This invention relates to hair clippers, and more particularly to an improved hair clipper having mechanical crewcut means.

The crewcut, as it is commonly called, is probably the most popular style of haircut amongst boys, and is very popular with mature men as well because of the youthful appearance which it conveys. As is generally known, the crewcut is a closely cropped haircut which eliminates the need for daily brushing and combing of the hair. There are a few variations of crewcuts, but the one which is most in demand by far is the flattop, its name being descriptive of the flat appearance imparted to the top of the head. It is this feature which renders the crewcut the most difficult and time consuming of all haircut styles to produce. In fact, not every barber will venture to perform such a haircut, and those who do charge commensurately more because of the added time and care required.

These barbers who do give such haircuts have been severely limited in the procedures available with the limited tools at their disposal. Generally, a comb and hair clippers are employed, the comb being used to lift the hair and to serve as a guide for the clippers. The clippers are passed along the upper surface of the comb thereby cutting off the hair which was protruding above the comb. The disadvantages inherent in such an operation are quite apparent. Since there is no means for mechanically positioning the comb with respect to the scalp nor the clipper with respect to the comb or scalp, it becomes extremely difficult to properly visually gauge the distances desired and to guide the comb and clipper in a steady fashion; at least not with any degree of speed. In addition, there is the ever present danger of the barber slipping or being distracted, even for an instant, with the result that the clipper might accidentally cut below the comb thereby ruining the haircut. It is difficult enough clipping the hair to uniform lengths, but when a flattop is desired, the difficulties are compounded considerably. This is true because the head generally has a rounded contour at the top thereby precluding the possibility of uniformly clipping the hair while still obtaining the flat appearance desired.

The barber must cut the hair so that it is longest at the front above the forehead, and then gradually and uniformly decrease its length as he approaches the rear of the head where it is to be the shortest.

Hence, it is a general object of this invention to provide an improved hair clipper for giving crewcuts. It is a more particular object to provide an improved hair clipper having mechanical crewcut means.

It is still a more particular object of this invention to provide an improved hair clipper having crewcut means which positions the hair for cutting and mechanically positions the cutting elements of the hair clipper with respect to the scalp.

It is a further object of this invention to provide such means which will also allow the distance of the cutting elements from the scalp to be mechanically varied during operation. It is still a further object of this invention to provide such crewcut means in the form of a readily removable attachment for any standard hair clipper. It is another object to provide such means in the form of a permanent attachment for hair clippers.
gated spacer supporting member 24 having a pair of spring clips 25 transversely depending from its lateral edges to releasably grasp the body of the clipper as shown in FIGURE 2.

The hinge 30 is of the normal construction. As illustrative shown in FIGURE 1, the trailing edge of the spacer has a pair of spaced knuckles 31 projecting therefrom. The edge of the spacer supporting member adjacent to the trailing edge of the spacer likewise has a pair of projecting knuckles 32 which are positioned opposite the recesses between the spacer knuckles. These two knuckles are coaxially aligned to receive a pintle 33 which is axially locked in position by a button 34 secured to each of its ends. Pintle 33 is axially positioned transversely with respect to the spacer teeth and is located to the rear of the cutting blades when the spacer is mounted onto the clipper as shown in FIGURE 2.

According to the invention, the spacer, although being free to rotate about the pintle, is under a constant pivoting force provided by a spring member 35 which bridges the pintle and urges the spacer to rotate towards the cutting blades tending to hold the spacer in supporting engagement with the cutting blades when the clipper is held against the head during operation. The spring member is illustratively a leaf type compression spring. This spring is divided into three basic portions: a flat flanged portion 36 at one end through which the spring is fastened to the exposed side of the spacer supporting bracket by a nut and bolt 39; a curved portion 37 at the middle which bridges across the pintle; and a spacer contacting portion 38 at its other end through which the compression force of the spring is transferred to the spacer. A lever arm 26 depends upwardly from one lateral edge of the spacer base. This arm, in accordance with the invention, allows the operator to overcome the force of the spring to any degree desired by increasing or decreasing the pressure he exerts on the lever with his thumb, thereby permitting him to angularly vary the distance of the spacer from the cutting blades. FIGURE 2 shows the spacer in two different positions relative to the cutting blades. However, using the spacer as the relative point as would be the case during operation when it is maintained against the scalp at all times as a guide, it is actually the clipper and its cutting blades which is rotated back away from the spacer.

The clipper may be grasped in either of two ways, whichever is more comfortable. Either it can be grasped backwards, that is, with the top portion of the body as shown in FIGURE 2, resting between the thumb and index finger, with the thumb extending downward around the near side of the body and the rest of the fingers extending downward on the far side, or it can be grasped forehand with the bottom of the body 128, as shown in FIGURE 2, resting between the thumb and index finger with the thumb extending upward on the near side of the body and the rest of the fingers extending upward on the far side. The thumb in any event is pressing on the underside of the lever as shown in FIGURE 2. The only difference is that in the former position, as described, the thumb is used to pull the lever arm when it is desired to move the spacer away from the cutting blades whereas in the latter position, as described, the thumb is used to push the lever arm in similar situations.

When a regular crewcut is desired with uniformity of hair length, the spacer is either allowed to rest against the cutting blades during the entire operation or is lowered away from the cutting blades the desired distance and then maintained in this position during the entire operation, the distance depending on the length of hair desired. However, when a flat top is desired, it becomes necessary to vary the distance of the spacer from the cutting blades during the operation. As was mentioned earlier in the specification, a flat appearance is achieved by cutting the hair at the top of the head so that it is longest at the forehead and then gradually decreasing in length towards the back of the head.

This is achieved in the following manner. The spacer is lowered the desired distance away from the cutting blades (at the start of the operation) as illustratively shown by the dotted representation of the spacer in FIGURE 2. The spacer is then placed flatly against the scalp at the top of the head above the forehead with its comb-like teeth pointing rearwards towards the back of the head. The clipper is then caused to traverse the top of the head from front to rear while thumb pressure is gradually decreased. In this manner the hair length can be gradually decreased as the clipper is moved towards the rear of the head. It is important that the operator allow the clipper to pivot forward as pressure is released from the lever rather than holding the clipper in the same position. For otherwise, the result will be that the spacer will pivot away from the scalp towards the cutting blades.

When it is desired to traverse the top of the head again either to the right or left of the original path, the procedure is merely repeated again. It is very easy to obtain the same starting distance between the spacer and the cutting blades, as the operator will be able to measure this by the amount of pressure he exerted in his prior run and by the amount he had extended his thumb. The important thing to be remembered is that the operator need not guage the proper starting distance visually, but only guage the starting distance in a far more accurate manner.

An alternative embodiment would contemplate the use of a tension spring or springs of different types. They could be secured to the forward end of the spacer, and then secured to the body of the hair clipper. This would supply the necessary pivoting force to properly operate the invention. However, these springs could also be secured to the spacer at any other suitable place, and the invention is in no way limited by the position of its spring members. Another alternative embodiment contemplates the use of a leaf spring of the tension type secured to the spacer and spacer supporting member on their sides opposite those which the compression leaf spring contacts in the preferred embodiment. Still another alternative embodiment would employ a spiral type wire spring which would be wound about the pintle and secured to the spacer and spacer supporting member.

This invention also contemplates a rotatable spacer which is permanently secured to a standard hair clipper, in which case the spring clips would be replaced by a more permanent form of connection. In fact, the spacer supporting bracket could be eliminated in such an embodiment and the spacer could be hinged directly to the body of the clipper. Another possible variation would be to have the spacer mounted to a bracket whereby both spacer and bracket could be moved to the rear of the clipper for storage when not in use.

This invention contemplates in addition, spacer teeth of different sizes and shapes and spacers with greater or lesser numbers of teeth.

In the study and practice of the invention, variations and modifications will undoubtedly occur, and it is understood that any changes in the details, materials, steps and arrangements of parts which have herein been described and illustrated in order to explain the nature of the invention may be made by those skilled in the art without departing from the principle and scope of the invention as expressed in the appended claims.

What is claimed is:
1. In an improved hair clipper adapted for providing crewcuts, the improvement comprising a crewcut attachment including:
 (a) a flat spacing member positioned to rest upon the scalp in an underlying relationship with the cutting element of said hair clipper during operation, said spacing member having a base with a leading edge and a trailing edge and having, further a plurality of

2. In the improved hair clipper of claim 1, said spacing member being a molded plastic article in which the leading and trailing edges are formed integrally.

3. In the improved hair clipper of claim 2, said spacing member having a base extending rearwards from said leading edge and the trailing edge extending rearwardly from said trailing edge.

4. In the improved hair clipper of claim 3, said spacing member being a molded plastic article in which the base is formed integrally.

5. In the improved hair clipper of claim 4, said spacing member having a base extending rearwards from said leading edge and the trailing edge extending rearwardly from said trailing edge.

6. In the improved hair clipper of claim 5, said spacing member having a base extending rearwards from said leading edge and the trailing edge extending rearwardly from said trailing edge.

7. In the improved hair clipper of claim 6, said spacing member having a base extending rearwards from said leading edge and the trailing edge extending rearwardly from said trailing edge.

8. In the improved hair clipper of claim 7, said spacing member having a base extending rearwards from said leading edge and the trailing edge extending rearwardly from said trailing edge.

9. In the improved hair clipper of claim 8, said spacing member having a base extending rearwards from said leading edge and the trailing edge extending rearwardly from said trailing edge.

10. In the improved hair clipper of claim 9, said spacing member having a base extending rearwards from said leading edge and the trailing edge extending rearwardly from said trailing edge.
parallel flat long comb-like teeth extending forwardly from said leading edge substantially beyond said cutting element a distance corresponding approximately to one-half the entire length of said spacing member
(b) a spacer supporting member releasably secured to said hair clipper
(c) a hinge member pivotally joining said spacing member to its said supporting member rearwardly of said cutting element
(d) a spring member bridging said hinge member and urging said spacing member to rotate towards said cutting element and into supporting engagement therewith and
(e) a finger-operated lever member secured to said spacing member for manually overcoming the force exerted by said spring member and selectively rotating said hair clipper and cutting element away from said spacing member while the latter is maintained against the scalp.

2. The improvement as defined in claim 1, wherein said spring member is of the leaf spring type including a flat end portion secured to the exposed side of said spacer supporting member, a curved central portion bridging across said hinge member and another end portion bearing against the outer surface of said spacing member.

References Cited by the Examiner
UNITED STATES PATENTS

1,086,799 2/1914 Accisano ------------ 30—202
1,716,465 6/1929 Roberts ------------ 30—201
2,011,351 8/1935 Yancey et al. ------ 30—201
2,317,928 4/1943 Martell ------------ 30—200
2,639,503 5/1953 Thurston ------------ 30—200

WILLIAM FELDMAN, Primary Examiner.
J. C. PETERS, Assistant Examiner.