Title: DNA APTAMERS BINDING THE HISTIDINE TAG AND THEIR APPLICATION

Abstract: A DNA aptamer was obtained which has an affinity for His-tag, and contains a nucleotide sequence selected from SEQ ID No. 1 and SEQ ID No. 2, which has clear applications.
DNA aptamers binding the histidine tag and their application

The invention described below involves unique nucleotide sequences of single-stranded DNA aptamers binding a histidine tag and their application.

Prokaryotic and eukaryotic cells are often used as efficient expression systems for the production of recombinant proteins. To obtain proteins which are of satisfactory purity and quality affinity chromatography methods are very often employed. An example of such chromatography is immobilized metal affinity chromatography (IMAC). To use this technology a short histidine tag (His-tag), composed usually of six successive repetitions of histidine residue must, be fused with the target protein. The His-tag can reversibly bind to certain metal ions (e.g. cobalt, copper, nickel and zinc). Using an appropriate carrier containing one of these ions the purification or immobilisation of His-tag proteins is possible. A His-tag attached to recombinant proteins can be used to detect them by the western blotting technique, using mono- or polyclonal antibodies directed against the tag. This protein detection system can be used in other in vitro techniques which are used to study interactions between proteins, such as pull down, co-immunoprecipitation or Far Western blotting.

DNA aptamers are defined as single-stranded deoxyribonucleic acid molecules of about 40-100 nucleotides in length, which have the ability to bind a ligand with high specificity and affinity. The rich secondary and tertiary structures of the aptamer mean that the matching of a selected aptamer with a target molecule is optimal.

The objective of this invention is to provide a new method for the identification of molecules containing a histidine tag, in particular through the provision of new molecules with a strong affinity for a molecular target containing a histidine tag, or any molecule (e.g., peptide, protein, DNA derivative) containing a histidine hexamer.

The technical aim specified above may be implemented in accordance with the discussed invention.

The subject of the invention is DNA aptamer with an affinity for a
His-tag, with the following nucleotide sequence of SEQ ID NO. 1:
5′-GTTTGCCGGTGGGCCAGGGTCTGCTCGGGATTGCGGAGGAACATGCGTCGCAAAC-3′ hence forth called "aptamer Al";
or the nucleotide sequence SEQ ID NO. 2:
5′-GTTTGCCGGTGGGCCAGGGTCTGCTCGGGATTGCGGAGGAACATGCGTCGCAAAC-3′ hence forth called "aptamer Bl".
The invention allows, some variation in DNA sequences, provided that their affinity for the peptide or protein containing the His-tag is retained, and permits the selective purification of His-tag proteins from a mixture of several proteins. In particular, the scope of the invention covers variants of the above sequences which differ in at least one purine or pyrimidine base.
Another subject of the invention is the use of oligonucleotides with one of the sequences defined above for the preparation of molecules with an affinity for molecular targets, which contain a His-tag. The use may be as follows:
- for use as an agonist for antibodies directed against the His tag,
- to detect molecular targets containing the His tag,
- to purify molecular targets containing the His tag,
- to bind molecular targets containing the His tag,
- to analyze the concentration of molecular targets containing the His tag.
In particular, these oligonucleotides may be used in the form of molecules with attached tags, e.g. a fluorescent tag to label the molecular targets possessing the His-tag.
These types of molecules can be used for example, to monitor interactions between proteins using spectroscopic techniques known to specialists such as FRET (Forster resonance energy transfer) or BiFC (bi-molecular fluorescence complementation).
The following may further clarify features of the invention:
Figure 1 shows binding between a protein containing a histidine tag and an aptamer. Lanes: 1) protein marker, 2) His-PCNA protein incubated with Bl aptamer, 3) PCNA protein incubated with Bl aptamer, 4) His-PCNA protein incubated with a reference aptamer, 5) PCNA protein incubated with a reference aptamer. The samples were subjected to SDS-PAGE and then the proteins were stained in Coomassie Brilliant Blue R-250.
Figure 2 shows the purification of a His-tag protein from an *E. coli* protein extract. Lanes: 1) protein marker, 2) 40 mg of *E. coli* protein extract 3) His-PCNA protein purified with the help of the Bl aptamer. The samples were subjected to SDS-PAGE and then the proteins were stained in Coomassie Brilliant Blue R-250. Figure 3 presents the result of an ELISA test where the detection of recombinant protein containing the His-tag was done using a Bl aptamer. The data show the averaged result from three independent experiments.

This description is supplemented by the working examples quoted below. They do not represent the full scope of this invention.

Example 1. Development of DNA aptamers with an affinity for His-tag.

Research into development of DNA molecules which have an affinity for molecular targets containing a His-tag, showed that DNA aptamers containing one of the following sequences have strong affinity:

\[
5'-\text{GTTGCGGTGAGAGCCTCGTCGGGATTGCGGAGGAACATGCGTCGCAAAC-3} \quad \text{(SEQ ID. No. 1)},
\]

\[
5'-\text{GTTGCGGTGAGAGCCTCGTCGGGATTGCGGAGGAACATGCGTCGCAAAC-3} \quad \text{(SEQ ID. No. 2)},
\]

The invention allows DNA molecules to be obtained by any routine DNA synthesis method known to specialists.

To provide an example oligonucleotide molecules were obtained using chemical synthesis techniques in the solid phase (Zlatev, I., Manoharan, M., Vasseur, J.-J. and Morvan, F. Solid-Phase Chemical Synthesis of 5'-Triphosphate DNA RNA , and Chemically Modified Oligonucleotides. Current Protocols in Nucleic Acid Chemistry. 2012; 50:1.28.1-1.28.16.)

The aptamer A1 and B1 molecules obtained with the sequence above defined, a length of 60 nucleotides, and respectively synthesized in amounts of 641 and 612 micrograms were verified by the HPLC method. DNA molecules with these sequences may be subject to additional modifications. In particular, they may be used coupled with known dyes (e.g., fluorescent ones) or other molecules (e.g., biotin).

Example biotinylated aptamers A1 and B1, in amounts of 477 and 459 micrograms, were obtained by the automated synthesis of biotinylated oligonucleotides at 5'end. (Pon, R.T. A Long Chain Biotin Reagent for Phosphoramidite The Automated Synthesis of 5' - Biotinylated Oligonucleotides. Current Protocols in Nucleic Acid Chemistry. 2012; 50:1.28.1-1.28.16.)
Oligonucleotides, Tetrahedron Lett. 1991; 32: 1715 - 1718). The products were verified by the HPLC method.

Example 2. Binding of the His-tag protein to an aptamer bound chromatographic resin.

Ten mL of 50% agarose coupled streptavidin was placed in a 1.5 mL Eppendorf tube and washed with distilled water. Then it was washed three times with a BW buffer (17.5 g/L NaCl, 50 mM phosphate buffer NaH2PO4/Na2HP04, 0.1% (v/v) Tween 20, pH 7.5). Next, the resin was suspended in 300 µl of a BW buffer containing 20 mg of 5'-biotinylated either B1 or a reference aptamer with the (ACTG)x10-GAGGAAC ATGCGTCGCAAAC sequence. The samples were incubated at room temperature for 1h. After incubation, the resin was washed three times with the BW, followed by two washes with an AS buffer (137 mM NaCl, 12.7 mM KCl, 10 mM Na2HP04, 2 mM KH2PO4, 5 mM MgCl2, 0.1% (v/v) Tween 20, pH 7.4). After the last washing, the resin with the bound aptamer was suspended in 300 µl of the AS buffer, and the recombinant human PCNA protein was added, to a final concentration of 0.13 mg/ml. In this experiment, two variants of the PCNA protein were used: a) with His-tag and b) without His-tag. The resin with the protein was incubated at room temperature for 1h. After incubation it was washed four times with the AS buffer, suspended in a GLB buffer (50 mM Tris-HCl, 2% SDS (w/v) bromophenol blue 2% (w/v), 10% glycerol, 200 mM β-mercaptoethanol, pH 6.8) and incubated for 5 min at 95°C. The resulting sample was subjected to SDS-PAGE (Laemmli method). After separation the proteins were stained using Coomassie Brilliant Blue R-250 dye. The results are shown in Figure 1.

Example 3. Purification of His-tag protein from a protein cell extract.

Ten µl of 50% agarose coupled streptavidin was placed in a 1.5 mL Eppendorf tube and washed with distilled water. Next, it was washed three times with a BW buffer (0.3 M NaCl, NaH2PO4/Na2HP04 50 mM phosphate buffer, 0.1% (v/v) Tween 20, pH 7.5). The resin was suspended in 300 mL of the BW buffer containing 20 mg of 5'-biotinylated B1 aptamer and incubated at room temperature for 1h followed by three washes with the BW buffer and two with an AS buffer (137 mM NaCl, 12.3 mM KCl, 10 mM Na2HP04, 2 mM KH2PO4, 5 mM
MgCl₂, 0.1% (v/v) Tween 20, pH 7.4). After the last washing, the resin with the bound aptamer was suspended in 300 μl of the AS buffer. Next, the total protein extract prepared from E. coli cells overexpressing human recombinant His-PCNA protein was added to a concentration of 2.0 mg/ml. The resin was incubated at room temperature for 1h. After incubation, the resin was washed four times with the AS buffer. The His-PCNA was eluted with the help of an elution buffer (50 mM Tris, pH 7.5). The eluted proteins were mixed with a GLB buffer (50 mM Tris, 2% SDS (w/v), 10% glycerol, 200 mM β-mercaptoethanol, pH 6.8) and incubated for 5 min at 95°C. The resulting sample was subjected to SDS-PAGE (Laemmli method). After separation the proteins were stained using Coomassie Brilliant Blue R-250. The results are shown in Figure 2.

Example 4. His-tag protein detection using the ELISA method.
A 96-well ELISA plate was coated with human PCNA protein (0.5 mg protein/well). In the experiment, two variants of the protein PCNA were used: a) with His-tag and b) without His-tag. The protein was bound to the plate for 16h at 4°C. Then, the plate was washed three times with an PBST (1x PBS containing 0.5% (v/v) Tween 20) buffer. Next, the plate was blocked in 1x PBS buffer containing 2% (w/v) bovine serum albumin for 2h at room temperature. In the following step the plate was washed three times with the PBST buffer and incubated with 5' biotinylated B1 or the reference aptamer in an AS buffer (137 mM NaCl, 12.3 mM KCl, 10 mM Na₂HP0₄, 2 mM KH₂P0₄, 5 mM MgCl₂, pH 7.4, 0.1% (v/v) Tween 20) for one hour at room temperature. The final concentration of the aptamer was 0.01 mg/ml. After incubation the plate was washed three times using the PBST buffer and the plate was incubated with streptavidin coupled horseradish peroxidase (1:200 dilution in PBS buffer) for 40 minutes at room temperature. The plate was washed again three times with the PBST buffer, and then a horseradish peroxidase substrate was added to the wells. When the colour blue appeared, the reaction was stopped with 1M of H₂SO₄ and the absorbance was measured at a wavelength of 450 nm. The results are shown in Figure 3.
Claims

1. A DNA aptamer characterized by an affinity for His-tag, containing a nucleotide sequence selected from SEQ ID No. 1 and SEQ ID No. 2

2. The use of oligonucleotides comprising one of the sequences identified in claim 1 for the preparation of molecules characterized by an affinity for molecular targets comprising the His-tag, in particular:
 - for use as an agonist for antibodies directed against the His-tag,
 - for the detection of molecular targets containing the His-tag,
 - for purifying molecular targets containing the His-tag,
 - for binding molecular targets containing the His-tag,
 - for determining the concentration of molecular targets containing the His-tag.
A. CLASSIFICATION OF SUBJECT MATTER
INV. C12N15/115

According to International Patent Classification (IPC) into both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

C12N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic database consulted during the international search (name of database and, where practicable, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 2005/024042 A2 (UNIV CALIFORNIA [US]) 17 March 2005 (2005-03-17) page 40 - page 44; claim 7</td>
<td>1, 2</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 * "A" document defining the general state of the art which is not considered to be of particular relevance
 * "E" earlier application or patent but published on or after the international filing date
 * "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 * "O" document referring to an oral disclosure, use, exhibition or other means
 * "P" document published prior to the international filing date but later than the priority date claimed
 * "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 * "X" document of particular relevance; the claimed invention cannot be considered without it
 * "Y" document of particular relevance; the claimed invention cannot be considered without it
 * "S" document member of the same patent family

Date of the actual completion of the international search: 29 August 2014
Date of mailing of the international search report: 08/09/2014

Authorized officer: Pi ret, Bernard
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>XIAOHONG TAN ET AL: "Molecular Beacon Aptamers for Direct and Universal Quantitation of Recombinant Proteins from Cell Lysates", ANALYTICAL CHEMISTRY, vol. 84, no. 19, 2 October 2012 (2012-10-02), pages 8272-8276, XP055137094, ISSN: 0003-2700, DOI: 10.1021/ac301764q the whole document</td>
<td>1, 2</td>
</tr>
<tr>
<td>X</td>
<td>JOHANNA-GABRIELA WALTER ET AL: "Systematic Investigation of Optimal Aptamer Immobilization for Protein Microarray Applications", ANALYTICAL CHEMISTRY, vol. 80, no. 19, 1 October 2008 (2008-10-01), pages 7372-7378, XP055063464, ISSN: 0003-2700, DOI: 10.1021/ac801081v the whole document</td>
<td>1, 2</td>
</tr>
</tbody>
</table>
DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>MIRIAM LÜBBECKE ET AL: "Aptamers as detection molecules on reverse phase protein microarrays for the analysis of cell lysates", ENGINEERING IN LIFE SCIENCES, vol. 12, no. 2, 25 April 2012 (2012-04-25), pages 144-151, XP055137099, ISSN: 1618-0240, DOI: 10.1002/el.sc.201100100 the whole document</td>
<td>1,2</td>
</tr>
<tr>
<td>X</td>
<td>CN 102 719 430 A (UNIV HUNAN) 10 October 2012 (2012-10-10) the whole document</td>
<td>1,2</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2009075834 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2005024042 A2</td>
</tr>
<tr>
<td>CN 102719430 A</td>
<td>10-10-2012</td>
<td>NONE</td>
</tr>
</tbody>
</table>