicates how many columns to segment the data partition into, and indicates
how many columns to include in a data segment.

In this example, the decode threshold of the error encoding scheme is three; as such
the number of rows to divide the data partition into is three. The number of columns for each
row is set to 15, which is based on the number and size of data blocks. The data blocks of the
data partition are arranged in rows and columns in a sequential order (i.e., the first row
includes the first 15 data blocks; the second row includes the second 15 data blocks; and the
third row includes the last 15 data blocks).

With the data blocks arranged into the desired sequential order, they are divided into
data segments based on the segmenting information. In this example, the data partition is
divided into 8 data segments; the first 7 include 2 columns of three rows and the last includes
1 column of three rows. Note that the first row of the 8 data segments is in sequential order
of the first 15 data blocks; the second row of the 8 data segments in sequential order of the
second 15 data blocks; and the third row of the § data segments in sequential order of the last
15 data blocks. Note that the number of data blocks, the grouping of the data blocks into
segments, and size of the data blocks may vary to accommodate the desired distributed task
processing function.

Figure § is a diagram of an example of error encoding and slicing processing of the
dispersed error encoding processing the data segments of Figure 7. In this example, data

segment 1 includes 3 rows with each row being treated as one word for encoding. As such,

16

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

data segment 1 includes three words for encoding: word 1 including data blocks d1 and d2,
word 2 including data blocks d16 and d17, and word 3 including data blocks d31 and d32.
Each of data segments 2 — 7 includes three words where each word includes two data blocks.
Data segment 8 includes three words where each word includes a single data block (e.g., d15,
d30, and d45).

In operation, an error encoding module 146 and a slicing module 148 convert each
data segment into a set of encoded data slices in accordance with error correction encoding
parameters as control information 160. More specifically, when the error correction encoding
parameters indicate a unity matrix Reed-Solomon based encoding algorithm, 5 pillars, and
decode threshold of 3, the first three encoded data slices of the set of encoded data slices for a
data segment are substantially similar to the corresponding word of the data segment. For
instance, when the unity matrix Reed-Solomon based encoding algorithm is applied to data
segment 1, the content of the first encoded data slice (DS1_d1&2) of the first set of encoded
data slices (e.g., corresponding to data segment 1) is substantially similar to content of the
first word (e.g., d1 & d2); the content of the second encoded data slice (DS1_d16&17) of the
first set of encoded data slices is substantially similar to content of the second word (e.g., d16
& d17); and the content of the third encoded data slice (DS1_d31&32) of the first set of
encoded data slices is substantially similar to content of the third word (e.g., d31 & d32).

The content of the fourth and fifth encoded data slices (e.g., ES1_1 and ES1_2) of the
first set of encoded data slices include error correction data based on the first — third words of
the first data segment. With such an encoding and slicing scheme, retrieving any three of the
five encoded data slices allows the data segment to be accurately reconstructed.

The encoding and slices of data segments 2 — 7 yield sets of encoded data slices
similar to the set of encoded data slices of data segment 1. For instance, the content of the
first encoded data slice (DS2_d3&4) of the second set of encoded data slices (e.g.,
corresponding to data segment 2) is substantially similar to content of the first word (e.g., d3
& d4); the content of the second encoded data slice (DS2_d18&19) of the second set of
encoded data slices is substantially similar to content of the second word (e.g., d18 & d19);
and the content of the third encoded data slice (DS2_d33&34) of the second set of encoded
data slices is substantially similar to content of the third word (e.g., d33 & d34). The content
of the fourth and fifth encoded data slices (e.g., ES1_1 and ES1_2) of the second set of
encoded data slices includes error correction data based on the first — third words of the

second data segment.

17

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Figure 9 is a diagram of an example of grouping selection processing of an outbound
distributed storage and task (DST) processing in accordance with group selection information
as control information 160 from a control module. Encoded slices for data partition 122 are
grouped in accordance with the control information 160 to produce slice groupings 96. In
this example, a grouping selection module 114 organizes the encoded data slices into five
slice groupings (e.g., one for each DST execution unit of a distributed storage and task
network (DSTN) module). As a specific example, the grouping selection module 114 creates
a first slice grouping for a DST execution unit #1, which includes first encoded slices of each
of the sets of encoded slices. As such, the first DST execution unit receives encoded data
slices corresponding to data blocks 1-15 (e.g., encoded data slices of contiguous data).

The grouping selection module 114 also creates a second slice grouping for a DST
execution unit #2, which includes second encoded slices of each of the sets of encoded slices.
As such, the second DST execution unit receives encoded data slices corresponding to data
blocks 16-30. The grouping selection module 114 further creates a third slice grouping for
DST execution unit #3, which includes third encoded slices of each of the sets of encoded
slices. As such, the third DST execution unit receives encoded data slices corresponding to
data blocks 31-45.

The grouping selection module 114 creates a fourth slice grouping for DST execution
unit #4, which includes fourth encoded slices of each of the sets of encoded slices. As such,
the fourth DST execution unit receives encoded data slices corresponding to first error
encoding information (e.g., encoded data slices of error coding (EC) data). The grouping
selection module 114 further creates a fifth slice grouping for DST execution unit #5, which
includes fifth encoded slices of each of the sets of encoded slices. As such, the fifth DST
execution unit receives encoded data slices corresponding to second error encoding
information.

Figure 10 is a diagram of an example of converting data 92 into slice groups that
expands on the preceding figures. As shown, the data 92 is partitioned in accordance with a
partitioning function 164 into a plurality of data partitions (1-x, where x is an integer greater
than 4). Each data partition (or chunkset of data) is encoded and grouped into slice groupings
as previously discussed by an encoding and grouping function 166. For a given data
partition, the slice groupings are sent to distributed storage and task (DST) execution units.
From data partition to data partition, the ordering of the slice groupings to the DST execution

units may vary.

18

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

For example, the slice groupings of data partition #1 is sent to the DST execution
units such that the first DST execution receives first encoded data slices of each of the sets of
encoded data slices, which corresponds to a first continuous data chunk of the first data
partition (e.g., refer to Figure 9), a second DST execution receives second encoded data slices
of each of the sets of encoded data slices, which corresponds to a second continuous data
chunk of the first data partition, etc.

For the second data partition, the slice groupings may be sent to the DST execution
units in a different order than it was done for the first data partition. For instance, the first
slice grouping of the second data partition (e.g., slice group 2_1) is sent to the second DST
execution unit; the second slice grouping of the second data partition (e.g., slice group 2_2) is
sent to the third DST execution unit; the third slice grouping of the second data partition (e.g.,
slice group 2_3) is sent to the fourth DST execution unit; the fourth slice grouping of the
second data partition (e.g., slice group 2_4, which includes first error coding information) is
sent to the fifth DST execution unit; and the fifth slice grouping of the second data partition
(e.g., slice group 2_5, which includes second error coding information) is sent to the first
DST execution unit.

The pattern of sending the slice groupings to the set of DST execution units may vary
in a predicted pattern, a random pattern, and/or a combination thereof from data partition to
data partition. In addition, from data partition to data partition, the set of DST execution
units may change. For example, for the first data partition, DST execution units 1-5 may be
used; for the second data partition, DST execution units 6-10 may be used; for the third data
partition, DST execution units 3-7 may be used; etc. As is also shown, the task is divided
into partial tasks that are sent to the DST execution units in conjunction with the slice
groupings of the data partitions.

Figure 11 is a schematic block diagram of an embodiment of a DST (distributed
storage and/or task) execution unit that includes an interface 169, a controller 86, memory 88,
one or more DT (distributed task) execution modules 90, and a DST client module 34. The
memory 88 is of sufficient size to store a significant number of encoded data slices (e.g.,
thousands of slices to hundreds-of-millions of slices) and may include one or more hard
drives and/or one or more solid-state memory devices (e.g., flash memory, DRAM, etc.).

In an example of storing a slice group, the DST execution module receives a slice
grouping 96 (e.g., slice group #1) via interface 169. The slice grouping 96 includes, per
partition, encoded data slices of contiguous data or encoded data slices of error coding (EC)

data. For slice group #l, the DST execution module receives encoded data slices of

19

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

contiguous data for partitions #1 and #x (and potentially others between 3 and x) and receives
encoded data slices of EC data for partitions #2 and #3 (and potentially others between 3 and
x). Examples of encoded data slices of contiguous data and encoded data slices of error
coding (EC) data are discussed with reference to Figure 9. The memory 88 stores the
encoded data slices of slice groupings 96 in accordance with memory control information 174
it receives from the controller 86.

The controller 86 (e.g., a processing module, a CPU, etc.) generates the memory
control information 174 based on a partial task(s) 98 and distributed computing information
(e.g., user information (e.g., user ID, distributed computing permissions, data access
permission, etc.), vault information (e.g., virtual memory assigned to user, user group,
temporary storage for task processing, etc.), task validation information, etc.). For example,
the controller 86 interprets the partial task(s) 98 in light of the distributed computing
information to determine whether a requestor is authorized to perform the task 98, is
authorized to access the data, and/or is authorized to perform the task on this particular data.
When the requestor is authorized, the controller 86 determines, based on the task 98 and/or
another input, whether the encoded data slices of the slice grouping 96 are to be temporarily
stored or permanently stored. Based on the foregoing, the controller 86 generates the
memory control information 174 to write the encoded data slices of the slice grouping 96 into
the memory 88 and to indicate whether the slice grouping 96 is permanently stored or
temporarily stored.

With the slice grouping 96 stored in the memory 88, the controller 86 facilitates
execution of the partial task(s) 98. In an example, the controller 86 interprets the partial task
98 in light of the capabilities of the DT execution module(s) 90. The capabilities include one
or more of MIPS capabilities, processing resources (e.g., quantity and capability of
microprocessors, CPUs, digital signal processors, co-processor, microcontrollers, arithmetic
logic circuitry, and/or any other analog and/or digital processing circuitry), availability of the
processing resources, etc. If the controller 86 determines that the DT execution module(s) 90
have sufficient capabilities, it generates task control information 176.

The task control information 176 may be a generic instruction (e.g., perform the task
on the stored slice grouping) or a series of operational codes. In the former instance, the DT
execution module 90 includes a co-processor function specifically configured (fixed or
programmed) to perform the desired task 98. In the latter instance, the DT execution module
90 includes a general processor topology where the controller stores an algorithm

corresponding to the particular task 98. In this instance, the controller 86 provides the

20

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

operational codes (e.g., assembly language, source code of a programming language, object
code, etc.) of the algorithm to the DT execution module 90 for execution.

Depending on the nature of the task 98, the DT execution module 90 may generate
intermediate partial results 102 that are stored in the memory 88 or in a cache memory (not
shown) within the DT execution module 90. In either case, when the DT execution module
90 completes execution of the partial task 98, it outputs one or more partial results 102. The
partial results 102 may also be stored in memory &8.

If, when the controller 86 is interpreting whether capabilities of the DT execution
module(s) 90 can support the partial task 98, the controller 86 determines that the DT
execution module(s) 90 cannot adequately support the task 98 (e.g., does not have the right
resources, does not have sufficient available resources, available resources would be too
slow, etc.), it then determines whether the partial task 98 should be fully offloaded or
partially offloaded.

If the controller 86 determines that the partial task 98 should be fully offloaded, it
generates DST control information 178 and provides it to the DST client module 34. The
DST control information 178 includes the partial task 98, memory storage information
regarding the slice grouping 96, and distribution instructions. The distribution instructions
instruct the DST client module 34 to divide the partial task 98 into sub-partial tasks 172, to
divide the slice grouping 96 into sub-slice groupings 170, and identify other DST execution
units. The DST client module 34 functions in a similar manner as the DST client module 34
of Figures 3-10 to produce the sub-partial tasks 172 and the sub-slice groupings 170 in
accordance with the distribution instructions.

The DST client module 34 receives DST feedback 168 (e.g., sub-partial results), via
the interface 169, from the DST execution units to which the task was offloaded. The DST
client module 34 provides the sub-partial results to the DST execution unit, which processes
the sub-partial results to produce the partial result(s) 102.

If the controller 86 determines that the partial task 98 should be partially offloaded, it
determines what portion of the task 98 and/or slice grouping 96 should be processed locally
and what should be offloaded. For the portion that is being locally processed, the controller
86 generates task control information 176 as previously discussed. For the portion that is
being offloaded, the controller 86 generates DST control information 178 as previously
discussed.

When the DST client module 34 receives DST feedback 168 (e.g., sub-partial results)

from the DST executions units to which a portion of the task was offloaded, it provides the

21

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

sub-partial results to the DT execution module 90. The DT execution module 90 processes
the sub-partial results with the sub-partial results it created to produce the partial result(s)
102.

The memory 88 may be further utilized to retrieve one or more of stored slices 100,
stored results 104, partial results 102 when the DT execution module 90 stores partial results
102 and/or results 104 and the memory 88. For example, when the partial task 98 includes a
retrieval request, the controller 86 outputs the memory control 174 to the memory 88 to
facilitate retrieval of slices 100 and/or results 104.

Figure 12 is a schematic block diagram of an example of operation of a distributed
storage and task (DST) execution unit storing encoded data slices and executing a task
thereon. To store the encoded data slices of a partition 1 of slice grouping 1, a controller 86
generates write commands as memory control information 174 such that the encoded slices
are stored in desired locations (e.g., permanent or temporary) within memory 88.

Once the encoded slices are stored, the controller 86 provides task control information
176 to a distributed task (DT) execution module 90. As a first step executing the task in
accordance with the task control information 176, the DT execution module 90 retrieves the
encoded slices from memory 88. The DT execution module 90 then reconstructs contiguous
data blocks of a data partition. As shown for this example, reconstructed contiguous data
blocks of data partition 1 include data blocks 1-15 (e.g., d1- d15).

With the contiguous data blocks reconstructed, the DT execution module 90 performs
the task on the reconstructed contiguous data blocks. For example, the task may be to search
the reconstructed contiguous data blocks for a particular word or phrase, identify where in the
reconstructed contiguous data blocks the particular word or phrase occurred, and/or count the
occurrences of the particular word or phrase on the reconstructed contiguous data blocks.
The DST execution unit continues in a similar manner for the encoded data slices of other
partitions in slice grouping 1. Note that with using the unity matrix error encoding scheme
previously discussed, if the encoded data slices of contiguous data are uncorrupted, the
decoding of them is a relatively straightforward process of extracting the data.

If, however, an encoded data slice of contiguous data is corrupted (or missing), it can
be rebuilt by accessing other DST execution units that are storing the other encoded data
slices of the set of encoded data slices of the corrupted encoded data slice. In this instance,
the DST execution unit having the corrupted encoded data slices retrieves at least three
encoded data slices (of contiguous data and of error coding data) in the set from the other

DST execution units (recall for this example, the pillar width is 5 and the decode threshold is

22

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

3). The DST execution unit decodes the retrieved data slices using the DS error encoding
parameters to recapture the corresponding data segment. The DST execution unit then re-
encodes the data segment using the DS error encoding parameters to rebuild the corrupted
encoded data slice. Once the encoded data slice is rebuilt, the DST execution unit functions
as previously described.

Figure 13 is a schematic block diagram of an embodiment of an inbound distributed
storage and/or task (DST) processing section 82 of a DST client module coupled to DST
execution units of a distributed storage and task network (DSTN) module via a network 24.
The inbound DST processing section 82 includes a de-grouping module 180, a DS (dispersed
storage) error decoding module 182, a data de-partitioning module 184, a control module
186, and a distributed task control module 188. Note that the control module 186 and/or the
distributed task control module 188 may be separate modules from corresponding ones of
outbound DST processing section or may be the same modules.

In an example of operation, the DST execution units have completed execution of
corresponding partial tasks on the corresponding slice groupings to produce partial results
102. The inbound DST processing section 82 receives the partial results 102 via the
distributed task control module 188. The inbound DST processing section 82 then processes
the partial results 102 to produce a final result, or results 104. For example, if the task was to
find a specific word or phrase within data, the partial results 102 indicate where in each of the
prescribed portions of the data the corresponding DST execution units found the specific
word or phrase. The distributed task control module 188 combines the individual partial
results 102 for the corresponding portions of the data into a final result 104 for the data as a
whole.

In another example of operation, the inbound DST processing section 82 is retrieving
stored data from the DST execution units (i.e., the DSTN module). In this example, the DST
execution units output encoded data slices 100 corresponding to the data retrieval requests.
The de-grouping module 180 receives retrieved slices 100 and de-groups them to produce
encoded data slices per data partition 122. The DS error decoding module 182 decodes, in
accordance with DS error encoding parameters, the encoded data slices per data partition 122
to produce data partitions 120.

The data de-partitioning module 184 combines the data partitions 120 into the data 92.
The control module 186 controls the conversion of retrieve slices 100 into the data 92 using
control signals 190 to each of the modules. For instance, the control module 186 provides de-

grouping information to the de-grouping module 180, provides the DS error encoding

23

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

parameters to the DS error decoding module 182, and provides de-partitioning information to
the data de-partitioning module 184.

Figure 14 is a logic diagram of an example of a method that is executable by
distributed storage and task (DST) client module regarding inbound DST processing. The
method begins at step 194 where the DST client module receives partial results. The method
continues at step 196 where the DST client module retrieves the task corresponding to the
partial results. For example, the partial results include header information that identifies the
requesting entity, which correlates to the requested task.

The method continues at step 198 where the DST client module determines result
processing information based on the task. For example, if the task were to identify a
particular word or phrase within the data, the result processing information would indicate to
aggregate the partial results for the corresponding portions of the data to produce the final
result. As another example, if the task were to count the occurrences of a particular word or
phrase within the data, results of processing the information would indicate to add the partial
results to produce the final results. The method continues at step 200 where the DST client
module processes the partial results in accordance with the result processing information to
produce the final result or results.

Figure 15 is a diagram of an example of de-grouping selection processing of an
inbound distributed storage and task (DST) processing section of a DST client module. In
general, this is an inverse process of the grouping module of the outbound DST processing
section of Figure 9. Accordingly, for each data partition (e.g., partition #1), the de-grouping
module retrieves the corresponding slice grouping from the DST execution units (EU) (e.g.,
DST 1-5).

As shown, DST execution unit #1 provides a first slice grouping, which includes the
first encoded slices of each of the sets of encoded slices (e.g., encoded data slices of
contiguous data of data blocks 1-15); DST execution unit #2 provides a second slice
grouping, which includes the second encoded slices of each of the sets of encoded slices (e.g.,
encoded data slices of contiguous data of data blocks 16-30); DST execution unit #3 provides
a third slice grouping, which includes the third encoded slices of each of the sets of encoded
slices (e.g., encoded data slices of contiguous data of data blocks 31-45); DST execution unit
#4 provides a fourth slice grouping, which includes the fourth encoded slices of each of the
sets of encoded slices (e.g., first encoded data slices of error coding (EC) data); and DST
execution unit #5 provides a fifth slice grouping, which includes the fifth encoded slices of

each of the sets of encoded slices (e.g., first encoded data slices of error coding (EC) data).

24

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

The de-grouping module de-groups the slice groupings (e.g., received slices 100)
using a de-grouping selector 180 controlled by a control signal 190 as shown in the example
to produce a plurality of sets of encoded data slices (e.g., retrieved slices for a partition into
sets of slices 122). Each set corresponding to a data segment of the data partition.

Figure 16 is a schematic block diagram of an embodiment of a dispersed storage (DS)
error decoding module 182 of an inbound distributed storage and task (DST) processing
section. The DS error decoding module 182 includes an inverse per slice security processing
module 202, a de-slicing module 204, an error decoding module 206, an inverse segment
security module 208, a de-segmenting processing module 210, and a control module 186.

In an example of operation, the inverse per slice security processing module 202,
when enabled by the control module 186, unsecures each encoded data slice 122 based on
slice de-security information received as control information 190 (e.g., the compliment of the
slice security information discussed with reference to Figure 6) received from the control
module 186. The slice security information includes data decompression, decryption, de-
watermarking, integrity check (e.g., CRC verification, etc.), and/or any other type of digital
security. For example, when the inverse per slice security processing module 202 is enabled,
it verifies integrity information (e.g., a CRC value) of each encoded data slice 122, it decrypts
each verified encoded data slice, and decompresses each decrypted encoded data slice to
produce slice encoded data 158. When the inverse per slice security processing module 202
is not enabled, it passes the encoded data slices 122 as the sliced encoded data 158 or is
bypassed such that the retrieved encoded data slices 122 are provided as the sliced encoded
data 158.

The de-slicing module 204 de-slices the sliced encoded data 158 into encoded data
segments 156 in accordance with a pillar width of the error correction encoding parameters
received as control information 190 from the control module 186. For example, if the pillar
width is five, the de-slicing module 204 de-slices a set of five encoded data slices into an
encoded data segment 156. The error decoding module 206 decodes the encoded data
segments 156 in accordance with error correction decoding parameters received as control
information 190 from the control module 186 to produce secure data segments 154. The
error correction decoding parameters include identifying an error correction encoding scheme
(e.g., forward error correction algorithm, a Reed—Solomon based algorithm, an information
dispersal algorithm, etc.), a pillar width, a decode threshold, a read threshold, a write

threshold, etc. For example, the error correction decoding parameters identify a specific error

25

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

correction encoding scheme, specify a pillar width of five, and specify a decode threshold of
three.

The inverse segment security processing module 208, when enabled by the control
module 186, unsecures the secured data segments 154 based on segment security information
received as control information 190 from the control module 186. The segment security
information includes data decompression, decryption, de-watermarking, integrity check (e.g.,
CRC, etc.) verification, and/or any other type of digital security. For example, when the
inverse segment security processing module 208 is enabled, it verifies integrity information
(e.g., a CRC value) of each secure data segment 154, it decrypts each verified secured data
segment, and decompresses each decrypted secure data segment to produce a data segment
152. When the inverse segment security processing module 208 is not enabled, it passes the
decoded data segment 154 as the data segment 152 or is bypassed.

The de-segment processing module 210 receives the data segments 152 and receives
de-segmenting information as control information 190 from the control module 186. The de-
segmenting information indicates how the de-segment processing module 210 is to de-
segment the data segments 152 into a data partition 120. For example, the de-segmenting
information indicates how the rows and columns of data segments are to be rearranged to
yield the data partition 120.

Figure 17 is a diagram of an example of de-slicing and error decoding processing of a
dispersed error decoding module. A de-slicing module 204 receives at least a decode
threshold number of encoded data slices 158 for each data segment in accordance with
control information 190 and provides encoded data 156. In this example, a decode threshold
is three. As such, each set of encoded data slices 158 is shown to have three encoded data
slices per data segment. The de-slicing module 204 may receive three encoded data slices per
data segment because an associated distributed storage and task (DST) client module
requested retrieving only three encoded data slices per segment or selected three of the
retrieved encoded data slices per data segment. As shown, which is based on the unity matrix
encoding previously discussed with reference to Figure 8, an encoded data slice may be a
data-based encoded data slice (e.g., DS1_d1&d2) or an error code based encoded data slice
(e.g., ES3_1).

An error decoding module 206 decodes the encoded data 156 of each data segment in
accordance with the error correction decoding parameters of control information 190 to
produce secured segments 154. In this example, data segment 1 includes 3 rows with each

row being treated as one word for encoding. As such, data segment 1 includes three words:

26

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

word 1 including data blocks d1 and d2, word 2 including data blocks d16 and d17, and word
3 including data blocks d31 and d32. Each of data segments 2 — 7 includes three words
where each word includes two data blocks. Data segment 8§ includes three words where each
word includes a single data block (e.g., d15, d30, and d45).

Figure 18 is a diagram of an example of a de-segment processing of an inbound
distributed storage and task (DST) processing. In this example, a de-segment processing
module 210 receives data segments 152 (e.g., 1-8) and rearranges the data blocks of the data
segments into rows and columns in accordance with de-segmenting information of control
information 190 to produce a data partition 120. Note that the number of rows is based on
the decode threshold (e.g., 3 in this specific example) and the number of columns is based on
the number and size of the data blocks.

The de-segmenting module 210 converts the rows and columns of data blocks into the
data partition 120. Note that each data block may be of the same size as other data blocks or
of a different size. In addition, the size of each data block may be a few bytes to megabytes
of data.

Figure 19 is a diagram of an example of converting slice groups into data 92 within an
inbound distributed storage and task (DST) processing section. As shown, the data 92 is
reconstructed from a plurality of data partitions (1-x, where x is an integer greater than 4).
Each data partition (or chunk set of data) is decoded and re-grouped using a de-grouping and
decoding function 212 and a de-partition function 214 from slice groupings as previously
discussed. For a given data partition, the slice groupings (e.g., at least a decode threshold per
data segment of encoded data slices) are received from DST execution units. From data
partition to data partition, the ordering of the slice groupings received from the DST
execution units may vary as discussed with reference to Figure 10.

Figure 20 is a diagram of an example of a distributed storage and/or retrieval within
the distributed computing system. The distributed computing system includes a plurality of
distributed storage and/or task (DST) processing client modules 34 (one shown) coupled to a
distributed storage and/or task processing network (DSTN) module, or multiple DSTN
modules, via a network 24. The DST client module 34 includes an outbound DST processing
section 80 and an inbound DST processing section 82. The DSTN module includes a
plurality of DST execution units. Each DST execution unit includes a controller 86, memory
88, one or more distributed task (DT) execution modules 90, and a DST client module 34.

In an example of data storage, the DST client module 34 has data 92 that it desires to

store in the DSTN module. The data 92 may be a file (e.g., video, audio, text, graphics, etc.),

27

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

a data object, a data block, an update to a file, an update to a data block, etc. In this instance,
the outbound DST processing module 80 converts the data 92 into encoded data slices 216 as
will be further described with reference to Figures 21-23. The outbound DST processing
module 80 sends, via the network 24, to the DST execution units for storage as further
described with reference to Figure 24.

In an example of data retrieval, the DST client module 34 issues a retrieve request to
the DST execution units for the desired data 92. The retrieve request may address each DST
executions units storing encoded data slices of the desired data, address a decode threshold
number of DST execution units, address a read threshold number of DST execution units, or
address some other number of DST execution units. In response to the request, each
addressed DST execution unit retrieves its encoded data slices 100 of the desired data and
sends them to the inbound DST processing section 82, via the network 24.

When, for each data segment, the inbound DST processing section 82 receives at least
a decode threshold number of encoded data slices 100, it converts the encoded data slices 100
into a data segment. The inbound DST processing section 82 aggregates the data segments to
produce the retrieved data 92.

Figure 21 is a schematic block diagram of an embodiment of an outbound distributed
storage and/or task (DST) processing section 80 of a DST client module coupled to a
distributed storage and task network (DSTN) module (e.g., a plurality of DST execution
units) via a network 24. The outbound DST processing section 80 includes a data
partitioning module 110, a dispersed storage (DS) error encoding module 112, a grouping
selector module 114, a control module 116, and a distributed task control module 118.

In an example of operation, the data partitioning module 110 is by-passed such that
data 92 is provided directly to the DS error encoding module 112. The control module 116
coordinates the by-passing of the data partitioning module 110 by outputting a bypass 220
message to the data partitioning module 110.

The DS error encoding module 112 receives the data 92 in a serial manner, a parallel
manner, and/or a combination thereof. The DS error encoding module 112 DS error encodes
the data in accordance with control information 160 from the control module 116 to produce
encoded data slices 218. The DS error encoding includes segmenting the data 92 into data
segments, segment security processing (e.g., encryption, compression, watermarking,
integrity check (e.g., CRC, etc.)), error encoding, slicing, and/or per slice security processing
(e.g., encryption, compression, watermarking, integrity check (e.g., CRC, etc.)). The control

information 160 indicates which steps of the DS error encoding are active for the data 92 and,

28

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

for active steps, indicates the parameters for the step. For example, the control information
160 indicates that the error encoding is active and includes error encoding parameters (e.g.,
pillar width, decode threshold, write threshold, read threshold, type of error encoding, etc.).

The grouping selector module 114 groups the encoded slices 218 of the data segments
into pillars of slices 216. The number of pillars corresponds to the pillar width of the DS
error encoding parameters. In this example, the distributed task control module 118
facilitates the storage request.

Figure 22 is a schematic block diagram of an example of a dispersed storage (DS)
error encoding module 112 for the example of Figure 21. The DS error encoding module 112
includes a segment processing module 142, a segment security processing module 144, an
error encoding module 146, a slicing module 148, and a per slice security processing module
150. Each of these modules is coupled to a control module 116 to receive control
information 160 therefrom.

In an example of operation, the segment processing module 142 receives data 92 and
receives segmenting information as control information 160 from the control module 116.
The segmenting information indicates how the segment processing module is to segment the
data. For example, the segmenting information indicates the size of each data segment. The
segment processing module 142 segments the data 92 into data segments 152 in accordance
with the segmenting information.

The segment security processing module 144, when enabled by the control module
116, secures the data segments 152 based on segment security information received as control
information 160 from the control module 116. The segment security information includes
data compression, encryption, watermarking, integrity check (e.g., CRC, etc.), and/or any
other type of digital security. For example, when the segment security processing module
144 is enabled, it compresses a data segment 152, encrypts the compressed data segment, and
generates a CRC value for the encrypted data segment to produce a secure data segment.
When the segment security processing module 144 is not enabled, it passes the data segments
152 to the error encoding module 146 or is bypassed such that the data segments 152 are
provided to the error encoding module 146.

The error encoding module 146 encodes the secure data segments in accordance with
error correction encoding parameters received as control information 160 from the control
module 116. The error correction encoding parameters include identifying an error
correction encoding scheme (e.g., forward error correction algorithm, a Reed—Solomon based

algorithm, an information dispersal algorithm, etc.), a pillar width, a decode threshold, a read

29

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

threshold, a write threshold, etc. For example, the error correction encoding parameters
identify a specific error correction encoding scheme, specifies a pillar width of five, and
specifies a decode threshold of three. From these parameters, the error encoding module 146
encodes a data segment to produce an encoded data segment.

The slicing module 148 slices the encoded data segment in accordance with a pillar
width of the error correction encoding parameters. For example, if the pillar width is five, the
slicing module slices an encoded data segment into a set of five encoded data slices. As such,
for a plurality of data segments, the slicing module 148 outputs a plurality of sets of encoded
data slices as shown within encoding and slicing function 222 as described.

The per slice security processing module 150, when enabled by the control module
116, secures each encoded data slice based on slice security information received as control
information 160 from the control module 116. The slice security information includes data
compression, encryption, watermarking, integrity check (e.g., CRC, etc.), and/or any other
type of digital security. For example, when the per slice security processing module 150 is
enabled, it may compress an encoded data slice, encrypt the compressed encoded data slice,
and generate a CRC value for the encrypted encoded data slice to produce a secure encoded
data slice tweaking. When the per slice security processing module 150 is not enabled, it
passes the encoded data slices or is bypassed such that the encoded data slices 218 are the
output of the DS error encoding module 112.

Figure 23 is a diagram of an example of converting data 92 into pillar slice groups
utilizing encoding, slicing and pillar grouping function 224 for storage in memory of a
distributed storage and task network (DSTN) module. As previously discussed the data 92 is
encoded and sliced into a plurality of sets of encoded data slices; one set per data segment.
The grouping selection module organizes the sets of encoded data slices into pillars of data
slices. In this example, the DS error encoding parameters include a pillar width of 5 and a
decode threshold of 3. As such, for each data segment, 5 encoded data slices are created.

The grouping selection module takes the first encoded data slice of each of the sets
and forms a first pillar, which may be sent to the first DST execution unit. Similarly, the
grouping selection module creates the second pillar from the second slices of the sets; the
third pillar from the third slices of the sets; the fourth pillar from the fourth slices of the sets;
and the fifth pillar from the fifth slices of the set.

Figure 24 is a schematic block diagram of an embodiment of a distributed storage
and/or task (DST) execution unit that includes an interface 169, a controller 86, memory 88,

one or more distributed task (DT) execution modules 90, and a DST client module 34. A

30

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

computing core 26 may be utilized to implement the one or more DT execution modules 90
and the DST client module 34. The memory 88 is of sufficient size to store a significant
number of encoded data slices (e.g., thousands of slices to hundreds-of-millions of slices) and
may include one or more hard drives and/or one or more solid-state memory devices (e.g.,
flash memory, DRAM, etc.).

In an example of storing a pillar of slices 216, the DST execution unit receives, via
interface 169, a pillar of slices 216 (e.g., pillar #1 slices). The memory 88 stores the encoded
data slices 216 of the pillar of slices in accordance with memory control information 174 it
receives from the controller 86. The controller 86 (e.g., a processing module, a CPU, etc.)
generates the memory control information 174 based on distributed storage information (e.g.,
user information (e.g., user ID, distributed storage permissions, data access permission, etc.),
vault information (e.g., virtual memory assigned to user, user group, etc.), etc.). Similarly,
when retrieving slices, the DST execution unit receives, via interface 169, a slice retrieval
request. The memory 88 retrieves the slice in accordance with memory control information
174 it receives from the controller 86. The memory 88 outputs the slice 100, via the interface
169, to a requesting entity.

Figure 25 is a schematic block diagram of an example of operation of an inbound
distributed storage and/or task (DST) processing section 82 for retrieving dispersed error
encoded data 92. The inbound DST processing section 82 includes a de-grouping module
180, a dispersed storage (DS) error decoding module 182, a data de-partitioning module 184,
a control module 186, and a distributed task control module 188. Note that the control
module 186 and/or the distributed task control module 188 may be separate modules from
corresponding ones of an outbound DST processing section or may be the same modules.

In an example of operation, the inbound DST processing section 82 is retrieving
stored data 92 from the DST execution units (i.e., the DSTN module). In this example, the
DST execution units output encoded data slices corresponding to data retrieval requests from
the distributed task control module 188. The de-grouping module 180 receives pillars of
slices 100 and de-groups them in accordance with control information 190 from the control
module 186 to produce sets of encoded data slices 218. The DS error decoding module 182
decodes, in accordance with the DS error encoding parameters received as control
information 190 from the control module 186, each set of encoded data slices 218 to produce
data segments, which are aggregated into retrieved data 92. The data de-partitioning module
184 is by-passed in this operational mode via a bypass signal 226 of control information 190

from the control module 186.

31

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Figure 26 is a schematic block diagram of an embodiment of a dispersed storage (DS)
error decoding module 182 of an inbound distributed storage and task (DST) processing
section. The DS error decoding module 182 includes an inverse per slice security processing
module 202, a de-slicing module 204, an error decoding module 206, an inverse segment
security module 208, and a de-segmenting processing module 210. The dispersed error
decoding module 182 is operable to de-slice and decode encoded slices per data segment 218
utilizing a de-slicing and decoding function 228 to produce a plurality of data segments that
are de-segmented utilizing a de-segment function 230 to recover data 92.

In an example of operation, the inverse per slice security processing module 202,
when enabled by the control module 186 via control information 190, unsecures each
encoded data slice 218 based on slice de-security information (e.g., the compliment of the
slice security information discussed with reference to Figure 6) received as control
information 190 from the control module 186. The slice de-security information includes
data decompression, decryption, de-watermarking, integrity check (e.g., CRC verification,
etc.), and/or any other type of digital security. For example, when the inverse per slice
security processing module 202 is enabled, it verifies integrity information (e.g., a CRC
value) of each encoded data slice 218, it decrypts each verified encoded data slice, and
decompresses each decrypted encoded data slice to produce slice encoded data. When the
inverse per slice security processing module 202 is not enabled, it passes the encoded data
slices 218 as the sliced encoded data or is bypassed such that the retrieved encoded data slices
218 are provided as the sliced encoded data.

The de-slicing module 204 de-slices the sliced encoded data into encoded data
segments in accordance with a pillar width of the error correction encoding parameters
received as control information 190 from a control module 186. For example, if the pillar
width is five, the de-slicing module de-slices a set of five encoded data slices into an encoded
data segment. Alternatively, the encoded data segment may include just three encoded data
slices (e.g., when the decode threshold is 3).

The error decoding module 206 decodes the encoded data segments in accordance
with error correction decoding parameters received as control information 190 from the
control module 186 to produce secure data segments. The error correction decoding
parameters include identifying an error correction encoding scheme (e.g., forward error
correction algorithm, a Reed—Solomon based algorithm, an information dispersal algorithm,

etc.), a pillar width, a decode threshold, a read threshold, a write threshold, etc. For example,

32

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

the error correction decoding parameters identify a specific error correction encoding scheme,
specify a pillar width of five, and specify a decode threshold of three.

The inverse segment security processing module 208, when enabled by the control
module 186, unsecures the secured data segments based on segment security information
received as control information 190 from the control module 186. The segment security
information includes data decompression, decryption, de-watermarking, integrity check (e.g.,
CRC, etc.) verification, and/or any other type of digital security. For example, when the
inverse segment security processing module is enabled, it verifies integrity information (e.g.,
a CRC value) of each secure data segment, it decrypts each verified secured data segment,
and decompresses each decrypted secure data segment to produce a data segment 152. When
the inverse segment security processing module 208 is not enabled, it passes the decoded data
segment 152 as the data segment or is bypassed. The de-segmenting processing module 210
aggregates the data segments 152 into the data 92 in accordance with control information 190
from the control module 186.

Figure 27 is a schematic block diagram of an example of a distributed storage and
task processing network (DSTN) module that includes a plurality of distributed storage and
task (DST) execution units (#1 through #n, where, for example, n is an integer greater than or
equal to three). Each of the DST execution units includes a DST client module 34, a
controller 86, one or more DT (distributed task) execution modules 90, and memory 88.

In this example, the DSTN module stores, in the memory of the DST execution units,
a plurality of DS (dispersed storage) encoded data (e.g., 1 through n, where n is an integer
greater than or equal to two) and stores a plurality of DS encoded task codes (e.g., 1 through
k, where k is an integer greater than or equal to two). The DS encoded data may be encoded
in accordance with one or more examples described with reference to Figures 3 — 19 (e.g.,
organized in slice groupings) or encoded in accordance with one or more examples described
with reference to Figures 20 — 26 (e.g., organized in pillar groups). The data that is encoded
into the DS encoded data may be of any size and/or of any content. For example, the data
may be one or more digital books, a copy of a company’s emails, a large-scale Internet
search, a video security file, one or more entertainment video files (e.g., television programs,
movies, etc.), data files, and/or any other large amount of data (e.g., greater than a few
Terabytes).

The tasks that are encoded into the DS encoded task code may be a simple function
(e.g., a mathematical function, a logic function, an identify function, a find function, a search

engine function, a replace function, etc.), a complex function (e.g., compression, human

33

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

and/or computer language translation, text-to-voice conversion, voice-to-text conversion,
etc.), multiple simple and/or complex functions, one or more algorithms, one or more
applications, etc. The tasks may be encoded into the DS encoded task code in accordance
with one or more examples described with reference to Figures 3 — 19 (e.g., organized in slice
groupings) or encoded in accordance with one or more examples described with reference to
Figures 20 — 26 (e.g., organized in pillar groups).

In an example of operation, a DST client module of a user device or of a DST
processing unit issues a DST request to the DSTN module. The DST request may include a
request to retrieve stored data, or a portion thereof, may include a request to store data that is
included with the DST request, may include a request to perform one or more tasks on stored
data, may include a request to perform one or more tasks on data included with the DST
request, etc. In the cases where the DST request includes a request to store data or to retrieve
data, the client module and/or the DSTN module processes the request as previously
discussed with reference to one or more of Figures 3 — 19 (e.g., slice groupings) and/or 20 -
26 (e.g., pillar groupings). In the case where the DST request includes a request to perform
one or more tasks on data included with the DST request, the DST client module and/or the
DSTN module process the DST request as previously discussed with reference to one or more
of Figures 3 — 19.

In the case where the DST request includes a request to perform one or more tasks on
stored data, the DST client module and/or the DSTN module processes the DST request as
will be described with reference to one or more of Figures 28 — 39. In general, the DST
client module identifies data and one or more tasks for the DSTN module to execute upon the
identified data. The DST request may be for a one-time execution of the task or for an on-
going execution of the task. As an example of the latter, as a company generates daily
emails, the DST request may be to daily search new emails for inappropriate content and, if
found, record the content, the email sender(s), the email recipient(s), email routing
information, notify human resources of the identified email, etc.

Figure 28 is a schematic block diagram of an example of a distributed computing
system performing tasks on stored data. In this example, two distributed storage and task
(DST) client modules 1-2 are shown: the first may be associated with a user device and the
second may be associated with a DST processing unit or a high priority user device (e.g.,
high priority clearance user, system administrator, etc.). Each DST client module includes a
list of stored data 234 and a list of tasks codes 236. The list of stored data 234 includes one

or more entries of data identifying information, where each entry identifies data stored in the

34

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

DSTN module 22. The data identifying information (e.g., data ID) includes one or more of a
data file name, a data file directory listing, DSTN addressing information of the data, a data
object identifier, etc. The list of tasks 236 includes one or more entries of task code
identifying information, when each entry identifies task codes stored in the DSTN module 22.
The task code identifying information (e.g., task ID) includes one or more of a task file name,
a task file directory listing, DSTN addressing information of the task, another type of
identifier to identify the task, etc.

As shown, the list of data 234 and the list of tasks 236 are each smaller in number of
entries for the first DST client module than the corresponding lists of the second DST client
module. This may occur because the user device associated with the first DST client module
has fewer privileges in the distributed computing system than the device associated with the
second DST client module. Alternatively, this may occur because the user device associated
with the first DST client module serves fewer users than the device associated with the
second DST client module and is restricted by the distributed computing system accordingly.
As yet another alternative, this may occur through no restraints by the distributed computing
system, it just occurred because the operator of the user device associated with the first DST
client module has selected fewer data and/or fewer tasks than the operator of the device
associated with the second DST client module.

In an example of operation, the first DST client module selects one or more data
entries 238 and one or more tasks 240 from its respective lists (e.g., selected data ID and
selected task ID). The first DST client module sends its selections to a task distribution
module 232. The task distribution module 232 may be within a stand-alone device of the
distributed computing system, may be within the user device that contains the first DST client
module, or may be within the DSTN module 22.

Regardless of the task distributions modules location, it generates DST allocation
information 242 from the selected task ID 240 and the selected data ID 238. The DST
allocation information 242 includes data partitioning information, task execution information,
and/or intermediate result information. The task distribution module 232 sends the DST
allocation information 242 to the DSTN module 22. Note that one or more examples of the
DST allocation information will be discussed with reference to one or more of Figures 29 —
39.

The DSTN module 22 interprets the DST allocation information 242 to identify the
stored DS encoded data (e.g., DS error encoded data 2) and to identify the stored DS error
encoded task code (e.g., DS error encoded task code 1). In addition, the DSTN module 22

35

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

interprets the DST allocation information 242 to determine how the data is to be partitioned
and how the task is to be partitioned. The DSTN module 22 also determines whether the
selected DS error encoded data 238 needs to be converted from pillar grouping to slice
grouping. If so, the DSTN module 22 converts the selected DS error encoded data into slice
groupings and stores the slice grouping DS error encoded data by overwriting the pillar
grouping DS error encoded data or by storing it in a different location in the memory of the
DSTN module 22 (i.e., does not overwrite the pillar grouping DS encoded data).

The DSTN module 22 partitions the data and the task as indicated in the DST
allocation information 242 and sends the portions to selected DST execution units of the
DSTN module 22. Each of the selected DST execution units performs its partial task(s) on its
slice groupings to produce partial results. The DSTN module 22 collects the partial results
from the selected DST execution units and provides them, as result information 244, to the
task distribution module. The result information 244 may be the collected partial results, one
or more final results as produced by the DSTN module 22 from processing the partial results
in accordance with the DST allocation information 242, or one or more intermediate results
as produced by the DSTN module 22 from processing the partial results in accordance with
the DST allocation information 242.

The task distribution module 232 receives the result information 244 and provides one
or more final results 104 therefrom to the first DST client module. The final result(s) 104
may be result information 244 or a result(s) of the task distribution module’s processing of
the result information 244.

In concurrence with processing the selected task of the first DST client module, the
distributed computing system may process the selected task(s) of the second DST client
module on the selected data(s) of the second DST client module. Alternatively, the
distributed computing system may process the second DST client module’s request
subsequent to, or preceding, that of the first DST client module. Regardless of the ordering
and/or parallel processing of the DST client module requests, the second DST client module
provides its selected data 238 and selected task 240 to a task distribution module 232. If the
task distribution module 232 is a separate device of the distributed computing system or
within the DSTN module, the task distribution modules 232 coupled to the first and second
DST client modules may be the same module. The task distribution module 232 processes
the request of the second DST client module in a similar manner as it processed the request of

the first DST client module.

36

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Figure 29 is a schematic block diagram of an embodiment of a task distribution
module 232 facilitating the example of Figure 28. The task distribution module 232 includes
a plurality of tables it uses to generate distributed storage and task (DST) allocation
information 242 for selected data and selected tasks received from a DST client module. The
tables include data storage information 248, task storage information 250, distributed task
(DT) execution module information 252, and task < sub-task mapping information 246.

The data storage information table 248 includes a data identification (ID) field 260, a
data size field 262, an addressing information field 264, distributed storage (DS) information
266, and may further include other information regarding the data, how it is stored, and/or
how it can be processed. For example, DS encoded data #1 has a data ID of 1, a data size of
AA (e.g., a byte size of a few Terabytes or more), addressing information of Addr_1_AA,
and DS parameters of 3/5; SEG_1; and SLC_1. In this example, the addressing information
may be a virtual address corresponding to the virtual address of the first storage word (e.g.,
one or more bytes) of the data and information on how to calculate the other addresses, may
be a range of virtual addresses for the storage words of the data, physical addresses of the
first storage word or the storage words of the data, may be a list of slice names of the encoded
data slices of the data, etc. The DS parameters may include identity of an error encoding
scheme, decode threshold/pillar width (e.g., 3/5 for the first data entry), segment security
information (e.g., SEG_1), per slice security information (e.g., SLC_I), and/or any other
information regarding how the data was encoded into data slices.

The task storage information table 250 includes a task identification (ID) field 268, a
task size field 270, an addressing information field 272, distributed storage (DS) information
274, and may further include other information regarding the task, how it is stored, and/or
how it can be used to process data. For example, DS encoded task #2 has a task ID of 2, a
task size of XY, addressing information of Addr_2_XY, and DS parameters of 3/5; SEG_2;
and SLC_2. In this example, the addressing information may be a virtual address
corresponding to the virtual address of the first storage word (e.g., one or more bytes) of the
task and information on how to calculate the other addresses, may be a range of virtual
addresses for the storage words of the task, physical addresses of the first storage word or the
storage words of the task, may be a list of slices names of the encoded slices of the task code,
etc. The DS parameters may include identity of an error encoding scheme, decode
threshold/pillar width (e.g., 3/5 for the first data entry), segment security information (e.g.,

SEG_2), per slice security information (e.g., SLC_2), and/or any other information regarding

37

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

how the task was encoded into encoded task slices. Note that the segment and/or the per-
slice security information include a type of encryption (if enabled), a type of compression (if
enabled), watermarking information (if enabled), and/or an integrity check scheme (if
enabled).

The task < sub-task mapping information table 246 includes a task field 256 and a
sub-task field 258. The task field 256 identifies a task stored in the memory of a distributed
storage and task network (DSTN) module and the corresponding sub-task fields 258 indicates
whether the task includes sub-tasks and, if so, how many and if any of the sub-tasks are
ordered. In this example, the task & sub-task mapping information table 246 includes an
entry for each task stored in memory of the DSTN module (e.g., task 1 through task k). In
particular, this example indicates that task 1 includes 7 sub-tasks; task 2 does not include sub-
tasks, and task k includes r number of sub-tasks (where r is an integer greater than or equal to
two).

The DT execution module table 252 includes a DST execution unit ID field 276, a DT
execution module ID field 278, and a DT execution module capabilities field 280. The DST
execution unit ID field 276 includes the identity of DST units in the DSTN module. The DT
execution module ID field 278 includes the identity of each DT execution unit in each DST
unit. For example, DST unit 1 includes three DT executions modules (e.g., 1_1, 1_2, and
1_3). The DT execution capabilities field 280 includes identity of the capabilities of the
corresponding DT execution unit. For example, DT execution module 1_1 includes
capabilities X, where X includes one or more of MIPS capabilities, processing resources
(e.g., quantity and capability of microprocessors, CPUs, digital signal processors, co-
processor, microcontrollers, arithmetic logic circuitry, and/or any other analog and/or digital
processing circuitry), availability of the processing resources, memory information (e.g.,
type, size, availability, etc.), and/or any information germane to executing one or more tasks.

From these tables, the task distribution module 232 generates the DST allocation
information 242 to indicate where the data is stored, how to partition the data, where the task
is stored, how to partition the task, which DT execution units should perform which partial
task on which data partitions, where and how intermediate results are to be stored, etc. If
multiple tasks are being performed on the same data or different data, the task distribution
module factors such information into its generation of the DST allocation information.

Figure 30 is a diagram of a specific example of a distributed computing system

performing tasks on stored data as a task flow 318. In this example, selected data 92 is data 2

38

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

and selected tasks are tasks 1, 2, and 3. Task 1 corresponds to analyzing translation of data
from one language to another (e.g., human language or computer language); task 2
corresponds to finding specific words and/or phrases in the data; and task 3 corresponds to
finding specific translated words and/or phrases in translated data.

In this example, task 1 includes 7 sub-tasks: task 1_1 - identify non-words (non-
ordered); task 1_2 - identify unique words (non-ordered); task 1_3 - translate (non-ordered);
task 1_4 - translate back (ordered after task 1_3); task 1_5 - compare to ID errors (ordered
after task 1-4); task 1_6 - determine non-word translation errors (ordered after task 1_5 and
1_1); and task 1_7 - determine correct translations (ordered after 1_5 and 1_2). The sub-task
further indicates whether they are an ordered task (i.e., are dependent on the outcome of
another task) or non-order (i.e., are independent of the outcome of another task). Task 2 does
not include sub-tasks and task 3 includes two sub-tasks: task 3_1 translate; and task 3_2 find
specific word or phrase in translated data.

In general, the three tasks collectively are selected to analyze data for translation
accuracies, translation errors, translation anomalies, occurrence of specific words or phrases
in the data, and occurrence of specific words or phrases on the translated data. Graphically,
the data 92 is translated 306 into translated data 282; is analyzed for specific words and/or
phrases 300 to produce a list of specific words and/or phrases 286; is analyzed for non-words
302 (e.g., not in a reference dictionary) to produce a list of non-words 290; and is analyzed
for unique words 316 included in the data 92 (i.e., how many different words are included in
the data) to produce a list of unique words 298. Each of these tasks is independent of each
other and can therefore be processed in parallel if desired.

The translated data 282 is analyzed (e.g., sub-task 3_2) for specific translated words
and/or phrases 304 to produce a list of specific translated words and/or phrases. The
translated data 282 is translated back 308 (e.g., sub-task 1_4) into the language of the original
data to produce re-translated data 284. These two tasks are dependent on the translate task
(e.g., task 1_3) and thus must be ordered after the translation task, which may be in a
pipelined ordering or a serial ordering. The re-translated data 284 is then compared 310 with
the original data 92 to find words and/or phrases that did not translate (one way and/or the
other) properly to produce a list of incorrectly translated words 294. As such, the comparing
task (e.g., sub-task 1_5) 310 is ordered after the translation 306 and re-translation tasks 308
(e.g., sub-tasks 1_3 and 1_4).

The list of words incorrectly translated 294 is compared 312 to the list of non-words

290 to identify words that were not properly translated because the words are non-words to

39

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

produce a list of errors due to non-words 292. In addition, the list of words incorrectly
translated 294 is compared 314 to the list of unique words 298 to identify unique words that
were properly translated to produce a list of correctly translated words 296. The comparison
may also identify unique words that were not properly translated to produce a list of unique
words that were not properly translated. Note that each list of words (e.g., specific words
and/or phrases, non-words, unique words, translated words and/or phrases, etc.,) may include
the word and/or phrase, how many times it is used, where in the data it is used, and/or any
other information requested regarding a word and/or phrase.

Figure 31 is a schematic block diagram of an example of a distributed storage and
task processing network (DSTN) module storing data and task codes for the example of
Figure 30. As shown, DS encoded data 2 is stored as encoded data slices across the memory
(e.g., stored in memories 88) of DST execution units 1 — 5; the DS encoded task code 1 (of
task 1) and DS encoded task 3 are stored as encoded task slices across the memory of DST
execution units 1 — 5; and DS encoded task code 2 (of task 2) is stored as encoded task slices
across the memory of DST execution units 3-7. As indicated in the data storage information
table and the task storage information table of Figure 29, the respective data/task has DS
parameters of 3/5 for their decode threshold/pillar width; hence spanning the memory of five
DST execution units.

Figure 32 is a diagram of an example of distributed storage and task (DST) allocation
information 242 for the example of Figure 30. The DST allocation information 242 includes
data partitioning information 320, task execution information 322, and intermediate result
information 324. The data partitioning information 320 includes the data identifier (ID), the
number of partitions to split the data into, address information for each data partition, and
whether the DS encoded data has to be transformed from pillar grouping to slice grouping.
The task execution information 322 includes tabular information having a task identification
field 326, a task ordering field 328, a data partition field ID 330, and a set of DT execution
modules 332 to use for the distributed task processing per data partition. The intermediate
result information 324 includes tabular information having a name ID field 334, an ID of the
DST execution unit assigned to process the corresponding intermediate result 336, a scratch
pad storage field 338, and an intermediate result storage field 340.

Continuing with the example of Figure 30, where tasks 1-3 are to be distributedly
performed on data 2, the data partitioning information includes the ID of data 2. In addition,
the task distribution module determines whether the DS encoded data 2 is in the proper

format for distributed computing (e.g., was stored as slice groupings). If not, the task

40

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

distribution module indicates that the DS encoded data 2 format needs to be changed from the
pillar grouping format to the slice grouping format, which will be done the by DSTN module.
In addition, the task distribution module determines the number of partitions to divide the
data into (e.g., 2_1 through 2_z) and addressing information for each partition.

The task distribution module generates an entry in the task execution information
section for each sub-task to be performed. For example, task 1_1 (e.g., identify non-words on
the data) has no task ordering (i.e., is independent of the results of other sub-tasks), is to be
performed on data partitions 2_1 through 2_z by DT execution modules 1_1,2_1, 3_1, 4_1,
and 5_1. For instance, DT execution modules 1_1, 2 1, 3_1,4_1, and 5_1 search for non-
words in data partitions 2_1 through 2_z to produce task 1_1 intermediate results (R1-1,
which is a list of non-words). Task 1_2 (e.g., identify unique words) has similar task
execution information as task 1_1 to produce task 1_2 intermediate results (R1-2, which is
the list of unique words).

Task 1_3 (e.g., translate) includes task execution information as being non-ordered
(i.e., is independent), having DT execution modules 1_1, 2_1, 3_1, 4_1, and 5_1 translate
data partitions 2_1 through 2_4 and having DT execution modules 1_2,2_2, 3_2, 4_2, and
5_2 translate data partitions 2_5 through 2_z to produce task 1_3 intermediate results (R1-3,
which is the translated data). In this example, the data partitions are grouped, where different
sets of DT execution modules perform a distributed sub-task (or task) on each data partition
group, which allows for further parallel processing.

Task 1_4 (e.g., translate back) is ordered after task 1_3 and is to be executed on task
1_3’s intermediate result (e.g., R1-3_1) (e.g., the translated data). DT execution modules
11,21, 3.1, 4 1, and 5_1 are allocated to translate back task 1_3 intermediate result
partitions R1-3_1 through R1-3_4 and DT execution modules 1_2,2_2,6_1,7_1, and 7_2 are
allocated to translate back task 1_3 intermediate result partitions R1-3_5 through R1-3_z to
produce task 1-4 intermediate results (R1-4, which is the translated back data).

Task 1_5 (e.g., compare data and translated data to identify translation errors) is
ordered after task 1_4 and is to be executed on task 1_4’s intermediate results (R4-1) and on
the data. DT execution modules 1_1, 2_1, 3_1, 4_1, and 5_1 are allocated to compare the
data partitions (2_1 through 2_z) with partitions of task 1-4 intermediate results partitions
R1-4_1 through R1-4_z to produce task 1_5 intermediate results (R1-5, which is the list
words translated incorrectly).

Task 1_6 (e.g., determine non-word translation errors) is ordered after tasks 1_1 and

1_5 and is to be executed on tasks 1_1"s and 1_35’s intermediate results (R1-1 and R1-5). DT

41

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

execution modules 1_1,2_1,3_1,4_1, and 5_1 are allocated to compare the partitions of task
1_1 intermediate results (R1-1_1 through R1-1_z) with partitions of task 1-5 intermediate
results partitions (R1-5_1 through R1-5_z) to produce task 1_6 intermediate results (R1-6,
which is the list translation errors due to non-words).

Task 1_7 (e.g., determine words correctly translated) is ordered after tasks 1_2 and
1_5 and is to be executed on tasks 1_2’s and 1_35’s intermediate results (R1-1 and R1-5). DT
execution modules 1_2,2_2,3_2,4 2, and 5_2 are allocated to compare the partitions of task
1_2 intermediate results (R1-2_1 through R1-2_z) with partitions of task 1-5 intermediate
results partitions (R1-5_1 through R1-5_z) to produce task 1_7 intermediate results (R1-7,
which is the list of correctly translated words).

Task 2 (e.g., find specific words and/or phrases) has no task ordering (i.e., is
independent of the results of other sub-tasks), is to be performed on data partitions 2_1
through 2_z by DT execution modules 3_1, 4 1, 5_1, 6_1, and 7_1. For instance, DT
execution modules 3_1, 4_1, 5_1, 6_1, and 7_1 search for specific words and/or phrases in
data partitions 2_1 through 2_z to produce task 2 intermediate results (R2, which is a list of
specific words and/or phrases).

Task 3_2 (e.g., find specific translated words and/or phrases) is ordered after task 1_3
(e.g., translate) is to be performed on partitions R1-3_1 through R1-3_z by DT execution
modules 1 2,2 2,3 2, 4 2, and 5_2. For instance, DT execution modules 1_2,2 2, 3 2,
4_2, and 5_2 search for specific translated words and/or phrases in the partitions of the
translated data (R1-3_1 through R1-3_z) to produce task 3_2 intermediate results (R3-2,
which is a list of specific translated words and/or phrases).

For each task, the intermediate result information indicates which DST unit is
responsible for overseeing execution of the task and, if needed, processing the partial results
generated by the set of allocated DT execution units. In addition, the intermediate result
information indicates a scratch pad memory for the task and where the corresponding
intermediate results are to be stored. For example, for intermediate result R1-1 (the
intermediate result of task 1_1), DST unit 1 is responsible for overseeing execution of the
task 1_1 and coordinates storage of the intermediate result as encoded intermediate result
slices stored in memory of DST execution units 1-5. In general, the scratch pad is for storing
non-DS encoded intermediate results and the intermediate result storage is for storing DS
encoded intermediate results.

Figures 33 - 38 are schematic block diagrams of the distributed storage and task

network (DSTN) module performing the example of Figure 30. In Figure 33, the DSTN

42

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

module accesses the data 92 and partitions it into a plurality of partitions 1-z in accordance
with distributed storage and task network (DST) allocation information. For each data
partition, the DSTN identifies a set of its DT (distributed task) execution modules 90 to
perform the task (e.g., identify non-words (i.e., not in a reference dictionary) within the data
partition) in accordance with the DST allocation information. From data partition to data
partition, the set of DT execution modules 90 may be the same, different, or a combination
thereof (e.g., some data partitions use the same set while other data partitions use different
sets).

For the first data partition, the first set of DT execution modules (e.g., 1_1,2_1, 3_1,
4_1, and 5_1 per the DST allocation information of Figure 32) executes task 1_1 to produce a
first partial result 102 of non-words found in the first data partition. The second set of DT
execution modules (e.g., 1_1,2_1, 3_1, 4_1, and 5_1 per the DST allocation information of
Figure 32) executes task 1_1 to produce a second partial result 102 of non-words found in the
second data partition. The sets of DT execution modules (as per the DST allocation
information) perform task 1_1 on the data partitions until the “z” set of DT execution
modules performs task 1_1 on the “zth” data partition to produce a “zth” partial result 102 of
non-words found in the “zth” data partition.

As indicated in the DST allocation information of Figure 32, DST execution unit 1 is
assigned to process the first through “zth” partial results to produce the first intermediate
result (R1-1), which is a list of non-words found in the data. For instance, each set of DT
execution modules 90 stores its respective partial result in the scratchpad memory of DST
execution unit 1 (which is identified in the DST allocation or may be determined by DST
execution unit 1). A processing module of DST execution 1 is engaged to aggregate the first
through “zth” partial results to produce the first intermediate result (e.g., R1_1). The
processing module stores the first intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST execution unit 1.

DST execution unit 1 engages its DST client module to slice grouping based DS error
encode the first intermediate result (e.g., the list of non-words). To begin the encoding, the
DST client module determines whether the list of non-words is of a sufficient size to partition
(e.g., greater than a Terabytes). If yes, it partitions the first intermediate result (R1-1) into a
plurality of partitions (e.g., R1-1_1 through R1-1_m). If the first intermediate result is not of
sufficient size to partition, it is not partitioned.

For each partition of the first intermediate result, or for the first intermediate result,

the DST client module uses the DS error encoding parameters of the data (e.g., DS

43

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

parameters of data 2, which includes 3/5 decode threshold/pillar width ratio) to produce slice
groupings. The slice groupings are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In Figure 34, the DSTN module is performing task 1_2 (e.g., find unique words) on
the data 92. To begin, the DSTN module accesses the data 92 and partitions it into a plurality
of partitions 1-z in accordance with the DST allocation information, or it may use the data
partitions of task 1_1 if the partitioning is the same. For each data partition, the DSTN
identifies a set of its DT execution modules to perform task 1_2 in accordance with the DST
allocation information. From data partition to data partition, the set of DT execution modules
may be the same, different, or a combination thereof. For the data partitions, the allocated set
of DT execution modules executes task 1_2 to produce a partial results (e.g., 1* through
“zth”) of unique words found in the data partitions.

As indicated in the DST allocation information of Figure 32, DST execution unit 1 is
assigned to process the first through “zth” partial results 102 of task 1_2 to produce the
second intermediate result (R1-2), which is a list of unique words found in the data 92. The
processing module of DST execution 1 is engaged to aggregate the first through “zth” partial
results of unique words to produce the second intermediate result. The processing module
stores the second intermediate result as non-DS error encoded data in the scratchpad memory
or in another section of memory of DST execution unit 1.

DST execution unit 1 engages its DST client module to slice grouping based DS error
encode the second intermediate result (e.g., the list of non-words). To begin the encoding,
the DST client module determines whether the list of unique words is of a sufficient size to
partition (e.g., greater than a Terabytes). If yes, it partitions the second intermediate result
(R1-2) into a plurality of partitions (e.g., R1-2_1 through R1-2_m). If the second
intermediate result is not of sufficient size to partition, it is not partitioned.

For each partition of the second intermediate result, or for the second intermediate
results, the DST client module uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/pillar width ratio) to produce slice
groupings. The slice groupings are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-5).

In Figure 35, the DSTN module is performing task 1_3 (e.g., translate) on the data 92.
To begin, the DSTN module accesses the data 92 and partitions it into a plurality of partitions
1-z in accordance with the DST allocation information or it may use the data partitions of

task 1_1 if the partitioning is the same. For each data partition, the DSTN identifies a set of

44

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

its DT execution modules to perform task 1_3 in accordance with the DST allocation
information (e.g., DT execution modules 1_1,2_1,3_1,4_1, and 5_1 translate data partitions
2_1 through 2_4 and DT execution modules 1_2, 2_2, 3_2, 4_2, and 5_2 translate data
partitions 2_5 through 2_z). For the data partitions, the allocated set of DT execution
modules 90 executes task 1_3 to produce partial results 102 (e.g., 1* through “zth”) of
translated data.

As indicated in the DST allocation information of Figure 32, DST execution unit 2 is
assigned to process the first through “zth” partial results of task 1_3 to produce the third
intermediate result (R1-3), which is translated data. The processing module of DST execution
2 is engaged to aggregate the first through “zth” partial results of translated data to produce
the third intermediate result. The processing module stores the third intermediate result as
non-DS error encoded data in the scratchpad memory or in another section of memory of
DST execution unit 2.

DST execution unit 2 engages its DST client module to slice grouping based DS error
encode the third intermediate result (e.g., translated data). To begin the encoding, the DST
client module partitions the third intermediate result (R1-3) into a plurality of partitions (e.g.,
R1-3_1 through R1-3_y). For each partition of the third intermediate result, the DST client
module uses the DS error encoding parameters of the data (e.g., DS parameters of data 2,
which includes 3/5 decode threshold/pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g., allocated memory in the
memories of DST execution units 2-6 per the DST allocation information).

As is further shown in Figure 35, the DSTN module is performing task 1_4 (e.g.,
retranslate) on the translated data of the third intermediate result. To begin, the DSTN
module accesses the translated data (from the scratchpad memory or from the intermediate
result memory and decodes it) and partitions it into a plurality of partitions in accordance
with the DST allocation information. For each partition of the third intermediate result, the
DSTN identifies a set of its DT execution modules 90 to perform task 1_4 in accordance with
the DST allocation information (e.g., DT execution modules 1_1,2_1,3_1,4_1, and 5_1 are
allocated to translate back partitions R1-3_1 through R1-3_4 and DT execution modules 1_2,
2.2,6_1, 7_1, and 7_2 are allocated to translate back partitions R1-3_5 through R1-3_z).
For the partitions, the allocated set of DT execution modules executes task 1_4 to produce
partial results 102 (e.g., 1* through “zth”) of re-translated data.

As indicated in the DST allocation information of Figure 32, DST execution unit 3 is

assigned to process the first through “zth™ partial results of task 1_4 to produce the fourth

45

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

intermediate result (R1-4), which is retranslated data. The processing module of DST
execution 3 is engaged to aggregate the first through “zth” partial results of retranslated data
to produce the fourth intermediate result. The processing module stores the fourth
intermediate result as non-DS error encoded data in the scratchpad memory or in another
section of memory of DST execution unit 3.

DST execution unit 3 engages its DST client module to slice grouping based DS error
encode the fourth intermediate result (e.g., retranslated data). To begin the encoding, the
DST client module partitions the fourth intermediate result (R1-4) into a plurality of
partitions (e.g., R1-4_1 through R1-4_z). For each partition of the fourth intermediate result,
the DST client module uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/pillar width ratio) to produce slice
groupings. The slice groupings are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 3-7 per the DST allocation information).

In Figure 36, a distributed storage and task network (DSTN) module is performing
task 1_5 (e.g., compare) on data 92 and retranslated data of Figure 35. To begin, the DSTN
module accesses the data 92 and partitions it into a plurality of partitions in accordance with
the DST allocation information or it may use the data partitions of task 1_1 if the partitioning
is the same. The DSTN module also accesses the retranslated data from the scratchpad
memory, or from the intermediate result memory and decodes it, and partitions it into a
plurality of partitions in accordance with the DST allocation information. The number of
partitions of the retranslated data corresponds to the number of partitions of the data.

For each pair of partitions (e.g., data partition 1 and retranslated data partition 1), the
DSTN identifies a set of its DT execution modules 90 to perform task 1_5 in accordance with
the DST allocation information (e.g., DT execution modules 1_1, 2_1, 3_1, 4_1, and 5_1).
For each pair of partitions, the allocated set of DT execution modules executes task 1_5 to
produce partial results 102 (e.g., 1** through “zth”) of a list of incorrectly translated words
and/or phrases.

As indicated in the DST allocation information of Figure 32, DST execution unit 1 is
assigned to process the first through “zth” partial results of task 1_5 to produce the fifth
intermediate result (R1-5), which is the list of incorrectly translated words and/or phrases. In
particular, the processing module of DST execution 1 is engaged to aggregate the first
through “zth” partial results of the list of incorrectly translated words and/or phrases to

produce the fifth intermediate result. The processing module stores the fifth intermediate

46

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

result as non-DS error encoded data in the scratchpad memory or in another section of
memory of DST execution unit 1.

DST execution unit 1 engages its DST client module to slice grouping based DS error
encode the fifth intermediate result. To begin the encoding, the DST client module partitions
the fifth intermediate result (R1-5) into a plurality of partitions (e.g., R1-5_1 through R1-
5_z). For each partition of the fifth intermediate result, the DST client module uses the DS
error encoding parameters of the data (e.g., DS parameters of data 2, which includes 3/5
decode threshold/pillar width ratio) to produce slice groupings. The slice groupings are
stored in the intermediate result memory (e.g., allocated memory in the memories of DST
execution units 1-5 per the DST allocation information).

As is further shown in Figure 36, the DSTN module is performing task 1_6 (e.g.,
translation errors due to non-words) on the list of incorrectly translated words and/or phrases
(e.g., the fifth intermediate result R1-5) and the list of non-words (e.g., the first intermediate
result R1-1). To begin, the DSTN module accesses the lists and partitions them into a
corresponding number of partitions.

For each pair of partitions (e.g., partition R1-1_1 and partition R1-5_1), the DSTN
identifies a set of its DT execution modules 90 to perform task 1_6 in accordance with the
DST allocation information (e.g., DT execution modules 1_1, 2_1,3_1,4_1, and 5_1). For
each pair of partitions, the allocated set of DT execution modules executes task 1_6 to
produce partial results 102 (e.g., 1** through “zth”) of a list of incorrectly translated words
and/or phrases due to non-words.

As indicated in the DST allocation information of Figure 32, DST execution unit 2 is
assigned to process the first through “zth” partial results of task 1_6 to produce the sixth
intermediate result (R1-6), which is the list of incorrectly translated words and/or phrases due
to non-words. In particular, the processing module of DST execution 2 is engaged to
aggregate the first through “zth” partial results of the list of incorrectly translated words
and/or phrases due to non-words to produce the sixth intermediate result. The processing
module stores the sixth intermediate result as non-DS error encoded data in the scratchpad
memory or in another section of memory of DST execution unit 2.

DST execution unit 2 engages its DST client module to slice grouping based DS error
encode the sixth intermediate result. To begin the encoding, the DST client module partitions
the sixth intermediate result (R1-6) into a plurality of partitions (e.g., R1-6_1 through R1-
6_z). For each partition of the sixth intermediate result, the DST client module uses the DS

error encoding parameters of the data (e.g., DS parameters of data 2, which includes 3/5

47

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

decode threshold/pillar width ratio) to produce slice groupings. The slice groupings are
stored in the intermediate result memory (e.g., allocated memory in the memories of DST
execution units 2-6 per the DST allocation information).

As is still further shown in Figure 36, the DSTN module is performing task 1_7 (e.g.,
correctly translated words and/or phrases) on the list of incorrectly translated words and/or
phrases (e.g., the fifth intermediate result R1-5) and the list of unique words (e.g., the second
intermediate result R1-2). To begin, the DSTN module accesses the lists and partitions them
into a corresponding number of partitions.

For each pair of partitions (e.g., partition R1-2_1 and partition R1-5_1), the DSTN
identifies a set of its DT execution modules 90 to perform task 1_7 in accordance with the
DST allocation information (e.g., DT execution modules 1_2,2_2,3_2,4_2, and 5_2). For
each pair of partitions, the allocated set of DT execution modules executes task 1_7 to
produce partial results 102 (e.g., 1* through “zth™) of a list of correctly translated words
and/or phrases.

As indicated in the DST allocation information of Figure 32, DST execution unit 3 is
assigned to process the first through “zth” partial results of task 1_7 to produce the seventh
intermediate result (R1-7), which is the list of correctly translated words and/or phrases. In
particular, the processing module of DST execution 3 is engaged to aggregate the first
through “zth” partial results of the list of correctly translated words and/or phrases to produce
the seventh intermediate result. The processing module stores the seventh intermediate result
as non-DS error encoded data in the scratchpad memory or in another section of memory of
DST execution unit 3.

DST execution unit 3 engages its DST client module to slice grouping based DS error
encode the seventh intermediate result. To begin the encoding, the DST client module
partitions the seventh intermediate result (R1-7) into a plurality of partitions (e.g., R1-7_1
through R1-7_z). For each partition of the seventh intermediate result, the DST client
module uses the DS error encoding parameters of the data (e.g., DS parameters of data 2,
which includes 3/5 decode threshold/pillar width ratio) to produce slice groupings. The slice
groupings are stored in the intermediate result memory (e.g., allocated memory in the
memories of DST execution units 3-7 per the DST allocation information).

In Figure 37, the distributed storage and task network (DSTN) module is performing
task 2 (e.g., find specific words and/or phrases) on the data 92. To begin, the DSTN module
accesses the data and partitions it into a plurality of partitions 1-z in accordance with the DST

allocation information or it may use the data partitions of task 1_1 if the partitioning is the

48

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

same. For each data partition, the DSTN identifies a set of its DT execution modules 90 to
perform task 2 in accordance with the DST allocation information. From data partition to
data partition, the set of DT execution modules may be the same, different, or a combination
thereof. For the data partitions, the allocated set of DT execution modules executes task 2 to
produce partial results 102 (e.g., 1* through “zth”) of specific words and/or phrases found in
the data partitions.

As indicated in the DST allocation information of Figure 32, DST execution unit 7 is
assigned to process the first through “zth” partial results of task 2 to produce task 2
intermediate result (R2), which is a list of specific words and/or phrases found in the data.
The processing module of DST execution 7 is engaged to aggregate the first through “zth”
partial results of specific words and/or phrases to produce the task 2 intermediate result. The
processing module stores the task 2 intermediate result as non-DS error encoded data in the
scratchpad memory or in another section of memory of DST execution unit 7.

DST execution unit 7 engages its DST client module to slice grouping based DS error
encode the task 2 intermediate result. To begin the encoding, the DST client module
determines whether the list of specific words and/or phrases is of a sufficient size to partition
(e.g., greater than a Terabytes). If yes, it partitions the task 2 intermediate result (R2) into a
plurality of partitions (e.g., R2_1 through R2_m). If the task 2 intermediate result is not of
sufficient size to partition, it is not partitioned.

For each partition of the task 2 intermediate result, or for the task 2 intermediate
results, the DST client module uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/pillar width ratio) to produce slice
groupings. The slice groupings are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-4, and 7).

In Figure 38, the distributed storage and task network (DSTN) module is performing
task 3 (e.g., find specific translated words and/or phrases) on the translated data (R1-3). To
begin, the DSTN module accesses the translated data (from the scratchpad memory or from
the intermediate result memory and decodes it) and partitions it into a plurality of partitions
in accordance with the DST allocation information. For each partition, the DSTN identifies a
set of its DT execution modules to perform task 3 in accordance with the DST allocation
information. From partition to partition, the set of DT execution modules may be the same,
different, or a combination thereof. For the partitions, the allocated set of DT execution
modules 90 executes task 3 to produce partial results 102 (e.g., 1** through “zth™) of specific

translated words and/or phrases found in the data partitions.

49

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

As indicated in the DST allocation information of Figure 32, DST execution unit 5 is
assigned to process the first through “zth” partial results of task 3 to produce task 3
intermediate result (R3), which is a list of specific translated words and/or phrases found in
the translated data. In particular, the processing module of DST execution 5 is engaged to
aggregate the first through “zth” partial results of specific translated words and/or phrases to
produce the task 3 intermediate result. The processing module stores the task 3 intermediate
result as non-DS error encoded data in the scratchpad memory or in another section of
memory of DST execution unit 7.

DST execution unit 5 engages its DST client module to slice grouping based DS error
encode the task 3 intermediate result. To begin the encoding, the DST client module
determines whether the list of specific translated words and/or phrases is of a sufficient size
to partition (e.g., greater than a Terabytes). If yes, it partitions the task 3 intermediate result
(R3) into a plurality of partitions (e.g., R3_1 through R3_m). If the task 3 intermediate result
is not of sufficient size to partition, it is not partitioned.

For each partition of the task 3 intermediate result, or for the task 3 intermediate
results, the DST client module uses the DS error encoding parameters of the data (e.g., DS
parameters of data 2, which includes 3/5 decode threshold/pillar width ratio) to produce slice
groupings. The slice groupings are stored in the intermediate result memory (e.g., allocated
memory in the memories of DST execution units 1-4, 5, and 7).

Figure 39 is a diagram of an example of combining result information into final
results 104 for the example of Figure 30. In this example, the result information includes the
list of specific words and/or phrases found in the data (task 2 intermediate result), the list of
specific translated words and/or phrases found in the data (task 3 intermediate result), the list
of non-words found in the data (task 1 first intermediate result R1-1), the list of unique words
found in the data (task 1 second intermediate result R1-2), the list of translation errors due to
non-words (task 1 sixth intermediate result R1-6), and the list of correctly translated words
and/or phrases (task 1 seventh intermediate result R1-7). The task distribution module
provides the result information to the requesting DST client module as the results 104.

Figure 40A is a schematic block diagram of an embodiment of a dispersed storage
network (DSN) that includes a plurality of DSN entities including a dispersed storage (DS)
processing module 350 and a plurality of storage units 352. The DS processing module 350
may be implemented utilizing at least one of the distributed storage and task (DST) execution

unit 36 of Figure 1, a DST processing module, the DST processing unit 16 of Figure 1, the

50

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

user device 12 of Figure 1, and a DS unit. Each storage unit 352 may be implemented
utilizing the DST execution unit 36 of Figure 1.

The DSN functions to perform a plurality of tasks to facilitate storing data 354 in
some of the plurality of storage units 352 for subsequent retrieval. The storing includes the
DS processing module 350 performing tasks of the plurality of tasks including encoding the
data 354 using a dispersed storage error coding function to produce slices 356 and storing the
slices 356 in at least a write threshold number of the plurality of storage units 352. The
retrieval includes the DS processing module 350 performing other tasks of the plurality of
tasks including receiving a data retrieval request, issuing slice requests to at least a read
threshold number of the plurality of storage units 352, receiving slices 356, and decoding the
slices 356 to produce reproduced data.

The DSN entities may generate provenance information 358 as the plurality of tasks
are performed. The provenance information 358 includes a plurality of primary information
types, where a first primary information type includes identity of the data, a second primary
information type includes timing information, a third primary information type includes DSN
entity identifiers, a fourth primary information type includes error/integrity information, and
a fifth primary information type includes information about the data. The provenance
information 358 is discussed in greater detail with reference to Figure 40B. The DS
processing module 350 receives the provenance information 358 from time to time as the
plurality of tasks are performed. The DS processing module 350 aggregates the provenance
information 358 to generate one or more provenance objects. The DS processing module
three and 50 encodes each of the one or more provenance objects using the dispersed storage
error coding function to produce one or more sets of corresponding provenance slices 356 for
storage in at least a write threshold number of storage units of the plurality of storage units
352.

The provenance information 358 from the one or more provenance objects may be
utilized from time to time by an analyzing DSN entity to produce summary information with
regards to the performance of the plurality of tasks. The analyzing DSN entity includes at
least one of a DS managing unit, the DSTN managing unit 18 of Figure 1, a DS processing
module, a DST processing module, a DS processing unit, the DST processing unit 16 of
Figure 1, and the user device 12 of Figure 1. For example, the analyzing DSN entity recovers
the provenance information 358 and sorts the provenance information using the second
primary information type of the timing information to identify a time based DSN error

condition to produce the summary information.

51

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

At least one of the DS processing module 350 and the analyzing DSN entity produces
one or more dispersed hierarchical indexes to facilitate recovering the provenance
information 358 from the one or more stored provenance objects. Each of the one or more
dispersed hierarchical indexes may be associated with one or more of the plurality of
information types. For example, a first dispersed hierarchical index is associated with the
first primary information type that includes the identity of the data. As another example, a
second dispersed hierarchical index is associated with the second primary information type
that includes the timing information. The structure of the one or more dispersed hierarchical
indexes is discussed in greater detail with reference to Figure 40C.

Figure 40B is a diagram of an embodiment of a structure of a provenance object 360
that includes a data identifier (ID) field 362, a time written field 364, a time to write field
366, a storage unit IDs field 368, a DS processing module ID field 370, an integrity
information field 372, a time of last integrity verification field 374, and the error information
field 376, and a data size field 378. The data ID field 362 includes at least one of an object
name of a data object, an object number, and a dispersed storage network (DSN) ID. The
time written field 364 includes a timestamp associated with when a data object was written
and when each slice of a set of slices was written. The time to write field 366 includes a time
duration of a time span associated with how long a write sequence took to completion. The
storage unit IDs field 368 includes identifiers of each storage unit of a set of storage units
utilized to store a set of encoded data slices and may further include a storage success
indicator indicating whether a corresponding encoded data slice of the set of encoded data
slices was stored successfully. The DS processing module ID field 370 includes an identifier
associated with a particular DS processing module associated with a task. The integrity
information field 372 includes integrity information with regards to one or more of a data
object, a data segment, and a data slice. The integrity information includes at least one of an
integrity value, a re-created integrity value, and a integrity algorithm ID. The time of last
integrity verification field 374 includes a timestamp and tree associated with when a last
integrity verification task was performed with regards to a particular data segment and/or data
slice. The error information field 376 includes an indicator with regards to an error
associated with a task. The data size field 378 includes a data size entry associated with at
least one of a size of the data object, a size of a data segment, and a size of an encoded data
slice.

Figure 40C is a diagram of an embodiment of a set of dispersed hierarchical indexes

I-N which may be utilized to index one or more provenance objects stored in a dispersed

52

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

storage network (DSN). Each dispersed hierarchical index includes a plurality of index nodes
arranged in a plurality of levels where a top-level includes a root index node and a bottom
level includes one or more leaf nodes as the index nodes. Index nodes in a higher level above
other index nodes at a lower level may serve as a parent index nodes and the other index
nodes at the lower-level serve as child index nodes to the parent index nodes. Index nodes at
a common level serve as siblings index nodes to index nodes at the common level. Leaf
nodes may include a data object such as a provenance object and/or may include a DSN
address associated with the provenance object stored as a set of provenance slices within the
DSN. For example, an index node of the dispersed hierarchical index 1 points to provenance
object 1-1, and another index node of the dispersed hierarchical index 1 points to provenance
object 1-2, etc. The index nodes include a DSN address field that points to a storage location
within the DSN where associated index nodes are stored. For example, the DSN address
field includes a DSN address associated with a sibling index node to the right and another
DSN address associated with one or more child index nodes.

The index nodes are further associated with a minimum index key value to assist in
searching the dispersed hierarchical index structure to identify a leaf node that corresponds to
a desired provenance object. The dispersed hierarchical index may be searched using an
index key associated with an attribute of a desired search and comparing the index key to
minimum index key values associated with index nodes as searching starts with the root
index node the top and proceeds in a downward direction within the structure to identify the
leaf note that corresponds to the desired provenance object. A series of retrievals of sets of
encoded index slices from the DSN may be required to recover index nodes along a search
path from the root index node to the leaf node associated with the desired provenance object.
Two or more dispersed hierarchical indexes of the set of dispersed hierarchical indexes may
include entries within leaf nodes that point to a common provenance object when two or
more attributes of the common provenance object are associated with two or more index keys
utilized when searching the two or more dispersed hierarchical indexes. For example, an
index node of the dispersed hierarchical index 1 points and another index node of the
dispersed hierarchical index N both point to provenance object 1-4.

Figure 40D is a flowchart illustrating an example of generating provenance
information. The method begins with step 380 where a processing module (e.g., of a
dispersed storage (DS) processing module, a distributed storage and task (DST) client
module) receives data for storage in a dispersed storage network (DSN). The receiving may

include receiving a data identifier of the data and a requesting entity identifier. The method

53

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

continues at step 382 where the processing module issues write slice requests to the DSN to
facilitate storage of the data in the DSN. The issuing includes encoding the data to produce
slices, generating write slice requests to include the slices, selecting storage units of the DSN,
outputting the write slice requests to the selected storage units, and generating timestamps
associated with the outputting to contribute to the provenance information.

The method continues at step 384 where the processing module obtains provenance
information from one or more DSN entities of the DSN with regards to storage of the data in
the DSN. The obtaining includes at least one of initiating a query, receiving the provenance
information, performing a lookup, and generating the provenance information. The
processing module may utilize a provenance information template based on one or more of a
data type of the data, the requesting entity ID, a data size indicator, an error message, a
historical performance record, and any other factor associated with storage of the data. For
example, the processing module determines to utilize a provenance information template
associated with timestamps of each step of sending slices across the network when the data
type indicates a videotape and a historical performance record indicates that previous storage
timing latency was unfavorable.

The method continues at step 386 where the processing module generates a
provenance object using the provenance information. The generating includes one or more of
aggregating the provenance information and generating additional provenance information
based on the obtained provenance information. For example, the processing module
calculates a time for completion of a task. The method continues at step 388 where the
processing module stores the provenance object in the DSN. The storing includes encoding
the provenance object to produce provenance slices and sending the provenance slices to the
DSN for storage at a provenance object DSN address.

The method continues at step 390 where the processing module identifies one or more
dispersed hierarchical indexes associated with the provenance object. The identifying
includes selecting the one or more dispersed hierarchical indexes based on an index template
associated with the provenance information. For example, the processing module selects a
time delay index when time delay is included in the provenance information and selects a
DSN addressing index when the provenance object DSN address falls within a DSN address
range associated with the index template. The method continues at step 392 where the
processing module updates the identified one or more dispersed hierarchical indexes to
include an entry associated with the provenance object. The updating includes generating an

index key associated with the provenance information, generating the entry to include the

54

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

provenance object and/or the provenance object DSN address and the index key, accessing a
corresponding dispersed hierarchical indexes the one or more dispersed hierarchical indexes
index using the index key to identify and recover an index node for updating (e.g., a leaf
node), and updating the recovered index node to include the entry (e.g., modify and store in
the DSN).

Figure 41 is a flowchart illustrating an example of identifying a potential error within
a dispersed storage network (DSN) as discussed with reference to Figure 40A. The method
begins with step 400 where a processing module (e.g., of a distributed storage and task (DST)
client module, of a dispersed storage (DS) processing module) identifies one or more
dispersed hierarchical indexes associated (e.g., as discussed with reference to Figures 40A-D)
with provenance information for a set of storage units of the DSN. The identifying includes
determining an error type of interest (e.g., initiating a query, receiving the error type of
interest, performing a lookup, interpreting one or more error messages to produce the error
type) and selecting the one or more dispersed hierarchical indexes based on the error type of
interest and an index type. For example, the processing module selects an index associated
with missing slices when the error type of interest includes unsuccessfully stored slices.

The method continues at step 402 where the processing module generates one or more
index keys associated with the provenance information. The generating includes identifying
one or more search attributes (e.g., time, a data identifier, a slice name, data type, a DSN
entity identifier) based on one or more of the error type of interest and the one or more
dispersed hierarchical indexes and selecting the one or more index keys based on the
identified search attributes. For example, the processing module generates one or more index
keys associated with a particular set of storage units of the DSN and a particular timeframe.

The method continues at step 404 where the processing module accesses the identified
one or more dispersed hierarchical indexes utilizing the one or more index keys to access one
or more provenance objects that includes the provenance information. The accessing
includes searching each of the one or more identified dispersed hierarchical indexes using a
corresponding index key of the one or more index keys to identify an index entry and
retrieving a corresponding provenance object from the DSN based on a provenance object
DSN address extracted from the index entry (e.g., issue read slice requests using the
provenance object DSN address, receive slices, and decode the slices to reproduce the
corresponding provenance object). Alternatively, the accessing includes extracting the
provenance object directly from the identified index entry when the provenance object is

available from the identified index entry.

55

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

For each storage unit of the set of storage units, the method continues at step 406
where the processing module compares provenance information associated with the storage
unit to other provenance information. The comparing includes at least one of comparing the
provenance information of the storage unit to similar provenance information of at least one
other storage unit of the set of storage units and comparing the provenance information of the
storage unit to an average value associated with provenance information of the set of storage
units. For example, the processing module compares a latency time of the storage unit to an
average latency time of the set of storage units.

The method continues at step 408 where the processing module identifies a potential
error based on the comparison. The identifying includes indicating an error when the
provenance information of the storage unit compares unfavorably (e.g., greater than a
threshold value difference) to the similar provenance information of the at least one other
storage unit. For example, the processing module indicates a potential error associated with
writing slices when the comparison indicates that the at least one other storage unit has
performed more slice writing tasks within a particular timeframe than that of the storage unit.
As another example, the processing module indicates potential missing slices as the potential
errors when the comparison indicates that the storage unit was off line when the potential
missing slices were written to the set of storage units. Still further examples of potential
errors includes one or more of identifiers of storage units with an error, and identity of a
memory device associated with an error, and a DSN address range to be scanned for slice
eITors.

Figure 42A is a diagram of another embodiment of a dispersed storage network
(DSN) that includes a store module 410, a storage unit sets 1-2, and a retrieve module 412.
The DSN may include any number of storage unit sets. The store module 410 and the
retrieve module 412 may be implemented utilizing one or more of a dispersed storage (DS)
processing module, a DS processing unit, a distributed storage and task (DST) processing
module, the DST processing unit 16 of Figure 1, and the user device 12 of Figure 1. Each of
the storage unit sets includes a set of storage units 352, where a number of storage units of
each storage unit set is in accordance with a unique set of dispersal parameters associated
with the storage unit set. Each set of dispersal parameters for the storage unit sets 1-2 is
established to meet particular performance, reliability, and availability goals for storage and
retrieval of data. For example, storage unit set 1 includes 16 storage units and storage unit set
2 includes three storage units when a pillar width of a first set of dispersal parameters

associated with storage unit set 1 is 16 and a pillar width of a second set of dispersal

56

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

parameters associated with storage unit set 2 is 3. In such an example, the pillar width of 16
may be established when a goal associated with storage unit set 1 includes higher than
average storage availability and higher than average retrieval reliability and the pillar width
of 3 may be established when a goal associated with storage unit set 2 includes minimizing
input/output operations within the DSN to store and retrieve the data.

The DSN functions to receive data 414, store the data 414 in the storage unit sets, 1-2
and subsequently retrieve the data from the storage unit sets as recovered data 416. The store
module 410 performs a series of steps to store the data 414 in the storage unit sets and the
retrieve module 412 performs another series of steps to subsequently retrieve the data from
the storage unit sets to produce the recovered data 416.

In an example of operation, the store module 410 receives the data 414 for storage
(e.g., a data segment of the plurality of data segments of a data object) and encodes the data
414 using a dispersed storage error coding function and in accordance with the first set of
dispersal parameters associated with the storage unit set 1 to produce slice set 1 of encoded
data slices. The store module 410 outputs the slice set 1 to the storage unit set 1 for storage.

Having stored the data as the sliced set 1 in the storage unit set 1, the store module
410 generates a representation of the data to include at least one of the data, a compressed
version of the data, a redacted version of the data, and a transformed version of the data. The
store module 410 encodes the representation of the data using the dispersed storage error
coding function and in accordance with the second set of encoded dispersal parameters
associated with the storage unit set 2 to produce a slice set 2. For example, the store module
410 encodes the representation of the data to generate a set of three slices as slice set 2. The
store module 410 outputs the slice set 2 to the storage unit set 1 for storage. The store
module 410 updates one or more of a dispersed hierarchical index and a directory to include
addressing information (e.g., a data ID, a data ID for the representation of the data, and one or
more DSN addresses).

The retrieve module 412, when retrieving the data, identifies two or more sets of
encoded data slices stored in two or more storage unit sets of the DSN. The retrieve module
412 selects one of the two or more sets of encoded data slices based on one or more of a
predetermination, a DSN activity level, a reliability requirement, a timing performance
requirements, and a bandwidth requirement. The selecting includes identifying the unique
sets of dispersal parameters corresponding to each of the two or more sets of encoded data
slices (e.g., a vault lookup, a registry information look up, initiating a query, receiving

dispersal parameters) and selecting the one of the two or more sets of encoded data slices

57

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

based on a corresponding unique set of dispersal parameters associated with the one of the
two or more sets of encoded data slices. For example, the retrieve module 412 selects a
unique set of dispersal parameters with a lowest pillar width when the DSN activity level
indicates an above average level of activity. As another example, the retrieve module selects
another unique set of dispersal parameters with a highest pillar width when the DSN activity
level indicates a below-average level of activity and the reliability requirement includes a
higher than average level of required reliability.

The retrieve module 412 determines whether at least a decode threshold number of
encoded data slices of the selected set of encoded data slices are recoverable from a
corresponding storage unit set. The determining includes at least one of issuing a list request,
receiving a list response, issuing read slice requests, and receiving read slice responses that
includes at least one of a retrieved slice set 1 and a retrieved slice set 2. When the decode
threshold number of encoded data slices are recoverable, the retrieve module 412 decodes the
at least the decode threshold number of retrieved encoded data slices using the dispersed
storage error coding function and in accordance with the selected unique set of dispersal
parameters to produce the recovered data 416. When the decode threshold number of
encoded data slices are not recoverable, the retrieve module 412 selects another set of
encoded data slices of the two or more sets of encoded data slices retrieves at least a decode
threshold number of encoded data slices of the other set of encoded data slices, and decodes
the at least the decode threshold number of encoded data slices of the other set of encoded
data slices using the dispersed storage error coding function and in accordance with a
corresponding unique set of dispersal parameters to produce the recovered data. The
selecting the other set of encoded data slices includes selecting a next best set of unique set of
dispersal parameters associated with the other set of encoded data slices. For example, the
retrieve module selects the slice set 1 associated with the pillar width of 16 as the other set of
encoded data slices.

Figure 42B is a flowchart illustrating an example of accessing data. The method
begins to store data with step 418 where a processing module (e.g., of a store module, of a
retrieve module, of a distributed storage and task (DST) client module) encodes data using a
dispersed storage error coding function in accordance with a first set of dispersal parameters
to produce a first set of encoded data slices. The encoding may further include segmenting a
data object to produce a plurality of data segments and encoding a first data segment of the
plurality of data segments. The method continues at step 420 where the processing module

stores the first set of encoded data slices in a first storage unit set. The storing includes

58

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

generating a set of slice names, generating a set of write slice requests that includes the set of
slice names and the first set of encoded data slices, and outputting the set of write slice
requests to the first storage unit set.

The method continues at step 422 where the processing module transforms the data to
produce a representation of the data. The transforming includes applying at least one of a
null transformation, a compression algorithm, a redacting algorithm, an encryption algorithm,
a deterministic function, and an interleaving function. The method continues at step 424
where the processing module encodes the representation of the data using the dispersed
storage error coding function and in accordance with a second set of dispersal parameters to
produce a second set of encoded data slices.

The method continues at step 426 where the processing module stores the second set
of encoded data slices in a second storage unit set. The method continues at step 428 where
the processing module updates one or more of a dispersed hierarchical indexes in a directory
with regards to storage of the first and second sets of encoded data slices. The updating
includes associating dispersed storage network (DSN) addresses of the first and second sets
of encoded data slices with an identifier of the data.

The method continues, when retrieving data, at step 430 where, for each data segment
of the plurality data segments, the processing module identifies two or more sets of encoded
data slices. The identifying includes at least one of accessing the dispersed hierarchical index
and accessing the directory to identify two or more DSN addresses associated with the two or
more sets of encoded data slices. The method continues at step 432 where the processing
module selects one of the two or more sets of encoded data slices. The selecting includes
identifying a DSN address of a set of encoded data slices associated with an expected
performance level that compares favorably to a desired performance level (e.g., a smallest
width when minimizing input/output operations).

The method continues at step 434 where the processing module determines whether at
least a decode threshold number of encoded data slices of the selected set of encoded data
slices are retrievable (e.g., a list slices, attempting to retrieve slices). The method branches to
step 438 when the at least the decode threshold number of encoded data slices of the selected
set of encoded data slices are not retrievable. The method continues to step 436 when the at
least the decode threshold number of encoded data slices of the selected set of encoded data
slices are retrievable. The method continues at step 436 where the processing module

decodes a decode threshold number of retrieved encoded data slices using the dispersed

59

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

storage error coding function and in accordance with dispersal parameters associated with the
selected set of encoded data slices to reproduce the data.

When the at least the decode threshold number of encoded data slices of the selected
set of encoded data slices are not retrievable, the method continues at step 438 where the
processing module selects another of the two or more sets of encoded data slices. The
selecting includes identifying another DSN address of the other set of encoded data slices
associated with an expected performance level that compares most favorably to the desired
performance level (e.g., a next smallest width when minimizing input/output operations).
The method continues at step 440 where the processing module decodes the decode threshold
number of other retrieved encoded data slices using the dispersed storage error coding
function and in accordance with dispersal parameters associated with the other set of encoded
data slices to reproduce the data. Alternatively, or in addition to, the method may continue in
a similar fashion to try as many of the two or more sets of encoded data slices to obtain at
least a decode threshold number of encoded data slices.

Figure 43A is a diagram of another embodiment of a dispersed storage network
(DSN) that includes a storing entity 442, a retrieving entity 444, the distributed storage and
task (DST) client module 34 of Figure 1, and the distributed storage and task network
(DSTN) module 22 of Figure 1. The storing entity 442 and retrieving entity 444 may be
implemented utilizing one or more of a DS processing module, a DS processing unit, a DST
processing module, the DST processing unit 16 of Figure 1, the user device 12 of Figure 1, a
storage unit, a storage device, the DST execution unit 36 of Figure 1, and a DS unit. The
DSTN module 22 includes the plurality of DST execution units 36 of Figure 1. The DST
client module 34 includes a plurality of the outbound DST processing s 80 of Figure 3, a data
permuter 446, name permuters 448-450, and the inbound DST processing 82 of Figure 3.

The DSN functions to store data 92 and one or more permutations (1-N) of the data in
the DSTN module 22 and retrieves at least one of the data and one of the one or more
permutations of the data from the DSTN module 22 to produce recovered data 462. The one
or more permutations of the data provides reliable storage of variations of the data when the
variations of the data may be desired for subsequent retrieval. Such variations of the data
includes rescaling images, reformatting video, compressing data files, converting data files
from a first industry standard format to a second industry standard format, etc.

The DSN stores the data 92 and the one or more permutations of the data in the DSN
module 22 through a series of steps performed by the DST client module 34. The DST client

module 34 obtains N permutation functions 454 based on at least one of a lookup, a

60

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

predetermination, initiating a query, and receiving, and based on a type of data. The
permutation functions includes at least one of a compression function, a rescaling function, a
transformation function, a redacting function, and interleaving function, a reformatting
function, and any other function to provide a variation of the data.

The name permuted 448 permutes a received data name 452 based on the permutation
functions to produce a set of permuted data names 1-N. For example, the name permuted 448
performs a deterministic function on the data name 452 in accordance with each permutation
function to produce the set of N permuted data names. The deterministic function includes at
least one of a hashing function, a hash-based message authentication code, a mask generating
function, a logical function, an arithmetic function, and a sponge function. For example, the
name permuter 448 performs a hashing function on the data name 452 to produce an
intermediate hash value and adds the intermediate hash value to the data name 452 to produce
a first permuted data name of N permuted data names.

For each permutation function of the N permutation functions, the data permuter 446
permutes the data 92 using the permutation function 454 to produce a corresponding
permuted data (e.g., PERMDATI through PERMDATN). For example, the data permuter
permutes the data 92 using an image compression function to produce the PERMDATA1 and
permutes the data 92 using another image compression function (e.g., a further level of
compression compared to the image compression function) to produce PERMDATAZ2.

For each of the data 92 and the permuted data 1-N, a corresponding outbound DST
processing 80 encodes the data and each of the permuted data 1-N to produce a slice
groupings 96 and permuted data 1-N slice groupings. Each of the outbound DST processing
80 output corresponding slice groupings to the DSTN module 22 for storage using the data
name 452 and the permuted data names 1-N. For example, a first outbound DST processing
80 encodes the data 92 to produce the slice groupings 96, generates a set of slice names based
on the data name 452, generates a set of write slice requests that includes the slice groupings
96 and set of slice names, and outputs the set of write slice requests to the DSTN module 22.
As another example, a second outbound DST processing 80 encodes PERMDATAI to
produce the permuted data 1 slice groupings, generates another set of slice names based on
permuted data name 1, generates another set of write slice requests that includes the permuted
data 1 slice groupings and other set of slice names, and outputs the other set of write slice
requests to the DSTN module 22.

The DSN retrieves the at least one of the data and the one of the one or more

permutations of the data from the DSTN module 22 to produce the recovered data 462 by a

61

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

series of steps performed by the DST client module 34. The name permuter 450 uses a
received permutation function 456 from the retrieving entity 444 and the data name 452 from
the retrieving entity 444 to deterministically generate a permuted data name 458 as
previously discussed. The inbound DST processing 82 issues slice requests 460 to the DSTN
module 22 based on the permuted data name 458. The issuing includes generating a set of
slice names based on the permuted data name, generating a set of read slice requests that
includes the set of slice names, and outputting the set of read slice requests to the DSTN
module 22.

The inbound DST processing 82 receives corresponding permuted data X slice
groupings (e.g., which may include at least some of slice groupings 96 when the permutation
function is a function to retrieve the data 92). The inbound DST processing 82 decodes the
permuted data X slice groupings using the dispersed storage error coding function to produce
the recovered data 462.

Figure 43B is a flowchart illustrating an example of accessing permuted data. The
method begins, when storing data, with step 464 where a processing module (e.g., of a
distributed storage and task (DST) client module, of a dispersed storage (DS) processing
module) obtains permutation functions. The method continues at step 466 where the
processing module permutes a data name based on the permutation functions to produce
permuted data names. The permuting of the data name includes performing a deterministic
function on one or more of the data name and an attribute of a permutation function. For
each of the permutation functions, the method continues at step 468 where the processing
module permutes the data to produce corresponding permuted data. The permuting includes
performing the permutation function on the data to produce the corresponding permuted data.
The method continues at step 470 where the processing module encodes the data using a
dispersed storage error coding function to produce a slice grouping.

The method continues at step 472 where the processing module encodes each
permuted data using the dispersed storage error coding function to produce corresponding
permuted slice groupings. The method continues at step 474 where the processing module
stores the slice grouping in a dispersed storage network (DSN) memory using a DSN address
corresponding to the data name. The storing includes generating at least one set of slice
names based on the DSN address, generating at least one set of write slice requests that
includes the at least one set of slice names and the slice grouping, and sending the at least one

set of write slice request to the DSN memory.

62

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

For each permuted slice grouping, the method continues at step 476 where the
processing module stores the permuted slice grouping in the DSN memory using another
DSN address corresponding to a permuted data name associated with the permuted slice
grouping. The storing includes determining the other DSN address based on the permuted
data name, generating slice names based on the other DSN address, generating other write
slice requests to include the slice names of the other DSN address and the permuted slice
grouping, and outputting the other write slice requests to the DSN memory.

The method continues, when retrieving data, with step 478 where the processing
module receives a data name and an indicated permutation function with regards to retrieving
at least one of corresponding permuted data and data associated with the data name. The
method continues at step 480 where the processing module permutes the received data name
using the indicated permutation function to produce a permuted data name. The permuting
may include performing a null permutation when recovering the data.

The method continues at step 482 where the processing module issues slice requests
to the DSN memory based on the permuted data name. The issuing includes generating slice
names based on the permuted data name, generating read slice requests that includes the slice
names, and outputting the read slice requests to the DSN memory. The method continues at
step 484 where the processing module receives a data slice grouping from the DSN. The data
slice grouping includes at least one of a permuted slice grouping associated with the
permuted data and a slice grouping associated with the data. The method continues at step
486 where the processing module decodes the data slice grouping from the DSN memory
using the dispersed storage error coding function to produce recover data.

Figure 44A is a diagram of another embodiment of a dispersed storage network
(DSN) that includes a requesting entity 500, the distributed storage and task (DST) client
module 34 of Figure 43A, and the distributed storage and task network (DSTN) module 22 of
Figure 1. The requesting entity 500 may be implemented utilizing one or more of a DS
processing module, a DS processing unit, a DST processing module, the DST processing unit
16 of Figure 1, the user device 12 of Figure 1, a storage unit, a storage device, the DST
execution unit 16 of Figure 1, and a DS unit. The DSTN module 22 includes the plurality of
DST execution units 36 of Figure 1. The DST client module 34 includes the data permuter
446 of Figure 43A, the name permuter 448 of Figure 43A, the inbound DST processing 82 of
Figure 3 and the outbound DST processing 80 of Figure 3.

The DSN functions to produce one or more permutations (1-N) of data 92 recovered

from storage within the DSTN module 22 and may function to store permuted data 502 in the

63

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

DSTN module 22 once produced to facilitate immediate subsequent retrieval without a need
to regenerate the permuted data 502. The one or more permutations of the data provides
variations of the data when the variations of the data may be desired. Such variations of the
data includes rescaled images, reformatting video, compressed data files, converted data files
from a first industry standard format to a second industry standard format, etc.

The DSN produces the data permutation by a series of steps performed by the DST
client module 34. The DST client module 34 receives a request for the permuted data that
includes a data name 452 and a permutation function 456. The DST client module 34
determines whether the permuted data is already stored within the DSTN module 22. The
determining includes the name permuter 448 permuting the data name 452 based on the
permutation function to produce a permuted data name 458, the inbound DST processing 82
generating slice names based on the permuted data name 458, the inbound DST processing
82 generating at least one of a set of list slice requests and a set of read slice requests 460 that
includes the slice names, the inbound DST processing 82 outputting the at least one of the set
of lists slice request and the set of read slice requests 460 to the DSTN module 22, and the
inbound DST processing 82 receiving responses that includes slice groupings 96.
Alternatively, the determining includes accessing at least one of a directory and a dispersed
hierarchical index utilizing the permuted data name to determine whether the permuted data
has already been stored within the DSTN module.

When the permuted data has not already been stored within the DSTN module, the
inbound DST processing 82 recovers the data 92 from the DSTN module. The recovering
includes generating the slice names using the permuted data name 458, generating read slice
requests 460 that includes the slice names, sending the read slice requests 460 to the DSTN
module 22, receiving slice groupings 96 from the DSTN module 22, decoding the slice
groupings 96 using a dispersed storage error coding function to reproduce the data 92. The
data permuted 446 permutes the data 92 using the permutation function to produce the
permuted data 502.

When storing the permuted data 502 in the DSTN module 22, the outbound DST
processing 80 encodes the permuted data 502 using the dispersed storage error coding
function to produce a permuted data X slice grouping, generates permuted slice names based
on the permuted data name, generates one or more sets of write slice requests that includes
the permuted slice names and the permuted data slice grouping, and outputs the one or more

sets of write slice requests to the DSTN module 22

64

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Figure 44B is a flowchart illustrating another example of accessing permuted data.
The method begins with step 504 where a processing module (e.g., of a distributed storage
and task (DST) client module, of a dispersed storage (DS) processing module) receives a
request for permuted data of data stored in a dispersed storage network (DSN). The request
includes a data name and a permutation function identifier (ID). The method continues at
step 506 where the processing module determines whether the permuted data is recoverable
from slices stored in the DSN. The determining includes permuting the data name to produce
a permuted data name, generating a permuted data DSN address using the permuted data
name, generating permuted slice names using the permuted data DSN address, issuing read
slice requests to the DSN that includes the permuted slice names, receiving responses, and
indicating that the permuted data is recoverable when the responses are favorable (e.g.,
favorable when the slices of the permuted data are stored in the DSN). Alternatively, the
processing module accesses at least one of a dispersed hierarchical index and a directory to
determine whether the permuted DSN address exists.

When the permuted data is not recoverable from the slices stored in the DSN, the
method continues at step 508 where the processing module recovers the data stored in the
DSN from the slices stored in the DSN. The recovering includes generating a data DSN
address using the data name, issuing read slice requests to the DSN that includes a data slice
names based on the data DSN address, and decoding the retrieved data slices from received
read slice responses to reproduce the data. The method continues at step 510 where the
processing module permutes the data based on the permutation function identifier to produce
the permuted data. For example, the processing module accesses a table of permutation
functions using the permutation function identifier and performs the permutation function on
the reproduce data to produce the permuted data. The method continues at step 512 where
the processing module permutes the data name of the data using a deterministic function
based on the permutation function to produce a permuted data name. For example, the
processing module performs an exclusiveOR function on a portion of the data name and a
portion of the identifier of the permutation function to produce the permuted data name.

The method continues at step 514 where the processing module encodes the permuted
data using a dispersed storage error coding function to produce a permuted data slice
grouping. The method continues at step 516 where the processing module generates a
permuted data DSN address using the permuted data name. For example, the processing
module obtains a new DSN address for the permuted data name. The obtaining may include

updating at least one of a dispersed hierarchical index and a directory to indicate an

65

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

association between the permuted data name and the new DSN address for the permuted data
name. The method continues at step 518 where the processing module stores the permuted
data slice grouping in the DSN using the permuted data slice DSN address. The storing
includes generating permuted slice names using the permuted DSN address, generating write
slice requests that includes the permuted slice names and the permuted data slice grouping,
and outputting the write slice requests to the DSN.

Figures 45A-D are diagrams of another embodiment of a dispersed storage network
(DSN) illustrating an example of rebuilding data. The DSN includes the distributed storage
and task (DST) client module 34 of Figure 1, the network 24 of Figure 1, and a DST
execution unit set 520. The DST execution unit set 520 includes a set of DST execution units
1-8. Alternatively, the DST execution unit set 520 may include any number of DST
execution units. Hereafter, the DST execution unit may be referred to interchangeably as a
storage unit of a set of storage units. Each DST execution unit may be implemented utilizing
the DST execution unit 36 of Figure 1. The DST client module 34 includes the outbound
DST processing 80 of Figure 3 and the inbound DST processing 82 of Figure 3. The
outbound DST processing 80 includes the DS error encoding 112 of Figure 4. The inbound
DST processing 82 includes the DS error decoding 182 of Figure 13 and an error detector
522. The error detector 522 may be implemented utilizing the processing module 84 of
Figure 3.

The DST client module 34 further includes a dispersed storage (DS) module. The DS
module may be implemented utilizing a plurality of processing modules. For instance, the
plurality of processing modules may include the processing module 84 of Figure 3. As a
specific example, the plurality of processing module includes a first module, a second
module, a third module, a fourth module, a fifth module, and a sixth module.

The DSN functions to rebuild data associated with storage errors, where data is stored
in the DST execution unit set 520. In an example of the storing of the data, DST client
module 34 encodes a data segment in accordance with a dispersed storage error coding
function to produce a set of encoded data slices (e.g., slices 1-8) and facilitates storage of the
set of encoded data slices in the set of DST execution units 1-8 (e.g., set of storage units).
The set of encoded data slices include a total number of encoded data slices. When
subsequently retrieving the data segment, at least a decode threshold number of encoded data
slices of the set of encoded data slices is required to recover the data segment, where the

decode threshold number is less than the total number. A storage error includes at least one

66

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

of a missing encoded data slice, a corrupted encoded data slice, and a missing revision of and
encoded data slice.

Figure 45A illustrates initial steps of the example of the rebuilding of the data, where
the inbound DST processing 82 sends, via the network 24, representations of a read-rebuild
inquiry request to storage units of the DSN, where the storage units collectively store the set
of encoded data slices and where the data segment was encoded in accordance with the
dispersed storage error coding function to produce the set of encoded data slices. As a
specific example, the inbound DST processing 82 receives a read data request 524 that
includes a data segment read request. Having received the data segment read request, the
inbound DST processing 82 processes the data segment read request to produce the read-
rebuild inquiry request. For example, the inbound DST processing 82 identifies the data
segment based on the data segment read request and generates a DSN addressing information
(e.g., generates a set of slice names) based on the identified data segment.

The sending of the representations of the read-rebuild inquiry request includes
generating the representations of the read-rebuild inquiry request. As a specific example of
the generating of the representations of the read-rebuild inquiry request, the inbound DST
processing 82 generates read requests regarding a read threshold number of encoded data
slices of the set of encoded data slices, where the read threshold number is less than the total
number and equal to or greater than the decode threshold number. For instance, the inbound
DST processing 82 generates read slice requests 1-6, where the read slice requests 1-6
includes slice names of the set of slice names that corresponds to encoded data slices 1-6
when the read threshold is 6.

Having generated the read requests, the inbound DST processing 82 generates status
check requests regarding a difference number of encoded data slices of the set of encoded
data slices, where the difference number is equal or less than a difference between the total
number and the read threshold number. For example, the inbound DST processing 82
generates check slice requests 7-8, where the check slice requests 7-8 includes slice names of
the set of slice names that corresponds to encoded data slices 7-8 when the total number is 8
and the read threshold number is 6.

Having generated the read requests and the status check request, the inbound DST
processing 82 sends the read requests and a status check requests to the set of DST execution
units 1-8. For example, the inbound DST processing 82 sends, via the network 24, the read
slice requests 1-6 to DST execution units 1-6 and the inbound DST processing 82 sends, via

the network 24, the check slice requests 7-8 to the DST execution units 7-8.

67

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Alternatively, or in addition to, after sending the representations of the read-rebuild
inquiry request and when another data segment read request for the data segment is not
received prior to expiration of a status check time out period, the inbound DST processing 82
sends, via the network 24, status check requests regarding the set of encoded data slices to the
set of DST execution units 520. For example, the inbound DST processing 82 generates
check slice requests 1-8 and sends, via the network 24, the check slice requests 1-8 to the
DST execution units 1-8.

Figure 45B illustrates further steps of the example of the rebuilding of the data, where
the inbound DST processing 82 receives, via the network 24, a decode threshold number of
encoded data slices in response from at least some of the storage units, where the set of
encoded data slices include the total number of encoded data slices, and where the decode
threshold number is less than the total number. For example, DST execution units 1-6 issues
read slice responses 1-6 to the inbound DST processing 82, where each read slice response
includes one or more of a slice name, an encoded data slice, and one or more revision
numbers when the read slice response includes at least one encoded data slice. For instance,
the DST execution unit 1 generates the read slice response 1 to include encoded data slice 1,
the DST execution unit 2 generates the read slice response 2 to include encoded data slice 2,
the DST execution unit 4 generates the read slice response 4 to include encoded data slice 4,
the DST execution unit 5 generates the read slice response 5 to include encoded data slice 5,
and the DST execution unit 6 generates the read slice response 6 to include encoded data slice
6. As such, the inbound DST processing 82 receives encoded data slices 1, 2, 4, 5, and 6 as
the decode threshold number of encoded data slices.

Having received the decode threshold number of encoded data slices from the read
slice responses 1-6, inbound DST processing 82 receives a remaining number of slice status
responses from one or more other storage units of the storage units regarding a remaining
number of encoded data slices, where the remaining number is equal or less than a difference
between the total number and the decode threshold number. The remaining number of slice
status responses includes one or more of another read slice response and a status check
response. As a specific example, the inbound DST processing 82 receives three slice status
responses as the remaining number of slice status responses when the total number is 8 and
the decode threshold number is 5. For instance, DST execution unit 3 generates a read slice
response 3 without encoded data slice 3 when a storage error has occurred for encoded data
slice 3 (e.g., missing, corrupted). As another instance, DST execution unit 7 generates a

check slice response 7 that indicates a storage error associated with encoded data slice 7. As

68

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

yet another instance, DST execution unit 8 generates a check slice response 8 that indicates
that encoded data slice 8 is stored with no storage errors.

Having received the decode threshold number of encoded data slices, the DS error
decoding 182 decodes the decode threshold number of encoded data slices to reproduce the
data segment 526. For example, the DS error decoding 182 decodes encoded data slices 1, 2,
4, 5, and 6 using the dispersed storage error coding function to reproduce the data segment
526. Having received the remaining number of slice status responses, the error detector 522
interprets the remaining number of slice status responses to determine whether one of the
remaining number of encoded data slices includes an error.

As a specific example of the interpreting of the remaining number of slice status
responses, the error detector 522 determines whether, for one of the read requests, an encoded
data slice was not received within a given time period (e.g., 5 seconds). For instance, the
error detector 520 determines that the encoded data slice 3 was not received within the given
time period. When the encoded data slice was not received in the given time period, the error
detector 522 interprets the encoded data slice not being received within the given time frame
as the one of the remaining number of slices status responses indicating that the encoded data
slice includes the error. For instance, the error detector 522 indicates that encoded data slice
three includes the error.

As another specific example of the interpreting of the remaining number of slice
status responses, the error detector 522 determines whether, for one of the read requests, an
encoded data slice was received within a given time period and includes a revision error. For
instance, the error detector 522 determines that the most recent revision of encoded data slice
3 is missing. When the encoded data slice was received in the given time period and includes
the revision error, the error detector 522 interprets the encoded data slice as the one of the
remaining number of slices status responses indicating that the encoded data slice includes
the error. For instance, the error detector 522 indicates that the encoded data slice 3 includes
the error.

As yet another specific example of the interpreting of the remaining number of slice
status responses, the error detector 522 determines whether, for one of the read requests, an
encoded data slice was received within a given time period and includes a corruption error.
For instance, the error detector 522 determines that the encoded data slice 3 includes the
corruption error when a comparison of a received encoded data slice 3 compares unfavorably
to a stored integrity information for the encoded data slice 3. When the encoded data slice

was received in the given time period and includes the corruption error, the error detector 522

69

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

interprets the encoded data slice as the one of the remaining number of slices status responses
indicating that the encoded data slice includes the error. For instance, the error detector 522
indicates that the encoded data slice 3 includes the error.

Alternatively, error detector 522 receives at least some of the remaining number of
slice status responses in response to the status check requests. For example, the error detector
522 receives the check slice response 7, where the check slice response 7 indicates that at
least one error has occurred (e.g., missing all revisions of encoded data slice 7, missing a
most recent revision of the encoded data slice 7, encoded data slice 7 has failed and integrity
test).

Figure 45C illustrates further steps of the example of the rebuilding of the data, where
the DS error decoding 182 outputs the reproduced data segment 526 and provides the
reproduced data segment 526 to the DS error encoding 112. Having provided the reproduced
data segment 526 to the DS error encoding 112, the error detector 522 outputs slice identities
of the encoded data slices associated with errors to the DS error encoding 112. For example,
the error detector 522 identifies encoded data slices 3 and 7 as including the errors.

Figure 45D illustrates final steps of the example of the rebuilding of the data. When
the one of the remaining number of encoded data slices includes the error, the DS error
encoding 112 generate a rebuilt encoded data slice based on the reproduced data segment to
replace the one of the remaining number of encoded data slices that includes the error. For
example, the DS error encoding 112 encodes the reproduced data segment 526 using the
dispersed storage error encoding function to reproduce the set of encoded data slices.

Having reproduced the set of encoded data slices, the DS error encoding 112
identifies one or more of the reproduced encoded data slices based on the identified encoded
data slices that includes the errors. For example, the DS error encoding 112 identifies
reproduced encoded data slices 3 and 7 based on the identified encoded data slices 3 and 7 as
including the errors. Having identified the one or more reproduced encoded data slices, the
outbound DST processing 80 sends, via the network 24, the identified reproduced encoded
data slices to the corresponding DST execution units of the DST execution unit set 520 for
storage. For example, the outbound DST processing 80 sends, via the network 24, a write
slice request 3 to the DST execution unit 3, where the write slice request 3 includes the
reproduced encoded data slice 3 and the outbound DST processing 80 sends, via the network
24, a write slice request 7 to the DST execution unit 7, where the write slice request 7

includes the reproduced encoded data slice 7.

70

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

Figure 45E is a flowchart illustrating an example of rebuilding data. The method
begins at step 530 where a processing module of a dispersed storage network (DSN) (e.g., of
a distributed storage and task (DST) client module) sends representations of a read-rebuild
inquiry request to storage units of the DSN, where the storage units collectively store a set of
encoded data slices and where a data segment was encoded in accordance with a dispersed
storage error coding function to produce the set of encoded data slices. The sending may
include one or more of interpreting a test schedule, interpreting an error message, and
processing a data segment read request to produce the read-rebuild inquiry request.

The sending further includes generating the representations of the read-rebuild inquiry
request. As a specific example, the processing module generates read requests regarding a
read threshold number of encoded data slices of the set of encoded data slices, where the read
threshold number is less than the total number and equal to or greater than the decode
threshold number. For instance, the processing module generates 6 read requests when the
read threshold is 6, the total number is 8, and the decode number is 5.

As another specific example, the processing module generates status check requests
regarding a difference number of encoded data slices of the set of encoded data slices, where
the difference number is equal or less than a difference between the total number and the read
threshold number. For instance, the processing module generates 2 status check requests
when the difference number is 2 (e.g., 2=8-6).

Alternatively, or in addition to, after sending the representations of the read-rebuild
inquiry request and when another data segment read request for the data segment is not
received prior to expiration of a status check time out period, the processing module sends
status check requests regarding the set of encoded data slices. For instance, the processing
module sends 8 status check requests regarding the set of encoded data slices to the storage
units.

The method continues at step 532 where the processing module receives a decode
threshold number of encoded data slices in response from at least some of the storage units,
where the set of encoded data slices include the total number of encoded data slices, and
where the decode threshold number is less than the total number. For example, the
processing module receives read responses that includes the decode threshold number (e.g.,
5) of encoded data slices.

The method continues at step 534 where the processing module receives a remaining
number of slice status responses from one or more other storage units of the storage units

regarding a remaining number of encoded data slices, where the remaining number is equal

71

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

or less than a difference between the total number and the decode threshold number. The
processing module receives at least some of the remaining number of slice status responses in
response to the status check requests. As a specific example, the processing module receives
3 slice status responses (e.g., 8-5=3), where the 3 slice status responses includes a 6th read
response and two status check responses. The method continues at step 536 where the
processing module decodes the decode threshold number of encoded data slices to reproduce
the data segment.

The method continues at step 538 where the processing module interprets the
remaining number of slice status responses to determine whether one of the remaining
number of encoded data slices includes an error. As a specific example, the processing
module determines whether, for one of the read requests, an encoded data slice was not
received within a given time period. When the encoded data slice was not received in the
given time period, the processing module interprets the encoded data slice not being received
within the given time frame as the one of the remaining number of slices status responses
indicating that the encoded data slice includes the error.

As another specific example, the processing module determines whether, for one of
the read requests, an encoded data slice was received within a given time period and includes
a revision error. When the encoded data slice was received in the given time period and
includes the revision error, the processing module interprets the encoded data slice as the one
of the remaining number of slices status responses indicating that the encoded data slice
includes the error.

As yet another example, the processing module determines whether, for one of the
read requests, an encoded data slice was received within a given time period and includes a
corruption error. When the encoded data slice was received in the given time period and
includes the corruption error, the processing module interprets the encoded data slice as the
one of the remaining number of slices status responses indicating that the encoded data slice
includes the error.

When the one of the remaining number of encoded data slices includes the error, the
method continues at step 540 where the processing module generates a rebuilt encoded data
slice based on the reproduced data segment to replace the one of the remaining number of
encoded data slices that includes the error. For example, the processing module disperse
storage error encodes the reproduced data segment to produce a reproduced set of encoded

data slices. Having produced the reproduced set of encoded data slices, the processing

72

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

module identifies the rebuilt encoded data slice based on the one of the remaining number of
encoded data slices that includes the error.

Figure 46A is a diagram of another embodiment of a dispersed storage network
(DSN) that includes a configuration module 542, a DSN memory 544, and a DSN entity 546.
The configuration module 542 and the DSN entity 546 may be implemented using one or
more of a dispersed storage (DS) processing module, a DS processing unit, a dispersed
storage and task (DST) processing module, the DST processing unit 16 of Figure 1, the user
device 12 of Figure 1, a DS managing unit, the DSTN managing unit 18 of Figure 1, the DST
execution unit 36 of Figure 1, and a DS unit. The DSN memory 544 includes a plurality of
storage devices, where a storage device may be implemented using one or more of a memory
device, a memory array, a storage unit, the DS unit, the DST execution unit 36 of Figure 1,
and the user device 12 of Figure 1.

The system functions to provide an install package, including at least one of software
548 (e.g., executable instructions for a processing module of the DSN entity 546) and
configuration information (e.g., memory mapping, memory allocation, port mapping, device
type, identity information, security information, registration information, which portions of
the software to execute, a DSN address range, access control list information, permissions
information, etc.), and to utilize the install package. The configuration module 542 performs
a series of steps to provide the install package. The configuration module 542 determines to
provide the install package based on at least one of interpreting a schedule, detecting that the
DSN entity 546 is in need of the install package, detecting that the DSN entity 546 has been
replaced, receiving a request, detecting a software failure associated with the DSN entity 546,
detecting a configuration failure associated with the DSN entity 546, and receiving an error
message. For example, the DSN entity 546 is installed and sends a message to the
configuration module indicating that the DSN entity 546 is available for assignment within
the DSN.

The configuration module 542 identifies the DSN entity 546 by at least one of
initiating a query, interpreting an error message, and receiving an identifier of the DSN,
where the identifier includes at least one of an Internet protocol (IP) address, a universal
unique identifier (UUID), and any other identifier. The configuration module 542 generates
the configuration information for the DSN entity 546 based on one or more of an entity type
of the DSN entity 546 and one or more vault assignments for the DSN entity 546. For
example, the configuration module 542 accesses registry information associated with a vault

assigned to the DSN entity 546 to retrieve at least a portion of the configuration information.

73

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

The configuration module 542 obtains the software 548 for the DSN entity 546. The
obtaining includes at least one of initiating a query to a software server, receiving the
software 548 from the software server, accessing a manufacturer software distribution portal,
and auto-generating the software 548 based on requirements listed within registry
information of the DSN.

The configuration module 542 generates the install package to include the
configuration information and the software 548. The configuration module 542 encodes the
install package using a dispersed storage error coding function to produce a plurality of sets
of install package slices 550. The configuration module 542 sends the plurality of sets of
install package slices 550 to the DSN memory 544 for storage. The configuration module
542 updates at least one of a dispersed hierarchical index and a DSN directory to associate
the identifier of the DSN entity and a DSN address utilized to store the plurality of sets of
install package slices in the DSN memory. The updating of the dispersed hierarchical index
includes generating a new entry (e.g., that includes the identifier the DSN entity and the DSN
address) for the dispersed hierarchical index, encoding the new entry using the dispersed
storage error coding function to produce a set of install index slices 552, and sending the set
of install index slices 552 to the DSN memory 544 for storage.

The DSN entity 546 performs a series of steps to utilize the install package. The DSN
entity 546 determines that at least one of the configuration information and the software 548
is required (e.g., detecting an error, receiving a new assignment message, receiving a
reconfiguration request, receiving notification that a new version of software is available,
etc.). The DSN entity 546 accesses the at least one of the dispersed hierarchical index and
the DSN directory to identify the DSN address associated with the install package. The
accessing of the dispersed hierarchical index includes generating an index key associated
with the identifier of the DSN entity, issuing index slice requests 554 to the DSN memory
544 based on the index key and receiving install index slices 556 to search the dispersed
hierarchical index for an index node that includes the entry associated with the DSN entity,
decoding the install index slices 552 to reproduce a recovered index node that includes the
entry, and extracting the DSN address associated with the install package from the entry of
the recovered index node.

The DSN entity 546 issues one or more sets of install package slice requests 558
using the DSN address associated with the install package to the DSN memory. The DSN
entity 546 receives install package slice responses 560 from the DSN memory 544 that

includes at least a decode threshold number of install package slices for each set of install

74

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

package slices of the plurality of sets of install package slices. For each set of install package
slices, the DSN entity 546 decodes the at least the decode threshold number of install package
slices to reproduce at least a portion of the install package. The DSN entity 546 extracts the
at least one of the configuration information and the software 548 from the reproduced install
package. The DSN entity 546 utilizes the at least one of the configuration information and
the software 548. For example, the DSN entity installs the software 548 within memory of
the DSN entity, writes the configuration information to memory of the DSN entity, and
activates the software 548.

Figure 46B is a flowchart illustrating an example of updating configuration
information and software. A method to perform a series of steps to store and utilize an install
package begins with step 562 where a configuration module (e.g., a dispersed storage (DS)
managing unit) determines to provide the install package for a dispersed storage network
(DSN) entity (e.g., a DS processing unit). The method continues at 564 where the
configuration module identifies the DSN entity. The identifying includes at least one of
obtaining an identifier of the DSN entity and identifying a DSN entity type. The method
continues at step 566 where the configuration module generates configuration information for
the DSN entity. The generating includes at least one of performing a lookup, retrieving,
accessing registry information based on one or more of the identifier the DSN entity and the
DSN entity type, and determining based on a configuration algorithm. The method continues
at step 568 where the configuration module obtains software for the DSN entity. The
obtaining includes at least one of initiating a request, receiving, and retrieving.

The method continues at step 570 where the configuration module generates the
install package to include one or more of the configuration information, the software, the
identifier of the DSN entity, an identifier of the configuration module, a timestamp, a revision
indicator, integrity information, and the DSN entity type. The method continues at step 572
where the configuration module encodes the install package using a dispersed storage error
coding function to produce a plurality of sets of install package slices. The method continues
at step 574 where the configuration module stores the plurality of sets of install package
slices in a DSN. For example, the configuration module generates a DSN address associated
with the install package, generates a plurality of sets of slice names based on the DSN
address, generates one or more sets of write slice requests that includes the plurality of sets of
slice names and the plurality of sets of install package slices, and outputs the one or more sets

of write slice requests to the DSN.

75

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

The method continues at step 576 where the configuration module updates a dispersed
hierarchical index to associate the identifier the DSN entity and the DSN address. The
updating includes generating an entry that includes the identifier the DSN entity and the DSN
address, recovering an index node of the dispersed hierarchical index based on the identifier
of the DSN entity, modifying the recovered index node to include the entry to produce a
modified index node, encoding the modified index node using the dispersed storage error
coding function to produce a set of updated index node slices, and issuing a set of write slice
request to the DSN where the set of write slice requests includes the updating the set of index
node slices.

The method continues to perform more steps associated with using the install package
and begins with step 578 where the DSN entity determines that at least one of current
configuration information of the DSN entity and current software of the DSN entity requires
updating. The determining includes at least one of detecting an error, receiving a message
with regards to an update, receiving and indicator for a new configuration assignment,
receiving an error message. The method continues at step 580 where the DSN entity accesses
at least one of the dispersed hierarchical index and a DSN directory to identify the DSN
address associated with the install package for the DSN entity. The method continues at step
582 where the DSN entity issues install package slice requests using the DSN address to the
DSN. The method continues at step 584 where they DSN entity receives install package slice
responses.

The method continues at step 586 where the DSN entity decodes the install package
slices using the dispersed storage error coding function to reproduce the install package. The
method continues at step 588 where the DSN entity extracts at least one of the configuration
information and the software from the install package. The DSN entity may select a portion
of the at least one of the configuration information and the software based on the determining
that the at least one of the current configuration information and the current software requires
updating. The method continues at step 590 where the DSN entity activates the at least one
of the configuration information and the software within the DSN entity. For example, the
DSN entity installs the software, installs the configuration information, and reboots to use the
install package.

As may be used herein, the terms “substantially” and “approximately” provides an
industry-accepted tolerance for its corresponding term and/or relativity between items. Such
an industry-accepted tolerance ranges from less than one percent to fifty percent and

corresponds to, but is not limited to, component values, integrated circuit process variations,

76

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

temperature variations, rise and fall times, and/or thermal noise. Such relativity between
items ranges from a difference of a few percent to magnitude differences. As may also be
used herein, the term(s) “operably coupled to”, “coupled to”, and/or “coupling” includes
direct coupling between items and/or indirect coupling between items via an intervening item
(e.g., an item includes, but is not limited to, a component, an element, a circuit, and/or a
module) where, for indirect coupling, the intervening item does not modify the information of
a signal but may adjust its current level, voltage level, and/or power level. As may further be
used herein, inferred coupling (i.e., where one element is coupled to another element by
inference) includes direct and indirect coupling between two items in the same manner as
“coupled to”. As may even further be used herein, the term “operable to” or “operably
coupled to” indicates that an item includes one or more of power connections, input(s),
output(s), etc., to perform, when activated, one or more its corresponding functions and may
further include inferred coupling to one or more other items. As may still further be used
herein, the term “associated with”, includes direct and/or indirect coupling of separate items
and/or one item being embedded within another item. As may be used herein, the term
“compares favorably”, indicates that a comparison between two or more items, signals, etc.,
provides a desired relationship. For example, when the desired relationship is that signal 1
has a greater magnitude than signal 2, a favorable comparison may be achieved when the
magnitude of signal 1 is greater than that of signal 2 or when the magnitude of signal 2 is less
than that of signal 1.

As may also be used herein, the terms “processing module”, “processing circuit”,
and/or “processing unit” may be a single processing device or a plurality of processing
devices. Such a processing device may be a microprocessor, micro-controller, digital signal
processor, microcomputer, central processing unit, field programmable gate array,
programmable logic device, state machine, logic circuitry, analog circuitry, digital circuitry,
and/or any device that manipulates signals (analog and/or digital) based on hard coding of the
circuitry and/or operational instructions. The processing module, module, processing circuit,
and/or processing unit may be, or further include, memory and/or an integrated memory
element, which may be a single memory device, a plurality of memory devices, and/or
embedded circuitry of another processing module, module, processing circuit, and/or
processing unit. Such a memory device may be a read-only memory, random access
memory, volatile memory, non-volatile memory, static memory, dynamic memory, flash
memory, cache memory, and/or any device that stores digital information. Note that if the

processing module, module, processing circuit, and/or processing unit includes more than one

77

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

processing device, the processing devices may be centrally located (e.g., directly coupled
together via a wired and/or wireless bus structure) or may be distributedly located (e.g., cloud
computing via indirect coupling via a local area network and/or a wide area network).
Further note that if the processing module, module, processing circuit, and/or processing unit
implements one or more of its functions via a state machine, analog circuitry, digital
circuitry, and/or logic circuitry, the memory and/or memory element storing the
corresponding operational instructions may be embedded within, or external to, the circuitry
comprising the state machine, analog circuitry, digital circuitry, and/or logic circuitry. Still
further note that, the memory element may store, and the processing module, module,
processing circuit, and/or processing unit executes, hard coded and/or operational instructions
corresponding to at least some of the steps and/or functions illustrated in one or more of the
Figures. Such a memory device or memory element can be included in an article of
manufacture.

The present invention has been described above with the aid of method steps
illustrating the performance of specified functions and relationships thereof. The boundaries
and sequence of these functional building blocks and method steps have been arbitrarily
defined herein for convenience of description. Alternate boundaries and sequences can be
defined so long as the specified functions and relationships are appropriately performed. Any
such alternate boundaries or sequences are thus within the scope and spirit of the claimed
invention. Further, the boundaries of these functional building blocks have been arbitrarily
defined for convenience of description. Alternate boundaries could be defined as long as the
certain significant functions are appropriately performed. Similarly, flow diagram blocks
may also have been arbitrarily defined herein to illustrate certain significant functionality. To
the extent used, the flow diagram block boundaries and sequence could have been defined
otherwise and still perform the certain significant functionality. Such alternate definitions of
both functional building blocks and flow diagram blocks and sequences are thus within the
scope and spirit of the claimed invention. One of average skill in the art will also recognize
that the functional building blocks, and other illustrative blocks, modules and components
herein, can be implemented as illustrated or by discrete components, application specific
integrated circuits, processors executing appropriate software and the like or any combination
thereof.

The present invention may have also been described, at least in part, in terms of one
or more embodiments. An embodiment of the present invention is used herein to illustrate

the present invention, an aspect thereof, a feature thereof, a concept thereof, and/or an

78

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

example thereof. A physical embodiment of an apparatus, an article of manufacture, a
machine, and/or of a process that embodies the present invention may include one or more of
the aspects, features, concepts, examples, etc. described with reference to one or more of the
embodiments discussed herein. Further, from figure to figure, the embodiments may
incorporate the same or similarly named functions, steps, modules, etc. that may use the same
or different reference numbers and, as such, the functions, steps, modules, etc. may be the
same or similar functions, steps, modules, etc. or different ones.

While the transistors in the above described figure(s) is/are shown as field effect
transistors (FETs), as one of ordinary skill in the art will appreciate, the transistors may be
implemented using any type of transistor structure including, but not limited to, bipolar, metal
oxide semiconductor field effect transistors (MOSFET), N-well transistors, P-well transistors,
enhancement mode, depletion mode, and zero voltage threshold (VT) transistors.

Unless specifically stated to the contra, signals to, from, and/or between elements in a
figure of any of the figures presented herein may be analog or digital, continuous time or
discrete time, and single-ended or differential. For instance, if a signal path is shown as a
single-ended path, it also represents a differential signal path. Similarly, if a signal path is
shown as a differential path, it also represents a single-ended signal path. While one or more
particular architectures are described herein, other architectures can likewise be implemented
that use one or more data buses not expressly shown, direct connectivity between elements,
and/or indirect coupling between other elements as recognized by one of average skill in the
art.

The term “module” is used in the description of the various embodiments of the
present invention. A module includes a processing module, a functional block, hardware,
and/or software stored on memory for performing one or more functions as may be described
herein. Note that, if the module is implemented via hardware, the hardware may operate
independently and/or in conjunction software and/or firmware. As used herein, a module
may contain one or more sub-modules, each of which may be one or more modules.

While particular combinations of various functions and features of the present
invention have been expressly described herein, other combinations of these features and
functions are likewise possible. The present invention is not limited by the particular

examples disclosed herein and expressly incorporates these other combinations.

79

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

CLAIMS

What is claimed is:
1. A method for execution by one or more processing modules of one or more

computing devices of a dispersed storage network (DSN), the method comprises:

sending representations of a read-rebuild inquiry request to storage units of the DSN, wherein
the storage units collectively store a set of encoded data slices and wherein a data segment
was encoded in accordance with a dispersed storage error coding function to produce the set

of encoded data slices;

receiving a decode threshold number of encoded data slices in response from at least some of
the storage units, wherein the set of encoded data slices include a total number of encoded
data slices, and wherein the decode threshold number is less than the total number;

receiving a remaining number of slice status responses from one or more other storage units
of the storage units regarding a remaining number of encoded data slices, wherein the
remaining number is equal or less than a difference between the total number and the decode
threshold number;

decoding the decode threshold number of encoded data slices to reproduce the data segment;

interpreting the remaining number of slice status responses to determine whether one of the

remaining number of encoded data slices includes an error; and
when the one of the remaining number of encoded data slices includes the error, generating a
rebuilt encoded data slice based on the reproduced data segment to replace the one of the
remaining number of encoded data slices that includes the error.

2. The method of claim 1 further comprises:

generating the representations of the read-rebuild inquiry request by:

80

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

generating read requests regarding a read threshold number of encoded data slices of
the set of encoded data slices, wherein the read threshold number is less than the total

number and equal to or greater than the decode threshold number; and

generating status check requests regarding a difference number of encoded data slices
of the set of encoded data slices, wherein the difference number is equal or less than a

difference between the total number and the read threshold number.

3. The method of claim 2 further comprises:

determining whether, for one of the read requests, an encoded data slice was not received

within a given time period; and

when the encoded data slice was not received in the given time period, interpreting the
encoded data slice not being received within the given time frame as the one of the remaining

number of slices status responses indicating that the encoded data slice includes the error.

4. The method of claim 2 further comprises:

determining whether, for one of the read requests, an encoded data slice was received within

a given time period and includes a revision error; and

when the encoded data slice was received in the given time period and includes the revision
error, interpreting the encoded data slice as the one of the remaining number of slices status

responses indicating that the encoded data slice includes the error.

5. The method of claim 2 further comprises:

determining whether, for one of the read requests, an encoded data slice was received within

a given time period and includes a corruption error; and

when the encoded data slice was received in the given time period and includes the
corruption error, interpreting the encoded data slice as the one of the remaining number of

slices status responses indicating that the encoded data slice includes the error.

81

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

6. The method of claim 2 further comprises:

receiving at least some of the remaining number of slice status responses in response to the

status check requests.

7. The method of claim 1 further comprises:

processing a data segment read request to produce the read-rebuild inquiry request.

8. The method of claim 7 further comprises:

after sending the representations of the read-rebuild inquiry request and when another data
segment read request for the data segment is not received prior to expiration of a status check

time out period, sending status check requests regarding the set of encoded data slices.

0. A dispersed storage (DS) module of a dispersed storage network (DSN), the DS

module comprises:

a first module, when operable within a computing device, causes the computing device to:
send representations of a read-rebuild inquiry request to storage units of the DSN,
wherein the storage units collectively store a set of encoded data slices and wherein a
data segment was encoded in accordance with a dispersed storage error coding

function to produce the set of encoded data slices;

a second module, when operable within the computing device, causes the computing device
to:
receive a decode threshold number of encoded data slices in response from at least
some of the storage units, wherein the set of encoded data slices include a total
number of encoded data slices, and wherein the decode threshold number is less than

the total number;

a third module, when operable within the computing device, causes the computing device to:

82

10

15

20

25

30

WO 2015/002878 PCT/US2014/044869

receive a remaining number of slice status responses from one or more other storage
units of the storage units regarding a remaining number of encoded data slices,
wherein the remaining number is equal or less than a difference between the total

number and the decode threshold number;

a fourth module, when operable within the computing device, causes the computing device
to:
decode the decode threshold number of encoded data slices to reproduce the data

segment;

a fifth module, when operable within the computing device, causes the computing device to:
interpret the remaining number of slice status responses to determine whether one of

the remaining number of encoded data slices includes an error; and

a sixth module, when operable within the computing device, causes the computing device to:
when the one of the remaining number of encoded data slices includes the error,
generate a rebuilt encoded data slice based on the reproduced data segment to replace

the one of the remaining number of encoded data slices that includes the error.

10. The DS module of claim 9 further comprises:

the first module, when operable within the computing device, further causes the computing
device to:
generate the representations of the read-rebuild inquiry request by:
generating read requests regarding a read threshold number of encoded data
slices of the set of encoded data slices, wherein the read threshold number is
less than the total number and equal to or greater than the decode threshold
number; and
generating status check requests regarding a difference number of encoded
data slices of the set of encoded data slices, wherein the difference number is
equal or less than a difference between the total number and the read threshold

number.

83

5

10

15

20

25

30

11.

WO 2015/002878 PCT/US2014/044869

The DS module of claim 10 further comprises:

the fifth module, when operable within the computing device, further causes the computing

device to:

12.

determine whether, for one of the read requests, an encoded data slice was not
received within a given time period; and

when the encoded data slice was not received in the given time period, interpret the
encoded data slice not being received within the given time frame as the one of the
remaining number of slices status responses indicating that the encoded data slice

includes the error.

The DS module of claim 10 further comprises:

the fifth module, when operable within the computing device, further causes the computing

device to:

13.

determine whether, for one of the read requests, an encoded data slice was received
within a given time period and includes a revision error; and

when the encoded data slice was received in the given time period and includes the
revision error, interpret the encoded data slice as the one of the remaining number of

slices status responses indicating that the encoded data slice includes the error.

The DS module of claim 10 further comprises:

the fifth module, when operable within the computing device, further causes the computing

device to:

determine whether, for one of the read requests, an encoded data slice was received
within a given time period and includes a corruption error; and

when the encoded data slice was received in the given time period and includes the
corruption error, interpret the encoded data slice as the one of the remaining number

of slices status responses indicating that the encoded data slice includes the error.

84

10

15

20

WO 2015/002878 PCT/US2014/044869

14. The DS module of claim 10 further comprises:

the third module, when operable within the computing device, further causes the computing
device to:
receive at least some of the remaining number of slice status responses in response to

the status check requests.

15. The DS module of claim 9 further comprises:

the first module, when operable within the computing device, further causes the computing
device to:

process a data segment read request to produce the read-rebuild inquiry request.

16. The DS module of claim 15 further comprises:

the first module, when operable within the computing device, further causes the computing
device to:
after sending the representations of the read-rebuild inquiry request and when another
data segment read request for the data segment is not received prior to expiration of a
status check time out period, send status check requests regarding the set of encoded

data slices.

85

PCT/US2014/044869

WO 2015/002878

1151

07 wajsAs Bunpndwos penguisip

} OId

8l Jun
Buibeuew N1 SQ
0¢ 9109
Bunndwod
€C ooeloUl e

22 8Inpow (N1SQ) omjau yse)

0 Jun Buissaooud

I
loyg abelojs paynquisip _ Aubeyl 18a
I
— — I 0¢ 9100
9€ Jun coe g¢ Jun _ Buinduwoo
uonnoaxs | SqQ uoinaexe | Sd I c
I y
IIIIIIIIIIIIIIIIIIIIIII _ ¢ ooepaul
7y

[80IAp Josn

A 4

0F 0B/ojul [«

A

A 4

0¢ 9109
Bunndwod

a¢ 1s0nbal
%S} JOg OF Ejep

>

0F aoepaul

ZE 2oBlalUl

A 4

A

A 4

A

A 4

$€ 9|npow
Jusip 1Sd

0¢ 9409 Bunndwod

g1 1un Buissasoud |8Q

2% ooealul

A

A 4

V€ o|npouw
JualPd 18d

Tz 2409 Bunndwoo

7T 90IABp Josn

PCT/US2014/044869

WO 2015/002878

2151

GG un

solydesb ospia

Buissaoo.d

¢9ld
r-r----—- - --------—-----"""-"-"""-"-"--""--""-"-""-”-""-”""-”-""-"-”-"-"-""-"¥{/"-"”-"—-”-—————-_—_—__-_—_--—n——— i}
I [
9/ s|npow ¥7 9|npow ZZ dnpow aoeLlajul 0Z 8|npow 80 9|npow 09 s|npow
|0elBul N1Sd soepsul dH ysej 20eLIsjul iom)su soelojul ydH soelBjul gSN
A _ A A A A A
I I
I I
I I
_ YVYVVY YVYVVY _
| 85 e0BLaII 0d 79 5014 "
I - NOY I
I 1 I
_ y A _
_ — — 75 o|npoL _
_ G Jojosuoo | s 09 9@oeL8UI R NMom_th_ |
_ Ol Ol 80IND _ _
_ g IASp Ol |
I [
I [
I — ——n — [
I ¥S VN ¢S P 0G einpow I
_ Alowsw urew “| Jojjonuoo Aowsw [7| Buissedoud _
I [
_ , _
I [
I . [
I [
I [
I [
I [

0¢ 9409 Bupndwod

- - - e |_

PCT/US2014/044869

WO 2015/002878

3/51

U# JIun uoinoaxe | SQ

}

}

1

1

“

m 06 9|npow 7€ |npow

! uonnoaxe 1Q JuslP 1Sa

m

1

1

“

bl _ %3 s|npow
i | 88 /Aowew 98 JalloAuoo Buissaooud
1

1

1

U (s)ynsau |erJed
U# S92I1|S paAsLIial

U# ysey [enJed

u dnoJb so1js

L# (S)nsal [ene

L#un
uonnoexe |sq

L# S0I|S paAsLIal

L# %se) |elJed

L# dnoub soyis

)\ 4
B

€ Ol

201
sjnsal |enJed

Z Yomjeu

28 Puissaso.d
1SqQ punoqui

08 Puissaso.d
1SqQ punogino

6 %SE}

PCT/US2014/044869

WO 2015/002878

4/51

Ug Jun
UOINBXD

1Sd

u dnoJb 891is

¥ 'Ol

08 Buissaso.d | SQ punogino

L#un
UOINBXD

1Sd

>

U#f 4SE]

|# YSE)

A

A

L# dnoub soyis

86 Sysey |ened

311 9;npow
|0JU0D Yse)
psinglisip

A

0

V1] J0)o0[0s

T |04JU02

911 9npow
|0u02

09}

|0JU09

Buidnolb

A

06 sbuidnoub s91is

211 Buipoous
Jols gQ

0

O

T [0U00

¢y uoiiyed ejep
Jad s89||s papoous

0l
Buiuonied
Ejep

——

b

0c} suopiued ejep

o o o o = = = = = = = =~ ——————————— = — = — = — o]

v6 ise)

26 exep

PCT/US2014/044869

WO 2015/002878

5/51

G "Old

SHuN 18 aAoadsal

0} syse) |enJed Buipuodsaliod

pue sbuidnolb 891|s puas

el

A

sJajoweled Buisssooid ejep

pue s)iun | §Q dY) Uo paseq
Buiuonied yse) sulwlsep

SySe)

lelued aonpoud 0} Buluoniyed yse)
8y} uo paseq (s)ysey ayy uoied

— A

cel

el

A

SHuN 18 Jo Jaquinu sy uo
paseq ejep sy} Jo siajoweled
Buisseoo.d sulwislep

sbuidnoJb a91|s 8onpoud

0] sJgjoweled Buissaooid ay) yim
8oueplod2e Ul ejep ay) buissseooid

— A

el

Vel

1

(s)xsey ay) Joddns o spun
1S Jo Jequinu e sulwis)ep

A

8k

(s)ysey Bulpuodssuioo
E pue ejep oAIg08l

¢l

PCT/US2014/044869

WO 2015/002878

6/51

¢t uoiped
ejep Jad s89ljs
EJep popooud

9914
8G] ejep
papooud 0G| elep $GT Sjuswbas
paol|s papoous paJIndss
717 Buiposua Jods §Q m
0T W = :
Buissaoo.d TR 9% Puipoous Buissaooid '
< < < < Buissaoo.d
Ajnoss Buois lous Anoss i
Juswbos I
90|s Jad Juswbes !
A A “
................................... oopoquoo || [T .
— _ — ¢Sl uoniped ejep
09} |ojuod | 9T 8npow 091 10JUBd gyuswbes ejep
|043U0D
091 |04u00 091 |04u00

PCT/US2014/044869

WO 2015/002878

7151

g 1uswbas ejep

g juswbas ejep

{ uawbas ejep

Z Wuawbas ejep

L Ol

¢l uoiied eyep

Gvp vP | VP A7 %Y ovP | 6EP gep | ¢gp gep | Sep vep | €ep cep | LEP
oep 6¢P | 8¢P LeP | 9¢p Gep | b gep | dap leb | 0CP 6lP | 8LP LlP | 9LP
GLp vip | €LP 4% Y oLp 6P 8p Y 9p ap 14% ep [4Y AY
J uswbas ejep G judwbes ejep ¢ juswbes ejep | Juswbas ejep
GYp | VWP | €VP | C¥P | L¥P | OVP | 6EP | 8EP [LEP | 9EP | GEP | vEP | €EP | CEP | LEP
OEP | 6P | 8CP | LZP | 9¢P | GcP | ¥cP | €CP | <CP | LcP | OCP | 6LP | 8LP | LILP | 9P
GIP | VP | €LP | CP | LLP | OLP 6P 8p Y 9p ap 14% ep [4Y AY
Gyp | vWP | €VP | C¥P | L¥P eT sjuswbes ejep
OvP | 6EP | 8EP | LEP [9EP
Gep | vEP | €EP | <eP | LEP
O0Ep | 6P | 8¢P | LZP | 9¢p 7 .
czo | vep | ezp | 2o | 1ep Buissaooid fe— _O%WO
ozp | 610 | ap | 2ip | aup Juswboes
GIP | vIP | €LP | 2P | LIP
oLp 6P 8p Y 9p o
ap 14% ep [4Y P :O_”—_tma ejep

PCT/US2014/044869

WO 2015/002878

8/51

ACRE | 853 G¥P 8sa 0£p 8sa GLp 8sa 8# Juswbes 10} sa0lIs EJEP PAPOOUS JO J8S
[J
o
[J
7 €S3 1 es3 | 9emsepesa | 1zeozpesa | 9vspesa €4 JuaWHas Joj S30)IS EJEP PAPOILS JO 155
ARAE WAE pEREEP ¢SA | 6188LP ¢SA | #9EP 2SA ¢# Juawibas Jo} $301IS BIEP PSPOSUS JO 185
AN 1S3 CEVIEP 1SA | L189LP 1SA | ¢8LP 1Sd L# uBLWBas 10} SEOIS BJep PSpPOooUS O 18S
091 opr « 9y buipoous 091
|0JJu0d Buoils Jodia |0JJu0d
g Juswbas ejep g Juswbas ejep ¥ Juswbas ejep Z Juswbas ejep
GPp wp | evp P | P ovp | ecp gep | Lep oep | sep vep | eep zep | 1ep
0P 6zp | gzp 120 | o9zp Gzp | vap ezp | zzp zp | ozp 6P | 8Ip Lp | ap
GLp v | €1p A1 AT o | 6p gp | zp o | ¢sp v | ¢ep P 1P

J uswbas ejep

G judwbes ejep

¢ juswbes ejep

| Juswbas ejep

PCT/US2014/044869

WO 2015/002878

9/51

¢ 853 | 853 G¥P 8SA 0¢P 8sd GLp 8sd
° ® ° ° °
° ° ° ° °
° ° ° ° °
¢ €53 | €53 9€8GEP €S0 1280¢P €Sa 9%SP €50
¢ ¢S3 | ¢S3 vEREEP 2SA 61881P 7SA v8€EP 2Sd
¢ 153 | 1S3 2e8LEP 1Sa L1891P 1SQ Z81Lb 18d
G#1S00) r# 150 0) ¢# 1500 #1500 #1500
96 sbuidno.b s91is
P11 Jojpsjes 9T 1011U0D
Buidnosb 091104
¢ 853 | 853 G¥P 8Sa 0¢P 8sd GLp 8sd
°
°
°
¢ €53 | €53 9€9GEP €S0 | 12B0CP €SA | 98P €Sa
¢ ¢S3 | ¢S3 vEVEEP 2SA | 619810 2SA | ¥8EP ¢SA
¢ 153 ASE CEVLEP 1SA | L1B9LP 1SA | ¢8LP 1SA

6 Ol

acl

uoniyed ejep Jo}
$89||S popoouUd

PCT/US2014/044869

WO 2015/002878

10/51

GIUNX31SA vIunX31Sa €WunX31Sad ZiunX31Sd | iun X3 .1sd

(unyo eyep (uopped (uopped (unyo eyep | (Yunyo ejep
snonbiuod) | Joj | elep H3) | Jorzeep H3) | snonbuod) | snonbijuoo)
| X b X G X € X AR
dnoJb so1is dnoub so1is dnoub so1is dnoJb so1is dnoJb so1is
GlUN X3 1SA #Iun X3 1SA €Iun X3 LSA ciun X3 Lsa | iun X3 1Sd
(unyo ejep [(unyo ejep | (unyd ejep (uopped (uopped
snonbiuod) | snonbpuod) | snonbiuod) | Jojg elep H3) | Jol | elep H3I)
€¢ ¢¢ I € G¢ Ve
dnoJb so1is dnoJb so1is dnoub 8o1|s dnoub so1is dnoub so1is
GlUN X3 1SA #Iun X3 1SA €Iun X3 LSA ciun X3 Lsa | iun X3 1Sd
(uopped (unyo ejep [(unyo ejep | (unyd ejep (uopped
Joj | eyepn3) | snonbpuod) | snonbiuos) | snonbihuos) | Joj gz elep H3)
v e €c AR 4 G ¢
dnoub so1is dnoJb so1is dnoub 8o1|s dnoJb so1is dnoub so1is
GlUN X3 1SA #Iun X3 1SA €Iun X3 LSA ciun X3 Lsa | iun X3 1Sd
(uopped (uopped (unyo ejep [(unyo ejep | (unyd ejep
Jojzeepn3y) | o)L elepn3) | snonbiyuos) | snonbpuod) | snonbijuoo)
Sl vl €l A Ll
dnoub so1is dnoub so1is dnoub 8o1|s dnoJb so1is dnoJb so1is
GlUN X3 1SA #Iun X3 1SA €Iun X3 LSA ciun X3 Lsa | iun X3 1Sd

72 SIS SO |

uonouny buidnolb
pue Buiposus

86 Sse) [efped

Xt
uoniyed eyep

e
uoniyed eyep

4
uoniyed eyep

(Jos yunyo)
L
uoniyed eyep

76 Yse)

0T 'Ol

<
—

Buiuonied

26 eep

PCT/US2014/044869

WO 2015/002878

11751

1T 'Ol

L#11un uonnaaxe 1SQ
36 (s)hisey
eied
9g J3]|0J1U0D |e
8/l ST
|04U0D o100 ——
1sd %SE) Alowaw
* A 06 $991IS
€ a|npow 06 °|npow ; J 55 howsuw
V][NG| uoIINd3aXa | g = wH_:wm:w
1 1 A lo/g
0071 sol|s
0] snsel ened)|
>

ZL1 Syse) [ented-gns pueZ] sbuidno.b ao1s-gns

891 Xoeqpes) 1Sd

interface 169

l#Iun 41040
(s)ysey jenJed

Z X
ejep snonbiuod

| €ejepo3

¢ ¢®eep o3

L1 (unyo)
ejep snonbiuod

L# jun X4
1SQ Jo} sdnoub 8918

X# uoijied

¢# uolied

Z# uonied

L# uoiiJed

PCT/US2014/044869

12/51

r4ARDIE

OZT (0400 ¥se)

| uonied
10} %se) |eed

L#11Un UoNoaxa 1S

WO 2015/002878

i i
1)
1)
1)
))
))
))
))
i i
1 _ 1
m 98 J9||0J3u0d m c1p 8Sq
))
))
“ m y13ELP" €S0
m GLP | PP | €IP | CIP LLP “ _
i oLp 6P 8p AY gp v/l |04u0d m ¢l®LLP €Sd
i Aiowsuw |
“ gp 144 ep [4Y AY v m 01960 €S0
m | uonied Jo syo0[q ejep !
“ snonBnuoo pajquesse-ol < 88 Alowsw f¢—1— 8%.p €Sd
! 06 aInpow ! —
“ uoIINdaXa 1 ! 9%¢p €Sd
“ SY00|q B)Jep pa|quiasse i
)
m -aJ U0 (s)uoiouny “ 798P 2Sa
“ yse) enJed wioLad !
R N m 281P1Sa

| uoniued jo | dnosb

10} (s)ynsa. ened | Buidnoub soiis Ul

| uoniJed Jo $891|s
EJep poapooud

PCT/US2014/044869

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
! o
| L
| .
9
| —
1 Ll
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[}

Z8 8uissanoud 15Q punoqui

13/51

WO 2015/002878

S90I|S PapooU

“ “
| |
“ “
“ 887 a|npow m -
Uz Jiun i — »| |0JJU0D 4SE) —> (shnses
LOINOoXd “ ¢0} synsau [ejped paINqLISIp !
180 m c !
“ y |
“ _ “
U# (Shnsau |erped ' 981 8|npowl m
“ 061 104u02 [04u09 067, [03U0D |
U S901|S paAslel “ i
° ! 067, [04)U09 “
“ “ y “
" 081 287 Buipooap 8l “
n i . 1 —_—
L#un > | -op Ejep '
uonnooxe | W (Shinsas ered | i
_ ! T -
1sd “ ST 221 voped o _mm_ oy |
[}
| # SO0l|s panallel " $901|S poAaLjal ejep Jod HiHIEd E1Ep !
[}
“ “
: 3

r
|
|
|
|
1
1
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I

PCT/US2014/044869

14/51

WO 2015/002878

¥1 "Si4

(shinsal
ay} sonpoud 03 Buissaoo.d
S}|NSal 8Y) YIIM 8oUBpIOdJ. Ul
synsal [enJed ay) Buissaoo.d

A

(e
N

0

¥SE) 8U) U0 paseq
Buissaooid ynsal Bujuiwislep

A

Q)

6l

synsal |enJed ayj 0
Buipuodsa.i09 yse) BuirsLyel

O—\ A

[{e]

synsal |enJed aAigdal

|

B

PCT/US2014/044869

WO 2015/002878

15/51

¢ 853 | 853 G¥P 8Sa 0¢P 8sd GLp 8sd
°
°
°
¢ €53 | €53 9€9GEP €S0 | 12B0CP €SA | 98P €Sa
¢ ¢S3 | ¢S3 vEVEEP 2SA | 619810 2SA | ¥8EP ¢SA
¢ 153 ASE CEVLEP 1SA | L1B9LP 1SA | ¢8LP 1SA
081 Jojojes 06T, (03100
Buidno.B-ap
001
$89I|S panalil
¢ 853 | 853 G¥P 8sa 0¢P 8sd GLp 8sa
° ° ° ° °
° ° ° ° °
° ° ° ° °
¢ €53 | €53 9£8G€EP €S0 12802P €Sd 9%8GP €S0
¢ ¢s3 FAE vEREEP 2SA 61881P 2SA '8eP 2Sd
¢ 1S3 AASE 2eRLEP 1Sa L1891P 1S@ 2%1P 1Sd
G# N3 1SQ woy v#N3 LSQWOL g#N3 LSquol g#N3 Lsquoy L# N3 1S woy

ST 'O

4}
$90I|S JO S}9s Ojul uonijed
B 10} S0I|S poAsIel

| uoniued Joy

PCT/US2014/044869

WO 2015/002878

16/51

74
uoniyed e Joj
$82I|S paAallal

91 Ol
3G ejep 0G| elep $GT Sjuswbas
popodud padlls popodUo paindes
28] Buipooap Jouss pasiadsip m
1
— 80¢ m
5 ¢0¢] Buissaoo.d 0z !
UISS990 707 | 90¢ buipoosp fynoes | “
fundes soj)s [Buioyis-ep [| Jows | juswbes g mc_ww%ooa ERLN
1ad asionul SSIOAU| Jusubes-ap -4
A 1
% 061 |04ju00 '
T 0cl
061 louod | g7 onpow | 0BT 104U0D sjuswbes ejep uoiyipied ejep
|0Jju02
061 |04u09 061 |04u00

PCT/US2014/044869

WO 2015/002878

17151

g 1uswbes ejep

g 1uswbes ejep

{ uswbas ejep

LT 'Ol
Z Wawbas ejep

4144 P | €vP P | LYP ovP | 6Ep gep | LgEp gep | gep vep | €ep cep | Lep
oep 6¢P | 8¢p LeP | 9¢P Gep | vep gcp | <cp lcP | 0c¢P 6LP | 8LP Lp | 9lp
GLp vip | €LP P | LLIP o | 6P 8p Y 9p ap 14% ep [4Y AY
J uawbas ejep G 1uswbas ejep ¢ juswbas ejep | Juswbas ejep
$GT sjuswbes >
paInoos F
— 90¢ Buipoosp v0¢C —
Bl [0JuU0d —> 018 h Buiifs-op <+— D] [0u0d
9G] ejep
papoous 8G| eep
popodUs PaolIS
¢ 853 0¢P 8Sd Glp 8sd 84 Juowibos Joj sd|s JO S}OS
°
°
°
AE 17es3 | 9e95ep €S 4 JuaLLIBS 10} S90S J0 Sfos
vEREEP 2SA | 61881P 2SA | ¥8EP ¢SA Z# Juowbas Joj sd|s JO Sjos
CEVIEP 1SA | 21B9LP 1SA | ¢8LP 1Sd L# JusWwBos o} S80S Jo sjes

PCT/US2014/044869

WO 2015/002878

18/51

Juoijiped ejep

GyP | v¥P | €¥P | CVP | LYP 0T
81 'Ol OvP | 66P | 8EP | LeP | 9¢P uopiped ejep
Gep | vep | €ep | CceP | LEP
0EP | 6¢P | 8CP | LZP | 9¢P —
0Le —_
GZP | vdP | €CP | ¢CP | L¢P Buissa00id 067
0cp 6LP 8Lp Lip aLp EmEmmw-mb |043U09
GLP | vIP | €P | CLP | LIP
oLp 6P 8p Y 9p
ép 14% ep [4Y P 2%l
sjuswbas ejep
SvP | vWP | EVWP | CvP | L¥P [OVP | GEP | 8EP | LEP | 9€P | GEP | ¥EP [€EP | CEP | LEP
OEP | 62P | 82P | LZP | 9¢P | GcP | vcP | €P | ZcP | LeP | OCP | 6LP [8LP | ZLP | 9IP
GIP | wIP | €LP | CP | LIP | OLP 6P 8p Y 9p ép 14% ep [4Y P
g Juswbas ejep g Juswbas ejep ¥ Juswbas ejep Z Juswbas ejep
ayp vvP | VP P | P ovP | 6¢ep 8ep | Lep gep | gep vep | €ep cep | lep
oep 6cP | 82P LZP | 9¢p Gep | vap gcp | P lch | 02P 6LP | 8P LLP | 9IP
GLp vLP | ELP A% Y oLp 6P 8p Y 9p ép 14% ep [4Y P

J Wawbas ejep

G uawbas ejep

¢ awbas ejep

| Juswbas ejep

PCT/US2014/044869

WO 2015/002878

19/51

(unyo eyep (uopped (uopped (unyo eyep | (Yunyo ejep
snonbiuod) | Joj | elep H3) | Jorzeep H3) | snonbuod) | snonbijuoo)
| X b X G X € X AR
dnoJb so1is dnoub so1is dnoub so1is dnoJb so1is dnoJb so1is
GlUN X3 1SA #Iun X3 1SA €Iun X3 LSA ciun X3 Lsa | iun X3 1Sd
(unyo ejep [(unyo ejep | (unyd ejep (uopped (uopped
snonbiuod) | snonbpuod) | snonbiuod) | Jojg elep H3) | Jol | elep H3I)
€¢ ¢¢ I € G¢ Ve
dnoJb so1is dnoJb so1is dnoub 8o1|s dnoub so1is dnoub so1is
GlUN X3 1SA #Iun X3 1SA €Iun X3 LSA ciun X3 Lsa | iun X3 1Sd
(uopped (unyo ejep [(unyo ejep | (unyd ejep (uopped
Joj | eyepn3) | snonbpuod) | snonbiuos) | snonbihuos) | Joj gz elep H3)
v e €c AR 4 G ¢
dnoub so1is dnoJb so1is dnoub 8o1|s dnoJb so1is dnoub so1is
GlUN X3 1SA #Iun X3 1SA €Iun X3 LSA ciun X3 Lsa | iun X3 1Sd
(uopped (uopped (unyo ejep [(unyo ejep | (unyd ejep
Jojzeepn3y) | o)L elepn3) | snonbiyuos) | snonbpuod) | snonbijuoo)
Sl vl €l A Ll
dnoub so1is dnoub so1is dnoub 8o1|s dnoJb so1is dnoJb so1is
GlUN X3 1SA #Iun X3 1SA €Iun X3 LSA ciun X3 Lsa | iun X3 1Sd

VAR VAR VR

%4
Buipoosp
pue
Buidno.B-ap

X#
uoniyed eyep

e
uoniyed eyep

4
uopiped ejep

(1os yunyo)
L
uoniyed eyep

6T Ol
24
Buiuoniyed
|®U
26 Ejep

PCT/US2014/044869

WO 2015/002878

20/51

U# Jlun uonnoaxs | S

78 Puissaoo.d

06 8|npow $€ 9|npow ' 02 O3
uonnoexa 1 Jual 18Q m
3% Aowsw 9% 19]|04JU00 m
||||||||| y ﬂ|||||||||||||||||||IIIIIII_
U S90I|S paAsLIl _
° 0T Se9l|s penslil
°
°
U SO0I[S \
¥ Ylomjau
L#

JIUN UoNNoaXe 1Sa

L# S90I|S paAdLIje.

1S@ punoqul

08 Puissaoo.d

L4 S901Is

[de)

12 S99l

1S@ punogino

PCT/US2014/044869

WO 2015/002878

21/51

Ug Jun
X3 1sa

L#3un
X3 1Sd

$99I1|S
jo ug Jeyid

T¢ 'Ol

08 8uissanoud 1SQ punogino

311 9;npow
|0JU0D Yse)
psinglisip

A

0

[Le)

¥11 Jojosjes

T |04JU02

0

91T e|npow
|0JJu09

Z¢ SSedAq

[

9l

|0JU09

I Buidno.b
“
|
“ —
$90I|S “ 9l¢ |
10 14 Jejid “ $90[[s jo sJey|
|

211 Buipoous
Jols gQ

0l
<« Buiuonied
Ejep

(¥4
S90I|S papooue

¢6 Elep

PCT/US2014/044869

22/51

WO 2015/002878

[4ADIE]
G X y X e X A "X G X# Juswbas ejep
°
°
°
G ¢ v e €c AR 4 AU Z# Juewbas ejep
Sl vl €l A Ll AU | # Juswbas ejep
444
Buiols g
Buipoous
I
| Z1 1 Buipoous Jouse pasiadsip |
1 1
1 1
__ m oSt W — m
8lc “ Buissao0ud T ol Buissaooud crl]
Juswbas ejep Jad =1 funoes [¢ Buiols < Buipoous |e fnoss ¢ Buissaoo.d
$89I|S popooud m s0l[s Jad o Jols JUaWBos Juswboes
m 09] |o4ju00 ,
¢Sl
0OT |04)U0d 917 8npow |J9T [043u00 sjusuibes ejep
|0Jju02
091 |0u0d 091 |04u00

PCT/US2014/044869

WO 2015/002878

23/51

x Bas Jo x Bas Jo x Bas Jo x Bas Jo x Bas Jo
aols GJefid | @os yued | eoys¢eyd | eds g ejd | @oys | seid
@
[
@
¢ Bas jo ¢ Bas jo ¢ Bas jo ¢ Bas jo ¢ Bas jo
aols GJefid | @os yued | eoys¢eyd | eds g ejd | @oys | seid
Z Bas jo Z Bas jo Z Bas jo Z Bas jo Z Bas jo
aols GJefid | @os yued | eoys¢eyd | eds g ejd | @oys | seid
| Bas Jo | Bas Jo | Bas Jo | Bas Jo | Bas Jo
aols GJefid | @os yued | eoys¢eyd | eds g ejd | @oys | seid

GIUN X3 1SA vIUN X3 1SA €3UN X3 LSA ZWun X3 LSA | wun X3 LSd

vee
Buidnoub Jejd g

Buiois ‘Buipoous

26 eep

PCT/US2014/044869

WO 2015/002878

24/51

9¢ 2402 8uizndwod

Y€ snpow
1usId 1Sa

»

A

¥< Sl

L# Jun uoindaxs 1 s
9g J9||0J3u0D
¥/ |04juoo

Alowaw _
9l¢
3 $90I|S

06 SINPOW » 33 AJowaw

uoI1Nd3xXs 1Qa — >

- 001
$99||S

interface 169

x bas Jo
d9lls |, Jeqid

¢ bas Jo
d9lls |, Jeqid

Z bss jo
d9lls |, Jeqid

| Bas Jo
d9lls |, Jeqid

$90|s | # Jej|d

PCT/US2014/044869

S¢ 'Ol

Z8 8uissanoud 15Q punoqui

25/51

WO 2015/002878

|
1
1
1
“
881 e|npow “
|0JJU0D Y%Se) I
Ug Jiun !
uoInoexa E:Q,_:w_n m
1sd “
A 4 “
J— |
98| 8npow '
061 [04u09 [0Juco O¢¢ ssedAq “
|
|
U# $99I|S ponali}el 55T 000 “
® A 4 y \ 4 !
. — |
081 .| 281 Buipoosp |
> Buiuonied
! Buidnosb-ap Jols g '
! -op Ejep I
! — !
L4)un “ - B¢ ——
LOINIBXd “ 00T Juswbas ejep Jad ! ¢6 Elep
1sq L4 S90S POABLIA ! $9||S paAslial $90I|S papooUd m
|
e h"

PCT/US2014/044869

WO 2015/002878

26/51

6 ejep

26 exep

9¢ 'Ol
G X y X e X A "X @ X# Juswbas ejep
°
°
°
G ¢ v e €c AR 4 mv Z# Juewbas ejep
(34
Gl vl ¢ A 1) mv L# Juswbes ejep Juswbes-ap
(144
Buipoosp
pue 01S-op
m 7871 Puipooap Jouss pasiadsip
| — 80z
=5 i — Buissesoid -
8lc ! Buisssooud 707 0¢ Aunoes Obe
Juswbes ejep Jod ——» £ > » bBulpoosp > _ » Buissaooud
$89I|S popooud “ Hnoos bupys-p ouo Juswibes awbas-o
IS papoou i 0||s @SIaAuUl 104 ENENT] 1UoHIbes-op
1 A
m % 067 |043U02
= _ — 2
061 [04u0o | 9g] enpow [061 103U00 g5 s pEp
|0JJu0d
061 |04u00 061 |04ju00

PCT/US2014/044869

WO 2015/002878

27/51

¢¢ ®INPOW N1Sd

U JIun m i Wi J1un m i B# Jun m i 94 J1UN m i L#1un
uonnoaxs | SqQ m m uonnosxe |8Q m m uonnosxe |8Q m m uonnosxs |8 m m uonnoaxs | SqQ
] “] “] “] “

TTonpow || eee i | € anpow | eee i | € anpow | eee i | £ enpow YT i | 7€ anpow
welp 1sq | || warplsa | || warplsa | { | wewlisa | | | a1 180

))))
95 Jofjonuoo | i | ["55 0100000 m | ["55 0100000 m | [95 Jeij01u00 m | [95 001000
] !] !] !] !

06 einpows | 1 i [55 sinpouw m i [55 sinpouw m i [55 sinpouw m i [55 sinpouw
uopnoaxe | | ! m uonnoaxe | | ! m uonnoaxe | | ! m uonnoaxs | | ! m uopnaexs |
m e i — | m |
m ! ¥ P09 yse} popooue §q m !
| “ | m T e | | “

] '] '] ® |] '
| | | | | o ! “ |
1) 1) 1) 1

“ m “ m “ m ¢ 9092 Yse) Papodud S
m | m | m | [| |
“ m “ m “ Z 9p09)SE) POpOdUS § m
“ ! “ ! “ ! — _

U eJep papoous g m | 98P0 XSE) papoous SJ
! i T e | ! ! “ !
| | | °® | | | | |
i ! “ o ! “ ! “ !
| £ Elep papoous §Q “ m !
m “ m “ m Z BIep Papoous SQ

1 1 1 | | v 1 |
m | m | | Elep papooue S
1 1 T T
58 ! m %5 ! m %5 ! m %5 ! m 58
Aiowsw m ! fowsw m ! fowsw m ! Aiowsw m ! Aiowsw

] !] !] !] !

PCT/US2014/044869

WO 2015/002878

28/51

8¢ Ol

U BJep popoous Jou8 g

¢ BJep pspoous Jous §q

Z BJep pspoous Jouis §q

| BJep papoous Joue §q

274 —
opuny (T
Jnsal ljedoje 1Sd
75 8npow
uonngLisip ¥sej
A A
(94 (174
$0] synsal dl eyep [Q| %SE)
pajosles | pejsles
ZF dnpow
Jusip 1Sd
dl X Xse} - dl ueep -
dl ¢ %se] - dl ¢ exep -
dl | %sej - dl | exep -
9E¢ Sop0J ¥SE} JO J51] ¥EC EXEP 10 3S]]

——————— —— — ————— —

¢¢ 9Inpow (NL1SQ) Homjau yse)
9 abelo)s peinquisip “

) 809D YSE) PpooUs Jouie §Q

Z 9p00 YSk) Papoous JoLd S

| 80O %SB) Papoous Joue §Q

_ 274
Teomisa | Lo
liedojle 1Sd JInsa.
2S¢ 9|npow
uonnquisip %sej
A A
3€C iZ4

qgreep |qiysey | POl synsel
pajos|es |pejos|es

T# 8|npow
Juslo 180
& S
Q1 9 s} - are &iep-
al y ¥se} - Qi 2 &iep-
al | ¥se} - Qre &iep-
3EZ SBPOO TSET O T _alLeeb-
VEC EIEP JO 19T

PCT/US2014/044869

WO 2015/002878

29/51

0¥ 41 ¥se} B¢ Al elep TSR
pajosjes pajos|es 6¢ Ol Dy yse]
¢y sel
| MdSEeL | ddseL
NHm %sel
Z5Z uoljeluojul € 8npow b EASEL | € XSEL
uogeooe 180 | N\ e uoNQLISIP Se) ¢fseL | ¢ sel
_ L | ysel
¢ L ¥sel
- L L osel | | vsel
] 0 | %
/ > y YSEF-ONS | ¥SE]
9vc de
_ %Se|-gNS <> %se|
X ¢V
X lY \
VA ¢¢
> —\lm m — [T ‘ T — [T ‘)
X 172 Z Uudls U O3S -9L/0L | ZX uippy | ZX u udls-u93S.8/G | 09 uJppy | OF u
X | i - K . E -
A Al € 071S:€ 9IS G/E | AA €4PPY | AA ¢ € 071S:€ 93S:91/0) | 99 €4ppY | 4d ¢
X 17 ! ¢ O1S:C 93SG/E | AX CTIPPY | AX 4 ¢ O1S:C 93S-8/S | Q¥ ¢4ppy | av 4
%7z | 97z L 01S L 93S:G/E | XX LPPY [XX | L 01S:) 93SG/E | WV LIPPY | WY |
08¢ |pow | mm I | 3% S 1
sanoedey | X3 X3 v/ Sisjsuieled ¢L¢ Ol 9ZIS dl 99¢ slsjsweled ¥9¢ O] 9ZIS dl
Y3 1G 0 | ISa Sd PPy ¥SeL | ¥SeL Sd PPV Eleq | Eed
G S8|npow uonnosxe |1 (J 0GZ uonjewJojul abeloss yse) 8¢ uonewJoul sbelois ejep

PCT/US2014/044869

WO 2015/002878

30/51

1€ spJom anbiun

€55 86 Spiom
anbiun Jo 18|
96¢
paje|Suel)
Apoaiiod | == o onersuen
SpIOm JO J8|| 1081102
v6¢
paje|Suel)
Apoadiooul
SpJOMm JO 38|
ZIe sious | |
uone|sues
% spiom piom-uou
uouoyenp | <T——————
SJ0.i9 JO 18|

soselyd Jo/g SpJom o119ads pull - 7€ %Se)

06¢ Spiom
-Uou Jo Js|

L€ MOJ} %SE)
01¢ sious | 0) aJedwod
8¢ Ejep iy 8¢ Bjep Sy
paje|suB}-al MA paje|sues) /\/k ¢6 EiEp
80¢€ %oeq 0¢ —

882 (seseuyd) aje|suel ale|suely

SpJom paje|suel) A
21108ds 181| $0C soselyd Jo/g spiom paje|suel oloads
Z0€ (Aseuonoip e ui jou “68) spiom-uou

09z (seseayd) A

SpJom 21J198ds 18| ——

le|SUR) - | ¢ YSE)

SOSEIUd 103 SPIOM PAJE[SUB]] oJ0a0S pulj - ¢ YSEL

SOSEIUd 10/ SPIOM OIJ1080S PUll - ¢ JSBL

00C seselyd Joyg spiom d1y198ds

(Z"| pue G| Jolle paIop.Jo) SUOIB|SU..]) 108100 BUILLIBISP - /| %SE)

(17| pue G| YSe) Jo)je PaIopI0) SI0.LIS UONE|SUR.) PJOM-UOU SUILLISISP - 9 | YSe)

(-1 Yse) Ja)je palaplo) siolld (| 0} aiedwod - G| Yse)

(€71 yse) Joyje palopio

) Yoeq ejejsuel) - ¢ | ¥se}

(paJspio-uou) aje|sues) - € | yse)
(paJspio-uou) spiom anbiun Ayuspl - 7| %se}
(paJspio-uou) spJom-uou Auspl - |~ | 3Se) SISA[EUE UONE[SUET] - | YSEL

PCT/US2014/044869

WO 2015/002878

31/51

S S A S I "

I JJuNn uojnoeXe m I JluNn uojnoexe m I JJuNn uojnoeXe m I JluNn uojnoexe m I JJuNn uojnoeXe m I JIUN UOIINOBXD | m Jlun uoNNJaxXe
)

i I1s@ ti 1s@ li 1s@ ji 1s@ pi 1s@ b 1sd 'y 1sd

—_— | —_— —_— —_— —_— —_—

m 7€ ainpow |! m 7€ o|npouw m m 7€ o|npow m m 7€ o|npouw m m 7€ o|npow m m 7€ o|npouw m m 7€ o|npow

{[U9 1S |1 | WeI0 1S |1 i| MO0 1S |1 i] WAIO IS |1 §| MO0 IS i i MO LS |1 1| 14910 18C

] i L I o I o

i| | J9jj0nu00 | i| | Jajjonuoo m i| g Jsjj0nu00 m i| ¥ Jajjonuoo m i| ¢ J)j0u00 m i| zsjjonuoo m i| | J9jj0nu00

) 1) 1) 1) 1) 1) 1)

[empow |1 [v empow |1 1[G ampow |4 [y empow |t i1 g ampow |4 [z empow |1 i1 ampow

m uopnosxs |! m uonnosxs |! m uopnosxs |! m uonnosxs |! m uopnosxs |! m uonnosxs |! m uonnooXa

1 1 1 1 1 1 1 1 1 1 1

m 1d m m 1d m m 1d m m 1d m m 1d m m 1d m m 1d

“ N | ! | | i |

m m m m m ¢ 9p02 YSk) Papoous g

1 " " | L | | L | T T

i ¢ ©p00)se) pspodus S m m m m

“ ™ ™ [[L L

! 1 ! 1 ! M| P |

“ m “ m “ | 8p02 YSE) pepooud S

! ! n H| H H| H

m “ m “ m Z Bjep pspoous s

] I b I b I b

i| 85 fowow [} 1| 3§ Aowsw |} if B8 Kowsw |} 1| 88 Aowow |} 1| 8§ Aowew |! if 3§ Aowsw |! 1| B8 Aowew

] P i P i P i

1 1 1 1 1 1 1

PCT/US2014/044869

WO 2015/002878

32/51

€1 '9'G siun 1sq

b=l “L spun [Sa

L-€ sjun 18d

9-¢ Spun 18@

G- spun 18d

L-€ sjun 18d

9-¢ Spun 18@
G- spun 18d
G- spun 18d

0¥ obBIo)s

Jjnsal ajelpawlia]ul

guun 1sd

Lun 18d

g3un 18d

¢iun 18@

L Jun 18@

g3un 18d

¢iun 18@

L Jun 18@

L Jun 18@

§Cc obeIo)s
ped (ojenns

Gyun1sa | ¢ty
l-ld

Lyun 183 ¢d
gyn1sa | Lo
ciun1sa | 9-ld
bwnlisa | ¢y
gunisa | v 1o
ciun1sa | ¢l
Lwnlisa | ¢y
bwnlisa | -y

9Ee

Duissss0id | FEE
jinSaI"wiIsjul | SWeN

ceRTveeTeT)

LR 9 S L E

ceRTveeTeT)

LGRL P e T

LGRL P e T

LGRL P e T

LGRL P e T

¢tE SpoW X3 1dJojes

Z¢ld- ey
€71y osn
Z¢Z-l¢

ZGld-1 Gy
RZ M- Ty

ZGld-1 Gy
BZ L-IY- L LY
Z¢-1¢
RZ yI¥- L LY

Z¢lY-G ey
b eld-1 el

z¢7-6¢
ve-1¢
ve-1¢

Z¢-1¢

0€e uoliled ejep

| €loye
(€7} se
awes) auou

auou

Sl
T | oye

Sl
91 | eye
b1 Jele

¢ | Jeye

auou
auou

auou

8c¢e
BUTTSPIO YSE]

¢ €

I €

Ll

91

g1l

[{=]
N
[ap’

|
w
(O
-

P OJul }nsal jelpawIsul

¢S OJUl UoIINOBXa YSe)

UOIJe2IpUI UOISJSALOD Jew.o}

‘uoiied yoes Joj Ol "IppY

‘suoijed Jo "ON Q]| elep :0zZE oul uoniyed ejep

PCT/US2014/044869

WO 2015/002878

33/51

result 1_2 (list of unique words)

G¢ "OId

(spiomanbiun q[) 2| %€}

result 1_1 (list of non-words)

| a0 - 06 m
synsal spowx3 | |
Rw leied 1gjotes | WS | A voned
i ® ° "1 €71)insau
! { [] 1
< “ ° ° ! Y o
_ i <0l 06 ! -
= _ Z uonied =
= synses | <] spow X3 h =
8 Aww lened < 10 40308 AU € | Jinsal < 8
m L |1 vonned
._ 200 | 06 ﬂ_\w €7} Jnsau
@ s)nsa. AL spow x3 | T
L[leped 1qjoles | i
! DIeqeejsuen) y | yse)
| o o e e e e e e e =
e e] v¢ oid
i 0} i
L | synsas | < spowx3 | i
Rmv lenJed A 1410188 @ Z uojped
i H e ! Ejep
! 1
“) ® ! Y o
i 201 06 i S
Au s)nsa) AL SpoW X3 AU NCM_M_%Q AM £
| eied Lajoes | 1 Ep ©
m t [1 vonped
] —— —_— 1
. ¢0l 06 Ejep
,\/M synsel AJ SpowW X3 .,J\w
i | reied 1040%s |
! 1
! 1

201 06
synsal Au Spow X3
leied 1dJojes

® °
° °
o °

201 06
synsal Au Spow X3
leied 1dJojes

201 06
s)nsal AU Spow X3
lefed 1dJojes

(ejejsuen) ¢ | ysey

Z uoljied
Ejep

Z uopied
ejep

| uopied
ejep

3
data 92

€ Ol

a0l 06
s)nsal Al Spow X3
lened lgloies

® °

° °

o °
a0l 06
s)nsal AV Spow X3
lened lgloies
201 06
synsal AJ Spow X3
lened lgjoies

(SpJom-uou q|) || ¥se1

Z uonJed
ejep

g uoped
ejep

| uonied
ejep

-

data 92

PCT/US2014/044869

WO 2015/002878

34/51

result 1_7 (list of correctly translated

words)

result 1_6 (list of errors due to non-

words)

I
) —)

\ 201 06 _
A__H synsal AW Spow X3 Au
' | [ensed 1d4oes | 1
i ° ° i
1) o 1
i ° ° i
1)

1)

1)

1)

i — i
_ 201 06 \
AH sjnsa. AH spow X4 Au

lenJed 1@Jojes

poTTTT T “
“ 700 %]!
i leJed 1dojes |1
“ ° ™ '
' ™ ™ I
| ° ° '
! |
1 1
! |
“ 207 % | !
A! sjnsa. AJ spow X3 AJ
lened 1QJojes

Z uonied
Z |)nsal

Z uonied
G |)nsal

| uonied
Z | nsal

result 1_2 (list of

unique words)

| uonied
ml_\ jJ|nsal

Z uonied
G |)nsal

Z uonied
L7 Jnsel

result 1_5 (list of incorrectly translated

words)

| uonied
G | ynsal

| uonied
|})nsal

result 1_1 (list of

non-words)

9¢ Ol
[ttt ettty !
i 201 06
_ s)nsal Au Spow X3
lenJed 17dJo1es
m ° °
1 ® o
" ° ™
“ 201 06
s)nsal Au Spow X3
lenJed 1@ Jo9s

m (eJedwod) G| yse)

Z uoljed
¥ |)nsel

Z uoljed
Ejep

| uopiped
¥ | Jnsal

| uopiped
ejep

result 1_4 (retranslated data)

data 92

PCT/US2014/044869

WO 2015/002878

35/51

result 3 (specific translated words/phrases)

translated words)

— >
6¢ 91 3
3
G
0] Synsau AU B
~
8¢ Ol
o | [08
sjnsa. AL spow X4
[eped 100)es
® °
° °
° °
201 06
sjnseu AL spow X3
lened 1040198
w | [%
s)|nsa. AJ spow X3
|erped 1dJ0Jes

(sesesyd

/SpJom 214198ds pajejsuel) € yse)

result 1_6 (list of errors due to

non-words)

result 1_2 (list of unique words)

¢ Uoiew.ojul Jnsa.

Z uoljied
¢ |insal

Z uopied
€})nsal

| uopied
€})nsal

result1 3

result 2 (specific words/phrases)

result 1_1 (list of non-words)

result 3 (specific translated words/

phrases)

result 2 (specific words/phrases)

Z uonJed
ejep

g uoped
ejep

| uonied
ejep

data 92

L€ 'Ol
“-----H-----------mvlm
I ¢0l
| synsau Al spow X3
@ lejed 1d4Jojes
! ® °
1 o L
!) 0
“ 200 06
A,ﬁw sjnsal AWL spow X3
| efJed 10Jo1es
m
1 —_— —
¢0l 06
s)nsal AWJ Spow X3
[eped 1djo3es

(saseiyd/spJom o1j198ds) g Se)

PCT/US2014/044869

36/51

907 Ol

WO 2015/002878

7-N109lgo | [¢-Njoelqo 1-N1slqo | | | | v} 3080 ¢-| 100lqo b= 109fgo | |
2oueusno.d 2oueusno.d aoueusnosd | | | | ®oueusno.d 2oueusro.d aoueusaod | |
A A Z-N108[qo A | ¢-| j08[qo A A _
soueusAoid _ soueusAoid |
_ _
JAONXANI | JAONXANI | FAONXANI | FAONXANI _ " JAONXANI | FAONXANI | FAONXANI | FAONXANI _
| (11) _ |
/ \ / \ | / \ / \ _
JAONXANI | JAONXANI " " JAONXANI | JAONXANI "
/ | _ / |
JAONXANI " " JAONXANI "
N Xopul [ealydJelaly pasiadsip " __ | Xopul [ealyo.essly nm&maw_n_
8/€ 97Is eJep
0/€ ojul Jols
y7€ uonesilan Ajubajul jsel Jo swi YOy ©I4
— CIE ol Abayu Ze8 Jun §GE oJul oueusold
0% mﬁ_:coe Buisseoo.d g S6101S %
89¢ sl Jiun abeio}s s09ls
99€ @m0} i g0v "oOld ° —»| 0GE a|npow
¥9€ usHLM swi o 3| Buissaooud g
<9t Q1 e1ep ZG¢ Jun ww%w
— L le—— $G¢ elep
09¢ 108(q0 soueuaA0.d obelols [gGE ol soueusnoid

PCT/US2014/044869

WO 2015/002878

37/51

aov Ol

108(qo soueuUsA0Id BUY) YIM pajeloosse
Aijus ue apnjsul 0) Saxapul [BaIYD.eIBIY
pas.iadsip aJowW Jo U0 paluspl 8y} ajepdn

& f

105[qo soueUBA0Id BY) YJIMm Pa)eIDoSSE Saxapul
[eaIydJeIBIY pasladsip aiow Jo suo Ayjuapl

[’
)
[ap’

1

NSQ 8y} ul 198(qo soueuanoud sy} 810js

1

(o0
O
(ap]

uonewJojul sdueusAotd
ay) Buisn j08[qo soueusacid e sjelsush

1

[{=]
SO
[ap’

NS 8y} Ul ejep ay) Jo abelojs
0) SpJeBal yIm NSQ 9U) JO safiue NSQ SJow
JO BUO WOJ} UOIBWLIOJUI DOUBUSACI UIR)qO

78 1

NSQ Y} Ul ejep ay) Jo abeiojs aje))jioey
0] NSQ @Y} 0] sjsenbal 801jS S)LM enss|

403 1

NSQ e Ul 86e.0}s 1o} ejep aAle0a)

[’
SO
[ap’

)

PCT/US2014/044869

WO 2015/002878

38/51

b¥ Ol

uosLedwod
8y uo paseq Jodis [enusjod e Aluspl

807 1

uonewJoyul
aoueuanold Jayo 0] Jlun 8belo)s By YiIm
Pa1eId0SSE Uoljelwoul soueusacld aiedwod
‘sjiun abeJojs Jo 39S 8y} Jo Jiun abelo)s Yyoes Jo}

50 1

uonewJoyul
goueuaAold ay) sepnjoul jey; sjoslqo
99UBUBA0Id BJOW IO BUO $$B39E 0} SASY Xapul
8JoW Jo 8Uo 8y} Buiziin saxapul [eslyd.essly
pas.JadsIp 8JoW JO SUO paluspI By} S$830E

vop 1

uonewJoul 8oueusA0sd ay) Yim
pajeInosse shay xapul aiow Jo suo sjessusb

a0y 1

NSQ € o sjiun abeJo)s Jo 18S e 10} uoljewojul
99UBUBA0Id U)IM PBJEID0SSE SaxXapuUl
[eaIydJeIBIY pasladsip aiow Jo suo Ayjuapl

w f

PCT/US2014/044869

39/51

WO 2015/002878

vy Ol

ZGE Jun
obelo)s

obelo)s

2 19S 90I[S parsLal 2108 90I[S

ZGE Jun
obelo)s

2 19S Jlun abelois

_
_
_
_
_
_
— _
¢ge un P
_
_
_
_
_
_

(0157

Ziyonpow €&~ —_—————
—
9npow .0)s

917 elep anolpl e

PaJBA028l

ZGE Jun
obelo)s

_

_

_

_

_

_
||||||| A = <
| JOS 99I|S panalel ¢gg un
abelo)s

—_—————

| 10S 80I|S

obelo)s

_
_
— _
¢ge un _
_
_

| 18S Jlun abelo)s

PCT/US2014/044869

WO 2015/002878

40/51

g¢v Ol

Ejep
ay) eonpoidal 0) SBDI|S B)ep PapooUS PaAsLel
JBY]0 O JBqUINU ploysaly) 8poosp e 8poosp

orr 1

S90I|S BJep pepoous
10 S19S JOLU IO OM] BU) JO JBYJOUR 10B]8S

(37

0] S90I|S B)ep POPOOUD PaAdL)al JO
JaquINU pjoysaly) spoosp e spoosp

Ejep ay) sonpo.dal

a|qeAsL)el

37

9|qeAsL)al BJe $9II|S BJEP PAPOIUS JO JS
Pa199]9s 8U} JO $89I|S BJEp PapOIUS JO Jaquinu
P|OYSaIY} 8P0I3P B JSed)| JE Jay)aym aulwlslep
7E7 ¥
$89||S BJep

PBPO2US JO S}BS SJOW JO OM] BU) JO BUO }09|8S
1a%] ¥

$89I|S BJep pepooUs JO $)OS
aJow Jo om) Ajnuspl Juswbas ejep yoes Joj

%7

YEEY

S92I|S BJep papoous JO SJaS puodas pue Jsll sy}
10 abeloys o) spJebal yim Alojoalip e pue xapul
[e2IyDJRIBIY pasiadsip e o sJow Jo suo sjepdn

247 1

18S Jlun abelo)s puodss
B Ul $89I|S Blep papoous JO 18S pu0das ay) a10)s

9y 1

$89||S BJEP POPOOUS JO 189S PUOISS B
aonpo.d 0) sisjoweled |esiadsip JO 189S pu0IssS
e Buisn ejep ay} Jo uonejussaldal syj spoous

247 1

Ejep ay} Jo
uonejuasaldal e aonpoid 03 ejep 8y} WIOJSUE.)

447 1

19S Jlun abel0)S 18.1)
B Ul $89I|S Blep papoous O 18S 18.1) 8Y) 81018

<

147 T

$89||S BJep
papOoUS JO 18S Jsi1} B 8onpoud 0) sisjeweled
|esJadsip Jo 18S 1sJ1} B Buisn ejep apodus

|

e

210)8

PCT/US2014/044869

Vey "Old

41/51

WO 2015/002878

.................................... _
| |
! !
] — >
! RSED
! | paioncoal
|
| " _ 7P fue
“ " 9gy BuinaLyal
“ 1 uonouny wied
» |
sbuidnosb “ 78 Buissaoid = |
90lls X ejep pejnuied ! unoqul le— | .
—— m 13Q punoqu = senusad sweu [€ | =% oWeU ejep
097 sisenbai sols | o]
_ Weu ejep "
" pajnwied "
| |
!]
| —— |
“ By P
_ | | N1 soweu epep pojnuused | seInuued B | ZGY Bweu ejep
ZZ ainpow N1Sd ! =5 ollIeU Ej2p “
|
_ “
m P §g buisssoo.d < "
< sbuidnoub | 1S@punogino | N v1vany3ad 5 m 77 Apue
| ® H
991|S N ejep pajnwiad “ w . semnued m Buols
i P 0g Buisseooud < ® ejep “
< sbuidnoib r | | Lsa punogino [*} v1vamyad “
901|S | EJEp penwied " “
< " P 0g Buissaeoo.d !
96 sbuidnoib eoys ! 1S@ punogino |~ 75 eyep | Z6eep
! ¥€ ainpow jusiid0 1A}
b o o o o - ———— - ——— - .

PCT/US2014/044869

WO 2015/002878

42/51

EJep pasenodal aonpold 0} uonouny
Buipoo Jouse abelo)s pasiadsip sy Buisn

NS ayj woly buidno.b s21is ejep ayj apossp

97 1

NSQ 8y} woJ; buidnolb 891is ejep e aAI8dal

il 1

aWeu ejep panwJad

aY) Uo paseq NS 8y} 0} sjsenbal 8o1|s anss

:id 1

aWeu ejep panwJad

€ 8onpoud 0} uonoun} uolenwlad pajesipul

ay) Buisn aweu ejep paaivdal ay) synwiad

8

s

087 1

BlleU BJEp B U)IM PaJRID0SSe Blep pue

ejep panwiad Buipuodsaliod Jo uo ises| je
Buinslial 0) spJebal y)im uonouny uolejnwiiad

PeIEDIpUI UE pue BWeU Bjep B 9AI808)

8.

e

g¢v Ol

Buidnoub 991s pajnuiiad
B} YJIM pajeloosse sweu ejep pajnwad
e 0} bulpuodsauod ssalppe NS Jayjoue

YEEY

Buisn NSQ 2y} ul Buidno.b s91s pejnuiiad
ay} 841038 ‘Buidnoub 891|s pajnwiiad yoes Joy

oIy 1

aWeu ejep ayj 0} buipuodsa.i0d ssaippe
NSQ e Buisn NS e ul Buidnolb 801js ayj 810)8

vy 1

sbuidnoub 891s pajnwiad Buipuodssliod
aonpo.d 0} ejep psjnwJad yoes spoous

2k} 1

Buidnosb
99I|s e 9onpo.d 0} uonouny BuIpod JoLs
abelo)s pasiadsip e Buisn ejep ay) spoous

o
F—
<

1

Ejep
panwiad Bulpuodsaliods aonpold o) ejep ay)
gnwuad ‘suonouny uoneinwlad ayj Jo yoes Joy

Q)
<

a5y 1

solweu ejep pajnwiad sonpoud 0} suonouny
uonjeinwiad sy} Uo paseq aWeu ejep e ajnwiiad

<

957 1

suoljoun; uoneinwiad uielqo

210)8

PCT/US2014/044869

WO 2015/002878

43/51

¢ @inpow N1Sd

Vv "Old

ZGp olWeu ejep

00G Aua
Bunsanba.

]
| [}
| [}
< “ 08 Buissasoud ¢ !
Buidnoib ! 1S@ punogino 205 “
201S X ejep panuwued \ ejep peynuied !
m 3C¥ sWeu ejep pajnuiad m
“ (177 P "
“ Jgynwiad sweu @ " [T
" 7y I uonouny wiad
[} [}
[}
“ Y %7 m
" Januiad " — >
| > B I Nom
— T _ ”—m—u |
6 sbuidnoib sol)s ! 78 Buisss00id = > , EJep pajnwuad
! 26 Ejep !
t | 1sapunoqu “
B 007 S1senbou 89S W _
m “
' 1
1
[} 1
“ |

PCT/US2014/044869

WO 2015/002878

44/51

ssaippe NSQ elep painwdad ay) Buisn NSQ
ayj ul Buidnoub s21js ejep panwiad a8y} 810js

[c0]
—
Lo

1

aleu ejep panwiad ay)
Buisn ssaippe NS elep pajnwiad e sjelsush

|
LO)|

r 1

Buidnoub 891|s ejep pajnwiad
e 8onpoud 0} ejep pajnwiiad sy} spoous

<t
-—
LO)|

1

alWeu ejep
painwiad e sonpoud 0} uonoun} uorjenwJad
U} UO paseq ejep ay} Jo sWeu ejep e gjnuiiad

g 1

uoljoun}
uonjelnwiad e uo paseq ejep ay) sjnwiiad

O
—
Lo

1

NSQ 8y} Ul paiols Sal[s oY) WoJ] ejep
BU) JoA022) ‘NS 8y} Ul PaIo)s S89I[S By} WoJj
9|qeJIoA008] 10U SI BIEP paInuied ay) usym

O
[/
Lo

1

NSQ 8U1 Ul paiols S80IS L0J] B|qBIoA008)
sl ejep panwied ay) Jay)eym suILIBIep

(=
[
Lo

1

NS(Q e ul pai0}s
EJep Jo ejep panwiad Jo} Jsenbal e aAigo8l

s f

avv Ol

PCT/US2014/044869

WO 2015/002878

45/51

VSp "Old

ZG 10S Jlun uonnaaxe 18Q

[ses]|
gun X3 1sd g 1sanbal 821|s Y08y
A _ 1 JolJo abelojs :papeys
Lun X3 18d J 1senbai 891|S %080
IR <
9lunx3 1sq g 1sanbal 801|S pesl
[goons |
guunx31sd B G 1senbai 821|s peal
[voous |
yiun X3 1sd B ¥ 1sanba. 891js peal
<€
enunx3 1sq ¢ 1s8nbal 991|S pes.
[zoos]
¢iun X3 1sd B Z 1sanbal 891js peal
| ER <
L 1IUn X3 1Sq | 1senbau 89)|s pesl

$26 1senbal
Eejep pea.

v

8-/ sjsonbal
901|S o8P

9-] sjsenbal
99I|s peal

78 Buissaoo.d | g punoqui

443}
10J03}9p
018

a8l
Buipodsp
Jols gQ

al

Buipoous
Jols gQ

08 Puissaso.id | §g punogino

€ ainpow jusiid 18q

PCT/US2014/044869

WO 2015/002878

46/51

ZG 10S Jlun uonnaaxe 18Q

g6y 'Old
[goons |
gun X3 1sd g asuodsal 89| ¥o8yd
7 _ 1 Jo1io abel0)s :papeys
Lyunx3 1Sd J 8suodsal 891|s ¥o8yd
[ooos | 78 Buissaoo.d | g punoqui
9IuN X3 1Sq 9 9suodsau 991|s pea. —
44
[ceos | LJHMHHMU)
Glun X3 1sd G asuodsal 821|s peal S| IS
8- sasuodsal an 7T
HEEE . 901S 082 ———— buipossp =
p3un X3 1S@ p osuodsal 991[s pea. - 9-| sesuodsal @wmmw__mw M soue g w%%%“wmcm
y 90I|S pea.
eNuN X3 1Sq ¢ 9suodsau 991|s pea.
[zeas] —
¢iun X3 1sd dsuodsal 821js peal mc_mww:m
lols
| ER Sa
L 1un X3 1S | osuodsel 891|s pes. 08 Buissaooid | 5@ punogno

€ ainpow jusiid 18q

PCT/US2014/044869

WO 2015/002878

47/51

8 90IIS

WADIE

gjunx31sd

4— JolJa abeloys :papeys

Lun X3 18d

9 90|IS

9jun’x31sd

G 9IS

guun X3 1sd

y 50IIS

yyunx31sd

gyun’x31sd

¢ 9IS

¢iun’x31sd

| 301IS

| Jun’X3 1sd

ZG 10S Jlun uonnaaxe 18Q

—_ A
026 1udwbas ejep

78 Buissaoo.d | g punoqui

443}
10J03}9p
018

a8l
Buipodsp
Jols gQ

0¢G Jusw

‘cs
resaiels | Sl e

L
47

Buipoous
Jols gQ

—

08 Puissaso.id | §g punogino

€ sinpow jusiid 15d

PCT/US2014/044869

WO 2015/002878

48/51

8 90IIS

asv ol

gjunx31sd

/ 9IS

Lun X3 18d

9 90|IS

/ 1s8nbal 891|s ajum

9jun’x31sd

G 9IS

guun X3 1sd

y 50IIS

yyunx31sd

€ 90IIS

gyun’x31sd

¢ 9IS

¢iun’x31sd

¢ 1s8nbal 891|S B)UM

| 301IS

| Jun’X3 1sd

ZG 10S Jlun uonnaaxe 18Q

78 Buissaoo.d | g punoqui

443}
10J03}9p
018

a8l
Buipodsp
Jols gQ

'€ sq| 801

0¢G Jusw
-Bas ejep

A 2

al

Buipoous
Jols gQ

—

08 Puissaso.id | §g punogino

€ sinpow jusiid 15d

PCT/US2014/044869

WO 2015/002878

49/51

EADIE

Juswbas ejep paonpoidal sy}
UO paseq 99I|s Bjep papoous Jjingal e sjessusb
‘J0JJ BY) SBPNJIUI $BI|S BJEP POPOIUS
10 Jaquinu Buiuiewsad sy} Jo U0 8y} UsYM

07 1

JolJs ue sapnjoul
$92I|S BJep papoous Jo Jaquinu Buluiewsy
U} JO BUO JBYJBYM BUILIBIBP 0) Sasuodsal
SNJejs 891|s JO Jaquinu Bulutewsu sy Jaidisyul

65 1

Juswbos
Ejep e aonpoudal 0} $89I|S EJep papoous
10 Jaquinu p|oYsa.y) 8podsp ay) apossp

9 1

$99I|S

EJep papoous Jo Jaquinu Buuiews. e Buipiebal

syun abeJols Jayjo 80w JO BUO W) sasuodsal
SNJe)s 891|S JO Jaquinu Bululewsa. e aAigdsl

Veg 1

sjun abe.o)s ay)
10 BWOS JSE9| 1B WOJ) 8suodsal Ul $0I1|s elep
PBpPOsUS JO Jagquinu ploysaiy) apoossp e dAI80a.

43 1

NS(Q e o sjun abeioys o} jsenbas Ainbul
Buip|ingaJ-peal e Jo suolejussaldal puss

= f

PCT/US2014/044869

WO 2015/002878

50/51

9%%
Anue NSQ

Vv "Old

009G sasuodsal
991|s abeyoed |gjsul

<€

§GG s)sanbal
991|s abeyoed |gjsul

GG S99I|S Xapul |[ejsul

GG 1senbau 801|s Xapul

795 Aowsw NSA

<

ZGG S90I|S Xapul [[eisul

<

GG s901|s abeyoed |jejsul

%S 8|npowl
uoneinBijuod

——

G 21eM)jos

PCT/US2014/044869

WO 2015/002878

51/51

Ryue
NSQ 9U} UILIM 8IeM0S SU) PUE UO[JBWLIOU|
uoneinBijuod sy} Jo 8UO ISES| Je BY) BjeAljoe

[’
Lo

6

1

abeyoed
|[BISUI BY} WOJ} SIEMIJOS BU) pUB UOIjew.ou!
uoneinBiyuod sy} Jo BUO JSes| e JoeIXd

(o0
O
Lo

1

abexyoed ||ejsul sy}
aonpoJdal 0} $891|s abeyoed ||ejsul 8y} 8poIsp

LO)|

9% T

sosuodsal 821|s abexoed ||ejsul aAIgo8l

785 1

NSQ 8y} 0} ssaippe NSd
ay} Buisn sjsanba. s01js abexoed ||ejsul anssi

785 1

Anue NSQ 8y
Jo} abeyoed ||ejsul Ue Y)im pajeldosse ssaippe
NSQ e Ajjuspi 0} Aiojoaulp NSQ € pue Xapul
[BOIYDIBIBIY POSIDdSIP B JO BUO ISBD)| 1B $$830E

085 1

Bunepdn saJinbai
8JEM}JOS JUB.LIND pue uoljewsoul uoneinbiuod
JUB.INJ JO BUO JSES| JE Jey) sulw.s)ep

497 Ol

$801|s abeyoed ||ejsul 8y} Jo Ssalppe

8L SYEEY

NSQ e pue Ajjue NSA 8yj jo Ayjusp jejoosse
0} Xapul [ealydJelslY pasiadsip e ajepdn

I 1

NSQ e Ul $821|s abeyoed |jejsul sy} 810)s

25 1

$991|s abeyoed
|leisul 8anpoJd o) uonouny Buipod Jols abeloys
pasiadsip e Buisn sbeyoed ||ejsul 8y} 8posus

uas 1

8/EM)JOS BY) pUE UoljewW.oul uolesnblyuod
8y} apnjoul 0} abexoed |[ejsul 8y} sjesausb

UL 1

LO)|

Ay)us NSQ Y} 10} BIEMJOS UlE)qo

898 1

Ryue
NSQ 8y} Jo} uonew.oul uoieinbiuocd sjessushb

958 1

Aypue NS au Auap!

7% 1

Aus NS
e Jo} abeyoed ||ejsul ue apiaoid 0} sulwIs}ep

¢9%
210)S

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2014/044869

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOBC 25/02 (2014.01)
CPC - HO4L 1/1809 (2014.09)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC -714/699, 746, 748, 763

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - GO8C 25/02; HO4L 1/18; G11C 29/00; HO3M 13/00 (2014.01)

CPC - HO4L 1/18089, HO4L 1/1812, 1/1887, 1/1819 (2014.09)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Orbit, Google Patents, Google Scholar

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2013/0151927 A1 (LEGGETTE et al) 13 June 2013 (13.06.2013) entire document 1-16
A US 2007/0002946 A1 (BOUTON et al) 04 January 2007 (04.01.2007) entire document 1-16
A US 2007/0074266 A1 (RAVEENDRAN et al) 29 March 2007 (29.03.2007) entire document 1-16

D Further documents are listed in the continuation of Box C.

[

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

05 October 2014

Date of mailing of the international search report

19 NOV 2014

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandnia, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer;
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - drawings
	Page 107 - drawings
	Page 108 - drawings
	Page 109 - drawings
	Page 110 - drawings
	Page 111 - drawings
	Page 112 - drawings
	Page 113 - drawings
	Page 114 - drawings
	Page 115 - drawings
	Page 116 - drawings
	Page 117 - drawings
	Page 118 - drawings
	Page 119 - drawings
	Page 120 - drawings
	Page 121 - drawings
	Page 122 - drawings
	Page 123 - drawings
	Page 124 - drawings
	Page 125 - drawings
	Page 126 - drawings
	Page 127 - drawings
	Page 128 - drawings
	Page 129 - drawings
	Page 130 - drawings
	Page 131 - drawings
	Page 132 - drawings
	Page 133 - drawings
	Page 134 - drawings
	Page 135 - drawings
	Page 136 - drawings
	Page 137 - drawings
	Page 138 - wo-search-report

