WO 2005/105785 A2

Title: NOVEL INDOLE DERIVATIVES

Abstract: 5-vinyl-indole derivatives are chemical uncouplers useful e.g. for the treatment of obesity.
NOVEL INDOLE DERIVATIVES

FIELD OF THE INVENTION

The present invention provides novel 5-vinyl-indole derivatives, which are effective in increasing the mitochondrial respiration and may thus be useful in the treatment of obesity and related diseases and states.

BACKGROUND OF THE INVENTION

Obesity is a well-known risk factor for the development of many very common diseases such as atherosclerosis, hypertension, type 2 diabetes (non-insulin dependent diabetes mellitus (NIDDM)), dyslipidemia, coronary heart disease, and osteoarthritis and various malignancies. It also causes considerable problems through reduced motility and decreased quality of life. The incidence of obese people and thereby also these diseases is increasing throughout the entire industrialised world.

The term obesity implies an excess of adipose tissue. In this context obesity is best viewed as any degree of excess adiposity that imparts a health risk. The cut off between normal and obese individuals can only be approximated, and the health risk imparted by the obesity is probably a continuum with increasing adiposity. In the context of the present invention, individuals with a body mass index (BMI = body weight in kilograms divided by the square of the height in meters) above 25 are to be regarded as obese.

Even mild obesity increases the risk for premature death and conditions such as diabetes, dyslipidemia, hypertension, atherosclerosis, gallbladder disease and certain types of cancer. In the industrialised western world the prevalence of obesity has increased significantly in the past few decades. Because of the high prevalence of obesity and its health consequences, its prevention and treatment should be a high public health priority.

Except for exercise, diet and food restriction, which is not feasible for a vast number of patients, no convincing treatment for reducing body weight effectively and acceptably currently exist. However, not only in view of the considerable problems directly related to obesity as described above, but also due to the important effect of obesity as a risk factor in serious and even mortal and common diseases, it is important to find pharmaceutical compounds which are useful in prevention and/or treatment of obesity.

When energy intake exceeds expenditure, the excess calories are stored predominately in adipose tissue, and if this net positive balance is prolonged, obesity results, i.e. there are two components to weight balance, and an abnormality on either side (intake or
expenditure) can lead to obesity. This process may be counteracted by increasing the energy expenditure (for instance via exercise) or decreasing the energy intake (for instance by dieting). Pharmacological treatment available up to date only consists of Sibutramine (acting via serotonergic mechanisms, Abbott) and Orlistat (reducing fat uptake from the gut, Roche Pharm). There is therefore a need for pharmaceutical compounds which may be useful in prevention and/or treatment of obesity, for instance by increasing the energy expenditure or decreasing the energy intake.

One way of increasing energy expenditure is by increasing the metabolic rate. By the oxidative phosphorylation in mitochondria, the energy from glucose metabolism and free fatty acids oxidation is used to drive the phosphorylation of ADP to ATP. When NADH and FADH$_2$ formed in the TCA cycle are oxidised back to NAD$^+$ and FAD respectively, protons are pumped out of the mitochondrial matrix. The resulting pH gradient (matrix pH~8 and outside pH~7) and potential (~170 mV, inside negative) across the inner mitochondrial membrane constitute the electrochemical proton gradient. As the effect of a one-unit pH difference corresponds to a potential of 61.5mV, the electrochemical proton gradient exerts a proton-motive force of roughly -230 mV, which is the driving force for the mitochondrial ATP synthesis.

When the ATP consumption increases, the cells respond by increasing the ATP synthesis and consequently the inward flux of protons through the ATP synthase, the enzyme responsible for ATP synthesis and thereby the metabolic rate is increased. Chemical uncouplers are compounds, which can transport protons across membranes, and when protons are transported across the inner mitochondrial membrane, the ATP synthase is bypassed. At the (alkaline) matrix side the proton is released and the deprotonated uncoupler returns to the inter-membrane space where it picks up another proton. The cycling of the uncoupler (or ATP synthesis) and the resulting proton transport leads to an increased outward pumping of protons through an increased oxidation of NADH and FADH$_2$ by the respiratory chain. The NADH concentration in the matrix will consequently drop. Since NADH feed-back inhibits three steps in the TCA cycle (NADH is the main regulator of the TCA cycle), the flux through the TCA cycle will increase. Hence, the metabolic rate increases.

Compounds, such as chemical uncouplers, which act by increasing the metabolic rate may thus be useful for treating obesity, but also for treating other conditions such as atherosclerosis, hypertension, diabetes, especially type 2 diabetes (NIDDM (non-insulin dependent diabetes mellitus)), dyslipidemia, coronary heart disease, gallbladder disease, osteoarthritis and various types of cancer such as endometrial, breast, prostate and colon can-
cers and the risk for premature death as well as diseases which are closely connected to
obesity, and conditions which are improved by a reduced mitochondrial potential.

Furthermore, chemical uncouplers may reduce reactive oxygen species (ROS) that
are assumed (De Grey et al, Eur J. Biochem 269, 1995 ff (2002)) to be involved in the aging
process, in damage of heart tissue as well as neuronal tissue. It is therefore also possible
that conditions affected by ROS may be reversed or halted by intervention of chemical un-
couplers.

The best known chemical uncoupler is 2,4-dinitrophenol (DNP), which has been
shown to increase energy expenditure in humans as well as animals. The side effects at
higher doses include increased perspiration, increased body temperature, vasodilatation,
skin rashes, cataracts, neuritis and death! Two fatalities amongst the first persons treated
with DNP combined with the fact that the lowest dose which could be lethal, is only twice the
average dose giving a desired 50% increase in basal metabolic rate giving a very narrow
safety window, led to the removal of DNP from the market. Since then nobody have at-
ttempted to develop or market uncouplers for the treatment of obesity.

DNP is the best known chemical uncoupler; but many other compounds are known
to induce uncoupling. DNP derivatives such as 4,6-dinitro-o-cresol (Victoria Yellow) and 2,4-
dinitro-1-naphtol (Martius Yellow) as well as structurally unrelated compounds such as 2,6-di-
-t-butyl-4-(2',2'-dicyanovinyl)phenol (SF6847) (also known as 2-(3,5-di-tert-butyl-4-hydroxy-
benzylidene)-malononitrile), carbonylcyanide m-chlorophenylhydrazone (CCCP) and carbon-
ylcyanide p-trifluoromethoxy-phenylhydrazone (FCCP) (Miyoshi H et al. Quantitative relea-
sionship between proterophoric and uncoupling activities of analogs of SF6847 (2,6-di-t-
butyl-4-(2',2'-dicyanovinyl)phenol), Biochimica et Biophysica Acta 881, 293-299 (1987)) are
uncouplers.

Another class of chemical uncouplers is the salicylanilides of which S-13 is the most
potent compound discovered so far (Terada H et al. Structural Requirements of Salicylanil-
ides for Uncoupling Activity in Mitochondria Quantitative Analysis of Structure- Uncoupling
Relationships, Biochimica et Biophysica Acta 936, 504-512 (1988)).

WO00/06143 to Texas Pharmaceuticals Inc. relates to a method for inducing intra-
cellular hyperthermia comprising a step of administering a mitochondrial uncoupling agent,
such as 2,4-dinitrophenol.

US 4,673,691 to Bachynsky relates to the use of 2,4-dinitrophenol for treating obe-
sity.

Various indolvinyl derivatives have been disclosed in the literature. As an example,
WO 91/16305 discloses compounds of the formula (R3)(W)C=CR1(R2), wherein W may
represent indoliny, R1 and R3 represents alkyl, cyano, amide, thioamide etc, and R2 represents cyano, ester, carboxy, amide, thioamide, etc. The compounds are inhibitors of EGF receptor tyrosine kinase, and useful in the treatment of e.g. psoriasis and atherosclerosis.

*Journal of Medicinal Chemistry*, 34, 1896, 1991 discloses the specific compound 3-(5H-indolyl)-diacrylonitrile which also exhibits EGF receptor inhibitory effect.

US 5,559,129 discloses indole derivatives which at the 3-position are substituted by methyl substituted with pyrrolidine or piperidinyl, and which at the 5-position are substituted with moieties of the formula

\[
\begin{align*}
  \text{H} & \quad \text{(CH}_2\text{)}_yR_{10} \\
  \text{R}_{10} & \quad \text{S(O)}_2N(R_5)(R_6), \text{ wherein } R_5 \text{ and } R_6 \text{ may represent hydrogen, alkyl or together may form a ring. The compounds are effective serotonergic receptor agonists.}
\end{align*}
\]

US 5,981,569, WO 95/24190 and WO 96/40629 all disclose phenylvinyl derivatives, wherein the vinyl is substituted with cyano and sulfonil derivatives. The compounds are tyrosine kinase inhibitors useful in treatment of proliferative disorders.

**SUMMARY OF THE INVENTION**

The present inventors have surprisingly found that compounds of formula I are potent chemical uncouplers. Accordingly, the present invention relates to compound according formula I

\[
\text{wherein the wedged bonds to R6 and R7 indicate that R6 and R7 may be either cis or trans to R5;}
\]

R1, R2, R3, R4 independently represents hydrogen, nitro, cyano, halogen, haloalkyl, alkoxy, alkylamino, -C(O)OR9, -C(O)NR9R10, -S(O)2OR9, -S(O)2R9, -OC(O)R9, -NHC(O)R9, or -N(C(O)R9)2, or alkyl, alkenyl, alkynyl, aryl, heteroaryl, all of which are optionally substituted with one or more substituents selected from the list consisting of alkyl, alkenyl, alkynyl, halogen, hydroxyl, cyano, nitro, carboxy, oxo, haloalkyl, -O-R9, -S(O)2R9, -S(O)2OR9, -O-C(O)R9, -C(O)-O-R9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)2-N(R10)-C(O)-R9, -(CH2)2-O-R9, -N(R9)-C(O)R10, NR9-S(O)2R10, }
-(CH₂)ₙ-N(R₉)(R₁₀) and aryl, wherein said aryl may optionally be substituted with halogen, haloalkyl or -O-R₉;

R₅ represents hydrogen, nitro, cyano, halogen, alkyl, alkenyl, alkynyl, alkoxy or alkylamino;

R₆ represents alkyl, alkenyl, alkynyl, -OC(O)R₉, -NHC(O)R₉, -S(O)₂OR₉, -S(O)₃R₉,
-S(O)₃N(R₉R₁₀), -P(O)(OR₉)₂ or -B(OR₉)₂, or a 4-pyridinium radical of the formula

wherein R₁₅ represents alkyl, alkenyl, alkynyl, all of which may optionally be substituted with one or more substituents selected from halogen, hydroxy, amino, cyano, nitro and carboxy; and wherein the ring A is absent or represents a 5 or 6 membered ring, which may be aromatic or non-aromatic, and which may contain 1, 2 or 3 hetero atoms selected from N, O and S;

R₇ represents cyano or hydrogen, provided that if R₇ represents hydrogen then R₆ represents a 4-pyridinium radical;
or R₆ and R₇ may together with the carbon atom to which they are attached form a moiety of the formula

wherein the * denotes where the moiety is attached to the double bond to which R₆ and R₇ are attached;

R₈ represents hydrogen, nitro, cyano, halogen, haloalkyl, alkoxy, alkylamino, -C(O)OR₉,
-C(O)NR₉R₁₀, -S(O)₂OR₉, -S(O)₃R₉, -OCH(O)R₉; -NHC(O)R₉; -N(C(O)R₉)₂, or alkyl, alkenyl, alkynyl, aryl, heteroaryl, all of which are optionally substituted with one or more substituents selected from the list consisting of alkyl, alkenyl, alkynyl, halogen, hydroxyl, cyano, nitro, carboxyl, oxo, haloalkyl, -O-R₉, -S(O)₃R₉, -S(O)₂OR₉, -O-C(O)R₉, -C(O)-O-R₉, -C(O)-R₉,
-C(O)-N(R9)(R10), -N(R9)(R10), -(CH₂)n-N(R10)-C(O)-R9, -(CH₂)n-O-R9, -N(R9)-C(O)R10,
NR9-S(O)mR10, -(CH₂)n-N(R9)(R10) and aryl, wherein said aryl may optionally be substituted
with halogen, haloalkyl or -O-R8;

R9 and R10 independently represent hydrogen or alkyl, alkenyl, alkynyl, cycloalkyl, aryl, het-
eroaryl or pyridinium ion radicals, all of which are optionally substituted with a number sub-
stituents which is lower than the total number of hydrogens which could be substituted, and
which substituents are selected from the list consisting of alkyl, halogen, hydroxyl, cyano,
nitro, carboxyl, haloalkyl,

-O-R11, -S(O)mR11, -O-C(O)R11, -C(O)-O-R11, -C(O)-R11, -C(O)-N(R11)(R12),
-N(R11)(R12), -(CH₂)n-N(R12)-C(O)-R11, -B(OR11)(OR12), -(CH₂)n-O-R11,
-N(R11)-C(O)R12, N(R11)-S(O)mR12, -(CH₂)n-N(R11)(R12) and phenyl, said phenyl being
optionally substituted with one or more substituents selected from the list consisting of alkyl,
halogen, haloalkyl, hydroxylalkyl, cyano, nitro, -O-R13, -S(O)mR13, -O-C(O)R13,
-C(O)-O-R13, -C(O)-R13, -C(O)-N(R13)(R14), -N(R13)(R14), -(CH₂)n-N(R13)-C(O)-R14,
-B(OR13)(OR14), -(CH₂)n-O-R13, and -(CH₂)n-N(R13)(R14);
or R9 and R10 together with the atoms to which they are attached constitute a 5, 6, 7 or 8
membered ring, which may be saturated, either partly or fully, or unsaturated, and wherein
said ring is optionally substituted with one or more substituents selected from the list consist-
ing of alkyl, halogen, hydroxyl, cyano and nitro;

R11 and R12 independently represent hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyal-
ky or cycloalkyl;
or R11 and R12 together with the atoms to which they are attached constitute a 5, 6, 7 or 8
membered ring, which may be saturated, either partly or fully or unsaturated, and wherein
said ring is optionally substituted with one or more substituents selected from the list consist-
ing of alkyl, halogen, hydroxyl, cyano and nitro;

R13 and R14 independently represent hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxyal-
ky or cycloalkyl;

p represents 0, 1 or 2;
n is 0, 1 or 2;
and pharmaceutically acceptable salts, solvates and prodrugs thereof.
The present invention also relates to the use of compounds of formula I in therapy, and in particular to pharmaceutical compositions comprising said compounds.

In another aspect, the invention relates to therapeutic methods comprising administering a therapeutically effective amount of a compound of formula I to a patient in need thereof.

In a still further aspect, the invention relates to the use of compounds of formula I in the manufacture of medicaments.

DEFINITIONS

In the present context, the term “alkyl” is intended to indicate a straight or branched chain saturated monovalent hydrocarbon radical having from one to twelve carbon atoms, also denoted as $C_{1-12}$-alkyl. Typical alkyl groups are alkyl groups with from one to eight or from one to six carbon atoms, also denoted as $C_{1-6}$-alkyl and $C_{1-6}$-alkyl respectively. Typical $C_{1-6}$-alkyl groups include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, 2-methylbutyl, 3-methylbutyl, 4-methylpentyl, n-pentyl, n-hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl (neopentyl), 1,2,2-trimethylpropyl and the like, while typical $C_{1-6}$-alkyl groups include the same groups as well as alkyl groups having seven or eight carbon atoms, such as heptyl, octyl, 2,2-dimethylhexyl and the like. The term “$C_{1-6}$-alkyl” as used herein also includes secondary $C_{3-6}$-alkyl and tertiary $C_{4-6}$-alkyl. The term “$C_{1-6}$-alkyl” as used herein also includes secondary $C_{3-6}$-alkyl and tertiary $C_{4-6}$-alkyl. The term “$C_{1-12}$-alkyl” as used herein also includes secondary $C_{3-12}$-alkyl and tertiary $C_{4-12}$-alkyl.

In the present context, the term “alkenyl” is intended to indicate a straight or branched chain monovalent hydrocarbon radical having from two to six carbon atoms and at least one carbon-carbon double bond, for example $C_{3-5}$-alkenyl. Typical $C_{3-5}$-alkenyl groups include vinyl, allyl, 1-propenyl, 1,3-butadiene-1-yl, and the like. The term “conjugated alkenyl” as used herein, alone or in combination, refers to an alkenyl having consecutive double bonds, such as for instance 1,3-butadiene-1-yl.

In the present context, the term “alkynyl” is intended to indicate a straight or branched chain monovalent hydrocarbon radical having from two to six carbon atoms and at least one carbon-carbon triple bond and optionally one or more carbon-carbon double bonds.

Examples include ethynyl, propynyl and 3,4-pentadiene-1-ynyl.

The term “halogen” is intended to indicate members of the seventh main group of the periodic system, i.e., fluoro, chloro, bromo and iodo.

In the present context, the term “aryl” is intended to indicate a carbocyclic aromatic ring radical which may optionally be fused to another ring, which may be aromatic or nonaro-
matics. Typical aryl groups include, 1,2,3,4-tetrahydro napththyl, phenyl, biphenyl, indenyl, fluorenlyl, napththyl (1-naphthyl, 2-naphthyl), anthracenyl (1-anthracenyl, 2-anthracenyl, 3-anthracenyl), and the like.

The term “heteroaryl”, as used herein, alone or in combination, refers to an aromatic ring radical with for instance 5 to 7 member atoms, or to a fused aromatic ring system radical with for instance from 7 to 18 member atoms, wherein at least on ring is aromatic, and which ring contains one or more heteroatoms selected from nitrogen, oxygen, or sulfur heteroatoms, wherein N-oxides and sulfur monoxides and sulfur dioxide are permissible heteroaromatic substitutions. Examples of heteroaryl include thiienyl (2-thienyl, 3-thienyl), furanyl (2-furanyl, 3-furanyl), indolyl, oxadiazolyl, isoxazolyl, thiadiazolyl, oxatriazolyl, thiatriazolyl, quinazolinolyl, fluorenlyl, xanthenyl, isoindanlyl, benzhydryl, acridinyl, thiacyclo, pyrrolyl (1-pyrrolyl, 2-pyrrolyl, 3-pyrrolyl), pyrazolyl (1-pyrazolyl, 2-pyrazolyl, 4-pyrazolyl, 5-pyrazolyl), imidazolyl (1-imidazolyl, 2-imidazolyl, 4-imidazolyl, 5-imidazolyl), triazolyl (1,2,3-triazol-1-yl, 1,2,3-triazol-4-yl, 1,2,3-triazol-5-yl, 1,2,4-triazol-3-yl, 1,2,4-triazol-5-yl), oxazolyl (2-oxazolyl, 4-oxazolyl, 5-oxazolyl), isoxazolyl (isoxazo-3-yl, isoxazo-4-yl, isoxaz-5-yl), isothiazolyl (isothiaz-3-yl, isothiaz-4-yl, isothiaz-5-yl), thiazolyl (2-thiazolyl, 4-thiazolyl, 5-thiazolyl), pyridinyl (2-pyridinyl, 3-pyridinyl, 4-pyridinyl), pyrimidinyl (2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 6-pyrimidinyl), pyrazinyl, pyridazinyl (3-pyridazinyl, 4-pyridazinyl, 5-pyridazinyl, 6-pyridazinyl), quinolinyl (2-quinolyl, 3-quinolyl, 4-quinolyl, 5-quinolyl, 6-quinolyl, 7-quinolyl, 8-quinolyl), isoquinolinyl (1-isoquinolyl, 3-isoquinolyl, 4-isoquinolyl, 5-isoquinolyl, 6-isoquinolyl, 7-isoquinolyl, 8-isoquinolyl), benzo[b]furanyl (2-benzo[b]furanyl, 3-benzo[b]furanyl, 4-benzo[b]furanyl, 5-benzo[b]furanyl, 6-benzo[b]furanyl, 7-benzo[b]furanyl), 2,3-dihydronbenzo[b]furanyl (2-(2,3-dihydro-benzo[b]furanyl), 3-(2,3-dihydro-benzo[b]furanyl), 4-(2,3-dihydro-benzo[b]furanyl), 5-(2,3-dihydro-benzo[b]furanyl), 6-(2,3-dihydro-benzo[b]furanyl), 7-(2,3-dihydro-benzo[b]furanyl), benzo[b]thiophenyl (benzo[b]thiophen-2-yl, benzo[b]thiophen-3-yl, benzo[b]thiophen-4-yl, benzo[b]thiophen-5-yl, benzo[b]thiophen-6-yl, benzo[b]thiophen-7-yl), 2,3-dihydro-benzo[b]thiophenyl (2,3-dihydro-benzo[b]thiophen-2-yl, 2,3-dihydro-benzo[b]thiophen-3-yl, 2,3-dihydro-benzo[b]thiophen-4-yl, 2,3-dihydro-benzo[b]thiophen-5-yl, 2,3-dihydro-benzo[b]thiophen-6-yl, 2,3-dihydro-benzo[b]thiophen-7-yl), indolyl (1-indolyl, 2-indolyl, 3-indolyl, 4-indolyl, 5-indolyl, 6-indolyl, 7-indolyl), indazolyl (1-indazolyl, 3-indazolyl, 4-indazolyl, 5-indazolyl, 6-indazolyl, 7-indazolyl), benzimidazolyl (1-benzimidazolyl, 2-benzimidazolyl, 4-benzimidazolyl, 5-benzimidazolyl, 6-benzimidazolyl, 7-benzimidazolyl, 8-benzimidazolyl), benzoxazolyl (2-benzoxazolyl, 3-benzoxazolyl, 4-benzoxazolyl, 5-benzoxazolyl, 6-benzoxazolyl, 7-benzoxazolyl), benzothiazolyl (2-benzothiazolyl, 4-benzothiazolyl, 5-benzothiazolyl, 6-benzothiazolyl, 7-benzothiazolyl), car-

A "fused ring system" as used herein, alone or in combination, refers to a carbocyclic or heterocyclic ring radical fused to another carbocyclic or heterocyclic ring radical, the two rings having two atoms in common. Typical fused aromatic ring systems include napthalene, quinoline, isoquinoline, indole, and isoindole.

In the present context the term "cycloalkyl" is intended to indicate a cyclic saturated monovalent hydrocarbon radical having 3, 4, 5, 6, 7 or 8 ring carbon atoms.

In the present context, the term "alkoxy" is intended to indicate a radical of the formula –OR', wherein R' represents alkyl as indicated above.

The term "haloalkoxy" is intended to indicate an alkoxy as defined above substituted with one or more halogen, such as fluoro, chloro, bromo or iodo.

In the present context, the term "alkylamino" is intended to indicate a radical of the formula –NH-R' or –N(R')2, wherein each R' represents alkyl as indicated above.

The term "nitro" shall mean the radical -NO2.

The term "cyano" shall mean the radical -CN.

In the present context, the term "haloalkyl" is intended to indicate an alkyl, as defined above, substituted with one or more halogens, as defined above. Examples include trihalomethyl, such as trifluoromethyl and trichloromethyl, and 2,2,2-trichloro-1-ethyl.

In the present context, the term "hydroxyalkyl" is intended to indicate an alkyl, as defined above, substituted with one or more hydroxyl groups. Examples include hydroxymethyl, 1-hydroxy-1-ethyl and 2-hydroxy-1-ethyl.

As used herein, the term "solvate" is a complex of defined stoichiometry formed by a solute (in casu, a compound according to the present invention) and a solvent. Solvents may be, by way of example, water, ethanol, or acetic acid.

As used herein, the term "prodrug" includes biohydrolyzable amides and biohydrolyzable esters and also encompasses a) compounds in which the biohydrolyzable functionality in such a prodrug is encompassed in the compound according to the present invention, and b) compounds which may be oxidized or reduced biologically at a given functional group
to yield drug substances according to the present invention. Examples of these functional groups include 1,4-dihydropyridine, N-alkylcarbonyl-1,4-dihydropyridine, 1,4-cyclohexadiene, tert-butyl, and the like.

In the present context, the term "pharmacologically acceptable salt" is intended to indicate salts which are not harmful to the patient. Such salts include pharmacologically acceptable acid addition salts, pharmaceutically acceptable metal salts, ammonium and alkylated ammonium salts. Acid addition salts include salts of inorganic acids as well as organic acids. Representative examples of suitable organic acids include formic, acetic, trichloroacetic, trifluoroacetic, propionic, benzoic, cinnamic, citric, fumaric, glycolic, lactic, maleic, malic, malonic, mandelic, oxalic, pioric, pyruvic, salicylic, succinic, methanesulfonic, ethanesulfonic, tartaric, ascorbic, pamoic, bis(methylene salicylic, ethanesulfonic, gluconic, citraconic, aspartic, stearic, palmitic, EDTA, glycolic, p-aminobenzoic, glutamic, benzenesulfonic, p-toluenesulfonic acids and the like. Further examples of pharmaceutically acceptable inorganic or organic acid addition salts include the pharmaceutically acceptable salts listed in J. Pharm. Sci. 1977, 66, 2, which is incorporated herein by reference. Examples of metal salts include lithium, sodium, potassium, magnesium salts and the like. Examples of ammonium and alkylated ammonium salts include ammonium, methylammonium, dimethylammonium, trimethylammonium, ethylammonium, hydroxyethylammonium, diethylammonium, butylammonium, tetramethylammonium salts and the like.

A "therapeutically effective amount" of a compound as used herein means an amount sufficient to cure, alleviate or partially arrest the clinical manifestations of a given disease and its complications. An amount adequate to accomplish this is defined as "therapeutically effective amount". Effective amounts for each purpose will depend on the severity of the disease or injury as well as the weight and general state of the subject. It will be understood that determining an appropriate dosage may be achieved using routine experimentation, by constructing a matrix of values and testing different points in the matrix, which is all within the ordinary skills of a trained physician or veterinarian.

The term "treatment" and "treating" as used herein means the management and care of a patient for the purpose of combating a condition, such as a disease or a disorder. The term is intended to include the full spectrum of treatments for a given condition from which the patient is suffering, such as administration of the active compound to alleviate the symptoms or complications, to delay the progression of the disease, disorder or condition, to alleviate or relief the symptoms and complications, and/or to cure or eliminate the disease,
disorder or condition as well as to prevent the condition, wherein prevention is to be understood as the management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the administration of the active compounds to prevent the onset of the symptoms or complications. The patient to be treated is preferably a mammal, in particular a human being, but it may also include animals, such as dogs, cats, cows, sheep and pigs.

DESCRIPTION OF THE INVENTION

In one embodiment, the invention relates to a compound according to formula I with a formula according to la

\[
\begin{align*}
\text{R}_5 & \quad \text{R}_6 \\
\text{R}_7 & \quad \text{R}_8 \\
\text{R}_2 & \quad \text{R}_3 \\
\text{R}_1 & \quad \text{N} \\
\end{align*}
\]

In one embodiment, the invention relates to a compound according to formula I or la, wherein R2 and R4 are hydrogen.

In one embodiment, R1, and R8 independently represent hydrogen, cyano, halogen, alkyl, alkenyl, alkylnyl, aryl, heteroaryl, haloalkyl, -C(O)NR9R10, -S(O)2OR9, -S(O)nR9, wherein said aryl and heteroaryl are optionally substitute with one ore more substituents selected from the list consisting of hydrogen, alkyl, alkenyl, alkynyl, halogen, hydroxy, cyano, nitro, haloalkyl, -O-R9, -S(O)nR9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)p-O-R9, and -(CH2)p-N(R9)(R10). In an embodiment R3 is selected from same list as above.

In one embodiment, R5 represents hydrogen.

In one embodiment, R7 represents cyano and R6 represents -S(O)nR9, -S(O)2N(R9R10) or -P(O)(OR)2, and in particular -S(O)nR9.

In one embodiment, R2, R3 and R4 represents hydrogen, and in particular, R1 and R8 independently represent hydrogen, cyano, halogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, haloalkyl, -C(O)NR9R10, -S(O)2OR9, -S(O)nR9, wherein aryl and heteroaryl are optionally substitute with one ore more substituents selected from the list consisting of alkyl, alkenyl, alkynyl, halogen, hydroxy, cyano, nitro, haloalkyl, -O-R9, -S(O)nR9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)p-O-R9 and -(CH2)p-N(R9)(R10). In particular, R5 is
hydrogen, and particular mentioning is made of R7 representing cyano, and R6 representing -S(O)nR9, -S(O)2N(R9R10), -P(O)(OR)2, and in particular -S(O)nR9.

In one embodiment, R1, R2, R3, R4, R5 and R8 is hydrogen, R7 is cyano and R6 represents optionally substituted pyridinium ion radical, such as -1-methyl-puridinium, or S(O)2R9. In this embodiment, R9 may in particular represent C1-alkyl, such as methyl; aryl, such as phenyl and optionally substituted phenyl, wherein said substituents are selected from halogen, such as chloro; nitro; and C1-haloalkyl, such as -CF3.

In an embodiment R6 represents a 4-pyridinium radical of the formula

\[
\text{R15} \\
\text{N} \\
\text{R15}
\]

wherein R15 represents alkyl, alkenyl, alkynyl, all of which may optionally be substituted with one or more substituents selected from halogen, hydroxy, amino, cyano, nitro and carboxy.

In one embodiment, R2 and R4 represent hydrogen, R5 represents hydrogen, and R6 represents a 4-pyridinium radical of the formula

\[
\text{R15} \\
\text{N} \\
\text{R15}
\]

wherein R15 represents alkyl, alkenyl, alkynyl, all of which may optionally be substituted with one or more substituents selected from halogen, hydroxy, amino, cyano, nitro and carboxy.

In one embodiment, R1, R3 and R8 independently represent hydrogen, cyano, halogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, haloalkyl, -(C(O)NR9R10), -(S(O)2OR9), -(S(O)nR9), wherein said aryl and heteroaryl are optionally substituted with one or more substituents selected from the list consisting of hydrogen, alkyl, alkenyl, alkynyl, halogen, hydroxyl, cyano, nitro, haloalkyl, -(O-R9), -(S(O)nR9), -(C(O)-R9), -(C(O)-N(R9)(R10)), -(N(R9)(R10)), -(CH2)p-O-R9, and -(CH2)p-N(R9)(R10), and R5 represents hydrogen; and R6 represents a 4-pyridinium radical of the formula
wherein R15 represents alkyl, alkenyl, alkynyl, all of which may optionally be substituted with one or more substituents selected from halogen, hydroxy, amino, cyano, nitro and carboxy; and wherein R7 represents hydrogen or cyano.

In an embodiment R6 and R7 together form a moiety of the formula

In one embodiment, R2 and R4 represent hydrogen, and R6 and R7 together form a moiety of the formula

In one embodiment, R1, R3 and R8 independently represent hydrogen, cyano, halogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, haloalkyl, -C(O)NR9R10, -S(O)2OR9, -S(O)nR9, wherein said aryl and heteroaryl are optionally substitute with one or more substituents selected from the list consisting of hydrogen, alkyl, alkenyl, alkynyl, halogen, hydroxy, cyano, nitro, haloalkyl, -O-R9, -S(O)nR9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)p-O-R9, and -(CH2)p-N(R9)(R10), and R6 and R7 together form a moiety of the formula

In one embodiment, R8 represents hydrogen, alkyl, alkenyl, alkynyl, all of which are optionally substituted with a substituent selected from alkyl, alkenyl, alkynyl, halogen, hy-
droxy, cyano, nitro, haloalkyl, -O-R9, -S(O)nR9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)p-O-R9 and -(CH2)p-N(R9)(R10). In particular, R8 represents hydrogen.

In one embodiment, R8 represents aryl, optionally substituted with one or more substituents selected from the list consisting of alkyl, alkenyl, alkynyl, halogen, hydroxyl, cyano, nitro, carboxyl, oxo, haloalkyl, -O-R9, -S(O)nR9, -S(O)2OR9, -O-C(O)R9, -C(O)-O-R9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)p-N(R10)-C(O)-R9, -(CH2)p-O-R9, -N(R9)-C(O)R10, NR9-S(O)nR10, -(CH2)p-N(R9)(R10) and aryl, wherein said aryl may optionally be substituted with halogen, haloalkyl or -O-R9. Particular mentioning is made of radicals with the following structures:

\[
\begin{align*}
\text{R} & \quad \text{R} \\
\end{align*}
\]

wherein R is selected from the list consisting of hydrogen, methyl, CF3, Cl, Br, F, methoxy, ethoxy, methylcarbonyl, nitro, cyano, and phenyl, wherein said phenyl may optionally be substituted with Cl, Br, F, CF3 or methoxy.

In another embodiment, R8 represents an optionally substituted heteroaryl, and in particular R8 is selected from
wherein R is selected from the list consisting of hydrogen, methyl, CF$_3$, Cl, Br, F, methoxy, ethoxy, methylcarbonyl, nitro, cyano, and phenyl, wherein said phenyl may optionally be substituted with Cl, Br, F, CF$_3$ or methoxy.

In one embodiment, R9 or R10 independently represent hydrogen, alkyl or aryl, wherein said alkyl or aryl may optionally be substituted with a number of substituents which are lower than the total number of hydrogen which could be substituted, and which substituents are selected from alkyl, halogen, hydroxyl, cyano, nitro, carboxyl, or haloalkyl.

In one embodiment, R11 and R12 independently represent hydrogen or alkyl.

In one embodiment, R13 and R14 independently represents hydrogen or alkyl.

In one embodiment, n represents 2.

In one embodiment, the invention relates to compounds selected from the list consisting of

2-(4-chlorobenzenesulfonyl)-3-(1H-indol-5-yl)acrylonitrile;

3-(1H-Indol-5-yl)-2-(4-nitrobenzenesulfonyl)acrylonitrile;

3-(1H-Indol-5-yl)-2-methanesulfonylacrylonitrile;

3-(1H-Indol-5-yl)-2-(4-trifluoromethoxybenzenesulfonyl)acrylonitrile;

(E) 4-[2-(1H-Indol-5-yl)vinyl]-1-methylpyridinium iodide;

(E) 4-[2-(1H-Indol-5-yl)vinyl]-1-butylpyridinium trifluoroacetate;

4-[2-(1H-Indol-5-yl)vinyl]-1-ethylquinolinium iodide;
4-[2-(1H-indol-5-yl)vinyl]-1-methylquinolinium iodide;
1-Butyl-4-[2-(3-methyl-1H-indol-5-yl)vinyl]-pyridinium iodide; and
4-[2-(7-Chloro-1H-indol-5-yl)vinyl]-1-ethylpyridinium iodide.

Compounds according to formula I may comprise chiral carbon atoms or carbon-
carbon double bonds which may give rise to stereo isomeric forms, e.g. enantiomers, di-
astereomers and geometric isomers. The present invention relates to all such isomers, either
in pure form or as mixtures thereof. Pure isomeric forms may either be prepared from inter-
mediates which are pure isomers themselves, by purification of a mixture of isomers after the
synthesis, or by a combination of the two methods. Purification of isomeric forms are well-
known in the art, e.g. as described by Jaques in Enantiomers, Racemates and Resolution,

The compounds of the present invention are useful in the treatment of diseases or
states that benefit from an increase in the mitochondrial respiration.

The compounds of the present invention are believed to be particular well-suited for
the treatment of obesity as such or preventing weight gain and for the treatment of diseases
or disorders where obesity is involved in the etiology. In one embodiment, the invention thus
provides a method of treating the metabolic syndrome, insulin resistance, dyslipidemia, hy-
pertension, obesity, type 2 diabetes, type 1 diabetes, diabetic late complications including
cardiovascular diseases, vascular disorders, disorders of lipid metabolism, neurode-
generative and psychiatric disorders, dysregulation of intraocular pressure including glau-
coma, atherosclerosis, hypertension, coronary heart disease, gallbladder disease, os-
teoarthritis, and cancer.

More specifically such conditions include the metabolic syndrome, type 2 diabetes
-especially in obese patients), diabetes as a consequence of obesity, insulin resistance, hy-
perglycemia, prandial hyperglycemia, hyperinsulinemia, impaired glucose tolerance (IGT),
impaired fasting glucose (IFG), increased hepatic glucose production, type 1 diabetes,
LADA, pediatric diabetes, dyslipidemia (especially in obese patients), diabetic dyslipidemia,
hyperlipidemia, hypertriglyceridemia, hyperlipoproteinemia., micro-/macroalbuminuria, nephe-
ropathy, retinopathy, neuropathy, diabetic ulcers, cardiovascular diseases, arteriosclerosis,
coronary artery disease, cardiac hypertrophy, myocardial ischemia, heart insufficiency, con-
gestional heart failure, stroke, myocardial infarction, arrhythmia, decreased blood flow, erectile
dysfunction (male or female), myopathy, loss of muscle tissue, muscle wasting, muscle ca-
tabolism, osteoporosis, decreased linear growth, neurodegenerative and psychiatric disor-
ders, Alzheimers disease, neuronal death, impaired cognitive function, depression, anxiety,
eating disorders, appetite regulation, migraine, epilepsy, addiction to chemical substances,
disorders of intraocular pressure, bacterial infections, mycobacterial infections. In the present context cancer is intended to include forms such as hematological cancer, such as leukemia, acute myeloid leukemia, chronic myeloid leukemia, chronic lymphatic leukemia, myelodysplasia, multiple myeloma, Hodgkin's disease, or solid tumor forms, such as fibrosarcoma, small or non-small cell lung carcinoma, gastric, intestinal or colorectal cancer, prostate, endometrial, ovarian or breast cancer, brain, head or neck cancer, cancer in the urinary tract, such as kidney or bladder cancer, malignant melanoma, liver cancer, uterine and pancreatic cancer.

In another embodiment, the invention relates to the use of a chemical uncoupler according to the present invention for maintaining a weight loss.

Use of the compounds according to the present invention in the treatment of obesity may very likely reduce or eliminate the side effects such as irritation of the skin, glaucoma etc. known from treatment of obesity with DNP and other chemical uncouplers with narrow safety windows.

Uncouplers may also reduce insulin release from β-cells and may thus be useful in providing β-cell rest. Inducing β-cell rest may be useful in connection with β-cell transplantation, and it has also been described that inducing β-cell rest may be useful in preventing diabetes.

Obesity drugs which regulate the appetite and reduce food intake often suffer from lack of long-term efficiency in terms of body weight loss because the body in response to the treatment lowers the rate of the metabolism. In contrast hereto, the compounds of the present invention increases the metabolism, and they are therefore believed to be particular suited for maintaining a weight loss.

The compounds of the present invention are also believed to be particular well-suited for the treatment of diseases or disorders where reactive oxygen species are involved in the etiology, and wherein a reduction in the amount of reactive oxygen species are beneficial. In one embodiment, the invention thus provides a method of treating, and in particular preventing ageing and damages to the heart, endothelial cells and neuronal tissue, diabetic microvascular diseases in the retina, the renal glomerus and the peripheral nerve cells, the method comprising administering to a patient in need thereof a therapeutically effective amount of one or more compound of the present invention to a patient need thereof.

The subject may be any mammal suffering from a condition benefiting from increased mitochondrial respiration. Such mammals may include, for instance, horses, cows, sheep, pigs, mice, rats, dogs, cats, primates such as chimpanzees, gorillas, rhesus monkeys, and, most preferably, humans.
It is well-known that many compounds used to combat insects and parasites, i.e. insecticides and parasiticides, are chemical uncouplers. It is thus believed that uncouplers according to the present invention could be used as insecticides or parasiticides.

In the methods of the present invention, the compounds of the present invention may be administered alone or in combination with other therapeutically active compounds, either concomitantly or sequentially, and at any suitable ratios. Such further active compounds may be selected from antidiabetic agents, antihyperlipidemic agents, antiobesity agents, antihypertensive agents and agents for the treatment of complications resulting from or associated with diabetes.

Suitable antidiabetic agents include insulin, GLP-1 (glucagon like peptide-1) derivatives such as those disclosed in WO 98/08871 (Novo Nordisk A/S), which is incorporated herein by reference, as well as orally active hypoglycemic agents.

Suitable orally active hypoglycemic agents preferably include imidazolines, sulfon-ureas, biguanides, meglitinides, oxadiazolidinediones, thiazolidinediones, insulin sensitizers, α-glucosidase inhibitors, agents acting on the ATP-dependent potassium channel of the pancreatic β-cells eg potassium channel openers such as those disclosed in WO 97/26265, WO 99/03861 and WO 00/37474 (Novo Nordisk A/S) which are incorporated herein by reference, potassium channel openers, such as ormitiglinide, potassium channel blockers such as nateglinide or BTS-67582, glucagon antagonists such as those disclosed in WO 99/01423 and WO 00/39088 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), all of which are incorporated herein by reference, GLP-1 agonists such as those disclosed in WO 00/42026 (Novo Nordisk A/S and Agouron Pharmaceuticals, Inc.), which are incorporated herein by reference, DPP-IV (dipeptidyl peptidase-IV) inhibitors, PTPase (protein tyrosine phosphatase) inhibitors, glucokinase activators, such as those described in WO 02/08209 to Hoffmann La Roche, inhibitors of hepatic enzymes involved in stimulation of gluconeogenesis and/or glycogenolysis, glucose uptake modulators, GSK-3 (glycogen synthase kinase-3) inhibitors, compounds modifying the lipid metabolism such as antihyperlipidemic agents and antilipidemic agents, compounds lowering food intake, and PPAR (peroxisome proliferator-activated receptor) and RXR (retinoid X receptor) agonists such as ALRT-268, LG-1268 or LG-1089.

In one embodiment of the methods, the compound of the present invention may be administered in combination with insulin or insulin analogues.

In one embodiment, the compound of the present invention may be administered in combination with a sulphonylurea eg tolbutamide, chlorpropamide, tolazamide, glibenclamide, gliptizide, glimepiride, glicazide or glyburide.
In one embodiment, the compound of the present invention may be administered in combination with a biguanide eg metformin.

In one embodiment of the methods of the present invention, the compound of the present invention may be administered in combination with a meglitinide eg repaglinide or senaglinide/nateglinide.

In one embodiment, the compound of the present invention may be administered in combination with a thiazolidinedione insulin sensitizer, e.g. troglitazone, ciglitazone, pioglitazone, rosiglitazone, isaglitazone, darglitazone, englitazone, CS-011/Cl-1037 or T 174 or the compounds disclosed in WO 97/41097 (e.g. 5-[[4-[[3-methyl-4-oxo-3,4-dihydro-2-quinazolinyl]methoxy]phenylmethyl]thiazolidine-2,4-dione), WO 97/41119, WO 97/41120, WO 00/41121 and WO 98/45292, which are incorporated herein by reference.

In one embodiment, the compound of the present may be administered in combination with an insulin sensitizer e.g. such as GI 262570, YM-440, MCC-555, JTT-501, AR-H039242, KRP-297, GW-409574, CRE-16336, AR-H049020, L510929, MBX-102, CLX-0940, GW-501516 or the compounds disclosed in WO 99/19313 (NN622/DRF-2725), WO 00/50414, WO 00/63191, WO 00/63192, WO 00/63193 and WO 00/23425, WO 00/23415, WO 00/23451, WO 00/23445, WO 00/23417, WO 00/23416, WO 00/63153, WO 00/63196, WO 00/63209, WO 00/63190 and WO 00/63189, which are incorporated herein by reference.

In one embodiment, the compound of the present invention may be administered in combination with an α-glucosidase inhibitor eg voglibose, emiglitate, miglitol or acarbose.

In one embodiment, the compound of the present invention may be administered in combination with a glycogen phosphorylase inhibitor eg the compounds described in WO 97/09040.

In one embodiment, the compound of the present may be administered in combination with a glucokinase activator.

In one embodiment, the compound of the present invention may be administered in combination with an agent acting on the ATP-dependent potassium channel of the pancreatic β-cells eg tolbutamide, glibenclamide, glipizide, glicazide, BTS-67582 or repaglinide.

In one embodiment, the compound of the present invention may be administered in combination with nateglinide.

In one embodiment, the compound of the present invention may be administered in combination with an antihyperlipidemic agent or a antilipidemic agent eg cholestyramine, colestipol, clofibrate, gemfibrozil, lovastatin, pravastatin, simvastatin, probucol or dextrothyroxine.
In one embodiment, the compound of the present invention may be administered in combination with more than one of the above-mentioned compounds e.g. in combination with metformin and a sulphonylurea such as glyburide; a sulphonylurea and acarbose; nateglinide and metformin; acarbose and metformin; a sulfonylurea, metformin and troglitazone; insulin and a sulfonylurea; insulin and metformin; insulin, metformin and a sulfonylurea; insulin and troglitazone; insulin and lovastatin; etc.

In one embodiment, the compound of the present invention may be administered in combination with one or more antiobesity agents or appetite regulating agents.

Such agents may be selected from the group consisting of CART (cocaine amphetamine regulated transcript) agonists, NPY (neuropeptide Y) antagonists, MC3 (melanocortin 3) agonists, MC4 (melanocortin 4) agonists, orexin antagonists, TNF (tumor necrosis factor) agonists, CRF (corticotropin releasing factor) agonists, CRF BP (corticotropin releasing factor binding protein) antagonists, urocortin agonists, β3 adrenergic agonists such as CL-316243, AJ-9677, GW-0604, LY362884, LY377267 or AZ-40140, MSH (melanocyte-stimulating hormone) agonists, MCH (melanocyte-concentrating hormone) antagonists, CCK (cholecystokinin) agonists, serotonin reuptake inhibitors (fluoxetine, seroxat or citalopram), norepinephrine reuptake inhibitors (e.g. sibutramine), 5HT (serotonin) agonists, bombesin agonists, galanin antagonists, growth hormone, growth factors such as prolactin or placental lactogen, growth hormone releasing compounds, TRH (thyreotropin releasing hormone) agonists, UCP 2 or 3 (uncoupling protein 2 or 3) modulators, leptin agonists, DA (dopamine) agonists (bromocriptin, doprexin), lipase/amylase inhibitors, PPAR modulators, RXR modulators, TR β agonists, adrenergic CNS stimulating agents, AGRP (agouti related protein) inhibitors, H3 histamine antagonists such as those disclosed in WO 00/42023, WO 00/63208 and WO 00/64884, which are incorporated herein by reference, exendin-4, GLP-1 agonists and ciliary neurotrophic factor. Further antiobesity agents are bupropion (antidepressant), topiramate (anticonvulsant), ecopipam (dopamine D1/D5 antagonist), naltrexone (opioid antagonist), and peptide YY3-36 (Batterham et al, Nature 418, 650-654 (2002)).

In one embodiment, the antiobesity agent is leptin.

In one embodiment, the antiobesity agent is a lipase inhibitor eg orlistat.

In one embodiment, the antiobesity agent is an adrenergic CNS stimulating agent eg dexamphetamine, amphetamine, phentermine, mazindol phenidometazine, diethylpropion, fenfluramine or dexfenfluramine.

In a further embodiment, the compounds of the present invention may be administered in combination with one or more antihypertensive agents. Examples of antihypertensive agents are β-blockers such as alprenolol, atenolol, timolol, pindolol, propranolol and
metoprolol; ACE (angiotensin converting enzyme) inhibitors such as benazepril, captopril, enalapril, fosinopril, lisinopril, quinapril and ramipril; calcium channel blockers such as nifedipine, felodipine, nicardipine, isradipine, nimodipine, diltiazem and verapamil; and α-blockers such as doxazosin, urapidil, prazosin and terazosin.

It should be understood that any suitable combination of the compounds according to the invention with diet and/or exercise, one or more of the above-mentioned compounds and optionally one or more other active substances are considered to be within the scope of the present invention.

The present invention also provides pharmaceutical compositions comprising as an active ingredient, at least one compound of the present invention, preferably in a therapeutically effective amount, suitable for any of the methods according to the present invention together with one or more pharmaceutically acceptable carriers or excipients. Said pharmaceutical compositions may also comprise any of the further active compounds as indicated above.

The pharmaceutical composition is preferably in unit dosage form, comprising from about 0.05 mg to about 1000 mg, preferably from about 0.1 mg to about 500 mg and especially preferred from about 0.5 mg to about 200 mg of a compound suitable for any of the methods described above.

The present invention also relates to the use of a compound according to formula I for the manufacture of a medicament for the treatment of diseases benefiting from an increase in mitochondrial metabolism or a decrease in the amount of reactive oxygen species, as exemplified above.

PHARMACEUTICAL COMPOSITIONS

The compounds of the present invention may be administered alone or in combination with pharmaceutically acceptable carriers or excipients, in either single or multiple doses. The pharmaceutical compositions according to the invention may be formulated with pharmaceutically acceptable carriers or diluents as well as any other known adjuvants and excipients in accordance with conventional techniques such as those disclosed in Remington: The Science and Practice of Pharmacy, 20th Edition, Gennaro, Ed., Mack Publishing Co., Easton, PA, 2000.

The pharmaceutical compositions may be specifically formulated for administration by any suitable route such as the oral, rectal, nasal, pulmonary, topical (including buccal and sublingual), transdermal, intracisternal, intraperitoneal, vaginal and parenteral (including sub-
cutaneous, intramuscular, intrathecal, intravenous and intradermal) route, the oral route being preferred. It will be appreciated that the preferred route will depend on the general condition and age of the subject to be treated, the nature of the condition to be treated and the active ingredient chosen.

Pharmaceutical compositions for oral administration include solid dosage forms such as hard or soft capsules, tablets, troches, dragees, pills, lozenges, powders and granules. Where appropriate, they can be prepared with coatings such as enteric coatings or they can be formulated so as to provide controlled release of the active ingredient such as sustained or prolonged release according to methods well known in the art.

Liquid dosage forms for oral administration include solutions, emulsions, aqueous or oily suspensions, syrups and elixirs.

Pharmaceutical compositions for parenteral administration include sterile aqueous and non-aqueous injectable solutions, dispersions, suspensions or emulsions as well as sterile powders to be reconstituted in sterile injectable solutions or dispersions prior to use. Depot injectable formulations are also contemplated as being within the scope of the present invention.

Other suitable administration forms include suppositories, sprays, ointments, creams, gels, inhalants, dermal patches, implants etc.

A typical oral dosage is in the range of from about 0.001 to about 100 mg/kg body weight per day, preferably from about 0.01 to about 50 mg/kg body weight per day, and more preferred from about 0.05 to about 10 mg/kg body weight per day administered in one or more dosages such as 1 to 3 dosages. The exact dosage will depend upon the frequency and mode of administration, the sex, age, weight and general condition of the subject treated, the nature and severity of the condition treated and any concomitant diseases to be treated and other factors evident to those skilled in the art.

The formulations may conveniently be presented in unit dosage form by methods known to those skilled in the art. A typical unit dosage form for oral administration one or more times per day such as 1 to 3 times per day may contain from 0.05 to about 1000 mg, preferably from about 0.1 to about 500 mg, and more preferred from about 0.5 mg to about 200 mg.

For parenteral routes such as intravenous, intrathecal, intramuscular and similar administration, typically doses are in the order of about half the dose employed for oral administration.

The compounds for use according to the present invention are generally utilized as the free substance or as a pharmaceutically acceptable salt thereof. Examples are an acid addition
salt of a compound having the utility of a free base and a base addition salt of a compound having the utility of a free acid. The term "pharmacologically acceptable salts" refers to non-toxic salts of the compounds for use according to the present invention which salts are generally prepared by reacting the free base with a suitable organic or inorganic acid or by reacting the acid with a suitable organic or inorganic base. When a compound for use according to the present invention contains a free base such salts are prepared in a conventional manner by treating a solution or suspension of the compound with a chemical equivalent of a pharmaceutically acceptable acid. When a compound for use according to the present invention, contains a free acid such salts are prepared in a conventional manner by treating a solution or suspension of the compound with a chemical equivalent of a pharmaceutically acceptable base. Physiologically acceptable salts of a compound with a hydroxy group include the anion of said compound in combination with a suitable cation such as sodium or ammonium ion. Other salts which are not pharmaceutically acceptable may be useful in the preparation of compounds of the invention and these form a further aspect of the invention.

For parenteral administration, solutions of the compounds for use according to the present invention in sterile aqueous solution, aqueous propylene glycol or sesame or peanut oil may be employed. Such aqueous solutions should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose. The aqueous solutions are particularly suitable for intravenous, intramuscular, subcutaneous and intraperitoneal administration. The sterile aqueous media employed are all readily available by standard techniques known to those skilled in the art.

Suitable pharmaceutical carriers include inert solid diluents or fillers, sterile aqueous solution and various organic solvents. Examples of solid carriers are lactose, terra alba, sucrose, cyclodextrin, talc, gelatine, agar, pectin, acacia, magnesium stearate, stearic acid and lower alkyl ethers of cellulose. Examples of liquid carriers are syrup, peanut oil, olive oil, phospholipids, fatty acids, fatty acid amines, polyoxyethylene and water. Similarly, the carrier or diluent may include any sustained release material known in the art, such as glyceryl monostearate or glyceryl distearate, alone or mixed with a wax. The pharmaceutical compositions formed by combining the compounds for use according to the present invention and the pharmaceutically acceptable carriers are then readily administered in a variety of dosage forms suitable for the disclosed routes of administration. The formulations may conveniently be presented in unit dosage form by methods known in the art of pharmacy.

Formulations of the present invention suitable for oral administration may be presented as discrete units such as capsules or tablets, each containing a predetermined amount of the active ingredient, and which may include a suitable excipient. Furthermore, the orally available
formulations may be in the form of a powder or granules, a solution or suspension in an aqueous or non-aqueous liquid, or an oil-in-water or water-in-oil liquid emulsion.

Compositions intended for oral use may be prepared according to any known method, and such compositions may contain one or more agents selected from the group consisting of sweetening agents, flavouring agents, colouring agents, and preserving agents in order to provide pharmaceutically elegant and palatable preparations. Tablets may contain the active ingredient in admixture with non-toxic pharmaceutically-acceptable excipients which are suitable for the manufacture of tablets. These excipients may be for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example corn starch or alginic acid; binding agents, for example, starch, gelatine or acacia; and lubricating agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. They may also be coated by the techniques described in U.S. Patent Nos. 4,356,108; 4,166,452; and 4,265,874, incorporated herein by reference, to form osmotic therapeutic tablets for controlled release.

Formulations for oral use may also be presented as hard gelatine capsules where the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or a soft gelatine capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin, or olive oil.

Aqueous suspensions may contain the compound for use according to the present invention in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide such as lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example, heptadecaethyl-eneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more colouring agents, one
or more flavouring agents, and one or more sweetening agents, such as sucrose or saccharin.

Oily suspensions may be formulated by suspending the active ingredient in a vegetable oil, for example arachis oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as a liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavouring agents may be added to provide a palatable oral preparation. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active compound in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example, sweetening, flavouring, and colouring agents may also be present.

The pharmaceutical compositions comprising compounds for use according to the present invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example, olive oil or arachis oil, or a mineral oil, for example a liquid paraffin, or a mixture thereof. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soybean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavouring agents.

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavouring and colouring agents. The pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known methods using suitable dispersing or wetting agents and suspending agents described above. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conveniently employed as solvent or suspending medium. For this purpose, any bland fixed oil may be employed using synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid find use in the preparation of injectables.
The compositions may also be in the form of suppositories for rectal administration of the compounds of the invention. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will thus melt in the rectum to release the drug. Such materials include cocoa butter and polyethylene glycols, for example.

For topical use, creams, ointments, jellies, solutions of suspensions, etc., containing the compounds of the invention are contemplated. For the purpose of this application, topical applications shall include mouth washes and gargles.

The compounds of the present invention may also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes may be formed from a variety of phospholipids, such as cholesterol, stearylamine, or phosphatidylcholines.

In addition, some of the compounds of the present invention may form solvates with water or common organic solvents. Such solvates are also encompassed within the scope of the invention.

Thus, in a further embodiment, there is provided a pharmaceutical composition comprising a compound for use according to the present invention, or a pharmaceutically acceptable salt, solvate, or prodrug thereof, and one or more pharmaceutically acceptable carriers, excipients, or diluents.

If a solid carrier is used for oral administration, the preparation may be tabletted, placed in a hard gelatine capsule in powder or pellet form or it can be in the form of a troche or lozenge. The amount of solid carrier will vary widely but will usually be from about 25 mg to about 1 g. If a liquid carrier is used, the preparation may be in the form of a syrup, emulsion, soft gelatine capsule or sterile injectable liquid such as an aqueous or non-aqueous liquid suspension or solution.

A typical tablet that may be prepared by conventional tablettting techniques may contain:

Core:

- Active compound (as free compound or salt thereof) 5.0 mg
- Lactosum Ph. Eur. 67.8 mg
- Cellulose, microcryst. (Avicel) 31.4 mg
- Amberlite@IRP88* 1.0 mg
- Magnesii stearas Ph. Eur. q.s.

Coating:
Hydroxypropyl methylcellulose approx. 9 mg
Mywacett 9-40 T** approx. 0.9 mg

* Polacrillin potassium NF, tablet disintegrant, Rohm and Haas.
** Acylated monoglyceride used as plasticizer for film coating.

If desired, the pharmaceutical composition comprising a compound for use according to the present invention may comprise a compound for use according to the present invention in combination with further active substances such as those described in the foregoing.

The present invention also provides methods for the preparation of compounds for use according to the present invention. The compounds can be prepared readily according to the following general procedures (in which all variables are as defined before, unless so specified) using readily available starting materials, reagents and conventional synthesis procedures. In these reactions, it is also possible to make use of variants which are themselves known to those of ordinary skill in this art, but are not mentioned in greater detail.

EXAMPLES

HPLC-MS (Method A)

The following instrumentation is used:
- Hewlett Packard series 1100 G1312A Bin Pump
- Hewlett Packard series 1100 Column compartment
- Hewlett Packard series 1100 G1315A DAD diode array detector
- Hewlett Packard series 1100 MSD
- Sedere 75 Evaporative Light Scattering detector

The instrument is controlled by HP Chemstation software.

The HPLC pump is connected to two eluent reservoirs containing:
A: 0.01% TFA in water
B: 0.01% TFA in acetonitrile

The analysis is performed at 40°C by injecting an appropriate volume of the sample (preferably 1 µl) onto the column which is eluted with a gradient of acetonitrile.

The HPLC conditions, detector settings and mass spectrometer settings used are giving in the following table.
Column: Waters Xterra MS C-18 X 3 mm id 5 m
Gradient: 5% - 100% acetonitrile linear during 7.5 min at 1.5ml/min
Detection: 210 nm (analogue output from DAD (diode array detector))
ELS (analogue output from ELS)
MS ionisation mode API-ES
Scan 100-1000 amu step 0.1 amu

After the DAD the flow is divided yielding approx 1 ml/min to the ELS and 0.5 ml/min to the MS.

EXAMPLES

Example 1
2-(4-Chlorobenzenesulfonetyl)-3-(1H-indol-5-yl)acrylonitrile

5-Formylindole (250 mg, 1.72 mmol) was dissolved in ethanol 3 ml, and 4-chlorophenylsulfonylacetonitrile (557 mg, 2.58 mmol), and piperidine (0.009 ml, 0.09 mmol) were added. The mixture was stirred at 80°C for 12 hours. The reaction mixture was allowed to cool to room temperature, and a yellow powder was collected by filtration. The powder was washed with cold ethanol, and dried to afford 523 mg of the title compound in 88% yield.

1H NMR (DMSO-d6): δ ppm: 6.66 (s, 1 H) 7.54 (dd, 1 H) 7.60 (d, 1 H) 7.82 (d, 2 H) 7.86 (dd, 1 H) 8.03 (d, 2 H) 8.37 (s, 1 H) 8.55 (s, 1 H) 11.79 (br s, 1 H); HPLC-MS (Method A): m/z = 343 (M+1), 365 (M+23); Rf = 4.322 min.

Example 2
3-(1H-Indol-5-yl)-2-(4-nitrobenzenesulfonetyl)acrylonitrile

Step A: (4-Nitrophenylsulfonyl)acetonitrile (2A)
p-Nitrothiophenol (2.48 g, 16 mmol) was partly dissolved in 40 ml of ethanol and sodiumhydroxide 1N (16 ml, 16 mmol), water 30 ml, and chloroacetonitrile (1.69 g, 22 mmol) were added. The mixture was stirred for 2 hours at room temperature and the precipitate was collected by filtration to afford 2.3 g (74%) of (2A) as brown crystals.
Mp: 77-79°C; 1H NMR (DMSO-d6): δ ppm: 4.50 (s, 2 H) 7.68 (d, 2 H) 8.25 (d, 2 H); HPLC-MS (Method A): m/z = 195 (M+1); Rf = 2.832 min.
Step B: (4-Nitrobenzenesulfonyl)acetonitrile (2B)
(4-Nitrophenylsulfanyl)acetonitrile (2A) (1.94 g, 10 mmol), hydrogen peroxide 35% (3.5 ml, 116 mmol), and acetic acid (15 ml, 263 mmol) were heated to 100 °C for 6 hours. The mixture was allowed to cool to room temperature and then evaporated to dryness. The remaining was suspended and stirred in water, and a white powder was filtered off, to afford 1.98 g (88%) of (2B).
Mp: 166-168°C; 1H NMR (DMSO-d6): δ ppm: 5.47 (s, 2 H) 8.28 (d, 2 H) 8.56 (d, 2 H).

Step C: 3-(1H-Indol-5-yl)-2-(4-nitrobenzenesulfonyl)acrylonitrile (2)
5-Formylindole (16 mg, 0.11 mmol) was dissolved in ethanol 2 ml, and (4-nitrobenzene-sulfonyl)acetonitrile (2B) (29 mg, 0.13 mmol), and piperidine (0.001 ml, 0.006 mmol) were added. The mixture was stirred at 80 °C for 5 hours. The reaction mixture was allowed to cool to room temperature, and a yellow powder was collected by filtration. The powder was washed with cold ethanol, and dried to afford 24 mg of the title compound in 62% yield.
Mp: 219-221°C; 1H NMR (DMSO-d6): δ ppm: 6.68 (s, 1 H) 7.56 (s, 1 H) 7.62 (d, 1 H) 7.90 (d, 1 H) 8.30 (d, 2 H) 8.40 (s, 1 H) 8.51 (d, 2 H) 8.63 (s, 1 H) 11.82 (br s, 1 H); HPLC-MS (Method A): m/z = 354 (M+1), 376 (M+23); Rf = 3.994 min.

Example 3
3-(1H-Indol-5-yl)-2-methanesulfonylacrylonitrile

The title compound was prepared as described in Example 1, using methylsulfonylacetonitrile as the Knoevenagel agent.
Yield 49%; Mp: 184-185°C; 1H NMR (DMSO-d6): δ ppm: 3.37 (s, 3 H) 6.66 (d, 1 H) 7.55 (dd, 1 H) 7.62 (d, 1 H) 7.90 (dd, 1 H) 8.31 (s, 1 H) 8.35 (d, 1 H) 11.76 (br s, 1 H); HPLC-MS (Method A): m/z = 247 (M+1), 269 (M+23); Rf = 2.824 min.

Example 4
3-(1H-Indol-5-yl)-2-(4-trifluoromethoxybenzenesulfonyl)acrylonitrile

The title compound was prepared as described in Example 1, using 4-(trifluoromethoxy)benzenesulphonylacetonitrile as the Knoevenagel agent.
Yield 34%; Mp: 171-175°C; 1H NMR (DMSO-d6): δ ppm: 6.66 (s, 1 H) 7.55 (dd, 1 H) 7.60 (d, 1 H) 7.73 (d, 2 H) 7.89 (dd, 1 H) 8.17 (d, 2 H) 8.37 (s, 1 H) 8.57 (s, 1 H) 11.79 (br s, 1 H);
HPLC-MS (Method A): m/z = 393 (M+1), 415 (M+23); Rf = 4.451 min.
Example 5

(E) 4-[2-(1H-Indol-5-yl)vinyl]-1-methylpyridinium; iodide

**Step A:** 1,4-Dimethylpyridinium; iodide (5A)

4-Picoline (2.1 ml, 21.6 mmol) was dissolved in 20 ml of dry acetone under a nitrogen atmosphere. The mixture was cooled to 0°C and iodomethane (2.7 ml, 43.2 mmol) was slowly added. The reaction mixture was stirred for 1 hour at 0°C, and then 1 hour at room temperature. Half of the solvent was evaporated off, and the precipitate was collected by filtration to afford 2.7 g (27%) of (5A) as white crystals.

$^1$H NMR (D$_2$O): $\delta$ ppm: 2.65 (s, 3 H) 4.31 (s, 3 H) 7.85 (d, 2 H) 8.58 (d, 2 H); HPLC-MS (Method A): $m/z = 108$ (M-126 (iodide)); $R_t = 0.313$ min.

**Step B:** (E) 4-[2-(1H-Indol-5-yl)vinyl]-1-methylpyridinium; iodide (5)

5-Formylindole (151 mg, 1.04 mmol) was dissolved in piperidine (1.13 ml, 11.44 mmol) and a solution of 1,4-dimethylpyridinium; iodide (5A) (245 mg, 1.04 mmol) in 4 ml of ethanol was added slowly. The reaction mixture was stirred for 17 hours at room temperature, and the precipitate was collected by filtration. The crystals were recrystallised from ethanol to afford 172 mg (46%) of the title compound.

Mp: 271°C; $^1$H NMR (DMSO-$d_6$): $\delta$ ppm: 4.23 (s, 3 H) 6.55 (d, 1 H) 7.40 (d, J = 16.17 Hz, 1 H) 7.44 (d, 1 H) 7.50 (d, 1 H) 7.58 (d, 1 H) 7.95 (s, 1 H) 8.12 (d, J = 16.17 Hz, 1 H) 8.17 (d, 2 H) 8.78 (d, 2 H) 11.41 (d, 1 H); HPLC-MS (Method A): $m/z = 235$ (M-126 (iodide)); $R_t = 2.303$ min.

Example 6 The compound was prepared according to the procedure of example 5.

(E) 4-[2-(1H-Indol-5-yl)vinyl]-1-butylpyridinium trifluoroacetate

$^1$H NMR (400 MHz, MeOD) $\delta$ ppm: 1.01 (t, J = 7.33 Hz, 3 H), 1.42 (m, 2 H), 1.95 (m, 2 H), 4.44 (t, J = 7.58 Hz, 2 H), 6.54 (d, J = 3.03 Hz, 1 H), 7.30 (m, 2 H), 7.46 (d, J = 8.59 Hz, 1 H), 7.58 (d, J = 8.59 Hz, 1 H), 7.93 (s, 1 H), 8.04 (m, 3 H), 8.64 (d, J = 7.07 Hz, 2 H).
PHARMACOLOGICAL METHODS

Assay (I): Glucose utilisation in a human epithelia cell line (FSK-4 cells)

Assay description:

The assay measures indirectly the activity of the respiratory chain in FSK-4 cells by using D-(6-3H(N))-glucose. The 3H-proton will first be released in the TCA cycle and transported to the respiratory chain where it will be incorporated into water. The water is thereafter separated from the D-(6-3H(N))-glucose by evaporation. Finally, the radioactivity in the water is determined using a Topcounter.

Method:

FSK-4 cells obtained from ATCC (Maryland, USA), are cultured in growth medium (McCoy’s medium with the following addition 100 units/ml penicillin and streptomycin and 10 % FCS (fetal calf serum)) at 37°C and 5% CO2. All media are obtained by Gibco (Life Technologies, Maryland, USA) where not otherwise mentioned.

At day zero the cells are harvested using trypsin-EDTA and washed in assay medium (MEM medium with the following addition 1x non-essential amino acids (M7145, 2 mM glutamin, 100 units/ml pencilllin and streptomycin, 0.0075% sodium bicarbonate, 1 mM sodium pyrovate and 2 % horse serum) using centrifugation. The cells are plated into single StripPlates wells (Corning B.V.Life Sciences, The Netherlands) that are placed into 24-well plates (Corning B.V.Life Sciences, The Netherlands) with a concentration of 1.5x10^4 cells/100 µl assay medium/well. The cells are then incubated at 37°C and 5% CO2 overnight.

The next day the compounds to be tested are diluted to different concentrations in DMSO (Sigma, Missouri, USA) to 100 times final concentration. They are then diluted to a final concentration in assay medium containing 10 µCi/ml D-(6-3H(N))-glucose (PerkinElmer Life Sciences Inc.,Boston, USA). The medium is removed from the cells and 200 µl of the compound dilutions are added in duplicates. The cells are then incubated for another 24 hours at 37°C and 5% CO2. Finally the cells are lysed by adding 50 µl 10% TCA (trichloroacetate). 300 µl of sterile water is then added to the 24-wells that surrounds the StripPlate wells. The plate is sealed with Top-seal-tape (Packard, PerkinElmer Life Sciences Inc.,Boston, USA) and the plate is incubated in a heating cupboard at 50°C to equilibrium the radioactive water formed in the respiratory chain into the water in the 24-well plate by evaporate. The plates incubate for 8 hours where the heating cupboard is turned off. The top seal is removed when the samples have reached room temperature. One ml scintillation liquid
(Packard Microscinet, PerkinElmer Life Sciences Inc., Boston, USA) is added to all the samples and the radioactivity is determined using a Topcounter (Packard, PerkinElmer Life Sciences Inc., Boston, USA). Non-specific activity is determined by evaporating 200 µl of the dilution medium containing the D-(6-²H(N))-glucose into 300 µl sterile water, and total radioactivity is determined by counting 5 µl assay medium with 10 µCi/ml D-(6-²H(N))-glucose.

Calculations
The half maximal concentration (EC₅₀) and maximal efficacy (Eₘ₅ₐₓ) are calculated using the Hill equation in GraphPad Prism 3.0 (GraphPad software, Inc.). In studies where the linear slope is determined the following concentration of the compound is used: 5x, 3x, 2x, 1.5x, 1.25x, 1x, 0.85x, 0.7x, 0.5x, 0.3x, 0.2x and 0x EC₅₀. From the percentage increase in glucose utilisation the linear slope is calculated using the Michaelis-Menten equation.

Assay (II): The effect of chemical uncouplers on mitochondrial respiration using isolated mitochondria.

This assay is used to investigate if the increase in glucose utilisation caused by the test compounds observed in the glucose utilisation assay is due to an increase in the respiration of the mitochondria. This is done by measuring oxygen consumption in isolated rat liver mitochondria.

A Clark oxygen electrode is used to determine the oxygen consumption. The isolated mitochondria are added to assay medium (D-Mannitol 220mM, Magnesium Chloride 5mM, HEPES 2 mM and Potassium Phosphate 5mM, pH = 7.4) containing rotenone (an inhibitor of complex 1) and oligomycin (an inhibitor of the ATP-synthase) and the rate of oxygen consumptions is measured, when stabilized nutrient (e.g. succinate) is added and an increase in the rate of oxygen consumption is measured. When the rate of oxygen consumption again has stabilized the test compound is added and the oxygen consumption is measured. If the test compound stimulates the rate of oxygen consumption, it is regarded as a chemical uncoupler.

Assay (III): Identification of chemical uncouplers that increase energy expenditure in vivo

The effect of the chemical uncouplers on energy expenditure (oxygen consumption) in vivo is determined by indirect calorimetry. Briefly, animals are placed in airtight chambers. Air is continuously led to and from the chambers. The gas concentrations of oxygen (O₂) and carbon dioxide (CO₂) in the air led to and from the chambers (inlet and outlet air) are recorded.
and the consumption of O$_2$ and the production of CO$_2$ are calculated. Based on the amount of O$_2$ consumed and CO$_2$ produced, energy expenditure is calculated. Compounds which at a given dose increase whole body energy expenditure without obvious deleterious effects are deemed to be chemical uncouplers that increase energy expenditure.
CLAIMS

1. A compound according formula I

\[
\begin{array}{c}
\text{R6} \\
\text{R5} \\
\text{R4} \\
\text{R3} \\
\text{R2} \\
\text{R7} \\
\text{R1} \\
\text{R8}
\end{array}
\]

wherein the wedged bonds to R6 and R7 indicate that R6 and R7 may be either cis or trans to R5;

R1, R2, R3, R4 independently represents hydrogen, nitro, cyano, halogen, haloalkyl, alkoxy, alkylamino, -C(O)OR9, -C(O)NR9R10, -S(O)2OR9, -S(O)nR9, -OC(O)R9, -NHC(O)R9 or -N(C(O)R9)₂, or alkyl, alkenyl, alkynyl, aryl, heteroaryl, all of which are optionally substituted with one or more substituents selected from the list consisting of alkyl, alkenyl, alkynyl, halogen, hydroxyl, cyano, nitro, carboxyl, oxo, haloalkyl, -O-R9, -S(O)nR9, -S(O)₂OR9,

- O-C(O)R9, -C(O)-O-R9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10),

-(CH₂)n-N(R10)-C(O)-R9, -(CH₂)n-O-R9, -N(R9)-C(O)R10, NR9-S(O)nR10,

-(CH₂)n-N(R9)(R10) and aryl, wherein said aryl may optionally be substituted with halogen, haloalkyl or -O-R9;

R5 represents hydrogen, nitro, cyano, halogen, alkyl, alkenyl, alkynyl, alkoxy or alkylamino;

R6 represents alkyl, alkenyl, alkynyl, -OC(O)R9, -NHC(O)R9, -S(O)2OR9, -S(O)nR9, -S(O)2N(R9R10), -P(OR9)2 or -B(OR9)2, or a 4-pyridinium radical of the formula

\[
\begin{array}{c}
\text{R15} \\
\text{R16}
\end{array}
\]

wherein R15 represents alkyl, alkenyl, alkynyl, all of which may optionally be substituted with one or more substituents selected from halogen, hydroxy, amino, cyano, nitro and carboxyl; and wherein the ring A is absent or represents a 5 or 6 membered ring, which may be aromatic or non-aromatic, and which may contain 1, 2 or 3 hetero atoms selected from N, O and S;
R7 represents cyano or hydrogen, provided that if R7 represents hydrogen then R6 represents a 4-pyridinium radical; or R6 and R7 may together with the carbon atom to which they are attached form a moiety of the formula

```
  *  
N   N
```

wherein the * denotes where the moiety is attached to the double bond to which R6 and R7 are attached.

R8 represents hydrogen, nitro, cyano, halogen, haloalkyl, alkoxy, alkylamino, -C(O)OR9, -C(O)NR9R10, -S(O)OR9, -S(O)2R9, -OC(O)R9, -NHC(O)R9, -N(C(O)R9)2, alkyl, alkenyl, alkynyl, aryl or heteroaryl, all of which are optionally substituted with one or more substituents selected from the list consisting of alkyl, alkenyl, alkynyl, halogen, hydroxyl, cyano, nitro, carboxyl, o xo, haloalkyl, -O-R9, -S(O)2R9, -S(O)2OR9, -O-C(O)R9, -C(O)-O-R9, -C(O)-R9,

- C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)p-N(R10)-C(O)-R9, -(CH2)p-O-R9, -N(R9)-C(O)R10, NR9-S(O)2R10, -(CH2)p-N(R9)(R10) and aryl, wherein said aryl may optionally be substituted with halogen, haloalkyl or -O-R9;

Each R9 and R10 are selected independently from the group represented by hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl and pyridinium ion radical, all of which are optionally substituted with a number of substituents which is lower than the total number of hydrogens which could be substituted, and which substituents are selected from the list consisting of alkyl, halogen, hydroxyl, cyano, nitro, carboxyl, haloalkyl, -O-R11, -S(O)2R11, -O-C(O)R11, -C(O)-O-R11, -C(O)-R11, -C(O)-N(R11)(R12), -N(R11)(R12), -(CH2)p-N(R12)-C(O)-R11, -B(OR11)(OR12), -(CH2)p-O-R11, -N(R11)-C(O)R12, N(R11)-S(O)2R12, -(CH2)p-N(R11)(R12) and phenyl, said phenyl being optionally substituted with one or more substituents selected from the list consisting of alkyl, halogen, haloalkyl, hydroxalkyl, cyano, nitro, -O-R13, -S(O)2R13, -O-C(O)R13, -C(O)-O-R13, -C(O)-R13, -C(O)-N(R13)(R14), -N(R13)(R14), -(CH2)p-N(R13)-C(O)-R14, -B(OR13)(OR14), -(CH2)p-O-R13, and -(CH2)p-N(R13)(R14);

or R9 and R10 together with the atoms to which they are attached constitute a 5, 6, 7 or 8 membered ring, which may be saturated, either partly or fully, or unsaturated, and wherein
said ring is optionally substituted with one or more substituents selected from the list consisting of alkyl, halogen, hydroxyl, cyano and nitro;

Each R11 and R12 are independently selected from the group represented by hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxalkyl or cycloalkyl;

or R11 and R12 together with the atoms to which they are attached constitute a 5, 6, 7 or 8 membered ring, which may be saturated, either partly or fully or unsaturated, and wherein said ring is optionally substituted with one or more substituents selected from the list consisting of alkyl, halogen, hydroxyl, cyano and nitro;

Each R13 and R14 are independently selected from the group represented by hydrogen, alkyl, alkenyl, alkynyl, haloalkyl, hydroxalkyl or cycloalkyl;

p represents 0, 1 or 2;
n is 0, 1 or 2;

and pharmaceutically acceptable salts, solvates and prodrugs thereof.

2. A compound according to claim 1 with a formula according to Ia

![Diagram]

wherein R1-R8 are as defined in claim 1;

3. A compound according to claim 1 or 2 wherein R2 and R4 are hydrogen.

4. A compound according to any of claims 1-3, wherein R5 is hydrogen.

5. A compound according to any of claims 1-4, wherein R1 and R8 independently represent hydrogen, cyano, halogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, haloalkyl, -C(O)NR8R10, -S(O)2OR9, -S(O)3R9, wherein said aryl and heteroaryl are optionally substituted with one or more substituents selected from the list consisting of alkyl, alkenyl, alkynyl, halogen, hydroxy, cyano, nitro, haloalkyl, -O-R9, -S(O)2R9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)p-O-R9, and -(CH2)p-N(R9)(R10).
6. A compound according to claim 5, wherein R1, R8 and R3 independently represent hydrogen, cyano, halogen, alkyl, alkenyl, alkynyl, aryl, heteroaryl, haloalkyl, -C(O)NR9R10, -S(O)2OR9, -S(O)nR9, wherein said aryl and heteroaryl are optionally substituted with one or more substituents selected from the list consisting of alkyl, alkenyl, alkynyl, halogen, hydroxy, cyano, nitro, haloalkyl, -O-R9, -S(O)nR9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)p-O-R9, and -(CH2)p-N(R9)(R10).

7. A compound according to any of claims 1-6, wherein R7 represents cyano and R6 represents -S(O)nR9, -S(O)2N(R9R10) or -P(O)(OR9)2.

8. A compound according to any of the claims 1-7 wherein R6 represents -S(O)nR9.

9. A compound according to any of the claims 1-6 wherein R6 represents a 4-pyridinium radical of the formula

\[ \text{R15} \]

wherein R15 represents alkyl, alkenyl, alkynyl, all of which may optionally be substituted with one or more substituents selected from halogen, hydroxy, amino, cyano, nitro and carboxy.

10. A compound according to any of the claims 1-6, wherein R6 and R7 together form a moiety of the formula

\[ \text{R} \]

11. A compound according to any of claims 1-4 and 7-10, wherein R8 represents alkyl, alkenyl, alkynyl, all of which are optionally substituted with a substituent selected from alkyl, alkenyl, alkynyl, halogen, hydroxy, cyano, nitro, haloalkyl, -O-R9, -S(O)nR9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH2)p-O-R9 and -(CH2)p-N(R9)(R10).
12. A compound according to any of claims 1-4 and 7-10, wherein R8 represents aryl, optionally substituted with one or more substituents selected from alkyl, alkenyl, alkylnyl, halogen, hydroxyl, cyano, nitro, carboxyl, oxo, haloalkyl, -O-R9, -S(O)_nR9, -S(O)_nOR9, -O-C(O)R9, -C(O)-O-R9, -C(O)-R9, -C(O)-N(R9)(R10), -N(R9)(R10), -(CH₂)_p-N(R10)-C(O)-R9, -(CH₂)_p-O-R9, -N(R9)-C(O)R10, NR9-S(O)_nR10, -(CH₂)_p-N(R9)(R10) and aryl, wherein said aryl may optionally be substituted with halogen, haloalkyl or -O-R9.

13. A compound according to claim 12, wherein R8 is selected from radicals with the following structures

![Diagram](image)

wherein R is selected from the list consisting of hydrogen, methyl, CF₃, Cl, Br, F, methoxy, ethoxy, methylicarbonyl, nitro, cyano, and phenyl, wherein said phenyl may optionally be substituted with Cl, Br, F, CF₃ or methoxy.
14. A compound according to any of claims 1-4 and 7-10, wherein R8 represents an optionally substituted heteroaryl.

15. A compound according to claim 14, wherein R8 is selected from

![Chemical Structures]

wherein R is selected from the list consisting of hydrogen, methyl, CF₃, Cl, Br, F, methoxy, ethoxy, methylcarboxyl, nitro, cyano, and phenyl, wherein said phenyl may optionally be substituted with Cl, Br, F, CF₃ or methoxy.

16. A compound according to any of claims 1-15, wherein R9 or R10 independently represent hydrogen, alkyl or aryl, wherein said alkyl or aryl may optionally be substituted with a number of substituents which are lower than the total number of hydrogen which could be substituted, and which substituents are selected from alkyl, halogen, hydroxyl, cyano, nitro, carboxyl, or haloalkyl.

17. A compound according to any of claims 1-16, wherein R11 and R12 independently represent hydrogen or alkyl.

18. A compound according to any of claims 1-17, wherein R13 and R14 independently represent hydrogen or alkyl.
19. A compound according to any of claims 1-28, wherein n represents 2.

20. A compound according to claims 1 or 2, wherein R1, R2, R3, R4, R5 and R8 represent hydrogen, R7 represents cyan and R6 represents pyridinium ion radical or \(-\text{S(O)}_{2}\text{R}9\), wherein R9 represents C1-4 alkyl, phenyl or substituted phenyl, wherein said substituents are selected amongst halogen, nitro and C1-4 haloalkyl.

21. A compound according to claim 1 selected from the list of

- 22-(4-chlorobenzenesulfonyl)-3-(1H-indol-5-yl)acrylonitrile;
- 3-(1H-Indol-5-yl)-2-(4-nitrobenzenesulfonyl)acrylonitrile;
- 3-(1H-Indol-5-yl)-2-methanesulfonylacrylonitrile;
- 3-(1H-Indol-5-yl)-2-(4-trifluoromethoxybenzenesulfonyl)acrylonitrile;
- (E) 4-[2-(1H-indol-5-yl)vinyl]-1-methylpyridinium iodide;
- (E) 4-[2-(1H-indol-5-yl)vinyl]-1-butylpyridinium trifluoroacetate;
- 4-[2-(1H-Indol-5-yl)vinyl]-1-ethylnicotinium iodide;
- 4-[2-(1H-Indol-5-yl)vinyl]-1-methylquinolinium iodide;
- 1-Butyl-4-[2-(3-methyl-1H-indol-5-yl)vinyl]-pyridinium iodide; and
- 4-[2-(7-Chloro-1H-indol-5-yl)vinyl]-1-ethylnicotinium iodide

22. A compound according to any of claims 1-21 for use in therapy.

23. A pharmaceutical composition comprising a compound according to any of claims 1-21.

24. A method for treating a disease benefiting from an increase in mitochondrial respiration, the method comprising administering to a patient in need thereof an effective amount of a compound according to any of claims 1-21, optionally in combination with other therapeutically active compounds.

25. A method of treating obesity, atherosclerosis, hypertension, type 2 diabetes, dyslipidemia, coronary heart disease, osteoarthritis, gallbladder diseases, endometrial breast, prostate or colon cancer, or preventing of weight gain or maintaining a weight loss, or treating diabetic microvascular diseases in the retina, renal glomerulus or peripheral nerve cell apoptosis, the method comprising administering to a patient in need thereof a therapeutically effective amount of a compound according to any of claims 1-21, optionally in combination with
other therapeutically active compounds, wherein said other compound may be administered either concomitantly or sequentially.

26. The method according to claim 25, wherein the disease is selected from atherosclerosis, hypertension, type 2 diabetes, dyslipidemia, and wherein the patient is obese.

27. The method according to claim 25 for the prevention of weight gain or the maintenance of a weight loss.

28. The method according to claim 25, wherein the disease is obesity.

29. Use of a compound according to any of claims 1-21 in the manufacture of a medicament for use in the treatment of a disease benefiting from an increase in the mitochondrial respiration.

30. Use of a compound according to any of claims 1-21 for the manufacture of a medicament for the treatment of obesity, atherosclerosis, hypertension, type 2 diabetes, dyslipidemia, coronary heart disease, osteoarthritis, gallbladder diseases, endometrial, breast, prostate or colon cancer, or prevention of weight gain or maintenance of a weight loss, or treating diabetic microvascular diseases in the retina, renal glomerulus or peripheral nerve cell apoptosis.

31. A method of increasing mitochondrial respiration in a subject, the method comprising administering an effective amount of a compound according to any of claims 1-21 to said subject, optionally in combination with one or more other therapeutically active compound, wherein said other compound may be administered sequentially or concomitantly.

32. A method of reducing amount reactive oxygen species in a subject, the method comprising administering an effective amount of a compound according to any of claims 1-21 to said subject, optionally in combination with one or more other therapeutically active compound, wherein said other compound may be administered sequentially or concomitantly.