(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

- 1 1886 1 1866 1 1 1866 1 186 1 186 1 186 1 186 1 186 1 186 1 186 1 186 1 186 1 186 1 186 1 186 1 186 1 186 1

(10) International Publication Number W O 2013/103624 A l

(43) International Publication Date 11 July 2013 (11.07.2013)

(51) International Patent Classification: *GUC 11/417* (2006.01)

(21) International Application Number:

PCT/US20 13/020004

(22) International Filing Date:

3 January 2013 (03.01.2013)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

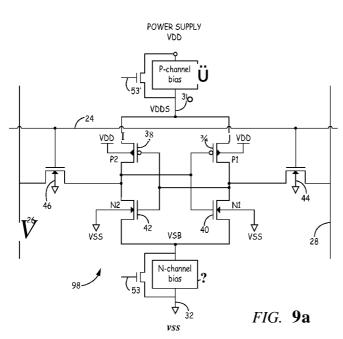
61/582,719 3 January 2012 (03.01.2012) US 13/663,939 30 October 2012 (30.10.2012) US

- (71) Applicant: MEDTRONIC, INC. [US/US]; 710 Medtronic Parkway NE., Minneapolis, Minnesota 55432 (US).
- (72) Inventors: WALSH, Kevin K.; 710 Medtronic Parkway NE., Minneapolis, Minnesota 55432 (US). TYLER, Larry E.; 710 Medtronic Parkway NE., Minneapolis, Minnesota 55432 (US). SCOTT, Brandon P.; 710 Medtronic Parkway NE., Minneapolis, Minnesota 55432 (US).
- (74) Agents: MBURU, Evans, M. et al; Medtronic, Inc., 710 Medtronic Parkway NE., Minneapolis, MN 55432 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,

BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:


- as to applicant's entitlement to apply for and be granted a patent (Rule 4.1 7(H))
- as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(in))

Published:

with international search report (Art. 21(3))

[Continued on next page]

(54) Title: STABLE MEMORY SOURCE BIAS OVER TEMPERATURE AND METHOD

(57) Abstract: Random access memory having a plurality of memory cells, each of the plurality of memory cells having a memory element and a first electrical characteristic being variable based, at least in part, on temperature and a bias circuit operatively coupled to at least one of the plurality of memory cells, the bias circuit being configured to generate a bias voltage for the at least one of the plurality of memory cells. The bias circuit has a second electrical characteristic being variable based, at least in part, on temperature. The first electrical characteristic is approximately proportional to the second electrical characteristic over a predetermined range of temperatures, the predetermined range of temperatures being greater than zero. The bias voltage on each of the plurality of memory cells is approximately proportional with variations in the first electrical characteristic over the predetermined range of temperatures.

WO 2013/103624 A1

 before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

STABLE MEMORY SOURCE BIAS OVER TEMPERATURE AND METHOD

FIELD

5

10

15

20

25

30

The present invention relates generally to memory arrays and, in particular, to systems and methods for reducing leakage current using source biasing.

BACKGROUND

Random access memory, or RAM as it is known in the art, provides short-term storage for digital electronic data. Most forms of RAM known in the art are volatile memory and, as such, require effectively constant application of power to maintain the information contained within the memory. Volatile memory stands in contrast with non-volatile memory, such as read-only memory, or ROM, which does not require constant application of power in order to maintain the data stored within the memory.

Static random access memory, or SRAM, is a particular type of RAM and is well known in the art. As with many common forms of RAM, SRAM utilizes arrangements of semiconductors to store digital information. While SRAM requires an essentially constant power source in order to maintain the digital information, SRAM contrasts with dynamic random access memory, or DRAM, in that SRAM effectively maintains data in the SRAM for as long as power is maintained to the SRAM and does not require stored digital data to be periodically refreshed.

While SRAM is an effective and cost-effective digital memory, the need to supply power to the SRAM makes the SRAM costly to maintain, particularly with respect to power consumption. In general, a voltage approximately equivalent to the threshold voltage of the semiconductor transistors utilized in the SRAM needs to be maintained to the SRAM to maintain the integrity of the data. Because the electrical characteristics of a SRAM array, in particular semiconductors, and in various cases transistors, may tend to vary slightly owing to variations in manufacturing processes, the voltage requirements to maintain data stored in the SRAM may vary among different SRAM cells.

Furthermore, the threshold voltage of the semiconductors may vary depending on the temperature of the semiconductor. In certain circumstances, as temperature of transistors of an SRAM array increases, leakage current of the transistors of the SRAM

array may increase, resulting in a decrease in a minimum supply voltage which may maintain data in the SRAM array. Conversely, reductions in transistor temperature may lessen leakage current and increase minimum supply voltages which may retain data stored in the SRAM array.

As a result, under certain circumstances, the voltage, and consequently the power consumption, required to reliably maintain the data in the SRAM array may be higher than what is required by most of the SRAM cells in the SRAM array. The voltage applied to the SRAM array to provide reliability may be, in various embodiments, the voltage which is needed to maintain the data in the one SRAM cell in the SRAM array which has the highest voltage threshold. In applications such as implantable medical devices, where increased power consumption may result in decreased longevity for the implantable medical device and increased requirements for surgical procedures, such increased power consumption may be highly undesirable.

United States Patent No. 7,684,262, Zampaglione et al, discloses an SRAM leakage reduction circuit. A circuit can maintain a virtual ground node at a virtual ground reference voltage of V_{dd} – (1-5 * V_{th}), or maintain 1.5 * V_{th} across the memory cells, where V_{th} is a threshold voltage of an SRAM memory cell transistor and V_{dd} is a positive supply voltage. By tracking the V_{th} of the memory cell transistors in the SRAM array, the circuit reduces leakage current while maintaining data integrity. The circuitry controls the virtual ground node VG based on a memory transistor threshold voltage in order to safely keep the memory cell data under all process conditions.

SUMMARY

5

10

15

20

25

30

But while it is known in the art to directly monitor the threshold voltage of transistors in the SRAM and directly adjust a virtual ground at the SRAM, such systems incorporate active monitoring of the threshold voltage and active adjustment of the virtual ground node. Doing so is understood in the art to be directed towards improving process yields. However, active circuitry to adjust and maintain the virtual ground node comes at the cost of increased power consumption by the control system used to monitor and adjust the threshold. In environments where power consumption is of greater concern than manufacturing yields, such as in an implantable medical device, such a trade-off may not

be advantageous, while an embodiment providing lower power consumption at the expense of lower manufacturing yields may be preferable.

5

10

15

20

25

30

An SRAM has been developed for effective use over temperature ranges typically found in implantable medical device applications. The SRAM as implemented may produce relatively low leakage currents. Biasing is provided by one of various methods, including by biasing a source node of the SRAM cell, by biasing the supply node of the SRAM cell, or by biasing both the source and the supply nodes. Source biasing may be achieved by inducing a biasing current at an SRAM source node. Similarly, supply biasing may be achieved by inducing a biasing current at an SRAM supply node. Both such biases may be generated by semiconductors with related properties to the semiconductors of the SRAM array, resulting in automatic variation of the bias generated by the bias circuit proportional to the variation of the data retention voltage of the SRAM array. By inducing a current or voltage at a source node or supply node, active circuitry for monitoring threshold voltages and maintaining a virtual ground may be dispensed with, thereby saving power. Moreover, the electronic componentry which generates the biasing current may advantageously inherently provide automatic compensation for variations in the threshold voltage of the SRAM caused by temperature changes.

An SRAM which incorporates such biasing, either source biasing, supply biasing or both together, may improve reliability while reducing power consumption.

Improvements in reliability may account for the impact that variation in temperature causes in threshold voltage levels in the SRAM. For low power applications, it may be preferable to do so while reducing or minimizing overhead power consumption relative to what is known in the art.

In an embodiment, a random access memory has a plurality of memory cells, each of the plurality of memory cells having a memory element and a first electrical characteristic being variable based, at least in part, on temperature and a bias circuit operative!}' coupled to at least one of the plurality of memory cells, the bias circuit being configured to generate a bias voltage for the at least one of the plurality of memory cells. The bias circuit has a second electrical characteristic being variable based, at least in part, on temperature. The first electrical characteristic is approximately proportional to the second electrical characteristic over a predetermined range of temperatures, the predetermined range of temperatures being greater than zero. The bias voltage on each of

the **plurality** of memory cells is approximately proportional with variations in the first electrical characteristic over the **predetermined** range of temperatures.

In an embodiment, the bias circuit is a source bias circuit.

5

10

15

20

25

30

In an embodiment, the random access memory further has a supply bias circuit operative!}' coupled to the at least one of the plurality of memory cells, the supply bias circuit being configured to generate a bias voltage for at least one of the plurality of memory cells, the supply bias circuit having the second electrical characteristic being variable based, at least in part, on temperature.

In an embodiment, the bias circuit is a supply bias circuit.

In an embodiment, the random access memory further comprises a voltage buffer operative!}' coupled between the supply bias circuit and the at least one of the plurality of memory cells.

In an embodiment, the voltage buffer comprises an input and an output configured to supply the bias voltage, the input being coupled to the supply bias circuit and the output being coupled to the at least one of the plurality of memory cells. Another one of the plurality of memory cells is coupled to the input of the voltage buffer and configured to supply, in combination with the supply bias circuit, an input voltage related to the bias voltage to the input to the voltage buffer.

In an embodiment, the random access memory further comprises a plurality of the bias circuits.

In an embodiment, wherein each of the plurality of bias circuits comprise a bias element with the bias element having the second electrical characteristic being variable based, at least in pat, on temperature.

In an embodiment, the random access memory further has a plurality of the bias circuits.

In an embodiment, each of the plurality of bias circuits comprise a bias element with the bias element **having** the second electrical characteristic being **variable** based, at least in part, on temperature.

In an embodiment, each one of the plurality of bias circuits corresponds to exactly one of the plurality of memory cells.

In an embodiment, the bias element of each of the bias circuits comprises metal oxide semiconductor transistors.

In an embodiment, the bias element of each of the plurality of bias circuits comprises P-channel metal oxide semiconductor transistors.

5

10

15

20

25

30

In an embodiment, the random access memory is operatively coupled to a power source, wherein each memory element of the plurality of memory cells comprises a P-channel metal oxide semiconductor transistor having a body and wherein the body the P-channel metal oxide semiconductor transistor of at least one of the plurality of memory cells is operatively coupled to the power source.

In an embodiment, the random access memory is operatively coupled to a reference ground, wherein each memory element of the plurality of memory cells comprises an N-channel metal oxide semiconductor transistor having a body and wherein the body of the N-channel metal oxide semiconductor transistor of the at least one of the plurality of memory cells is operatively coupled to the reference ground.

In an embodiment, each memory element of the plurality of memory cells comprises a P-channel metal oxide semiconductor transistor having a body and wherein the body of the P-channel metal oxide semiconductor transistor of at least one of the plurality of memory cells is biased by the bias voltage of the bias element.

In an embodiment, the random access memory is operatively coupled to a reference ground, wherein each memory element of the plurality of memory cells comprises an N-channel metal oxide semiconductor transistor having a body and wherein the body of the N-channel metal oxide semiconductor transistor of the at least one of the plurality of memory cells is operatively coupled to the reference ground.

In an embodiment, the bias element of each of the plurality of bias circuits comprise N-channel metal oxide semiconductor transistors.

In an embodiment, the random access memory is operatively coupled to a reference ground, wherein each memory element of the plurality of memory cells comprises an N-channel metal oxide semiconductor transistor having a body and wherein the body of the N-channel metal oxide semiconductor transistor of at least one of the plurality of memory cells is operatively coupled to the reference ground.

In an embodiment, each memory element of the plurality of memory cells comprises an N-channel metal oxide semiconductor transistor having a body and wherein tire body of the N-channel metal oxide semiconductor transistors of at least one of the plurality of memory cells is biased by the bias voltage of the bias element.

In an embodiment, each of the plurality of bias circuits comprises a current mirror, the bias element being a component of the current mirror.

In an embodiment, the memory element of each of the plurality of memory cells has a source node and a power node, the bias circuit being operatively coupled between the power node and the power source.

5

10

15

20

25

30

In an embodiment, the bias circuit is a first bias circuit, and a second bias circuit is operatively coupled between the source node and the reference node.

In an embodiment, the random access memory further comprises a supply bias voltage buffer operatively coupled between the first bias circuit and the supply node and a source bias voltage buffer operatively coupled between the second bias circuit and the source node.

In an embodiment, the memory element of each of the plurality of memory cells has a source node and a power node, the power node being coupled to the power source and the bias circuit being operatively coupled between the source node and the reference node.

In an embodiment, the current mirror comprises the bias element and a current element operatively coupled to the bias element, a **current** source induces a current through the current element, and a bias current is induced through the bias element and the memory element approximately equivalent to the current and whereby the bias voltage on each source node of the plurality of memory cells is properly maintained.

In an embodiment, each of the plurality of memory cells has a read mode and a storage mode, wherein the bias current is induced through the bias element when the memory cell is in the storage mode and wherein the bias current is not induced through the bias element when the memory cell is in the read mode.

In an embodiment, each of the plurality of memory cells also has a write mode, wherein the bias current is not induced through the bias element when the memory cell is in the write mode.

In an embodiment, the first electrical characteristic is a threshold voltage and wherein a **current** generated by the bias circuit induces the bias voltage based, at least in part, on the supply voltage and the threshold voltage.

In an embodiment, the threshold voltage is inversely variable to variation in the temperature.

In an embodiment, the bias voltage is based, at least in part, on the supply voltage less the threshold voltage less a voltage margin.

In an embodiment, the bias voltage maintains the digital bit in at least one of the plurality of memory cells.

In an embodiment, the bias circuit generates the bias voltage for more than one of the plurality of memory cells.

In an embodiment, the bias circuit generates the bias voltage for all of the plurality of memory cells.

In an embodiment, the bias circuit comprises at least one of the plurality of memory cells.

In an embodiment, method of maintaining a relatively stable bias voltage of a random access memory over a range of temperatures has the steps of providing a plurality of memory cells each having a memory element, each of the plurality of memory cells being configured to store a digital bit and having a first electrical characteristic being variable based, at least in part, on temperature and providing a bias circuit operatively coupled to at least one of the plurality of memory cells and being configured to bias the at least one of the plurality of memory cells. The bias circuit having a second electrical characteristic being variable based, at least in part, on temperature. The first electrical characteristic being approximately proportional to the second electrical characteristic over a predetermined range of temperatures. A bias voltage of at least one of the plurality of memory cells is approximately proportional with variations over the range of temperatures.

FIGURES

5

10

15

20

30

Figure I is a schematic of a conventional SRAM cell;

Figures 2a and 2b are circuit-level diagrams of source biased SRAM cells;

Figures 3a and 3b are embodiments of bias circuits;

Figure 4 is a response graph of the SRAM cell with current source bias of Figure 2a;

Figures 5a and 5b are block diagrams of implementations of an SRAM ceil with current source bias circuits;

Figiires 6a and 6b are alternative embodiments of SRAM bias circuits incorporating a voltage buffer and dummy memory cells;

Figures 7a is a SRAM cell;

Figures 8a and 8b are block diagrams of implementations of SRAM cells as in 5 Figure 7a;

Figures 9a and 9b is a schematic of a SRAM cell with both P-channel and N-channel biases;

Figures 10a and 10b are block diagrams of implementations of an SRAM cell with both P-channel and N-channel biases; and

Figure 11 is a flowchart for providing a random access memory with stable data retention properties.

DESCRIPTION

10

15

20

25

30

Figure 1 is a circuit-level diagram of a static random access memory ("SRAM") cell i 0 known in the art. The structure and operation of conventional SRAM cells are well known in the art and will not be discussed in detail here. However, to facilitate the discussion of current source biasing below, the structure and operation of SRAM cell 10 will be briefly treated below.

P-channel transistors 12, 14 and N-channel transistors 16, 18 are connected as cross-coupled inverters having two stable states denotable as logical "0" or logical "1". Access transistors 20, 22 provide access to place SRAM cell 10 in a read mode and to place SRAM cell 10 in a write or storage mode from wordline 24 by enabling access to bitline 26 and not-bitline 28. Power node 30, which provides a positive supply line and is known in the art as VDD, biases the source of each of P-channel transistors 12, 14 high, while ground 32 biases the source of N-channel transistors 16, 18 low. The voltage component of SRAM ceil 10 that consumes power is thus VDD minus ground, or simply VDD.

Having a relatively small value V_{DD} , may reduce overall power consumption of SRAM cell. However, in order to maintain transistors 12, 14, 16, 18 in an active state, the value of V_{DD} generally must equal or exceed the minimum data retention voltage, or DRV, of transistors 12, 14, 16, 18. Moreover, owing to the physical structure of transistors 12, 14, 16, 18, changes in temperature may lead to variations in the threshold voltage V_{th} and

leakage current of transistors 12, 14, 16, 18 and, consequently, to the minimum data retention voltage DRV. In various embodiments, over a temperature range from negative twenty-five (-25) degrees Fahrenheit (-32 degrees Celsius) to positive fifty-five (55) degrees Fahrenheit (13 degrees Celsius), the minimum data retention voltage DRV, may vary by more than one hundred (100) millivolts. In an embodiment, tire minimum data retention voltage DRV may vary by three hundred (300) millivolts or more. In various embodiments, relatively low temperatures may result in relatively higher threshold voltages and an increased data retention voltage DRV. Thus, in the art, in order to provide an operable SRAM over a temperature range, the SRAM is commonly configured to be operable with VDD at the worst case for the temperature range, thereby resulting in excessive margin over the threshold voltage when not at the extreme of the temperature range.

5

10

15

20

25

30

Figures 2a and 2b are circuit-level diagrams of source biased SRAM cells 34 and 34', respectively. SRAM cells 34 and 34' incorporate certain componentry generally similar to SRAM cell 10. P-ehannel metal oxide semiconductor transistors 36, 38 and N-channel metal oxide semiconductor transistors 40, 42 individually form memory elements and may be made from similar processes as equivalent transistors 12, 14, 16, 18 and are connected as cross-coupled inverters. Access transistors 44, 46 provide access to read and to write SRAM cell 34. Wordline 24, bitline 26, not-bitiine 28 and power node 30 are otherwise the same as SRAM cell 10. SRAM cell 34 also incorporates ground 32. Because transistors 36, 38, 40, 42 are made from the same processes and have the same sizes, transistors 36, 38, 40, 42 may have a common electrical characteristic, such as a common threshold voltage.

In storage mode, SRAM cell 34, however, ground 32 is not directly coupled to source 50 of N-channel transistors 40, 42 unlike SRAM cell 10. Rather, with switch 53 open, source 50 acts as a virtual ground VS_B and is coupled to N-channel source bias circuit 52. Consequently, SRAM cell 34 incorporates N-channel transistors 40, 42 with biased source nodes, resulting, as will be disclosed in detail below, in inherent temperature compensation. The bias voltage over each N-channel transistor 40, 42 may be defined as the difference between Vss ground on the body of N-channel transistors 40, 42 and the voltage of virtual ground VSB. In read/write mode, switch 53 is closed, essentially

removing N-channel bias 52 from the circuit enabling uninhibited read/write operations without the interference of N-channel bias 52,

5

10

15

20

25

30

Relatedly, in storage mode, power node 30 of SRAM cell 34' functions as a virtual power node and is coupled to P-channel bias circuit 52'. The bodies of P-channel transistors 36, 38 are coupled to VDD- Consequently, SRAM cell 34 incorporates P-channel transistors 36, 38 with biased source nodes, resulting, as will be disclosed in detail below, in inherent temperature compensation. The bias voltage over each P-channel transistor 36, 38 may be defined as the difference between VDD power voltage on the body of P-channel transistors 36, 38 and the voltage of virtual power node 30. In read/write mode, switch 53' is closed, essentially removing P-channel bias 52' from the circuit enabling uninhibited read/write operations without the interference of P-channel bias 52'.

Figures 3a and 3b are exemplary embodiments of potential bias circuits which may be utilized, including N-channel bias circuit 52 and P-channel bias circuit 52, respectively. In various embodiments disclosed herein, N-channel bias circuit 52 may be utilized as a source bias circuit and a ground bias circuit. In various embodiments disclosed herein, P-channel bias circuit 52' may be utilized as a source bias circuit and a supply bias circuit. In the exemplary embodiment, N-channel bias circuit 52 is a current mirror. As shown, the current mirror is configured as known in the art, with N-channel transistor 54 sized relative to N-channel transistor 56 to provide bias elements to induce a desired sink current through transistors 40, 42. (Figure 2a) to ground. Transistor 54 is diode coupled with the gate and drain shorted and coupled to current source 58. The gates of transistors 54 and 56 are like wise shorted, the drain of transistor 56 is connected to the sources of transistors 40, 42 and the sources of transistors 54, 56 are shorted to ground. Alternatively, variations on, or supplements to current mirror 52 as known in the art may be incorporated to provide current I_{blac}.

P-channel bias 52' operates on related principles to N-channel bias 52, adjusted to account for P-channel components 54', 56' to provide bias elements induce a bias current to power node 30 and P-channel transistors 36, 38 coupled thereto. As with N-channel bias 52, in the exemplary embodiment P-channel bias 52' is a current mirror formed from P-channel transistors 54', 56' and configured to mirror l_{ref} from current source 58' to li_{ras} over power node 30. As with N-channel bias 52, variations on, or supplements to current mirror 52' as known in the art may be incorporated to provide current $l_{b\bar{s}as}$ -

As is known in the art, the configuration of current mirror 52 causes a current through transistor 54 to he induced proportionally in transistor 56, which acts as the biasing element for memory cell 34. Thus, passing the output I_{ref} of a current element such as current source 58 through current transistor 54 induces current Ibias in current bias transistor 56. Because current Ibias is pulled through transistor 56, a voltage drop occurs from drain to source over transistor 56 proportional to the electrical characteristic, in an embodiment the voltage minimum data retention voltage, of transistors 40, 42. Current I_{n f} is selected and transistors 54 and 56 are sized so that current Ibias through transistor 56 is generated such that the desired leakage current for cell 34 is obtained while maintaining a desired data retention voltage for cell 34. The data retention voltage may be maintained over the range of operating temperatures. In various embodiments, current Ibis may be generated for more than one cell 34 from a single current mirror 52. In various embodiments, each current mirror 52 is configured to supply current Ibias for approximately 128,000 SRAM cells 34 or for approximately 256,000 SRAM cells 34, though more or fewer SRAM cells 34 are contemplated per current mirror 52. In various embodiments, current Ibias is from approximately fifty (50) nanoAmperes to one hundred (100) nanoAmperes.

5

10

15

20

25

30

As discussed above, data retention voltage DRV of a cell 34 varies according to temperature. As further discussed above, variations in temperature in transistors 36, 38, 40, 42 may change the threshold voltage of the transistors, potentially taking SRAM cell 34 outside of active operational range if available power voltage $V_{\rm DD}$ is not sufficiently large and source node 50 is not directly coupled to ground.

A function of current biasing source node 50 using current mirror 52 is to induce a voltage at source node 50 that reduces leakage in comparison with SRAM cell 10 while maintaining a sufficient voltage across SRAM cell 34 to retain data in SRAM cell 34 across a range of temperatures. The voltage induced at source node 50 increases the bulk to source voltage of N-channel transistors 40, 42, thereby lowering the effective leakage current of N-channel transistors 40, 42. Because of the known proportionality between N-channel transistors 40, 42 and bias transistors 54, 56, as the temperature of cell 34 varies, source node voltage 50 may tend to vary proportionally and automatically as an inherent effect of the temperature on transistors 40, 42, 54, 56. As temperature is reduced, leakage from cell 34 is reduced while concurrently the voltage of source node 50 is reduced owing

to a drain to source voltage of transistor 56 in current mirror 52 inherently and automatically adjusting to track proportionally with the drain to source voltage of transistor 54 in current mirror 52. The reduction of the voltage of source node 50 increases the effective supply voltage across cell 34, thereby enabling cell 34 to retain data at the lower temperature in spite of the increased threshold voltages V_{ih} of transistors 40, 42, 54, 56 which results from the lower temperature. Conversely, as temperature of cell 34 increases, leakage from cell 34 increases owing to the resultant increase in source biasing on node 50 from current I_2 generated by current mirror 52.

5

10

15

20

25

30

It is noted that source biasing SRAM cell 34 provides for improved ability of SRAM cell 34 to retain data in a state with a low leakage current. Consequently, in various embodiments, SRAM cell 34 is biased by source bias circuit 52 when SRAM cell 34 is in a storage mode. In an embodiment, current source 58 is enabled to deliver current when SRAM cell 34 is placed in storage mode. However, biasing may interfere with the ability of SRAM cell 34 to read or write information. In various embodiments, when SRAM cell 34 is placed in read or write mode, source bias circuit 52 does not bias SRAM cell 34. In an embodiment, current source 58 is disabled and does not deliver current when SRAM cell 34 is in read or write mode. In various embodiments, current source 58 is enabled when SRAM cell 34 is in storage mode and disabled when SRAM cell 34 is in read or write mode.

Figure 4 is a graphical representation of response curves 60 of SRAM cell 34. Response curves 60 are plotted as a function of temperature 62 and voltage 64. As shown, power voltage V_DD66 remains fixed over time, as illustrated at seven hundred (700) millivolts. Source node 50 voltage V_{SB} 68 and source node 50 current I_SB 70, however, rise as temperature rises, owing at least in part to changes in the threshold voltage V_{th} of transistors 36, 38, 40, 42, 54, 56. However, as discussed above, because the bias voltage on source node 50 automatically varies in relation to the increased leakage of cell 34 with respect to temperature, minimum data retention voltage DRV 72 of cell 34 remains constant at approximately six hundred (600) millivolts. Similarly as temperature is reduced, source node 50 voltage VSB is lowered, thereby maintaining an approximately constant data retention voltage DRV. Consequently, in an embodiment, a safety margin of approximately one hundred (100) millivolts is maintained between VDD and DRV over a

range of temperatures. In various alternative embodiments, a safety margin of three hundred (300) millivolts or more is maintained between $V_{\rm DD}$ and DRV,

5

10

30

Thus, owing to the use of current mirror 52 to current bias source node 50 of SRAM cell 34, the voltage drop over SRAM cell 34, in other words the voltage difference between VDD 66 and VSB 68 varies to provide a minimum data retention safety margin as discussed above, whatever changes may occur in the threshold voltage V_{th} of transistors 36, 38, 40, 42, 54, 56. Thus, SRAM cell 34 may operate with relatively less power consumption than SRAM cell 10, which does not current bias source node 32.

Figure 5a is a block diagram of multiple SRAM cells 34 each being current source biased by one of multiple current mirrors 52. In an SRAM chip the number of SRAM cells 34 may be scaled to provide a memory block adequate for whatever system in which the memory block is being utilized. In an alternative embodiment, illustrated in **Figure** 5b, one current mirror 52 is adequate to current source bias multiple SRAM cells 34 and is coupled to source node 50 of each SRAM cell 34.

Figures 6a and 6b are alternative embodiments of SRAM bias circuits 72 and 72'.

In contrast to source bias circuits 52, 52', which induces a bias current through SRAM cell 34, source bias circuits 72, 72' induce a bias voltage at source node 50 and power node 30, respectively. Current mirrors 74, 74' are related to current mirrors 52, 52', respectively, including transistors 76, 78 which use source current I_{ref} to generate bias current I_{bias}.

However, unlike source bias circuits 52, 52', source bias circuits 72, 72' further include at least one dummy memory cell 80. In an embodiment, dummy memory cell 80 is electrically the same as memory ceil 34 but, rather than being configured to store data, instead functions as a dummy memory cell in order to produce a voltage on input 82 of voltage buffer 84. Buffer 84 then produces the bias voltage on source node 50 or supply node 30, as appropriate, in order to bias memory cell 34.

In various embodiments, memory ceil 80 incorporates multiple dummy memory cells 34. In various embodiments, dummy memory cell 80 incorporates from ten (10) to one thousand (iOOO) memory cells 34. In various embodiments, memory cell 80 is a functioning memory array configured to store data. In various embodiments, the dimensions of transistors 76, 78 are selected so that source current $I_{e^{-1}}$ is in a range of one (1) to one thousand (1000) times greater than bias current I_{bi_8} s'.

Figure 7a is a **SRAM** cell 86. SRAM cell 86 is similar to **SRAM** cell 34 and 34', respectively, (**Figures** 2a and 2b) in that both include an SRAM cell relaxed to that of SRAM cell 10 as well as a bias circuit 52, 52'. However, with respect to Figure 7a, in storage mode with switch 53' open, SRAM cell 86 incorporates bias circuit 52' as a supply bias with the bodies of P-cbannei transistors 36, 38 tied to virtual supply VDDS-Consequently, supply bias circuit 52' creates a virtual supply V_{DDS} which varies with respect to the threshold voltage. In read/write mode, switch 53' is closed effectively removing P-channei bias 52' from the circuit enabling uninhibited read/write functionality.

5

10

15

20

25

30

As illustrated, apart from tying the bodies of transistors 36, 38, 40, 42 variably to virtual supply VDDS and virtual ground VSB as appropriate, SRAM cells 86, 86' are otherwise similar to SRAM cells 34, 34'. Access transistors 44, 46 provide access to read and to write SRAM cell 34. Wordline 24, bitline 26, not-bitline 28 provide reading and writing capabilities. It is recognized, however, that SRAM cells 86 and 86' with transistor bodies tied to virtual supply VDDs and virtual ground VSB, as appropriate, may vary in terms of its components from those of SRAM cells 34 and 34' based on the particular circumstances in which the SRAM cells 86, 86' are implemented.

Figure 8a is a block diagram of multiple SRAM cells 86 each being current supply biased by one of multiple P-channel biases 52', such as a current mirror. In an SRAM chip, the number of SRAM cells 86 may be scaled to provide a memory block adequate for whatever system in which the memory block is being utilized. In an alternative embodiment, illustrated in Figure 8b, one P-channel biases 52', such as a current mirror, is adequate to current source bias multiple SRAM cells 86 and is coupled to virtual supply 96 of each SRAM cell 86.

Figures 9a and 9b are SRAM cells 98 and 98', each of which bias both P-channel transistors 36, 38 and N-charmel transistors 40, 42. In storage mode with switches 53 and 53' open, SRAM ceil 98 incorporates N-channel source bias circuit 52 and P-channel supply bias circuit 52', with the bodies of transistors 36, 38, 40, 42 coupled to VDD and Vss, as appropriate and indicated. SRAM cell 98' incorporates N-channel bias circuit 52 and P-channel bias circuit 52' with the bodies of transistors 36, 38, 40, 42 coupled to virtual supply $V_{\rm DDS}$ and $V_{\rm SB}$ as appropriate and indicated. While it is contemplated that either source bias circuit 52 or supply bias circuit 52' would be sufficient by itself to compensate for variations in threshold voltage and leakage current under most

circumstances, incorporating both source bias circuit 52 and supply bias circuit 52' may provide benefits which cannot be provided by having only one source bias circuit 52 or supply bias circuit 52'. In read/write mode with switches 53 and 53', P-channel bias 52' and N-channel bias 52 are effectively removed from the circuit enabling uninhibited read/write functionality.

5

10

15

20

25

Figure 10a is a block diagram of multiple SRAM cells 98 each being biased by one of multiple source biases 52 and one of multiple supply biases 52'. The block diagram of **Figure 10a** applies equally well with respect to SRAM cells 98'. In an SRAM chip, the number of SRAM cells 98 may be scaled to provide a memory block adequate for whatever system in which the memory block is being utilized. In an alternative embodiment, illustrated in **Figure** 10b, one source bias 52 and one supply bias 52' is adequate to bias multiple SRAM cells 98 or SRAM cells 98', as the case may be.

Figure 11 is a flowchart for maintaining a relatively stable source bias voltage of a random access memory over a range of temperatures. A plurality of SRAM cells 34, 34', 86, 86', 98, 98' are provided (1100). A plurality of N-channel bias circuits 52 or P-channel bias circuits 52' are provided (1102). In an embodiment, each bias circuit 52, 52' is coupled to one SRAM cell 34, 34', 86, 86', 98, 98'. In an alternative embodiment, each bias circuit is coupled to more than one SRAM cell 34, 34', 86, 86', 98, 98'. A bias voltage on each of memory ceils 34, 34', 86, 86', 98, 98' thereby remains relatively stable over variations in temperature.

Thus, embodiments of the stable memory source bias over temperature and method are disclosed. One skilled in the art will appreciate that the present invention can be practiced with embodiments other than those disclosed. The disclosed embodiments are presented for purposes of illustration and not limitation, and the present invention is limited only by the claims that follow.

What is claimed is:

1. A random access memory, comprising:

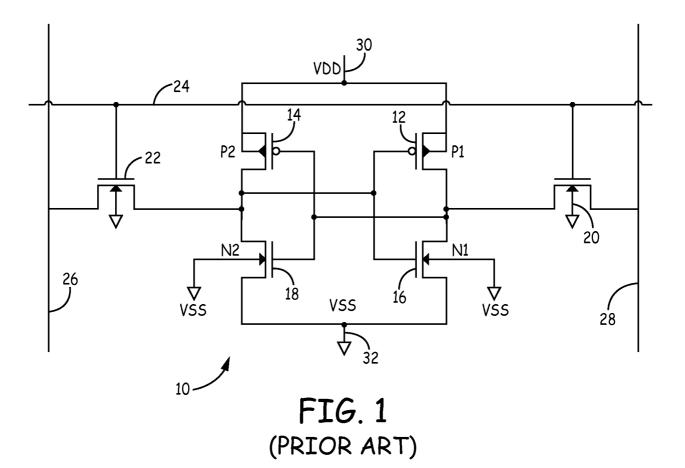
a plurality of memory cells, each of said plurality of memory cells having a memory element and a first electrical characteristic being variable based, at least in part, on temperature; and

a bias circuit operatively coupled to at least one of said plurality of memory cells, said bias circuit being configured to generate a bias voltage for said at least one of said plurality of memory ceils;

said bias circuit having a second electrical characteristic being variable based, at least in part, on temperature;

said first electrical characteristic being approximately proportional to said second electrical characteristic over a predetermined range of temperatures, said predetermined range of temperatures being greater than zero;

whereby said bias voltage on each of said plurality of memory cells is approximately proportional with variations in said first electrical characteristic over said predetermined range of temperatures.


- 2. The random access memory of claim 1 wherein said bias circuit is a source bias circuit.
- 3. The random access memory according to claims 1 or 2 further comprising a supply bias circuit operatively coupled to said at least one of said plurality of memory ceils, said supply bias circuit being configured to generate a bias voltage for at least one of said plurality of memory cells, said supply bias circuit having said second electrical characteristic being variable based, at least in part, on temperature.
- 4. The random access memory of claim 4 further comprising a voltage buffer operatively coupled between said supply bias circuit and said at least one of said plurality of memory cells.

5. The random access memory of claim **I**, further comprising a plurality of said bias circuits.

- 6. The random access memory of claim 5 wherein each of said plurality of bias circuits comprise a bias element with said bias element having said second electrical characteristic being variable based, at least in part, on temperature.
- 7. The random access memory of claim 5 wherein said bias element of each of said bias circuits comprise metal oxide semiconductor transistors.
- 8. The random access memory of claim 7 wherein said random access memory is operatively coupled to a power source, wherein each memory element of said plurality of memory cells comprises a P-channel metal oxide semiconductor transistor having a body and wherein said body said P-channel metal oxide semiconductor transistor of at least one of said plurality of memory cells is operatively coupled to said power source.
- 9. The random access memory of claim 7 wherein each of said plurality of bias circuits comprise a current mirror, said bias element being a component of said current mirror.
- 10. The random access memory of claim 9 wherein said memory element of each of said plurality of memory cells has a source node and a power node, said bias circuit being operatively coupled between said power node and a power source.
- 11. The random access memory of claim 9 wherein said memory element of each of said plurality of memory ceils has a source node and a power node, said power node being coupled to said power source and said bias circuit being operatively coupled between said source node and said reference node.
- 12. The random access memory of claim 11: wherein said current mirror comprises said bias element and a current element operatively coupled to said bias element;

wherein a current source induces a current through said current element; and whereby a bias current is induced through said bias element and said memory element is approximately equivalent to said current and whereby said bias voltage on each source node of said plurality of memory cells is properly maintained.

- 13. The random access memory of claim 12 wherein each of said plurality of memory cells has a read mode and a storage mode, wherein said bias current is induced through said bias element when said memory cell is in said storage mode and wherein said bias current is not induced through said bias element when said memory cell is in said read mode.
- 14. The random access memory of claim i wherein said first electrical characteristic is a threshold voltage and wherein a current generated by said bias circuit induces said bias voltage based, at least in part, on said supply voltage and said threshold voltage.
- 15. The random access memory of claim 14 wherein said threshold voltage is inversely variable to variation in said temperature.

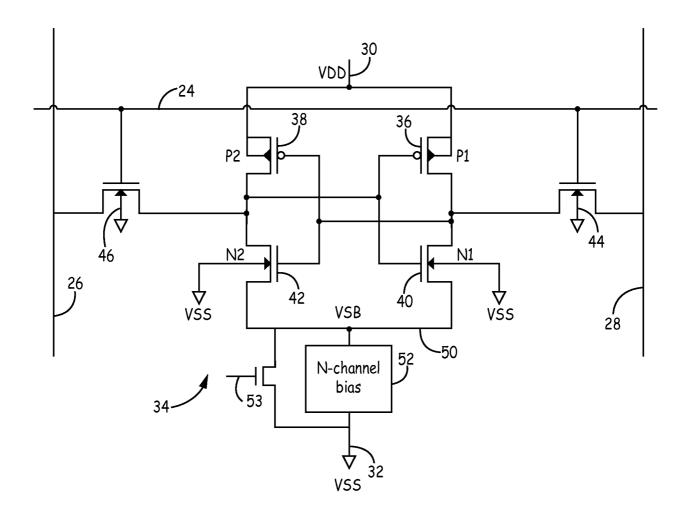
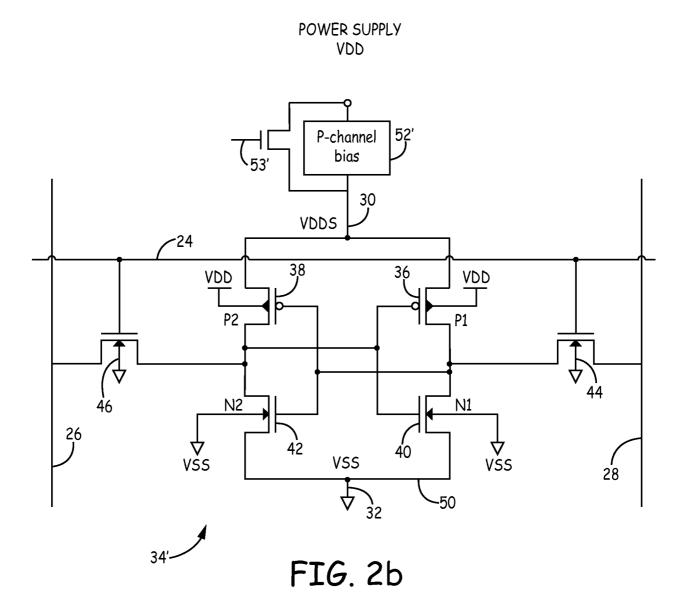
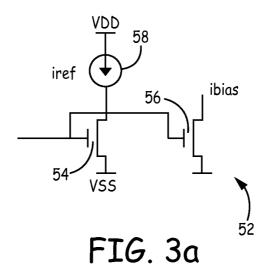




FIG. 2a

4 / 15

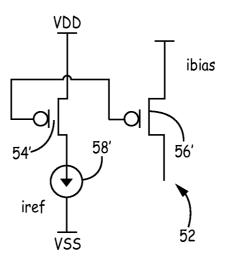


FIG. 3b

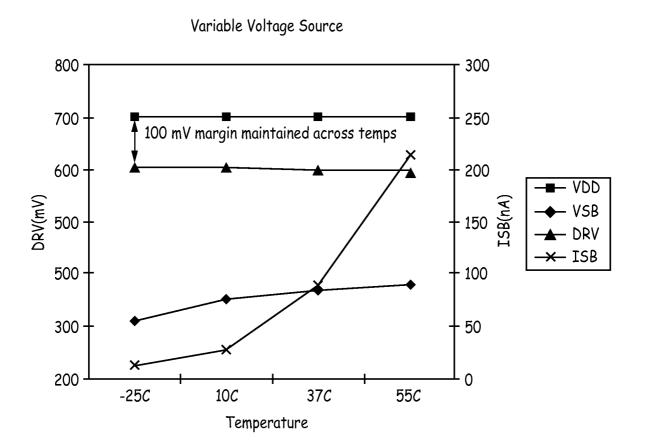
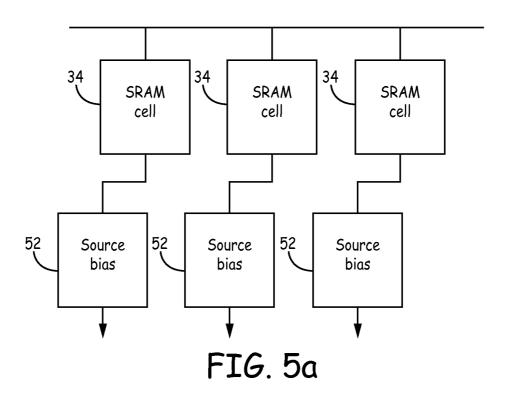
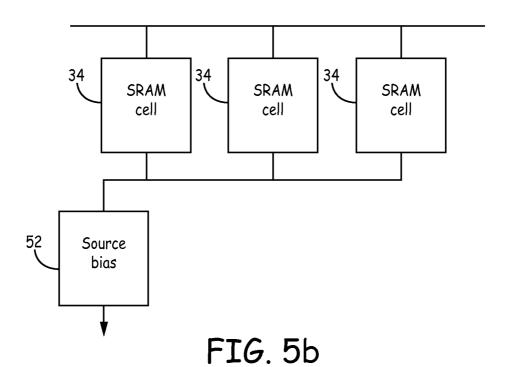




FIG. 4

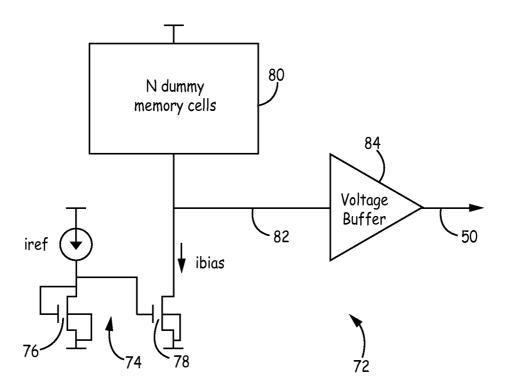


FIG. 6a

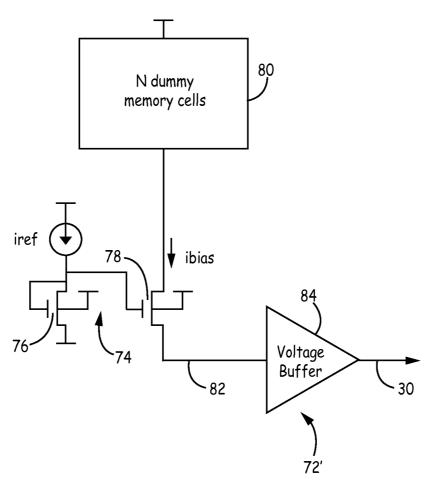


FIG. 6b

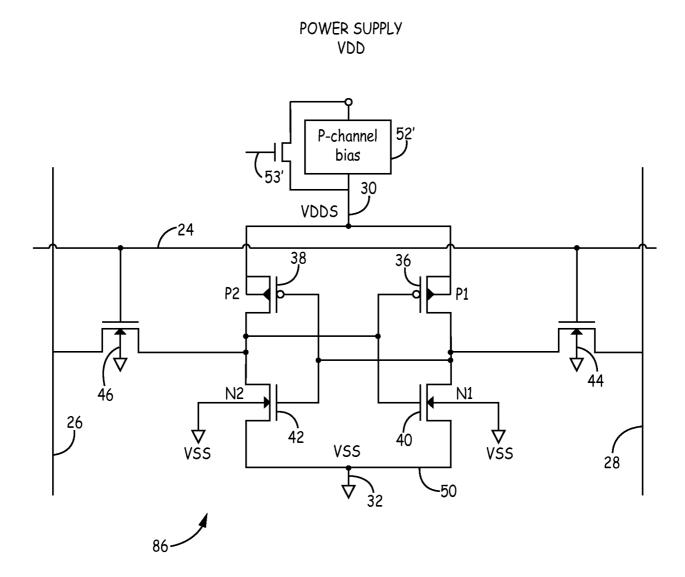
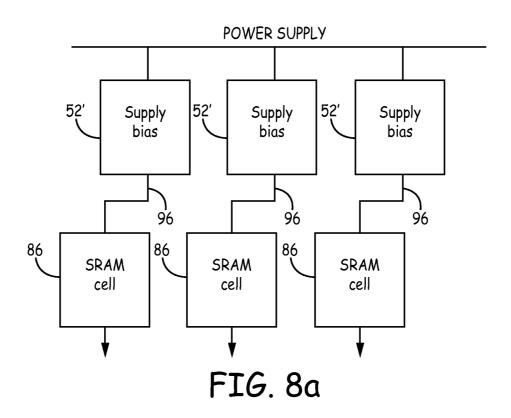
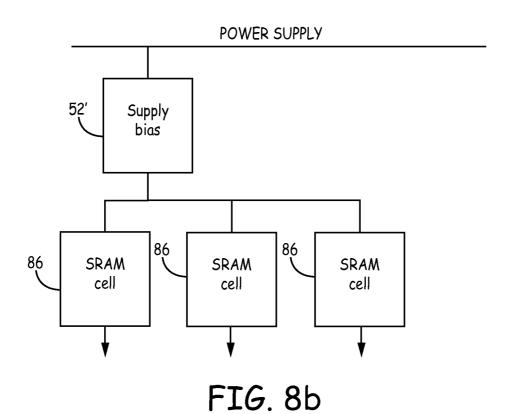




FIG. 7a

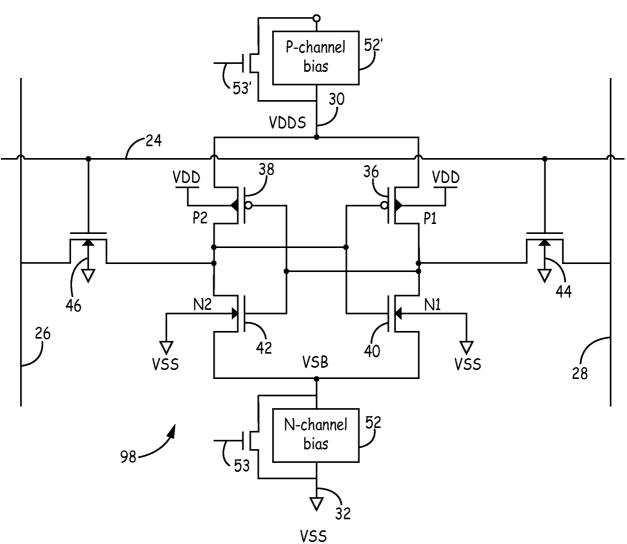


FIG. 9a

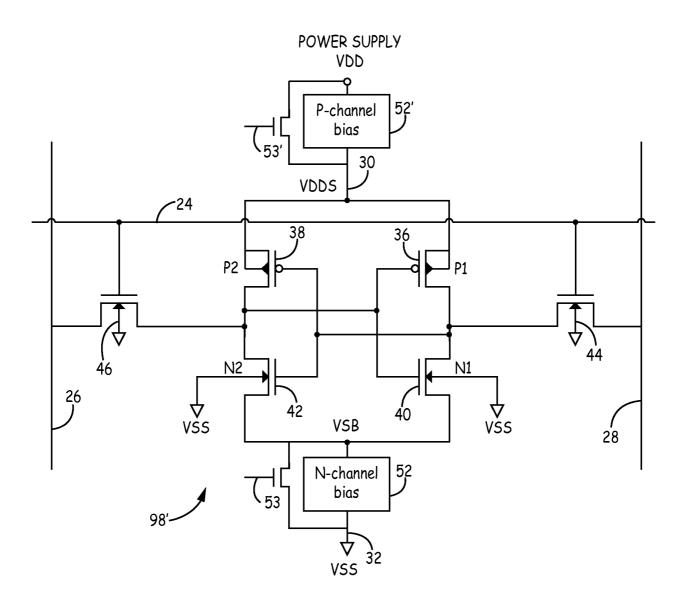
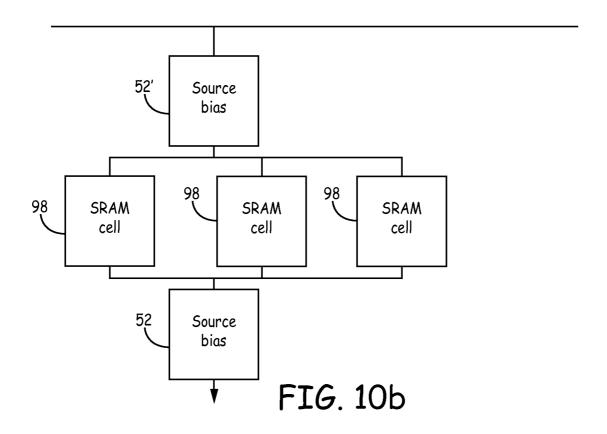



FIG. 9b

15/15

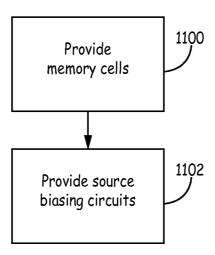


FIG. 11

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2013/020004 A. CLASSIFICATION OF SUBJECT MATTER INV. G11C11/417 ADD. According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) G11C Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) EPO-Internal , WPI Data C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. US 2010/208539 Al (LEOMANT SYLVAIN [FR] ET 1-12, 14,Χ AL) 19 August 2010 (2010-08-19) 15 Υ paragraph [0009] - paragraph [0016]; 13 figures 1,3 Х US 2009/244956 Al (INOUE AKIMITSU [\mathbf{J} P]) 1-4, 1 October 2009 (2009-10-01) 9-12, 14, 15 paragraph [0069] - paragraph [0078]; figure 34 Υ US 2003/102904 Al (MIZUNO HIROYUKI [US] ET 13 AL MIZUNO HIROYUKI [JP] ET AL) 5 June 2003 (2003-06-05) paragraph [0114] - paragraph [0118]; figure 33 X Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive filing date "L" documentwhich may throw doubts on priority claim(s) orwhich is cited to establish the publication date of another citation or other special reason (as specified) step when the document is taken alone 'Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "O" document referring to an oral disclosure, use, exhibition or other "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 8 May 2013 21/05/2013

Authorized officer

Wolff, Norbert

Name and mailing address of the ISA/

NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040

Fax: (+31-70) 340-3016

European Patent Office, P.B. 5818 Patentlaan 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No PCT/US2013/020004

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
us 2010208539	Al	19-08-2010	NONE			
us 2009244956	AI	01-102009	JP JP US	4844619 2009259373 2009244956	B2 A AI	28-12-2011 05-11-2009 01-10-2009
us 2003102904	AI	05 -062003	JP US US US	2003168735 2003102904 2005024124 2006267676 2010052775	A Al Al Al Al	13-06-2003 05-06-2003 03-02-2005 30-11-2006 04-03-2010