US 20070271486A1

a2y Patent Application Publication o) Pub. No.: US 2007/0271486 A1

a9y United States

Fitzgerald

43) Pub. Date: Nov. 22, 2007

(54) METHOD AND SYSTEM TO DETECT
SOFTWARE FAULTS

(75) Inventor: Jeffrey J. Fitzgerald, Amherst, NH

Us)

Correspondence Address:

ROPES & GRAY LLP

PATENT DOCKETING 39/41
ONE INTERNATIONAL PLACE
BOSTON, MA 02110-2624 (US)

(73) Assignee: Cedar Point Communications, Inc.,
Derry, NH (US)
(21) Appl. No.: 11/888,396

(22) Tiled: Jul. 31, 2007

YES

Related U.S. Application Data

(63) Continuation of application No. 09/954,731, filed on
Sep. 18, 2001, now Pat. No. 7,260,741.

Publication Classification

(51) Int. CL
HO4B 1/74 (2006.01)

(52) US. Cle oo 714/43

(57) ABSTRACT

The present invention is directed to a system and method for
actively auditing a software system to determine the status.
The software system includes a plurality of processes
executed in an active processor domain. An active message
is generated for processing in the active processor domain.
Each process receiving the message modifies it by adding an
active time indicator to it; thereby creating a modified active
message. The status of the active processor domain is
determined in response to the modified active message.

, 472
RECEIVE THE -
MODIFIED MESSAGE

y

DOES THE
MODIFIED MESSAGE 47§
CONTAIN AN —
ERROR?

480 484
T?égééggg”g gg,&'ﬁf - GENERATE STATISTICAL —
M TO THE STAND-BY CHARACTERISTIC FOR THE
PROCESSOR DOMAIN MODIFIED MESSAGE
- F Y
DOES
YES THE STATISTICAL

CHARACTERISTIC EXCEED 488
A PREDETERMINED =
THRESHOLD?

v

Patent Application Publication Nov. 22,2007 Sheet 1 of 7 US 2007/0271486 A1

PROCESSOR DOMAIN 1 PROCESSOR DOMAIN 2
1004 1008

Y y

COMPARATOR

0
DECISION
MODULE

y

PROCESSOR DOMAIN 4 PROCESSOR DOMAIN 3
100C 100D

FIG. 1 (PRIOR ART)

Patent Application Publication Nov. 22,2007 Sheet 2 of 7 US 2007/0271486 A1

PROCESSOR DOMAIN 1 PROCESSOR DOMAIN 2
200A 2008
PROCESSOR DOMAIN 3
1 200C
\ 4 y A 4
COMPARATOR
210

FIG. 2 (PRIOR ART)

Patent Application Publication Nov. 22,2007 Sheet 3 of 7 US 2007/0271486 A1

ML

PROCESSOR DOMAIN 1 [REDUNDANCY PROCESSOR DOMAIN 2 [REDUNDANGY
M0 MANAGER [11320 MANAGER e
T 318 o BT
318b 318¢c 318d 328b

P2 P3 {P4

(2 &) e)|

318e- 318f+ 318g- 328
DI I .
318h- 31817 318)- 328h-
F23) (39 P43
318k 318L 318m 328k
PROCESSOR DOMAIN 3 [REDUNDANCY PROCESSOR DOMAIN 4 [REDUNDANCY

MANAGER
4

MANAGER

330
o 3

71\

340

Patent Application Publication Nov. 22,2007 Sheet 4 of 7 US 2007/0271486 A1

PROCESSOR DOMAIN 2[REDUNDANCY]
MANAGER [

324

PROCESSOR DOMAIN 1[REDUNDANCY
M0 MANAGER ' (320
—*" 314 —

®
=

\saa

PROCESSOR DOMAIN 3[REDUNDANCY| - |PROCESSOR DOMAIN 4[REDUNDANCY
330 MANAGER ke (340 MANAGER f
o 334 B 344

= ——

PROCESSOR DOMAIN 5[REDUNDANCY] PROCESSOR DOMAIN 6[REDUNDANCY]
350 MANAGER 360 MANAGER
_ 34 T 364

B

- FIG. 3B

Patent Application Publication Nov. 22,2007 Sheet 5 of 7

GENERATE MESSAGE
FOR PROCESSING

40

Y

CREATE A MODIFIED
MESSAGE IN A FIRST
PROCESSOR DOMAIN

430

PROVIDE MODIFIED
- MESSAGE TO A
DETERMINATION

PROCESSOR DOMAIN

450

DETERMINE STATUS
OF FIRST
PROCESSOR DOMAIN

410

FIG. 4

(PRIOR ART)

US 2007/0271486 Al

/ 400

Patent Application Publication Nov. 22,2007 Sheet 6 of 7 US 2007/0271486 A1

5
'RECEIVE THE MESSAGE
AT PROCESS N
A 4
434
R TIME STAMP
> THE MESSAGE

N

PROVIDE MODIFIED 438
MESSAGE TO

PROCESS N+1

y

X)
NO IS THIS THE LAST

PROCESS INTHE 436
LIST?

PROVIDE MODIFIED 45()
MESSAGE TO A T
DETERMINATION
PROCESSOR DOMAIN

FIG. 5

Patent Application Publication Nov. 22,2007 Sheet 7 of 7

YES

US 2007/0271486 Al

m

RECEIVE THE
MODIFIED MESSAGE

: DOES THE
MODIFIED MESSAGE

A 4

476
CONTAIN AN —

ERROR?

TRANSFORM THE FIRsT 480
PROCESSOR DOMAIN

[TO THE STAND-BY

PROCESSOR DOMAIN

484
GENERATE STATISTICAL —
CHARACTERISTIC FOR THE
MODIFIED MESSAGE

A

YES

DOES
THE STATISTICAL

CHARACTERISTIC EXCEED 488
A PREDETERMINED
THRESHOLD?

FIG. 6

US 2007/0271486 Al

METHOD AND SYSTEM TO DETECT SOFTWARE
FAULTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation of application of
U.S. patent application Ser. No. 09/954,731, filed Sep. 18,
2001, the entire contents of the which are incorporated
herein by reference.

FIELD OF THE INVENTION

[0002] The invention relates generally to fault detection in
a computer system and more specifically to a method and
system for determining software faults within a processor
domain.

BACKGROUND OF THE INVENTION

[0003] Generally, it is difficult to determine the health and
status of software processes in distributed software system
due to the complex inter-relationships and distributed nature
of the software environment. Typically, fault detection
mechanisms in this environment are either very fine-grained
for specific errors (e.g., bus errors) or very course-grained
for general errors (e.g., protocol timeouts). There are many
other fault conditions (e.g., system hangs, priority inversion,
scheduler thrashing, and over-burdened queue depths)
which are also detrimental to proper system functionality but
which are difficult to detect and isolate in distributed soft-
ware systems.

[0004] Typically, a redundant software system is
employed to increase the overall availability of the system.
When a software fault is detected in one system the redun-
dant system takes control of the system operations. Gener-
ally, three redundancy models are used that vary in cost and
complexity. A first model, depicted in FIG. 1, includes four
processor domains 100a, 1005, 100c, 1004 (referred to
generally as 100), grouped into two pairs. Each pair com-
municates with its own non-redundant comparator function
110a, 1105 (referred to generally as 110) that checks the
output from each pair separately in a synchronous fashion.
Each processor element in each of the processor domains
100 of the pair should generate the same result (the same
software is operating with the same data). When a compara-
tor function 110 determines mismatch in any result, the other
pair of processor domains 100 take over. If the comparator
function 110 fails, the other pair of processor domains 100
takes over. Thus both the active processor domains 100 and
comparator function 110 are protected from single points of
failures.

[0005] With reference to FIG. 2, a second redundancy
model includes three processor domains 200a, 2005 and
200c¢ (referred to generally as 200). The model runs as a
single lockstep entity (i.e., each processor domain runs the
same code and receives the same data). A comparator
function 210 compares the output of all three processor
domains 200. If the results of one of the processor domains
disagrees with the results of the other two processor
domains, that processor domain 200 is declared faulty and it
is taken out of service. If the comparator 210 fails then one
processor domain is taken out of service, but the other two
processor domains remain in service.

Nov. 22,2007

[0006] The third typical redundancy model includes two
processors domains, one active and one stand-by. The pro-
cessor domains may be running in lockstep or the stand-by
processor domain could constantly be updated by state
messages from the active processor domain. There is no
comparator function because there is no way to determine
which processor domain is functioning correctly. Thus,
failure is “self-determined” within a processor domain by
running a low-level “heartbeat” function or relying on
system traps (e.g., bus error timeouts). This model is gen-
erally less expensive than the other redundancy models
mentioned above. However, the ability to isolate faults is
reduced because of the lack of hardware comparator redun-
dancy.

[0007] What is needed is a redundancy scheme capable of
providing high availability with an increased sensitivity to
process faults within a processor domain.

SUMMARY OF THE INVENTION

[0008] The present invention is directed to providing a
highly available redundancy scheme sensitive to individual
process faults within a processor domain. A message is
provided to processes in a processor domain in a “daisy-
chained” fashion and each process time-stamps the message
and passes it on to the next process in a list. The list is
included in the message and represents all the processes
within the given processor domain that will receive the
message. The same method is implemented in a redundant
(stand-by) processor domain. Once the messages have been
time-stamped by all the processes, the time-stamped mes-
sages are communicated to a separate processor domain that
verifies the time-stamped process list as correct, thereby
determining the health and correctness of the audited pro-
cessor domains.

[0009] One aspect of the present invention is directed to a
method of actively auditing a software system to determine
the status. The software system includes a plurality of
processes executed in an active processor domain. The
method includes the steps of generating an active message to
be processed by the active processor domain, generating a
modified active message by providing an active time indi-
cator associated with the active message for at least one of
the processes of the plurality, and determining the status of
the active processor domain in response to the modified
active message.

[0010] In one embodiment, the status of the active pro-
cessor domain is determined in response to the active time
indicator. In another embodiment, the active time indicator
includes a time-stamp indicating the time that the at least one
process completed processing the active message. In an
alternate embodiment, the time-stamp indicates the time
elapsed while the at least one process completed processing
the active message.

[0011] In another embodiment, the method includes the
steps of determining a statistical characteristic of the active
processor domain, and determining the status of the active
processor domain in response to the statistical characteristic.
In a further embodiment, the step of determining a statistical
characteristic includes generating a time average of the
duration of the at least one process of the plurality of
processes for a plurality of active messages. In still a further

US 2007/0271486 Al

embodiment, the step of determining a statistical character-
istic includes generating a standard deviation from the time
average.

[0012] In another embodiment, the method includes the
steps of generating a stand-by message to be processed in a
stand-by processor domain that includes a plurality of stand-
by processes, and generating a modified stand-by message
by providing a stand-by time indicator for at least one
process of the plurality of stand-by processes in the stand-by
domain. In a further embodiment, the method includes the
step transforming the active processor domain to the stand-
by processor domain in response to the modified active
message.

[0013] Another aspect of the present invention is directed
to a system for actively auditing a software system to
determine status. The system includes an active processor
domain, a time-stamp mechanism and a redundancy man-
ager. The active processor domain has at least one processor
executing at least on process that receives an active message
and generates a modified active message in response. The
time-stamp mechanism is in communication with the at least
one process and provides an active time indicator for use in
generation of the modified active message. The redundancy
manager is in communication with the active processor
domain and determines the status of the active processor
domain in response to the modified active message.

[0014] Inone embodiment, the system includes a stand-by
processor domain. The stand-by processor domain includes
at least one processor executing at least one stand-by process
that receives a stand-by message and generates a modified
stand-by message in response. In this embodiment, the
redundancy manager determines the status of the stand-by
processor domain in response to the modified stand-by
message. In a further embodiment, the system includes a
control determination module that transforms the active
processor domain into the stand-by processor domain in
response to the modified active message.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The invention is pointed out with particularity in
the appended claims. The advantages of the invention may
be better understood by referring to the following descrip-
tion taken in conjunction with the accompanying drawing in
which:

[0016] FIG.1is ablock diagram depicting an embodiment
of a prior art redundancy scheme:

[0017] FIG. 2 is a block diagram of another embodiment
of a prior art redundancy scheme;

[0018] FIG. 3A is a block diagram of an embodiment of
software audit system constructed in accordance with the
present invention;

[0019] FIG. 3B is a block diagram of another embodiment
of software audit system constructed in accordance with the
present invention;

[0020] FIG. 4 is a flow chart representation of an embodi-
ment of a method of the present invention;

[0021] FIG. 5 is a flow chart representation of an embodi-
ment of a method step of the present invention; and

Nov. 22,2007

[0022] FIG. 6 is a flow chart representation of an embodi-
ment of a method step of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

[0023] With reference to FIG. 3A, one embodiment of the
present invention includes an active processor domain 310
including an active redundancy manager 314 and a plurality
of active processes 318a, 3185, 318¢ . . . 318x (referred to
generally a 318), a redundant processor domain 320 includ-
ing a redundant redundancy manager 324 and a plurality of
redundant processes 328a, 32856, 328¢ . . . 328x (referred to
generally a 328), and a voting processor domain 330 includ-
ing a voting redundancy manger 334.

[0024] 1In operation, active processor domain 310 is fully
active (i.e., performing system functions). Active redun-
dancy manger 314 generates an active message. The active
message includes a list of the plurality of active processes
318 that will receive the active message and the location of
the voting redundancy manager 334. The active message is
communicated to the first active process 318, more specifi-
cally in this illustrative example active process 318a. Active
process 318a receives the active message and in response
time-stamps the message to generate a modified active
message and communicates it to the next active process
318b. This process continues until the final active process in
the list receives the modified active message and time-
stamps it. Upon completion of processing the modified
active message by the last active process 318m, the modified
active message is communicated to the voting redundancy
manager 334. In a preferred embodiment, the time-stamp
includes the time the active message was received by an
active process 318. In an alternative embodiment, the time-
stamp includes the time an active process 318 completes the
processing of the active message. In yet another embodi-
ment, the time-stamp includes the time elapsed while the
active process 318 completed processing the active message.

[0025] Generally, redundancy processor domain 304 mir-
rors (i.e., contains the same processes as) active processor
domain 310. Redundant processor domain 320 tracks the
state of active processor domain 310, thus the processing
load of the redundant processor domain 320 is significantly
less than that of active processor domain 310. Similar to
active redundancy manager 314, redundant redundancy
manger 324 generates a redundant message. The redundant
message includes a list of which of the plurality of redundant
process 328 that will receive the redundant message and the
location of the voting redundancy manager 334. The redun-
dant message is communicated to the first redundant pro-
cesses 328, more specifically in this illustrative example
redundant process 328a. Redundant process 328a receives
the redundant message and in response time-stamps the
message to generate a modified redundant message and
communicates it to the next redundant process 328b6. This
process continues until the final redundant process in the list
receives the modified redundant message and time-stamps it.
Upon completion of processing the modified redundant
message by the last redundant process 328m, the modified
redundant message is communicated to the voting redun-
dancy manager 334. In another embodiment, redundant
processor domain 314 does not mirror active processor
domain 310. Additionally, redundant processor domain 320
and active processor domain 310 do not have to have
synchronized time measurement means.

US 2007/0271486 Al

[0026] Voting redundancy manager 334 receives both the
modified active message and the modified redundant mes-
sage. Voting redundancy manager 334 logs the received
messages and generates a statistical characteristic for the
modified active message and the modified redundant mes-
sage. In one embodiment, the statistical characteristic
includes a running mean of the time need to complete the
active software audit and a standard deviation therefrom. If
the standard deviation determined for the modified active
message exceeds a predetermined threshold value (e.g., 2
standard deviations), voting redundancy manger 334
instructs the redundant processor domain 320 to become the
fully active (i.e., an active processor domain). Consequently,
active processor domain 310 is instructed to transition to a
second state and function as a redundant processor domain.
The voting function performed by voting processor domain
330 requires a small amount of processing time and thus
does not place a large burden on the overall processing
resources of the voting processor domain 330. As a result,
active redundancy manager 314 can also function as a voting
redundancy manager 334 for voting processor domain 330
and a fourth processor domain 340.

[0027] FIG. 3B depicts an embodiment of the present
invention in which six processor domains are being audited
for faults. In this embodiment, a redundancy manager 334 of
a third processor domain 330 performs the voting function
for a first processor domain 310 and a second processor
domain 320. Additionally, a redundancy manager 354 of a
fifth processor domain 350 performs the voting function for
the third processor domain 330 and a forth processor domain
340. As shown, one can see that this method can be extended
to any number of processor domains and is not limited to the
above-described illustrative embodiments.

[0028] In addition to determining if the processor domain
contains a faulted process, the present invention provides the
ability to isolate which process or processes in the processor
domains have faulted. By subtracting the time-stamp from a
process in the list and the previous process in the list, the
elapsed time needed for the process to complete the time-
stamping function can be determined and logged each time
the software audit is performed. Voting redundancy manager
334 generates a running average for each process in the
processor domains, and also a standard deviation from the
running average for each process in the current audit. If the
standard deviation for a process exceeds a predetermined
threshold (e.g., two standard deviations), the process is
determined to have faulted. This information can be stored
or communicated for use in restoring the faulted processor
domain to a non-faulty state.

[0029] With reference to FIG. 4, one embodiment of the
present invention relates to a method 400 of actively audit-
ing a software system to determine its status. In step 410, a
message is generated for processing by a first processing
domain. In one embodiment, the message includes a list of
all the processes that will receive the message and process
it. In step 430, a modified message is created by a process
in the first processor domain. After each process in the list
has attempted to modify the message, the modified active
message is provided to a determination processor domain in
step 450. The determination processor domain is separate
from the first processor domain and determines the status of
the first processor domain in response to the modified active
message in step 470.

Nov. 22,2007

[0030] With reference to FIG. 5, the creating of a modified
active message in step 430 of method 400 includes, in more
detail step 432, receiving the message by a first process (N)
of a plurality of processes running in the first processor
domain. The message is time-stamped in step 434 by process
N. In one embodiment, if process N is not running or has
faulted in another manner, an error message is added to the
active message in place of the time-stamp. After the message
is modified, a decision is made in step 436 to determine if
process N is the last process in the list of processes to receive
the message. If process N is not the last process on the list,
the method proceeds to step 438 and the message is provide
to process N+1, (i.e., the next process in the list) and the
time-stamping step 434 is repeated. Once the list process in
the list is reached, the modified active message is provided
to the determination processor domain in step 450.

[0031] With reference to FIG. 6, in more detail step 470,
determining the status of the first (active) processor domain,
includes receiving the modified message by the determina-
tion processor domain in step 472. Step 476 determines
whether or not the modified active message contains an error
message. If an error message is present, the method proceeds
to step 480 and the first processor domain is transformed into
a stand-by processor domain, and the stand-by processor
domain is transformed into an active processor domain. If an
error message is not present in the modified message, the
method continues to step 484 and a statistical characteristic
of the modified message is generated. The statistical char-
acteristic is analyzed to determine if it exceeds a predeter-
mined threshold in step 488. If the statistical characteristic
exceeds the predetermined threshold, the method proceeds
to step 480 and the first processor domain is transformed into
a stand-by processor domain, and the stand-by processor
domain is transformed into an active processor domain. If
the statistical characteristic does not exceed the predeter-
mined threshold then method 400 is repeated. In one
embodiment, this method is repeated about once per second,
although other periods of repetition are possible without
departing from the spirit and scope of the present invention.

[0032] Having shown the preferred embodiments, one
skilled in the art will realize that many variations are
possible within the scope and spirit of the claimed invention.
It is therefor the intention to limit the invention only by the
scope of the claims.

What is claimed is:

1. A method of actively auditing a software system to
determine status, the software system comprising a plurality
of processes executed in an active processor domain, the
method comprising the steps of:

generating an active message for processing by the active
processor domain;

generating a modified active message by providing an
active time indicator associated with the active message
for at least one process of the plurality of processes; and

determining the status of the active processor domain in

response to the modified active message.

2. The method of claim 1 wherein the step of determining
the status of the active processor domain is responsive to the
active time indicator.

3. The method of claim 1 wherein a respective active time
indicator is associated with each process of the plurality of

US 2007/0271486 Al

processes, and wherein the step of determining the status of
the active processor domain is responsive to more than one
of the active time indicators.

4. The method of claim 1 wherein the active time indicator
comprises a time-stamp indicating the time the at least one
process completed processing the active message.

5. The method of claim 1 wherein the active time indicator
comprises a time-stamp indicating the time elapsed while
the at least one process processed the active message.

6. The method of claim 1 wherein the step of determining
the status comprises;

determining a statistical characteristic of the active pro-
cessor domain; and

determining the status of the active processor domain in
response to the statistical characteristic.

7. The method of claim 6 wherein the step of determining
a statistical characteristic comprises generating a time aver-
age of the duration of the at least one process of the plurality
of processes for a plurality of active messages.

8. The method of claim 7 wherein the step of determining
a statistical characteristic comprises generating a standard
deviation from the time average.

9. The method of claim 1 further comprising the steps of:

generating a stand-by message for processing in a stand-
by processor domain, the stand-by processor domain
comprising a plurality of stand-by processes; and

generating a modified stand-by message by providing a
stand-by time indicator for at least one process of the
plurality of stand-by processes in the stand-by domain.

10. The method of claim 9 wherein the step of determin-
ing the status of the stand-by processor domain is responsive
to the stand-by time indicator.

11. The method of claim 9 wherein a respective stand-by
time indicator is associated with each process of the plurality
of stand-by processes of the stand-by domain and wherein
the step of determining the status of the stand-by processor
domain is responsive to at least two of the stand-by time
indicators.

12. The method of claim 9 further comprises the step of
transforming the active processor domain to the stand-by
processor domain in response to the modified active mes-
sage.

13. A system for actively auditing a software system to
determine status comprising: an active processor domain,
the active processor domain having at least one processor,
the at least one processor executing at least one process, the
at least one process receiving an active message and gen-
erating a modified active message in response thereto;

a time-stamp mechanism in communication with the at
least one process and for providing an active time
indicator for use in generation of the modified active
message; and

Nov. 22,2007

a redundancy manager in communication with the active
processor domain, the redundancy manager determin-
ing the status of active processor domain in response to
the modified active message.

14. The system of claim 13 wherein the redundancy
manager determines the status of the active processor
domain in response to the active time indicator.

15. The system of claim 13 wherein the active time
indicator comprises a time-stamp indicating the time the at
least one process completed processing the active message.

16. The system of claim 13 wherein the active time
indicator comprises a time-stamp indicating the time elapsed
while the at least one process processed the active message.

17. The system of claim 13 wherein the redundancy
manager determines a statistical characteristic of the active
processor domain and determines the status of the active
processor domain in response to the statistical characteristic.

18. The system of claim 17 wherein the statistical char-
acteristic comprises a time average of the duration of the at
least one process.

19. The system of claim 18 wherein the statistical char-
acteristic comprises a standard deviation from the time
average.

20. The system of claim 13 further comprising a stand-by
processor domain, the stand-by processor domain having at
least one processor, the at least one processor executing at
least one stand-by process, the at least one stand-by process
receiving a stand-by message and generating a modified
stand-by message in response thereto, and wherein the
redundancy manager determines the status of the stand-by
processor domain in response to the modified stand-by
message.

21. The system of claim 20 wherein the redundancy
manager further comprises a control determination module,
the control determination module transforming the active
processor domain into the stand-by processor domain in
response to the modified active message.

22. A system for actively auditing a software system to
determine status comprising:

means for executing at least one process in an active
processor domain configured to receive an active mes-
sage and generate a modified active message in
response thereto;

means for time-stamping in communication with the at
least one process, the means for time-stamping gener-
ating an active time indicator for use by the means for
executing; and

means for the status of the active processor domain in
response to the modified active message.

