Title: N-HYDROXY-3-(3-(1H IMIDAZOL-2-YL) PHENYL)-ACYRAMIDE DERIVATIVES AND RELATED COMPOUNDS AS HISTONE DEACETYLASE (HDAC) INHIBITORS FOR THE TREATMENT OF CANCER

Abstract: HDAC inhibitors of the present invention are provided that comprise the formula (I) wherein Z is selected from the group consisting of (I) (III) (IV) (VI) (VII) (VIII) (IX) (X) (XI) wherein each X is independently selected from the group consisting of CR₃ and N; each Y is independently selected from the group consisting of O, S and NR₃; Q is a substituted or unsubstituted aromatic ring; M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the Q substituent; the other substituents are defined in the claims. The compounds are useful for the treatment of cancer and inflammations.
Published:
- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.
N-HYDROXY-3- (3- (1H-IMIDAZOL-2-YL) -PHENYL) -ACRYLAMIDE DERIVATIVES AND RELATED COMPOUNDS AS HISTONE DEACETYLASE (HDAC) INHIBITORS FOR THE TREATMENT OF CANCER

FIELD OF THE INVENTION

[0001] The invention relates to compounds that may be used to inhibit histone deacetylases (HDACs) as well as compositions of matter and kits comprising these compounds. The present invention also relates to methods for inhibiting HDAC as well as treatment methods using compounds according to the present invention.

DESCRIPTION OF RELATED ART

[0002] DNA in eukaryotic cells is tightly complexed with proteins (histones) to form chromatin. Histones are small, positively charged proteins that are rich in basic amino acids (positively charged at physiological pH), which contact the phosphate groups (negatively charged at physiological pH) of DNA. There are five main classes of histones H1, H2A, H2B, H3, and H4. The amino acid sequences of H2A, H2B, H3, and H4 show remarkable conservation between species, wherein H1 varies somewhat and in some cases is replaced by another histone, e.g., H5. Four pairs of each of H2A, H2B, H3 and H4 together form a disk-shaped octomeric protein core, around which DNA (about 140 base pairs) is wound to form a nucleosome. Individual nucleosomes are connected by short stretches of linker DNA associated with another histone molecule to form a structure resembling a beaded string, which is itself arranged in a helical stack, known as a solenoid.

[0003] The majority of histones are synthesized during the S phase of the cell cycle, and newly synthesized histones quickly enter the nucleus to become associated with DNA. Within minutes of its synthesis, new DNA becomes associated with histones in nucleosomal structures.

[0004] A small fraction of histones, more specifically, the amino acid side chains thereof, are enzymatically modified by post-translational addition of methyl, acetyl, or phosphate groups, neutralizing the positive charge of the side chain, or converting it to a negative charge. For example, lysine and arginine groups may be methylated, lysine groups may be acetylated, and serine groups may be phosphorylated. For lysine, the - \((\text{CH}_2)_4\)-NH\(_2\) sidechain may be acetylated, for example by an acetyltransferase enzyme to give the amide -\((\text{CH}_2)_4\)-NHC(=O)CH\(_3\). Methylation, acetylation, and phosphorylation of

[0006] The correlation between acetylation status of histones and the transcription of genes has been known for quite some time. Certain enzymes, specifically acetylases (e.g., histone acetyltransferases (HAT) and deacetylases (histone deacetylases or HDACs), which regulate the acetylation state of histones have been identified in many organisms and have been implicated in the regulation of numerous genes, confirming a link between acetylation and transcription. In general, histone acetylation is believed to correlate with transcriptional activation, whereas histone deacetylation is believed to be associated with gene repression.

[0007] A growing number of histone deacetylases (HDACs) have been identified. HDACs function as part of large multiprotein complexes, which are tethered to the promoter and repress transcription. Well characterized transcriptional repressors such as MAD, nuclear receptors and YY1 associate with HDAC complexes to exert their repressor function.

A variety of inhibitors of HDAC have been reported. Some of these inhibitors are described in the following table:

<table>
<thead>
<tr>
<th>Inhibitors</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibitors</td>
<td>References</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
</tbody>
</table>

[0012] Despite the various HDAC inhibitors that have been reported to date, a need continues to exist for new and more effective inhibitors of HDACs.

SUMMARY OF THE INVENTION

[0013] The present invention relates to compounds that have activity for inhibiting HDACs.

[0014] The present invention also provides compositions, articles of manufacture and kits comprising these compounds.

[0015] In one embodiment, a pharmaceutical composition is provided that comprises a HDAC inhibitor according to the present invention as an active ingredient. Pharmaceutical compositions according to the invention may optionally comprise 0.001%–100% of one or more HDAC inhibitors of this invention. These pharmaceutical compositions may be administered or coadministered by a wide variety of routes, including for example, orally, parenterally, intraperitoneally, intravenously, intraarterially,
transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraocularly, via local delivery (for example by catheter or stent), subcutaneously, intraadiposally, intraarticularly, or intrathecally. The compositions may also be administered or coadministered in slow release dosage forms.

[0016] The invention is also directed to kits and other articles of manufacture for treating disease states associated with HDAC.

[0017] It is noted in regard to the above embodiments that these embodiments may optionally exclude instances where R₂ and R₃ are selected such that these substituents are taken together to form a ring.

[0018] In one embodiment, a kit is provided that comprises a composition comprising at least one HDAC inhibitor of the present invention in combination with instructions. The instructions may indicate the disease state for which the composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition. The kit may also comprise packaging materials. The packaging material may comprise a container for housing the composition. The kit may also optionally comprise additional components, such as syringes for administration of the composition. The kit may comprise the composition in single or multiple dose forms.

[0019] In another embodiment, an article of manufacture is provided that comprises a composition comprising at least one HDAC inhibitor of the present invention in combination with packaging materials. The packaging material may comprise a container for housing the composition. The container may optionally comprise a label indicating the disease state for which the composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition. The kit may also optionally comprise additional components, such as syringes for administration of the composition. The kit may comprise the composition in single or multiple dose forms.

[0020] Also provided are methods for preparing compounds, compositions and kits according to the present invention. For example, several synthetic schemes are provided herein for synthesizing compounds according to the present invention.

[0021] Also provided are methods for using compounds, compositions, kits and articles of manufacture according to the present invention.
[0022] In one embodiment, the compounds, compositions, kits and articles of manufacture are used to inhibit HDAC.

[0023] In one embodiment, the compounds, compositions, kits and articles of manufacture are used to treat a disease state for which HDAC possesses activity that contributes to the pathology and/or symptomology of the disease state.

[0024] In another embodiment, a compound is administered to a subject wherein HDAC activity within the subject is altered, preferably reduced.

[0025] In another embodiment, a prodrug of a compound is administered to a subject that is converted to the compound \textit{in vivo} where it inhibits HDAC.

[0026] In another embodiment, a method of inhibiting HDAC is provided that comprises contacting HDAC with a compound according to the present invention.

[0027] In another embodiment, a method of inhibiting HDAC is provided that comprises causing a compound according to the present invention to be present in a subject in order to inhibit HDAC \textit{in vivo}.

[0028] In another embodiment, a method of inhibiting HDAC is provided that comprises administering a first compound to a subject that is converted \textit{in vivo} to a second compound wherein the second compound inhibits HDAC \textit{in vivo}.

[0029] In another embodiment, a therapeutic method is provided that comprises administering a compound according to the present invention.

[0030] In another embodiment, a method of inhibiting cell proliferation is provided that comprises contacting a cell with an effective amount of a compound according to the present invention.

[0031] In another embodiment, a method of inhibiting cell proliferation in a patient is provided that comprises administering to the patient a therapeutically effective amount of a compound according to the present invention.

[0032] In another embodiment, a method of treating a condition in a patient which is known to be mediated by HDAC, or which is known to be treated by HDAC inhibitors, comprising administering to the patient a therapeutically effective amount of a compound according to the present invention.

[0033] In another embodiment, a method is provided for using a compound according to the present invention in order to manufacture a medicament for use in the treatment of
disease state which is known to be mediated by HDAC, or which is known to be treated by HDAC inhibitors.

[0034] In another embodiment, a method is provided for treating a disease state for which HDAC possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising: causing a compound according to the present invention to be present in a subject in a therapeutically effective amount for the disease state.

[0035] In another embodiment, a method is provided for treating a disease state for which HDAC possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising: administering a first compound to a subject that is converted in vivo to a second compound such that the second compound is present in the subject in a therapeutically effective amount for the disease state.

[0036] In another embodiment, a method is provided for treating a disease state for which HDAC possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising: administering a compound according to the present invention to a subject such that the compound is present in the subject in a therapeutically effective amount for the disease state.

[0037] In another embodiment, a method is provided for treating a cell proliferative disease state comprising treating cells with a compound according to the present invention in combination with an anti-proliferative agent, wherein the cells are treated with the compound according to the present invention before, at the same time, and/or after the cells are treated with the anti-proliferative agent, referred to herein as combination therapy. It is noted that treatment of one agent before another is referred to herein as sequential therapy, even if the agents are also administered together. It is noted that combination therapy is intended to cover when agents are administered before or after each other (sequential therapy) as well as when the agents are administered at the same time.

[0038] Examples of diseases that may be treated by administration of compounds and compositions according to the present invention include, but are not limited to protozoal diseases and cell proliferative diseases and conditions such as leukemia, melanomas, squamous cell carcinomas, breast cancer, prostrate cancer, bladder cancer, lung cancer including non small-cell lung cancer and small-cell lung cancer, ovarian cancer, colon
cancer, squamous cell carcinoma, astrocytoma, Kaposi's sarcoma, glioblastoma, bladder cancer, head and neck cancer, glioma, colorectal cancer, genitourinary cancer and gastrointestinal cancer.

[0039] It is noted in regard to all of the above embodiments that the present invention is intended to encompass pharmaceutically acceptable salts and solvates (e.g., hydrates) of the compounds, regardless of whether such salts and solvates are specified since it is well known in the art to administer pharmaceutical agents in a salt or solvated form. It is further noted that prodrugs may also be administered which are altered in vivo and become a compound according to the present invention. The various methods of using the compounds of the present invention are intended, regardless of whether prodrug delivery is specified, to encompass the administration of a prodrug that is converted in vivo into a compound according to the present invention.

BRIEF DESCRIPTION OF THE FIGURES

[0040] Figure 1 illustrates a ribbon diagram overview of the structure of HDAC8, highlighting the secondary structural elements of the protein.

[0041] Figure 2A illustrates particular examples of substituent R4 that may be employed in the Z moiety.

[0042] Figure 2B illustrates particular examples of Z moieties that the compounds of the present invention may comprise.

[0043] Figure 2C illustrates examples of moieties, Q, that the leader group may comprise to link the leader group (L) to the remainder of the compound.

[0044] Figure 2D illustrates particular examples of moieties that the leader groups may comprise.

[0045] It is noted in regard to Figures 2A-2D that the squiggle line is intended to indicate a bond to an adjacent moiety. It is also noted that the substituents shown may optionally be further substituted beyond what is shown. Further, one or more heteroatoms may optionally be substituted for the carbon atoms shown. In regard to Figure 2D, it is noted that the leader groups moieties may be incorporated into the leader group in either possible orientation.
[0046] Figure 3 illustrates residues 1-482 of HDAC1 and a 6-histidine tag at the N-terminus (SEQ. I.D. No. 1).

[0047] Figure 4 illustrates the DNA sequence (SEQ. I.D. No. 2) that was used to encode SEQ. I.D. No. 1.

[0048] Figure 5 illustrates residues 1-488 of HDAC2 and a 6-histidine tag at the C-terminus (SEQ. I.D. No. 3).

[0049] Figure 6 illustrates the DNA sequence (SEQ. I.D. No. 4) that was used to encode SEQ. I.D. No. 3.

[0050] Figure 7 illustrates residues 73-845 of HDAC6 and a 6-histidine tag at the C-terminus (SEQ. I.D. No. 5).

[0051] Figure 8 illustrates the DNA sequence (SEQ. I.D. No. 6) that was used to encode SEQ. I.D. No. 5.

[0052] Figure 9 illustrates residues 1-377 of HDAC8 and a 6-histidine tag at the N-terminus (SEQ. I.D. No. 7).

[0053] Figure 10 illustrates the DNA sequence (SEQ. I.D. No. 8) that was used to encode SEQ. I.D. No. 7.

DEFINITIONS

[0054] Unless otherwise stated, the following terms used in the specification and claims shall have the following meanings for the purposes of this Application.

[0055] "Alicyclic" means a moiety comprising a non-aromatic ring structure. Alicyclic moieties may be saturated or partially unsaturated with one or more double or triple bonds. Alicyclic moieties may also optionally comprise heteroatoms such as nitrogen, oxygen and sulfur. Examples of alicyclic moieties include, but are not limited to moieties with C3 - C8 rings such as cyclopropyl, cyclohexane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, cyclohexene, cyclohexadiene, cycloheptane, cycloheptene, cycloheptadiene, cyclooctane, cyclooctene, and cyclooctadiene.

[0056] "Aliphatic" means a moiety characterized by a straight or branched chain arrangement of constituent carbon atoms and may be saturated or partially unsaturated with one or more double or triple bonds.

[0057] "Alkoxy" means an oxygen moiety having a further alkyl substituent.
[0058] "Alkyl" represented by itself means a straight or branched, saturated or unsaturated, aliphatic radical having a chain of carbon atoms, optionally with oxygen (See “oxaalkyl”) or nitrogen atoms (See “aminoalkyl”) between the carbon atoms. C\textsubscript{X} alkyl and C\textsubscript{X-Y} alkyl are typically used where X and Y indicate the number of carbon atoms in the chain. For example, C\textsubscript{1-6} alkyl includes alkyls that have a chain of between 1 and 6 carbons (e.g., methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, vinyl, allyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylallyl, ethynyl, 1-propynyl, 2-propynyl, and the like). Alkyl represented along with another radical (e.g., as in arylalkyl) means a straight or branched, saturated or unsaturated aliphatic divalent radical having the number of atoms indicated or when no atoms are indicated means a bond (e.g., (C\textsubscript{6-10})ary(C\textsubscript{0-3})alkyl includes phenyl, benzyl, phenethyl, 1-phenylethyl 3-phenylpropyl, and the like).

[0059] "Alkylene", unless indicated otherwise, means a straight or branched, saturated or unsaturated, aliphatic, divalent radical. C\textsubscript{X} alkylene and C\textsubscript{X-Y} alkylene are typically used where X and Y indicate the number of carbon atoms in the chain. For example, C\textsubscript{1-6} alkylene includes methylene (-CH\textsubscript{2}-), ethylene (-CH\textsubscript{2}CH\textsubscript{2}-), trimethylene (-CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}-), tetramethylene (-CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}-) 2-butenylene (-CH\textsubscript{2}CH=CHCH\textsubscript{2}-), 2-methyltetramethylene (-CH\textsubscript{2}CH(CH\textsubscript{3})CH\textsubscript{2}CH\textsubscript{2}-), pentamethylene (-CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}CH\textsubscript{2}-) and the like).

[0060] "Alkylidene" means a straight or branched unsaturated, aliphatic, divalent radical having a general formula =CR\textsubscript{a}R\textsubscript{b}. C\textsubscript{X} alkylidene and C\textsubscript{X-Y} alkylidene are typically used where X and Y indicate the number of carbon atoms in the chain. For example, C\textsubscript{1-6} alkylidene includes methyldene (=CH\textsubscript{2}), ethyldene (=CHCH\textsubscript{3}), isopropylidene (=C(CH\textsubscript{3})\textsubscript{2}), propylidene (=CHCH\textsubscript{2}CH\textsubscript{3}), allyliden (=CH-CH=CH\textsubscript{2}), and the like).

[0061] "Amino" means a nitrogen moiety having two further substituents where, for example, a hydrogen or carbon atom is attached to the nitrogen. For example, representative amino groups include -NH\textsubscript{2}, -NHCH\textsubscript{3}, -N(CH\textsubscript{3})\textsubscript{2}, -NHC\textsubscript{1-10}-alkyl, -N(C\textsubscript{1-10}-alkyl)\textsubscript{2}, -NHaryl, -NHheteroaryl, -N(aryl)\textsubscript{2}, -N(heteroaryl)\textsubscript{2}, and the like. Optionally, the two substituents together with the nitrogen may also form a ring. Unless indicated otherwise, the compounds of the invention containing amino moieties may include
protected derivatives thereof. Suitable protecting groups for amino moieties include acetyl, tert-butoxycarbonyl, benzylloxy carbonyl, and the like.

[0062] "Aminoalkyl" means an alkyl, as defined above, except where one or more substituted or unsubstituted nitrogen atoms (-N-) are positioned between carbon atoms of the alkyl. For example, an (C₂₋₆) aminoalkyl refers to a chain comprising between 2 and 6 carbons and one or more nitrogen atoms positioned between the carbon atoms.

[0063] "Animal" includes humans, non-human mammals (e.g., dogs, cats, rabbits, cattle, horses, sheep, goats, swine, deer, and the like) and non-mammals (e.g., birds, and the like).

[0064] "Aromatic" means a moiety wherein the constituent atoms make up an unsaturated ring system, all atoms in the ring system are sp² hybridized and the total number of pi electrons is equal to 4n+2. An aromatic ring may be such that the ring atoms are only carbon atoms or may include carbon and non-carbon atoms (see Heteroaryl).

[0065] "Aryl" means a monocyclic or fused bicyclic ring assembly wherein each ring is aromatic or when fused with a second ring forms an aromatic ring assembly. If one or more ring atoms is not carbon (e.g., N, S), the aryl is a heteroaryl. Cₓ aryl and Cₓ₋ᵧ aryl are typically used where X and Y indicate the number of atoms in the ring.

[0066] "Bicycloalkyl" means a saturated or partially unsaturated fused bicyclic or bridged polycyclic ring assembly.

[0067] "Bicycloaryl" means a bicyclic ring assembly wherein the rings are linked by a single bond or fused and at least one of the rings comprising the assembly is aromatic. Cₓ bicycloaryl and Cₓ₋ᵧ bicycloaryl are typically used where X and Y indicate the number of carbon atoms in the bicyclic ring assembly and directly attached to the ring.

[0068] "Carbamoyl" means the radical -OC(O)NRₐRₐ where Rₐ and Rₐ are each independently two further substituents where a hydrogen or carbon atom is alpha to the nitrogen. It is noted that carbamoyl moieties may include protected derivatives thereof. Examples of suitable protecting groups for carbamoyl moieties include acetyl, tert-butoxycarbonyl, benzylloxy carbonyl, and the like. It is noted that both the unprotected and protected derivatives fall within the scope of the invention.

[0069] "Carbocycle” means a ring consisting of carbon atoms.
"Carbocyclic ketone derivative" means a carbocyclic derivative having a C(O) substituent.

"Carbonyl" means the radical -C(O)-. It is noted that the carbonyl radical may be further substituted with a variety of substituents to form different carbonyl groups including acids, acid halides, amides, esters, and ketones.

"Carboxy" means the radical -C(O)O-. It is noted that compounds of the invention containing carboxy moieties may include protected derivatives thereof, i.e., where the oxygen is substituted with a protecting group. Suitable protecting groups for carboxy moieties include benzyl, tert-butyl, and the like.

"Cyano" means the radical -CN.

"Cycloalkyl" means a non-aromatic, saturated or partially unsaturated, monocyclic, fused bicyclic or bridged polycyclic ring assembly. \(C_X \) cycloalkyl and \(C_{X,Y} \) cycloalkyl are typically used where \(X \) and \(Y \) indicate the number of carbon atoms in the ring assembly. For example, \(C_{3:10} \) cycloalkyl includes cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyclohexenyl, 2,5-cyclohexadienyl, bicyclo[2.2.2]octyl, adamant-1-yl, decahyronaphthyl, oxocyclohexyl, dioxocyclohexyl, thiocyclohexyl, 2-oxobicyclo[2.2.1]hept-1-yl, and the like.

"Cycloalkylene" means a divalent saturated or partially unsaturated, monocyclic ring or bridged polycyclic ring assembly. \(C_X \) cycloalkylene and \(C_{X,Y} \) cycloalkylene are typically used where \(X \) and \(Y \) indicate the number of carbon atoms in the ring assembly.

"Disease" specifically includes any unhealthy condition of an animal or part thereof and includes an unhealthy condition that may be caused by, or incident to, medical or veterinary therapy applied to that animal, i.e., the "side effects" of such therapy.

"Halo" means fluoro, chloro, bromo or iodo.

"Halo-substituted alkyl", as an isolated group or part of a larger group, means "alkyl" substituted by one or more "halo" atoms, as such terms are defined in this Application. Halo-substituted alkyl includes haloalkyl, dihaloalkyl, trihaloalkyl, perhaloalkyl and the like (e.g. halo-substituted \((C_{1-3}) \) alkyl includes chloromethyl, dichloromethyl, difluoromethyl, trifluoromethyl, 2,2,2-trifluoroethyl, perfluoroethyl, 2,2,2-trifluoro-1,1-dichloroethyl, and the like).
"Heteroatom" refers to an atom that is not a carbon atom. Particular examples of heteroatoms include, but are not limited to nitrogen, oxygen, sulfur and halogens.

"Heteroatom moiety" includes a moiety where the atom by which the moiety is attached is not a carbon. Examples of heteroatom moieties include -N=, -NR2, -N\(^{+}(O)^{-}\), -O-, -S- or -S(O)\(_2\)-, wherein R\(_2\) is further substituent.

"Heterobicycalkyl" means bicycalkyl, as defined in this Application, provided that one or more of the atoms forming the ring is a heteroatom. For example hetero(C\(_9\)\(_2\))bicycalkyl as used to define Z in this application includes, but is not limited to, 3-aza-bicyclo[4.1.0]hept-3-yl, 2-aza-bicyclo[3.1.0]hex-2-yl, 3-aza-bicyclo[3.1.0]hex-3-yl, and the like.

"Heterocycloalkylene" means cycloalkylene, as defined in this Application, provided that one or more of the ring member carbon atoms indicated, is replaced by a heteroatom.

"Heteroaryl" means an aryl ring, as defined in this Application, where one or more of the atoms forming the ring is a heteroatom.

"Heterobicycloaryl" means bicycloaryl, as defined in this Application, provided that one or more of the atoms forming the ring is a heteroatom. For example, hetero(C\(_8\)\(_1\))bicycloaryl as used in this Application includes, but is not limited to, 2-amino-4-oxo-3,4-dihydropteridin-6-yl, and the like.

"Heterocycloalkyl" means cycloalkyl, as defined in this Application, provided that one or more of the atoms forming the ring is a heteroatom.

"Hydroxy" means the radical -OH.

"Imine derivative" means a derivative comprising the moiety -C(NR)-, wherein R comprises a hydrogen or carbon atom alpha to the nitrogen.

"Isomers" mean any compound having an identical molecular formulae but differing in the nature or sequence of bonding of their atoms or in the arrangement of their atoms in space. Isomers that differ in the arrangement of their atoms in space are termed "stereoisomers". Stereoisomers that are not mirror images of one another are termed "diastereomers" and stereoisomers that are nonsuperimposable mirror images are termed "enantiomers" or sometimes "optical isomers". A carbon atom bonded to four nonidentical substituents is termed a "chiral center". A compound with one chiral center has two
enantiomeric forms of opposite chirality. A mixture of the two enantiomeric forms is
termed a "racemic mixture". A compound that has more than one chiral center has $2^n - 1$
enantiomeric pairs, where n is the number of chiral centers. Compounds with more than
one chiral center may exist as either an individual diastereomers or as a mixture of
diastereomers, termed a "diastereomeric mixture". When one chiral center is present a
stereoisomer may be characterized by the absolute configuration of that chiral center.
Absolute configuration refers to the arrangement in space of the substituents attached to
the chiral center. Enantiomers are characterized by the absolute configuration of their
chiral centers and described by the R- and S-sequencing rules of Cahn, Ingold and Prelog.
Conventions for stereochemical nomenclature, methods for the determination of
stereochimistry and the separation of stereoisomers are well known in the art (e.g., see

[0089] "Nitro" means the radical -NO$_2$.

[0090] "Oxaalkyl" means an alkyl, as defined above, except where one or more oxygen
atoms (-O-) are positioned between carbon atoms of the alkyl. For example, an (C$_2$.
)α-oxaalkyl refers to a chain comprising between 2 and 6 carbons and one or more oxygen
atoms positioned between the carbon atoms.

[0091] "Oxoalkyl" means an alkyl, further substituted with a carbonyl group. The
carbonyl group may be an aldehyde, ketone, ester, amide, acid or acid chloride.

[0092] "Pharmaceutically acceptable" means that which is useful in preparing a
pharmaceutical composition that is generally safe, non-toxic and neither biologically nor
otherwise undesirable and includes that which is acceptable for veterinary use as well as
human pharmaceutical use.

[0093] "Pharmaceutically acceptable salts" means salts of inhibitors of the present
invention which are pharmaceutically acceptable, as defined above, and which possess the
desired pharmacological activity. Such salts include acid addition salts formed with
inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid,
phosphoric acid, and the like; or with organic acids such as acetic acid, propionic acid,
hexanoic acid, heptanoic acid, cyclopentane propionic acid, glycolic acid, pyruvic acid,
lactic acid, malonic acid, succinic acid, malic acid, maleic acid, fumaric acid, tartaric acid,
citric acid, benzoic acid, o-(4-hydroxybenzoyl)benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, 1,2-ethanedisulfonic acid,
2-hydroxyethanesulfonic acid, benzenesulfonic acid, p-chlorobenzenesulfonic acid,
2-naphthalenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid,
4-methylbicyclo[2.2.2]oct-2-ene-1-carboxylic acid, glucoheptonic acid,
4,4'-methylenebis(3-hydroxy-2-ene-1-carboxylic acid), 3-phenylpropionic acid,
trimethylacetic acid, tertiary butylacetic acid, lauryl sulfuric acid, gluconic acid, glutamic acid, hydroxynaphthoic acid, salicylic acid, stearic acid, muconic acid and the like.

Pharmaceutically acceptable salts also include base addition salts which may be formed when acidic protons present are capable of reacting with inorganic or organic bases. Acceptable inorganic bases include sodium hydroxide, sodium carbonate, potassium hydroxide, aluminum hydroxide and calcium hydroxide. Acceptable organic bases include ethanolamine, diethanolamine, triethanolamine, tromethamine, N-methylglucamine and the like.

"Prodrug" means a compound that is convertible in vivo metabolically into an inhibitor according to the present invention. The prodrug itself may or may not also have HDAC inhibitory activity. For example, an inhibitor comprising a hydroxy group may be administered as an ester that is converted by hydrolysis in vivo to the hydroxy compound. Suitable esters that may be converted in vivo into hydroxy compounds include acetates, citrates, lactates, tartrates, malonates, oxalates, salicylates, propionates, succinates, fumarates, maleates, methylene-bis-b-hydroxynaphthoates, gentisates, isethionates, di-p-toluoyltartrates, methanesulfonates, ethanesulfonates, benzenesulfonates, p-toluenesulfonates, cyclohexylsulfamates and quinates.

"Protected derivatives" means derivatives of inhibitors in which a reactive site or sites are blocked with protecting groups. Protected derivatives are useful in the preparation of inhibitors or in themselves may be active as inhibitors. A comprehensive list of suitable protecting groups can be found in T.W. Greene, Protecting Groups in Organic Synthesis, 3rd edition, John Wiley & Sons, Inc. 1999.

"Substituted or unsubstituted" means that a given moiety may consist of only hydrogen substituents through available valencies (unsubstituted) or may further comprise one or more non-hydrogen substituents through available valencies (substituted) that are
not otherwise specified by the name of the given moiety. For example, isopropyl is an example of an ethylene moiety that is substituted by -CH₃. In general, a non-hydrogen substituent may be any substituent that may be bound to an atom of the given moiety that is specified to be substituted. Examples of substituents include, but are not limited to, aldehyde, alicyclic, aliphatic, alkyl, alkyene, alkylidene, amide, amino, aminooalkyl, aromatic, aryl, bicycloalkyl, bicycloaryl, carbamoyl, carbocycle, carboxy, carboxyl group, cycloalkyl, cycloalkylene, ester, halo, heterobicycloalkyl, heterocycloalkylene, heteroaryl, heterobicycloaryl, heterocycloalkyl, hydroxy, iminoketone, ketone, nitro, oxaalkyl, and oxoalkyl moieties, each of which may optionally also be substituted or unsubstituted.

[0098] "Sulfinyl" means the radical –SO-. It is noted that the sulfinyl radical may be further substituted with a variety of substituents to form different sulfinyl groups including sulfinic acids, sulfinamides, sulfinyl esters, and sulfoxides.

[0099] "Sulfonyl" means the radical –SO₂-. It is noted that the sulfonyl radical may be further substituted with a variety of substituents to form different sulfonyl groups including sulfonic acids, sulfonamides, sulfonate esters, and sulfones.

[0100] "Therapeutically effective amount" means that amount which, when administered to an animal for treating a disease, is sufficient to effect such treatment for the disease.

[0101] "Thiocarbonyl" means the radical –C(S)–. It is noted that the thiocarbonyl radical may be further substituted with a variety of substituents to form different thiocarbonyl groups including thioacids, thioamides, thioesters, and thioketones.

[0102] "Treatment" or "treating" means any administration of a compound of the present invention and includes:

(1) preventing the disease from occurring in an animal which may be predisposed to the disease but does not yet experience or display the pathology or symptomatology of the disease,

(2) inhibiting the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., arresting further development of the pathology and/or symptomatology), or

16
ameliorating the disease in an animal that is experiencing or displaying the pathology or symptomatology of the diseased (i.e., reversing the pathology and/or symptomatology).

[0103] It is noted in regard to all of the definitions provided herein that the definitions should be interpreted as being open ended in the sense that further substituents beyond those specified may be included. Hence, a C₃ alkyl indicates that there is one carbon atom but does not indicate what are the substituents on the carbon atom. Hence, a C₃ alkyl comprises methyl (i.e., -CH₃) as well as -CRₐRₐRₐ where Rₐ, Rₐ, and Rₐ may each independently be hydrogen or any other substituent where the atom alpha to the carbon is a heteroatom or cyano. Hence, CF₃, CH₂OH and CH₂CN are all C₃ alkyls.

DETAILED DESCRIPTION OF THE INVENTION

[0104] The present invention relates to compounds, compositions, kits and articles of manufacture that may be used to inhibit histone deacetylases (referred to herein as HDACs). The compounds may optionally be more particularly used as inhibitors of Class I HDACs such as HDAC1, HDAC2, HDAC6 and HDAC8.

[0105] At least seventeen human genes that encode proven or putative HDACs have been identified to date, some of which are described in Johnstone, R. W., “Histone-Deacetylase Inhibitors: Novel Drugs for the Treatment of Cancer”, Nature Reviews, Volume I, pp. 287-299, (2002) and PCT Publication Nos. 00/10583, 01/18045, 01/42437 and 02/08273.

[0106] HDACs have been categorized into three distinct classes based on their relative size and sequence homology. The different HDACs (Homo sapiens), HDAC classes, sequences and references describing the different HDACs are provided in Tables 1 - 3.

TABLE 1: CLASS I HDACs

<table>
<thead>
<tr>
<th>HDAC</th>
<th>GenBank Accession Number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDAC</td>
<td>GenBank Accession Number</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>3</td>
<td>NP_003874</td>
<td>Isolation and characterization of cDNAs corresponding to an additional member of the human histone deacetylase gene family, Yang, W.M., Yao, Y.L., Sun, J.M., Davie, J.R. and Seto, E., J. Biol. Chem. 272 (44), 28001-28007 (1997)</td>
</tr>
</tbody>
</table>

TABLE 2: CLASS II HDACs

<table>
<thead>
<tr>
<th>HDAC</th>
<th>GenBank Accession Number</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDAC</td>
<td>GenBank Accession Number</td>
<td>Reference</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HDAC</td>
<td>GenBank Accession Number</td>
<td>Reference</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------</td>
<td>--</td>
</tr>
<tr>
<td>HDAC</td>
<td>GenBank Accession Number</td>
<td>Reference</td>
</tr>
<tr>
<td>-------</td>
<td>--------------------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

[0107] Of particular note are Class I HDACs. All Class I HDACs appear to be sensitive to inhibition by trichostatin A (TSA). Also of particular note is HDAC8, a protein whose crystal structure Applicants determined and used in conjunction with arriving at the present invention.

[0108] HDAC8 is a 377 residue, 42kDa protein localized to the nucleus of a wide array of tissues, as well as several human tumor cell lines. The wild-type form of full length HDAC8 is described in GenBank Accession Number NP 060956; Buggy, J.J., Sideris, M.L., Mak, P., Lorimer, D.D., McIntosh, B. and Clark, J.M., Cloning and characterization of a novel human histone deacetylase, HDAC8, Biochem. J. 350 Pt 1, 199-205 (2000). Zn$^{2+}$ is likely native to the protein and required for HDAC8 activity.

1. CRYSTAL STRUCTURE FOR HDAC

[0109] Syrrx, Inc. in San Diego, California recently solved the crystal structure for HDAC8. Knowledge of the crystal structure was used to guide the design of the HDAC inhibitors provided herein.
[0110] Figure 1 illustrates a ribbon diagram overview of the structure of HDAC8, highlighting the secondary structural elements of the protein. HDAC8 was found to have a single domain structure belonging to the open α/β class of folds. The structure consists of a central 8-stranded parallel β-sheet sandwiched between layers of α-helices. The ligand binding clefts lie almost in the plane of the central β-sheet, and are formed primarily by loops emanating from the carboxy-terminal ends of the β-strands comprising the sheet. There are two large structural extensions, which occur beyond the core of the α/β motif, off the second and last β-strands of the central β-sheet. Residues contained in the extension off the second β-strand form a globular “cap” over the core of the protein, play an important role in defining the shape of the ligand binding pockets, and are involved in a number of key interactions with the bound ligands.

2. HDAC INHIBITORS

[0111] In one embodiment, HDAC inhibitors of the present invention are provided that comprise the formula

$$Z - Q - L - M$$

wherein

Z is selected from the group consisting of

$$\begin{align*}
\text{R}_2 & \quad \text{R}_3 & \quad \text{R}_4 \\
\text{R}_2 & \quad \text{R}_1 & \quad \text{R}_4 \\
\text{R}_2 & \quad \text{R}_3 & \quad \text{R}_4
\end{align*}$$

wherein

each X is independently selected from the group consisting of CR$_5$ and N;
each Y is independently selected from the group consisting of O, S and NR$_5$;
R_1, R_2, R_3, R_4 and R_5 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl,
heteroaryl sulfonyl, aryl oxy, heteroaryl oxy, aryl alkyl, heteroaryl alkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₁, R₂, R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₁, R₂, R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

Q is a substituted or unsubstituted aromatic ring;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the Q substituent,

with the proviso that M is not –C(O)–R₁₃ and R₁₃ is not hydroxy, alkoxy or arylalkoxy

![Chemical Structure](image)

when Z is , X is N, R₄ is H, Q is phenyl, and R₂ and R₃ are substituted phenyl.

[0112] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula

\[Z \quad Q \quad L \quad M \]

wherein

Z is selected from the group consisting of

![Chemical Structures](image)

wherein

each X is independently selected from the group consisting of CR₅ and N;

R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryl oxy, heteroaryloxy, aryl alkyl, heteroaryl alkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₁, R₂, R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₁, R₂, R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or -CH₃;
Q is a substituted or unsubstituted aromatic ring;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the Q substituent,

with the proviso that M is not \(-\text{C(O)}-\text{R}_{13}\) and \(\text{R}_{13}\) is not hydroxy, alkoxy or aryalkoxy when \(Z\) is , \(X\) is N, \(R_4\) is H, \(Q\) is phenyl, and \(R_2\) and \(R_3\) are substituted phenyl.

[0113] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula:

\[
\text{Z--Q--L--M}
\]

wherein

\(Z\) is selected from the group consisting of

wherein

each \(X\) is independently selected from the group consisting of \(\text{CR}_4\) and \(N\);
each \(Y\) is independently selected from the group consisting of \(\text{O, S and NR}_5\);

\(R_1, R_2, R_3, R_4\) and \(R_5\) are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkysulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that \(R_1, R_2, R_3, R_4\) and \(R_5\) is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which \(R_1, R_2, R_3, R_4\) and \(R_5\) is bound is nitrogen, and with the proviso that when \(R_4\) is bound to \(N\) then \(R_4\) is not H or \(\text{CH}_3\);

\(Q\) is a substituted or unsubstituted aromatic ring;

\(M\) is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and
L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the Q substituent.

[0114] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula:

![Chemical structures]

wherein

- each X is independently selected from the group consisting of CR₅ and N;
- each Y is independently selected from the group consisting of O, S and NR₅;
- R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;
- R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl,
heteroarylsulfonyl, aryloxoy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group.

[0115] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula:

![Chemical Structure](image)

wherein

each X is independently selected from the group consisting of CR5 and N;
each Y is independently selected from the group consisting of O, S and NR5;
R3, R4 and R5 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxoy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R3, R4 and R5 is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R3, R4 and R5 is bound is nitrogen, and with the proviso that when R4 is bound to N then R4 is not H or CH3;

R6, R7, R8, and R9 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl,
heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group,

with the proviso that M is not \(-C(O)\)-R_{13} and R_{13} is not hydroxy, alkoxy or aryalkoxy when the compound comprises the formula and R_2 and R_3 are substituted phenyl.

[0116] It is noted that R_8, R_7, R_5 or R_9 may optionally be selected such that the phenyl ring linking the five membered ring and the L group comprise one or two fluorines as indicated in the structural subunit below.

[0117] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula:
wherein

each X is independently selected from the group consisting of CR5 and N;
each Y is independently selected from the group consisting of O, S and NR5;

R1, R2, R3, R4 and R5 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R3, R4 and R5 is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R3, R4 and R5 is bound is nitrogen, and with the proviso that when R4 is bound to N then R4 is not H or CH3;

R6, R7, R8, and R9 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and
L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group,

with the proviso that M is not –C(O)–R_{13} and R_{13} is not hydroxy, alkoxy or arylalkoxy

when the compound comprises the formula and R_2 and R_3 are substituted phenyl.

[0118] It is noted that R_6, R_7, R_8 or R_9 may optionally be selected such that the phenyl ring linking the five membered ring and the L group comprise one or two fluorines as indicated in the structural subunit below.

[0119] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula:

wherein

each X is independently selected from the group consisting of CR_5 and N;

R_1, R_2, R_3, R_4 and R_5 are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, arylxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R_3, R_4 and R_5 is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R_3, R_4 and R_5 is bound is nitrogen, and with the proviso that when R_4 is bound to N then R_4 is not H or CH_3;
R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group,

with the proviso that M is not –C(O)–R₁₃ and R₁₃ is not hydroxy, alkoxy or arylalkoxy when the compound comprises the formula and R₂ and R₃ are substituted phenyl.

[0120] It is noted that R₆, R₇, R₈ or R₉ may optionally be selected such that the phenyl ring linking the five membered ring and the L group comprise one or two fluorines as indicated in the structural subunit below.

[0121] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula:

wherein each X is independently selected from the group consisting of CR₅ and N;
each Y is independently selected from the group consisting of O, S and NR₅;
R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfanyl, alkylsulfanyl, arylsulfanyl, heteroarylsulfanyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₅, R₄ and R₃ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfanyl, alkylsulfanyl, arylsulfanyl, heteroarylsulfanyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group.

[0122] It is noted that R₆, R₇, R₈ or R₉ may optionally be selected such that the phenyl ring linking the five membered ring and the L group comprise one or two fluorines as indicated in the structural subunit below.

[0123] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula:
wherein

each X is independently selected from the group consisting of CR₅ and N;

R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group,

with the proviso that M is not –C(O)–R₁₃ and R₁₃ is not hydroxy, alkoxy or aryalkoxy when the compound comprises the formula

\[
\begin{array}{c}
\text{R₂} \\
\text{N} \\
\text{R₃} \\
\text{L-M} \\
\text{R₅} \\
\text{R₆} \\
\text{R₇} \\
\text{R₈} \\
\text{R₉} \\
\end{array}
\]

and R₂ and R₃ are substituted phenyl.

[0124] It is noted that in one variation, R₇, and/or R₉ is fluorine.

[0125] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula:
wherein

each X is independently selected from the group consisting of CR₅ and N;

each Y is independently selected from the group consisting of O, S and NR₅;

R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group.

[0126] It is noted that in one variation, R₇, and/or R₉ is fluorine.

[0127] In another embodiment, HDAC inhibitors of the present invention are provided that comprise the formula:
wherein

R₁, R₂, R₃ and R₄ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, arylsulfoxyl, heteroarylsulfoxyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, arylsulfoxyl, heteroarylsulfoxyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group,

with the proviso that M is not –C(O)–R₁₃ and R₁₃ is not hydroxy, alkoxy or

arylalkoxy when the compound comprises the formula

\[\text{R}_{2} \text{N} \text{R}_{3} \text{R}_{6} \text{L-M} \text{R}_{7} \text{R}_{8} \text{R}_{9} \text{R}_{6} \text{R}_{10} \]

and R₂ and R₃ are substituted phenyl.

[0128] It is noted that in one variation, R₇, and/or R₉ is fluorine.

Substituents R₁, R₂, R₃ and R₄:

[0129] In one variation, R₁ and R₂, or R₂ and R₃, or R₃ and R₄ are taken together to form a substituted or unsubstituted ring. In another particular variation, R₁ and R₂, or R₂ and R₃, or R₃ and R₄ are taken together to form a substituted or unsubstituted aromatic ring. In a particular variation, the substituted or unsubstituted aromatic ring formed when R₁ and R₂, R₂ and R₃, or R₃ and R₄ are taken together is selected from the group consisting of substituted or unsubstituted aryl and heteroaryl.
[0130] According to the above variations, the ring atom to which R₁ is bound is nitrogen. In another variation, R₂ and R₃ are taken together to form a substituted or unsubstituted cycloalkyl or heteroaromatic ring. In yet another variation, R₁ and R₂, or R₂ and R₃, or R₃ and R₄ are taken together to form a substituted or unsubstituted bicyclic aromatic ring.

[0131] In regard to each of the above embodiments, R₂ and R₃ may each optionally be a substituted or unsubstituted aryl or heteroaryl. Examples of aryl groups include phenyl and meta and para substituted fluorophenyl. Examples of heteroaryl groups include furan and thiophene. In one particular variation, R₂ is a substituted or unsubstituted aryl or heteroaryl.

Substituents R₆, R₇, R₈ and R₉:

[0132] In one particular variation, R₆, R₇, R₈, and R₉ are each hydrogen. In another variation, R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of halogen, or substituted or unsubstituted alkyl, alkoxy, aryl, and heteroaryl.

Substituent Q:

[0133] In one variation, Q is a substituted or unsubstituted heteroaryl. In another variation, Q is a substituted or unsubstituted heteroaryl selected from the group consisting of substituted or unsubstituted furan, thiophene, pyrrole, pyrazole, triazole, isoxazole, oxazole, thiazole, isothiazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, benzofuran, isobenzofuran, benzothiophene, isobenzothiophene, indole, isobenzazole, quinoline, isoquinoline, cinnoline, quinazoline, naphthyridine, pyridopyridine, quinoxaline, phthalazine, benthiazole, and triazine.

Substituent Z:

[0134] In one variation of the above, the Z moiety is a substituted or unsubstituted imidazole.

Substituent R₄:

[0135] According to each of the above variations, R₄ is -CHR₁₅R₁₆, where R₁₅ and R₁₆ are independently selected from the group consisting of halogen, alkyl, amino, thio, cyano, nitro, -OR₁₇, -(C₁₈)alkyleneR₁₇, -(C₁₈)alkyleneOR₁₇, and -(C₁₈)alkyleneNR₁₇R₁₈; wherein R₁₇ and R₁₈ are each independently selected from the group consisting of a substituted or
unsubstituted (C₃-10)alkyl, (C₅-12)cycloalkyl, hetero(C₄-12)cycloalkyl, (C₆-12)aryl,
hetero(C₅-12)aryl, (C₉-12)bicycloalkyl, hetero(C₆-12)bicycloalkyl, (C₉-12)bicycloaryl and
hetero(C₈-12)bicycloaryl, each substituted or unsubstituted, or where R₁₅ and R₁₆ together
form a substituted or unsubstituted (C₅-7)cycloalkyl ring wherein at least one carbon of the
ring is optionally replaced by one O, S, NH or -N(C₁-3)alkyl group.

Further, according to each of the above variations, R₄ is a (C₅-7)cycloalkyl ring
wherein the carbon at the 3-position of the ring is a substituted or unsubstituted
-N(C₁-3)alkyl group.

According to each of the above variations, R₄ is an N-substituted piperidin-3-yl
moiety, and wherein the piperidin-3-yl ring is substituted or unsubstituted at any given
carbon atom.

In a particular variation, R₄ is selected from the group consisting of a N-
[substituted or unsubstituted (C₁-3)alkyl] substituted piperidin-3-yl moiety, 2-morpholin-4-
yl-ethyl, phenethyl, iso-propyl, 1-phenyl-ethyl, and piperidin-3-yl. In another particular
variation, R₄ is an N-substituted piperidin-3-yl moiety, wherein the piperidin-3-yl ring is
substituted or unsubstituted at any given carbon atom, and R₆, R₇, R₈, and R₉ are each
hydrogen.

According to the above variations, R₁, R₂, and R₃ are each independently
selected from the group consisting of substituted or unsubstituted methyl, phenyl, benzyl,
phenethyl, thien-2-yl, thien-3-yl, furan-2-yl, 2-morpholin-4-yl-ethyl, and 1-ethyl-piperidin-
3-yl.

In another variation, R₁, R₂, and R₃ are each independently selected from the
group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl,
alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl,
heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or
unsubstituted; R₄ is an N-substituted piperidin-3-yl moiety; and R₆, R₇, R₈, and R₉ are each
hydrogen.

In yet another variation, R₁, R₂, and R₃ are each independently selected from the
group consisting of halo, hydroxy, -CO₂H, -CF₃, -OCF₃, -CN, -NO₂, NH₂, -NH(CH₃),
-N(CH₃)₂, CH₂CONH, substituted or unsubstituted methyl, methoxy, hydroxymethyl,
ethyl, ethoxy, isopropyl, t-butyl, 3-ethoxy-propyloxy, phenyl, phenoxy, benzyl, benzyloxy,
phenethyl, phenethoxy, 3-methylbutyl, 3-methyl-2-butenyloxy, 2-morpholin-4-yl-ethyl, and 1-ethyl-piperidin-3-yl; R₄ is an N-substituted piperidin-3-yl moiety; and R₆, R₇, R₈, and R₉ are each hydrogen.

Substituent M:

[0142] According to each of the above variations, M comprises a member selected from the group consisting of trifluoroacetyl (-C(O)-CF₃), -NH-P(O)OH-CH₃, sulfonamides (-SO₂NH₂), hydroxysulfonamides (-SO₂NHOH), thiols (-SH), and carbonyl groups having the formula -C(O)-R₁₃ wherein R₁₃ is alkyl, hydroxylamino, hydroxyl, amino, alkylamino, or an alkoxy group.

[0143] Further, according to each of the above variations, M is selected from the group consisting of:

![Chemical Structures]

[0144] Further, according to each of the above variations, M comprises a hydroxamic acid moiety.

Substituent L:

[0145] Also, according to each of the above variations, L is E, Z or mixtures of E/Z -CH₂=CH₂-. Further, according to each of the above variations, L is a substituent comprising 1 to 6 atoms in the chain.

Particular Examples of HDAC Inhibitors:

[0146] Particular examples of HDAC inhibitors according to the present invention include, but are not limited to:

\[N\text{-Hydroxy-3-}[3\text{-[5-methyl-1-(2-morpholin-4-yl-ethyl)-4-phenyl-1H-imidazol-2-yl]-phenyl}]-acrylamide; \]
N-Hydroxy-3-[3-(5-methyl-1-phenethyl-4-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide;
N-Hydroxy-3-[3-(4-methyl-1-phenethyl-5-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide;
N-Hydroxy-3-[3-[4-methyl-1-(2-morpholin-4-yl-ethyl)-5-phenyl-1H-imidazol-2-yl]-phenyl]-acrylamide;
3-[3-(5-Benzyl-4-methyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[3-(4,5-Dimethyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[3-[5-Benzyl-4-methyl-1-(2-morpholin-4-yl-ethyl)-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
3-[3-[5-Benzyl-5-methyl-1-(2-morpholin-4-yl-ethyl)-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
3-[3-(4-Benzyl-5-methyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[3-[4,5-Dimethyl-1-(2-morpholin-4-yl-ethyl)-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
3-[3-(5-Benzyl-4-methyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-propionamide;
3-[3-(4,5-Dimethyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-propionamide;
3-[3-(2,5-Dimethyl-3-phenethyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;
N-Hydroxy-3-[3-(5-methyl-3-phenethyl-2-phenyl-3H-imidazol-4-yl)-phenyl]-acrylamide;
3-[3-(5-Benzyl-2-methyl-3-phenethyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;
3-[3-(2-Benzyl-5-methyl-3-phenethyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;
N-Hydroxy-3-[3-(1-isopropyl-4-methyl-5-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide;
3-[3-(4-Benzyl-1-isopropyl-5-methyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
N-Hydroxy-3-[3-(1-isopropyl-5-methyl-4-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide;
3-[3-(4-Benzyl-1-isopropyl-5-methyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
(R)-3-[3-[4,5-Dimethyl-1-(1-phenyl-ethyl)-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-N-Hydroxy-3-[3-[4-methyl-5-phenyl-1-(1-phenyl-ethyl)-1H-imidazol-2-yl]-phenyl]-acrylamide;
(R)-3-[3-[5-Benzyl-4-methyl-1-(1-phenyl-ethyl)-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
N-Hydroxy-3-[3-(3-isopropyl-2,5-dimethyl-3H-imidazol-4-yl)-phenyl]-acrylamide;
N-Hydroxy-3-[3-(3-isopropyl-5-methyl-2-phenyl-3H-imidazol-4-yl)-phenyl]-acrylamide;
3-[3-(5-Benzyl-3-isopropyl-2-methyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;
3-[3-(2-Benzyl-3-isopropyl-5-methyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;
(R)-3-[3-[2,5-Dimethyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-N-Hydroxy-3-[3-[5-methyl-2-phenyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl]-acrylamide;
(R)-3-[3-[5-Benzyl-2-methyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-3-[3-[2-Benzyl-5-methyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl]-N-hydroxy-acrylamide; and
N-Hydroxy-3-[3-(1-phenethyl-5-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide.

[0147] Further examples of HDAC inhibitors according to the present invention include, but are not limited to:
(R)-3-[(1-Ethyl-piperidin-3-yl)-4-methyl-5-phenyl-1H-imidazol-2-yl]-phenyl)-N-hydroxy-acrylamide;
(R)-3-[(1-Ethyl-piperidin-3-yl)-5-methyl-4-phenyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-3-[(4-Benzyl-1-(1-ethyl-piperidin-3-yl)-5-methyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-3-[(1-Ethyl-piperidin-3-yl)-4,5-dimethyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-3-[(3-[(1-Ethyl-piperidin-3-yl)-2,5-dimethyl-3H-imidazol-4-yl]-phenyl)-N-hydroxy-acrylamide;
(R)-3-[(3-[(1-Ethyl-piperidin-3-yl)-5-methyl-2-phenyl-3H-imidazol-4-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-3-[(2-Benzyl-3-(1-ethyl-piperidin-3-yl)-5-methyl-3H-imidazol-4-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-N-Hydroxy-3-[(5-methyl-1-(1-methyl-piperidin-3-yl)-4-phenyl-1H-imidazol-2-yl]-phenyl]-acrylamide;
(R)-3-[(4-Benzyl-5-methyl-1-(1-methyl-piperidin-3-yl)-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-N-Hydroxy-3-[(1-Isopropyl-piperidin-3-yl)-4-methyl-5-phenyl-1H-imidazol-2-yl]-phenyl)-acrylamide;
(R)-N-Hydroxy-3-[(1-Isopropyl-piperidin-3-yl)-5-methyl-4-phenyl-1H-imidazol-2-yl]-phenyl)-acrylamide;
(R)-N-Hydroxy-3-[(4-methyl-1-(1-methyl-piperidin-3-yl)-5-phenyl-1H-imidazol-2-yl]-phenyl)-acrylamide;
(R)-3-[(1-ethyl-piperidin-3-yl)-4-methyl-5-thiophen-2-yl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-3-[(1-ethyl-piperidin-3-yl)-5-(3-fluoro-phenyl)-4-methyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-3-[(1-ethyl-piperidin-3-yl)-5-(4-fluoro-phenyl)-4-methyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;
(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-5-furan-2-yl-4-methyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide; and

(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-4-methyl-5-thiophen-3-yl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide.

[0148] In one variation, the compound is in the form of a pharmaceutically acceptable salt. In another variation, the compound is present in a mixture of stereoisomers. In another variation, the compound comprises a single stereoisomer.

[0149] In one embodiment, the invention provides a pharmaceutical composition comprising as an active ingredient a compound according to each of the above variations. In another variation, the composition is a solid formulation adapted for oral administration. In yet another variation, the composition is a liquid formulation adapted for oral administration. In yet another variation, the composition is a tablet. In another variation, the composition is a liquid formulation adapted for parenteral administration.

[0150] In one embodiment, the invention provides a pharmaceutical composition comprising a compound according to any one of the above variations, wherein the composition is adapted for administration by a route selected from the group consisting of orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraocularly, via local delivery (for example by catheter or stent), subcutaneously, intraadiposally, intraarticulally, and intrathecally.

[0151] In another embodiment, the present invention provides a kit comprising a compound according to any one of the above variations; and instructions which comprise one or more forms of information selected from the group consisting of indicating a disease state for which the compound is to be administered, storage information for the compound, dosing information and instructions regarding how to administer the compound. In one variation, the kit comprises the compound in a multiple dose form.

[0152] In another embodiment, there is provided an article of manufacture comprising a compound according to any one of the above variations and packaging materials. In another variation, the packaging material comprises a container for housing the compound. In yet another variation, the container comprises a label indicating one or more members of the group consisting of a disease state for which the compound is to be administered,
storage information, dosing information and/or instructions regarding how to administer the composition. In yet another variation, the article of manufacture comprises the compound in a multiple dose form.

[0153] In another embodiment, the invention provides a method of inhibiting histone deacetylase comprising contacting histone deacetylase with a compound according to any one of the above variations.

[0154] In another embodiment, the invention provides a method of inhibiting histone deacetylase comprising causing a compound according to any one of the above variations to be present in a subject in order to inhibit histone deacetylase in vivo.

[0155] In another embodiment, the invention provides a method of inhibiting histone deacetylase comprising administering a first compound to a subject that is converted in vivo to a second compound wherein the second compound inhibits histone deacetylase in vivo, the second compound being a compound according to any one of the above variations.

[0156] In yet another embodiment, the invention provides a therapeutic method comprising administering a compound according to any one of the above variations to a subject.

[0157] In another embodiment, the invention provides a method of treating a disease state for which histone deacetylase possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising causing a compound according to any one of the above variations to be present in a subject in a therapeutically effective amount for the disease state.

[0158] In yet another embodiment, the invention provides a method of treating a disease state for which histone deacetylase possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising administering a first compound to a subject that is converted in vivo to a second compound according to any one of the above variations wherein the second compound is present in a subject in a therapeutically effective amount for the disease state.

[0159] In yet another embodiment, the invention provides a method of treating a disease state for which histone deacetylase possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising administering
a compound according to any one of the above variations, wherein the compound is present in the subject in a therapeutically effective amount for the disease state.

[0160] In yet another embodiment, the invention provides a method for treating cancer comprising administration to a mammalian species in need thereof of a therapeutically effective amount of a composition according to any one of the above variations. In another variation, the cancer is selected from the group consisting of squamous cell carcinoma, astrocytoma, Kaposi's sarcoma, glioblastoma, non small-cell lung cancer, bladder cancer, head and neck cancer, melanoma, ovarian cancer, prostate cancer, breast cancer, small-cell lung cancer, glioma, colorectal cancer, genitourinary cancer and gastrointestinal cancer.

[0161] In yet another embodiment, the invention provides a method of treating a disease state for which histone deacetylase possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising causing a compound according to any one of the above variations to be present in a subject in a therapeutically effective amount for the disease state.

[0162] In yet another embodiment, the invention provides a method for treating inflammation, inflammatory bowel disease, psoriasis, or transplant rejection, comprising administration to a mammalian species in need thereof of a therapeutically effective amount of a compound according to any one of the variations described above.

[0163] In yet another embodiment, the invention provides a method for treating arthritis comprising administration to a mammalian species in need thereof of a therapeutically effective amount of a compound according to any one of the variations described above.

[0164] In yet another embodiment, the invention provides a method of treating a disease state for which histone deacetylase possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising administering a first compound to a subject that is converted in vivo to a second compound according to any one of the above variations wherein the second compound is present in a subject in a therapeutically effective amount for the disease state.

[0165] In yet another embodiment, the invention provides a method of treating a disease state for which histone deacetylase possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising administering a compound according to any one of the above variations, wherein the compound is
present in the subject in a therapeutically effective amount for the pathology and/or symptomology.

[0166] It is noted in regard to each of the above embodiments or variations that a given alkyl, alkoxy, aryloxy, heteroaryloxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, amino, thio, or carbonyl group substituent may optionally be further substituted. As also noted, such two substituents may be taken together to form a ring. Examples of further substituted alkyl groups include, but are not limited to, those selected from the group consisting of haloalkyl, cycloalkyl, aminoalkyl, oxaalkyl, heteroaralkyl, and aralkyl, each of which may optionally be further substituted. Examples of further substituted alkoxy aryloxy, and heteroaryloxy groups include, but are not limited to, those selected from the group consisting of haloalkoxy, haloaryloxy, and haloheteroaryloxy, each of which may optionally be further substituted. Examples of further substituted aminosulfonyl, alkylsulfonyl, arylsulfonyl, and heteroarylsulfonyl groups include, but are not limited to, those selected from the group consisting of alkylaminosulfonyl, arylaminosulfonyl, heteroarylaminosulfonyl, heteroaralkylsulfonyl, and aralkylsulfonyl, each of which may optionally be further substituted. Examples of further substituted amino groups include, but are not limited to, those selected from the group consisting of alkylamino, arylamino, and acylamino, each of which may optionally be further substituted. Examples of further substituted thio groups include, but are not limited to, those selected from the group consisting of alkylthio, arylthio, and heteroarylthio, each of which may optionally be further substituted. Examples of further substituted carbonyl groups include, but are not limited to, acids, acid halides, amides, esters, and ketones. For example, the carbonyl groups may be an alkylcarbonyl, arylcarbonyl, heteroarylcarbonyl, aminocarbonyl, alkoxy carbonyl, aralkoxycarbonyl, or heteroaralkoxycarbonyl, each of which may optionally be further substituted.

[0167] It is noted that the preceding lists of examples are not intended to be limiting as other forms of alkyl, alkoxy, aryloxy, heteroaryloxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, amino, and thio groups may also be formed with the addition of other substituents to the base group, some of which are described herein and all of which are intended to fall within the scope of the present invention.
Substituent R₄

[0168] Figure 2A illustrates particular examples of moieties that may be used as a R₄ substituent. The below table also provides non-exclusive examples of different compounds having different R₄ substituents. Substituents R₂ and R₃ for these example are as noted below.

![Chemical structure](image)

R₄ Substituents

<table>
<thead>
<tr>
<th>Substituent</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-morpholin-4-yl-ethyl</td>
<td>(R)-(1-phenyl-ethyl)</td>
</tr>
<tr>
<td>phenethyl</td>
<td>(R)-(1-methyl-piperidin-3-yl)</td>
</tr>
<tr>
<td>1-Ethyl-piperidin-3-yl</td>
<td>(R)-(1-isopropyl-piperidin-3-yl)</td>
</tr>
<tr>
<td>(R)-(1-Ethyl-piperidin-3-yl)</td>
<td>Piperidin-3-yl</td>
</tr>
<tr>
<td>iso-propyl</td>
<td></td>
</tr>
</tbody>
</table>

[0169] It should be recognized that the compounds described in the above table where the R₄ substituent is varied may each be further substituted by replacing one or more of the hydrogens implicitly depicted in the structure with non-hydrogen substituents. Such further substituents may optionally form additional fused rings, as is also taught herein.

[0170] In one variation, R₄ is a substituted alkyl where the carbon of R₄ alpha to the ring atom is a tertiary carbon, i.e., in addition to the bond to the ring atom, the carbon atom has two non-hydrogen substituents. It is believed that substitution of the carbon alpha to the ring atom in this manner may reduce oxidation of that alpha carbon, particularly when the ring atom is nitrogen, thus adding to the stability of the compound.
Substituent Z

[0171] Figure 2B illustrates particular examples of Z moieties that the compounds of the present invention may comprise. In one particular embodiment, the Z moiety is a substituted or unsubstituted 1-H-imidazol-2-yl, 3-H-imidazol-2-yl, or 3-H-imidazol-4-yl.

[0172] It is noted that the examples of Z moieties shown in Figure 2B may optionally be further substituted as has been specified herein. For example, the various R₄ substituents that may be appended to the ring are not specified in Figure 2B.

[0173] Also, it is noted that Figure 2B is intended only to be exemplary and that other Z substituents may be employed in the compounds according to the present invention consistent with the teachings herein.

Substituent Q

[0174] As noted above, Q may be a substituted or unsubstituted aromatic ring. The substituents of the aromatic ring can vary widely and may optionally be such that one or more additional rings are fused to the core aromatic ring of Q.

[0175] Q may optionally be a 5 or 6 membered aromatic ring. When Q is a 6 membered aromatic ring, moieties Z and L may be meta or para substituents relative to each other on the 6 membered aromatic ring. Preferably, the moieties Z and L is meta substituted relative to each other on the 6 membered aromatic ring.

[0176] In one variation where Q is a phenyl ring, the phenyl ring may have substituents R₆, R₇, R₈, and R₉. As indicated above, these substituents may each optionally be independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, amino, thio, cyano, nitro, and a carbonyl group, each optionally further substituted through available valencies. It is noted that other substituents may additionally be appended to the phenyl ring without departing from the intended scope of the present invention.

[0177] In another variation, Q is a 5 and 6 membered aromatic ring comprising heteroatoms, i.e., a heteroaryl. For example, the heteroaryl ring may optionally be a six membered ring with the formula
where a, b, c, d and e are each independently nitrogen (N) or carbon (C), with a proviso that when a and c are both nitrogen, then c is carbon. When a, b, c, d and/or e are carbon, the given carbon atom may be substituted. Examples of substituents include, but are not limited to members selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, amino, thio, cyano, nitro, and a carbonyl group, each optionally further substituted through available valancies. It is noted that other substituents may additionally be appended to the heteroaryl ring without departing from the intended scope of the present invention. Preferably, Q is a meta substituted heteroaryl ring that is substituted or unsubstituted.

Examples of rings comprising heteroatoms, including 5 and 6 membered aromatic rings comprising heteroatoms are illustrated in Figure 2C. It is noted that the rings shown in Figure 2C are unsubstituted and that further substitutions may optionally be added as has been specified.

Further particular examples of rings that may be comprised in the Q substituent include, but are not limited to furan, thiophene, pyrrole, pyrazole, triazole, isoxazole, oxazole, thiazole, isothiazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, benzofuran, isobenzofuran, benzothiophene, isobenzothiophene, indole, isobenzazole, quinoline, isoquinoline, cinnoline, quinazoline, naphthyridine, pyridopyridine, quinoxaline, phthalazine, benzthiazole, and triazine.

Surprisingly, it was determined that when group Q is a meta substituted aryl or heteroaryl group, the resulting inhibitors show improved biological activities over that of the corresponding para substituted aryl or heteroaryl groups. Preferably, the meta
substituted aryl is a meta substituted phenyl moiety that is substituted or unsubstituted. Without being bound by any particular theory, it is believed that the meta substitution serves to direct the zinc complexing substituent \(M \) to a more favorable position so as to allow the zinc complexing substituent to interact with the zinc ion while the remainder of the compound maintains its interaction with hydrophobic regions in the binding pocket of the histone deacetylase.

Metal Ion or Histone Deacetylase Catalytic Site Complexing Substituent, \(M \)

[0181] In regard to each of the above embodiments, substituent \(M \) may be any substituent that is capable of complexing with the histone deacetylases catalytic site or with a metal ion, and optionally more particularly a zinc ion since a zinc ion is known to be present in the catalytic site of histone deacetylases. Hence, the \(M \) substituent may facilitate inhibitor binding by complexing with the zinc ion present in the catalytic site of histone deacetylases.

[0182] Examples of substituents capable of complexing with a zinc ion that may be used as the \(M \) substituent include, but are not limited to trifluoroacetyl (-C(O)-CF\(_3\)), -NH-P(O)OH-CH\(_3\), sulfonamides (-SO\(_2\)NH\(_2\)), thiols(-SH), and carbonyl groups having the formula -C(O)-R\(_{13}\) wherein R\(_{13}\) is hydroxylamino, hydroxyl, amino, alkyl, epoxy, alkylamino, arylamino, heteroarylamino or an alkyloxy group. Particular examples of such substituents include:

![Chemical structures](image)

[0183] In one particular variation, \(M \) is a hydroxamic acid (-C(O)-NHOH), also shown above. It is noted that hydroxamic acids, such as trichostatin A, have been shown to be effective inhibitors against histone deacetylases by complexing with the zinc ion present in the catalytic site of histone deacetylases.

48
Leader group, L

[0184] In regard to each of the above embodiments, the leader group, L, may be any substituent comprising a chain of 1-10 atoms connecting the M substituent to remainder of the compound. The number of atoms in the chain serves to extend the zinc complexing substituent, M, a sufficient distance away from the remainder of the compound so as to allow the zinc complexing substituent to interact with the zinc ion while the remainder of the compound interacts with hydrophobic regions in the binding pocket of the histone deacetylase.

[0185] In one embodiment, the leader group, L, comprises a chain of 1-10 atoms that extend from the M substituent to remainder of the compound, optionally 3-9 and optionally 4-8 atoms. In one variation, the number of atoms in the chain of atoms extending between the M substituent and the remainder of the compound is 3, 4, 5, 6, 7, 8 or 9 atoms.

[0186] It is noted that the chain of atoms of the leader group extending between the M substituent and the remainder of the compound may consist only of carbon atoms. Alternatively, the chain may also comprise non-carbon atoms such as nitrogen, oxygen and sulfur.

[0187] It is also noted that the bonds forming the chain of atoms of the leader group extending between the M substituent and the remainder of the compound may be saturated, partially unsaturated, or fully unsaturated. For example, the leader group may comprise as part of the chain of atoms one or more alkene (-CH=CH-) or alkyne (-C≡C-) bonds.

[0188] A variety of different moieties may be incorporated into the leader groups of the HDAC inhibitors of the present invention. Examples of such moieties are shown in Figure 2D.

[0189] The atoms forming the backbone of the leader group, L, may optionally comprise one or more members of the group consisting of: -(CH₂)n- where n is an integer from 1 to 10; -CH(CH₃)-; -CH₂(CH₃)CH₂- and -CH₂CH(CH₃)-; -CH(CH₃)CH₂CH₂-, -CH₂CH(CH₃)CH₂CH₂-, and -CH₂CH₂CH(CH₃)-; -CH(CH₃)CH₂CH₂CH₂-, -CH₂CH(CH₃)CH₂CH₂-, -CH₂CH₂CH(CH₃)CH₂CH₂-, -CH₂CH₂CH(CH₃)CH₂CH₂-, -CH₂CH₂CH(CH₃)CH₂CH₂-, and -CH₂CH₂CH₂CH(CH₃)-; -CH(CH₂CH₃)-; -
CH(CH₂CH₃)CH₂- and -CH₂CH(CH₂CH₃)-; -CH(CH₂CH₃)CH₂CH₂-,
-CH₂CH(CH₂CH₃)CH₂- and -CH₂CH₂CH(CH₂CH₃)-; -CH(CH₂CH₃)CH₂CH₂CH₂-,
-CH₂CH(CH₂CH₃)CH₂CH₂- and -CH₂CH₂CH(CH₂CH₃)CH₂-; -CH₂CH₂CH(CH₂CH₃)CH₂CH₂-,
-CH₂CH₂CH(CH₂CH₃)CH₂CH₂CH₂-.

CH₂CH₂CH₂CH(CH₂CH₃)CH₂-, and -CH(CH₂CH₃)CH₂CH₂CH₂CH₂-, -
CH₂CH₂CH(CH₂CH₃)CH₂CH₂-, and -CH₂CH₂CH₂CH(CH₂CH₃)CH₂-; -CH=CH-; -CH=CHCH₂-
and -CH₂CH=CH-; -CH=CHCH₂H-; -CH₂CH=CHCH₂-, and -CH₂CH₂CH=CH-; -
CH=CHCH₂CH₂CH₂-; -CH₂CH=CHCH₂CH₂-; -CH₂CH₂CH=CHCH₂-, and
-CH₂CH₂CH₂CH=CH-; -CH=CHCHCH₂CH₂CH₂-, -CH₂CH₂CH=CHCH₂CH₂-,
-CH₂CH₂CH=CHCH₂CH₂-, -CH₂CH₂CH₂CH=CHCH₂, and -CH₂CH₂CH₂CHCH=CHH-; -
C(CH₃)=CH- and -CH=CH(C(H₃))=CHH-, -C(CH₃)=CHCH₂-, -CH=C(CH₃)CH₂-, and -
CH=CHCH(CH₃)-; -CH(CH₃)CH=CHH-, -CH₂CH₂C(CH₃)H=CHH-, and -CH₂CH=CH(C(H₃))=CHH-;
-CH=CHCH=CHH-; -CH=CHCH=CHH-, -CH₂CH=CHCH=CHH-; -C(CH₃)=CHCH=CHH-, -CH=C(CH₃)CH=CHH-; -
CH=CHC(CH₃)=CHH-, and -CH=CHCH=CH(C(H₃))-; -C=C-; -C=CCH₂-, -CH₂C=C-; -
C≡CCH(CH₃)-, and -CH(CH₃)C≡C-; -C≡CCH₂CH₂-, -CH₂C=CCH₂-, and -CH₂CH₂C=C-; -
C≡CCH(CH₃)CH₂- and -C≡CCCH₂CH(CH₃)-; -CH(CH₃)C≡CCH₂- and -CH₂C≡CCH(CH₃)-
-CH(CH₃)CH₂C≡C- and -CH₂CH(CH₃)C≡C-; -C≡CCCH=CHH-, -CH=CHC=CHH-, and
-C≡CC≡C-; -C≡CCH₂CH₂CH₂- and -CH₂CH₂CH₂CH₂C≡C-; -C≡CCH₂CH₂CH₂CH₂- and
-CH₂CH₂CH₂CH₂C≡C-; -C≡CCH=CHCH=CHH-, -CH=CHC≡C=CHH-, and
-CH=CHCH=CHC≡C-; -C(CH₃)=CHC≡C-, -CH=C(CH₃)C≡C-, -C≡CC(CH₃)=CH-, and
-C≡C≡C(CH₃)-. It is noted that the hydrogen atoms of above possible portions of the
leader group may optionally be substituted with further substituents.

[0190] It is also noted that the leader group may comprise one or more substituents
extending from one or more atoms of the leader group backbone. In one variation, two
substituents extending from the atoms extending between the carbon alpha to the leader
group and the M substituent to form one or more three, four, five, six, seven, eight or nine
membered rings. The atoms of the leader group forming the ring may be separated from
each other by 0, 1, 2, 3, or 4 atoms.
The rings may be saturated or partially unsaturated (i.e., comprise one or two double bonds). The rings may also be aromatic, referred to herein as aryl and heteroaryl rings. The rings may optionally be further substituted. These further ring substituents may combine to form additional rings that are fused to the rings forming a portion of the backbone, e.g., bicycloarly and bicycloheteroaryl.

Examples of cycloalkyl rings that may be formed by one or more leader group backbone atoms include, but are not limited to: cyclopropyl, cyclohexane, cyclopentane, cyclopentene, cyclopentadiene, cyclohexane, cyclohexene, cyclohexadiene, phenyl, cycloheptane, cycloheptene, cycloheptadiene, cyclooctane, cyclooctene, and cyclooctadiene.

Examples of heteroaryl rings that may be formed by one or more leader group backbone atoms include, but are not limited to: furan, thiofuran, pyrrole, isopyrrole, 3-isopyrrole, pyrazole, isimidazole, triazole, isoxazole, oxazole, thiazole, isothiazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, benzofuran, isobenzofuran, benzothiofuran, isobenzothiophene, indole, isobenzazole, quinoline, isoquinoline, cinnoline, quinazoline, naphthyridine, and pyridopyridine.

It is noted that the inhibitors may include one or more chiral centers. The chiral centers may be either the R or S enantiomers, depending on the substituents.

Synthetic schemes for synthesizing compounds according to these various embodiments are provided in the Examples. Particular examples of HDAC inhibitors according to these embodiments are provided in the examples.

A. Salts, Hydrates, and Prodrugs of HDAC Inhibitors

It should be recognized that the compounds of the present invention may be present and optionally administered in the form of salts, hydrates and prodrugs that are converted in vivo into the compounds of the present invention. For example, it is within the scope of the present invention to convert the compounds of the present invention into and use them in the form of their pharmaceutically acceptable salts derived from various organic and inorganic acids and bases in accordance with procedures well known in the art.
When the compounds of the present invention possess a free base form, the compounds can be prepared as a pharmaceutically acceptable acid addition salt by reacting the free base form of the compound with a pharmaceutically acceptable inorganic or organic acid, e.g., hydrohalides such as hydrochloride, hydrobromide, hydroiodide; other mineral acids and their corresponding salts such as sulfate, nitrate, phosphate, etc.; and alkyl- and monoarylsulfonates such as ethanesulfonate, toluenesulfonate and benzenesulfonate; and other organic acids and their corresponding salts such as acetate, tartrate, maleate, succinate, citrate, benzoate, salicylate and ascorbate. Further acid addition salts of the present invention include, but are not limited to: adipate, alginate, arginate, aspartate, benzenesulfonate (besylate), bisulfate, bisulfite, bromide, butyrate, camphorate, camphorsulfonate, caprylate, chloride, chlorobenzoate, cyclopentanepropionate, digluconate, dihydrogenphosphate, dinitrobenzoate, dodecylsulfate, ethanesulfonate, fumarate, galactonate (from mucic acid), galacturonate, glucosheptaoate, gluconate, glutamate, glycerophosphate, hemisuccinate, hemisulfate, heptanoate, hexanoate, hippurate, hydrochloride, hydrobromide, hydroiodide, 2-hydroxyethanesulfonate, iodide, isethionate, iso-butyrate, lactate, lactobionate, malate, malonate, mandelate, metaphosphate, methanesulfonate, methylbenzoate, monohydrogenphosphate, 2-naphthalenesulfonate, nicotinate, nitrate, oxalate, oleate, pamoate, pectinate, persulfate, phenylacetate, 3-phenylpropionate, phosphate, phosphonate and phthalate. It should be recognized that the free acid forms will typically differ from their respective salt forms somewhat in physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free acid forms for the purposes of the present invention.

When the compounds of the present invention possess a free base form, a pharmaceutically acceptable base addition salt can be prepared by reacting the free acid form of the compound with a pharmaceutically acceptable inorganic or organic base. Examples of such bases are alkali metal hydroxides including potassium, sodium and lithium hydroxides; alkaline earth metal hydroxides such as barium and calcium hydroxides; alkali metal alkoxides, e.g. potassium ethanolate and sodium propanolate; and various organic bases such as ammonium hydroxide, piperidine, diethanolamine and N-methylglutamine. Also included are the aluminum salts of the compounds of the present
invention. Further base salts of the present invention include, but are not limited to: copper, ferric, ferrous, lithium, magnesium, manganic, manganous, potassium, sodium and zinc salts. Organic base salts include, but are not limited to, salts of primary, secondary and tertiary amines, substituted amines including naturally occurring substituted amines, cyclic amines and basic ion exchange resins, e.g., arginine, betaine, caffeine, chloroprocaine, choline, N, N'-dibenzylethylenediamine (benzathine), dicyclohexylamine, diethanolamine, diethylamine, 2-diethylaminoethanol, 2-dimethylaminoethanol, ethanolamine, ethylenediamine, N-ethylmorpholine, N-ethylpiperidine, glucamine, glucosamine, histidine, hydrabamine, iso-propylamine, lidocaine, lysine, meglumine, N-methyl-D-glucamine, morpholine, piperazine, piperidine, polyamine resins, procaine, purines, theobromine, triethanolamine, triethylamine, trimethylamine, tripropylamine and tris-(hydroxymethyl)-methylamine (tromethamine). It should be recognized that the free base forms will typically differ from their respective salt forms somewhat in physical properties such as solubility in polar solvents, but otherwise the salts are equivalent to their respective free base forms for the purposes of the present invention.

[0199] Compounds of the present invention, which comprise basic nitrogen-containing groups, may be quaternized with such agents as (C\textsubscript{1-4}) alkyl halides, e.g., methyl, ethyl, isopropyl and tert-butyl chlorides, bromides and iodides; di (C\textsubscript{1-4}) alkyl sulfates, e.g., dimethyl, diethyl and diamyl sulfates; (C\textsubscript{10-18}) alkyl halides, e.g., decyl, dodecyl, lauryl, myristyl and stearyl chlorides, bromides and iodides; and aryl (C\textsubscript{1-4}) alkyl halides, e.g., benzyl chloride and phenethyl bromide. Such salts permit the preparation of both water-soluble and oil-soluble compounds of the present invention.

[0200] N-oxides of compounds according to the present invention can be prepared by methods known to those of ordinary skill in the art. For example, N-oxides can be prepared by treating an unoxidized form of the compound with an oxidizing agent (e.g., trifluoroacetic acid, permaleic acid, perbenzoic acid, peracetic acid, meta-chloroperbenzoic acid, or the like) in a suitable inert organic solvent (e.g., a halogenated hydrocarbon such as dichloromethane) at approximately 0°C. Alternatively, the N-oxides of the compounds can be prepared from the N-oxide of an appropriate starting material.
Prodrug derivatives of compounds according to the present invention can be prepared by modifying substituents of compounds of the present invention that are then converted in vivo to a different substituent. It is noted that in many instances, the prodrugs themselves also fall within the scope of the range of compounds according to the present invention. For example, prodrugs can be prepared by reacting a compound with a carbamylating agent (e.g., 1,1-acyloxyalkylcarbonochloridate, para-nitrophenyl carbonate, or the like) or an acylating agent. Further examples of methods of making prodrugs are described in Saulnier et al. (1994), Bioorganic and Medicinal Chemistry Letters, Vol. 4, p. 1985.

Protected derivatives of compounds of the present invention can also be made. Examples of techniques applicable to the creation of protecting groups and their removal can be found in T.W. Greene, Protecting Groups in Organic Synthesis, 3rd edition, John Wiley & Sons, Inc. 1999.

Compounds of the present invention may also be conveniently prepared, or formed during the process of the invention, as solvates (e.g. hydrates). Hydrates of compounds of the present invention may be conveniently prepared by recrystallization from an aqueous/organic solvent mixture, using organic solvents such as dioxin, tetrahydrofuran or methanol.

A “pharmaceutically acceptable salt”, as used herein, is intended to encompass any compound according to the present invention that is utilized in the form of a salt thereof, especially where the salt confers on the compound improved pharmacokinetic properties as compared to the free form of compound or a different salt form of the compound. The pharmaceutically acceptable salt form may also initially confer desirable pharmacokinetic properties on the compound that it did not previously possess, and may even positively affect the pharmacodynamics of the compound with respect to its therapeutic activity in the body. An example of a pharmacokinetic property that may be favorably affected is the manner in which the compound is transported across cell membranes, which in turn may directly and positively affect the absorption, distribution, biotransformation and excretion of the compound. While the route of administration of the pharmaceutical composition is important, and various anatomical, physiological and pathological factors can critically affect bioavailability, the solubility of the compound is
usually dependent upon the character of the particular salt form thereof, which it utilized. One of skill in the art will appreciate that an aqueous solution of the compound will provide the most rapid absorption of the compound into the body of a subject being treated, while lipid solutions and suspensions, as well as solid dosage forms, will result in less rapid adsorption of the compound.

3. **PREPARATION OF HDAC INHIBITORS**

[0205] Various methods may be developed for synthesizing compounds according to the present invention. Representative methods for synthesizing these compounds are provided in the Examples. It is noted, however, that the compounds of the present invention may also be synthesized by other synthetic routes that others may devise.

[0206] It will be readily recognized that certain compounds according to the present invention have atoms with linkages to other atoms that confer a particular stereochemistry to the compound (e.g., chiral centers). It is recognized that synthesis of compounds according to the present invention may result in the creation of mixtures of different stereoisomers (enantiomers, diastereomers). Unless a particular stereochemistry is specified, recitation of a compound is intended to encompass all of the different possible stereoisomers.

[0207] Various methods for separating mixtures of different stereoisomers are known in the art. For example, a racemic mixture of a compound may be reacted with an optically active resolving agent to form a pair of diastereoisomeric compounds. The diastereomers may then be separated in order to recover the optically pure enantiomers. Dissociable complexes may also be used to resolve enantiomers (e.g., crystalline diastereoisomeric salts). Diastereomers typically have sufficiently distinct physical properties (e.g., melting points, boiling points, solubilities, reactivity, etc.) that they can be readily separated by taking advantage of these dissimilarities. For example, diastereomers can typically be separated by chromatography or by separation/resolution techniques based upon differences in solubility. A more detailed description of techniques that can be used to resolve stereoisomers of compounds from their racemic mixture can be found in Jean Jacques Andre Collet, Samuel H. Wilen, Enantiomers, Racemates and Resolutions, John Wiley & Sons, Inc. (1981).
4. INDICATIONS FOR USE OF HDAC INHIBITORS

[0208] HDAC is believed to contribute to the pathology and/or symptomology of several different diseases such that reduction of the activity of HDAC in a subject through inhibition may be used to therapeutically address these disease states. Examples of various diseases that may be treated using the HDAC inhibitors of the present invention are described herein. It is noted that additional diseases beyond those disclosed herein may be later identified as the biological roles that HDAC play in various pathways becomes more fully understood.

A. Undesirable or Uncontrolled Cell Proliferation

[0209] One set of indications that HDAC inhibitors of the present invention may be used to treat are those involving undesirable or uncontrolled cell proliferation. Such indications include benign tumors, various types of cancers such as primary tumors and tumor metastasis, restenosis (e.g. coronary, carotid, and cerebral lesions), abnormal stimulation of endothelial cells (atherosclerosis), insults to body tissue due to surgery, abnormal wound healing, abnormal angiogenesis, diseases that produce fibrosis of tissue, repetitive motion disorders, disorders of tissues that are not highly vascularized, and proliferative responses associated with organ transplants. More specific indications for HDAC inhibitors include, but are not limited to prostate cancer, lung cancer, acute leukemia, multiple myeloma, bladder carcinoma, renal carcinoma, breast carcinoma, colorectal carcinoma, neuroblastoma and melanoma.

[0210] In one embodiment, a method is provided for treating diseases associated with undesired and uncontrolled cell proliferation. The method comprises administering to a subject suffering from uncontrolled cell proliferation a therapeutically effective amount of a HDAC inhibitor according to the present invention, such that said uncontrolled cell proliferation is reduced. The particular dosage of the inhibitor to be used will depend on the severity of the disease state, the route of administration, and related factors that can be determined by the attending physician. Generally, acceptable and effective daily doses are amounts sufficient to effectively slow or eliminate uncontrolled cell proliferation.

[0211] HDAC inhibitors according to the present invention may also be used in conjunction with other agents to inhibit undesirable and uncontrolled cell proliferation.
Examples of other anti-cell proliferation agents that may be used in conjunction with the HDAC inhibitors of the present invention include, but are not limited to, retinoid acid and derivatives thereof, 2-methoxyestradiol, ANGIOSTATIN™ protein, ENDOSTATIN™ protein, suramin, squalamine, tissue inhibitor of metalloproteinase-1, tissue inhibitor of metalloproteinase-2, plasminogen activator inhibitor-1, plasminogen activator inhibitor-2, cartilage-derived inhibitor, paclitaxel, platelet factor 4, protamine sulfate (clupeine), sulfated chitin derivatives (prepared from queen crab shells), sulfated polysaccharide peptidoglycan complex (sp-pg), staurosporine, modulators of matrix metabolism, including for example, proline analogs [(1-azetidine-2-carboxylic acid (LACA), cishydroxyproline, d,l-3,4-dehydroproline, thiaproline], beta.-aminopropionitrile furmarate, 4-propyl-5-(4-pyridyl)-2(3H)-oxazolone; methotrexate, mitoxantrone, heparin, interferons, 2 macroglobulin-serum, chimp-3, chymostatin, beta.-cyclodextrin tetradecasulfate, eponemycin; fumagillin, gold sodium thiomolate, d-penicillamine (CDPT), beta.-1-anticollagenase-serum, alpha.2-antiplasmin, bisantrene, lobenzarit disodium, n-(2-carboxyphenyl)-4-chloroanthonrilic acid disodium or "CCA", thalidomide; angostatic steroid, cargboxaminolimidazole; metalloproteinase inhibitors such as BB94. Other anti-angiogenesis agents that may be used include antibodies, preferably monoclonal antibodies against these angiogenic growth factors: bFGF, aFGF, FGF-5, VEGF isoforms, VEGF-C, HGF/SF and Ang-1/Ang-2. Ferrara N. and Alitalo, K. “Clinical application of angiogenic growth factors and their inhibitors” (1999) Nature Medicine 5:1359-1364.

[0212] Generally, cells in benign tumors retain their differentiated features and do not divide in a completely uncontrolled manner. A benign tumor is usually localized and nonmetastatic. Specific types of benign tumors that can be treated using HDAC inhibitors of the present invention include hemangiomas, hepatocellular adenoma, cavernous haemangioma, focal nodular hyperplasia, acoustic neuromas, neurofibroma, bile duct adenoma, bile duct cystanoma, fibroma, lipomas, leiomyomas, mesotheliomas, teratomas, myxomas, nodular regenerative hyperplasia, trachomas and pyogenic granulomas.

[0213] In the case of malignant tumors, cells become undifferentiated, do not respond to the body’s growth control signals, and multiply in an uncontrolled manner. Malignant tumors are invasive and capable of spreading to distant sites (metastasizing). Malignant tumors are generally divided into two categories: primary and secondary. Primary tumors
arise directly from the tissue in which they are found. Secondary tumors, or metastases, are tumors that originated elsewhere in the body but have now spread to distant organs. Common routes for metastasis are direct growth into adjacent structures, spread through the vascular or lymphatic systems, and tracking along tissue planes and body spaces (peritoneal fluid, cerebrospinal fluid, etc.).

Specific types of cancers or malignant tumors, either primary or secondary, that can be treated using the HDAC inhibitors of the present invention include, but are not limited to, leukemia, breast cancer, skin cancer, bone cancer, prostate cancer, liver cancer, lung cancer, brain cancer, cancer of the larynx, gallbladder, pancreas, rectum, parathyroid, thyroid, adrenal, neural tissue, head and neck, colon, stomach, bronchi, kidneys, basal cell carcinoma, squamous cell carcinoma of both ulcerating and papillary type, metastatic skin carcinoma, osteosarcoma, Ewing’s sarcoma, vetriculum cell sarcoma, myeloma, giant cell tumor, small-cell lung tumor, gallstones, islet cell tumor, primary brain tumor, acute and chronic lymphocytic and granulocytic tumors, hairy-cell tumor, adenoma, hyperplasia, medullary carcinoma, pheochromocytoma, mucosal neuromas, intestinal ganglioneuromas, hyperplastic corneal nerve tumor, marfanoid habitus tumor, Wilms’s tumor, seminoma, ovarian tumor, leiomyomater tumor, cervical dysplasia and in situ carcinoma, neuroblastoma, retinoblastoma, soft tissue sarcoma, malignant carcinoid, topical skin lesion, mycosis fungoide, rhabdomyosarcoma, Kaposi’s sarcoma, osteogenic and other sarcoma, malignant hypercalcemia, renal cell tumor, polycythemia vera, adenocarcinoma, glioblastoma multiforma, leukemias, lymphomas, malignant melanomas, epidermoid carcinomas, and other carcinomas and sarcomas.

The HDAC inhibitors of the present invention may also be used to treat abnormal cell proliferation due to insults to body tissue during surgery. These insults may arise as a result of a variety of surgical procedures such as joint surgery, bowel surgery, and cheloid scarring. Diseases that produce fibrotic tissue include emphysema. Repetitive motion disorders that may be treated using the present invention include carpal tunnel syndrome. An example of a cell proliferative disorder that may be treated using the invention is a bone tumor.

Proliferative responses associated with organ transplantation that may be treated using HDAC inhibitors of the invention include proliferative responses contributing to...
potential organ rejections or associated complications. Specifically, these proliferative responses may occur during transplantation of the heart, lung, liver, kidney, and other body organs or organ systems.

[0217] Abnormal angiogenesis that may be may be treated using this invention include those abnormal angiogenesis accompanying rheumatoid arthritis, ischemic-reperfusion related brain edema and injury, cortical ischemia, ovarian hyperplasia and hypervascularity, (polycystic ovary syndrome), endometriosis, psoriasis, diabetic retinopathy, and other ocular angiogenic diseases such as retinopathy of prematurity (retrolental fibroplastic), macular degeneration, corneal graft rejection, neurosclar glaucoma and Oster Webber syndrome.

[0218] Examples of diseases associated with uncontrolled angiogenesis that may be treated according to the present invention include, but are not limited to retinal/choroidal neovascularization and corneal neovascularization. Examples of retinal/choroidal neovascularization include, but are not limited to, Bests diseases, myopia, optic pits, Stargarts diseases, Pagets disease, vein occlusion, artery occlusion, sickle cell anemia, sarcoid, syphilis, pseudoxanthoma elasticum carotid apo structive diseases, chronic uveitis/vitritis, mycobacterial infections, Lyme’s disease, systemic lupus erythematosis, retinopathy of prematurity, Eales disease, diabetic retinopathy, macular degeneration, Bechets diseases, infections causing a retinitis or chroiditis, presumed ocular histoplasmosis, pars planitis, chronic retinal detachment, hyperviscosity syndromes, toxoplasmosis, trauma and post-laser complications, diseases associated with rubesis (neovascularization of the angle) and diseases caused by the abnormal proliferation of fibrovascular or fibrous tissue including all forms of proliferative vitreoretinopathy.
Examples of corneal neovascularization include, but are not limited to, epidemic keratoconjunctivitis, Vitamin A deficiency, contact lens overwear, atopic keratitis, superior limbic keratitis, pterygium keratitis sicca, sjogrens, acne rosacea, phylectenuiosis, diabetic retinopathy, retinopathy of prematurity, corneal graft rejection, Mooren ulcer, Terrien’s marginal degeneration, marginal keratolysis, polyarteritis, Wegener sarcoidosis, Scleritis, periphigoid radial keratotomy, neovascular glaucoma and retrolental fibroplasia, syphilis, Mycobacteria infections, lipid degeneration, chemical burns, bacterial ulcers,
fungal ulcers, Herpes simplex infections, Herpes zoster infections, protozoan infections and Kaposi sarcoma.

[0219] Chronic inflammatory diseases associated with uncontrolled angiogenesis may also be treated using HDAC inhibitors of the present invention. Chronic inflammation depends on continuous formation of capillary sprouts to maintain an influx of inflammatory cells. The influx and presence of the inflammatory cells produce granulomas and thus maintains the chronic inflammatory state. Inhibition of angiogenesis using a HDAC inhibitor alone or in conjunction with other anti-inflammatory agents may prevent the formation of the granulomas and thus alleviate the disease. Examples of chronic inflammatory diseases include, but are not limited to, inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis, psoriasis, sarcoidosis, and rheumatoid matoid arthritis.

[0220] Inflammatory bowel diseases such as Crohn’s disease and ulcerative colitis are characterized by chronic inflammation and angiogenesis at various sites in the gastrointestinal tract. For example, Crohn’s disease occurs as a chronic transmural inflammatory disease that most commonly affects the distal ileum and colon but may also occur in any part of the gastrointestinal tract from the mouth to the anus and perianal area. Patients with Crohn’s disease generally have chronic diarrhea associated with abdominal pain, fever, anorexia, weight loss and abdominal swelling. Ulcerative colitis is also a chronic, nonspecific, inflammatory and ulcerative disease arising in the colonic mucosa and is characterized by the presence of bloody diarrhea. These inflammatory bowel diseases are generally caused by chronic granulomatous inflammation throughout the gastrointestinal tract, involving new capillary sprouts surrounded by a cylinder of inflammatory cells. Inhibition of angiogenesis by these inhibitors should inhibit the formation of the sprouts and prevent the formation of granulomas. Inflammatory bowel diseases also exhibit extra intestinal manifestations, such as skin lesions. Such lesions are characterized by inflammation and angiogenesis and can occur at many sites other the gastrointestinal tract. Inhibition of angiogenesis by HDAC inhibitors according to the present invention can reduce the influx of inflammatory cells and prevent lesion formation.

[0221] Sarcoidosis, another chronic inflammatory disease, is characterized as a multisystem granulomatous disorder. The granulomas of this disease can form anywhere
in the body. Thus, the symptoms depend on the site of the granulomas and whether the
disease is active. The granulomas are created by the angiogenic capillary sprouts
providing a constant supply of inflammatory cells. By using HDAC inhibitors according
to the present invention to inhibit angiogenesis, such granulomas formation can be inhibited.
Psoriasis, also a chronic and recurrent inflammatory disease, is characterized by papules
and plaques of various sizes. Treatment using these inhibitors alone or in conjunction with
other anti-inflammatory agents should prevent the formation of new blood vessels
necessary to maintain the characteristic lesions and provide the patient relief from the
symptoms.

[0222] Rheumatoid arthritis (RA) is also a chronic inflammatory disease characterized
by non-specific inflammation of the peripheral joints. It is believed that the blood vessels
in the synovial lining of the joints undergo angiogenesis. In addition to forming new
vascular networks, the endothelial cells release factors and reactive oxygen species that
lead to pannus growth and cartilage destruction. The factors involved in angiogenesis may
actively contribute to, and help maintain, the chronically inflamed state of rheumatoid
arthritis. Treatment using HDAC inhibitors according to the present invention alone or in
conjunction with other anti-RA agents may prevent the formation of new blood vessels
necessary to maintain the chronic inflammation and provide the RA patient relief from the
symptoms.

5. COMPOSITIONS COMPRISING HDAC INHIBITORS

[0223] A wide variety of compositions and administration methods may be used in
conjunction with the HDAC inhibitors of the present invention. Such compositions may
include, in addition to the HDAC inhibitors of the present invention, conventional
pharmaceutical excipients, and other conventional, pharmaceutically inactive agents.
Additionally, the compositions may include active agents in addition to the HDAC
inhibitors of the present invention. These additional active agents may include additional
compounds according to the invention, or one or more other pharmaceutically active
agents.

[0224] The compositions may be in gaseous, liquid, semi-liquid or solid form,
formulated in a manner suitable for the route of administration to be used. For oral
administration, capsules and tablets are typically used. For parenteral administration, reconstitution of a lyophilized powder, prepared as described herein, is typically used.

Compositions comprising HDAC inhibitors of the present invention may be administered or coadministered orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraocularly, via local delivery (for example by catheter or stent), subcutaneously, intraadiposally, intraarticularly, or intrathecally. The compounds and/or compositions according to the invention may also be administered or coadministered in slow release dosage forms.

The HDAC inhibitors and compositions comprising them may be administered or coadministered in any conventional dosage form. Coadministration in the context of this invention is intended to mean the administration of more than one therapeutic agents, one of which includes a HDAC inhibitor, in the course of a coordinated treatment to achieve an improved clinical outcome. Such coadministration may also be coextensive, that is, occurring during overlapping periods of time.

Solutions or suspensions used for parenteral, intradermal, subcutaneous, or topical application may optionally include one or more of the following components: a sterile diluent, such as water for injection, saline solution, fixed oil, polyethylene glycol, glycerine, propylene glycol or other synthetic solvent; antimicrobial agents, such as benzyl alcohol and methyl parabens; antioxidants, such as ascorbic acid and sodium bisulfite; chelating agents, such as ethylenediaminetetraacetic acid (EDTA); buffers, such as acetates, citrates and phosphates; agents for the adjustment of osmotic such as sodium chloride or dextrose, and agents for adjusting the acidity or alkalinity of the composition, such as alkaline or acidifying agents or buffers like carbonates, bicarbonates, phosphates, hydrochloric acid, and organic acids like acetic and citric acid. Parenteral preparations may optionally be enclosed in ampules, disposable syringes or single or multiple dose vials made of glass, plastic or other suitable material.

When HDAC inhibitors according to the present invention exhibit insufficient solubility, methods for solubilizing the compounds may be used. Such methods are known to those of skill in this art, and include, but are not limited to, using cosolvents, such as dimethylsulfoxide (DMSO), using surfactants, such as TWEEN, or dissolution in aqueous...
sodium bicarbonate. Derivatives of the compounds, such as prodrugs of the compounds may also be used in formulating effective pharmaceutical compositions.

[0229] Upon mixing or adding HDAC inhibitors according to the present invention to a composition, a solution, suspension, emulsion or the like may be formed. The form of the resulting composition will depend upon a number of factors, including the intended mode of administration, and the solubility of the compound in the selected carrier or vehicle. The effective concentration needed to ameliorate the disease being treated may be empirically determined.

[0230] Compositions according to the present invention are optionally provided for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, dry powders for inhalers, granules, sterile parenteral solutions or suspensions, and oral solutions or suspensions, and oil-water emulsions containing suitable quantities of the compounds, particularly the pharmaceutically acceptable salts, preferably the sodium salts, thereof. The pharmaceutically therapeutically active compounds and derivatives thereof are typically formulated and administered in unit-dosage forms or multiple-dosage forms. Unit-dose forms, as used herein, refers to physically discrete units suitable for human and animal subjects and packaged individually as is known in the art. Each unit-dose contains a predetermined quantity of the therapeutically active compound sufficient to produce the desired therapeutic effect, in association with the required pharmaceutical carrier, vehicle or diluent. Examples of unit-dose forms include ampoules and syringes individually packaged tablet or capsule. Unit-dose forms may be administered in fractions or multiples thereof. A multiple-dose form is a plurality of identical unit-dosage forms packaged in a single container to be administered in segregated unit-dose form. Examples of multiple-dose forms include vials, bottles of tablets or capsules or bottles of pint or gallons. Hence, multiple dose form is a multiple of unit-doses that are not segregated in packaging.

[0231] In addition to one or more HDAC inhibitors according to the present invention, the composition may comprise: a diluent such as lactose, sucrose, dicalcium phosphate, or carboxymethylcellulose; a lubricant, such as magnesium stearate, calcium stearate and talc; and a binder such as starch, natural gums, such as gum acaciagelatin, glucose, molasses, polyvinylpyrrolidone, celluloses and derivatives thereof, povidone, crospovidones and other
such binders known to those of skill in the art. Liquid pharmaceutically administrable compositions can, for example, be prepared by dissolving, dispersing, or otherwise mixing an active compound as defined above and optional pharmaceutical adjuvants in a carrier, such as, for example, water, saline, aqueous dextrose, glycerol, glycols, ethanol, and the like, to form a solution or suspension. If desired, the pharmaceutical composition to be administered may also contain minor amounts of auxiliary substances such as wetting agents, emulsifying agents, or solubilizing agents, pH buffering agents and the like, for example, acetate, sodium citrate, cyclodextrine derivatives, sorbitan monolaurate, triethanolamine sodium acetate, triethanolamine oleate, and other such agents. Actual methods of preparing such dosage forms are known in the art, or will be apparent, to those skilled in this art; for example, see Remington: The Science and Practice of Pharmacy, A. Gennaro, ed., 20th edition, Lippincott, Williams & Wilkins, Philadelphia, PA, 2000. The composition or formulation to be administered will, in any event, contain a sufficient quantity of a HDAC inhibitor of the present invention to reduce HDAC activity in vivo, thereby treating the disease state of the subject.

[0232] Dosage forms or compositions may optionally comprise one or more HDAC inhibitors according to the present invention in the range of 0.005% to 100% (weight/weight) with the balance comprising additional substances such as those described herein. For oral administration, a pharmaceutically acceptable composition may optionally comprise any one or more commonly employed excipients, such as, for example pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, talcum, cellulose derivatives, sodium croscarmellose, glucose, sucrose, magnesium carbonate, sodium saccharin, talcum. Such compositions include solutions, suspensions, tablets, capsules, powders, dry powders for inhalers and sustained release formulations, such as, but not limited to, implants and microencapsulated delivery systems, and biodegradable, biocompatible polymers, such as collagen, ethylene vinyl acetate, poly(anhydrides, polyglycolic acid, polyorthoesters, polylactic acid and others. Methods for preparing these formulations are known to those skilled in the art. The compositions may optionally contain 0.01%-100% (weight/weight) of one or more HDAC inhibitors, optionally 0.1-95%, and optionally 1-95%.
[0233] Salts, preferably sodium salts, of the HDAC inhibitors may be prepared with carriers that protect the compound against rapid elimination from the body, such as time release formulations or coatings. The formulations may further include other active compounds to obtain desired combinations of properties.

B. **Formulations For Oral Administration**

[0234] Oral pharmaceutical dosage forms may be as a solid, gel or liquid. Examples of solid dosage forms include, but are not limited to tablets, capsules, granules, and bulk powders. More specific examples of oral tablets include compressed, chewable lozenges and tablets that may be enteric-coated, sugar-coated or film-coated. Examples of capsules include hard or soft gelatin capsules. Granules and powders may be provided in non-effervescent or effervescent forms. Each may be combined with other ingredients known to those skilled in the art.

[0235] In certain embodiments, HDAC inhibitors according to the present invention are provided as solid dosage forms, preferably capsules or tablets. The tablets, pills, capsules, troches and the like may optionally contain one or more of the following ingredients, or compounds of a similar nature: a binder; a diluent; a disintegrating agent; a lubricant; a glidant; a sweetening agent; and a flavoring agent.

[0236] Examples of binders that may be used include, but are not limited to, microcrystalline cellulose, gum tragacanth, glucose solution, acacia mucilage, gelatin solution, sucrose and starch paste.

[0237] Examples of lubricants that may be used include, but are not limited to, talc, starch, magnesium or calcium stearate, lycopodium and stearic acid.

[0238] Examples of diluents that may be used include, but are not limited to, lactose, sucrose, starch, kaolin, salt, mannitol and dicalcium phosphate.

[0239] Examples of glidants that may be used include, but are not limited to, colloidal silicon dioxide.

[0240] Examples of disintegrating agents that may be used include, but are not limited to, croscarmellose sodium, sodium starch glycolate, alginic acid, corn starch, potato starch, bentonite, methylcellulose, agar and carboxymethylcellulose.
[0241] Examples of coloring agents that may be used include, but are not limited to, any of the approved certified water soluble FD and C dyes, mixtures thereof; and water insoluble FD and C dyes suspended on alumina hydrate.

[0242] Examples of sweetening agents that may be used include, but are not limited to, sucrose, lactose, mannitol and artificial sweetening agents such as sodium cyclamate and saccharin, and any number of spray-dried flavors.

[0243] Examples of flavoring agents that may be used include, but are not limited to, natural flavors extracted from plants such as fruits and synthetic blends of compounds that produce a pleasant sensation, such as, but not limited to peppermint and methyl salicylate.

[0244] Examples of wetting agents that may be used include, but are not limited to, propylene glycol monostearate, sorbitan monooleate, diethylene glycol monolaurate and polyoxyethylene lauryl ether.

[0245] Examples of anti-emetic coatings that may be used include, but are not limited to, fatty acids, fats, waxes, shellac, ammoniated shellac and cellulose acetate phthalates.

[0246] Examples of film coatings that may be used include, but are not limited to, hydroxyethylcellulose, sodium carboxymethylcellulose, polyethylene glycol 4000 and cellulose acetate phthalate.

[0247] If oral administration is desired, the salt of the compound may optionally be provided in a composition that protects it from the acidic environment of the stomach. For example, the composition can be formulated in an enteric-coating that maintains its integrity in the stomach and releases the active compound in the intestine. The composition may also be formulated in combination with an antacid or other such ingredient.

[0248] When the dosage unit form is a capsule, it may optionally additionally comprise a liquid carrier such as a fatty oil. In addition, dosage unit forms may optionally additionally comprise various other materials that modify the physical form of the dosage unit, for example, coatings of sugar and other enteric agents.

[0249] Compounds according to the present invention may also be administered as a component of an elixir, suspension, syrup, wafer, sprinkle, chewing gum or the like. A syrup may optionally comprise, in addition to the active compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors.
[0250] The HDAC inhibitors of the present invention may also be mixed with other active materials that do not impair the desired action, or with materials that supplement the desired action, such as antacids, H2 blockers, and diuretics. For example, if a compound is used for treating asthma or hypertension, it may be used with other bronchodilators and antihypertensive agents, respectively.

[0251] Examples of pharmaceutically acceptable carriers that may be included in tablets comprising HDAC inhibitors of the present invention include, but are not limited to binders, lubricants, diluents, disintegrating agents, coloring agents, flavoring agents, and wetting agents. Enteric-coated tablets, because of the enteric-coating, resist the action of stomach acid and dissolve or disintegrate in the neutral or alkaline intestines. Sugar-coated tablets may be compressed tablets to which different layers of pharmaceutically acceptable substances are applied. Film-coated tablets may be compressed tablets that have been coated with polymers or other suitable coating. Multiple compressed tablets may be compressed tablets made by more than one compression cycle utilizing the pharmaceutically acceptable substances previously mentioned. Coloring agents may also be used in tablets. Flavoring and sweetening agents may be used in tablets, and are especially useful in the formation of chewable tablets and lozenges.

[0252] Examples of liquid oral dosage forms that may be used include, but are not limited to, aqueous solutions, emulsions, suspensions, solutions and/or suspensions reconstituted from non-effervescent granules and effervescent preparations reconstituted from effervescent granules.

[0253] Examples of aqueous solutions that may be used include, but are not limited to, elixirs and syrups. As used herein, elixirs refer to clear, sweetened, hydroalcoholic preparations. Examples of pharmaceutically acceptable carriers that may be used in elixirs include, but are not limited to solvents. Particular examples of solvents that may be used include glycerin, sorbitol, ethyl alcohol and syrup. As used herein, syrups refer to concentrated aqueous solutions of a sugar, for example, sucrose. Syrups may optionally further comprise a preservative.

[0254] Emulsions refer to two-phase systems in which one liquid is dispersed in the form of small globules throughout another liquid. Emulsions may optionally be oil-in-water or water-in-oil emulsions. Examples of pharmaceutically acceptable carriers that
may be used in emulsions include, but are not limited to non-aqueous liquids, emulsifying agents and preservatives.

[0255] Examples of pharmaceutically acceptable substances that may be used in non-effervescent granules, to be reconstituted into a liquid oral dosage form, include diluents, sweeteners and wetting agents.

[0256] Examples of pharmaceutically acceptable substances that may be used in effervescent granules, to be reconstituted into a liquid oral dosage form, include organic adds and a source of carbon dioxide.

[0257] Coloring and flavoring agents may optionally be used in all of the above dosage forms.

[0258] Particular examples of preservatives that may be used include glycerin, methyl and propylparaben, benzoic add, sodium benzoate and alcohol.

[0259] Particular examples of non-aqueous liquids that may be used in emulsions include mineral oil and cottonseed oil.

[0260] Particular examples of emulsifying agents that may be used include gelatin, acacia, tragacanth, bentonite, and surfactants such as polyoxyethylene sorbitan monooleate.

[0261] Particular examples of suspending agents that may be used include sodium carboxymethylcellulose, pectin, tragacanth, Veegum and acacia. Diluents include lactose and sucrose. Sweetening agents include sucrose, syrups, glycerin and artificial sweetening agents such as sodium cyclamate and saccharin.

[0262] Particular examples of wetting agents that may be used include propylene glycol monostearate, sorbitan monooleate, diethylene glycol monolaurate and polyoxyethylene lauryl ether.

[0263] Particular examples of organic acids that may be used include citric and tartaric acid.

[0264] Sources of carbon dioxide that may be used in effervescent compositions include sodium bicarbonate and sodium carbonate. Coloring agents include any of the approved certified water soluble FD and C dyes, and mixtures thereof.
Particular examples of flavoring agents that may be used include natural flavors extracted from plants such fruits, and synthetic blends of compounds that produce a pleasant taste sensation.

For a solid dosage form, the solution or suspension, in for example propylene carbonate, vegetable oils or triglycerides, is preferably encapsulated in a gelatin capsule. Such solutions, and the preparation and encapsulation thereof, are disclosed in U.S. Pat. Nos. 4,328,245; 4,409,239; and 4,410,545. For a liquid dosage form, the solution, e.g., for example, in a polyethylene glycol, may be diluted with a sufficient quantity of a pharmaceutically acceptable liquid carrier, e.g. water, to be easily measured for administration.

Alternatively, liquid or semi-solid oral formulations may be prepared by dissolving or dispersing the active compound or salt in vegetable oils, glycols, triglycerides, propylene glycol esters (e.g. propylene carbonate) and other such carriers, and encapsulating these solutions or suspensions in hard or soft gelatin capsule shells. Other useful formulations include those set forth in U.S. Pat. Nos. Re 28,819 and 4,358,603.

B. **Injectables, Solutions and Emulsions**

The present invention is also directed to compositions designed to administer the HDAC inhibitors of the present invention by parenteral administration, generally characterized by injection, either subcutaneously, intramuscularly or intravenously. Injectables may be prepared in any conventional form, for example as liquid solutions or suspensions, solid forms suitable for solution or suspension in liquid prior to injection, or as emulsions.

Examples of excipients that may be used in conjunction with injectables according to the present invention include, but are not limited to water, saline, dextrose, glycerol or ethanol. The injectable compositions may also optionally comprise minor amounts of non-toxic auxiliary substances such as wetting or emulsifying agents, pH buffering agents, stabilizers, solubility enhancers, and other such agents, such as for example, sodium acetate, sorbitan monolaurate, triethanolamine oleate and cyclodextrins. Implantation of a slow-release or sustained-release system, such that a constant level of...
dosage is maintained (see, e.g., U.S. Pat. No. 3,710,795) is also contemplated herein. The percentage of active compound contained in such parenteral compositions is highly dependent on the specific nature thereof, as well as the activity of the compound and the needs of the subject.

[0270] Parenteral administration of the formulations includes intravenous, subcutaneous and intramuscular administrations. Preparations for parenteral administration include sterile solutions ready for injection, sterile dry soluble products, such as the lyophilized powders described herein, ready to be combined with a solvent just prior to use, including hypodermic tablets, sterile suspensions ready for injection, sterile dry insoluble products ready to be combined with a vehicle just prior to use and sterile emulsions. The solutions may be either aqueous or nonaqueous.

[0271] When administered intravenously, examples of suitable carriers include, but are not limited to physiological saline or phosphate buffered saline (PBS), and solutions containing thickening and solubilizing agents, such as glucose, polyethylene glycol, and polypropylene glycol and mixtures thereof.

[0272] Example of pharmaceutically acceptable carriers that may optionally be used in parenteral preparations include, but are not limited to aqueous vehicles, nonaqueous vehicles, antimicrobial agents, isotonic agents, buffers, antioxidants, local anesthetics, suspending and dispersing agents, emulsifying agents, sequestering or chelating agents and other pharmaceutically acceptable substances.

[0273] Examples of aqueous vehicles that may optionally be used include Sodium Chloride Injection, Ringers Injection, Isotonic Dextrose Injection, Sterile Water Injection, Dextrose and Lactated Ringers Injection.

[0274] Examples of nonaqueous parenteral vehicles that may optionally be used include fixed oils of vegetable origin, cottonseed oil, corn oil, sesame oil and peanut oil.

[0275] Antimicrobial agents in bacteriostatic or fungistatic concentrations may be added to parenteral preparations, particularly when the preparations are packaged in multiple-dose containers and thus designed to be stored and multiple aliquots to be removed. Examples of antimicrobial agents that may used include phenols or cresols, mercurials, benzyl alcohol, chlorobutanol, methyl and propyl p-hydroxybenzoic acid esters, thimerosal, benzalkonium chloride and benzethonium chloride.
Examples of isotonic agents that may be used include sodium chloride and dextrose. Examples of buffers that may be used include phosphate and citrate. Examples of antioxidants that may be used include sodium bisulfate. Examples of local anesthetics that may be used include procaine hydrochloride. Examples of suspending and dispersing agents that may be used include sodium carboxymethylcellulose, hydroxypropyl methylcellulose and polyvinylpyrrolidone. Examples of emulsifying agents that may be used include Polysorbate 80 (Tween 80). A sequestering or chelating agent of metal ions include EDTA.

Pharmaceutical carriers may also optionally include ethyl alcohol, polyethylene glycol and propylene glycol for water miscible vehicles and sodium hydroxide, hydrochloric acid, citric acid or lactic acid for pH adjustment.

The concentration of a HDAC inhibitor in the parenteral formulation may be adjusted so that an injection administers a pharmacologically effective amount sufficient to produce the desired pharmacological effect. The exact concentration of a HDAC inhibitor and/or dosage to be used will ultimately depend on the age, weight and condition of the patient or animal as is known in the art.

Unit-dose parenteral preparations may be packaged in an ampoule, a vial or a syringe with a needle. All preparations for parenteral administration should be sterile, as is know and practiced in the art.

Injectables may be designed for local and systemic administration. Typically a therapeutically effective dosage is formulated to contain a concentration of at least about 0.1% w/w up to about 90% w/w or more, preferably more than 1% w/w of the HDAC inhibitor to the treated tissue(s). The HDAC inhibitor may be administered at once, or may be divided into a number of smaller doses to be administered at intervals of time. It is understood that the precise dosage and duration of treatment will be a function of the location of where the composition is parenterally administered, the carrier and other variables that may be determined empirically using known testing protocols or by extrapolation from in vivo or in vitro test data. It is to be noted that concentrations and dosage values may also vary with the age of the individual treated. It is to be further understood that for any particular subject, specific dosage regimens may need to be adjusted over time according to the individual need and the professional judgment of the
person administering or supervising the administration of the formulations. Hence, the concentration ranges set forth herein are intended to be exemplary and are not intended to limit the scope or practice of the claimed formulations.

[0281] The HDAC inhibitor may optionally be suspended in micronized or other suitable form or may be derivatized to produce a more soluble active product or to produce a prodrug. The form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound in the selected carrier or vehicle. The effective concentration is sufficient for ameliorating the symptoms of the disease state and may be empirically determined.

C. Lyophilized Powders

[0282] The HDAC inhibitors of the present invention may also be prepared as lyophilized powders, which can be reconstituted for administration as solutions, emulsions and other mixtures. The lyophilized powders may also be formulated as solids or gels.

[0283] Sterile, lyophilized powder may be prepared by dissolving the sodium salt in a sodium phosphate buffer solution containing dextrose or other suitable excipient. Subsequent sterile filtration of the solution followed by lyophilization under standard conditions known to those of skill in the art provides the desired formulation. Briefly, the lyophilized powder may optionally be prepared by dissolving dextrose, sorbitol, fructose, corn syrup, xylitol, glycerin, glucose, sucrose or other suitable agent, about 1-20%, preferably about 5 to 15%, in a suitable buffer, such as citrate, sodium or potassium phosphate or other such buffer known to those of skill in the art at, typically, about neutral pH. Then, a HDAC inhibitor is added to the resulting mixture, preferably above room temperature, more preferably at about 30-35 °C, and stirred until it dissolves. The resulting mixture is diluted by adding more buffer to a desired concentration. The resulting mixture is sterile filtered or treated to remove particulates and to insure sterility, and apportioned into vials for lyophilization. Each vial may contain a single dosage or multiple dosages of the HDAC inhibitor.

D. Topical Administration

[0284] The HDAC inhibitors of the present invention may also be administered as topical mixtures. Topical mixtures may be used for local and systemic administration.
The resulting mixture may be a solution, suspension, emulsions or the like and are formulated as creams, gels, ointments, emulsions, solutions, elixirs, lotions, suspensions, tinctures, pastes, foams, aerosols, irrigations, sprays, suppositories, bandages, dermal patches or any other formulations suitable for topical administration.

[0285] The HDAC inhibitors may be formulated as aerosols for topical application, such as by inhalation (see, U.S. Pat. Nos. 4,044,126, 4,414,209, and 4,364,923, which describe aerosols for delivery of a steroid useful for treatment inflammatory diseases, particularly asthma). These formulations for administration to the respiratory tract can be in the form of an aerosol or solution for a nebulizer, or as a microfine powder for insufflation, alone or in combination with an inert carrier such as lactose. In such a case, the particles of the formulation will typically diameters of less than 50 microns, preferably less than 10 microns.

[0286] The HDAC inhibitors may also be formulated for local or topical application, such as for topical application to the skin and mucous membranes, such as in the eye, in the form of gels, creams, and lotions and for application to the eye or for intracisternal or intraspinal application. Topical administration is contemplated for transdermal delivery and also for administration to the eyes or mucosa, or for inhalation therapies. Nasal solutions of the HDAC inhibitor alone or in combination with other pharmaceutically acceptable excipients can also be administered.

E. **Formulations For Other Routes of Administration**

[0287] Depending upon the disease state being treated, other routes of administration, such as topical application, transdermal patches, a rectal administration, may also be used. For example, pharmaceutical dosage forms for rectal administration are rectal suppositories, capsules and tablets for systemic effect. Rectal suppositories are used herein mean solid bodies for insertion into the rectum that melt or soften at body temperature releasing one or more pharmacologically or therapeutically active ingredients. Pharmacetically acceptable substances utilized in rectal suppositories are bases or vehicles and agents to raise the melting point. Examples of bases include cocoa butter (theobroma oil), glycerin-gelatin, carbowax, (polyoxyethylene glycol) and appropriate mixtures of mono-, di- and triglycerides of fatty acids. Combinations of the various bases
may be used. Agents to raise the melting point of suppositories include spermacheti and wax. Rectal suppositories may be prepared either by the compressed method or by molding. The typical weight of a rectal suppository is about 2 to 3 gm. Tablets and capsules for rectal administration may be manufactured using the same pharmaceutically acceptable substance and by the same methods as for formulations for oral administration.

F. Examples of Formulations

[0288] The following are particular examples of oral, intravenous and tablet formulations that may optionally be used with compounds of the present invention. It is noted that these formulations may be varied depending on the particular compound being used and the indication for which the formulation is going to be used.

ORAL FORMULATION

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of the Present Invention</td>
<td>10-100 mg</td>
</tr>
<tr>
<td>Citric Acid Monohydrate</td>
<td>105 mg</td>
</tr>
<tr>
<td>Sodium Hydroxide</td>
<td>18 mg</td>
</tr>
<tr>
<td>Flavouring</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>q.s. to 100 mL</td>
</tr>
</tbody>
</table>

INTRAVENOUS FORMULATION

<table>
<thead>
<tr>
<th>Component</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of the Present Invention</td>
<td>0.1-10 mg</td>
</tr>
<tr>
<td>Dextrose Monohydrate</td>
<td>q.s. to make isotonic</td>
</tr>
<tr>
<td>Citric Acid Monohydrate</td>
<td>1.05 mg</td>
</tr>
<tr>
<td>Sodium Hydroxide</td>
<td>0.18 mg</td>
</tr>
<tr>
<td>Water for Injection</td>
<td>q.s. to 1.0 mL</td>
</tr>
</tbody>
</table>

TABLET FORMULATION

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound of the Present Invention</td>
<td>1%</td>
</tr>
<tr>
<td>Microcrystalline Cellulose</td>
<td>73%</td>
</tr>
<tr>
<td>Stearic Acid</td>
<td>25%</td>
</tr>
<tr>
<td>Colloidal Silica</td>
<td>1%</td>
</tr>
</tbody>
</table>
6. KITS COMPRISING HDAC INHIBITORS

[0289] The invention is also directed to kits and other articles of manufacture for treating diseases associated with HDAC. It is noted that diseases are intended to cover all conditions for which the HDAC possesses activity that contributes to the pathology and/or symptomology of the condition.

[0290] In one embodiment, a kit is provided that comprises a composition comprising at least one HDAC inhibitor of the present invention in combination with instructions. The instructions may indicate the disease state for which the composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition. The kit may also comprise packaging materials. The packaging material may comprise a container for housing the composition. The kit may also optionally comprise additional components, such as syringes for administration of the composition. The kit may comprise the composition in single or multiple dose forms.

[0291] In another embodiment, an article of manufacture is provided that comprises a composition comprising at least one HDAC inhibitor of the present invention in combination with packaging materials. The packaging material may comprise a container for housing the composition. The container may optionally comprise a label indicating the disease state for which the composition is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition. The kit may also optionally comprise additional components, such as syringes for administration of the composition. The kit may comprise the composition in single or multiple dose forms.

[0292] It is noted that the packaging material used in kits and articles of manufacture according to the present invention may form a plurality of divided containers such as a divided bottle or a divided foil packet. The container can be in any conventional shape or form as known in the art which is made of a pharmaceutically acceptable material, for example a paper or cardboard box, a glass or plastic bottle or jar, a re-sealable bag (for example, to hold a "refill" of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule. The container that is employed will depend on the exact dosage form involved, for example a conventional cardboard box would not generally be used to hold a liquid suspension. It is feasible that more than one container can be used together in a single
package to market a single dosage form. For example, tablets may be contained in a bottle that is in turn contained within a box. Typically the kit includes directions for the administration of the separate components. The kit form is particularly advantageous when the separate components are preferably administered in different dosage forms (e.g., oral, topical, transdermal and parenteral), are administered at different dosage intervals, or when titration of the individual components of the combination is desired by the prescribing physician.

[0293] One particular example of a kit according to the present invention is a so-called blister pack. Blister packs are well known in the packaging industry and are being widely used for the packaging of pharmaceutical unit dosage forms (tablets, capsules, and the like). Blister packs generally consist of a sheet of relatively stiff material covered with a foil of a preferably transparent plastic material. During the packaging process recesses are formed in the plastic foil. The recesses have the size and shape of individual tablets or capsules to be packed or may have the size and shape to accommodate multiple tablets and/or capsules to be packed. Next, the tablets or capsules are placed in the recesses accordingly and the sheet of relatively stiff material is sealed against the plastic foil at the face of the foil which is opposite from the direction in which the recesses were formed. As a result, the tablets or capsules are individually sealed or collectively sealed, as desired, in the recesses between the plastic foil and the sheet. Preferably the strength of the sheet is such that the tablets or capsules can be removed from the blister pack by manually applying pressure on the recesses whereby an opening is formed in the sheet at the place of the recess. The tablet or capsule can then be removed via said opening.

[0294] Another specific embodiment of a kit is a dispenser designed to dispense the daily doses one at a time in the order of their intended use. Preferably, the dispenser is equipped with a memory-aid, so as to further facilitate compliance with the regimen. An example of such a memory-aid is a mechanical counter that indicates the number of daily doses that has been dispensed. Another example of such a memory-aid is a battery-powered micro-chip memory coupled with a liquid crystal readout, or audible reminder signal which, for example, reads out the date that the last daily dose has been taken and/or reminds one when the next dose is to be taken.
7. COMBINATION THERAPY

[0295] A wide variety therapeutic agents may have a therapeutic additive or synergistic effect with HDAC inhibitors according to the present invention. Such therapeutic agents may additively or synergistically combine with the HDAC inhibitors to inhibit undesirable cell growth, such as inappropriate cell growth resulting in undesirable benign conditions or tumor growth.

[0296] In one embodiment, a method is provided for treating a cell proliferative disease state comprising treating cells with a compound according to the present invention in combination with an anti-proliferative agent, wherein the cells are treated with the compound according to the present invention before, at the same time, and/or after the cells are treated with the anti-proliferative agent, referred to herein as combination therapy. It is noted that treatment of one agent before another is referred to herein as sequential therapy, even if the agents are also administered together. It is noted that combination therapy is intended to cover when agents are administered before or after each other (sequential therapy) as well as when the agents are administered at the same time.

[0297] Examples of therapeutic agents that may be used in combination with HDAC inhibitors include, but are not limited to, anticancer agents, alkylating agents, antibiotic agents, antimetabolic agents, hormonal agents, plant-derived agents, and biologic agents.

[0298] Alkylating agents are polyfunctional compounds that have the ability to substitute alkyl groups for hydrogen ions. Examples of alkylating agents include, but are not limited to, bischloroethylamines (nitrogen mustards, e.g. chlorambucil, cyclophosphamide, ifosfamide, mechlorethamine, melphalan, uracil mustard), aziridines (e.g. thiopeta), alkyl alkone sulfonates (e.g. busulfan), nitrosoureas (e.g. carmustine, lomustine, streptozocin), nonclassic alkylating agents (altretamine, dacarbazine, and procarbazine), platinum compounds (carboplatin and cisplatin). These compounds react with phosphate, amino, hydroxyl, sulfihydryl, carboxyl, and imidazole groups. Under physiological conditions, these drugs ionize and produce positively charged ion that attach to susceptible nucleic acids and proteins, leading to cell cycle arrest and/or cell death. Combination therapy including a HDAC inhibitor and an alkylating agent may have therapeutic synergistic effects on cancer and reduce sides affects associated with these chemotherapeutic agents.
Antibiotic agents are a group of drugs that produced in a manner similar to antibiotics as a modification of natural products. Examples of antibiotic agents include, but are not limited to, anthracyclines (e.g. doxorubicin, daunorubicin, epirubicin, idarubicin and anthracenedione), mitomycin C, bleomycin, dactinomycin, plicamycin. These antibiotic agents interferes with cell growth by targeting different cellular components. For example, anthracyclines are generally believed to interfere with the action of DNA topoisomerase II in the regions of transcriptionally active DNA, which leads to DNA strand scissions. Bleomycin is generally believed to chelate iron and forms an activated complex, which then binds to bases of DNA, causing strand scissions and cell death. Combination therapy including a HDAC inhibitor and an antibiotic agent may have therapeutic synergistic effects on cancer and reduce sides affects associated with these chemotherapeutic agents.

Antimetabolic agents are a group of drugs that interfere with metabolic processes vital to the physiology and proliferation of cancer cells. Actively proliferating cancer cells require continuous synthesis of large quantities of nucleic acids, proteins, lipids, and other vital cellular constituents. Many of the antimetabolites inhibit the synthesis of purine or pyrimidine nucleosides or inhibit the enzymes of DNA replication. Some antimetabolites also interfere with the synthesis of ribonucleosides and RNA and/or amino acid metabolism and protein synthesis as well. By interfering with the synthesis of vital cellular constituents, antimetabolites can delay or arrest the growth of cancer cells. Examples of antimetabolic agents include, but are not limited to, fluorouracil (5-FU), floxuridine (5-FUdR), methotrexate, leucovorin, hydroxyurea, thioguanine (6-TG), mercaptopurine (6-MP), cytarabine, pentostatin, fludarabine phosphate, cladribine (2-CDA), asparaginase, and gemcitabine. Combination therapy including a HDAC inhibitor and a antimetabolic agent may have therapeutic synergistic effects on cancer and reduce sides affects associated with these chemotherapeutic agents.

Hormonal agents are a group of drug that regulate the growth and development of their target organs. Most of the hormonal agents are sex steroids and their derivatives and analogs thereof, such as estrogens, androgens, and progestins. These hormonal agents may serve as antagonists of receptors for the sex steroids to down regulate receptor expression and transcription of vital genes. Examples of such hormonal agents are
synthetic estrogens (e.g. diethylstibestrol), antiestrogens (e.g. tamoxifen, toremifene, fluoxymesterone and raloxifene), antiandrogens (bicalutamide, nilutamide, flutamide), aromatase inhibitors (e.g., aminoglutethimide, anastrozole and tetrazole), ketoconazole, goserelin acetate, leuprolide, megestrol acetate and mifepristone. Combination therapy including a HDAC inhibitor and a hormonal agent may have therapeutic synergistic effects on cancer and reduce sides affects associated with these chemotherapeutic agents.

[0302] Plant-derived agents are a group of drugs that are derived from plants or modified based on the molecular structure of the agents. Examples of plant-derived agents include, but are not limited to, vinca alkaloids (e.g., vincristine, vinblastine, vindesine, vinzolidine and vinorelbine), podophyllotoxins (e.g., etoposide (VP-16) and teniposide (VM-26)), taxanes (e.g., paclitaxel and docetaxel). These plant-derived agents generally act as antimitotic agents that bind to tubulin and inhibit mitosis. Podophyllotoxins such as etoposide are believed to interfere with DNA synthesis by interacting with topoisomerase II, leading to DNA strand scission. Combination therapy including a HDAC inhibitor and a plant-derived agent may have therapeutic synergistic effects on cancer and reduce sides affects associated with these chemotherapeutic agents.

[0303] Biologic agents are a group of biomolecules that elicit cancer/tumor regression when used alone or in combination with chemotherapy and/or radiotherapy. Examples of biologic agents include, but are not limited to, immuno-modulating proteins such as cytokines, monoclonal antibodies against tumor antigens, tumor suppressor genes, and cancer vaccines. Combination therapy including a HDAC inhibitor and a biologic agent may have therapeutic synergistic effects on cancer, enhance the patient’s immune responses to tumorigenic signals, and reduce potential sides affects associated with this chemotherapeutic agent.

[0304] Cytokines possess profound immunomodulatory activity. Some cytokines such as interleukin-2 (IL-2, aldesleukin) and interferon have demonstrated antitumor activity and have been approved for the treatment of patients with metastatic renal cell carcinoma and metastatic malignant melanoma. IL-2 is a T-cell growth factor that is central to T-cell-mediated immune responses. The selective antitumor effects of IL-2 on some patients are believed to be the result of a cell-mediated immune response that discriminate between self and nonself. Examples of interleukins that may be used in conjunction with HDAC
inhibitor include, but are not limited to, interleukin 2 (IL-2), and interleukin 4 (IL-4), interleukin 12 (IL-12).

[0305] Interferon include more than 23 related subtypes with overlapping activities, all of the IFN subtypes within the scope of the present invention. IFN has demonstrated activity against many solid and hematologic malignancies, the later appearing to be particularly sensitive.

[0306] Other cytokines that may be used in conjunction with a HDAC inhibitor include those cytokines that exert profound effects on hematopoiesis and immune functions. Examples of such cytokines include, but are not limited to erythropoietin, granulocyte-CSF (filgrastim), and granulocyte, macrophage-CSF (sargramostim). These cytokines may be used in conjunction with a HDAC inhibitor to reduce chemotherapy-induced myelopoietic toxicity.

[0307] Other immuno-modulating agents other than cytokines may also be used in conjunction with a HDAC inhibitor to inhibit abnormal cell growth. Examples of such immuno-modulating agents include, but are not limited to bacillus Calmette-Guerin, levamisole, and octreotide, a long-acting octapeptide that mimics the effects of the naturally occurring hormone somatostatin.

[0308] Monoclonal antibodies against tumor antigens are antibodies elicited against antigens expressed by tumors, preferably tumor-specific antigens. For example, monoclonal antibody HERCEPTIN® (Trastuzumab) is raised against human epidermal growth factor receptor2 (HER2) that is overexpressed in some breast tumors including metastatic breast cancer. Overexpression of HER2 protein is associated with more aggressive disease and poorer prognosis in the clinic. HERCEPTIN® is used as a single agent for the treatment of patients with metastatic breast cancer whose tumors over express the HER2 protein. Combination therapy including HDAC inhibitor and HERCEPTIN® may have therapeutic synergistic effects on tumors, especially on metastatic cancers.

[0309] Another example of monoclonal antibodies against tumor antigens is RITUXAN® (Rituximab) that is raised against CD20 on lymphoma cells and selectively deplete normal and malignant CD20⁺ pre-B and mature B cells. RITUXAN® is used as single agent for the treatment of patients with relapsed or refractory low-grade or follicular, CD20+, B cell non-Hodgkin’s lymphoma. Combination therapy including
HDAC inhibitor and RITUXAN® may have therapeutic synergistic effects not only on lymphoma, but also on other forms or types of malignant tumors.

[0310] Tumor suppressor genes are genes that function to inhibit the cell growth and division cycles, thus preventing the development of neoplasia. Mutations in tumor suppressor genes cause the cell to ignore one or more of the components of the network of inhibitory signals, overcoming the cell cycle checkpoints and resulting in a higher rate of controlled cell growth—cancer. Examples of the tumor suppressor genes include, but are not limited to, DPC-4, NF-1, NF-2, RB, p53, WTI, BRCA1 and BRCA2.

[0311] DPC-4 is involved in pancreatic cancer and participates in a cytoplasmic pathway that inhibits cell division. NF-1 codes for a protein that inhibits Ras, a cytoplasmic inhibitory protein. NF-1 is involved in neurofibroma and pheochromocytomas of the nervous system and myeloid leukemia. NF-2 encodes a nuclear protein that is involved in meningioma, schwannoma, and ependymoma of the nervous system. RB codes for the pRB protein, a nuclear protein that is a major inhibitor of cell cycle. RB is involved in retinoblastoma as well as bone, bladder, small cell lung and breast cancer. P53 codes for p53 protein that regulates cell division and can induce apoptosis. Mutation and/or inaction of p53 is found in a wide ranges of cancers. WTI is involved in Wilms tumor of the kidneys. BRCA1 is involved in breast and ovarian cancer, and BRCA2 is involved in breast cancer. The tumor suppressor gene can be transferred into the tumor cells where it exerts its tumor suppressing functions. Combination therapy including a HDAC inhibitor and a tumor suppressor may have therapeutic synergistic effects on patients suffering from various forms of cancers.

[0312] Cancer vaccines are a group of agents that induce the body’s specific immune response to tumors. Most of cancer vaccines under research and development and clinical trials are tumor-associated antigens (TAAs). TAA are structures (i.e. proteins, enzymes or carbohydrates) which are present on tumor cells and relatively absent or diminished on normal cells. By virtue of being fairly unique to the tumor cell, TAAs provide targets for the immune system to recognize and cause their destruction. Example of TAAs include, but are not limited to gangliosides (GM2), prostate specific antigen (PSA), alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA) (produced by colon cancers and other adenocarcinomas, e.g. breast, lung, gastric, and pancreas cancer s), melanoma associated
antigens (MART-1, gp100, MAGE 1, 3 tyrosinase), papillomavirus E6 and E7 fragments, whole cells or portions/lysates of antalogous tumor cells and allogeneic tumor cells.

[0313] An adjuvant may be used to augment the immune response to TAAs. Examples of adjuvants include, but are not limited to, bacillus Calmette-Guerin (BCG), endotoxin lipopolysaccharides, keyhole limpet hemocyanin (GKLH), interleukin-2 (IL-2), granulocyte-macrophage colony-stimulating factor (GM-CSF) and cytoxan, a chemotherapeutic agent which is believe to reduce tumor-induced suppression when given in low doses.

8. HDAC ACTIVITY ASSAY

[0314] Compounds according to the present invention may be screened for activity against one or more HDACs. Provided in this example are assays for activity against HDAC1, HDAC2, HDAC6 and HDAC8.

[0315] Purified HDAC1, HDAC2, HDAC6, and HDAC8 may be obtained as follows.

[0316] For HDAC1, DNA encoding residues 1-482 of the full-length sequence of the human enzyme may be amplified by PCR and cloned into the BamHI/XbaI sites of pFastbac (Invitrogen), which incorporates a 6-histidine tag at the N-terminus. SEQ. I.D. No. 1 corresponds to residues 1-482 with the N-terminal 6-histidine tag and SEQ. I.D. No. 2 is the DNA sequence that was used to encode SEQ. I.D. No. 1.

[0317] For HDAC2, DNA encoding residues 1-488 of the full-length sequence of the human enzyme may be amplified by PCR and cloned into the BamHI/SmaI sites of pFastbac (Invitrogen), which incorporates a 6-histidine tag at the C-terminus. SEQ. I.D. No. 3 corresponds to residues 1-488 with the C-terminal 6-histidine tag and SEQ. I.D. No. 4 is the DNA sequence that was used to encode SEQ. I.D. No. 3.

[0318] For HDAC6, DNA encoding residues 73-845 of the human enzyme may be amplified by PCR and cloned into the SmaI site of pFastbac (Invitrogen), which incorporates a 6xHisidine tag at the C-terminus. SEQ. I.D. No. 5 corresponds to residues 73-845 with the C-terminal 6-histidine tag and SEQ. I.D. No. 6 is the DNA sequence that was used to encode SEQ. I.D. No. 5.

[0319] For HDAC8, DNA encoding residues 1-377 corresponding to the entire sequence of the human enzyme may be amplified by PCR and cloned into the
BamHI/SmaI sites of pFastbac (Invitrogen), which incorporates a 6-histidine tag at the N-terminus. SEQ. ID. No. 7 corresponds to residues 1-377 with the N-terminal 6-histidine tag and SEQ. ID. No. 8 is the DNA sequence that was used to encode SEQ. ID. No. 7.

[0320] Recombinant baculovirus incorporating the HDAC constructs may be generated by transposition using the Bac-to-Bac system (Invitrogen). High-titer viral stocks may be generated by infection of Spodoptera frugiperda Sf9 cells; the expression of recombinant protein may be carried out by infection of Spodoptera frugiperda Sf9 or Trichoplusia ni Hi5 cells (Invitrogen) in 10L Wave Bioreactors (Wave Biotech).

[0321] Recombinant protein may be isolated from cellular extracts by passage over ProBond resin (Invitrogen). HDAC1 and HDAC6 may then be treated with TEV protease for the removal of the N-terminal 6XH histidine affinity tag (residual uncleaved protein may be removed through a second passage over Probond Resin). Partially purified extracts of all HDACs may then be further purified by high pressure liquid chromatography over a BioSep S3000 gel filtration resin. The purity of HDAC proteins may be determined on denaturing SDS-PAGE gel. Purified HDACs may then be concentrated to a final concentration of 4.0 mg/ml for HDAC1, 10 mg/ml for HDAC2, 4.0 mg/ml for HDAC6, and 3 mg/ml for HDAC8. The proteins may be either stored at −78 °C in a buffer containing 25mM TRIS-HCl pH 7.6, 150mM NaCl, 0.1mM EDTA and 0.25 mM TCEP or at −20 °C in the presence of glycerol (final concentration of glycerol at 50%)

[0322] The inhibitory properties of compounds relative to HDAC1, HDAC2, HDAC6 and HDAC8 may be determined using a white or black 384-well-plate format under the following reaction conditions: 25 mM Tris pH 8.0, 100 mM NaCl, 50 mM KCl, 0.1 mM EDTA, 0.01% Brij35, 0.1 mM TCEP. 50 uM tBoc-Lys(Ac)-AMC, 2% DMSO. Reaction product may be determined quantitatively by fluorescence intensity using a Fluorescence plate reader (Molecular Devices Gemini) with an excitation wavelength at 370 nm and emission at 480 nm (for white plates) or 465 nm (for black plates).

[0323] The assay reaction may be initiated as follows: 5 ul of 150 uM tBoc-Lys(Ac)AMC was added to each well of the plate, followed by the addition of 5 ul of inhibitor (2 fold serial dilutions for 11 data points for each inhibitor) containing 6% DMSO. 5 ul of either HDAC1, HDAC2, HDAC6 or HDAC8 solution may be added to initiate the reaction (final enzyme concentrations were 2.5 nM for HDAC1, 1 nM for
HDAC2, 2.5 nM for HDAC6 and 10 nM for HDAC8). The reaction mixture may then be incubated at room temperature for 60 min, and quenched and developed by addition of 5 ul of 10 mM phenanthroline and 4 mg/ml trypsin (final concentration of phenanthroline is 2.5 mM, and trypsin is 1 mg/ml). Fluorescence intensities of the resulting reaction mixtures may be measured after a 30 minute incubation at room temperature.

[0324] IC50 values may be calculated by non-linear curve fitting of the compound concentrations and fluorescence intensities to the standard IC50 equation. As a reference point for this assay, suberanilohydroxamic acid (SAHA) showed an IC50 of 63 nM for HDAC1, 69 nM for HDAC2, 108 nM for HDAC6 and 242 nM for HDAC8.

[0325] The Section below provides examples of HDAC inhibitors that were assayed according to the above assays and found to have better than 1000 nM activity against HDAC1, HDAC2, HDAC6, and HDAC8.

EXAMPLES

1. **Synthetic Schemes For HDAC Inhibitors**

[0326] HDAC inhibitors according to the present invention may be synthesized according to a variety of reaction schemes. Some illustrative schemes are provided herein in the examples. Other reaction schemes could be readily devised by those skilled in the art.

Scheme 1:

1.

 a. NH₂CHR¹COOCH₃

 b. LiOH

 \[\text{HOOC} \quad \text{R}^1 \quad \text{N} \quad \text{O} \quad \text{C(=O)O} \]

 \[\text{R}^2 \quad \text{R}^1 \quad \text{N} \quad \text{O} \quad \text{C(=O)O} \]

2.

 a. NH₂CHR¹COOCH₃

 b. LiOH

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

3.

 a. NH₂CHR¹COOCH₃

 b. LiOH

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

4.

 a. NH₂CHR¹COOCH₃

 b. LiOH

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

5.

 a. NH₂CHR¹COOCH₃

 b. LiOH

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

6.

 a. NH₂CHR¹COOCH₃

 b. LiOH

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

7.

 a. NH₂CHR¹COOCH₃

 b. LiOH

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

 \[\text{R}^\text{N} \quad \text{C} \quad \text{Br} \quad \text{N} \quad \text{C} \quad \text{H} \]

84
General procedure for the synthesis of (3-bromo-benzoylamino)-substituted-acetic acids (2).

[0327] To a solution of the appropriately substituted amino acid methyl ester hydrochloride (124 mmol) and Et₃N (310 mmol) in CH₂Cl₂ (200 mL) was added 3-bromobenzoyl chloride (1, 124 mmol) dropwise at 0 °C. The reaction was allowed to reach ambient temperature and stirred for 24 hrs. The resulting mixture was washed with H₂O, saturated bicarbonate, HCl, and brine and then dried over MgSO₄. The organic layer was evaporated to dryness. The resulting solid (87.7 mmol) was stirred in MeOH (100 mL) with LiOH (175 mmol) for 2 hrs at ambient temperature. The reaction was poured into H₂O with rapid stirring and acidified to pH = 2 with HCl (6N). The resulting precipitate was filtered and washed with copious amounts of water to provide pure (3-bromo-benzoylamino)-substituted-acetic acid (2).

General procedure for the synthesis of Dakin-West intermediates (3).

[0328] A mixture of the appropriate (3-bromo-benzoylamino)-substituted-acetic acid (2, 15.2 mmol), the appropriately substituted anhydride (32.0 mmol), DMAP (20 mg), and Et₃N (20 mL) was heated for 30 min at 60 °C. The reaction was concentrated to dryness, dissolved in HOAc (30 mL), and heated for 30 min at 60 °C. The resulting solution was poured into NaOH with rapid stirring. The mixture was extracted with Et₂O. The organic layers were combined, washed with HCl and H₂O, and then dried over MgSO₄. The organic layer was evaporated to dryness and the resulting material was purified via flash chromatography to provide the desired Dakin-West intermediate (3).

General procedure for the synthesis of 2-(3-bromo-phenyl)-1,4,5-trisubstituted-1H-imidazoles (4).

[0329] A mixture of the appropriate Dakin-West intermediate (3, 0.75 mmol), the appropriately substituted primary amine (7.50 mmol), and HOAc (50 mL) was subjected to microwave irradiation for 2 hrs at 200 °C. The resulting material was purified via flash chromatography to provide the desired 2-(3-bromo-phenyl)-1,4,5-trisubstituted-1H-imidazole (4).
General procedure for the synthesis of 3-[3-(1,4,5-trisubstituted-1H-imidazol-2-yl)-phenyl]-acrylic acids (5).

[0330] The appropriate 2-(3-bromo-phenyl)-1,4,5-trisubstituted-1H-imidazole (4, 0.50 mmol), acrylic acid (1.00 mmol), Et$_3$N (1.50 mmol), Pd(II)Oac (25 mg), and P(o-Tol)$_3$ (50 mg) was stirred in DMF (1.0 mL) for 1 hr at 110°C. The resulting material was evaporated onto silica gel and purified via flash chromatography to provide the desired 3-[3-(1,4,5-trisubstituted-1H-imidazol-2-yl)-phenyl]-acrylic acid (5).

General procedure for the synthesis of N-Hydroxy-3-[3-(1,4,5-trimethyl-1H-imidazol-2-yl)-phenyl]-acrylamides (6).

[0331] To a solution of the appropriate 3-[3-(1,4,5-trisubstituted-1H-imidazol-2-yl)-phenyl]-acrylic acid (5, 0.30 mmol), and HOBt (0.91 mmol) in DMF (1.0 mL) was added EDCI (0.91mmol), O-(tetrahydro-pyran-2-yl)-hydroxylamine (46 mg, mmol), and DIEA (2.1 mmol). The reaction was stirred at ambient temperature for 18 hrs and was then poured into H$_2$O (5 mL), extracted with EtOAc, washed with brine, dried over MgSO$_4$ and concentrated to dryness. The resulting material was evaporated onto silica gel and purified via flash chromatography to provide the desired THP protected N-hydroxy acrylamide. To a solution of the appropriate THP protected N-hydroxy acrylamide (0.30mmol) in MeOH (2 mL) was added CSA (0.61 mmol). The reaction was stirred for 2 hr at ambient temperature and, without further work-up, purified by preparative LCMS to yield the desired N-hydroxy-3-[3-(1,4,5-trimethyl-1H-imidazol-2-yl)-phenyl]-acrylamide (6).

General procedure for the synthesis of N-hydroxy-3-[3-(1,4,5-trisubstituted-1H-imidazol-2-yl)-phenyl]-propionamides (7).

[0332] To a solution of the appropriate N-hydroxy-3-[3-(1,4,5-trimethyl-1H-imidazol-2-yl)-phenyl]-acrylamide (6; 0.65 mmol) in MeOH (1.0 mL) was added Pd/C (10%; 2.5 mg). H$_2$(g) was bubbled through the stirring reaction for 1 hr. The reaction was filtered through Celite and purified via preparative LCMS to provide the desired N-hydroxy-3-[3-(1,4,5-trisubstituted-1H-imidazol-2-yl)-phenyl]-propionamide (7).
Scheme 2:

General procedure for the synthesis of carboxylic acid intermediates (9).

To a solution of the appropriately substituted amino acid methyl ester hydrochloride (8, 124 mmol) and Et$_3$N (310 mmol) in CH$_2$Cl$_2$ (200 mL) was added the appropriate benzoyl chloride (124 mmol) dropwise at 0°C. The reaction was allowed to reach ambient temperature and stirred for 24 hrs. The resulting mixture was washed with H$_2$O, saturated bicarbonate, HCl, and brine and then dried over MgSO$_4$. The organic layer was evaporated to dryness. The resulting solid (87.7 mmol) was stirred in MeOH (100 mL) with LiOH (175 mmol) for 2 hrs at ambient temperature. The reaction was poured into H$_2$O with rapid stirring and acidified to pH = 2 with HCl (6N). The resulting precipitate was filtered and washed with copious amounts of water to provide pure carboxylic acid intermediate (9).

General procedure for the synthesis of Dakin-West intermediates (10).

A mixture of the appropriate carboxylic acid intermediate (9, 15.2 mmol), the 3-bromobenzoic anhydride (32.0 mmol), DMAP (20 mg), and Et$_3$N (20 mL) was heated for 30 min at 60 °C. The reaction was concentrated to dryness, dissolved in HOAc (30 mL), and heated for 30 min at 60 °C. The resulting solution was poured into NaOH with rapid stirring. The mixture was extracted with Et$_2$O. The organic layers were combined,
washed with HCl and H₂O, and then dried over MgSO₄. The organic layer was evaporated to dryness and the resulting material was purified via flash chromatography to provide the desired Dakin-West intermediate (10).

General procedure for the synthesis of 5-(3-bromo-phenyl)-1,2,4-trisubstituted-1H-imidazoles (11).

[0335] The procedure for the synthesis of 2-(3-bromo-phenyl)-1,4,5-trisubstituted-1H-imidazoles (4) was used.

General procedure for the synthesis of 3-[3-(2,3,5-trisubstituted-3H-imidazol-4-yl)-phenyl]-acrylic acids (12).

[0336] The procedure for the synthesis of 3-[3-(1,4,5-trisubstituted-1H-imidazol-2-yl)-phenyl]-acrylic acids (5) was used.

General procedure for the synthesis of N-hydroxy-3-[3-(2,3,5-trisubstituted-3H-imidazol-4-yl)-phenyl]-acylamides (13).

[0337] The procedure for the synthesis of N-Hydroxy-3-[3-(1,4,5-trimethyl-1H-imidazol-2-yl)-phenyl]-acylamides (6) was used.

[0338] As can be seen from the above reaction schemes and procedures, a wide variety of different HDAC inhibitors can be synthesized by these reaction schemes. It is noted that the invention is not intended to be limited to the particular compounds provided in this example. Rather, a wide variety of other compounds according to the present invention having HDAC inhibitory activity may be synthesized by the reaction schemes provided as well as other reaction schemes that may be devised by one of ordinary skill in the art in view of the present teachings.

2. **Examples of Inhibitors According to the Present Invention**

[0339] Provided in this example are particular compounds that have been found to have HDAC8 activity based on the assay provided in Example 2. It is noted that these compounds may also have activity relative to other HDACs. It is also noted that these
compounds are intended to illustrate various HDAC inhibitors according to the present invention and the present invention is not intended to be limited to these compounds:

COMPOUND 1: \(N\)-Hydroxy-3-[3-[5-methyl-1-(2-morpholin-4-yl-ethyl)-4-phenyl-1H-imidazol-2-yl]-phenyl]-acrylamide.

\[\text{Diagram of compound 1}\]

[0340] \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta 2.20 \text{ (m, 4H), 2.50 \text{ (m, 5H), 3.40 \text{ (m, 4H), 4.13 \text{ (t, 2H), 6.52 \text{ (d, 1H), 7.23 \text{ (t, 1H), 7.40 \text{ (m, 2H), 7.53 \text{ (m, 2H), 7.67 \text{ (m, 3H), 7.84 \text{ (m, 2H), 9.08 \text{ (s, 1H), 10.75 \text{ (s, 1H). ESI-MS: m/z 433.1 (M + H)}^+\).}

COMPOUND 2: \(N\)-Hydroxy-3-[3-(5-methyl-1-phenethyl-4-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide.

\[\text{Diagram of compound 2}\]

[0341] \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta 2.39 \text{ (s, 3H), 2.85 \text{ (t, 2H), 4.21 \text{ (t, 2H), 6.51 \text{ (d, 1H), 6.93 \text{ (m, 2H), 7.16 \text{ (m, 3H), 7.23 \text{ (t, 1H), 7.41 \text{ (t, 2H), 7.50 \text{ (m, 3H), 7.64 \text{ (m, 4H), 9.10 \text{ (s, 1H), 10.77 \text{ (s, 1H). ESI-MS: m/z 424.1 (M + H)}^+\).}

COMPOUND 3: \(N\)-Hydroxy-3-[3-(4-methyl-1-phenethyl-5-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide.
COMPOUND 4: N-Hydroxy-3-{3-[4-methyl-1-(2-morpholin-4-yl-ethyl)-5-phenyl-1H-imidazol-2-yl]-phenyl}-acrylamide.

COMPOUND 5: 3-{3-(5-Benzyl-4-methyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide.
COMPOUND 6: 3-[[3-(4,5-Dimethyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide.

![Chemical structure of Compound 6]

1H NMR (400 MHz, DMSO-d_6): δ 2.24 (s, 3H), 2.30 (s, 3H), 2.90 (t, 2H), 4.36 (t, 2H), 6.51 (d, 1H), 6.87 (m, 2H), 7.08 (t, 2H), 7.14 (m, 3H), 7.40-7.58 (band, 4H), 7.80 (d, 1H), 9.13 (bs, 1H), 10.90 (s, 1H). ESI-MS: m/z 362.1 (M + H)$^+$.

COMPOUND 7: 3-{{3-[5-Benzyl-4-methyl-1-(2-morpholin-4-yl-ethyl)-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide.

![Chemical structure of Compound 7]

1H NMR (400 MHz, DMSO-d_6): δ 1.95 (m, 4H), 2.04 (t, 2H), 2.15 (s, 3H), 3.28 (m, 4H), 3.95 (t, 2H), 4.04 (s, 2H), 6.52 (d, 1H), 7.13 (d, 2H), 7.21 (t, 1H), 7.31 (t, 2H), 7.42-7.62 (band, 4H), 7.77 (s, 1H), 9.10 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 447.2 (M + H)$^+$.

COMPOUND 8: 3-{{3-[4-Benzyl-5-methyl-1-(2-morpholin-4-yl-ethyl)-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide.
[0347] 1H NMR (400 MHz, DMSO-d6): δ 2.01 (m, 6H), 2.50 (s, 3H), 3.40 (m, 4H), 3.79 (s, 2H), 4.05 (t, 2H), 6.52 (d, 1H), 7.13 (m, 1H), 7.23 (m, 4H), 7.48 (t, 2H), 7.57 (m, 2H), 7.75 (s, 1H), 9.08 (s, 1H), 10.75 (s, 1H). ESI-MS: m/z 447.2 (M + H)+.

COMPOUND 9: 3-[3-(4-Benzyl-5-methyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide.

[0348] 1H NMR (400 MHz, DMSO-d6): δ 2.11 (s, 3H), 2.79 (t, 2H), 3.80 (s, 2H), 4.14 (t, 2H), 6.48 (d, 1H), 6.89 (m, 2H), 7.13-7.21 (band, 5H), 7.26 (m, 2H), 7.44 (m, 3H), 7.53 (m, 2H), 9.07 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 438.1 (M + H)+.

COMPOUND 10: 3-[3-[4,5-Dimethyl-1-(2-morpholin-4-yl-ethyl)-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide.
[0349] 1H NMR (400 MHz, DMSO-d_6): δ 2.20 (band, 12H), 3.28 (m, 4H), 4.32 (t, 2H), 6.55 (d, 1H), 7.51 (d, 1H), 7.65 (m, 2H), 7.90 (m, 2H), 9.10 (bs, 1H), 10.90 (bs, 1H). ESI-MS: m/z 371.2 (M + H)$^+$.

COMPOUND 11: (R)-3-[(1-(1-Ethyl-piperidin-3-yl)-4-methyl-5-phenyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide.

![Chemical Structure of Compound 11]

[0350] 1H NMR (400 MHz, DMSO-d_6): δ 0.97 (t, 3H), 1.20 (m, 2H), 1.40 (m, 2H), 1.91 (m, 5H), 2.13 (q, 2H), 2.51 (d, 1H), 2.87 (d, 1H), 4.05 (m, 1H), 6.53 (d, 1H), 7.38-7.68 (band, 10H), 9.10 (s, 1H), 10.80 (s, 1H). ESI-MS: m/z 431.1 (M + H)$^+$.

COMPOUND 12: (R)-3-[(1-(1-Ethyl-piperidin-3-yl)-5-methyl-4-phenyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide.

![Chemical Structure of Compound 12]

[0351] 1H NMR (400 MHz, DMSO-d_6): δ 0.95 (t, 3H), 1.40 (m, 1H), 1.70-2.0 (band, 4H), 2.30 (q, 2H), 2.40 (s, 3H), 2.80 (d, 1H), 2.98 (d, 1H), 4.23 (m, 1H), 6.55 (d, 1H), 7.25 (t, 1H), 7.38 (t, 2H), 7.49-7.60 (band, 5H), 7.69 (m, 2H), 9.10 (s, 1H), 10.80 (s, 1H). ESI-MS: m/z 431.1 (M + H)$^+$.

COMPOUND 13: (R)-3-[(4-Benzyl-1-(1-ethyl-piperidin-3-yl)-5-methyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide.
[0352] 1H NMR (400 MHz, DMSO-d_6): δ 0.96 (t, 3H), 1.40 (m, 1H), 1.70-1.98 (band, 4H), 2.33 (m, 5H), 2.79 (d, 1H), 2.90 (d, 1H), 3.81 (s, 2H), 4.20 (m, 1H), 6.50 (d, 1H), 7.14 (m, 1H), 7.23 (m, 4H), 7.40 (d, 1H), 7.48 (m, 2H), 7.60 (m, 2H), 9.10 (s, 1H), 10.80 (s, 1H). ESI-MS: m/z 445.2 (M + H)$^+$.

COMPOUND 14: (R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-4,5-dimethyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide.

[0353] 1H NMR (400 MHz, DMSO-d_6): δ 1.20 (m, 3H), 1.40 (m, 1H), 1.70-1.98 (band, 4H), 2.33 (m, 5H), 2.42 (s, 3H), 2.79 (d, 1H), 2.90 (d, 1H), 3.81 (s, 2H), 4.50 (m, 1H), 6.50 (d, 1H), 7.60 (d, 1H), 7.73 (m, 2H), 7.89 (s, 1H), 8.00 (d, 1H), 9.40 (s, 1H), 10.80 (s, 1H). ESI-MS: m/z 369.2 (M + H)$^+$.

COMPOUND 15: 3-{3-(5-Benzyl-4-methyl-1-phenethyl-1H-imidazol-2-yl)-phenyl}-N-hydroxy-propionamide.
[0354] 1H NMR (400 MHz, DMSO-$_d_6$): δ 2.29 (m, 5H), 2.54 (t, 2H), 3.88 (t, 2H), 4.18 (s, 2H), 4.23 (t, 2H), 6.73 (m, 2H), 7.15 (m, 3H), 7.31 (m, 5H), 7.40 (m, 2H), 7.48 (d, 2H), 8.78 (bs, 1H), 10.39 (s, 1H). ESI-MS: m/z 440.2 (M + H)$^+$.

COMPOUND 16: 3-[3-(4,5-Dimethyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-propionamide.

![Chemical Structure of Compound 16]

[0355] 1H NMR (400 MHz, DMSO-$_d_6$): δ 2.25 (m, 8H), 2.87 (m, 4H), 4.32 (m, 2H), 6.91 (d, 2H), 7.17 (m, 5H), 7.43 (d, 2H), 8.75 (bs, 1H), 10.42 (s, 1H). ESI-MS: m/z 364.2 (M + H)$^+$.

COMPOUND 17: 3-[3-(2,5-Dimethyl-3-phenethyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide.

![Chemical Structure of Compound 17]

[0356] 1H NMR (400 MHz, DMSO-$_d_6$): δ 1.87 (s, 3H), 1.99 (s, 3H), 2.60 (t, 2H), 3.89 (t, 2H), 6.40 (d, 1H), 6.75 (m, 2H), 7.06 (m, 3H), 7.15 (d, 1H), 7.30-7.60 (band, 4H), 9.09 (s, 1H), 10.88 (s, 1H). ESI-MS: m/z 362.2 (M + H)$^+$.

COMPOUND 18: N-Hydroxy-3-[3-(5-methyl-3-phenethyl-2-phenyl-3H-imidazol-4-yl)-phenyl]-acrylamide.
[0357] 1H NMR (400 MHz, DMSO-d_6): δ 2.11 (s, 3H), 2.40 (t, 2H), 4.21 (t, 2H), 6.55 (d, 1H), 6.60 (d, 2H), 7.09 (m, 3H), 7.35-7.65 (band, 10H), 9.10 (s, 1H), 10.80 (s, 1H). ESI-MS: m/z 424.2 (M + H)$^+$.

COMPOUND 19: 3-[3-(5-Benzyl-2-methyl-3-phenethyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide.

[0358] 1H NMR (400 MHz, DMSO-d_6): δ 2.11 (s, 3H), 2.63 (t, 2H), 3.67 (s, 2H), 4.01 (t, 2H), 6.49 (d, 1H), 6.80 (d, 2H), 7.07-7.33 (band, 10H), 7.48 (m, 2H), 7.66 (d, 1H), 9.10 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 438.2 (M + H)$^+$.

COMPOUND 20: 3-[3-(2-Benzyl-5-methyl-3-phenethyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide.
[0359] 1H NMR (400 MHz, DMSO-d_6): δ 2.06 (s, 3H), 2.33 (t, 2H), 3.97 (m, 4H), 6.50 (d, 1H), 6.70 (d, 2H), 7.11-7.35 (band, 9H), 7.50 (m, 3H), 7.61 (d, 1H), 9.06 (s, 1H), 10.75 (s, 1H). ESI-MS: m/z 438.2 (M + H)$^+$.

COMPOUND 21: N-Hydroxy-3-[3-(1-isopropyl-4-methyl-5-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide.

![Chemical structure of Compound 21](image)

[0360] 1H NMR (400 MHz, DMSO-d_6): δ 1.13 (d, 6H), 1.96 (s, 3H), 4.37 (m, 1H), 6.55 (d, 1H), 6.70 (d, 2H), 7.40-7.62 (band, 10H), 9.07 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 362.2 (M + H)$^+$.

COMPOUND 22: 3-[3-(4-Benzyl-1-isopropyl-5-methyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide.

![Chemical structure of Compound 22](image)

[0361] ESI-MS: m/z 376.2 (M + H)$^+$.

COMPOUND 23: N-Hydroxy-3-[3-(1-isopropyl-5-methyl-4-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide.

![Chemical structure of Compound 23](image)

[0362] 1H NMR (400 MHz, DMSO-d_6): δ 1.43 (d, 6H), 2.52 (s, 3H), 4.55 (m, 1H), 6.55 (d, 1H), 7.25 (t, 1H), 7.39 (t, 2H), 7.50-7.72 (band, 7H), 9.07 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 362.2 (M + H)$^+$.

97
COMPOUND 24: 3-[3-(4-Benzyl-1-isopropyl-5-methyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide.

![Chemical Structure](image)

[0363] 1H NMR (400 MHz, DMSO-d_6): δ 1.39 (d, 6H), 2.32 (s, 3H), 3.80 (s, 2H), 4.50 (m, 1H), 6.50 (d, 1H), 7.11 (m, 1H), 7.23 (m, 4H), 7.41 (d, 1H), 7.49 (m, 2H), 7.60 (m, 2H), 9.05 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 376.2 (M + H)$^+$.

COMPOUND 25: (R)-3-[3-[4,5-Dimethyl-1-(1-phenyl-ethyl)-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide.

![Chemical Structure](image)

[0364] 1H NMR (400 MHz, DMSO-d_6): δ 1.81 (s, 3H), 1.85 (d, 3H), 2.04 (s, 3H), 5.57 (q, 1H), 6.50 (1, 2H), 7.02 (d, 2H), 7.24 (m, 1H), 7.34 (m, 2H), 7.44 (m, 3H), 7.58 (d, 1H), 7.64 (s, 1H), 9.05 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 362.2 (M + H)$^+$.

COMPOUND 26: (R)-N-Hydroxy-3-[3-[4-methyl-5-phenyl-1-(1-phenyl-ethyl)-1H-imidazol-2-yl]-phenyl]-acrylamide.

![Chemical Structure](image)

[0365] 1H NMR (400 MHz, DMSO-d_6): δ 1.56 (d, 3H), 1.99 (s, 3H), 5.48 (q, 1H), 6.45 (d, 1H), 6.87 (d, 2H), 7.13 (d, 1H), 7.23-7.41 (band, 9H), 7.49 (s, 1H), 7.58 (d, 1H), 9.05 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 424.2 (M + H)$^+$.

98
COMPOUND 27: (R)-3-{5-Benzyl-4-methyl-1-(1-phenyl-ethyl)-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide.

[0366] ESI-MS: m/z 438.2 (M + H)^+.

COMPOUND 28: N-Hydroxy-3-{3-(isopropyl-2,5-dimethyl-3H-imidazol-4-yl)-phenyl]-acrylamide.

[0367] ^1H NMR (400 MHz, DMSO-d_6): δ 1.28 (d, 6H), 1.92 (s, 3H), 2.40 (s, 3H), 4.18 (m, 1H), 6.50 (d, 1H), 7.25 (d, 2H), 7.41 (s, 1H), 7.48 (m, 2H), 7.58 (d, 1H), 9.05 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 300.2 (M + H)^+.

COMPOUND 29: N-Hydroxy-3-{3-(isopropyl-5-methyl-2-phenyl-3H-imidazol-4-yl)-phenyl]-acrylamide.

[0368] ^1H NMR (400 MHz, DMSO-d_6): δ 1.13 (d, 6H), 1.92 (s, 3H), 4.35 (m, 1H), 6.50 (d, 1H), 7.40-7.64 (band, 10H), 9.05 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 362.2 (M + H)^+.

COMPOUND 30: 3-{3-(5-Benzyl-3-isopropyl-2-methyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide.
[0369] 1H NMR (400 MHz, DMSO-d_6): δ 1.25 (d, 6H), 2.35 (s, 3H), 3.50 (s, 2H), 4.18 (m, 1H), 6.50 (d, 1H), 7.04 (d, 2H), 7.10 (t, 1H), 7.17 (m, 2H), 7.26 (d, 2H), 7.42 (s, 1H), 7.49 (m, 2H), 7.61 (d, 2H), 9.05 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 376.2 (M + H)$^+$.

COMPOUND 31: 3-[3-(2-Benzyl-3-isopropyl-5-methyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide.

[0370] 1H NMR (400 MHz, DMSO-d_6): δ 1.11 (d, 6H), 1.90 (s, 3H), 4.10 (s, 2H), 4.25 (m, 1H), 6.50 (d, 1H), 7.20-7.35 (band, 6H), 7.47 (m, 3H), 7.59 (d, 1H), 9.05 (s, 1H), 10.78 (s, 1H). ESI-MS: m/z 376.2 (M + H)$^+$.

COMPOUND 32: (R)-3-{3-[2,5-Dimethyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl}-N-hydroxy-acrylamide.

[0371] 1H NMR (400 MHz, DMSO-d_6): δ 1.75 (d, 3H), 1.98 (s, 3H), 1.99 (s, 3H), 5.25 (q, 1H), 6.50 (d, 1H), 7.01 (d, 2H), 7.23 (m,2H), 7.33 (m,3H), 7.43 (m, 2H), 7.56 (d, 1H), 9.05 (s, 1H), 10.75 (s, 1H). ESI-MS: m/z 362.2 (M + H)$^+$.

COMPOUND 33: (R)-N-Hydroxy-3-{3-[5-methyl-2-phenyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl}-acrylamide.
[0372] 1H NMR (400 MHz, DMSO-d_6): δ 1.55 (d, 3H), 1.98 (s, 3H), 5.57 (q, 1H), 6.29 (d, 1H), 6.86 (d, 2H), 6.98 (m, 2H), 7.21-7.31 (band, 5H), 7.41-7.49 (band, 6H), 9.05 (s, 1H), 10.75 (s, 1H). ESI-MS: m/z 424.2 (M + H)$^+$.

COMPOUND 34: (R)-3-{3-[5-Benzyl-2-methyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl}-N-hydroxy-acrylamide.

[0373] 1H NMR (400 MHz, DMSO-d_6): δ 1.71 (d, 3H), 2.01 (s, 3H), 3.62 (d, 2H), 5.25 (q, 1H), 6.35 (d, 1H), 7.03 (d, 2H), 7.10 (m, 3H), 7.21-7.36 (band, 7H), 7.45 (m, 2H), 7.57 (d, 1H), 9.04 (s, 1H), 10.72 (s, 1H). ESI-MS: m/z 438.2 (M + H)$^+$.

COMPOUND 35: (R)-3-{3-[2-Benzyl-5-methyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl}-N-hydroxy-acrylamide.

[0374] 1H NMR (400 MHz, DMSO-d_6): δ 1.60 (d, 3H), 1.98 (s, 3H), 3.80 (s, 2H), 5.35 (q, 1H), 6.35 (d, 1H), 6.93 (d, 2H), 7.08 (m, 3H), 7.17-7.26 (band, 7H), 7.34 (d, 2H), 7.37 (m, 1H), 7.51 (d, 1H), 9.04 (s, 1H), 10.70 (s, 1H). ESI-MS: m/z 438.2 (M + H)$^+$.

101
COMPOUND 36: (R)-3-\{3-[(1-Ethyl-piperidin-3-yl)-2,5-dimethyl-3H-imidazol-4-yl]-phenyl\}-N-hydroxy-acrylamide.

![Chemical Structure]

[0375] 1H NMR (400 MHz, DMSO-d_6): δ 0.85 (t, 3H), 1.27 (m, 2H), 1.68 (m, 4H), 1.92 (s, 3H), 2.30 (m, 2H), 2.41 (s, 3H), 2.78 (m, 1H), 2.82 (m, 1H), 3.89 (m, 1H), 6.50 (d, 1H), 7.24 (d, 1H), 7.41 (s, 1H), 7.49 (m, 2H), 7.60 (d, 1H), 9.04 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 369.2 (M + H)$^+$.

COMPOUND 37: (R)-3-\{3-[(1-Ethyl-piperidin-3-yl)-5-methyl-2-phenyl-3H-imidazol-4-yl]-phenyl\}-N-hydroxy-acrylamide.

![Chemical Structure]

[0376] 1H NMR (400 MHz, DMSO-d_6): δ 0.85 (t, 3H), 1.15-1.32 (band, 4H), 1.90 (m, 5H), 2.11 (m, 2H), 2.41 (s, 3H), 2.55 (m, 1H), 2.82 (m, 1H), 4.07 (m, 1H), 6.55 (d, 1H), 7.35-7.70 (band, 10H), 9.04 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 431.2 (M + H)$^+$.

COMPOUND 38: (R)-3-\{2-Benzyl-3-(1-ethyl-piperidin-3-yl)-5-methyl-3H-imidazol-4-yl]-phenyl\}-N-hydroxy-acrylamide.

![Chemical Structure]

[0377] 1H NMR (400 MHz, DMSO-d_6): δ 0.85 (t, 3H), 1.21-1.60 (band, 4H), 1.89 (s, 3H), 1.95 (m, 2H), 2.15 (m, 2H), 2.60 (m, 2H), 4.00 (m, 1H), 4.17 (d, 2H), 6.55 (d, 1H),
7.20-7.32 (band, 6H), 7.47 (m, 3H), 7.61 (d, 1H), 9.04 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 445.2 (M + H)^+.

COMPOUND 39: (R)-N-Hydroxy-3-[3-[5-methyl-1-(1-methyl-piperidin-3-yl)-4-phenyl-1H-imidazol-2-yl]-phenyl]-acrylamide.

![Compound 39 structure](image)

[0378] \(^1\)H NMR (400 MHz, DMSO-d6): δ 1.40-1.99 (band, 4H), 2.19 (s, 3H), 2.58 (s, 3H), 2.68 (m, 1H), 2.91 (m, 1H), 4.23 (m, 1H), 6.55 (d, 1H), 7.25 (t, 1H), 7.39 (t, 2H), 7.48-7.60 (band, 5H), 7.68 (m, 2H), 9.04 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 417.2 (M + H)^+.

COMPOUND 40: (R)-3-[3-[4-Benzyl-5-methyl-1-(1-methyl-piperidin-3-yl)-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide.

![Compound 40 structure](image)

[0379] \(^1\)H NMR (400 MHz, DMSO-d6): δ 1.40-1.88 (band, 4H), 2.11 (s, 3H), 2.30 (s, 3H), 2.62 (m, 1H), 2.71 (m, 1H), 3.81 (s, 2H), 4.20 (m, 1H), 6.55 (d, 1H), 7.13 (m, 1H), 7.23 (m, 4H), 7.41 (m, 1H), 7.49 (m, 2H), 7.61 (m, 2H), 9.04 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 431.2 (M + H)^+.

COMPOUND 41: (R)-N-Hydroxy-3-[3-[1-(1-isopropyl-piperidin-3-yl)-4-methyl-5-phenyl-1H-imidazol-2-yl]-phenyl]-acrylamide.
[0380] \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 0.80 (t, 6H), 1.13-1.43 (band, 4H), 1.98 (s, 3H), 2.15 (m, 1H), 2.49 (m, 1H), 2.85 (m, 1H), 4.00 (m, 1H), 6.55 (d, 1H), 7.39 (m, 2H), 7.45-7.55 (band, 6H), 7.65 (d, 1H), 7.69 (s, 1H), 9.04 (s, 1H), 10.79 (s, 1H). ESI-MS: \(m/z\) 445.2 (M + H\(^+\)).

COMPOUND 42: (R)-N-Hydroxy-3-{3-[1-(1-isopropyl-piperidin-3-yl)-5-methyl-4-phenyl-1H-imidazol-2-yl]-phenyl}-acylamide.

[0381] \(^1\)H NMR (400 MHz, DMSO-\(d_6\)): \(\delta\) 0.80 (t, 6H), 1.35 (m, 1H), 1.72 (m, 1H), 1.98 (m, 2H), 2.60 (m, 5H), 2.90 (m, 1H), 4.20 (m, 1H), 6.55 (d, 1H), 7.25 (t, 1H), 7.40 (t, 2H), 7.41-7.61 (band, 5H), 7.69 (m, 2H), 9.04 (s, 1H), 10.79 (s, 1H). ESI-MS: \(m/z\) 445.2 (M + H\(^+\)).

COMPOUND 43: (R)-N-Hydroxy-3-{3-[4-methyl-1-(1-methyl-piperidin-3-yl)-5-phenyl-1H-imidazol-2-yl]-phenyl}-acylamide.
[0382] 1H NMR (400 MHz, DMSO-d_6): δ 1.14-1.49 (band, 4H), 1.89 (m, 2H), 1.92 (s, 3H), 1.98 (s, 3H), 2.49 (m, 1H), 2.79 (m, 1H), 4.11 (m, 1H), 6.55 (d, 1H), 7.37 (d, 2H), 7.50 (m, 6H), 7.69 (d, 1H), 7.70 (s, 1H), 9.04 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 417.2 (M + H)$^+$.

COMPOUND 44: (R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-4-methyl-5-thiophen-2-yl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide.

![Chemical Structure](image)

[0383] 1H NMR (400 MHz, DMSO-d_6): δ 0.86 (t, 3H), 1.16 (m, 1H), 1.35 (t, 1H), 1.50 (m, 2H), 1.82 (d, 1H), 1.99 (s, 3H), 2.07 (t, 1H), 2.19 (q, 2H), 2.62 (d, 1H), 2.85 (d, 1H), 4.10 (m, 1H), 6.55 (d, 1H), 7.21 (m, 3H), 7.50 (m, 2H), 7.68 (m, 2H), 7.79 (s, 1H), 9.10 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 437.2 (M + H)$^+$.

COMPOUND 45: (R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-5-(3-fluoro-phenyl)-4-methyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide.

![Chemical Structure](image)

[0384] 1H NMR (400 MHz, DMSO-d_6): δ 0.86 (t, 3H), 1.16-1.45 (band, 3H), 1.84 (m, 1H), 1.99 (m, 5H), 2.18 (q, 2H), 2.60 (d, 1H), 2.90 (d, 1H), 4.07 (m, 1H), 6.55 (d, 1H), 7.30 (m, 4H), 7.55 (m, 3H), 7.68 (m, 2H), 9.05 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 449.2 (M + H)$^+$.

COMPOUND 46: (R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-5-(4-fluoro-phenyl)-4-methyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide.

105
[0385] 1H NMR (400 MHz, DMSO-d_6): δ 0.86 (t, 3H), 1.16-1.45 (band, 3H), 1.84 (m, 1H), 1.99 (m, 5H), 2.18 (q, 2H), 2.60 (d, 1H), 2.90 (d, 1H), 4.07 (m, 1H), 6.55 (d, 1H), 7.29 (t, 2H), 7.40-7.60 (band, 5H), 7.69 (m, 2H), 9.05 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 449.2 (M + H)$^+$.

COMPOUND 47: (R)-3-[(1-Ethyl-piperidin-3-yl)-5-furan-2-yl-4-methyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide.

[0386] 1H NMR (400 MHz, DMSO-d_6): δ 0.90 (t, 3H), 1.25-1.65 (band, 3H), 1.84 (m, 1H), 1.99 (m, 5H), 2.18 (q, 2H), 2.60 (d, 1H), 2.85 (d, 1H), 4.15 (m, 1H), 6.55 (d, 1H), 6.65 (d, 2H), 7.30 (m, 3H), 7.65 (m, 2H), 7.80 (s, 1H), 9.05 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 421.2 (M + H)$^+$.

COMPOUND 48: (R)-3-[(1-Ethyl-piperidin-3-yl)-4-methyl-5-thiophen-3-yl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide.

[0387] 1H NMR (400 MHz, DMSO-d_6): δ 0.90 (t, 3H), 1.25-1.65 (band, 3H), 1.84 (m, 1H), 1.99 (m, 5H), 2.18 (q, 2H), 2.60 (d, 1H), 2.85 (d, 1H), 4.15 (m, 1H), 6.55 (d, 1H), 7.18 (d, 1H), 7.50 (m, 3H), 7.62 (m, 4H), 9.05 (s, 1H), 10.79 (s, 1H). ESI-MS: m/z 437.2 (M + H)$^+$.

106
COMPOUND 49: N-Hydroxy-3-[3-(1-phenethyl-5-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide.

[0388] \(^1H \text{NMR} (400 \text{ MHz, DMSO-}d_6) \): \(\delta \) 2.48 (t, 2H), 4.49 (t, 2H), 6.52 (d, 1H), 6.71 (m, 2H), 7.42 (band, 4H), 7.52-7.73 (band, 11H), 9.25 (s, 1H), 10.95 (s, 1H). ESI-MS: \(m/z \) 410.2 (M + H)\(^+\).

[0389] As used herein the symbols and conventions used in these processes, schemes and examples are consistent with those used in the contemporary scientific literature, for example, the Journal of the American Chemical Society or the Journal of Biological Chemistry. Standard single-letter or thee-letter abbreviations are generally used to designate amino acid residues, which are assumed to be in the L-configuration unless otherwise noted. Unless otherwise noted, all starting materials were obtained from commercial suppliers and used without further purification. Specifically, the following abbreviations may be used in the examples and throughout the specification:

- g (grams);
- mL (milliliters);
- μL (microliters);
- M (molar);
- i.v. (intravenous);
- MHz (megahertz);
- mmol (millimoles);
- min (minutes); h (hours);
- mp (melting point);
- Tr (retention time);
- MeOH (methanol);
- TEA (triethylamine);
- mg (milligrams);
- psi (pounds per square inch);
- mM (millimolar);
- Hz (Hertz);
- mol (moles);
- RT (ambient temperature);
- TLC (thin layer chromatography);
- RP (reverse phase);
- i-PrOH (isopropanol);
- TFA (trifluoroacetic acid);

107
TFAA (trifluoroacetic anhydride); THF (tetrahydrofuran);
DMSO (dimethylsulfoxide); EtOAc (ethyl acetate);
DME (1,2-dimethoxyethane); DCM (dichloromethane);
DCE (dichloroethane); DMF (N,N-dimethylformamide);
DMPU (N,N’-dimethylpropyleneurea); CDI (1,1-carbonyldiimidazole);
IBCF (isobutyl chloroformate); HOAc (acetic acid);
HOSu (N-hydroxysuccinimide); HOBT (1-hydroxybenzotriazole);
Et$_2$O (diethyl ether); EDCI (ethylcarbodiimide hydrochloride);
BOC (tert-butyloxy carbonyl); FMOC (9-fluorenylmethoxycarbonyl);
DCC (dicyclohexylcarbodiimide); CBZ (benzyloxycarbonyl);
Ac (acetyl); atm (atmosphere);
TMSE (2-(trimethylsilyl)ethyl); TMS (trimethylsilyl);
TIPS (triisopropylsilyl); TBS (t-butyldimethylsilyl);
DMAP (4-dimethylaminopyridine); Me (methyl);
OMe (methoxy); Et (ethyl);
Et (ethyl); tBu (tert-buty1);
HPLC (high pressure liquid chromatography);
BOP (bis(2-oxo-3-oxazolidinyl)phosphinic chloride);
TBAF (tetra-n-butylammonium fluoride);
mCPBA (meta-chloroperbenzoic acid).

[0390] All references to ether or Et$_2$O are to diethyl ether; brine refers to a saturated aqueous solution of NaCl. Unless otherwise indicated, all temperatures are expressed in °C (degrees Centigrade). All reactions conducted under an inert atmosphere at RT unless otherwise noted.

[0391] 1H NMR spectra were recorded on a Bruker Avance 400. Chemical shifts are expressed in parts per million (ppm). Coupling constants are in units of hertz (Hz). Splitting patterns describe apparent multiplicities and are designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad).

[0392] Low-resolution mass spectra (MS) and compound purity data were acquired on a Waters ZQ LC/MS single quadrupole system equipped with electrospray ionization (ESI) source, UV detector (220 and 254 nm), and evaporative light scattering detector (ELSD).
Thin-layer chromatography was performed on 0.25 mm E. Merck silica gel plates (60F-254), visualized with UV light, 5% ethanolic phosphomolybdic acid, Ninhydrin or p-anisaldehyde solution. Flash column chromatography was performed on silica gel (230-400 mesh, Merck).

[0393] It will be apparent to those skilled in the art that various modifications and variations can be made to the compounds, compositions, kits, and methods of the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
What is claimed is:

1. A compound comprising the formula

\[Z \xrightarrow{Q} L \xrightarrow{M} \]

wherein

Z is selected from the group consisting of

\[
\begin{align*}
&\text{X} \quad \text{Y} \\
&\text{Z} \\
&\text{W} \\
&\text{V} \\
&\text{U} \\
&\text{T} \\
&\text{S} \\
&\text{R} \\
&\text{Q} \\
&\text{P} \\
&\text{O} \\
&\text{N} \\
&\text{M} \\
&\text{L} \\
&\text{K} \\
&\text{J} \\
&\text{I} \\
&\text{H} \\
&\text{G} \\
&\text{F} \\
&\text{E} \\
&\text{D} \\
&\text{C} \\
&\text{B} \\
&\text{A} \\
\end{align*}
\]

wherein

each X is independently selected from the group consisting of CR₅ and N;
each Y is independently selected from the group consisting of O, S and NR₅;
R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyle, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₁, R₂, R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₁, R₂, R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;
Q is a substituted or unsubstituted aromatic ring;
M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and
L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the Q substituent,
with the proviso that M is not \(-\text{C(O)}-\) and \(\text{R}^{13}\) is not hydroxy, alkoxy or arylalkoxy

when \(Z\) is \(\text{X}\), \(X\) is \(\text{N}\), \(\text{R}^{4}\) is \(\text{H}\), \(\text{Q}\) is phenyl, and \(\text{R}^{2}\) and \(\text{R}^{3}\) are substituted phenyl.

2. The compound according to Claim 1, wherein \(\text{R}^{2}\) or \(\text{R}^{3}\) is a substituted or unsubstituted aryl or heteroaryl.

3. The compound according to Claim 1, wherein \(\text{R}^{2}\) is a substituted or unsubstituted aryl or heteroaryl.

4. The compound according to Claim 1, wherein \(\text{R}^{2}\) or \(\text{R}^{3}\) is a substituted or unsubstituted furan or thiophene.

5. The compound according to Claim 1, wherein \(\text{R}^{2}\) is a substituted or unsubstituted furan or thiophene.

6. The compound according to Claim 1, wherein \(\text{R}^{2}\) and \(\text{R}^{3}\) are taken together to form a substituted or unsubstituted cycloalkyl or heteroaromatic ring.

7. The compound according to Claim 1, wherein \(\text{R}^{1}\) and \(\text{R}^{2}\), or \(\text{R}^{2}\) and \(\text{R}^{3}\), or \(\text{R}^{3}\) and \(\text{R}^{4}\) are taken together to form a substituted or unsubstituted bicyclic aromatic ring.

8. The compound according to Claim 1, wherein the ring atom to which \(\text{R}^{1}\) is bound is nitrogen.

9. The compound according to Claim 1, wherein \(\text{Z-Q}\) is selected from the group consisting of:

10. The compound according to Claim 1, wherein \(\text{Q}\) is a substituted or unsubstituted heteroaryl.
11. The compound according to Claim 1, wherein Q is a substituted or unsubstituted heteroaryl selected from the group consisting of substituted or unsubstituted furan, thiophene, pyrrole, pyrazole, triazole, isoxazole, oxazole, thiazole, isothiazole, oxadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, benzofuran, isobenzofuran, benzothiophene, isobenzothiophene, indole, isobenzazole, quinoline, isoquinoline, cinnoline, quinazoline, naphthyridine, pyridopyridine, quinoxaline, phthalazine, benzothiazole, and triazine.

12. The compound according to Claim 1, wherein Z is a substituted or unsubstituted imidazole.

13. The compound according to Claim 1, wherein R₄ is -CHR₁₅R₁₆, where R₁₅ and R₁₆ are independently selected from the group consisting of halogen, alkyl, amino, thio, cyano, nitro, -OR₁₇, -(C₁₋₈)alkyleneR₁₇, -(C₁₋₈)alkyleneOR₁₇, and -(C₁₋₈)alkyleneNR₁₇R₁₈; wherein R₁₇ and R₁₈ are each independently selected from the group consisting of a substituted or unsubstituted (C₁₋₁₀)alkyl, (C₃₋₁₂)cycloalkyl, hetero(C₄₋₁₂)cycloalkyl, (C₆₋₁₂)aryl, hetero(C₅₋₁₂)aryl, (C₉₋₁₂)bicycloalkyl, hetero(C₉₋₁₂)bicycloalkyl, (C₉₋₁₂)bicycloaryl and hetero(C₈₋₁₂)bicycloaryl, each substituted or unsubstituted, or where R₁₅ and R₁₆ together form a substituted or unsubstituted (C₃₋₇)cycloalkyl ring wherein at least one carbon of the ring is optionally replaced by one O, S, NH or -N(C₁₋₃)alkyl group.

14. The compound according to Claim 1, wherein R₄ is a (C₃₋₇)cycloalkyl ring wherein the carbon at the 3-position of the ring is a substituted or unsubstituted -N(C₁₋₃)alkyl group.

15. The compound according to Claim 1, wherein R₄ is an N-substituted piperidin-3-yl moiety, and wherein the piperidin-3-yl ring is substituted or unsubstituted at any given carbon atom.

16. The compound according to Claim 1, where R₄ is selected from the group consisting of a N-[substituted or unsubstituted (C₁₋₃)alkyl] substituted piperidin-3-yl moiety, 2-morpholin-4-yl-ethyl, phenethyl, iso-propyl, 1-phenyl-ethyl, and piperidin-3-yl.
17. The compound according to Claim 1, wherein \(M \) is selected from the group consisting of trifluoroacetyl, \(-\text{NH-P(O)OH-CH}_3\) sulfonamides, hydroxysulfonamides, thiols, and carbonyl groups having the formula \(-\text{C(O)-R}_{13}\) wherein \(R_{13} \) is alkyl, hydroxylamino, hydroxyl, amino, alkylamino, or an alkoxy group.

18. The compound according to Claim 1, wherein \(M \) is selected from the group consisting of:

\[
\begin{array}{cccc}
\text{O} & \text{N} & \text{H} & \text{O} \\
\text{S} & \text{O} & \text{NH} & \text{OH} \\
\text{O} & \text{N} & \text{H} & \text{S} \\
\text{O} & \text{S} & \text{SH} & \text{O} \\
\text{O} & \text{S} & \text{OH} & \text{O} \\
\text{O} & \text{S} & \text{O} & \text{O} \\
\end{array}
\]

19. The compound according to Claim 1, wherein \(M \) comprises a hydroxamic acid moiety.

20. The compound according to Claim 1, wherein \(L \) is \(E, Z \) or mixtures of \(E/Z \) \(-\text{CH}_2=\text{CH}_2\).

21. The compound according to Claim 1, wherein \(L \) is a substituent comprising 1 to 6 atoms in the chain.

22. The compound according to Claim 1, wherein the compound is in the form of a pharmaceutically acceptable salt.

23. The compound according to Claim 1, wherein the compound is present in a mixture of stereoisomers.

24. The compound according to Claim 1, wherein the compound comprises a single stereoisomer.

25. A compound comprising the formula:

\[
Z \longrightarrow Q \longrightarrow L \longrightarrow M
\]
wherein

Z is selected from the group consisting of

wherein
each X is independently selected from the group consisting of CR₅ and N;

R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroaryalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₁, R₂, R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₁, R₂, R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or -CH₃;

Q is a substituted or unsubstituted aromatic ring;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the Q substituent,

with the proviso that M is not –C(O)–R₁₃ and R₁₃ is not hydroxy, alkoxy or

arylalkoxy when Z is , X is N, R₄ is H, Q is phenyl, and R₂ and R₃ are substituted phenyl.

26. A compound comprising the formula:

Z—Q—L—M

wherein

Z is selected from the group consisting of
wherein

each X is independently selected from the group consisting of CR₅ and N;

each Y is independently selected from the group consisting of O, S and NR₅;

R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, aroylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₁, R₂, R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₁, R₂, R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

Q is a substituted or unsubstituted aromatic ring;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the Q substituent.

27. A compound comprising a formula selected from the group consisting of:
wherein

each X is independently selected from the group consisting of CR₅ and N;
each Y is independently selected from the group consisting of O, S and NR₅;
R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and
L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group.

28. The compound according to Claim 27, wherein \(R_6, R_7, R_8, \) and \(R_9 \) are each hydrogen.

29. The compound according to Claim 27, wherein at least one of \(R_6, R_7, R_8, \) and \(R_9 \) is selected from the group consisting of halogen, or substituted or unsubstituted alkyl, alkoxy, aryl, and heteroaryl.

30. The compound according to Claim 27, wherein at least one of \(R_6, R_7, R_8, \) and \(R_9 \) is fluorine.

31. A compound comprising a formula selected from the group consisting of:

\[
\begin{align*}
&\begin{array}{c}
\text{X-X} \\
\text{X-N} \\
\text{R_4} \\
\text{R_5} \\
\text{R_6} \\
\text{R_7} \\
\text{R_8} \\
\text{R_9} \\
\text{L-M}
\end{array}
\end{align*}
\]

\[
\begin{align*}
&\begin{array}{c}
\text{X-X} \\
\text{X-Y} \\
\text{R_3} \\
\text{R_4} \\
\text{R_5} \\
\text{R_6} \\
\text{R_7} \\
\text{R_8} \\
\text{L-M}
\end{array}
\end{align*}
\]

\[
\begin{align*}
&\begin{array}{c}
\text{X-Y} \\
\text{R_3} \\
\text{R_4} \\
\text{R_5} \\
\text{R_6} \\
\text{R_7} \\
\text{R_8} \\
\text{L-M}
\end{array}
\end{align*}
\]

wherein

- each \(X \) is independently selected from the group consisting of \(\text{CR}_5 \) and \(\text{N} \);
- each \(Y \) is independently selected from the group consisting of \(\text{O}, \text{S} \) and \(\text{NR}_5 \);
- \(R_3, R_4 \) and \(R_5 \) are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that \(R_3, R_4 \) and \(R_5 \) is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which
R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group,

with the proviso that M is not –C(O)–R₁₃ and R₁₃ is not hydroxy, alkoxy or arylalkoxy

when the compound comprises the formula and R₂ and R₃ are substituted phenyl.

32. A compound comprising a formula selected from the group consisting of:
each X is independently selected from the group consisting of CR₅ and N;
each Y is independently selected from the group consisting of O, S and NR₅;

R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of
hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl,
heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroaryalkyl, amino, thio, cyano, nitro,
and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is
not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which
R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is
not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of
hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl,
heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroaryalkyl, amino, thio, cyano, nitro,
and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site
and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the
phenyl group,

with the proviso that M is not –C(O)–R₁₃ and R₁₃ is not hydroxy, alkoxy or arylalkoxy

when the compound comprises the formula

and R₂ and R₃ are

substituted phenyl.

33. The compound according to Claim 32, wherein:

R₄ is an N-substituted piperidin-3-yl moiety, wherein the piperidin-3-yl ring is
substituted or unsubstituted at any given carbon atom; and

R₆, R₇, R₈, and R₉ are each hydrogen.

34. The compound according to Claim 32, wherein R₁, R₂, and R₃ are each
independently selected from the group consisting of substituted or unsubstituted methyl,
phenyl, benzyl, phenethyl, thien-2-yl, thien-3-yl, furan-2-yl, 2-morpholin-4-yl-ethyl, and 1-ethyl-piperidin-3-yl.
35. A compound comprising a formula selected from the group consisting of:

wherein

each X is independently selected from the group consisting of CR₅ and N;
R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;
R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;
M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and
L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group,

with the proviso that M is not -C(O)-R₁₃ and R₁₃ is not hydroxy, alkoxy or arylalkoxy when the compound comprises the formula and R₂ and R₃ are substituted phenyl.
36. A compound comprising a formula selected from the group consisting of:

![Chemical Structures]

wherein

each X is independently selected from the group consisting of CR₃ and N;
each Y is independently selected from the group consisting of O, S and NR₃;
R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonil, alkylsulfonil, arylsulfonil, heteroarylsulfonil, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;
R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonil, alkylsulfonil, arylsulfonil, heteroarylsulfonil, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;
M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and
L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group.

37. A compound comprising a formula selected from the group consisting of:
wherein

each X is independently selected from the group consisting of CR₅ and N;

R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, arlyoxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, arlyoxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group,

with the proviso that M is not –CO–R₁₃ and R₁₃ is not hydroxy, alkoxy or

arylalkoxy when the compound comprises the formula and R₂ and R₃ are substituted phenyl.
38. The compound according to Claim 37, wherein R₁ and R₂, or R₂ and R₃, or R₃ and R₄ are taken together to form a substituted or unsubstituted ring.

39. The compound according to Claim 37, wherein R₁ and R₂, or R₂ and R₃, or R₃ and R₄ are taken together to form a substituted or unsubstituted aromatic ring.

40. The compound according to Claim 39, wherein the substituted or unsubstituted aromatic ring formed when R₁ and R₂, R₂ and R₃, or R₃ and R₄ are taken together is selected from the group consisting of substituted or unsubstituted aryl and heteroaryl.

41. The compound according to Claim 37, wherein at least one of R₇ and R₉ is fluorine.

42. The compound according to Claim 37, wherein:

R₁, R₂, and R₃ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

R₄ is an N-substituted piperidin-3-yl moiety; and

R₆, R₇, R₈, and R₉ are each hydrogen.

43. The compound according to Claim 37, wherein:

R₁, R₂, and R₃ are each independently selected from the group consisting of halo, hydroxy, -CO₂H, -CF₃, -OCF₃, -CN, -NO₂, NH₂, -NH(CH₃), -N(CH₃)₂, CH₂CONH, substituted or unsubstituted methyl, methoxy, hydroxymethyl, ethyl, ethoxy, isopropyl, t-butyl, 3-ethoxy-propyloxy, phenyl, phenoxy, benzyl, benzylloxy, phenethyl, phenethoxy, 3-methylbutyl, 3-methyl-2-butenyloxy, 2-morpholin-4-yl-ethyl, and 1-ethyl-piperidin-3-yl;

R₄ is an N-substituted piperidin-3-yl moiety; and

R₆, R₇, R₈, and R₉ are each hydrogen.

44. A compound comprising a formula selected from the group consisting of:
wherein

each X is independently selected from the group consisting of CR₃ and N;
each Y is independently selected from the group consisting of O, S and NR₃;

R₁, R₂, R₃, R₄ and R₅ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, aroylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, aroylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group.

45. A compound comprising a formula selected from the group consisting of:

wherein
R₁, R₂, R₃ and R₄ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted, with the proviso that R₃, R₄ and R₅ is not alkylthio, arylthio, halogen, cyano, nitro and thio in the case where the ring atom to which R₃, R₄ and R₅ is bound is nitrogen, and with the proviso that when R₄ is bound to N then R₄ is not H or CH₃;

R₆, R₇, R₈, and R₉ are each independently selected from the group consisting of hydrogen, halogen, alkyl, alkoxy, aryl, heteroaryl, aminosulfonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, aryloxy, heteroaryloxy, arylalkyl, heteroarylalkyl, amino, thio, cyano, nitro, and a carbonyl group, each substituted or unsubstituted;

M is a substituent capable of complexing with a histone deacetylase catalytic site and/or a metal ion; and

L is a substituent comprising a chain of 1-10 atoms connecting the M substituent to the phenyl group,

with the proviso that M is not –C(O)–R₁₃ and R₁₃ is not hydroxy, alkoxy or aryalkoxy when the compound comprises the formula and R₃ and R₅ are substituted phenyl.

46. A compound selected from the group consisting of:

N-Hydroxy-3-[(3-[5-methyl-1-(2-morpholin-4-yl-ethyl)-4-phenyl-1H-imidazol-2-yl]-phenyl]-acrylamide;

N-Hydroxy-3-[(3-[5-methyl-1-phenethyl-4-phenyl-1H-imidazol-2-yl]-phenyl]-acrylamide;

N-Hydroxy-3-[(3-[4-methyl-1-phenethyl-5-phenyl-1H-imidazol-2-yl]-phenyl]-acrylamide;

N-Hydroxy-3-[(3-[4-methyl-1-(2-morpholin-4-yl-ethyl)-5-phenyl-1H-imidazol-2-yl]-phenyl]-acrylamide;
3-[(5-Benzyl-4-methyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(4,5-Dimethyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(5-Benzyl-4-methyl-1-(2-morpholin-4-yl-ethyl)-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(4-Benzyl-5-methyl-1-(2-morpholin-4-yl-ethyl)-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(4-Benzyl-5-methyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(4,5-Dimethyl-1-phenethyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(2,5-Dimethyl-3-phenethyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(5-Benzyl-2-methyl-3-phenethyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(2-Benzyl-5-methyl-3-phenethyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(1-isopropyl-4-methyl-5-phenyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(4-Benzyl-1-isopropyl-5-methyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(1-isopropyl-5-methyl-4-phenyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
3-[(4-Benzyl-1-isopropyl-5-methyl-1H-imidazol-2-yl)-phenyl]-N-hydroxy-acrylamide;
(R)-3-{3-[4,5-Dimethyl-1-(1-phenyl-ethyl)-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide;

(R)-N-Hydroxy-3-{3-[4-methyl-5-phenyl-1-(1-phenyl-ethyl)-1H-imidazol-2-yl]-phenyl}-acrylamide;

(R)-3-{3-[5-Benzyl-4-methyl-1-(1-phenyl-ethyl)-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide;

N-Hydroxy-3-{3-(3-isopropyl-2,5-dimethyl-3H-imidazol-4-yl)-phenyl]-acrylamide;

N-Hydroxy-3-{3-(3-isopropyl-5-methyl-2-phenyl-3H-imidazol-4-yl)-phenyl]-acrylamide;

3-{3-(5-Benzyl-3-isopropyl-2-methyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;

3-{3-(2-Benzyl-3-isopropyl-5-methyl-3H-imidazol-4-yl)-phenyl]-N-hydroxy-acrylamide;

(R)-3-{3-[2,5-Dimethyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl]-N-hydroxy-acrylamide;

(R)-N-Hydroxy-3-{3-[5-methyl-2-phenyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl}-acrylamide;

(R)-3-{3-[5-Benzyl-2-methyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl}-N-hydroxy-acrylamide;

(R)-3-{3-[2-Benzyl-5-methyl-3-(1-phenyl-ethyl)-3H-imidazol-4-yl]-phenyl}-N-hydroxy-acrylamide; and

N-Hydroxy-3-[3-(1-phenethyl-5-phenyl-1H-imidazol-2-yl)-phenyl]-acrylamide.

47. A compound selected from the group consisting of:

(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-4-methyl-5-phenyl-1H-imidazol-2-yl]-phenyl]-N-hydroxy-acrylamide;

(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-5-methyl-4-phenyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide;

(R)-3-{3-[4-Benzyl-1-(1-ethyl-piperidin-3-yl)-5-methyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide;
(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-4,5-dimethyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide;
(R)-3-{3-[3-(1-Ethyl-piperidin-3-yl)-2,5-dimethyl-3H-imidazol-4-yl]-phenyl}-N-hydroxy-acrylamide;
(R)-3-{3-[3-(1-Ethyl-piperidin-3-yl)-5-methyl-2-phenyl-3H-imidazol-4-yl]-phenyl}-N-hydroxy-acrylamide;
(R)-3-{3-[2-Benzyl-3-(1-ethyl-piperidin-3-yl)-5-methyl-3H-imidazol-4-yl]-phenyl}-N-hydroxy-acrylamide;
(R)-N-Hydroxy-3-{3-[5-methyl-1-(1-methyl-piperidin-3-yl)-4-phenyl-1H-imidazol-2-yl]-phenyl}-acrylamide;
(R)-3-{3-[4-Benzyl-5-methyl-1-(1-methyl-piperidin-3-yl)-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide;
(R)-N-Hydroxy-3-{3-[1-(1-isopropyl-piperidin-3-yl)-4-methyl-5-phenyl-1H-imidazol-2-yl]-phenyl}-acrylamide;
(R)-N-Hydroxy-3-{3-[1-(1-isopropyl-piperidin-3-yl)-5-methyl-4-phenyl-1H-imidazol-2-yl]-phenyl}-acrylamide;
(R)-N-Hydroxy-3-{3-[4-methyl-1-(1-methyl-piperidin-3-yl)-5-phenyl-1H-imidazol-2-yl]-phenyl}-acrylamide;
(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-4-methyl-5-thiophen-2-yl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide;
(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-5-(3-fluoro-phenyl)-4-methyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide;
(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-5-(4-fluoro-phenyl)-4-methyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide;
(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-5-furan-2-yl-4-methyl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide; and
(R)-3-{3-[1-(1-Ethyl-piperidin-3-yl)-4-methyl-5-thiophen-3-yl-1H-imidazol-2-yl]-phenyl}-N-hydroxy-acrylamide.

48. A pharmaceutical composition comprising as an active ingredient a compound according to Claim 1.
49. The pharmaceutical composition according to Claim 48, wherein the composition is a solid formulation adapted for oral administration.

50. The pharmaceutical composition according to Claim 48, wherein the composition is a liquid formulation adapted for oral administration.

51. The pharmaceutical composition according to Claim 48, wherein the composition is a tablet.

52. The pharmaceutical composition according to Claim 48, wherein the composition is a liquid formulation adapted for parenteral administration.

53. A pharmaceutical composition comprising a compound according to Claim 1, wherein the composition is adapted for administration by a route selected from the group consisting of orally, parenterally, intraperitoneally, intravenously, intraarterially, transdermally, sublingually, intramuscularly, rectally, transbuccally, intranasally, liposomally, via inhalation, vaginally, intraocularly, via local delivery, subcutaneously, intraadiposally, intraarticularly, and intrathecally.

54. A kit comprising:

 a compound according to Claim 1; and

 instructions which comprise one or more forms of information selected from the group consisting of indicating a disease state for which the compound is to be administered, storage information for the compound, dosing information and instructions regarding how to administer the compound.

55. The kit according to Claim 54, wherein the kit comprises the compound in a multiple dose form.

56. An article of manufacture comprising:

 a compound according to Claim 1; and

 packaging materials.
57. The article of manufacture according to Claim 56, wherein the packaging material comprises a container for housing the compound.

58. The article of manufacture according to Claim 57, wherein the container comprises a label indicating one or more members of the group consisting of a disease state for which the compound is to be administered, storage information, dosing information and/or instructions regarding how to administer the composition.

59. The article of manufacture according to Claim 56, wherein the article of manufacture comprises the compound in a multiple dose form.

60. A method of inhibiting histone deacetylase comprising:

 contacting histone deacetylase with a compound according to Claim 1.

61. A method of inhibiting histone deacetylase comprising:

 causing a compound according to Claim 1 to be present in a subject in order to inhibit histone deacetylase in vivo.

62. A method of inhibiting histone deacetylase comprising:

 administering a first compound to a subject that is converted in vivo to a second compound wherein the second compound inhibits histone deacetylase in vivo, the second compound being a compound according to Claim 1.

63. A therapeutic method comprising:

 administering a compound according to Claim 1 to a subject.

64. A method of treating a disease state for which histone deacetylase possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising:

 causing a compound according to Claim 1 to be present in a subject in a therapeutically effective amount for the disease state.
65. A method of treating a disease state for which histone deacetylase possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising:

administering a first compound to a subject that is converted \textit{in vivo} to a second compound according to Claim 1, wherein the second compound is present in a subject in a therapeutically effective amount for the disease state.

66. A method of treating a disease state for which histone deacetylase possesses activity that contributes to the pathology and/or symptomology of the disease state, the method comprising:

administering a compound according to Claim 1, wherein the compound is present in the subject in a therapeutically effective amount for the disease state.

67. A method for treating cancer comprising administering a therapeutically effective amount of a composition according to Claim 1 to a mammalian species in need thereof.

68. The method according to Claim 67, wherein the cancer is selected from the group consisting of squamous cell carcinoma, astrocytoma, Kaposi's sarcoma, glioblastoma, non small-cell lung cancer, bladder cancer, head and neck cancer, melanoma, ovarian cancer, prostate cancer, breast cancer, small-cell lung cancer, glioma, colorectal cancer, genitourinary cancer and gastrointestinal cancer.

69. A method for treating inflammation, inflammatory bowel disease, psoriasis, or transplant rejection, comprising administering a therapeutically effective amount of a compound according to Claim 1 to a mammalian species in need thereof.

70. A method for treating arthritis comprising administering a therapeutically effective amount of a compound according to Claim 1 to a mammalian species in need thereof.
FIGURE 2A (cont.)
FIGURE 2A (cont.)
FIGURE 7

SEQ. ID No. 5

MPGMDLNLBAEALAGTGLVLDEQLNMFHLWDDSFPEGPERLHAIKPEQGEEQLLDRCVS
FQARFAEKEELMLVHSLYEIDLMETTQYMNHEHELRLVADTDVYLYPLHNSYSACASGS
VLRLVDAVLGAEIRGMAIEIRPGHHAQHSLMDGCMFNHVAAARYAAQKHHRRVLI
DWDVHGQGQTQFDQDPSVLFSILHRQEOGRFWPHKASNWSTTGFQOGGQYTINVPN
QVGMRDADYIAALHLVLLPVALEFPQPLQVLVLAAGFDALQGPDGEMATAPCGAAPLTHLL
MGLAGGKLI.SLEGGYNLRALABGSASLSHTLLGLDCPMLESPQACPSQASVSCALEA
LEPFEVVLVRSTETVERDNNEEDNVEESBEEGBPWEPPVLPLTWPVLQSRGLVYDQNNNM
NHCLNLWSHHPFVPQRILRARCMCRLEELGLAGGCRCLTTLPAPTEAELLLTCHALEYVGLRLA
TEKMSKRELHRESSNFDSTYICPSFAACQFAQLTAGAACRLVEAVLSGEVLNAGAVVRPPGH
HAEQDAACGFCFNSVESAVAARHAAQTISGHARLIRILIDWDVHNGTQHMFFEDDSVLIVVS
LHRYDHGTPPMGDEGASSQIGRAAGTGFVTNVAWNGRMGDADYLAAWHRLVLPAYEF
NPMLVLSAGFADFADMRDPGCGQVSPEGYAHLTHLLMGLASGRILILEGGYNLTSIES
MAACTRSLLGGPPPLTLRPPLSLGALASITETIQUHRLYWRSRSLVVMKVEDREGPGHHH
HH

FIGURE 9

SEQ. ID No. 7

MHHHHHPMEEEEPEPADGSGQLVQVYISYEYVEYSMCDLSLAKIPKRASMVSLIEAYALHK
QMRTVKPKVASEMEAFAEHTADYLHOLQVSKQEGDTHFSIEYLGDCPATEGIDFYAA
AIQGATAAQCLIDGCMVAINWSGWHAACKDEASGFYCYLNDLAGLRLRKPERRI
LYVDLDDLHHDGVEDAFSTSCKYMSLHPSFGFPPTGDVSDVLGKGKYSSVNVPQ
DGQDKEYYQICESVLBEYVYAFNPKAVALQLHAGDIPAFLMCSFNMTPVGIKGCLKYL
QWQLATLIIILGGQGLANTARCWTYLTGVLIGKTSSEIPDHEFTAYGPDYOLEITPO
RPDRNEPHRIQQILNYIKKLHVV

13/15
FIGURE 10

SEQ. ID No. 8
ATGCAACCATCACCATCACATCCATCATGAGGAGGAGGACAGGGAAGCCGCAGGACGATGAGGACG
TCGCTGGCTCCGGTTTATATCTATAGTCGGATGATATGAGCTGGACTCCCTGGCC
AAGATCACCACCGGCGGAGTATGGTCGATCTCTGGATTGAGATGCTCACTGCAAGA
CAGATGAGGATATGTTAGCATGCTAAGTGTGCGTCCATGGGAGGAGGATGGGGCTCCCTTCCACT
GATGCTTATCTGACGATCTCCAGAAAGTGCAAGGAGGCGATGATGATCATCCGAC
TCCATAGAATATGGGCTAGGTTATGAGCTGCCAGCCACTGAGGGATATTTGAGACTATGCA
GCAGCTATAGGAGGGCTAGTACAGATACAGCTGCGCCAATGCTGATTGACGGAATGATGCAAA
GTAGCAATATTACTGCTGGAGGGTGCTGCACTGAGTTGCAAGAGATAGGACATCTGGTTTT
TGTTATCTCAATGATGCTGTCCTGCTGGGAATATTACGATTTGACGACGGAAATTTGAGCGTATT
CTCTAGCTGGATTGGATCTGACCATGAGGAGATGAGGTAGAAGAGCGCATTTGATCACC
TCCAAGTGCTATGACGCTGTCCTGCACAAATTTTCCTCCGAGATTTTTTCCAGAACAGGT
GACGTTGCTGATGGTGGCCATAGGAGGACGCTACTACAGTGTTAAATGTCGATCCATCAG
GATGGCATACAGATGAAATATTCCAGATCTGTGAAGGTGATACAAAGGAGATATAC
CAAGCTTATATCCAAAGCGATGGCTCTACAGGCTGGAGGCTGACAACATAGCTGGGAT
CCATGTGTCCTTTTATACATGACTCCATGGGAAATTGACAGTGCTTTAATGATCACCCTT
CAATGGCGATTTGCAACACTCATTTTTGGAGAGGGCTGATATACTCTTTGCACGACGGCT
GATGCTGACGATCTGACGCTGTCCTTGGGAAACACTATCTCTGAGATACCA
GATCTGAGTTTTTTCACAGCATATGGTCATTATGCGTGGAAATCTCCGCCAGCTGC
CGCCGACAGGCAATGAGGCCGCCACGCCGCAAATACTCTCAACTCATCAAAGGGGGAT
CTGAGCATGTGCTTAG
SEQN

SyrRx, Inc.

HISTONE DEACETYLASE INHIBITORS

HDAC5007-PCT

US 60/531,567

2003-12-19

8

PatentIn version 3.1

1

513

PRT

Homo sapiens

misc_feature

Amino acid sequence for residues 1-482 of HDAC1 and a 6-histidine tag at the N-terminus

1

Met Ser Tyr Tyr His His His His His Asp Tyr Asp Ile Pro Thr

Thr Glu Asn Leu Tyr Phe Gln Gly Ala Met Glu Pro Gly Gly Ser Met

Ala Gln Thr Gln Gly Thr Arg Arg Lys Val Cys Tyr Tyr Tyr Asp Gly

Asp Val Gly Asn Tyr Tyr Tyr Gly Gln Gly His Pro Met Lys Pro His

Arg Ile Arg Met Thr His Asn Leu Leu Leu Asn Tyr Gly Leu Tyr Arg

Lys Met Glu Ile Tyr Arg Pro His Lys Ala Asn Ala Glu Glu Met Thr

Lys Tyr His Ser Asp Asp Tyr Ile Lys Phe Leu Arg Ser Ile Arg Pro

Asp Asn Met Ser Glu Tyr Ser Lys Gln Met Gln Arg Phe Asn Val Gly

Glu Cys Pro Val Phe Asp Gly Leu Phe Glu Phe Cys Gln Leu Ser

Thr Gly Gly Ser Val Ala Ser Ser Ala Val Lys Leu Asn Lys Gln Gln Thr
Asp Ile Ala Val Asn Trp Ala Gly Gly Leu His His Ala Lys Lys Ser
165 170 175
Glu Ala Ser Gly Phe Cys Tyr Val Asn Asp Ile Val Leu Ala Ile Leu
180 185 190
Glu Leu Leu Lys Tyr His Glu Arg Val Leu Tyr Ile Asp Ile Asp Ile
195 200 205
His His Gly Asp Gly Val Glu Glu Ala Phe Tyr Thr Thr Asp Arg Val
210 215 220
Met Thr Val Ser Phe His Lys Tyr Gly Tyr Phe Pro Gly Thr Gly
225 230 235 240
Asp Leu Arg Asp Ile Gly Ala Gly Lys Gly Lys Tyr Tyr Ala Val Asn
245 250 255
Tyr Pro Leu Arg Asp Gly Ile Asp Asp Glu Ser Tyr Glu Ala Ile Phe
260 265 270
Lys Pro Val Met Ser Lys Val Met Glu Met Phe Glu Pro Ser Ala Val
275 280 285
Val Leu Glu Cys Gly Ser Asp Ser Leu Ser Gly Asp Arg Leu Gly Cys
290 295 300
Phe Asn Leu Thr Ile Lys Gly His Ala Lys Cys Val Glu Phe Val Lys
305 310 315 320
Ser Phe Asn Leu Pro Met Leu Met Leu Gly Gly Gly Tyr Thr Ile
325 330 335
Arg Asn Val Ala Arg Cys Trp Thr Tyr Glu Thr Ala Val Ala Leu Asp
340 345 350
Thr Glu Ile Pro Asn Glu Leu Pro Tyr Asn Asp Tyr Phe Glu Tyr Phe
355 360 365
Gly Pro Asp Phe Lys Leu His Ile Ser Pro Ser Asn Met Thr Asn Gln
370 375 380
Asn Thr Asn Glu Tyr Leu Glu Lys Ile Lys Gln Arg Leu Phe Glu Asn
385 390 395 400
Leu Arg Met Leu Pro His Ala Pro Gly Val Glu Met Gln Ala Ile Pro
405 410 415
Glu Asp Ala Ile Pro Glu Glu Ser Gly Asp Glu Asp Glu Asp Pro
420 425 430
Asp Lys Arg Ile Ser Ile Cys Ser Ser Ser Asp Lys Arg Ile Ala Cys Glu
435
440
445
Glu Glu Phe Ser Asp Ser Glu Glu Glu Gly Glu Gly Gly Arg Lys Asn
450
455
460
Ser Ser Asn Phe Lys Lys Ala Lys Arg Val Lys Thr Glu Asp Glu Lys
465
470
475
480
Glu Lys Asp Pro Glu Glu Lys Lys Glu Val Thr Glu Glu Glu Lys Thr
485
490
495
Lys Glu Glu Lys Pro Glu Ala Lys Gly Val Lys Gly Glu Val Lys Leu
500
505
510
Ala

<210> 2
<211> 1542
<212> DNA
<213> Homo sapiens

<220> misc_feature
<221> DNA sequence used to encode residues 1-482 of HDAC1 and a 6-histidine tag at the N-terminus

<400> 2
atgtgtgtact accatcacca tcaccatcac gattacgata tcccaacgac cgaaacctg
60
tattttcagg ggcccatgga acccggggga tcctgccgc agacgccaggg caccggaggg
120
aaagtctgttt actactacga cggggatgtt ggaattact attatgcaag aggccccacca
180
atgaagcctc accgaatcccg catgactcat atttggctgc tcaactatgg tctctaccga
240
aaatggaaat tctatgcccc tcacaagggc cgtctgtggg agatcgccca gatccacagc
300
gatgactaca ttaatgcttc gcgctcccctc cgttccagata acatgctgga gtacagcaag
360
cagatcgcagc gattcaacgt ttggtgaggac tgtcaccagtat tctgatatgtt gtttgtggttc
420
tgtcagttgt ctactggtgct tttctggtgca agtgcgtgtga aacatataaag gacgacagcag
480
gacatcgcgg cggactgggc tcggggccttg caccatgcaaa agaagtcggc gggatctggc
540
cttcgttacg tcaatagtat cgtctgggcc atctctgaaac tgcataagta tcaccagagg
600
gtcgctgta cagacattgga tattctgacctccatc accaggacgt gcgaagaggg gcgtcttccc
660
acgagccgag ctagactgtg tggctctctcttcat aatgatggag atgcattcccc aggaactggg
720
gacctacggg atatcggggc cgagcaaggc aatgattattg ctgtaaacta cccgcctccga
780
gaccggaggtg atgacagacg tcctgagctgc attttcaagc cggtcatgtc ccaagtaatg
840
gagatggctt cagccttagtc gcgtgctctca cagttctttata atctgggggt gatcagacgg
900
cggattaggg ctccaatctct aatctacaagag cgcagcagca agtcttgtgga atttgtcaag
960
agcttttaacc tgcttatgct gatgctggga ggcgggtggtt acaccattcg taacggtgcc 1020
cggtctgctga catatgagacctgcttgctggtc ctggatacgg agatccctaa tgagctttccaa 1080
tacaagtaccttgaata ctttggacca gatttcaagc tccacatcag tccttcctaat 1140
atgacttaacc aagaacccgag ctagtactcgg gagaagtagca aacagcgact gttttgacatc 1200
cctttagaatgc tcgccgacgc accttggggtc caaatgcaggg cgtttcctg ggcgtccagcct 1260
ccttggagaga gttggtggtgag gacgcaagag gacccgtgca aagccatcctg gatctgtcctcc 1320
tctgacaaac gaaattgctctg tggagagagag ttctccggt atgagagagag gggagagggg 1380
ggcggcaaga actctttccaa cttccaaaa gccaagagag tcaaaacaga gatgagaaaa 1440
gagagagacc cagagagaga gaaagaagct accgaagagg agaaacccaa ggaggagaag 1500
ccagaagccagagggctca ggagagagttgct ac 1542

<210> 3
<211> 498
<212> PRT
<213> Homo sapiens

<220> misc_feature
<221> Amino acid sequence for residues 1-488 of HDAC2 and a 6-histidine tag at the C-terminus
<400> 3

Met Gly Ser Met Ala Tyr Ser Gln Gly Gly Lys Lys Lys Val Cys
1 5 10 15
Tyr Tyr Tyr Asp Gly Asp Ile Gly Asn Tyr Tyr Gly Gly Gly His
20 25 30
Pro Met Lys Pro His Arg Ile Arg Met Thr His Asn Leu Leu Leu Leu Asn
35 40 45
Tyr Gly Leu Tyr Arg Lys Met Glu Ile Tyr Arg Pro His Lys Ala Thr
50 55 60
Ala Glu Glu Met Thr Lys Tyr His Ser Asp Glu Tyr Ile Lys Phe Leu
65 70 75 80
Arg Ser Ile Arg Pro Asp Asn Met Ser Glu Tyr Ser Lys Gln Met Gln
85 90
Arg Phe Asn Val Gly Glu Asp Cys Pro Val Phe Asp Gly Leu Phe Glu
100 105 110
Phe Cys Gln Leu Ser Thr Gly Gly Ser Val Ala Gly Ala Val Lys Leu
115 120 125
Asn Arg Gln Gln Thr Asp Met Ala Val Asn Trp Ala Gly Gly Leu His
130 135 140
His Ala Lys Lys Ser Glu Ala Ser Gly Phe Cys Tyr Val Asn Asp Ile 145
Val Leu Ala Ile Leu Glu Leu Leu Lys Tyr His Glu Arg Val Leu Tyr 165
Ile Asp Ile Asp Ile His His Gly Asp Gly Val Glu Glu Ala Phe Tyr 180
Thr Thr Asp Arg Val Met Thr Val Ser Phe His Lys Tyr Gly Glu Tyr 195
Phe Pro Gly Thr Gly Asp Leu Arg Asp Ile Gly Ala Gly Lys Gly Lys 210
Tyr Tyr Ala Val Asn Phe Pro Met Arg Asp Gly Ile Asp Asp Glu Ser 225
Tyr Gly Glu Ile Phe Lys Pro Ile Ile Ser Lys Val Met Glu Met Tyr 245
Gln Pro Ser Ala Val Val Leu Gln Cys Gly Ala Asp Ser Leu Ser Gly 260
Asp Arg Leu Gly Cys Phe Asn Leu Thr Val Lys Gly His Ala Lys Cys 275
Val Glu Val Val Lys Thr Phe Asn Leu Pro Leu Leu Met Leu Gly Gly 290
Gly Gly Tyr Thr Ile Arg Asn Val Ala Arg Cys Trp Thr Tyr Glu Thr 305
Ala Val Ala Leu Asp Cys Glu Ile Pro Asn Glu Leu Pro Tyr Asn Asp 325
Tyr Phe Glu Tyr Phe Gly Pro Asp Phe Lys Leu His Ile Ser Pro Ser 340
Asn Met Thr Asn Gln Asn Thr Pro Glu Tyr Met Glu Lys Ile Lys Gln 355
Arg Leu Phe Glu Asn Leu Arg Met Leu Pro His Ala Pro Gly Val Gln 370
Met Gln Ala Ile Pro Glu Ala Val His Glu Asp Ser Gly Asp Glu 385
Asp Gly Glu Asp Pro Asp Lys Arg Ile Ser Ile Arg Ala Ser Asp Lys 405
Arg Ile Ala Cys Asp Glu Glu Phe Ser Asp Ser Glu Asp Glu Gly Glu 420
Gly Gly Arg Arg Asn Val Ala Asp His Lys Lys Gly Ala Lys Lys Ala 435
Arg Ile Glu Glu Asp Lys Glu Thr Glu Asp Lys Thr Asp Val 450
Lys Glu Glu Asp Lys Ser Lys Asp Asn Ser Gly Glu Lys Thr Asp Thr 465
Lys Gly Thr Lys Ser Glu Gln Leu Ser Asn Pro Gly His His His His 485
His His

<210> 4
<211> 1497
<212> DNA
<213> Homo sapiens

<220> misc_feature
<221> DNA sequence used to encode residues 1-488 of HDAC2 and a 6-histidine tag at the C-terminus

<400> 4
atggatcag tggcgtaaa tcaagggagcc ggcaaaaaa aagtctgcata ctactacgac 60
gttgatattg gaaatattata ttatggcag ggtcatcctca tgaagccctca tagaatccgc 120
atgaccata actttgcgtt aataattgctt ttatacagaaa aatgaggaat atatggccc 180
cataagccca ctgcccgaaga aatgacaaaa tattcagatg atgagtatat caaatttctaa 240
cggctcaataa gaccagataa cattgcctga tattaagacgc agatgcagag atattaagtt 300
ggagaagatt tgcagctgtg tggatgaactc tttgagtttttt ctggagcccc aacctgagcc 360
tcagttgtcg gacgccacag gtttaacgca caacagactg atatgggtctt taattgggct 420
ggaggattac atcatgctaa gaaatcagaa gcacacagggt ctgtttactc tattaagtt 480
gtctttggcga tctttggaatt actaaggtat cactaggagtct tttataatat tatatatagat 540
atttatcatg gtgatgggttgt ttaggaagcttt ttatatacaac acatcggtgt attgacggta 600
tcattccata aatatgggga atactttctct gcgcacagaggacttggaggttattgtgtgct 660
ggaaagggca aatactatgc ctgcaatctt ccaatgagag atggtatatgctgtgactgca 720	tagtggccaga tattttcttc aaggggagtgg atggtatatca acctgactgct 780
gttgaattac agtggggttgca agctcctata ctcgggttctctgactgaggttattggattttcttcatct 840
acagtcaggtctgccatgctaaatgtgtgatgagttgtaaaaacttttttaacctttactgtg 900
atgctttgag gaggtggcta cacaatcgcgt aatgttggtc gatgtgggac atatgagact 960
gcagttgcc gttgtttgta gattcccaat gatgtggcat ataatgatta ctttgagtat 1020
tttgaccag accttcaact gcataattg cctccaaca tgcacaacca gaacactcca 1080
gaatatatg gaaagataaa acagctgttg ttggaaatt tgggcatggt acctcatgca 1140
cctgtggtc acagtcaagc tattccagaa gatgtcgttcc atgaagacag tgagcatga 1200
gatggagaag atccagaaac gagaatttct attcgagcat cagacaacgc gatagctttg 1260
gatgaagaat tccccagattc tggagataa ggagaagagg gctgaagaaa tgggtgctat 1320
cataagaaaa gagcaaaag acgtcattt gaagaagata agaagaagac agaggacaa 1380
aaaaacagcg ttaaggaaga agataaatcc aaggacaaca gttgtgaaaa aacagatacc 1440
aaagggacca aatcagaca cgtcagcaac cccgggcatc accatacaca tcactaa 1497

<210> 5
<211> 782
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Amino acid sequence for residues 73-845 of HDAC6 and a 6-histidine tag at the C-terminus

<400> 5

Met Pro Gly Met Asp Leu Asn Leu Glu Ala Glu Ala Leu Ala Gly Thr
1 5 10 15
Gly Leu Val Leu Asp Glu Gln Leu Asn Glu Phe His Cys Leu Trp Asp
20 25 30
Asp Ser Phe Pro Glu Gly Pro Glu Arg Leu His Ala Ile Lys Glu Gln
35 40 45
Leu Ile Gln Glu Gly Leu Asp Arg Cys Val Ser Phe Glu Ala Arg
50 55 60
Phe Ala Glu Lys Glu Glu Leu Met Leu Val His Ser Leu Glu Tyr Ile
65 70 75 80
Asp Leu Met Glu Thr Thr Gln Tyr Met Asn Glu Gly Glu Leu Arg Val
85 90 95
Leu Ala Asp Thr Tyr Asp Ser Val Tyr Leu His Pro Asn Ser Tyr Ser
100 105 110
Cys Ala Cys Leu Ala Ser Gly Ser Val Leu Arg Leu Val Asp Ala Val
115 120 125
Leu Gly Ala Glu Ile Arg Asn Gly Met Ala Ile Ile Arg Pro Pro Gly
130 135 140
Tyr Ala His Leu Thr His Leu Leu Met Gly Leu Ala Ser Gly Arg Ile
690 695
Ile Leu Ile Leu Glu Gly Gly Tyr Asn Leu Thr Ser Ile Ser Glu Ser
705 710 715 720
Met Ala Ala Cys Thr Arg Ser Leu Leu Gly Asp Pro Pro Pro Leu Leu
725 730 735
Thr Leu Pro Arg Pro Pro Leu Ser Gly Ala Ala Ala Ser Ile Thr Glu
740 745 750
Thr Ile Gln Val His Arg Arg Tyr Trp Arg Ser Leu Arg Val Met Lys
755 760 765
Val Glu Asp Arg Glu Gly Pro Gly His His His His His
770 775 780

<210> 6
<211> 2349
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> DNA sequence used to encode residues 73-845 of HDAC6 and a 6-histidine tag at the C-terminus

<400> 6
atgccgagga tgtatctgaa ccttgaggct gaagcactgg ctggcacttg ctttgttgtg 60
gatgagcagt taatgattt ccattgccttc tgggtgtgaca gctttccccga aggccccctgag 120
cggctcactg ccatacaagga gcaactgtcct caggagggcc ttcattatgcg cttgcgtgccc 180
tttcagggcct ggtttgctgtg aaaggaagag ctgatgttttg ttccagccct gcattatatatt 240
gatctgtgag aaaacaacca gtatcataa ggtgggaaac tccgtgctctgct aggagacacc 300
tacgaactcgca tttatctgca tccggaactca tactctctgtg ccctgcctgccc ctcagggctct 360
gtctcctcagc tgttggtgacg gttcctctggg gctgtgatcc ggaatggcat ggcacatcatt 420
agggctctcct gacatcagc ccaagcacagt cttatggtat gctattatgc gttcaacaccc 480
gtggcgtgagc capgcccgcta tgcctcaacag aacccagcca tccgagggct ccctatcgtta 540
gattgggatg tgcacacgag tcaagaataa cttcactctc tggaccacag cccacagtgcct 600
ccttttacct ccatcaccgg ctacgagcag ggtaggctct ggccccacct gaaggccctcct 660
aactggtcca cccacggttt cggccaaggc caaggatata ccataatgt gccttggaac 720
caggtgagga ccgggaggtgc tagtaagctgg ctgctttgct ggctcagctgc gctgaggctgc 780
gcccctcgtct ctcagctccaa gcctggtcttg gtcgggtgcttg gatttggtgacg cctggcaagg 840
gaccccaaggg gtggagatggc cgccactgctg caggggtgtg ccagcgactca ccacgctgctc 900
atgggtctgg caggagccaa gctgatcctg ttcttgaggg gtggctacaa cctccgcgcc 960
cctgggtgaag gcgtcagtgc ttcgctccac aaccttcttg gagaccccttg ccccatgctg 1020
gagtcacctg tgtgccccttg cggaggtgcc caggcttcag ttctctgtgc tgtgaaagcc 1080
ccttgagccct tcttgggaggt tctttgtgaga tcacctgaga cccgaggagag ggcaacactg 1140
gaggagcaca atgtagagga gagcggagag gaagacccct gggagcccccc tgtgctccca 1200
atctctgacat gcgcagctgc acagcttctgc acagggcctgg tcctagacca aatatagctg 1260
aatcactgcag ccctgtgaga cagcagccccac cctgaggtac cccagcgcctt cttgagggac 1320
atgtgccggtc ttggaggact gggccttcgcc ggggctgtcc tcaccctgcag acctgagctt 1380
gccacagcagc ctcgattctct cacctgcaca agtgctgtag cagtggtaca tctccgggcc 1440
acagagaaaa ttaaaaccgg gggagctgca cctgagagtt ccaactttgg gctcatttat 1500
atctgcaccata gcacctccgg cttgctgactg gcgtgctgctg cgccgtgtggtg 1560
gaggctgtgct cttcaggaga ggttctgatg gttgctgtcgt tgtgctgctcc cccagagcac 1620
cacgcagcgc ggtgagtgcg ccctccttttt tgcctttttc aactcctgtgc tgtgctgctct 1680
cgcctctgcc gacactatcag tgccagctgcc ctcagggattc tattggtgga tgtgggttgat 1740
caaccaggtga gcagatctgg tggagtagcc cacaggtcctg atatgtgtcc 1800
tgcgaccgtct atgtcactgcg gccctccggcc cccatggggg gttgaggggc cagcagcgg 1860
atctggccgggg ttcgctgcacc agctcttacag gcctgagcttc tgtgactacc tattggtgga 1920
圭ggagtgtctgtg cacacattgcg tgcctgcagct gcctgagcttc ttctccattgc ctcagagttt 1980
aacaccagac tcctgttgcgt ctcagctgcag ttgatagtgc cacgggggra tccgctgggg 2040
ggctccaggg gcggcctgag gggttatggc cacctccaacc acctggtgcgt gggccttcgcc 2100
agtgccggcac ttatcccttt cctagaggggt ggttatattcc tcacatctct ctcagagttt 2160
atggctgtgct gcacatcgttc cccctttggga gccacccacc cccggtcgcc cctgaccaggg 2220
ccccccatct caggggctct gcgctacaacct gacgagacca tccagttcca tctaagttcctagcagatac 2280
tgcgacagcct taaggtggtcat gaagtaggaa gacagagaag gacccgagcc gtacacatc 2340
catcactaa 2349

<210> Met His His His His Pro Met Glu Glu Pro Glu Glu Pro Ala
<211> 385
<212> PRT
<213> Homo sapiens
<220> misc_feature
<221> Amino acid sequence for residues 1-377 of HDAC8 and a 6-histidine tag at the N-terminus
<400> 7
Met His His His His His Pro Met Glu Glu Pro Glu Glu Pro Ala
Pro Val Gly Ile Gly Lys Cys Leu Lys Tyr Ile Leu Gin Trp Gin Leu
 290 295
Ala Thr Leu Ile Leu Gly Gly Gly Gly Tyr Asn Leu Ala Asn Thr Ala
 305 310 315
Arg Cys Trp Thr Tyr Leu Thr Gly Val Ile Leu Gly Lys Thr Leu Ser
 325 330 335
Ser Glu Ile Pro Asp His Glu Phe Phe Thr Ala Tyr Gly Pro Asp Tyr
 340 345
Val Leu Glu Ile Thr Pro Ser Cys Arg Pro Asp Arg Asn Glu Pro His
 355 360
Arg Ile Gln Gln Ile Leu Asn Tyr Ile Lys Gly Asn Leu Lys His Val
 370 375 380

Val
 385

<210> 8
<211> 1158
<212> DNA
<213> Homo sapiens

<220> misc_feature
<221> DNA sequence used to encode residues 1-377 of HDAC8 and a 6-histidine tag at the N-terminus

<400> 8
atgcacacat accatcacca tccccatggag gacccggagg aacgggcca gatggtgcag 60
tctgtgctcc gcggttatat ctatagttcc cggatagcttg gtatgtgtag ctccttgcc 120
aagatccccca aacggggccag tattgtgcat tctttgattg aagcatatgc actgcataag 180
cagatgagga tagttagccc taaaagttgccc ttcatggagg aatgaggccgc cttccacact 240
gatgttcatc tgacgtcatct ccgaagaagtc agcccaagag gggtgatga tcatccggac 300
tccatagaa atgggtctaggg ttatgactgc ccagccacagt aagggtatatt tgacttatgca 360
gcagctatag gaggggtctac gatcacagct gcccaatgcct tgttggacgg aatgtgcaca 420
gtacgatta ctctgtctgg agggtgcttg catgcaagaga aagatgaagc atcttgattt 480
tgtatgtcga atgatgctgtct cctttggaata tctctgattgc gccgaaatttg tgacgtatct 540
tttctcggct atgggtctaggg gcaccatgga gatgggtctag gacagctatg aagagcattg 600
tccaaagtctg gccctgctcg tgtctgaa catttccccag gatggttgcgg tgggaaaggg 660
gccatggatgc gccctgctcg cgctgtctcg gcgggaaaggg cggctgtctcg gtcgggaggg 720
gccctgctcg gcccctgctcg gcgggaaaggg ccggtgggct gcgggaaaggg gcgggaaaggg 780
caggtgtctgg cttgtgggct cggggaggg ccggtgggct gcgggaaaggg gcgggaaaggg 840
ccccagct cccttaaacat gactccagt ggaattggca agtgcctttaa gtacatcctt 900
caatggcagt tggcaacact cattttggga ggaggaggtc ataaccttgc caacacggct 960
cgatgctgga cattttggc cggggctac ttaggaaaaa caacactc tcagatcaca 1020
gatcatgagt ttttccacac atagttgctt gattatgtgc tggaatcac gcacagctgc 1080
cggccagacc gcaatgagcc ccacccaatc caaccaatcc tcaactcact caaagggaat 1140
cgaagcatg tgtctcag 1158
A. Classification of Subject Matter

IPC 7
A61K31/4164 A61K31/4178 C07D233/54 C07D401/04 C07D405/14
C07D409/14 A61P35/00

According to International Patent Classification (IPC) or to both national classification and IPC.

B. Fields Searched

- **Minimum documentation searched** (classification system followed by classification symbols)
 - IPC 7: A61K C07D A61P

- **Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched**

- **Electronic data base consulted during the international search** (name of data base and, where practical, search terms used)
 - EPO-Internal, CHEM ABS Data, WPI Data, PAJ

C. Documents Considered to be Relevant

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>
| X | WO 03/066579 A (AXYS)
14 August 2003 (2003-08-14)
the whole document | 1-70 |
| X | WO 03/024448 A (METHYLGENE)
27 March 2003 (2003-03-27)
page 1, paragraph 1
page 219; example 167 claims | 1-70 |
| X | WO 02/46129 A (ABBOTT)
13 June 2002 (2002-06-13)
page 1, paragraph 1
page 99; example 227 claims | 1-70 |

X Further documents are listed in the continuation of box C.

X Patent family members are listed in annex.

* Special categories of cited documents:
 - "A" document defining the general state of the art which is not considered to be of particular relevance
 - "E" earlier document but published on or after the International filing date
 - "L" document which may throw doubts on priority claims or which is cited to establish the publication date of another document or other special reason (as specified)
 - "O" document referring to an oral disclosure, use, exhibition or other means
 - "P" document published prior to the International filing date but later than the priority date claimed

* Later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
* Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
* Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Date of the actual completion of the international search
25 April 2005

Date of mailing of the international search report
10/05/2005

Name and mailing address of the ISA
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx: 31 663 epo nl
Fax: (+31-70) 340-3016

Authorized officer
Cortés, J
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>WO 03/039599 A (NOVARTIS) 15 May 2003 (2003-05-15) page 1, paragraph 1 page 11 - page 14; compounds</td>
<td>1-70</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 847 992 A (MITSUI) 17 June 1998 (1998-06-17) page 1, paragraph 1 page 12; compound 47 claims</td>
<td>1-70</td>
</tr>
<tr>
<td>X</td>
<td>WO 97/29776 A (SEARLE) 21 August 1997 (1997-08-21) page 11, line 16 claims; examples</td>
<td>1-59, 67-70</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 378 991 A (CIBA GEIGY) 25 July 1990 (1990-07-25) page 1, paragraph 1 claims; examples</td>
<td>1-59, 69, 70</td>
</tr>
<tr>
<td>X</td>
<td>JP 11 095383 A (KONICA) 9 April 1999 (1999-04-09) page 31, formula 1b page 32 - page 34; compounds 1-1 - I-25</td>
<td>1-47</td>
</tr>
<tr>
<td>X</td>
<td>EP 0 354 549 A (KONICA) 14 February 1990 (1990-02-14) pages 5 and 6, formulae page 7 - page 20; compounds</td>
<td>1-47</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claim Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
 Although claims 60–70 are directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. □ Claim Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. □ Claim Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.

3. □ As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claim Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

□ The additional search fees were accompanied by the applicant's protest.

□ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2004)
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 03066579</td>
<td>14-08-2003</td>
<td>AU 2003209060 A1</td>
<td>02-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003215112 A1</td>
<td>02-09-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2473506 A1</td>
<td>14-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1472216 A2</td>
<td>03-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03066889 A2</td>
<td>14-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03066579 A2</td>
<td>14-08-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004091951 A1</td>
<td>13-05-2004</td>
</tr>
<tr>
<td>WO 03024448</td>
<td>27-03-2003</td>
<td>BR 0212510 A</td>
<td>24-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2465978 A1</td>
<td>27-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1429765 A2</td>
<td>23-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 03024448 A2</td>
<td>27-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004106599 A1</td>
<td>03-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004142953 A1</td>
<td>22-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4340202 A</td>
<td>18-06-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0246129 A2</td>
<td>13-06-2002</td>
</tr>
<tr>
<td>WO 03039599</td>
<td>15-05-2003</td>
<td>BR 0213932 A</td>
<td>31-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2461373 A1</td>
<td>15-05-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1443967 A1</td>
<td>11-08-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0402370 A2</td>
<td>28-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2005032899 A1</td>
<td>10-02-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1437346 A1</td>
<td>14-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2218645 T3</td>
<td>16-11-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3354090 B2</td>
<td>09-12-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 10152462 A</td>
<td>09-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2002332267 A</td>
<td>22-11-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6794392 B1</td>
<td>21-09-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2004147569 A1</td>
<td>29-07-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6174905 B1</td>
<td>16-01-2001</td>
</tr>
<tr>
<td>WO 9729776</td>
<td>21-08-1997</td>
<td>AT 210461 T</td>
<td>15-12-2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 1850597 A</td>
<td>02-09-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2246265 A1</td>
<td>21-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69709069 D1</td>
<td>24-01-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69709069 T2</td>
<td>04-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 888127 T3</td>
<td>08-04-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2169351 T3</td>
<td>01-07-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2000504723 T</td>
<td>18-04-2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 888127 T</td>
<td>31-05-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9729776 A1</td>
<td>21-08-1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002143033 A1</td>
<td>03-10-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 6376528 B1</td>
<td>23-04-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5981108 A</td>
<td>09-11-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2007085 A1</td>
<td>05-07-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DD 291551 A5</td>
<td>04-07-1991</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 900024 A</td>
<td>06-07-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 53608 A2</td>
<td>28-11-1990</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
<td>Publication date</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 900025 A</td>
<td>06-07-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 92762 A</td>
<td>31-07-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5096919 A</td>
<td>17-03-1992</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9000050 A</td>
<td>29-08-1990</td>
</tr>
<tr>
<td>JP 11095383 A</td>
<td>09-04-1999</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>JP 3289654 A</td>
<td>19-12-1991</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0354549 A2</td>
<td>14-02-1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 4996139 A</td>
<td>26-02-1991</td>
</tr>
</tbody>
</table>